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When is this software trustworthy?
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“When we trust a system, we trust it will behave
as we expect it to.”

— Bruce Schneier

Trust “involves the risk of failure or harm to the trustor

if the trustee will not behave as desired.”

— Wikipedia, Trust (social sciences)
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When is this software misbehaving?
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When is this software misbehaving?

TRAQ n
GPS trace & media ‘

When it sends GPS data
to a non-white listed URL.



When is this software misbehaving?

Gammapix
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When it uses the network.



When is this software misbehaving?
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When is this software misbehaving?
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When is this software misbehaving?

A Sorry!

The application NAVIGON
(process com.navigon.
navigator_checkout_eu40) has
stopped unexpectedly. Please
try again.

. Force close ‘




To trust software,

we must predict its (mis)behavior.



To trust software,

we must predict its (mis)behavior.

| build tools and techniques for

predicting the behavior of software.
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| build tools and techniques for
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predicting the behavior of software.
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Modern software uses
computational values.
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extends Object

java.lang.Object
L»android.os.RemoteCallbackList<E extends android.os.lIinterface>

Class Overview

Takes care of the grunt work of maintaining a list of remote interfaces, typically for the use of
performing callbacks from a service to its clients. In particular, this:

e Keeps track of a set of registered r1nterface callbacks, taking care to identify them through their
underlying unique 18inder (by calling IInterface.asBinder().

e Attaches a IBinder.DeathRecipient t0 each registered interface, so that it can be cleaned out of
the list if its process goes away.

e Performs locking of the underlying list of interfaces to deal with multithreaded incoming ¢ a

thread-safe way to iterate over a snapshot of the list without holding its lock.

To use this class, simply create a single instance along with your service, and call its register(£) and
unregister (E) methods as client register and unregister with your service. To call back on to the
registered clients, use beginBroadcast( ), getBroadcastItem(int), and finishBroadcast().

If a registered callback's process goes away, this class will take care of automatically removing it from
the list. If you want to do additional work in this situation, you can create a subclass that implements
the oncallbackDied(E) method.




java.util

Class Observable

java.lang.0Object
Ljava.util.observable

public class Observable
extends Object

This class represents an observable object, or "data" in the model-view paradigm. It can be subclassed to represent an object
that the application wants to have observed.

An observable object can have one or more observers. An observer may be any object that implements interface observer.
After an observable instance changes, an application calling the observable's notifyObservers method causes all of its
C

Constructor Summary

1
( |observable()

£ Construct an Observable with zero Observers.
C

!

Method Summary

void |addObserver(Observer o)
) Adds an observer to the set rs for this object, provided that it is not the same as some observer

already in the set.

rs

protectgd clearChanged()
void Indicates that this object has no longer changed, or that it has already notified all of its observers of its

most recent change, so that the hasChanged method will now return false.

rs

int |countObservers()
Returns the number of observers of this observable object.

void |deleteObserver (Observer o)
Deletes an observer from the set of observers of this object.

void |deleteObservers()
Clears the observer list so that this object no longer has any observers.

boolean |hasChanged()
Tests if this object has changed.

void [notifyObservers()
If this object has changed, as indicated by the hasChanged method, then notify all of its observers and
then call the clearchanged method to indicate that this object has no longer changed.

void |notifyObservers(Object arg)
If this object has changed, as indicated by the hasChanged method, then notify all of its observers and

then call the clearChanged method to indicate that this object has no longer changed.

protectgd setChanged()
void Marks this observable object as having been changed; the hasChanged method will now return true.
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1. Introduction Java SCI’i pt

This section is non-normative. — —

The xuruttprecuest Object implements an interface exposed by a scripting engine that allows scripts to
perform HTTP client functionality, such as submitting form data or loading data from a server. It is the
ECMAScript HTTP APL.

The name of the object is xuLuttprequest for compatibility with the Web, though each component of this
name is potentially misleading. First, the object supports any text based format, including XML. Second, it
can be used to make requests over both HTTP and HTTPS (some implementations support protocols in
addition to HTTP and HTTPS, but that functionality is not covered by this specification). Finally, it supports
“requests” in a broad sense of the term as it pertains to HTTP; namely all activity involved with HTTP
requests or responses for the defined HTTP methods.

Some simple code to do something with data from an XML document fetched over the network:

function test(data) {
// taking care of data

}

function handler() {
if(this.readyState == 4 §&& this.status == 200) {
// so far so good
if(this.responseXML != null && this.responseXML.getElementById('test').firstChild.data)
// success!
test(this.responseXML.getElementById( 'test').firstChild.data);
else
test(null);
} else if (this.readyState == 4 && this.status != 200) {
// fetched the wrong page or network error...
test(null);
}
}

var client = new XMLHEttpRequest();
client.onreadystatechange = handler;
client.open("GET", "unicorn.xml");
client.send();

e — ——




Modern software is
(4_)_[ | http://nodejs.org/ v c

Chungeiog |
Abou - JavaScript
v0.4.1 docs

Evented I/O for V8 JavaScript.

,
(g~ Google

Wiki

An example of a web server written in Node which responds with "Hello

World" for every request.

var http = require('htt » );

http.createServer(function (req, res) {
res.writeHead(200, {'Content-Type': 'text/plain'});
res.end( 'Hello World\n');

}).listen(8124, "127.0.0.1");

console.log('Server running at http://127.0.0.1:8124/');

To run the server, put the code into a file example. js and execute it with
the node program:

% node example.js
Server running at http://127.0.0.1:8124/




Programming Ruby

The Pragmatic Programmer's Guide

Object-Oriented Design Libraries

Library: observer

One of the interesting things about Rt
between design and implementation.
design level in other languages can b

o The Observer pattern, also known as Publish/Subscribe, provides a simple
To help in this process, Ruby has sup mechanism for one object to inform a set of interested third-party objects when its
state changes.

« The Visitor pattern (Design Pa
without having to know the inter
» Delegation is a way of composi
than can be done using standar
« The Singleton pattern is a way

' particular class exists at a time.

In the Ruby implementation, the notifying class mixes in the observable module,
which provides the methods for managing the associated observer objects.

add_observer(obj)

« The Observer pattern impleme

ﬁbj as an observer on this object. obj will now
a set of interested objects when

e notifications.

delete_observer(ob)) Delete obj as an observer on this object. It will no

Normally, all four of these strategies ri longer receive notifications.
implemented. With Ruby, they can be . . . .
Lng transparenﬂly_ HoY. ey delete_observers Delete all observers associated with this object.
count_observers Return the count of observers associated with this
— object.

changed(newState=true) Set the changed state of this object. Notifications will
be sent only if the changed state is true.

changed? Query the changed state of this object.

notify_observers(*args) If this object's changed state is true, invoke the update
method in each currently associated observer in turn,
passing it the given arguments. The changed state is
then set to false.

The observers must implement the update method to receive notifications.

L —— S——



1.3 Functions as values

OCaml is a functional language: functions in the full mathematical sense are supported and can be passed
around freely just as any other piece of data. For instance, here is a deriv function that takes any float function
as argument and returns an approximation of its derivative function:

# let deriv f dx = function x -> (f(x +. dx) -. f(x)) /. dx;; OCaml
val deriv : (float -> float) -> float -> float -> float = <fun>
# let sin' = deriv sin le-6;;

val sin' : float -> float = <fun>

# sin' pi;;
- ¢ float = -1.00000000013961143

Even function composition is definable:

# let compose f g = function x -> f(g(x));;
val compose : ('a -> 'b) -> ('c => 'a) -> '¢ => 'b = <fun>

# let cos2 = compose square COS;;
val cos2 : float -> float = <fun>

Functions that take other functions as arguments are called “functionals”, or “higher-order functions”.
Functionals are e ally useful to provide iterators or similar generic operations over a data structure. For
instance, the stan Caml library provides a List.map functional that applies a given function to each
element of a list, returns the list of the results:

# List.map (function n -> n * 2 + 1) [0;1;2;3;4];;
- : int list = [1; 3; 5; 7; 9]

This functional, along with a number of other list and array functionals, is predefined because it is often useful,
but there is nothing magic with it: it can easily be defined as follows.




»

# Python »  3.4.0a0 : Documentation » The Python Standard previous | next | modules | index

Library » 10. Functional Programming Modules »

10.2. functools — Higher-order
functions and operations on callable

objects

Source code: Lib/functools.py

The functools module is for higher-order functions: functions that act on or return

other functions. In general, any callable object can be treated as a function for the
purposes of this module. —

The functools module defin following functions:

functools.cmp_to_ key(func

Transform an old-style comparison function to a key function. Used with tools
that accept key functions (such as sorted(), min(), max(), heapg.nlargest(),

heapg.nsmallest(), itertools.groupby()). This function is primarily used as

a transition tool for programs being converted from Python 2 which supported
the use of comparison functions.
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Modern software uses
computational values.

To predict its behavior,
we need flow analysis.



FLOW ANALYSIS OF LAMBDA EXPRESSIONS

(Preliminary Version)

Neil D. Jones
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A method is described to extract from an untyped A-expression information about

0. INTRODUCTION

the sequence of intermediate A-expressions obtained during its evaluation. The in-
formation can be used to give "'safe positive answers'" to gquestions involving termina~
tion or nontermination of the evaluation, dependence of one subexpression on another
and type errors encountered while applving § rules, thus providing an alternative to
techniques of Morris and Levy ([ Mor‘GB], [L_@v75] }. The method warks by building a
tsafe description” of the set of states entered by a call-by-name interpreter and
analyzing this description. A similar and more complete analysis of a call-by-value
interpreter may be found in [ Jon81].

From a flow analysis viewpoinf these results extend existing interprocedural
analysis methods to include call-by-name and the use of functions both as arguments
to other functions and as the results returned by them. Further, the method natural-
ly handles both local and global variables, extending [ Cou77a] and [ Sha80]. It seems
clear that other traditjional analyses such as available expressions, constant propa-
gation, etc. can be carried out in this framework.

The main emphasis is on development of the framework and showing its relation
to abstract interpretation, rather than on its efficient use in applications. A sim-
plified and optimized version of the method would have applications in the efficient
compilation of X—calculug~based programming languages such as ISP, SCHEME
and SASL ([McC63], [Ste?5], [ Tur76]).

The method provides a general way to find safe approximate descriptions of
computations by algorithms which manipulate recursive data structures. It is thus
not limited to the A-calculus, but may be applied to analyze any programming lan-
guage whose semantics can be implemented by an appropriate definitional interpreter.

Ancther application would be to extend the method to the flow analysis of deno~
tational definitions of programming languages. This could be used in semantics-
directed compiler generation as described in [ JoS80], and provided the initial mo-

tivation for this study.

Related work

Lambda calculus evaluators have been studied in [ Boh72], [Lané4], [McG70],
[Plo75], [Rey72], [SchB0] and [ Weg68]. Sufficient conditions for termination of
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Existing analyses
(and their complexities)
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AN

function twice(f,x) { return f(f(x)): };:

A

fsqr,dbl} {4,5

twice(sqr,4); twice(dbl,5);

{db1(db1(5)).

sgr(sqr(4)),
dbl(sqgr(5)),..}
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function twice(f,x) { return f(f(x)): };:

SN

sqr; {4

twice(sqr,4); twice(dbl,5);

/‘

{sqr(sqr(4))!
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function twice(f,x) { return f(f(x));:

{4}1{5}
(dbl}

twice(sqr,4); twice(dbl,5);

/‘

{sqr(sqr(4))!
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A~ W

function twice(f,x) { return f(f(x)): };:

\

{43{>}

twice(Sﬁ;;ilb tw1ce(dbi/§2/>

{sqr(sqr(4)); {dbl(dbl(5))}
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Key insight:
analysis is a kind of
evaluation
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Principles
of Program
2 Analysis

[con] (C,P) [ ¢! always

[var] (C,7) k= = iff A(z) € C(®)

fil (€7 F (fnz => eo)* iff {fn z => eo} C C(¢)

fur] (C,P) k= (fun f = => eo)’ iff {fun f = => e} C C(§)

lapp] (C,7) k= (1" t°)° '
iff (C,7) = A (Cp) =13 A
(V(fn z => ) € C(41) :
Clana R
C(£2) Cp(z) A Cbo) CC(£)) A
(V(fun f z => t¢°) € C(&y) :
alaaie
C(€2) C () A C(bo) C C(£) A
{fun f & => 15’} C A(f))
(4] (C,p) = (if t¥ then t¥ else t32)*
it CAEEA
Coakh A G g
C(&1) CC(8) A C(£2) CC(H)
[lef] (C,p) E (et z =t in t22)"
iff CAEH A Cp) g A
C(t1) S Az) A C(ta) <C8)

o] CAE@W opt)if CoE A CAEL

Table 3.1: Abstract Control Flow Analysis (Subsections 3.1.1 and 3.1.2).

[var] pkzt — v® if z € dom(p) and v = p(x)
[fn] pt (fn z => eg)? = (close (fn z => ey) in pp)*
where po = p | FV(fn z => )
[fun] pt (fun f z => e9)® — (close (fun f = => eg) in pg)’
where pp = p | FV(fun f = => ¢p)
pFies — i€}
a
[app, ] pF (iey iex)t — (ie] iez)t
p Fies — i€l
app : :
el ) S
[app;]  pF ((close (fn z => e;) in py )&t v2)t o
(bind p1[z +> vs] in €;1)"
[095n] P ((close (fun f z=> e1) in 1) v2)! —
(bind pa[z > v7] in el)‘
where ps = p1[f — close (fun f z => e;) in py]
: p1 Fiey — e}
bind
e pF (bind p; inie;)¢ — (bind p; in ie})t
[bind2] pt (bind py in vi')t — of
(i pFieq — ieg
B e (if iep then e; else ez) — (if ie) then e; else ep)*
if. pF (if truefo then t! else t52)t — ¢!
2 1 2 1
if: pF (if false’e then ti else tf2)! — ¢
3 1 2 2
llet] ptie; —ie]
Yok (let z =ie; in ez)? — (let = = e} in ep)t
[let;] pF (let z = v in ey)’ — (bind po[z + v] in ep)*
where po = p | FV(es2)
= pltiey —ie}
Py p b (iey op ie2)t — (i€} op iez)*
5 pFies — ieh
“ pk (vf opies)t = (v] op ie})t
[ops] pF (W op vi2)t — v if v =v; op v2

Table 3.3: The Structural Operational Semantics of FUN (part 2).




[var] ptzt = v* if z € dom(p) and v = p(x)

[fn] pt (fn z => ep)t — (close (fn z => eg) in po)*
where po = p | FV(fn z => ¢p)

[fun] pk (fun f z => e9)* — (close (fun f z => eg) in pg)*
where pp = p | FV(fun f = => ¢p)
pFies — i€}
pF (iey iex)t — (ie] iez)t

[app, ]

p F ies — i€l
pE (vf1 iex)t — (vf1 tep )t

[app,]

[appfn] pt ((close (fn z => ¢€;) in p1)‘1 ,Uéz)t iy
(bind p1[z +> vs] in €;1)"

[appsn] pF ((close (fun f z =>e;) in py )= v2)t.
(bind pa[z > vs] in e;)*
where py = p1[f — close (fun f z => e;) in py]

p1 Fie; — e}
pF (bind p; inie;)¢ — (bind p; in ie})t

[bz'ndl]

[binds] pF (bind py in vit)¢ — vf

pFieq — ieg
pF (if iep then e; else ez)? — (if ie) then e; else ez)*

[¢]

il  pE(if true’ then til else t§2)l G ti

[ifs] pF (if false’ then ti else t52)! — t4

_ i
llets] pkie; —iey

F (let = = ie; in e2)! — (let z = ie} in e2)
P 1

L

[let;] pF (let z = v in ey)’ — (bind po[z + v] in ep)*

where po = p | FV(es)
p Fie; — ze’l
p b (iey op ie2)t — (i€} op iez)*

[op4]

ptiex — ieh

0
lops] o opiea)t = (o ap i)t

[ops] pF (W op vi2)t — v if v =, op v2

Table 3.3: The Structural Operational Semantics of FUN (part 2).
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[var] ptzt = vt if z € dom(p) and v = p(x)
[fn] pt (fn z => ep)t — (close (fn z => eg) in pg)t
where pg = p | FV(fn z => )
[fun] pt (fun f  => eg)® = (close (fun f T => eg) in pg)*
where pg = p | FV(fun f = => ep)
p ke — e}
a
[app1] pF (ie1 ieg)t — (ie] et
p Fies — el
app : 7
Sk PO RTEG S N
[app;]  pF ((close (fn z => ;) in p;)” v2)t =
(bind pi[z > vs] in €;)*
[appsn] P+ ((close (fun f z'=>e;) in p;)“ vi2)t, -
(bind pa[z > vs] in e;)*
where pa = p1[f — close (fun f z => e;) in p]
: p1 Fie; — i€}
bind
P ptF (bind p; inie;) — (bind p; in ie})t
[binds] pF (bind p; in i) — vf
(i pFieqg — ieg
X p (if iep then e; else e3)? — (if ie)) then e; else ep)’
[if,] pF (if truefo then ti* else t52)¢ — t
[if] pF (if false’ then ti' else t32)! — t§
llet] pties — i€}
Y ok (let z = ie; in ey)t = (let z = ie} in e3)’
[let;] pF (let z = v® in ez)? = (bind po[z + v] in ez)*
where po = p | FV(ez)
il ptie; — e}
P1 p b (iey opie2)t — (i€} op iez)t
1
o pFies — i)
* pF (v} opiey)t — (v' op ieh)"
[ops] pF (V¥ op v52)t — vt if v =11 op va

Table 3.3: The Structural Operational Semantics of FUN (part 2).







[con] (C,7) k= ¢! always

[var] (C,5) k= 2t iff pla) C C(¥)

[fi]  (C,p) = (fn z => eo)* iff {fn z => o} C C(¢)

[fur] (C,P) = (fun f = => eo)’ iff {fun f & => eo} C C(¢)

lapp] (C,7) = (2" 82°)* :
it (G5t A C5) E A
(V(fn z => t‘°) € C(Zl)
€0t
Clta) C P(x) A Clto) € C(®) A
(V(fun f z => ) € C(4) :
€7 = o A
C(er) C P(fv) A Cllo) € T(0) A
{fun f = => t°} C ()
(] (6,;7) = (ififf then ti‘ else t32)¢
it (C,7) = A
(C Pt A (C p) | t32A
C(t) € C) A C(e) C C(o)

[tef] (C,p) E (Let « = t7* in #5)*
iff (C p) Et A (Aﬁ) =32 A
C(tr) C A(z) A Ck2) CC(O)

o] ©Cp)E@: opt2)iff Cp)kEt A CD)EL

Table 3.1: Abstract Control Flow Analysis (Subsections 3.1.1 and 3.1.2).
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Figure 7. Reduction rules.
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1...Zes 1...Zes
ind 1 0 (ef1Co(ts) = {(h, O)} Coo(t5) (1 Co(ts) = {(h, O)} Coo(5)
o i O tHlcelts )} S {(h OY} () tcely )} S ((h OV Cu(es)
e1 L es e1 £ es
any' 1 1 (FYColls) = {{h, O)} Co(t7)
(oo e Y (Y Colts) = {(h, R)}Co(t5) {ef}ggp(eg)} .
e1Zes
{63} Co(ls) = w(€d) Ce(B)
B bl (B} Colts) = [ RY) Coie5) thrEells) = ol Colls )
(e} ol )} O]
1..-Zes
L z+e2 )z 0 {1 Ce(ts) = {(h,O)} Co(t5)
g {633 C oty ) = p(€F) Co(ey)
e s g {651 Co(ts) = {(h,R)} Co(l5) {EF)Co(ts) = o(63) Colts)
(... e3(cg' _>cf2 2 )fs 3 >f4 4 {é;‘}gcp(ﬁg) > {(h, OV} Cu(£S)
es Les
Source\ Sink (e£5 el )Ea (cf;rg_ £+£8 )E & (...e5 (cf;w; —)Cig_gs_ )i},"fs_ >£§€g
i {£n} Cols) = {(N, R)} C(La) (€} Co(t5) = {(h,R)} Co(L5)
EW‘
int !
(e 0 >e 75
- g = {67} Ce(ls) = {AR)} C(ta) {6y Cets) = {(h R CH(5)
(...e1 any?% )g b
{6} Cots) = (&) Ce(B)

()\acﬁ.eg)gi‘m

{63} Ce(ls) = p(ls) Cp(B)
{2} Cp(ls) = ¢(£) Cp(La)

it Solls) = w() Cells)

{0x} Cop(ls

)} = {(h, O} CH(e5)
1..-Zes

Gl e+z ees

(cq )y
+9- +9— p+o— ot+o-
<. ..e3 (Cgl El _)C§2 62 )?3 63 >i4 64

{£3}Cp(ls) = ¢(L6) C (47 )
{33 Cots) = o(ed) Cp(ta)

{e3YCo(ty) = {(h, 0O)} Co(45)

{63} Co(ts) = o(tF) Cop(ey)
{633 Cp(l5) = o(t3) Cw(ly)

{1 Co(ty)
eslZes

} = {(h, O)} Co(¢5)

Table 1. Constraints creation for source-sink pairs.
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Op & Format  Mnemonic / Syntax

76: invoke-
direct/range
77: invoke-
static/range
78: invoke-
interface/range

79..7a 10x (unused)

7b..8f 12x wunop vA, VB

Arguments

A : destination reqister or pair (4 Perform the identified unary operation on

Op & Format  Mnemonic / Syntax

be: div-long/2addr
bf: rem-long/2addr
c0: and-long/2addr
cl: or-long/2addr
c2: xor-long/2addr
c3: shl-long/2addr
c4: shr-long/2addr
c5: ushr-long/2addr
c6: add-float/2addr
c7: sub-float/2addr
c8: mul-float/2addr
c9: div-float/2addr
ca: rem-float/2addr
cb: add-double/2addr
cc: sub-double/2addr

cd: mul-double/2addr
ce: div-double/2addr
cf: rem-double/2addr

Arguments

Description

(unused)

Description

d0..d7 22s binop/litlé vA, VB,
#+CCCC
d0: add-int/1itlé
dl: rsub-int (reverse

A: destination register (4 bits)  Perform the indicated binary op on the
B: source register (4 bits) indicated register (first argument) and
C: signed int constant (16 bits) literal value (second argument), storing the

subtract)

d2: mul-int/1itlé
d3: div-int/1litlé
d4: rem-int/1itlé
/ d5: and-int/1itlé
d6: or-int/1itlé
d7: xor-int/1itlé

d8..e2 22b binop/1it8 vAA, VBB,

N #+CC

d8: add-int/1it8
d9: rsub-int/1it8
da: mul-int/1it8
db: div-int/1it8
dc: rem-int/1it8

A: destination register (8 bits)
B: source register (8 bits)
C: signed int constant (8 bits)

result in the destination register.

Note: rsub-int does not have a suffix
since this version is the main opcode of its
family. Also, see below for details on its
semantics.

Perform the indicated binary op on the
indicated register (first argument) and
literal value (second argument), storing the
result in the destination register.

Note: See below for details on the
semantics of rsub-int.

dd: and-int/1it8
de: or-int/1it8

df: xor-int/1it8
e0: shl-int/1it8
el: shr-int/1it8
e2: ushr-int/1it8

e3..ff 10x (unused) (unused)

b0..cf 12x binop/2addr vA, vB
: add-int/2addr
bl: sub-int/2addr
b2: mul-int/2addr
b3: div-int/2addr
b4: rem-int/2addr
b5: and-int/2addr
b6: or-int/2addr
b7: xor-int/2addr
b8: shl-int/2addr
b9: shr-int/2addr
ba: ushr-int/2addr
bb: add-long/2addr
bc: sub-long/2addr
bd: mul-long/2addr

A: destination and first source  Perform the identified binary operation on
register or pair (4 bits) the two source registers, storing the result
B: second source register or in the first source register.

pair (4 bits)
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Permissions that are used in the app (based on current API knowledge):

« android.permission.INTERNET
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« android.permission. ACCESS_FINE_LOCATION
« android.permission. WRITE_INTERNAL_STORAGE
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Variable  Throw-Catch

Program |
points-to edges
antlr 614 2277 >4 h
35KLOC ours
lusearch |
348 2378 46 minutes
87TKLOC
pmd .
343 2284 56 minutes
5hbKLOC

Bravenboer & Smaragdakis, ISSTA'09



Variable  Throw-Catch

Program |
points-to edges

antlr 014 2277 >4 hours
35KLOC 2 65 1.1 hours
lusearch 348 2378 46 minutes
87TKLOC 2 59 46 minutes

pmd 343 2284 56 minutes
55KLOC 2 38 22 minutes

Pushdown Exception Flow Analysis
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Abstract

Most specifications of garbage collectors concentrate on the
low-level algorithmic details of how to find and preserve ac-
cessible objects. Often, they focus on bit-level manipula-
tions such as “scanning stack frames,” “marking objects,”
“tagging data,” etc. While these details are important in
some contexts, they often obscure the more fundamental as-
pects of memory management: what objects are garbage and
why?

‘We develop a series of calculi that are just low-level
enough that we can express allocation and garbage collec-
tion, yet are sufficiently abstract that we may formally prove
the correctness of various memory management strategies.
By making the heap of a program syntactically apparent, we
can specify memory actions as rewriting rules that allocate
values on the heap and automatically dereference pointers
to such objects when needed. This formulation permits the
specification of garbage collection as a relation that removes
portions of the heap without affecting the outcome of the
evaluation.

Our high-level approach allows us to specify in a compact
manner a wide variety of memory management techniques,
including standard trace-based garbage collection (i.e., the
family of copying and mark/sweep collection algorithms),
generational collection, and type-based, tag-free collection.
Furthermore, since the definition of garbage is based on the
semantics of the underlying language instead of the conser-
vative approximation of inaccessibility, we are able to specify
and prove the idea that type inference can be used to collect
some objects that are accessible but never used.
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1 Memory Safety

Advanced programming languages manage memory alloca-
tion and deallocation automatically. Automatic memory
managers, or garbage collectors, significantly facilitate the
programming process because programmers can rely on the
language implementation for the delicate tasks of finding
and freeing unneeded objects. Indeed, the presence of a
garbage collector ensures memory safety in the same way
that a type system guarantees type safety: no program writ-
ten in an advanced programming language will crash due
to dangling pointer problems while allocation, access, and
deallocation are transparent. However, in contrast to type
systems, memory management strategies and particularly
garbage collectors rarely come with a compact formulation
and a formal proof of soundness. Since garbage collectors
work on the machine representations of abstract values, the
very idea of providing a proof of memory safety sounds unre-
alistic given the lack of simple models of memory operations.

The recently developed syntactic approaches to the spec-
ification of language semantics by Felleisen and Hieb [11]
and Mason and Talcott [18, 19] are the first execution mod-
els that are intensional enough to permit the specification
of memory management actions and yet are sufficiently ab-
stract to permit compact proofs of important properties.
Starting from the A,-S calculus of Felleisen and Hieb, we
design compact specifications of a number of memory man-
agement ideas and prove several correctness theorems.

The basic idea underlying the development of our gar-
bage collection calculi is the representation of a program’s
run-time memory as a global series of syntactic declarations.
The program evaluation rules allocate large objects in the
global declaration, which represents the heap, and automat-
ically dereference pointers to such objects when needed. As
a result, garbage collection can be specified as any relation
that removes portions of the current heap without affecting
the result of a program’s execution.

In Section 2, we present a small functional programming
language, Agc, with a rewriting semantics that makes allo-
cation explicit. We define a semantic notion of garbage col-
lection for Agc and prove that there is no optimal collection
strategy that is computable. In Section 3, we specify the
“free-variable” garbage collection rule which models trace-
based collectors including mark/sweep and copying collec-
tors. We prove that the free-variable rule is correct and
provide two “implementations” at the syntactic level: the
first corresponds to a copying collector, the second to a gen-
erational one.

In Section 4, we formalize so-called “tag-free” collec-
tion algorithms for explicitly-typed, monomorphic languages
such as Pascal and Algol [7, 29, 8]. We show how to recover

80
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function twice(f,x) { return f(f(x)): };:

twice(sqr,4); twice(dbl,5);
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function tw1ce(f X) { return f(f(x))

// sqr; {4

tw1ce(sqr 4): twice(dbl,5);

{sqr(sqr(4))}
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function twice(f,x) { return f(f(x)): };:

{3}
(dbl}

twice(sqr,4); twice(dbl,5);

/‘

{sqr(sqr(4))!
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function twice(f,x) { return f(f(x)): };:

{3}
(dbl}

twice(sqr,4); twice(dbl,5);

/‘

{sqr(sqr(4)); {dbl(dbl(5))}
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/**

* @param left a sorted list of elements

* @param right a sorted list of elements

* @return the contents of the two lists, merged, sorted
*/

List merge(List left, List right);

T — B —

@Requires({

"Collections.isSorted(left)",

"Collections.isSorted(right)"

)

@Ensures({

"Collections.containsSame(result, Lists.concatenate(left, right))",
"Collections.isSorted(result)"

})
List merge(List left, List right);

e —————
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. ;7 -- Primitive modules
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« [image? (any/c . -> . boolean?)]

/ [circle (exact-nonnegative-integer? string? string? . -> . image?

List merge(Lj_st left, List rj_ [empty-scene (exact-nonnegative-integer? exact-nonnegative-intege
[place-image (image? exact-nonnegative-integer? exact-nonnegative:

r
i+ -- Source
(module data racket
(struct posn (x vy))
@Requires({ (struct snake (dir segs))
"Collections.isSorted(left)", (struct world (snake food))
Collections.isSorted(right) .+ Contracts
}) (define direction/c
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"Collections.containsSame(result, L (define posn/c
"Collections.isSorted(result)" (struct/c posn
1) exact-nonnegative-integer?
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(non-empty-listof posn/c)))
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(struct/c world
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;: posn=? : Posn Posn -> Boolean

+ Ara the nnene tha cama?

Welcome to DrRacket, version 5.3.1.1--2012-10-13(2b902d0e/d) [3m].
Language: racket/load [custom]; memory limit: 1024 MB.

>

Determine language from source custom ¥ 4:23 196.14 MB[ | ¢ ®
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* @return the contents of the
*/
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i+ -- Source

(module data racket
(struct posn (x vy))
(struct snake (dir segs))
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(define direction/c
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exact-nonnegative-integer?
exact-nonnegative-integer?))
(define snake/c
(struct/c snake
direction/c
(non-empty-listof posn/c)))
(define world/c
(struct/c world
snake/c
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;: posn=? : Posn Posn -> Boolean
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Matthias Felleisen
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Abstract

Assertions play an important role in the construction of robust soft-
ware. Their use in programming languages dates back to the 1970s.
Eiffel, an object-oriented programming language, wholeheartedly
adopted assertions and developed the “Design by Contract” philos-
ophy. Indeed, the entire object-oriented community recognizes the
value of assertion-based contracts on methods.

In contrast, languages with higher-order functions do not support
assertion-based contracts. Because predicates on functions are,
in general, undecidable, specifying such predicates appears to be
meaningless. Instead, the functional languages community de-
veloped type systems that statically approximate interesting pred-
icates.

In this paper, we show how to support higher-order function con-
tracts in a theoretically well-founded and practically viable man-
ner. Specifically, we introduce AC°N, a typed lambda calculus with
assertions for higher-order functions. The calculus models the as-
sertion monitoring system that we employ in DrScheme. We es-
tablish basic properties of the model (type soundness, etc.) and
illustrate the usefulness of contract checking with examples from
DrScheme’s code base.

We believe that the development of an assertion system for higher-
order functions serves two purposes. On one hand, the system has
strong practical potential because existing type systems simply can-
not express many assertions that programmers would like to state.
On the other hand, an inspection of a large base of invariants may
provide inspiration for the direction of practical future type system
research.

Categories & Subject Descriptors: D.3.3, D.2.1; General Terms: De-
sign, Languages, Reliability; Keywords: Contracts, Higher-order Func-
tions, Behavioral Specifications, Predicate Typing, Software Reliability

I'Work partly conducted at Rice University, Houston TX. Address as of
9/2002: University of Chicago; 1100 E 58th Street; Chicago, IL 60637

This is a technical report version of a paper that appeared in ICFP in
2002 [6]. This version includes everything that the conference version
does, but also includes the complete proofs in an appendix.

1 Introduction

Dynamically enforced pre- and post-condition contracts have been
widely used in procedural and object-oriented languages [11, 14,
17,20,21,22,25,31]. As Rosenblum [27] has shown, for example,
these contracts have great practical value in improving the robust-
ness of systems in procedural languages. Eiffel [22] even developed
an entire philosophy of system design based on contracts (“Design
by Contract”). Although Java [12] does not support contracts, it is
one of the most requested extensions.!

With one exception, higher-order languages have mostly ignored
assertion-style contracts. The exception is Bigloo Scheme [28],
where programmers can write down first-order, type-like con-
straints on procedures. These constraints are used to generate more
efficient code when the compiler can prove they are correct and are
turned into runtime checks when the compiler cannot prove them
correct.

First-order procedural contracts have a simple interpretation. Con-
sider this contract, written in an ML-like syntax:

f : int[> 9] —int[0,99]

valrecf =Ax. ---

It states that the argument to f must be an int greater than 9 and
that f produces an int between 0 and 99. To enforce this contract, a
contract compiler inserts code to check that x is in the proper range
when f is called and that f’s result is in the proper range when f
returns. If x is not in the proper range, f’s caller is blamed for
a contractual violation. Symmetrically, if f’s result is not in the
proper range, the blame falls on f itself. In this world, detecting
contractual violations and assigning blame merely means checking
appropriate predicates at well-defined points in the program’s eval-
uation.

This simple mechanism for checking contracts does not generalize
to languages with higher-order functions. Consider this contract:

g : (int[> 9] —int[0,99]) —int[0,99]

val rec g = A proc. - -+

The contract’s domain states that g accepts int —int functions and
must apply them to ints larger than 9. In turn, these functions must
produce ints between 0 and 99. The contract’s range obliges g to
produce ints between 0 and 99.

1 http://developer.java.sun.com/developer/bugParade/top25rfes.html

[OOPSLA'12]
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Semantics for Symbolic PCF with Contracts F +—— E’
************************************* if V By Fy — FEqif 6(false?, V') > ff
if V By By — FEyif §(false?, V) 5 tt
AX:T.E)V — |V/X|E
uX:T.E — [uX:T.EF/X|E
O(V) —s Aif6(0,V)> A
(eT=T/1CVV — o1 /{[V/X]Co | C1—AX:T.Cy € C}

(7T /C)V — havocy V
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Semantics for Symbolic PCF with Contracts E —— FE’

| @& 0 0 snake.rktl - DrRacket
snake.rktl™ (define .0 Save #[=] Debug @b Check Syntax Y4 Macro Stepper 3 Bl Run P stop |l ‘

#lang var @00 ______ Word

;r == Primitive modules
(module image racket
; (require 2htdp/image)
(provide/contract

if VB, By — E if §(false?, V) 3 ff
if V E, Ey — E,if §(false?, V) 3 tt
AX:T.E)V +— [V/X|E
uX:T.E — [uX:T.E/X|E
O(V) — Aif§(0,V)3 A

(e7=T'JC) V — havocy V

(.THT’/c) V —s .TI/{[V/X]Cz | Ci—=AX:T.Cy € C}

! [image? (any/c . =-> . boolean?)]

[circle (exact-nonnegative-integer? st
[empty-scene (exact-nonnegative-intege
[place-image (image? exact-nonnegative

2 == SBource

(module data racket
(struct posn (x y))
(struct snake (dir segs))
(struct world (snake food))

;:; Contracts
(define direction/c
(one-of/c 'up 'down 'left 'right))
(define posn/c
(struct/c posn
exact-nonnegative-integer?
exact-nonnegative-integer?))
(define snake/c
(struct/c snake
direction/c
(non-empty-listof posn/c)))

Welcome to DrRacket, version 5.3.1.1--2012-10-13(2b902d0e/d) [3m].
Language: var; memory limit: 128 MB.
>

Determine language from source 3:2 461.37 MB[_| §®

[OOPSLA'12]



CONCLUSION &
PERSPECTIVE



To trust software, we must predict its (mis)behavior.
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Temporal Higher-Order Contracts

Tim Disney

University of California, Santa Cruz

Abstract

Behavioral contracts are embraced by software engineers because
they document module interfaces, detect interface violations, and
help identify faulty modules (packages, classes, functions, etc).
This paper extends prior higher-order contract systems to also ex-
press and enforce temporal properties, which are common in soft-
ware systems with imperative state, but which are mostly left im-
plicit or are at best informally specified. The paper presents both
a programmatic contract API as well as a temporal contract lan-
guage, and reports on experience and performance results from im-
plementing these contracts in Racket.

Our development formalizes module behavior as a trace of
events such as function calls and returns. Our contract system pro-
vides both non-interference (where contracts cannot influence cor-
rect executions) and also a notion of completeness (Where contracts
can enforce any decidable, prefix-closed predicate on event traces).

Categories and Subject Descriptors D.3.1 [Formal Definitions
and Theory]: Semantics; D.3.3 [Language Constructs and Fea-
tures]: Constraints

General Terms Languages, Reliability, Security, Verification.

Keywords Higher-order Programming, Temporal Contracts

Cormac Flanagan

University of California, Santa Cruz

Jay McCarthy

Brigham Young University

a sort routine, not all of which are supported by existing contract
systems.

1. The sort function takes two arguments, an array of positive
integers and a comparison function cmp.
This standard, first-order precondition constrains how sort
should be called, that is, what arguments are valid. These kinds
of basic first-order contracts are supported by most contract
systems, for example, Eiffel [36].

N

The argument function cmp in turn requires two arguments, both
positive integers.

This higher-order precondition constrains how the sort module
can call the function argument cmp, and so is a guarantee pro-
vided by sort rather than an obligation on the client. Higher-
order contract systems [19, 15, 22, 24, 45] support such precon-
ditions by wrapping the cmp argument to enforce this property
dynamically.

w

. The sort function is not re-entrant—it can only be called after
all previous sort invocations have completed.
Unlike the previous contracts that constrain how functions may
be called, this temporal contract constrains when sort can be
called [12, 13]. This constraint implies that sort must be used
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1 sqr(5) = T




What about numbers, strings, arrays, etc.?

Neg Pos

1 sqr(>) = Pos




