
This paper is included in the Proceedings of the
13th USENIX Conference on

File and Storage Technologies (FAST ’15).
February 16–19, 2015 • Santa Clara, CA, USA

ISBN 978-1-931971-201

Open access to the Proceedings of the
13th USENIX Conference on

File and Storage Technologies
is sponsored by USENIX

Failure-Atomic Updates of Application Data
in a Linux File System

Rajat Verma and Anton Ajay Mendez, Hewlett-Packard; Stan Park, Hewlett-Packard Labs;
Sandya Mannarswamy, Hewlett-Packard; Terence Kelly and Charles B. Morrey III,

Hewlett-Packard Labs

https://www.usenix.org/conference/fast15/technical-sessions/presentation/verma

USENIX Association 	 13th USENIX Conference on File and Storage Technologies (FAST ’15)  203

Failure-Atomic Updates of Application Data in a Linux File System

Rajat Verma1 Anton Ajay Mendez1 Stan Park2

Sandya Mannarswamy1 Terence Kelly2 Charles B. Morrey III2

1Hewlett-Packard Storage Division 2Hewlett-Packard Laboratories

Abstract

We present the design, implementation, and evaluation

of a file system mechanism that protects the integrity of

application data from failures such as process crashes,

kernel panics, and power outages. A simple interface of-

fers applications a guarantee that the application data in a

file always reflects the most recent successful fsync or

msync operation on the file. Our file system furthermore

offers a new syncv mechanism that failure-atomically

commits changes to multiple files. Failure-injection tests

verify that our file system protects the integrity of ap-

plication data from crashes and performance measure-

ments confirm that our implementation is efficient. Our

file system runs on conventional hardware and unmod-

ified Linux kernels and will be released commercially.

We believe that our mechanism is implementable in any

file system that supports per-file writable snapshots.

1 Introduction

Many applications modify data on durable media, and

failures during updates—application process crashes, OS

kernel panics, and power outages—jeopardize the in-

tegrity of the application data. We therefore require so-

lutions to the fundamental problem of consistent modifi-

cation of application durable data (CMADD), i.e., the

problem of evolving durable application data without

fear that failure will preclude recovery to a consistent

state.

Existing mechanisms provide imperfect support for

solving the CMADD problem. Relational databases of-

fer ACID transactions; similarly, many key-value stores

allow failure-atomic bundling of updates [2, 13, 14]. De-

spite the obvious attractions of transactions, both kinds

of databases can lead to two difficulties: First, in-

memory data structures do not always translate conve-

niently or efficiently to and from database formats; re-

peated attempts to smooth over the “impedance mis-

match” between data formats have met with limited suc-

cess [19]. Second, the complexity of modern databases

offers fertile ground for implementation bugs that negate

the promise of ACID: A recent study has shown that

widely used key-value and relational databases exhibit

erroneous behavior under power failures; the proprietary

commercial databases tested lose data [36].

File systems strive to protect their internal metadata

from corruption, but most offer no corresponding protec-

tion for application data, providing neither transactions

on application data nor any other unified solution to the

CMADD problem. Instead, file systems offer primitives

for controlling the order in which application data attains

durability; applications shoulder the burden of restoring

consistency to their data following failures. Added to

the inconvenience and expense of implementing correct

recovery is the inefficiency of the sequences of primi-

tive operations required for complex updates: Consider,

for example, the chore of failure-atomically updating a

set of files scattered throughout a POSIX-like file sys-

tem. Remarkably, the vast majority of file systems do

not provide the straightforward operation that CMADD

demands: the ability to modify application data in (sets

of) files failure-atomically and efficiently.

We present the design, implementation, and evalua-

tion of failure-atomic application data updates in HP’s

Advanced File System (AdvFS), a modern industrial-

strength Linux file system derived from DEC’s Tru64

file system [1]. AdvFS provides a simple interface

that generalizes failure-atomic variants of writev [8]

and msync [20]: If a file is opened with a new

O_ATOMIC flag, the state of its application data will al-

ways reflect the most recent successful msync, fsync,

or fdatasync. AdvFS furthermore includes a new

syncv operation that combines updates to multiple files

into a failure-atomic bundle, comparable to the multi-

file transaction support in Windows Vista TxF [17] and

TxOS [22] but much simpler than the former and more

capable than the latter. The size of transactional updates

in AdvFS is limited only by the free space in the file sys-

tem. AdvFS requires no special hardware and runs on

unmodified Linux kernels.

The remainder of this paper is organized as follows:

Section 2 situates our contributions in the context of prior

work. Section 3 describes AdvFS and the features that

made it possible to implement failure-atomic updates of

application data. Section 4 presents experimental evalua-

tions of both the correctness and performance of AdvFS,

and Section 5 concludes with a discussion.

204  13th USENIX Conference on File and Storage Technologies (FAST ’15)	 USENIX Association

2 Related Work

Most widely deployed mainstream file systems offer only

limited and indirect support for consistent modification

of application durable data (CMADD).1 Semantically

weak OS interfaces are partly to blame. For example,

POSIX permits write to succeed partially, making it

difficult to define atomic semantics for this call [30].

Synchronization calls such as fsync and msync con-

strain the order in which application data reaches durable

media, and recent research has proposed decoupling or-

dering from durability [5]. However applications re-

main responsible for building CMADD solutions (e.g.,

atomicity mechanisms) atop ordering primitives and for

reconstructing a consistent state of application data fol-

lowing a crash. Experience has shown that custom recov-

ery code is difficult to write and prone to bugs. Some-

times applications circumvent the need for recovery by

using the one failure-atomicity mechanism provided in

conventional file systems: file rename [11]. For ex-

ample, desktop applications can open a temporary file,

write the entire modified contents of a file to it, then use

rename (or a specialized equivalent [7, 23]) to imple-

ment an atomic file update—a reasonable expedient for

small files but untenable for large ones.

FusionIO provides an elegant and efficient mechanism

for solving the CMADD problem for data on their flash-

based storage devices: a failure-atomic writev sup-

ported by the flash translation layer [8]. The MySQL

database exploits this new mechanism to eliminate

application-level double writes and thereby improve per-

formance substantially [29]. Still more impressive gains

are available to applications architected from scratch

around the new mechanism. For example, a key-value

store designed to exploit the new feature achieves both

performance and flash endurance benefits [15]. The lim-

itations of failure-atomic writev are that it requires

special hardware, applies only to single-file updates, and

does not address modifications to memory-mapped files.

Fully general support for failure-atomic bundles of file

modifications is surprisingly rare. Windows Vista TxF

supports such a capability, but the feature is deprecated

because its formidably complex interface has impaired

adoption [17]. TxOS includes a simpler interface to the

same capability, but with a limitation: Because TxOS

implements atomic file updates via the file system jour-

nal, transaction size is limited by the size of the jour-

nal [22]. Valor implements in the Linux kernel a transac-

tional file update API with seven new system calls that

1Spillane et al. provide an extensive review of research literature on

transactional file systems [25].

support inter-process isolation even in the presence of

non-transactional accesses by legacy applications [25].

The price that transaction-aware applications pay for this

sophisticated support includes a substantial burden of

logging: Applications must perform a Log Append

syscall prior to modifying a page of a file within a trans-

action, which is awkward at best for the important case

of random STOREs to a memory-mapped file.

An attractive approach to the CMADD problem on

emerging durable media is a persistent heap support-

ing atomic updates via a transactional memory (TM)

interface. Mnemosyne [31] and Hathi [24] imple-

ment such mechanisms for byte-addressable non-volatile

memory (NVM) and flash storage, respectively. Per-

sistent heaps obviate the need for separate in-memory

and durable data formats: Applications simply manipu-

late in-memory data structures using LOAD and STORE

instructions, which seems especially natural for byte-

addressable NVM. One limitation of these systems is that

they do not support conventional file operations; another

is that they are tailored to specific durable media. Fi-

nally, they employ software TM, which carries substan-

tial overheads.

Persistent heaps can be implemented for conventional

block storage and need not employ TM. Recent exam-

ples include Software Persistent Memory (SoftPM) [9]

and Ken [34], whose persistent heaps expose malloc-

like interfaces and support atomic checkpointing. Such

approaches provide ergonomic benefits and are com-

patible with conventional hardware, but their atomic-

update mechanisms entail substantial complexity and

overheads. For example, SoftPM automatically copies

volatile data into persistent containers as necessary

through a novel hybrid of static and dynamic pointer

analysis, making development easier and less error-

prone. However SoftPM tracks data modification in

coarse-grained chunks of 512 KB or larger, which can

lead to write amplification at the storage layer. Ken’s

user-space persistent heap tracks modifications at 4 KB

memory-page granularity, which may reduce write am-

plification, but Ken writes each modified page to storage

twice (to a REDO log synchronously and in-place asyn-

chronously).

Failure-atomic msync ensures that application data

in the backing file always reflects the most recent suc-

cessful msync call [20]. It is easy to layer increasingly

sophisticated higher-level abstractions atop this founda-

tion, e.g., persistent heaps which in turn can slide be-

neath general-purpose libraries of data structures and al-

gorithms such as C++ STL. Although it supports the

style of programming natural to non-volatile memory,

2

USENIX Association 	 13th USENIX Conference on File and Storage Technologies (FAST ’15)  205

failure-atomic msync can be implemented on conven-

tional block storage. A kernel-based implementation of

failure-atomic msync suffers at least three shortcom-

ings: The need to run a modified kernel impedes adop-

tion, the use of the file system journal limits transaction

sizes, and data modifications are written to storage twice

(once in the journal and once in-place) [20]. A user-

space implementation of a similar mechanism eliminates

the first two problems and has been deployed in commer-

cial production systems [3], but it does not support fully

general file manipulations and it retains the double write

due to logging.

AdvFS solves the CMADD problem directly and com-

bines many of the advantages of prior approaches. The

interface is both simple and general: Opening a file with

a new O_ATOMIC flag guarantees that the file’s appli-

cation data will reflect the most recent synchronization

operation, regardless of whether the file was modified

with the write or mmap families of interfaces (or both).

Our new syncv operation ensures that updates to a set

of files are atomic. Because it includes failure-atomic

msync as a special case, AdvFS offers the same advan-

tages as a foundation atop which persistent heaps and

other abstractions may be layered. AdvFS does not rely

on the file system journal to implement atomic updates;

it avoids double writes and the size of atomic updates is

limited only by the amount of free space in the file sys-

tem. Adopting AdvFS is relatively easy because it runs

on standard Linux kernels and requires no special hard-

ware. Its atomic-update interface admits implementation

atop both conventional block storage as well as emerging

byte-addressable NVM, and thus it provides a smooth

transition path from the former to the latter. Finally,

AdvFS for Linux is not a research prototype. It is an

extensively modernized production-quality upgrade and

Linux port of DEC’s Tru64 file system, and it is sched-

uled for commercial release in March 2015 as part of HP

Storage appliances.

As described in Section 3, implementing O_ATOMIC

is straightforward in file systems that support per-file

writable snapshots [4, 12, 28, 32]. We believe that most

could implement O_ATOMIC and syncv without pro-

hibitive cost or complexity, which in turn would make it

much easier to write robust applications.

3 Implementation

AdvFS is a modern, update-in-place, journaling Linux

file system developed internally for commercial storage

appliances, designed to be scalable and performant for

multiple use cases and workloads. AdvFS for Linux

evolved from DEC’s Tru64 file system, which was open

sourced in 2008 [1, 10] and has been rewritten exten-

sively for modern storage devices, with enterprise scal-

ability and reliability. It supports a number of advanced

capabilities such as the ability to add/remove storage de-

vices online, support multiple file systems on the same

storage pool, and take clones (described below) and

snapshots at file, directory, and FS level.

Like other modern file systems that support storage

pools [35], AdvFS decouples the logical file hierarchy

from the physical storage. The logical file hierarchy layer

implements the naming scheme and POSIX-compliant

functions such as creating, opening, reading, and writing

files. The physical storage layer implements write-ahead

logging, caching, file storage allocation, file migration,

and physical disk I/O functions. AdvFS is comparable in

performance and feature richness to most modern Linux

file systems; due to space constraints we omit a detailed

description of AdvFS and comparisons with other mod-

ern FSes. We designed and implemented O_ATOMIC on

AdvFS and exposed it to applications through the con-

ceptually simple and familiar interface of open followed

by write/fsync or mmap/msync.

O_ATOMIC leverages a file clone feature developed

to support use cases such as virtual machine cloning.

A file clone is a writable snapshot of the file. AdvFS

implements file cloning utilizing a variant of copy-on-

write (COW) [21], illustrated in Figure 1. When a file

is cloned, a copy of the file’s inode is made. The inode

includes the file’s block map, a data structure that maps

logical file offsets to block numbers on the underlying

block device. Since the original file and its clone have

identical copies of the block map, they initially share the

same storage. When a shared block is eventually written

to, either in the original file or in its clone, a copy of the

block is made and remapped to a different location on the

block device. Since COW results in new data blocks be-

ing assigned to the original file, it has the downside that

it can fragment the original file; AdvFS supports online

defragmentation, which can mitigate this difficulty. Ef-

ficient clone implementation in AdvFS enabled a simple

but effective implementation of O_ATOMIC.

When a file is opened with O_ATOMIC, a clone of

the file is made (Figure 1(a)-(b)). This clone is not vis-

ible in the user visible namespace but exists in a hidden

namespace accessible by AdvFS. When the file is mod-

ified the changed blocks are remapped via COW (Fig-

ure 1(c)). The clone still points to the blocks of the file

at the time the file was opened. On a subsequent call to

fsync/msync the existing clone is deleted and a new

one is created to track the latest version of the file (Fig-

3

206  13th USENIX Conference on File and Storage Technologies (FAST ’15)	 USENIX Association

(b)�open(O�ATOMIC)

Block�0 Block�1 Block�2

File�inode

Block�0 Block�1 Block�2

File�inode

Clone�0�inode

Block�0 Block�1 Block�2

File�inode

Block�0 Block�1 Block�3

File�inode

Clone�0�inode

Block�3

Clone�0�inode Clone�1�inode

Block�2

(a)�Initial�state�of�file

������with�3�blocks

������creates�clone

(c)�Modifications

������remap�blocks

(d)�fsync/msync

������replaces�old

������clone�with�new

������clone

Figure 1: File clones implement atomic updates.

ure 1(d)). On the close of a file opened with O_ATOMIC,

the original file is replaced with the clone.

If the system crashes, recovery of an O_ATOMIC file

is delayed until the file is accessed again. The file sys-

tem’s path name lookup function checks if the file has a

clone in the hidden name space; this is a very inexpen-

sive check that is performed on every file open. If a clone

exists, it is renamed to the user visible file and a handle

to it is returned (we require writable clones rather than

read-only snapshots because of this scenario). AdvFS’s

“lazy,” per-file recovery offers several attractions: Con-

sider, for example, a kernel panic that occurs while many

processes are atomically updating many files. Upon re-

boot, the file system will recover quickly because the

in-progress updates, interrupted by the crash, trigger no

recovery actions when the file system is mounted. The

net effect is that applications that do not need recovery

from interrupted atomic updates (e.g., applications that

are merely reading files) do not share the recovery-time

penalty incurred by the crash; only those applications

that benefit from application-consistent recovery pay the

penalty. Lazy recovery could in principle lead to the ac-

cumulation of hidden clones; it would be straightforward

to delete clones in the background.

While our support for atomic file durability for

O_ATOMIC is built atop the clone feature of AdvFS, al-

ternative implementations are also possible, such as us-

ing delayed journal writeback [20]. Using journal write-

back to achieve atomic durability has the disadvantage

that the size of a single-file atomic update is limited by

the size of the journal; another downside is that jour-

naling can lead to double writes of modified data. Our

approach does not have these limitations but requires

that the file system provide the ability to create per-file

clones. In our experience, implementing O_ATOMIC

atop a per-file cloning capability is relatively straight-

forward, and we believe that similar implementations on

other file systems that support cloning are possible. As

of this writing several open source and commercial file

systems support per-file clones [4, 12, 28, 32].

Applications that use the O_ATOMIC feature of

AdvFS must obey a few simple rules. The only new

rule is that overlapping or concurrent modifications to

a single file via multiple file descriptors void the failure-

atomicity guarantee and should be avoided. Due to vari-

ous subtleties it is not possible to define unambiguous se-

mantics in such cases, so different processes/applications

must coordinate their access to files. The remaining rules

are not specific to AdvFS or O_ATOMIC: As in other

file systems, multi-threaded concurrent accesses to a sin-

gle file must be “orderly,” in the sense that data races,

atomicity violations, and other concurrency bugs must

be avoided. As in other file systems, programmers must

ensure that data being committed via fsync or msync

is not being modified by other threads during those calls.

3.1 Multi-File Atomic Updates: syncv

In many situations it is necessary to failure-atomically

update several files. For example, the popular SQLite

database management system stores separate databases

in separate files, and it supports transactions that atom-

ically update multiple databases. To failure-atomically

implement the corresponding updates to the underlying

files on ordinary file systems, SQLite implements a com-

plex multi-journal mechanism [27]. Such application-

level logging can interact pathologically with analo-

gous mechanisms in the underlying file and storage sys-

tems [33]. Support for multi-file atomic updates in the

file system can simplify and streamline applications that

require this capability.

AdvFS supports multi-file atomic durability via its

new “syncv” mechanism, which is implemented as an

ioctl for compatibility with the stock Linux kernel.

Our syncv achieves failure atomicity by leveraging the

AdvFS journaling mechanism. AdvFS is a journaling file

system that employs write-ahead logging to ensure the

integrity of the file system. Modifications to the meta-

data are completely written to the journal before the ac-

tual changes are written to storage. The journal is written

4

USENIX Association 	 13th USENIX Conference on File and Storage Technologies (FAST ’15)  207

to storage at regular intervals. During crash recovery,

AdvFS reads the journal to confirm file system trans-

actions. All completed transactions are committed to

storage and uncompleted transactions are undone. The

number of uncommitted records in the journal, not the

amount of data in the file system, determines the speed

of recovery.

Our syncv takes as arguments an array of file de-

scriptors opened with O_ATOMIC and the size of the

array. Our O_ATOMIC implementation is the building

block for implementing syncv. As noted previously

O_ATOMIC deletes the existing clone and creates a new

one at the time of fsync/msync. In order to make

syncv atomic the delete operation on all of the files’

clones must be atomic. This is achieved using AdvFS’s

journaling sub-system. Metadata modifications required

to delete the clones are logged to the journal. The jour-

naling sub-system ensures that all of these changes are

atomically and durably committed. Apart from this the

recovery for syncv is no different from single files

opened with O_ATOMIC. Creation of new clones for the

files need not be made atomic in syncv because the

files and their new clones are mapped to the same stor-

age. Unlike prior work on single-file atomic durability

which uses journaling for capturing data changes [20],

our multi-file atomic durability mechanism syncv uses

the journal not for application data but only for the meta-

data changes needed to delete the clones. This metadata

change is quite small and hence allows our approach to

support a very large number of multiple file updates si-

multaneously. With the AdvFS default journal size of

128 MB, a single syncv call can atomically update at

least 256 files under worst-case conditions. Configuring

a larger journal will proportionately increase the number

of files that syncv can accommodate.

The 256-file limitation stems from a combination of

our current implementation of “clone delete,” the worst

case size of a single “clone delete,” and the size of the

AdvFS journal. AdvFS checkpoints the journal at every

quadrant, which limits journal transaction size to 25% of

the journal size. In a badly fragmented file system, the

delete of a single file (or clone) could occupy 128 KB in

the journal. So for a 128 MB journal, in the worst case

our current implementation of syncv can atomically up-

date (128× 25% × 1024× 1024)/(128× 1024) = 256

files. In principle we could support far more files per

syncv by using Delayed Delete Lists (DDL). A DDL is

a list maintained on non-volatile storage that is used to

asynchronously delete files. If “clone delete” were to use

DDL, then the journal footprint of each would be roughly

100 bytes and syncv would be able to handle hundreds

of thousands of files.

It is important to understand that clones are taken of

individual files only, not the entire file system nor any

subtree thereof. Cloning an individual file involves cre-

ating a copy of the file’s inode and an associated (hid-

den) dentry. These steps are atomic for the same reason

that ordinary file creation is atomic: they are journaled.

Atomic update of an individual file involves first flushing

changes to the file, then unlinking its clone, then creating

a new clone; these operations are journaled separately

and sequentially, so partial or full recovery of these three

sequential but disjoint operations always leaves the sys-

tem in a consistent state. Our syncv mechanism, which

operates on multiple files, obtains atomicity by leverag-

ing the file system journal to ensure, in REDO-log fash-

ion, that all of the per-file atomic updates in a specified

bundle are (eventually) performed.

4 Evaluation

We verify that AdvFS O_ATOMIC does indeed protect

the integrity of application data across updates in the

presence of crashes (Section 4.1), and we compare the

performance of our solution to the CMADD problem

with existing alternatives (Section 4.2).

4.1 Correctness

The O_ATOMIC data integrity guarantees rely upon two

realistic assumptions about underlying storage systems.

First, it must be possible to commit data to durable media

synchronously, which means that volatile write caches

in storage hardware must include enough standby power

to rescue their contents to durable media if power fails.

Second, we assume that writes of 512-byte sectors are

atomic. Given these preconditions, the O_ATOMIC fea-

ture of AdvFS should protect application data integrity

as advertised. We verify that it does so by injecting two

types of failure: crash points and power interruptions.

Crash points are manually inserted into the AdvFS

source code where the developers believe crashes are

most likely to cause trouble, e.g., before, during, and af-

ter atomic operations. When a particular crash point is

externally activated in a running instance of AdvFS, the

result is an immediate storage system shutdown followed

by a kernel panic, triggered from the specified crash point

in the file system source code. We complement crash-

point testing with sudden whole-system power interrup-

tions, because the former test specific developer hypothe-

ses about recovery whereas the latter strive to uncover

5

208  13th USENIX Conference on File and Storage Technologies (FAST ’15)	 USENIX Association

surprising scenarios. Our power outage tests employ a

scriptable device that suddenly cuts power to a computer

without warning—the same effect as physically unplug-

ging the machine’s power cord.

The goal of both crash-point testing and power in-

terruptions is to cause “impossible” post-crash corrup-

tion. Our test suites repeatedly and intensively modify

files using write or mmap/STORE then call fsync or

msync, respectively, or syncv. The patterns of data

modifications are such that a defective implementation of

O_ATOMIC would likely introduce obvious evidence of

corruption following a crash. Finally, we trigger crashes

while our test suites are running. Our crash point-tests

ran against an enterprise-class RAID controller and our

whole-system power interruptions ran on an enterprise-

class SSD, both of which are described in Section 4.2.

AdvFS successfully survived over 400 power interrup-

tions and dozens of crash-point tests, with no evidence of

application data corruption. The expected kind of appli-

cation data corruption does occur when we inject failures

if O_ATOMIC is not used. For example, crashes during

append leave partial data appended and crashes during

seek/write sequences leave partial updates.

4.2 Performance

On file system benchmarks such as IOZONE [6], post-

mark [18] and MDTest [16], AdvFS performance is com-

petitive with other well-known file systems such as ext3,

ext4, and XFS; by most performance measures AdvFS is

within ±10% of other file systems. Due to space limi-

tations we omit these comparisons and focus on the per-

formance of atomic file updates.

We evaluate the performance of the new O_ATOMIC

feature via microbenchmarks that mimic a common use

case of fsync and also via “mesobenchmarks” that

compare a simple transactional key-value store built

atop failure-atomic msync with well-known alterna-

tives. Prior literature has documented the ease with

which failure-atomic writev/msync can be retrofitted

onto complex, mature, production software to improve

resilience and performance [3, 20, 29].

We ran our tests on two systems: a workstation and

an enterprise server. The workstation has two quad-

core 2.4 GHz Xeon E5620 processors and 12 GB of

1333 MHz DRAM and ran Linux kernel 2.6.32. We

installed AdvFS on the workstation’s enterprise-grade

120 GB SATA drive on a 3 Gbps controller. The SSD is

powerfail-safe because its write cache is backed by a su-

percapacitor. Prior to our experiments we “burned in” the

SSD by writing to the device at least 180 GB of data (i.e.,

�0.1

�1

�10

�100

�1000

2
0

2
2

2
4

2
6

2
8 1K 4K

m
ed

ia
n
�f

sy
n
c(

)�
la

te
n
cy

�i
n
�m

il
li

se
co

n
d
s

number�of�4-KB�pages�appended

median�append�+�fsync()�latency,�server/RAID

with�O�ATOMIC
without�O�ATOMIC

�0.1

�1

�10

�100

�1000

2
0

2
2

2
4

2
6

2
8 1K 4K

m
ed

ia
n
�f

sy
n
c(

)�
la

te
n
cy

�i
n
�m

il
li

se
co

n
d
s

number�of�4-KB�pages�appended

median�append�+�fsync()�latency,�workstation/SSD

with�O�ATOMIC
without�O�ATOMIC

Figure 2: Microbenchmark results.

1.5× its rated capacity). Our enterprise server had twelve

1.8 GHz Xeon E5-2450L cores and 92 GB of DRAM; its

storage controller had a 1 GB battery-backed cache con-

figured as 90% write cache and a 1 TB 7200 RPM SAS

hard drive.

What overhead does O_ATOMIC entail compared to

operations on files opened without this flag? Our mi-

crobenchmark addresses this question in the context of

a common use case: using write to append data to a

file followed by fsync to commit the amendments to

durable media. Figure 2 presents median fsync laten-

cies for this operation on files opened with and without

O_ATOMIC on our two test machines. Our results show

that O_ATOMIC carries a constant overhead on the or-

der of 2 ms, which is clearly visible in Figure 2 for ap-

pends of up to 27 pages (512 KB). This overhead oc-

curs because the current implementation of O_ATOMIC

in AdvFS performs an uncached storage read in connec-

tion with creating an inode for the clone when fsync

is called. This is a simplification in our current imple-

mentation and clone creation times could be reduced by

copying in-core state rather than reading from storage.

6

USENIX Association 	 13th USENIX Conference on File and Storage Technologies (FAST ’15)  209

Server/RAID Workstation/SSD

insert replace delete insert replace delete

STL <map>/AdvFS 1.996 2.488 2.919 1.655 2.022 2.395

Kyoto Cabinet 1.2.76 4.711 2.990 4.660 4.088 2.590 4.007

SQLite 3.7.14.1 2.394 2.524 2.433 2.374 2.611 2.435

LevelDB 1.6.0 0.629 0.626 0.615 0.641 0.640 0.633

Table 1: Mesobenchmarks: Mean per-operation timings (milliseconds).

For large modifications, the roughly constant overhead of

O_ATOMIC becomes negligible (approximately 2–3.5%)

and we approach the rated write bandwidth of the SSD.

In other words, the price we pay for failure-atomicity is

modest for large updates.

Our “mesobenchmark” repeats the experiment in Sec-

tion 5.3 of our original failure-atomic msync paper [20],

which compares four transactional key-value stores:

SQLite [26], LevelDB [14], Kyoto Cabinet [13], and a

fourth contender implemented as a C++ Standard Tem-

plate Library (STL) <map> container that stores data in a

persistent heap backed by a file opened with O_ATOMIC

and updated with msync. Each of these key-value stores

performed the following transactional operations on one

thousand keys: first, insert all keys paired with random

1 KB values; next, replace the value associated with each

key with a different random value; and finally, delete all

of the keys, for a total of three thousand transactions.

Each of the above three steps visits keys in a different

random order, i.e., we randomly permute the universe of

keys before each step.

Table 1 presents our results, which are comparable to

those in our earlier work. LevelDB wins hands down,

with the STL <map> atop a memory-mapped file up-

dated with AdvFS failure-atomic msync placing sec-

ond. This is easy to understand: The red-black tree

beneath an STL <map> makes no attempt to mini-

mize the number of memory pages it modifies, which

strongly influences the performance of STL/AdvFS; by

contrast, LevelDB implements failure-atomic updates

with carefully crafted, compact log file writes. Our sim-

ple <map>-based key-value store shows that a persistent

heap based on atomic file update can very easily slide

beneath a rich, full-featured library of in-memory data

structures and algorithms—which takes roughly a dozen

lines of code in the present case. The net result is to trans-

form software with no failure resilience whatsoever into

software that can withstand process crashes, OS kernel

panics, and power outages. Our AdvFS-fortified <map>

furthermore achieves better performance than two far

more complex platforms designed to provide failure re-

silience with good performance. Our experience con-

vinces us that failure-atomic file update enables dramati-

cally simplified application software whose performance

rivals all but expertly streamlined code.

5 Conclusions

We have shown that a mechanism for consistent modifi-

cation of application durable data (CMADD) can be im-

plemented straightforwardly atop per-file cloning, a fea-

ture already available in AdvFS and in several other mod-

ern FSes. Our implementation of O_ATOMIC exposes

a simple interface to applications, makes file modifica-

tions via both write and mmap failure-atomic, avoids

double writes, and supports very large transactional up-

dates of application data. Furthermore, our syncv im-

plementation supports failure-atomic updates of applica-

tion data in multiple files. Our empirical results show

that the O_ATOMIC implementation in AdvFS preserves

the integrity of application data across updates in the

presence of both surgically inserted crashes and sudden

power interruptions. Our performance evaluation shows

that O_ATOMIC carries tolerable overheads, particularly

for large atomic updates.

Implementing a CMADD mechanism in a file sys-

tem facilitates adoption because it requires neither spe-

cial hardware nor modified OS kernels. We believe that

file systems should implement simple, general, robust

CMADD mechanisms, that many applications would ex-

ploit such a feature if it were widely available, and that

O_ATOMIC and syncv are convenient interfaces.

Acknowledgments

We thank Joe Tucek and Haris Volos for helpful advice

and feedback on early drafts of this paper. The anony-

mous FAST reviewers and our shepherd, Raju Ran-

gaswami, provided valuable suggestions and guidance

for the final version. We thank HP Storage manager

Subbi Mudigere for the support and resources that en-

abled us to implement the research concept of failure-

atomic file update in AdvFS.

7

210  13th USENIX Conference on File and Storage Technologies (FAST ’15)	 USENIX Association

References

[1] Tru64 AdvFS technology. Retrieved

17 September 2014 from

http://advfs.sourceforge.net/.

[2] Berkeley Database (BDB). http://www.

oracle.com/us/products/database/

berkeley-db/overview/index.html.

[3] A. Blattner, R. Dagan, and T. Kelly. Generic

crash-resilient storage for Indigo and beyond.

Technical Report HPL-2013-75, Hewlett-Packard

Laboratories, Nov. 2013.

http://www.hpl.hp.com/techreports/

2013/HPL-2013-75.pdf.

[4] Btrfs file system, Sept. 2014.

https://btrfs.wiki.kernel.org/

index.php/Main_Page.

[5] V. Chidambaram, T. S. Pillai, A. C.

Arpaci-Dusseau, and R. H. Arpaci-Dusseau.

Optimistic crash consistency. In SOSP, 2013.

[6] D. Capps. IOzone filesystem benchmark.

http://www.iozone.org/.

[7] Apple exchangedata(2) manual page.

Retrieved 22 September 2014 from https:

//developer.apple.com/library/mac/

documentation/Darwin/Reference/

ManPages/man2/exchangedata.2.html.

[8] FusionIO. NVM primitives library, Feb. 2014. See

in particular the

nvm_batch_atomic_operations at

http://opennvm.github.io/

nvm-primitives-documents/.

[9] J. Guerra, L. Mármol, D. Campello, C. Crespo,

R. Rangaswami, and J. Wei. Software persistent

memory. In USENIX Annual Technical

Conference, 2012. https://www.usenix.

org/system/files/conference/atc12/

atc12-final70.pdf.

[10] G. Haff. The many lives of AdvFS, June 2008.

Retrieved 17 September 2014 from

http://www.cnet.com/news/

the-many-lives-of-advfs/.

[11] T. Harter, C. Dragga, M. Vaughn, A. C.

Arpaci-Dusseau, and R. H. Arpaci-Dusseau. A file

is not a file: Understanding the I/O behavior of

Apple desktop applications. In SOSP, 2011.

http://doi.acm.org/10.1145/

2043556.2043564.

[12] D. Hitz, J. Lau, and M. Malcolm. File system

design for an NFS file server appliance. In

USENIX Winter Technical Conference, 1994.

http://dl.acm.org/citation.cfm?id=

1267074.1267093.

[13] Kyoto Cabinet: a straightforward implementation

of DBM.

http://fallabs.com/kyotocabinet/.

[14] Google’s LevelDB key-value store.

https://github.com/google/leveldb.

[15] L. Marmol, S. Sundararaman, N. Talagala,

R. Rangaswami, S. Devendrappa, B. Ramsundar,

and S. Ganesan. NVMKV: A scalable and

lightweight flash aware key-value store. In

HotStorage, June 2014.

https://www.usenix.org/system/

files/conference/hotstorage14/

hotstorage14-paper-marmol.pdf.

[16] Mdtest: A synthetic benchmark for file systems

metadata operations.

sourceforge.net/projects/mdtest/.

[17] Microsoft Developer Network. Alternatives to

using transactional NTFS. Retrieved

17 September 2014 from

http://msdn.microsoft.com/en-us/

library/hh802690.aspx.

[18] Network Appliance. Postmark: A New Filesystem

Benchmark, Technical Report TR3022, Network

Appliance, 1997. www.netapp.com/tech_

library/3022.html/.

[19] T. Neward. Object-relational mapping: The

Vietnam of computer science, June 2006.

http://blogs.tedneward.com/2006/

06/26/The+Vietnam+Of+Computer+

Science.aspx.

[20] S. Park, T. Kelly, and K. Shen. Failure-atomic

msync(): A simple and efficient mechanism for

preserving the integrity of durable data. In

EuroSys, 2013. http://doi.acm.org/10.

1145/2465351.2465374.

[21] Z. Peterson and R. Burns. Ext3Cow: A

time-shifting file system for regulatory

8

USENIX Association 	 13th USENIX Conference on File and Storage Technologies (FAST ’15)  211

compliance. ACM Transactions on Storage, 1(2),

May 2005. http://doi.acm.org/10.

1145/1063786.1063789.

[22] D. E. Porter, O. S. Hofmann, C. J. Rossbach,

A. Benn, and E. Witchel. Operating system

transactions. In SOSP, 2009. http:

//www.cs.utexas.edu/users/witchel/

pubs/porter09sosp-txos.pdf.

[23] Microsoft Windows ReplaceFile function.

Retrieved 22 September 2014 from

http://msdn.microsoft.com/en-us/

library/aa365512.aspx.

[24] M. Saxena, M. A. Shah, S. Harizopoulos, M. M.

Swift, and A. Merchant. Hathi: Durable

transactions for memory using flash. In

Non-Volatile Memories Workshop, Mar. 2012.

http://pages.cs.wisc.edu/˜swift/

papers/nvmw12_hathi.pdf.

[25] R. P. Spillane, S. Gaikwad, M. Chinni, E. Zadok,

and C. P. Wright. Enabling transactional file

access via lightweight kernel extensions. In FAST,

2009. https://www.usenix.org/

legacy/event/fast09/tech/full_

papers/spillane/spillane.pdf.

[26] SQLite database library.

http://www.sqlite.org/.

[27] SQLite multi-file atomic commit (Section 5).

http://www.sqlite.org/

atomiccommit.html.

[28] A. Sweeney, D. Doucette, W. Hu, C. Anderson,

M. Nishimoto, and G. Peck. Scalability in the XFS

file system. In USENIX Annual Technical

Conference, 1996. http://dl.acm.org/

citation.cfm?id=1268299.1268300.

[29] N. Talagala. Atomic writes accelerate MySQL

performance, Oct. 2011.

http://www.fusionio.com/blog/

atomic-writes-accelerate-mysql-performance/.

[30] The Open Group. Portable Operating System

Interface (POSIX) Base Specifications, Issue 7,

IEEE Standard 1003.1. IEEE, 2008.

[31] H. Volos, A. J. Tack, and M. M. Swift.

Mnemosyne: Lightweight persistent memory. In

ASPLOS, 2011. http://doi.acm.org/10.

1145/1950365.1950379.

[32] Symantec Veritas VxFS file system. Retrieved 23

September 2014 from https://sort.

symantec.com/public/documents/

sfha/6.0/aix/manualpages/html/man/

storage_foundation_for_databases_

tools/html/man1m/

vxsfadm-filesnap.1m.html.

[33] J. Yang, N. Plasson, G. Gillis, N. Talagala, and

S. Sundararaman. Dont stack your log on my log.

In USENIX Workshop on Interactions of

NVM/Flash with Operating Systems and

Workloads (INFLOW), 2014.

https://www.usenix.org/system/

files/conference/inflow14/

inflow14-yang.pdf.

[34] S. Yoo, C. Killian, T. Kelly, H. K. Cho, and

S. Plite. Composable reliability for asynchronous

systems. In USENIX Annual Technical

Conference, 2012. https://www.usenix.

org/system/files/conference/atc12/

atc12-final206-7-20-12.pdf.

[35] OpenZFS, Sept. 2014. http:

//www.open-zfs.org/wiki/Main_Page.

[36] M. Zheng, J. Tucek, D. Huang, F. Qin,

M. Lillibridge, E. S. Yang, B. W. Zhao, and

S. Singh. Torturing databases for fun and profit. In

OSDI, Oct. 2014.

https://www.usenix.org/conference/

osdi14/technical-sessions/

presentation/zheng_mai.

9

