ANALYSIS FOR
TRUSTWORTHY SOFTWARE

DAVID VAN HORN

WITH SUPPORT FROM
NSF, DARPA, CRA, & GOOGLE

S . o
N

L

tl
e
J ‘
’,.
i

_ i
h S iy
¥ ... Y _ \ iy . | ._.. 5 ob £ ﬂfﬂ:’.‘
L ¥ ... [A . ’ \ ..A i R ., -
A AR lY ' A f"fx < st TR 5 o

DPA Example Apps (1:2)

#Invented in theater

E

Blue-force BN

High res maps
tracking L navigation, layers

PLI ~1/ 7l
Eﬂ aps

DASH Mapdraw

Messages Operational graphics

Chat rooms GPS trace & media

o e

Collab

Live Collaboration wTranSheat *
Patrol heatmap

SAR

Coordinated

Search & Rescue > % Debrief W

Patrol review

Patrolview

Collector &

Viewer

‘WhoDat %

_ Local population

Trip Ticket ¥

Personnel & Eqpt
mgmt

Agora
Apps portal & feedback

Nowtu

User empowered
training

Sl \Weapons and
/%y Ammunitions

Dimmer *
A0 Night time ops

H Transtalk
Pashto and Dari

Translator

. MSsD *
@Minimum

safety distance

n Medical training modules
Administer morphine,

Apply tourniquet

STREAM

Sensor streaming TIGR

0 Gammapix

Events, Places Radiation detection

People, Reports

Paranav
v Airborne navigation

With or without network

\

SpeedTest

*
Network performance ACOZ

@ Julian date converter

Works without network

® !

Works with network With or without network

W Ve

EERMEERANE *PRRRRT SRR, ‘RMNET O SAART" MART 2Rt

108/24/2011 14:02:34]

Transheat

DPA Example Apps (1:2)

#Invented in theater

E

Blue-force BN

High res maps
tracking L navigation, layers

PLI ~1/ 7l
Eﬂ aps

DASH Mapdraw

Messages Operational graphics

Chat rooms GPS trace & media

o e

Collab

Live Collaboration wTranSheat *
Patrol heatmap

SAR

Coordinated

Search & Rescue > % Debrief W

Patrol review

Patrolview

Collector &

Viewer

‘WhoDat %

_ Local population

Trip Ticket ¥

Personnel & Eqpt
mgmt

Agora
Apps portal & feedback

Nowtu

User empowered
training

Sl \Weapons and
/%y Ammunitions

Dimmer *
A0 Night time ops

H Transtalk
Pashto and Dari

Translator

. MSsD *
@Minimum

safety distance

n Medical training modules
Administer morphine,

Apply tourniquet

STREAM

Sensor streaming TIGR

0 Gammapix

Events, Places Radiation detection

People, Reports

Paranav
v Airborne navigation

With or without network

\

SpeedTest

*
Network performance ACOZ

@ Julian date converter

Works without network

® !

Works with network With or without network

When is this software trustworthy?

DPA Example Apps (1:2)

#Invented in theater

o

E

® |

Works with network

PLI

Blue-force
tracking

DASH

Messages

RTC
Chat rooms

Collab
Live Collaboration

SAR

Coordinated
Search & Rescue

STREAM
Sensor streaming

SpeedTest
Network performance

_iil Maps

High res maps
navigation, layers

Mapdraw

Operational graphics

Debrief

Patrol review

TIGR

Events, Places
People, Reports

With or without network

Patrolview
as Collector &
Viewer

WhoDat

Local population

B Trip Ticket *
ﬁ Personnel & Eqpt
mgmt
B‘ ‘ Agora

Apps portal & feedback

Nowtu

0 User empowered
u training

“w Paranav

Airborne navigation

4

With or without network

Works without network

Dimmer *
0 Night time ops

H Transtalk
Pashto and Dari

Translator

. MSD *

@ Minimum
safety distance

n Medical training modules
Administer morphine,
Apply tourniquet

O Gammapix

Radiation detection

ACOZ *

@ Julian date converter

“When we trust a system, we trust it will behave
as we expect it to.”

— Bruce Schneier

Trust “involves the risk of failure or harm to the trustor

if the trustee will not behave as desired.”

— Wikipedia, Trust (social sciences)

When is this software trustworthy?

DPA Example Apps (1:2)

#Invented in theater

o

E

® |

Works with network

PLI

Blue-force
tracking

DASH

Messages

RTC
Chat rooms

Collab
Live Collaboration

SAR

Coordinated
Search & Rescue

STREAM
Sensor streaming

SpeedTest
Network performance

_iil Maps

High res maps
navigation, layers

Mapdraw

Operational graphics

Debrief

Patrol review

TIGR

Events, Places
People, Reports

With or without network

Patrolview
as Collector &
Viewer

WhoDat

Local population

B Trip Ticket *
ﬁ Personnel & Eqpt
mgmt
B‘ ‘ Agora

Apps portal & feedback

Nowtu

0 User empowered
u training

“w Paranav

Airborne navigation

4

With or without network

Works without network

Dimmer *
0 Night time ops

H Transtalk
Pashto and Dari

Translator

. MSD *

@ Minimum
safety distance

n Medical training modules
Administer morphine,
Apply tourniquet

O Gammapix

Radiation detection

ACOZ *

@ Julian date converter

When is this software trustworthy?

DPA Example Apps (1:2)

#Invented in theater

PLI § l‘ Maps Patrolview
Blue-force '."m‘ High res maps as Collector & S Weapons and
tracking navigation, layers Viewer Ammunitions
. DASH Mapdraw n WhoDat % Dimmer *
~ . 7
= Messages Operational graphics Local population nght time ops
~ '\.
a RTC 77' Trip Ticket e IﬂTranstalk
Pashto and Dari
Chat rooms GPS trace & media Personnel & Eqpt Translator
mgmt
Collab A . MsD *
Live Collaboration Transheat g | gora @ Minimum
Patrol heatmap ¥ Apps portal & feedback safety distance
SAR
>F Coordinated -] Nowtu Medical training modules
w Search & Rescue > %" Debrief * o o '
=0 User empowered Administer morphine,
Patrol review N training Apply tourniquet
STREAM
I’ Sensor streaming , TIGR S Paranav O Gammapix
Events, Places Airborne navigation Radiation detection
. SpeedTest 1 People, Reports -
ACOZ *
Network performance @
Julian date converter
Works with network With or without network With or without network Works without network

When we can predict it

will not misbehave.

When is this software misbehaving?

DPA Example Apps (1:2)

#Invented in theater

o

E

® |

Works with network

PLI

Blue-force
tracking

DASH

Messages

RTC
Chat rooms

Collab
Live Collaboration

SAR

Coordinated
Search & Rescue

STREAM
Sensor streaming

SpeedTest
Network performance

_iil Maps

High res maps
navigation, layers

Mapdraw

Operational graphics

Debrief

Patrol review

TIGR

Events, Places
People, Reports

With or without network

Patrolview
as Collector &
Viewer

WhoDat

Local population

B Trip Ticket *
ﬁ Personnel & Eqpt
mgmt
B‘ ‘ Agora

Apps portal & feedback

Nowtu
0 User empowered
u training

Paranav

Airborne navigation

4

With or without network

Dimmer *
0 Night time ops
H Transtalk
Pashto and Dari

Translator

. MSD *

@ Minimum
safety distance
n Administer morphine,
Apply tourniquet
O Gammapix

Radiation detection

ACOZ *

@ Julian date converter

Works without network

Medical training modules

When is this software misbehaving?

TRAQ n
GPS trace & media ‘

When it sends GPS data
to a non-white listed URL.

When is this software misbehaving?

Gammapix

Radiation detection

When it uses the network.

When is this software misbehaving?

. Speedlest M 2
@ Network performance N i

When it uses the camera.

When is this software misbehaving?

-

ww Paranav AP ¢

“* Airborne navigation

When it raises an

uncaught exception.

When is this software misbehaving?

A Sorry!

The application NAVIGON
(process com.navigon.
navigator_checkout_eu40) has
stopped unexpectedly. Please
try again.

. Force close ‘

To trust software,

we must predict its (mis)behavior.

To trust software,

we must predict its (mis)behavior.

| build tools and techniques for

predicting the behavior of software.

® O06 AnaDroid Ry

J AnaDroid

L]

¢ J (B~ Google @) (0] (B3)

6) @ pegasus.cs.utah.edu 77

ApK file list:

Delete

UltraCoolMap2.apk

Add file... |

Go to configure AnaDroid

AnaDroid: Abstract Interpretation of
Android Dalvik Bytecode

Automated Program Analysis for
Cybersecurity (APAC)

® OO0 AnaDroid ")

AnaDroid
4)d 0006 ‘ Analysis result e
Analysis result - _ _ ‘ _
AnalL :
@) @ pegasus.cs.utah.edu:8080/anadroid;(("k" . "(1: 7.7 ~ J (v Google Q> [ﬁ] [. v]
All §

Apk file) Result of Abstract Interpretation of all the apks uploaded...

UltraCg
APK Reports and Graphs
CAJE. Report: Possible manifest-file permission Violations
Cotll State Graph with suspicious API calls or zero permission vulnerabilities

UltraCoolMap2 Report: Framework APIs dumps

Report: Rough abstract profiling
Debug information

¥

\RPA

i Refresh

Stop and reconfigure

Analyze another apk
Get me out...

Analysis for
\PAC)

v X

® O 06 AnaDroid "
AnaDroid

4 @F ® 006 - Analysis result e

Analysis result

C'] C' Google Q) ﬂ [l]

() @ pegasus.cs.utah.edu:8080/anadroid;(("k" . "(1: 7.7

Andr

APK Reports and Graphs

Report: Possible manifest-file permission Violations

State Graph with suspicious API calls or zero permission vulnerabilities
UltraCoolMap2 Report: Framework APIs dumps

Report: Rough abstract profiling

Debug information

IRPA

Refresh

Stop and reconfigure
Analyze another apk

Get me out... A n a IVS I S fOr
® OO0 Dumped APIs "
Dumped APIs

<]) @ pegasus.cs.utah.edu:9090/g490/UltraCoolMap/all-apis.html wve (' Google Q) fr) (63~
APIs used in the app

« (#s(compact-meth org/apache/http/impl/client/DefaultHttpClient/ ()) . #s(and-perms (android.permission.INTERNET)))
« (#s(compact-meth org/apache/http/client/methods/HttpGet/ ((object java/net/URI))) . #f)
« (#s(compact-meth org/apache/http/client/HttpClient/execute ((object org/apache/http/client/methods/HttpUriRequest))) . #f)

® O 06 AnaDroid "l
AnaDroid

® O06 Mozilla Firefox A

(Q)®re 06
— ~ http://pegasus....ap2/report.html +

Analysis result

A @ pegasus.cs.utah.edu:8080/8 (€) @ pegasus.cs.utah.edu:8080/g486/UltraCoolMap2, 7.7

C | (B~ Google Q) | A B~

------------ The Least Priviledged Permission System (LPPS) Detection Report

Result of Abstract Ir

The app asks for the following permissions....

APK Reports and Gri (

Report: Possib « android.permission.ACCESS_FINE_LOCATION
tate Graph « android.permission.WRITE_INTERNAL_STORAGE

UltraCoolMap2 Report: Framev
Report: Rough
Debug informal

Refresh
Permissions that are used in the app (based on current API knowledge):
Stop and reconfigure

Analyze another apk
Get me out...

« android.permission.INTERNET

LPP Violation: permissions requested in the manifest but not used in the app:

® 00

« android.permission. ACCESS_FINE_LOCATION

2l « android.permission.WRITE_INTERNAL_STORAGE

|) @ pegasus.cs.utah.edu:9090/g490/Ultrat

APISs used in the app

« (#s(compact-meth org/apache/http/impl/client/DefaultHttpClient/ ()) . #s(and-perms (android.permission.INTERNET)))
* (#s(compact-meth org/apache/http/client/methods/HttpGet/ ((object java/net/URI))) . #f)
« (#s(compact-meth org/apache/http/client/HttpClient/execute ((object org/apache/http/client/methods/HttpUriRequest))) . #f)

e 006

states

teed

@ pegasus.cs.utah.edu:9090/¢ 77 7 C [(B~ Google Q) [| (B3~

® ®
®
® ©
®
@ @
@

SYolololololo
fololololc

OE®®®®
@D @@ @ @

@ GO
@ & ™

w G
@

Mozilla Firefox

i

The app asks for the following permissions....

O

(

« android.permission.ACCESS_FINE_LOCATION
« android.permission. WRITE_INTERNAL_STORAGE

&9«6-0000

0000

-0-0-0-0-0-0-0-0-0 Tt

00

Permissions that are used in the app (based on current API knowledge):

 android.permission.INTERNET

LPP Violation: permissions requested in the manifest but not used in the app:

o android.permission. ACCESS_FINE_LOCATION
 android.permission.WRITE_INTERNAL_STORAGE

mpl/client/DefaultHttpClient/ ()) . #s(and-perms (android.permission.INTERNET)))
lient/methods/HttpGet/ ((object java/net/URI))) . #f)
lient/HttpClient/execute ((object org/apache/http/client/methods/HttpUriRequest))) . #f)

O-Gr-O-0-O-C-0-6r-6r- 06+

L]

®

states "

@ pegasus.cs.utah.edu:9090/¢ 77 ~ G | (BY~ Google Q) [| B~ — R

1

® 006 Mozilla Firefox =)
~ http://pegasus....ap2/report.html o ' : :
4) @ pegasus.cs.utah.edu:8080/g486/UltraCoolMap?2, <A7 c ' Google
S dd L d | meeeeeeeeee. The Least Priviledged Permission System (LPPS) Detection Report
©
P : The app asks for the following permissions....
® | ® ®
@ \G
@\ ® (
ONOXO. ® 00 Mozilla Firefox
OO [} http://pegasus....graph/639.html AT praT
& e e L R S L R T i | SR =
? P QP) State Details-----------
™ ™ ®
& Frame Pointer: #s(frame-pointer com/ultracoolmap/UltraCoolMapActivitySReallyBadName/doInBackground ())
©
- | ® e s Time: ((new-instance vO org/apache/http/impl/client/DefaultHttpClient))
©)
& Statements:

'((invoke-direct (v0) org/apache/http/impl/client/DefaultHttpClient/)

(line 289)

(new-instance v1 org/apache/http/client/methods/HttpGet)

(const/4 v2 0)

(aget-object v2 v4 v2)

(invoke-direct
(vl v2)

org/apache/http/client/methods/HttpGet/

(object java/net/URI))

AndorsTrail SplitTimer SMSBackup
AndroidGame SuperNote SMSBIlocker
AndroidPrivacyGuard_E SuperSoduko SMSPopup
Butane SysMon SysWatcherA
CalcA SysWatcherB SourceViewer
CalcB TextSecure UltraCoolMap
ConnectBot TodolList YARR
CountdownTimer Word Helper AndroidsFortune
FunDraw AndBible CalcC
MorseCode AndroidPrivacyGuard_M CalcE
MyDrawA Batterylndicator ColorMatcher
MyDrawC CalcF FullControl
NewsCollator MediaFun KitteyKittey
PasswordSaver MyDrawD Orienteering?2
PersistantAssistant OpenGPSTracker Sanity
SmartWebCam Orienteeringl TomDroid
SMSReminder PicViewer WiFinder

SourceViewer

Collaboration SharelLoc

AndBible

SMSBackup

SMSBlocker

SMSPopup

SysWatcherA

SourceViewer

UltraCoolMap

YARR

AndroidsFortune

CalcC

AndroidPrivacyGuard_M

CalcE

Batterylndicator

ColorMatcher

CalcF FullControl
MediaFun KitteyKittey
MyDrawD Orienteering?2
OpenGPSTracker Sanity
Orienteeringl TomDroid
PicViewer WiFinder

Collaboration Shareloc

AndroidsFortune
CalcC
CalcE

ColorMatcher

FullControl

KitteyKittey

Orienteering?2

Sanity
TomDroid

WiFinder
i

CalcE

FullControl

| build tools and techniques for

predicting the behavior of software.

| build tools and techniques for
soundly and effectively

predicting the behavior of software.

Robust, Reliable Software
and Trustworthy Systems

OUTLINE:

OUTLINE:

Understanding prediction

OUTLINE:

Systematic approach

Understanding prediction

OUTLINE:

Systematic approach

Understanding prediction

PART I:
UNDERSTANDING
PREDICTION

To trust software, we must predict its (mis)behavior.

h e
o s“" [
4 /‘ ““ /ﬂ
| /
/ ('J

To trust software, we must predict its (mis)behavior.

public void f(XYZ x) {
return x.m();

L

To trust software, we must predict its (mis)behavior.

public void f(XYZ x) {
return x.m();

L

To trust software, we must pred (mis)behavior.

public void f(XYZ x) {
return x.m();

L

Modern software uses
computational values.

“)

To predict control flow, To predict data flow,
we must predict data flow we must predict control flow

@

Modern software uses
computational values.

)

To predict control flow, To predict data flow,
we must predict data flow we must predict control flow

@

|ﬁ| Developers Design Develop Distribute Q :
Training AP| Guides Reference Tools Google Services

Android ARIBI level: 17 * public class . Summary: Ctors | Methods | Inhe

ANUTUIULTTELWI L PZP. 115U RemOteca“baCI(IJSt

android.nfc
android.nfc.tech
android.openg|
android.os
android.os.storage
android.preference
android.provider
android.renderscript
android.sax
android.security
android.service.dreams
android.service.textservic
android.service.wallpaper

smedeniod oo b

I wyyClivian IﬂyCl. rmrancLvuer

Process

RecoverySystem
RemoteCallbackList
ResultReceiver

StatFs

StrictMode
StrictMode.ThreadPolicy
StrictMode.ThreadPolicy.|
StrictMode.VmPolicy

[++]

Use Tree Navigation

extends Object

java.lang.Object
L»android.os.RemoteCallbackList<E extends android.os.lIinterface>

Class Overview

Takes care of the grunt work of maintaining a list of remote interfaces, typically for the use of
performing callbacks from a service to its clients. In particular, this:

e Keeps track of a set of registered r1nterface callbacks, taking care to identify them through their
underlying unique 18inder (by calling IInterface.asBinder().

e Attaches a IBinder.DeathRecipient t0 each registered interface, so that it can be cleaned out of
the list if its process goes away.

e Performs locking of the underlying list of interfaces to deal with multithreaded incoming ¢ a

thread-safe way to iterate over a snapshot of the list without holding its lock.

To use this class, simply create a single instance along with your service, and call its register(£) and
unregister (E) methods as client register and unregister with your service. To call back on to the
registered clients, use beginBroadcast(), getBroadcastItem(int), and finishBroadcast().

If a registered callback's process goes away, this class will take care of automatically removing it from
the list. If you want to do additional work in this situation, you can create a subclass that implements
the oncallbackDied(E) method.

java.util

Class Observable

java.lang.0Object
Ljava.util.observable

public class Observable
extends Object

This class represents an observable object, or "data" in the model-view paradigm. It can be subclassed to represent an object
that the application wants to have observed.

An observable object can have one or more observers. An observer may be any object that implements interface observer.
After an observable instance changes, an application calling the observable's notifyObservers method causes all of its
C

Constructor Summary

1
(|observable()

£ Construct an Observable with zero Observers.
C

!

Method Summary

void |addObserver(Observer o)
) Adds an observer to the set rs for this object, provided that it is not the same as some observer

already in the set.

rs

protectgd clearChanged()
void Indicates that this object has no longer changed, or that it has already notified all of its observers of its

most recent change, so that the hasChanged method will now return false.

rs

int |countObservers()
Returns the number of observers of this observable object.

void |deleteObserver (Observer o)
Deletes an observer from the set of observers of this object.

void |deleteObservers()
Clears the observer list so that this object no longer has any observers.

boolean |hasChanged()
Tests if this object has changed.

void [notifyObservers()
If this object has changed, as indicated by the hasChanged method, then notify all of its observers and
then call the clearchanged method to indicate that this object has no longer changed.

void |notifyObservers(Object arg)
If this object has changed, as indicated by the hasChanged method, then notify all of its observers and

then call the clearChanged method to indicate that this object has no longer changed.

protectgd setChanged()
void Marks this observable object as having been changed; the hasChanged method will now return true.

c
2
b
o
c
)
£
£
O
O
@
o
3
(]
2
T
c
&
O
9,
2

XMLHttpRequest

W3C Candidate Recommendation 3 August 2010

This Versic
http://
Latest Vers
ttp://
Latest Edit
ttp://
Previous V
ttp://
ttp://

i

[e s e e s e s) e
=== I=Y=I= =
SN s

Edito

-

>
>

ne

Copyright @ 2
document use

Abstract

The XMLHt
functionality

c
[
b
©
c
@
£
£
O
O
Q
('
Q
—
@
=2
©
c
a
O
O
2

1. Introduction Java SCI’i pt

This section is non-normative. — —

The xuruttprecuest Object implements an interface exposed by a scripting engine that allows scripts to
perform HTTP client functionality, such as submitting form data or loading data from a server. It is the
ECMAScript HTTP APL.

The name of the object is xuLuttprequest for compatibility with the Web, though each component of this
name is potentially misleading. First, the object supports any text based format, including XML. Second, it
can be used to make requests over both HTTP and HTTPS (some implementations support protocols in
addition to HTTP and HTTPS, but that functionality is not covered by this specification). Finally, it supports
“requests” in a broad sense of the term as it pertains to HTTP; namely all activity involved with HTTP
requests or responses for the defined HTTP methods.

Some simple code to do something with data from an XML document fetched over the network:

function test(data) {
// taking care of data

}

function handler() {
if(this.readyState == 4 §&& this.status == 200) {
// so far so good
if(this.responseXML != null && this.responseXML.getElementById('test').firstChild.data)
// success!
test(this.responseXML.getElementById('test').firstChild.data);
else
test(null);
} else if (this.readyState == 4 && this.status != 200) {
// fetched the wrong page or network error...
test(null);
}
}

var client = new XMLHEttpRequest();
client.onreadystatechange = handler;
client.open("GET", "unicorn.xml");
client.send();

e — ——

Modern software is
(4_)_[| http://nodejs.org/ v c

Chungeiog |
Abou - JavaScript
v0.4.1 docs

Evented I/O for V8 JavaScript.

,
(g~ Google

Wiki

An example of a web server written in Node which responds with "Hello

World" for every request.

var http = require('htt »);

http.createServer(function (req, res) {
res.writeHead(200, {'Content-Type': 'text/plain'});
res.end('Hello World\n');

}).listen(8124, "127.0.0.1");

console.log('Server running at http://127.0.0.1:8124/');

To run the server, put the code into a file example. js and execute it with
the node program:

% node example.js
Server running at http://127.0.0.1:8124/

Programming Ruby

The Pragmatic Programmer's Guide

Object-Oriented Design Libraries

Library: observer

One of the interesting things about Rt
between design and implementation.
design level in other languages can b

o The Observer pattern, also known as Publish/Subscribe, provides a simple
To help in this process, Ruby has sup mechanism for one object to inform a set of interested third-party objects when its
state changes.

« The Visitor pattern (Design Pa
without having to know the inter
» Delegation is a way of composi
than can be done using standar
« The Singleton pattern is a way

' particular class exists at a time.

In the Ruby implementation, the notifying class mixes in the observable module,
which provides the methods for managing the associated observer objects.

add_observer(obj)

« The Observer pattern impleme

ﬁbj as an observer on this object. obj will now
a set of interested objects when

e notifications.

delete_observer(ob)) Delete obj as an observer on this object. It will no

Normally, all four of these strategies ri longer receive notifications.
implemented. With Ruby, they can be
Lng transparenﬂly_ HoY. ey delete_observers Delete all observers associated with this object.
count_observers Return the count of observers associated with this
— object.

changed(newState=true) Set the changed state of this object. Notifications will
be sent only if the changed state is true.

changed? Query the changed state of this object.

notify_observers(*args) If this object's changed state is true, invoke the update
method in each currently associated observer in turn,
passing it the given arguments. The changed state is
then set to false.

The observers must implement the update method to receive notifications.

L —— S——

1.3 Functions as values

OCaml is a functional language: functions in the full mathematical sense are supported and can be passed
around freely just as any other piece of data. For instance, here is a deriv function that takes any float function
as argument and returns an approximation of its derivative function:

let deriv f dx = function x -> (f(x +. dx) -. f(x)) /. dx;; OCaml
val deriv : (float -> float) -> float -> float -> float = <fun>
let sin' = deriv sin le-6;;

val sin' : float -> float = <fun>

sin' pi;;
- ¢ float = -1.00000000013961143

Even function composition is definable:

let compose f g = function x -> f(g(x));;
val compose : ('a -> 'b) -> ('c => 'a) -> '¢ => 'b = <fun>

let cos2 = compose square COS;;
val cos2 : float -> float = <fun>

Functions that take other functions as arguments are called “functionals”, or “higher-order functions”.
Functionals are e ally useful to provide iterators or similar generic operations over a data structure. For
instance, the stan Caml library provides a List.map functional that applies a given function to each
element of a list, returns the list of the results:

List.map (function n -> n * 2 + 1) [0;1;2;3;4];;
- : int list = [1; 3; 5; 7; 9]

This functional, along with a number of other list and array functionals, is predefined because it is often useful,
but there is nothing magic with it: it can easily be defined as follows.

»

Python » 3.4.0a0 : Documentation » The Python Standard previous | next | modules | index

Library » 10. Functional Programming Modules »

10.2. functools — Higher-order
functions and operations on callable

objects

Source code: Lib/functools.py

The functools module is for higher-order functions: functions that act on or return

other functions. In general, any callable object can be treated as a function for the
purposes of this module. —

The functools module defin following functions:

functools.cmp_to_ key(func

Transform an old-style comparison function to a key function. Used with tools
that accept key functions (such as sorted(), min(), max(), heapg.nlargest(),

heapg.nsmallest(), itertools.groupby()). This function is primarily used as

a transition tool for programs being converted from Python 2 which supported
the use of comparison functions.

Modern software uses
computational values.

Modern software uses
computational values.

To predict its behavior,
we need flow analysis.

FLOW ANALYSIS OF LAMBDA EXPRESSIONS

(Preliminary Version)

Neil D. Jones

Aarhus University, Denmark J O n es y I CA I_ P]. 98].

A method is described to extract from an untyped A-expression information about

0. INTRODUCTION

the sequence of intermediate A-expressions obtained during its evaluation. The in-
formation can be used to give "'safe positive answers'" to gquestions involving termina~
tion or nontermination of the evaluation, dependence of one subexpression on another
and type errors encountered while applving § rules, thus providing an alternative to
techniques of Morris and Levy ([Mor‘GB], [L_@v75] }. The method warks by building a
tsafe description” of the set of states entered by a call-by-name interpreter and
analyzing this description. A similar and more complete analysis of a call-by-value
interpreter may be found in [Jon81].

From a flow analysis viewpoinf these results extend existing interprocedural
analysis methods to include call-by-name and the use of functions both as arguments
to other functions and as the results returned by them. Further, the method natural-
ly handles both local and global variables, extending [Cou77a] and [Sha80]. It seems
clear that other traditjional analyses such as available expressions, constant propa-
gation, etc. can be carried out in this framework.

The main emphasis is on development of the framework and showing its relation
to abstract interpretation, rather than on its efficient use in applications. A sim-
plified and optimized version of the method would have applications in the efficient
compilation of X—calculug~based programming languages such as ISP, SCHEME
and SASL ([McC63], [Ste?5], [Tur76]).

The method provides a general way to find safe approximate descriptions of
computations by algorithms which manipulate recursive data structures. It is thus
not limited to the A-calculus, but may be applied to analyze any programming lan-
guage whose semantics can be implemented by an appropriate definitional interpreter.

Ancther application would be to extend the method to the flow analysis of deno~
tational definitions of programming languages. This could be used in semantics-
directed compiler generation as described in [JoS80], and provided the initial mo-

tivation for this study.

Related work

Lambda calculus evaluators have been studied in [Boh72], [Lané4], [McG70],
[Plo75], [Rey72], [SchB0] and [Weg68]. Sufficient conditions for termination of

FLOW ANALYSIS OF LAMBDA EXPRESSIONS

(Preliminary Version)

Neil D. Jones

Aarhus University, Denmark

0. INTRODUCTION

A method is described to extract from an untyped A-expression inf
the sequence of intermediate A-expressions obtained during its evaluati
formation can be used to give ''safe positive answers" to questions invo
tion or nontermination of the evaluation, dependence of one subexpress’
and type errors encountered while applving § rules, thus providing an
techniques of Morris and LLevy ([Moré8], [Lev75]). The method works
safe description! of the set of states entered by a call-by-name interp
analyzing this description. A similar and more complete analysis of a ¢
interpreter may be found in [Jon81].

From a flow analysis viewpoint these results exiend existing interg
analysis methods to include call-by~name and the use of functions both «
to other functions and as the results returned by them. Further, the me
ly handles both local and global variables, extending [Cou77a] and [Sh
clear that other traditional analyses such as available expressions, cor
gation, etc. can be carried out in this framework.

The main emphasis is on development of the framework and showinc
to abstract interpretation, rather than on its efficient use in applicatior
plified and optimized version of the method would have applications in ti
compilation of X—calculug~based programming languages such as ISP,
and SASL ([McC63], [Ste?5], [Tur76]).

The method provides a general way to find safe approximate descri
computations by algorithms which manipulate recursive data structures.
not limited to the A-calculus, but may be applied to analyze any progran
guage whose semantics can be implemented by an appropriate definition:

Ancther application would be to extend the method to the flow analy
tational definitions of programming languages. This could be used in se
directed compiler generation as described in [JoS80], and provided th

tivation for this study.

Related work

Lambda calcutus evaluators have been studied in [Boh72], [Lan64,
[Plo75], [Rey72], [SchB0] and [Weg68]. Sufficient conditions for ter

Control-Flow Analysis of Functional Programs

JAN MIDTGAARD, Aarhus University

We present a survey of control-flow analysis of functional programs, which has been the subject of extensive
investigation throughout the past 30 years. Analyses of the control flow of functional programs have been
formulated in multiple settings and have led to many different approximations, starting with the seminal
works of Jones, Shivers, and Sestoft. In this article, we survey control-flow analysis of functional programs
by structuring the multitude of formulations and approximations and comparing them.

Categories and Subject Descriptors: D.3.2 [Programming Languages|: Language Classifications—
Applicative functional languages; F.3.1 [Logics and Meanings of Programs]: Specifying and Verifying
and Reasoning about Programs

General Terms: Languages, Theory, Verification
Additional Key Words and Phrases: Control-flow analysis, higher-order functions

ACM Reference Format:

Midtgaard, J. 2012. Control-flow analysis of functional programs. ACM Comput. Surv. 44, 3, Article 10 (June
2012), 33 pages.

DOI = 10.1145/2187671.2187672 http://doi.acm.org/10.1145/2187671.2187672

1. INTRC™" "=~

Since tk
devoted
gram m. .

Cites over 200 papers.
parent f

called funcuon 1s avanavie-av - na
language on the textual structure of the program, since it determines the exact control
flow of the program, for example, as a flow chart. On the other hand, in a language
with higher-order functions, the operator of a function call may not be apparent from
the text of the program: it can be the result of a computation and therefore, the called
function may not be available until runtime. A control-flow analysis approximates at
compile time which functions may be applied at runtime, that is, it determines an
approximate control flow of a given program.

Prerequisites. We assume some familiarity with program analysis in general and
with control-flow analysis in particular. For a tutorial or an introduction to the area, we
refer to Nielson et al. [1999]. We also assume familiarity with functional programming
and a basic acquaintance with continuation-passing style (CPS) [Steele Jr. 1978] and

Part of this work was done with support of the Carlsberg Foundation ad an INRIA post-doc grant.

Authors’ addresses: J. Midtgaard, Department of Computer Science, Aarhus University, Aabogade 34,
DK-8200 Aarhus N., Denmark; email: jmi@cs.au.dk.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.

© 2012 ACM 0360-0300/2012/06-ART10 $10.00

DOI 10.1145/2187671.2187672 http://doi.acm.org/10.1145/2187671.2187672

ACM Computing Surveys, Vol. 44, No. 3, Article 10, Publication date: June 2012.

Existing analyses
(and their complexities)

0CFA

function twice(f,x) { return f(f(x)): };:

twice(sqr,4); twice(dbl,5);

0CFA

function twice(f,x) { return f(f(x)): };:

twice(sqr,4); twice(dbl,5);

0CFA

AN

function twice(f,x) { return f(f(x)): };:

twice(sqr,4); twice(dbl,5);

0CFA

AN

function twice(f,x) { return f(f(x)): };:

VS

sqr; {4

twice(sqr,4); twice(dbl,5);

0CFA

function tw1ce(f X) { return f(f(x))

// sqr; {4

twice(sqr,4); twice(dbl,5);

0CFA

function tw1ce(f X) { return f(f(x))

// sqr; {4

tw1ce(sqr 4): twice(dbl,5);

{sqr(sqr(4))}

0CFA

AN

function twice(f,x) { return f(f(x)): };:

<IN

sqr; {4

twice(sqr,4); twice(dbl,5);

5

{sqr(sqr(4))!

0CFA

AN

function twice(f,x) { return f(f(x)): };:

<IN

fsqr,dbl} {4,5

twice(sqr,4); twice(dbl,5);

5

{sqr(sqr(4))!

0CFA

AN

function twice(f,x) { return f(f(x)): };:

A

fsqr,dbl} {4,5

twice(sqr,4); twice(dbl,5);

5

{sqr(sqr(4))!

0CFA

AN

function twice(f,x) { return f(f(x)): };:

A

fsqr,dbl} {4,5

twice(sqr,4); twice(dbl,5);

5

{sqr(sqr(4)); {dbl(dbl(5))}

0CFA

AN

function twice(f,x) { return f(f(x)): };:

VAR

fsqr,dbl} {4,5}

twice(si::ilb twice(dbl,5);
{sqr(sqr(4))} {dbl(dbl(5)),
dbl(sqgr(5)),..}

0CFA

AN

function twice(f,x) { return f(f(x)): };:

A

fsqr,dbl} {4,5

twice(sqr,4); twice(dbl,5);

{db1(db1(5)).

sgr(sqr(4)),
dbl(sqgr(5)),..}

1CFA

function twice(f,x) { return f(f(x)): };:

twice(sqr,4); twice(dbl,5);

1CFA

function tw1ce(f X) { return f(f(x))

// sqr; {4

tw1ce(sqr 4): twice(dbl,5);

{sqr(sqr(4))}

1CFA

A

function twice(f,x) { return f(f(x)): };:

SN

sqr; {4

twice(sqr,4); twice(dbl,5);

/‘

{sqr(sqr(4))!

1CFA

A~ W

function twice(f,x) { return f(f(x));:

{4}1{5}
(dbl}

twice(sqr,4); twice(dbl,5);

/‘

{sqr(sqr(4))!

1CFA

A~ W

function twice(f,x) { return f(f(x)): };:

\

{43{>}

twice(Sﬁ;;ilb tw1ce(dbi/§2/>

{sqr(sqr(4)); {dbl(dbl(5))}

Precision

kCFA

1CFA
O0CFA
Simple closure

Sub0OCFA

[ICFP'07, SAS'08, ICFP'08]

Precision

Simple closure
SubOCFA

[ICFP'07, SAS'08, ICFP'08]

Precision

Simple closure
SubOCFA

/\

EXPTIME

[ICFP'07, SAS'08, ICFP'08]

Key insight:
analysis is a kind of
evaluation

Precision

SubOCFA
Simple closure

/\

EXPTIME

[ICFP'07, SAS'08, ICFP'08]

Precision

kCFA mCFA

1CFA 1CFA

SubOCFA
Simple closure

EXPTIME PTIME

[ICFP’07, SAS'08, ICFP'08, PLDI'10]

FLEMMING NIELSON
HANNE RIIS NIELSON
CHRIS HANKIN

Principles
of Program
. Analysis

@ Springer

Principles
of Program
2 Analysis

[con] (C,P) [¢! always

[var] (C,7) k= = iff A(z) € C(®)

fil (€7 F (fnz => eo)* iff {fn z => eo} C C(¢)

fur] (C,P) k= (fun f = => eo)’ iff {fun f = => e} C C(§)

lapp] (C,7) k= (1" t°)° '
iff (C,7) = A (Cp) =13 A
(V(fn z =>) € C(41) :
Clana R
C(£2) Cp(z) A Cbo) CC(£)) A
(V(fun f z => t¢°) € C(&y) :
alaaie
C(€2) C () A C(bo) C C(£) A
{fun f & => 15’} C A(f))
(4] (C,p) = (if t¥ then t¥ else t32)*
it CAEEA
Coakh A G g
C(&1) CC(8) A C(£2) CC(H)
[lef] (C,p) E (et z =t in t22)"
iff CAEH A Cp) g A
C(t1) S Az) A C(ta) <C8)

o] CAE@W opt)if CoE A CAEL

Table 3.1: Abstract Control Flow Analysis (Subsections 3.1.1 and 3.1.2).

[var] pkzt — v® if z € dom(p) and v = p(x)
[fn] pt (fn z => eg)? = (close (fn z => ey) in pp)*
where po = p | FV(fn z =>)
[fun] pt (fun f z => e9)® — (close (fun f = => eg) in pg)’
where pp = p | FV(fun f = => ¢p)
pFies — i€}
a
[app,] pF (iey iex)t — (ie] iez)t
p Fies — i€l
app : :
el) S
[app;] pF ((close (fn z => e;) in py)&t v2)t o
(bind p1[z +> vs] in €;1)"
[095n] P ((close (fun f z=> e1) in 1) v2)! —
(bind pa[z > v7] in el)‘
where ps = p1[f — close (fun f z => e;) in py]
: p1 Fiey — e}
bind
e pF (bind p; inie;)¢ — (bind p; in ie})t
[bind2] pt (bind py in vi')t — of
(i pFieq — ieg
B e (if iep then e; else ez) — (if ie) then e; else ep)*
if. pF (if truefo then t! else t52)t — ¢!
2 1 2 1
if: pF (if false’e then ti else tf2)! — ¢
3 1 2 2
llet] ptie; —ie]
Yok (let z =ie; in ez)? — (let = = e} in ep)t
[let;] pF (let z = v in ey)’ — (bind po[z + v] in ep)*
where po = p | FV(es2)
= pltiey —ie}
Py p b (iey op ie2)t — (i€} op iez)*
5 pFies — ieh
“ pk (vf opies)t = (v] op ie})t
[ops] pF (W op vi2)t — v if v =v; op v2

Table 3.3: The Structural Operational Semantics of FUN (part 2).

[var] ptzt = v* if z € dom(p) and v = p(x)

[fn] pt (fn z => ep)t — (close (fn z => eg) in po)*
where po = p | FV(fn z => ¢p)

[fun] pk (fun f z => e9)* — (close (fun f z => eg) in pg)*
where pp = p | FV(fun f = => ¢p)
pFies — i€}
pF (iey iex)t — (ie] iez)t

[app,]

p F ies — i€l
pE (vf1 iex)t — (vf1 tep)t

[app,]

[appfn] pt ((close (fn z => ¢€;) in p1)‘1 ,Uéz)t iy
(bind p1[z +> vs] in €;1)"

[appsn] pF ((close (fun f z =>e;) in py)= v2)t.
(bind pa[z > vs] in e;)*
where py = p1[f — close (fun f z => e;) in py]

p1 Fie; — e}
pF (bind p; inie;)¢ — (bind p; in ie})t

[bz'ndl]

[binds] pF (bind py in vit)¢ — vf

pFieq — ieg
pF (if iep then e; else ez)? — (if ie) then e; else ez)*

[¢]

il pE(if true’ then til else t§2)l G ti

[ifs] pF (if false’ then ti else t52)! — t4

_ i
llets] pkie; —iey

F (let = = ie; in e2)! — (let z = ie} in e2)
P 1

L

[let;] pF (let z = v in ey)’ — (bind po[z + v] in ep)*

where po = p | FV(es)
p Fie; — ze’l
p b (iey op ie2)t — (i€} op iez)*

[op4]

ptiex — ieh

0
lops] o opiea)t = (o ap i)t

[ops] pF (W op vi2)t — v if v =, op v2

Table 3.3: The Structural Operational Semantics of FUN (part 2).

-

[var] ptzt = vt if z € dom(p) and v = p(x)
[fn] pt (fn z => ep)t — (close (fn z => eg) in pg)t
where pg = p | FV(fn z =>)
[fun] pt (fun f => eg)® = (close (fun f T => eg) in pg)*
where pg = p | FV(fun f = => ep)
p ke — e}
a
[app1] pF (ie1 ieg)t — (ie] et
p Fies — el
app : 7
Sk PO RTEG S N
[app;] pF ((close (fn z => ;) in p;)” v2)t =
(bind pi[z > vs] in €;)*
[appsn] P+ ((close (fun f z'=>e;) in p;)“ vi2)t, -
(bind pa[z > vs] in e;)*
where pa = p1[f — close (fun f z => e;) in p]
: p1 Fie; — i€}
bind
P ptF (bind p; inie;) — (bind p; in ie})t
[binds] pF (bind p; in i) — vf
(i pFieqg — ieg
X p (if iep then e; else e3)? — (if ie)) then e; else ep)’
[if,] pF (if truefo then ti* else t52)¢ — t
[if] pF (if false’ then ti' else t32)! — t§
llet] pties — i€}
Y ok (let z = ie; in ey)t = (let z = ie} in e3)’
[let;] pF (let z = v® in ez)? = (bind po[z + v] in ez)*
where po = p | FV(ez)
il ptie; — e}
P1 p b (iey opie2)t — (i€} op iez)t
1
o pFies — i)
* pF (v} opiey)t — (v' op ieh)"
[ops] pF (V¥ op v52)t — vt if v =11 op va

Table 3.3: The Structural Operational Semantics of FUN (part 2).

[con] (C,7) k= ¢! always

[var] (C,5) k= 2t iff pla) C C(¥)

[fi] (C,p) = (fn z => eo)* iff {fn z => o} C C(¢)

[fur] (C,P) = (fun f = => eo)’ iff {fun f & => eo} C C(¢)

lapp] (C,7) = (2" 82°)* :
it (G5t A C5) E A
(V(fn z => t‘°) € C(Zl)
€0t
Clta) C P(x) A Clto) € C(®) A
(V(fun f z =>) € C(4) :
€7 = o A
C(er) C P(fv) A Cllo) € T(0) A
{fun f = => t°} C ()
(] (6,;7) = (ififf then ti‘ else t32)¢
it (C,7) = A
(C Pt A (C p) | t32A
C(t) € C) A C(e) C C(o)

[tef] (C,p) E (Let « = t7* in #5)*
iff (C p) Et A (Aﬁ) =32 A
C(tr) C A(z) A Ck2) CC(O)

o] ©Cp)E@: opt2)iff Cp)kEt A CD)EL

Table 3.1: Abstract Control Flow Analysis (Subsections 3.1.1 and 3.1.2).

/(()\mﬂ.e)%\ vtv)ta

(nfn plo)la
(if0 0%0 e e0)*
(ifo vbv e 62)€
(anyfc£/<: ot)ec
(e1 ez anyf¥)§TE" < v yte
(ints = nln)Le

(it = gbvLe

(e e2 il)6 6™ = i)te
((e1 ez inté)EE™ = glvle
((c1—c)t = o)te

((e1 —>02)ch/ < nfbn)eC

8 by)

((e1 e2 (01*62)%}
({e1 €2 (cl—>cz)§£’> ¢nﬁn)ﬁc
(((er--» Cz)fc£,<= gvyle who)la

— evtv /2P

— (blame A R)ga

RN el
—_ e
NN /U£

— el .. /Y

E— n

— (blame f R)el
— eilnf. ., /<Y
— (blame f ’R)el
— ()t =it
— (blame f R)el
— al(a—e)f =

— (blame f R)¥'

i/

Ve...en

(2= (,5»&, (c1= wéw)lab+(c1))lab_(CQ))lab+(02)

SUBST
APP-ERROR
IFO-TRUE
IFO-FALSE
ANY
ANY-TRIP
INT-INT
INT-LAM
INT-TRIP-INT
INT-TRIP-LAM
LAM-LAM
LAM-INT
LAM-TRIP-LAM
LAM-TRIP-INT

SPLIT

Figure 7. Reduction rules.

Semantics of contracts

Source\ Sink tﬁe; oo tﬁé >£ fe yz;eg lone @ y€5 57>€ fe
ource in 1n . e5 1I1 an h . €5 an
e {tndcelts)} = {(h, O)} CH(Es) Un}Celts)} = (B O} ()
1...Zes 1...Zes
ind 1 0 (ef1Co(ts) = {(h, O)} Coo(t5) (1 Co(ts) = {(h, O)} Coo(5)
o i O tHlcelts)} S {(h OY} () tcely)} S ((h OV Cu(es)
e1 L es e1 £ es
any' 1 1 (FYColls) = {{h, O)} Co(t7)
(oo e Y (Y Colts) = {(h, R)}Co(t5) {ef}ggp(eg)} .
e1Zes
{63} Co(ls) = w(€d) Ce(B)
B bl (B} Colts) = [RY) Coie5) thrEells) = ol Colls)
(e} ol)} O]
1..-Zes
L z+e2)z 0 {1 Ce(ts) = {(h,O)} Co(t5)
g {633 C oty) = p(€F) Co(ey)
e s g {651 Co(ts) = {(h,R)} Co(l5) {EF)Co(ts) = o(63) Colts)
(... e3(cg' _>cf2 2)fs 3 >f4 4 {é;‘}gcp(ﬁg) > {(h, OV} Cu(£S)
es Les
Source\ Sink (e£5 el)Ea (cf;rg_ £+£8)E & (...e5 (cf;w; —)Cig_gs_)i},"fs_ >£§€g
i {£n} Cols) = {(N, R)} C(La) (€} Co(t5) = {(h,R)} Co(L5)
EW‘
int !
(e 0 >e 75
- g = {67} Ce(ls) = {AR)} C(ta) {6y Cets) = {(h R CH(5)
(...e1 any?%)g b
{6} Cots) = (&) Ce(B)

()\acﬁ.eg)gi‘m

{63} Ce(ls) = p(ls) Cp(B)
{2} Cp(ls) = ¢(£) Cp(La)

it Solls) = w() Cells)

{0x} Cop(ls

)} = {(h, O} CH(e5)
1..-Zes

Gl e+z ees

(cq)y
+9- +9— p+o— ot+o-
<. ..e3 (Cgl El _)C§2 62)?3 63 >i4 64

{£3}Cp(ls) = ¢(L6) C (47)
{33 Cots) = o(ed) Cp(ta)

{e3YCo(ty) = {(h, 0O)} Co(45)

{63} Co(ts) = o(tF) Cop(ey)
{633 Cp(l5) = o(t3) Cw(ly)

{1 Co(ty)
eslZes

} = {(h, O)} Co(¢5)

Table 1. Constraints creation for source-sink pairs.

Analysis of contracts

Source\ Sink 1nt£+£g (...e5 1nt€+é)E b anyf;;reg (...e5 anyg5 5 >€ b
. KelS et)} S (O} CH(EE) Eajeets)} S {{(h OV CH(E)
1...Zes 1...Zes
in1 3 {1 Celts) = (b O} S¥(45) {1 Celts) = [(h O} S¥(E5)
(... evintd (Yt el)} = {(h, OV} C(L5) ety)} = {(h, O)}Co(e5)
e1 L es e1 £ es
any 1 {tH) Celts) = {{h O)} Cu(ty)
— — + i
(oo a0 (Y Colts) = {(h, R)}Co(t5) I }g;(eS)} .
e1 L es
{2} Co(ty) = otd) Ce(B)
OBty (B} Ce(5) = {(h RIS H(85) {z*f‘”c“g ;_:’ ADEAG
el)} = {(h OV CH(E)
1..-Zes
L z+e2)z 0 {1 Ce(ts) = {(h,O)} Co(t5)
! {65} Colts) = (&) Colty)
e e e e {671Cw(E5) = {(h R)} Cv(¢5) (LY C(t5) = o(63) Coplts)
(... e3(cg' _>cf2 2)fs 3 >f4 4 {é;‘}gcp(ﬁg) > {(h, OV} Cu(£S)
es Les
Source\ Sink (e£5 el)Ea (cf;rg_ £+£8)E & (...e5 (cf;w; —)Cig_gs_)i},"fs_ >£§€g

{n}Colls) = {(h R)} Co(45)

{67} Cols) = {(h, R} Co(e5)

{\}Colts) = o(e) So(B)
it Solls) = w() Cells)

{63} Colls) = o(¢) Cp(la) {A}gw(ﬂs_)} = {(h,0)} C(Ly)
) = 5

1..-Zes

(ey e+22)f o5 {5y Co(ts) = {(h, O)} C(e5)
cy . { : (
{(L5YCplts) = o(ls) Co(fT) {33 C0(ty) = o(£3) Co(fy)

+ - + -
e N O {£3}Cots) = o) Co(ta) s }gcp(£5€)+$cso(€;_)§w(€s)
ez (cg’ T e P)P T)y {3}_90(5)}:>{<ha0>}§¢(45_)

(..

eslZes

Table 1. Constraints creation for source-sink pairs.

Analysis of contracts

~

—

Op & Format Mnemonic / Syntax

76: invoke-
direct/range
77: invoke-
static/range
78: invoke-
interface/range

79..7a 10x (unused)

7b..8f 12x wunop vA, VB

Arguments

A : destination reqister or pair (4 Perform the identified unary operation on

Op & Format Mnemonic / Syntax

be: div-long/2addr
bf: rem-long/2addr
c0: and-long/2addr
cl: or-long/2addr
c2: xor-long/2addr
c3: shl-long/2addr
c4: shr-long/2addr
c5: ushr-long/2addr
c6: add-float/2addr
c7: sub-float/2addr
c8: mul-float/2addr
c9: div-float/2addr
ca: rem-float/2addr
cb: add-double/2addr
cc: sub-double/2addr

cd: mul-double/2addr
ce: div-double/2addr
cf: rem-double/2addr

Arguments

Description

(unused)

Description

d0..d7 22s binop/litlé vA, VB,
#+CCCC
d0: add-int/1itlé
dl: rsub-int (reverse

A: destination register (4 bits) Perform the indicated binary op on the
B: source register (4 bits) indicated register (first argument) and
C: signed int constant (16 bits) literal value (second argument), storing the

subtract)

d2: mul-int/1itlé
d3: div-int/1litlé
d4: rem-int/1itlé
/ d5: and-int/1itlé
d6: or-int/1itlé
d7: xor-int/1itlé

d8..e2 22b binop/1it8 vAA, VBB,

N #+CC

d8: add-int/1it8
d9: rsub-int/1it8
da: mul-int/1it8
db: div-int/1it8
dc: rem-int/1it8

A: destination register (8 bits)
B: source register (8 bits)
C: signed int constant (8 bits)

result in the destination register.

Note: rsub-int does not have a suffix
since this version is the main opcode of its
family. Also, see below for details on its
semantics.

Perform the indicated binary op on the
indicated register (first argument) and
literal value (second argument), storing the
result in the destination register.

Note: See below for details on the
semantics of rsub-int.

dd: and-int/1it8
de: or-int/1it8

df: xor-int/1it8
e0: shl-int/1it8
el: shr-int/1it8
e2: ushr-int/1it8

e3..ff 10x (unused) (unused)

b0..cf 12x binop/2addr vA, vB
: add-int/2addr
bl: sub-int/2addr
b2: mul-int/2addr
b3: div-int/2addr
b4: rem-int/2addr
b5: and-int/2addr
b6: or-int/2addr
b7: xor-int/2addr
b8: shl-int/2addr
b9: shr-int/2addr
ba: ushr-int/2addr
bb: add-long/2addr
bc: sub-long/2addr
bd: mul-long/2addr

A: destination and first source Perform the identified binary operation on
register or pair (4 bits) the two source registers, storing the result
B: second source register or in the first source register.

pair (4 bits)

We need a
systematic approach.

EVALVATOR

—> ANALYSIS

EVALVATOR

ANALYSIS

[ICFP'10, CACM'11, JFP'12]

PART II:
A SYSTEMATIC
APPROACH

Abstracting
Abstract Machines

e =x|ee| Ar.e

e =x|ee| Ar.e

C/aria b?

e =x|ee| Ar.e

r|ee| Ar.e

bl

o : Var — Addr

p: Var — Addr o : Addr — Val

€, P, 0, K

p: Var — Addr o : Addr — Val

€, p,0, K
7

(€;0) K |v-K

(x,p,0,k) — (v,p,0,Kk) ifv=0c(p(x))

CESK machine

Felleisen & Friedman, '88

w,p,0,k) if v=0(p(z))
<607 P, 0, (617 IO) ' /{>

(z,p,0,K)
<60 €1,pP,0, /{>

Il

CESK machine

Felleisen & Friedman, '88

W, p,0,k) it v=oc(p(z))
<607 P, 0, (617 IO)) /{>
(e, p, 0,0+ K)

CESK machine

Felleisen & Friedman, '88

IR

CESK machine

Felleisen & Friedman, '88

@ U

@ U

We cannot predict because the future is undecidable.
2

We cannot predict because the future is undecidable.
2

Program analysis

sound, computable approximations

Key idea:

EVALVATOR

ANALYSIS

Key idea:

EVALVATOR infinite, deterministic
transition system

ANALYSIS

Key idea:

EVALVATOR infinite, deterministic
transition system

ANALYSIS

finite, non-deterministic

transition system

ldea: make it finite

C,p,0, K

ldea: make it finite

C,p,0,K

ldea: make it finite

C,p,0,K

ldea: make it finite . Addr s Val

C,p,0, K

ldea: make it finite . Addr s Val

e,P,0,K
J

(e,p) -k |v- K

& Addr — P(Val)

I%Val
7

(67/0)' Uk

ldea: make it finite

7

o : Addr — P(Val)

ldea: make it finite

o S ﬁ qr — Val

€,0,0,K

(e.0) - /v >

e | (e,p), alv, a

IR

Hll HH

py0,k) it v=o(p(x))

(v
(€0, p, 0 (61 p) k)
(e,
(

e p[xHa] ola — v, K)

v,p,0,k) ifvea(p(z))
€0, p,5'|_| [CL — /%]7 (61,,0),@>

e p[:z:Ha] g lLla" — vl], k)

A

CR

1CFA
0CFA

Simple closure

SubOCFA /

if ved(p(z))
YR

€ 0,0

€ 0,0

Soundness
(the safety of predictions)

O

[

[

[

[

— S

| [N

A Sorry!

|

| . | RooocossFmecoapond 3 The application NAVIGON
g | A 4,&%| (prqcess com.navigon.
'\ navigator_checkout_eu40) has

".,.n’o’o‘innou»:’:o:n \ OO0
MR o008 P S m”’i stopped unexpectedly. Please
try again.

v

i

} Force close }

\ | . / ":’:«*@.“COOOO

:
) A‘

T

H/ = l \ \

\

It it doesn’'t misbehave in the abstract,

It doesn't misbehave.

e =x|ee| Ar.e

. " tates

— W00 USSR
o e pegasus.cs.utah.edu:9090/¢ 77 @ | (B~ Google Q) [| (B3~
(a2 O,

oooggooogaQOOQOOOOGOOOOO

&)
9

OIOIO.

®
®)

®

(2)

&r

E-6)
®

O-0-0-0-0-0-0-0)

states

» | @ pegasus.cs.utah.edu:9090/¢ 77 ~ & | (B}~ Google Q Y G ~

| {7 hup://pegasus....ap/report.html

® 00 Mozilla Firefox "

(B}~ Google

|) @ pegasus.cs.utah.edu:9090/g490/UltraCoolMap 77 v C

mmmemmme———— The Least Priviledged Permission System (LPPS) Detection Report

The app asks for the following permissions....

(

« android.permission. ACCESS_FINE_LOCATION
« android.permission.INTERNET
» android.permission.WRITE_INTERNAL_STORAGE

Permissions that are used in the app (based on current API knowledge):

« android.permission.INTERNET

LPP Violation: permissions requested in the manifest but not used in the app:

« android.permission. ACCESS_FINE_LOCATION
« android.permission. WRITE_INTERNAL_STORAGE

EVALVATOR <--...

ANALYSIS

EVALVATOR <--...

EVALVATOR <--...

ANALYSIS

EVALVATOR <--...

ANALYSIS

EVALVATOR <--...

JS

VALVATOR <-....

Improving precision

f(x);

f(y);

function f(z) {

return;

f(x); \
function f(z) {

return;

f(y);

f(x); \
function f(z) {

returhn;

f(y).,

function f(z) {

returhn;

f(y);

function f(z) {

return;

f(y);

function T(z)){

returhn:;

f(y);

@ _,

cal(return from f t
(O (O
S

(2
‘/’_Q _, @
(2 @

‘g@rom f to K
o @ _,‘__,

call to f f@

Cal@rom f to K
Ca@rom f to K’

cal(return from f to s
S
Y me e _>
..... _>
T e
cal return from f to &’

(e
@ _>
p ey

..... SO
7

Ca@urn from f to k

& : Addr — P(Val)
ldea: make it finite ’ T V]

e,p,0

(evJQ)) U - K
e | (e,p), alv, a

o : Addr — P(Val)

ldea: make it finite

o S ﬁ qr — Val

€,0,0,K

(e.0) - /v >

e | (e,p), alv, a

& : Addr — P(Val)

Idea: make it drmige

a i 0 i dr — Val

e, p,0.F

(evJQ))
€ (67 /0), a

o : Addr — P(Val)
DECI| A‘BLE

ldea: make It ¢ emihe i .

r — Val

Addr — 73 Va]

A

DECIDAE
ldea: make it dvmie

r — Val

IR

IR

A ,

if ved(p(x))
' ‘f“' i) ‘ 61 y 10)7 a>

ple = a'l,oUa" = v), k)

A

i € 6(a)

IR

I

if vea(p(x))
T iyl €1, /0)7 CL>

[a — U]vli>

function f(z2)/{

return;

f(y);

function f(z) {

return;

f(y);

0 0 0 0
0 0 0) @
016 D0 G B TEG 0 010
O107MOROROIO0 3 TON\E 0
0 0 0
0
)G %) (8
0
0 6
0JO 010 X610 0
0 0
01010 010 0
0 0 0
0 0 0 (&
0 0
0
0
0 0
0 0
0 3 0 01050
61010)6J0 %) Bl6 010
0 0 0
6 01616
0 0 0
0 0 0
0 0
0 6
0 H 0
0 0 0
| ONAO
010)010 0 01010100 0
0 ol Yorclll 0 6
0 0
3 B H— | 0
0 | 0
0 0 OO
0 0
0 0 6
0 0
0
0 0
001610 0
0 0
0 010
0
0 0
3
0 %
0

AR

AR

Finite control state

Stack, with finite alphabet

e

Finite control state

Stack, with finite alphabet

Finite control state

PART III:
RESULTS

CalcE

FullControl

Improving
Exception-flow
analysis

a.foo()

method foo() {
. return ...
. throw ...

a.foo()

\,method foo() {

. return ...
... throw ...
try }
b.foo()
} catch {

a.foo()

\,method foo() /4

. return” ...
... throw ...
try }
b.foo()
} catch {

a.foo()

method foo() /{
. return” ...
. throw ...

a.foo()

method foo() /{
. return® ...
. throw_...

a.foo()

method foo() /{
. return® /.
. throw?...

a.foo()

A Sorry!
The application NAVIGON
(process com.navigon.
navigator_checkout_eu40) has

stopped unexpectedly. Please
try again.

Force close ’

a.foo()

method foo() /{

a.foo()

method foo() /{
. return® ...
. throw_...

a.foo()

method foo() {
. return ...
. throw_...

Variable Throw-Catch

Program |
points-to edges
antlr 614 2277 >4 h
35KLOC ours
lusearch |
348 2378 46 minutes
87TKLOC
pmd .
343 2284 56 minutes
5hbKLOC

Bravenboer & Smaragdakis, ISSTA'09

Variable Throw-Catch

Program |
points-to edges

antlr 014 2277 >4 hours
35KLOC 2 65 1.1 hours
lusearch 348 2378 46 minutes
87TKLOC 2 59 46 minutes

pmd 343 2284 56 minutes
55KLOC 2 38 22 minutes

Pushdown Exception Flow Analysis

Run-time
Techniques at
Analysis-time

Abstract Models of Memory Management*

Greg Morrisett Matthias Felleisen Robert Harper
Carnegie Mellon Rice University Carnegie Mellon
jegmorris@cs.cmu.edu matthias@cs.rice.edu rwh@cs.cmu.edu

Abstract

Most specifications of garbage collectors concentrate on the
low-level algorithmic details of how to find and preserve ac-
cessible objects. Often, they focus on bit-level manipula-
tions such as “scanning stack frames,” “marking objects,”
“tagging data,” etc. While these details are important in
some contexts, they often obscure the more fundamental as-
pects of memory management: what objects are garbage and
why?

‘We develop a series of calculi that are just low-level
enough that we can express allocation and garbage collec-
tion, yet are sufficiently abstract that we may formally prove
the correctness of various memory management strategies.
By making the heap of a program syntactically apparent, we
can specify memory actions as rewriting rules that allocate
values on the heap and automatically dereference pointers
to such objects when needed. This formulation permits the
specification of garbage collection as a relation that removes
portions of the heap without affecting the outcome of the
evaluation.

Our high-level approach allows us to specify in a compact
manner a wide variety of memory management techniques,
including standard trace-based garbage collection (i.e., the
family of copying and mark/sweep collection algorithms),
generational collection, and type-based, tag-free collection.
Furthermore, since the definition of garbage is based on the
semantics of the underlying language instead of the conser-
vative approximation of inaccessibility, we are able to specify
and prove the idea that type inference can be used to collect
some objects that are accessible but never used.

*This work was sponsored in part by the Advanced Research
Projects Agency (ARPA), CSTO, under the title “The Fox Project:
Advanced Development of Systems Software,” ARPA Order No. 8313,
issued by ESD/AVS under Contract No. F19628-91-C-0168, Wright
Laboratory, Aeronautical Systems Center, Air Force Materiel Com-
mand, USAF, and ARPA grant No. F33615-93-1-1330. Views and
conclusions contained in this document are those of the authors and
should not be interpreted as necessarily representing official policies
or endorsements, either expressed or implied, of Wright Laboratory
or the United States Government.

Permxs..sion to make digital/hard copies of all or part of this matenal with-
out fee is granted provided that the copies are not made or distrbuted

for profit or commercial advantage, the ACM copyright/server

notice, the title of the publication and its date appear, and notice 1s given
that copyright is by permission of the Association for Computing MZchinery
Inc. (ACM). To copy otherwise. to republish.to post on servers or to ’
redistribute to lists, requires specific permission and/or fee.
FPCA '95 La Jolla, CA USA® 1995 ACM 0-89791-7/95/0006...33.50

66

1 Memory Safety

Advanced programming languages manage memory alloca-
tion and deallocation automatically. Automatic memory
managers, or garbage collectors, significantly facilitate the
programming process because programmers can rely on the
language implementation for the delicate tasks of finding
and freeing unneeded objects. Indeed, the presence of a
garbage collector ensures memory safety in the same way
that a type system guarantees type safety: no program writ-
ten in an advanced programming language will crash due
to dangling pointer problems while allocation, access, and
deallocation are transparent. However, in contrast to type
systems, memory management strategies and particularly
garbage collectors rarely come with a compact formulation
and a formal proof of soundness. Since garbage collectors
work on the machine representations of abstract values, the
very idea of providing a proof of memory safety sounds unre-
alistic given the lack of simple models of memory operations.

The recently developed syntactic approaches to the spec-
ification of language semantics by Felleisen and Hieb [11]
and Mason and Talcott [18, 19] are the first execution mod-
els that are intensional enough to permit the specification
of memory management actions and yet are sufficiently ab-
stract to permit compact proofs of important properties.
Starting from the A,-S calculus of Felleisen and Hieb, we
design compact specifications of a number of memory man-
agement ideas and prove several correctness theorems.

The basic idea underlying the development of our gar-
bage collection calculi is the representation of a program’s
run-time memory as a global series of syntactic declarations.
The program evaluation rules allocate large objects in the
global declaration, which represents the heap, and automat-
ically dereference pointers to such objects when needed. As
a result, garbage collection can be specified as any relation
that removes portions of the current heap without affecting
the result of a program’s execution.

In Section 2, we present a small functional programming
language, Agc, with a rewriting semantics that makes allo-
cation explicit. We define a semantic notion of garbage col-
lection for Agc and prove that there is no optimal collection
strategy that is computable. In Section 3, we specify the
“free-variable” garbage collection rule which models trace-
based collectors including mark/sweep and copying collec-
tors. We prove that the free-variable rule is correct and
provide two “implementations” at the syntactic level: the
first corresponds to a copying collector, the second to a gen-
erational one.

In Section 4, we formalize so-called “tag-free” collec-
tion algorithms for explicitly-typed, monomorphic languages
such as Pascal and Algol [7, 29, 8]. We show how to recover

80

Abstract Models of Memory Management*

Greg Morrisett
Carnegie Mellon

Matthias Felleisen
Rice University
i

Robert Harper
Carnegic Mellon
no &

Abstract

Most specifications of garbage collectors concentrate on the

low vl alorithmic deails of how to fnd and presere a-
objects. Often, they focus on bit-level manipula-

as “scanning stack frames,” “marking objects,”

Hagging data,” elc. Wil theee detal are imporant 1n

o dovop 8 awon of calol hat e ot bword
cnough that we garbage coll
iom, ye are sufcienty betract that we may formaly pmw
the correctness
of a program syntactically apparent, we
can specify memory actions as rewriting rules that allocate
values on the besp and sutomatically dreesence poiaiers
. This formulation permits the

Y0 such objects when ned
»mﬁmmn of garbage collection as a relation that removes
i of the heap without affecting the outcome of the

proach allows ustospcityin o compact
a wide variety of memory management
including standard trace- Eotecion (1o it
family of copying and mark/sweep collection algorithins),
generation: collection
Further

semantics of the underlying language instead of the conser-

2 prometheen that type nfersacs can b uped o colet
some objects that are accessible but never used.

by the Adva
Prciects Mg (ARBR) CSTO, bmier o e ~Foe Fox Prafc
Rinced Bevclopment ofSyviems oftware- ARPA Order No. $313,
sy BSDAVS under Comract No. 19020010168, Wigh
aboraaey, Acronauicl Syvioms Cester, Al Fure Mtere Com,
nd ARPA

1 Memory Safety

Advanced programming languages manage
tion and deallocation automatically. Automatic memo
g, or prage collctor, gty Gcliate e
programming process because pr rely on the
Ianguage implementation for the delicate tasks of fnding
frecing unneeded objects.
garbage
that a type system guarantecs ype

memory ulm,

3
£
4

and Mason

he bsic idea undeclying th development of our gar-
bage collection calculi is program
Jobal seri
‘The program evaluation rules allocate large objects in the
hich d

cally dereference pointers to such objects when needed. As
a result, garbage collection can be s any relation
that removes portions of the current heap without affecting
the sl of program’s exeutin,
‘we present a swall functional programs

o N, i sewrig semaniicn hak i il
cation explcit. We define a semaatic notion of gar!
Jecton Tof Age and prove that ther i no optimal

collection

SR e e W e
m.. utle of the publication’ u-l u«uu notice 1 given tors. that vlnnbh rule is correct and
o RS 703 e o sevenor provide two e syntactic level m
redistribute to | 'in-n‘n‘ maw-l ee. mmﬁ«pondsloncwyln(mlluwr, the second to a.

b T e oo

66

ln Section 4, we formalize so-called “tagfree” callec-
such as Pascal and Algol [7, 29, 8]. We show how to recover

Abstract Models of Memory Management*

Greg Morrisett Matthias Felleisen ~ Robert Harper
Carnegie Mellon Rice University ~ Carnegie Mellon
a au reno a

Abstract

Most specifications of garbage collectors concentrate on the

low-level algorithmic details of how to find and preserve ac-

cosibl objects, Often, they focus on biv-evel manipul

tions such as “scanni ies,” “marking objects,”

Sagging data” e Whie thesn debails aee mportant in
, they often obscure

Pects o memmory managorment: whetobjcts s gurbage and

m devlop a serie of calul that re just low.leve
express allocation and garbage collec
e mm:mmlv ‘abstract that we may formally prove
e comreciness
Ey makin e heap of o program syniactically sppacat,w
ety memory acions a sewriing rales (at alocaie
Vs on the heap and automaticaly dereference pointers

o such hictswhen o is formulation permits the
specfcation o b collection as a relation that removes
of the ‘meap without aflcing the outcome of 4

u vl appeoch llowsut o apacy a4 compact
ty of memory m
o sandacd s ased pubogt o (11 e

semantics of the undrlyng language lstéad of the conser-
vative approximation of inacce y, we are able to specify
20 provetheiden tha type inference can b ased 0 coleck
some abjects that are accessi

ok b b Mt Romrch
projecs iy “.,,,, et T P
" ARPA Grder o -m‘

aten Govarnmont.

e i i e oy o o
lwu.-rn or. mm.\ sdvantage, the ACM :ar"\‘#/ﬁml"' “
ek o o 33 e S s e v

1 Memory Safety

Advanced programming languages manage memory alloca-
tion and deallcation antomatically. Automatic memory
s, or garbage colciors, igificantly facilae the
programming proces becs v
s momenttion o te dehate ans of focing
and freeing unneeded objects. Indeed, the presence of a

arbage s memory sofely in the
that typesystem guaraatessipe safey. o program i
ten in a0 advanced programming language wil reh

1o dangling pointe problems while allocation, acce

deallocation are transparent. Howover, in contrast to type

systems, memory management strategies and pasticularly

Eacbage colecior rasly come with » compact formulation
al proo

very idea of providing a proof of memory safety sounds unre-

ification of language semantics by Felleisen and Hieb (1)

e Mason and Talot 16, 10]ae the s exection mo
el tha ar intensional encugh lo permi the specifcaion
of memory management. Icuunu and yet b

Siract to permit compach proots of importaat |m-|-rmrs
Starting from the A,-S calculus of Felleisen and Hicb,
design compact specifications o & number of memory Faan
seement idens and prove severalcorectaces ¢
The underlying the development of our gar-
bage collection calcall I the represcatation of & progra’s
]

The program evaluation rules allocate large objects in the
global declaration, which represents the heap, and automat-

that removes portions of the current heap without affecting
the result of a program’s execution.
InSecton 2, v mall functional programming
th rewriting semantics that makes allo-
oo il Wo defne & semaai moson of acoago co
lcionfo Age, and pron tht here i o aptml colcion
ategy that is computable. In Section 3, we specify the
freevarabi” garbage collection rue which models (race
based collectors inchuding mark/sweep and copying collc,
fors. We prove tha he feeaiabe

Wy
R e, 4 e ot e o
bt o o e o B ormisson o

NS L o AT mhmmm Tnsioncs. 53 50

66

provide two the syntactic levl: the
Hrot coresponds t & copying collector, ¢ second t0 1 gen
erational one.

In Secti

4, we formalize so-called “tag-free” collec-

such as Pascal and Algol [7, 29, 8]. We show how to recover

Improved precision and
efficiency via abstract GC

OCFA + GC

function twice(f,x) { return f(f(x)): };:

twice(sqr,4); twice(dbl,5);

OCFA + GC

function tw1ce(f X) { return f(f(x))

// sqr; {4

tw1ce(sqr 4): twice(dbl,5);

{sqr(sqr(4))}

OCFA + GC

function twice(f,x) { return f(f(x)): };:

twice(sqr,4); twice(dbl,5);

/‘

{sqr(sqr(4))!

OCFA + GC

W™

function twice(f,x) { return f(f(x)): };:

twice(sqr,4); twice(dbl,5);

/‘

{sqr(sqr(4))!

OCFA + GC

W™

function twice(f,x) { return f(f(x)): };:

{3}
(dbl}

twice(sqr,4); twice(dbl,5);

/‘

{sqr(sqr(4))!

OCFA + GC

W™

function twice(f,x) { return f(f(x)): };:

{3}
(dbl}

twice(sqr,4); twice(dbl,5);

/‘

{sqr(sqr(4)); {dbl(dbl(5))}

» Normal B With abstract garbage collection

Analysis time

260s

195s

130s

65s

Os

» Normal B With abstract garbage collection

earley fringe stream lattice nboyer perm doubler sboyer

Analysis time

260s

195s

130s

65s

Os

» Normal B With abstract garbage collection

earley fringe stream lattice nboyer perm doubler sboyer

Analysis time

PROBLEM: NEEDLESS NON-DETERMINISM

PROBLEM: NEEDLESS NON-DETERMINISM

SOLVTION: LAZY NON-DETERMINISM

PROBLEM: NEEDLESS NON-DETERMINISM

SOLVTION: LAZY NON-DETERMINISM

PROBLEM: LONG CORRIDORS

= \ ~ S0
00000000000000000000000...”’. ."'.’..'...".'.

O 0-CL07

/ G
%&&4 P00y 8
N 0-0-0-0-0-0-0-040G
00
00 OX0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0~

e

PROBLEM: LONG CORRIDORS

= \ ~ S0
00000000000000000000000...”’. ."'.’..‘."“."

O 0-CL07

/ G
0-0F=200y, 0.8
N 0-0-0-0-0-0-0-040G
00
00 OX0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0~

SOLVTION: ABSTRACT COMPILATION

PROBLEM: LONG CORRIDORS

A

SOLVTION: ABSTRACT COMPILATION

15—+

104

+ | church
1 |maze

nucleic

| |boyer
| | matrix
|lattice

carley ==-----

MbrotZ, == == =
nbody ==e—-—

| |graphs = —=-—

-—-—-—g—-—-—-—--

§4

FACTOR IMPROVEMENT OF
PEAK MEMORY VSAGE

103 -

102+

10+

church

1 |maze
1 |nucleic
| |boyer

matrix
lattice

1 earley =eee---
| /'mbrotZ = — -
+ /nbody ====

graphs = ==« =

§4

FACTOR IMPROVEMENT OF
SPEED OF TRANSITIONS

T | church _ e
1T | maze e meecececeecescessceesccecaa~
103 nucleic -~ ""_,.-' i
1 ~ ,¢"” .
1 boye.r PRt T
T | matrix T
T+ lattice —el s e e e ——— -
+|earley eeee--- e
mbrotZ — — - _/”
102+ -
T |nbody —===-— Pk -~
T|graphs e == e = -
1|8 s 7 pm————————————— e
4 7
7 Ve
P //
e # //
101+ P -
T 7
7
7
7
//
//
//
14 —l———————————-——r ————————————————— -r | | -
§4 §5.1 §5.2 §5.3 §54 §5.5

FACTOR IMPROVEMENT OF
ANALYSIS TIME

Behavioral
Software Contract
Verification

/**

* @param left a sorted list of elements

* @param right a sorted list of elements

* @return the contents of the two lists, merged, sorted
*/

List merge(List left, List right);

T — B —

@Requires({

"Collections.isSorted(left)",

"Collections.isSorted(right)"

)

@Ensures({

"Collections.containsSame(result, Lists.concatenate(left, right))",
"Collections.isSorted(result)"

})
List merge(List left, List right);

e —————

: ~ snake. rkﬂ DrRacket

snake.rktl™ (define ...} Debug @2l Check Syntax D Macm Stepperﬁbl Runp Stop |l

/** #lang racket/load

. ;7 -- Primitive modules
* @param left a sorted list Of|(module image racket
* @param right a sorted list O (require 2htdp/image)|
* @return the contents of the | (Provide/contract ;
« [image? (any/c . -> . boolean?)]

/ [circle (exact-nonnegative-integer? string? string? . -> . image?

List merge(Lj_st left, List rj_ [empty-scene (exact-nonnegative-integer? exact-nonnegative-intege
[place-image (image? exact-nonnegative-integer? exact-nonnegative:

r
i+ -- Source
(module data racket
(struct posn (x vy))
@Requires({ (struct snake (dir segs))
"Collections.isSorted(left)", (struct world (snake food))
Collections.isSorted(right) .+ Contracts
}) (define direction/c
@Ensures({ (one-of/c 'up 'down 'left 'right))
"Collections.containsSame(result, L (define posn/c
"Collections.isSorted(result)" (struct/c posn
1) exact-nonnegative-integer?
, , , , exact-nonnegative-integer?))
List merge(List left, List right); (define snake/c
(struct/c snake
S — direction/c

(non-empty-listof posn/c)))
(define world/c
(struct/c world
snake/c
posn/c))

;: posn=? : Posn Posn -> Boolean

+ Ara the nnene tha cama?

Welcome to DrRacket, version 5.3.1.1--2012-10-13(2b902d0e/d) [3m].
Language: racket/load [custom]; memory limit: 1024 MB.

>

Determine language from source custom ¥ 4:23 196.14 MB[| ¢ ®

/**

* @param left a sorted list o
* @param right a sorted list
* @return the contents of the
*/

List merge(List left, List rig

r

@Requires({
"Collections.
"Collections.
)
@Ensures({
"Collections.containsSame(result, L
"Collections.isSorted(result)"

)
List merge(List left,

1sSorted(left)",
isSorted(right)"

List right);

7

L8.0.09.,

snake. rkﬂ DrRacket

snake.rktl™ (define ...)™

Debug @2l Check Syntax [N Macm Stepper = ’I Run F Stop |l

#lang racket/load
i+ -- Primitive modules
(module image racket
(require 2htdp/image)|
(provide/contract
[image? (any/c .

-> ., boolean?)]

[circle (exact-nonnegative-integer? string? string? .

-> ., image?

[empty-scene (exact-nonnegative-integer? exact-nonnegative-intege
[place-image (image? exact-nonnegative-integer? exact-nonnegative:

i+ -- Source

(module data racket
(struct posn (x vy))
(struct snake (dir segs))

(struct world (snake food))

;» Contracts
(define direction/c
(one-of/c 'up 'down 'left 'right))

(define posn/c
(struct/c posn
exact-nonnegative-integer?
exact-nonnegative-integer?))
(define snake/c
(struct/c snake
direction/c
(non-empty-listof posn/c)))
(define world/c
(struct/c world
snake/c
posn/c))

;: posn=? : Posn Posn -> Boolean

+ Ara the nnene tha cama?
e

Welcome to DrRacket, version 5.3.1.1--2012-10-13(2b902d0e/d) [3m].

Language: racket/load [custom]; memory limit: 1024 MB.
>

4:23

196.14MB| | & ®

Contracts for Higher-Order Functions

Robert Bruce Findler'

Matthias Felleisen

Northeastern University
College of Computer Science
Boston, Massachusetts 02115, USA

Abstract

Assertions play an important role in the construction of robust soft-
ware. Their use in programming languages dates back to the 1970s.
Eiffel, an object-oriented programming language, wholeheartedly
adopted assertions and developed the “Design by Contract” philos-
ophy. Indeed, the entire object-oriented community recognizes the
value of assertion-based contracts on methods.

In contrast, languages with higher-order functions do not support
assertion-based contracts. Because predicates on functions are,
in general, undecidable, specifying such predicates appears to be
meaningless. Instead, the functional languages community de-
veloped type systems that statically approximate interesting pred-
icates.

In this paper, we show how to support higher-order function con-
tracts in a theoretically well-founded and practically viable man-
ner. Specifically, we introduce AC°N, a typed lambda calculus with
assertions for higher-order functions. The calculus models the as-
sertion monitoring system that we employ in DrScheme. We es-
tablish basic properties of the model (type soundness, etc.) and
illustrate the usefulness of contract checking with examples from
DrScheme’s code base.

We believe that the development of an assertion system for higher-
order functions serves two purposes. On one hand, the system has
strong practical potential because existing type systems simply can-
not express many assertions that programmers would like to state.
On the other hand, an inspection of a large base of invariants may
provide inspiration for the direction of practical future type system
research.

Categories & Subject Descriptors: D.3.3, D.2.1; General Terms: De-
sign, Languages, Reliability; Keywords: Contracts, Higher-order Func-
tions, Behavioral Specifications, Predicate Typing, Software Reliability

I'Work partly conducted at Rice University, Houston TX. Address as of
9/2002: University of Chicago; 1100 E 58th Street; Chicago, IL 60637

This is a technical report version of a paper that appeared in ICFP in
2002 [6]. This version includes everything that the conference version
does, but also includes the complete proofs in an appendix.

1 Introduction

Dynamically enforced pre- and post-condition contracts have been
widely used in procedural and object-oriented languages [11, 14,
17,20,21,22,25,31]. As Rosenblum [27] has shown, for example,
these contracts have great practical value in improving the robust-
ness of systems in procedural languages. Eiffel [22] even developed
an entire philosophy of system design based on contracts (“Design
by Contract”). Although Java [12] does not support contracts, it is
one of the most requested extensions.!

With one exception, higher-order languages have mostly ignored
assertion-style contracts. The exception is Bigloo Scheme [28],
where programmers can write down first-order, type-like con-
straints on procedures. These constraints are used to generate more
efficient code when the compiler can prove they are correct and are
turned into runtime checks when the compiler cannot prove them
correct.

First-order procedural contracts have a simple interpretation. Con-
sider this contract, written in an ML-like syntax:

f : int[> 9] —int[0,99]

valrecf =Ax. ---

It states that the argument to f must be an int greater than 9 and
that f produces an int between 0 and 99. To enforce this contract, a
contract compiler inserts code to check that x is in the proper range
when f is called and that f’s result is in the proper range when f
returns. If x is not in the proper range, f’s caller is blamed for
a contractual violation. Symmetrically, if f’s result is not in the
proper range, the blame falls on f itself. In this world, detecting
contractual violations and assigning blame merely means checking
appropriate predicates at well-defined points in the program’s eval-
uation.

This simple mechanism for checking contracts does not generalize
to languages with higher-order functions. Consider this contract:

g : (int[> 9] —int[0,99]) —int[0,99]

val rec g = A proc. - -+

The contract’s domain states that g accepts int —int functions and
must apply them to ints larger than 9. In turn, these functions must
produce ints between 0 and 99. The contract’s range obliges g to
produce ints between 0 and 99.

1 http://developer.java.sun.com/developer/bugParade/top25rfes.html

[OOPSLA'12]

Contracts for Higher-Order Functions

Robert Bruce Finder' _ Matihas Feleisen
Northeastern University
College of Computer S
Boston, Massachusel's 02115, USA

Abstract

1 Introduction

Eie nteancy

ety W

o

ot Alhogh s [12] e ot g ot -

e e sy it el s, et ol

e i

e Sl e e 2 5 i kol

o oo yae, e v oy 1 DiSchne Wo e
I bt properis o el (e s,) 4o
st s of comae hecking i e (o
DrSchene’s code .

1t 3 —wio39]
il S

e

st ht e rpamer 0 1 st b n n e hn i

ks eions 0t oG AW I 0 S
o et e o B ot of v ey

e et
rstms o e poper e, 1 e s et o
ol volaion. Sy, f £ el s o n

Cotpris & St Do 33, D315 Gener T D

et s ok, dins

£ oo —imio 1

o s btvai O sk 8. T s e S £ 0
o s b 00249

[OOPSLA'12]

nnnnnnnnnnnnnnnnnnnnnnnnnn
Northeastern University
wwwwwwwwwwwwwwwww

Semantics for Symbolic PCF with Contracts F +—— E’
************************************* if V By Fy — FEqif 6(false?, V') > ff
if V By By — FEyif §(false?, V) 5 tt
AX:T.E)V — |V/X|E
uX:T.E — [uX:T.EF/X|E
O(V) —s Aif6(0,V)> A
(eT=T/1CVV — o1 /{[V/X]Co | C1—AX:T.Cy € C}

(7T /C)V — havocy V

[OOPSLA'12]

Contracts for Higher-Order Functions

Matihias Folleisen
n University

o touter Science
Boston, Massachusel's 02115, USA

Fobert Bruce Findier'

Abstract 1 Introduction

Eie nteancy
i Conrct g

Semantics for Symbolic PCF with Contracts E — E’

if V E, By — Ej if §(false?, V) 5 ff

if VEy Ey — Eif §(false?, V) > tt
AX:T.E)V — [V/X|E

uX:T.E — [uX:T.E/X|E
O(V) — Aif§(0,V)3 A

(T2TICYV —s o' J{[V/X]Cy | C1—AX:T.Cy € C}
(e7=T'JC) V — havocy V

[OOPSLA'12]

Contracts for Higher-Order Functions

Semantics for Symbolic PCF with Contracts E —— FE’

| @& 0 0 snake.rktl - DrRacket
snake.rktl™ (define .0 Save #[=] Debug @b Check Syntax Y4 Macro Stepper 3 Bl Run P stop |l ‘

#lang var @00 ______ Word

;r == Primitive modules
(module image racket
; (require 2htdp/image)
(provide/contract

if VB, By — E if §(false?, V) 3 ff
if V E, Ey — E,if §(false?, V) 3 tt
AX:T.E)V +— [V/X|E
uX:T.E — [uX:T.E/X|E
O(V) — Aif§(0,V)3 A

(e7=T'JC) V — havocy V

(.THT’/c) V —s .TI/{[V/X]Cz | Ci—=AX:T.Cy € C}

! [image? (any/c . =-> . boolean?)]

[circle (exact-nonnegative-integer? st
[empty-scene (exact-nonnegative-intege
[place-image (image? exact-nonnegative

2 == SBource

(module data racket
(struct posn (x y))
(struct snake (dir segs))
(struct world (snake food))

;:; Contracts
(define direction/c
(one-of/c 'up 'down 'left 'right))
(define posn/c
(struct/c posn
exact-nonnegative-integer?
exact-nonnegative-integer?))
(define snake/c
(struct/c snake
direction/c
(non-empty-listof posn/c)))

Welcome to DrRacket, version 5.3.1.1--2012-10-13(2b902d0e/d) [3m].
Language: var; memory limit: 128 MB.
>

Determine language from source 3:2 461.37 MB[_| §®

[OOPSLA'12]

CONCLUSION &
PERSPECTIVE

To trust software, we must predict its (mis)behavior.

A
kCFA mCF

LCEA 1CEA EXPTIME || PTIME

Sub0CFA

Simple
closure

Precision

AnaDroid @

Precision

A AnaDroid @
kCFA mCF /\/\

LCEA 1CEA EXPTIME || PTIME

Sub0CFA

Simple
closure

®00 snake.rktl - DrRacket
snakerktlY (define) Save #(5] Debug @] Check Syntax 4 Macro Stepper §§'Bl Run b Stop il

#lang var
;: —-— Primitive modules
(module image racket
; (require 2htdp/image)
(provide/contract World
[image? (any/c . -> . boolean?)]
[circle (exact-nonnegative-integer? string? string? .
[empty-scene (exact-nonnegative-integer? exact-nonnega

[place-image (image? exact-nonnegative-integer? exact- church _
maze -
i -
105 nucleic PR L
; —-— Source e
o boyer Pt
(module data racket matrix -
(struct posn (x y)) latice —— T o oiiio.—-—]
(struct snake (dir segs)) carley =eeeees

mbrotZ — — -
nbody ————
graphs - —-—

(struct world (snake food)) 102

; Contracts

e
(define direction/c 7o ' ///
(one-of/c 'up 'down 'left 'right)) oL ".,' P //’ L
(define posn/c =7 . il
(struct/c posn === , . //’
exact-nonnegative-integer? — . ///
exact-nonnegative-integer?)) . Vi
(define snake/c ! i t f i
§4 §5.1 §52 §53 §54 §5.5

(struct/c snake
direction/c
(non-empty-listof posn/c)))

Welcome to DrRacket, version 5.3.1.1--2012-10-13(26902d0e/d) [3m]. FACTOQ ‘MPQOVEME”T oF A”ALm s nME

Language: var; memory limit: 128 MB.
>

. — T A na D ro | d (‘

kCFA mCF

1CFA 1CFA EXPTIME PTIME Variable Throw-Catch

- OE O M O B W W NN W EE W EEE O EEEE T-me

0CFA points-to edges

SubOCFA antlr (40503, 614) 2277 >4 hours
. 35KLOC (681, 2) 65 1.1 hours
Simple

closure

Precision

lusearch (22970, 348) 2378 46 minutes
87KLOC (709, 2) 59 46 minutes

omd | (25286, 343) 2284 56 minutes
EvaLVATOR L . , . 55KLOC | (1017, 2) 38 22 minutes

®00 snake.rktl - DrRacket
snakerktlY (define) Save #(5] Debug @] Check Syntax 4 Macro Stepper §§'Bl Run b Stop il

#lang var
;: —-— Primitive modules
(module image racket

; (require 2htdp/image)

(provide/contract World -
[image? (any/c . -> . boolean?)]
[circle (exact-nonnegative-integer? string? string? .

[empty-scene (exact-nonnegative-integer? exact-nonnega

[place-image (image? exact-nonnegative-integer? exact- church _
maze -
i -
105 nucleic PR L
; —-— Source e
o boyer Pt
(module data racket matrix -
(struct posn (x y)) latice —— T o oiiio.—-—]
(struct snake (dir segs)) carley =eeeees

mbrotZ — — -
nbody ————
graphs - —-—

(struct world (snake food)) 102

; Contracts

e
(define direction/c 7o ' ///
(one-of/c 'up 'down 'left 'right)) oL ".,' P //’ L
(define posn/c =7 . il
(struct/c posn === , . //’
exact-nonnegative-integer? — . ///
exact-nonnegative-integer?)) . Vi
(define snake/c ! i t f i
§4 §5.1 §52 §53 §54 §5.5

(struct/c snake
direction/c
(non-empty-listof posn/c)))

Welcome to DrRacket, version 5.3.1.1--2012-10-13(26902d0e/d) [3m]. FACTOQ ‘MPQOVEME”T oF A”ALm s nME

Language: var; memory limit: 128 MB.
>

Determine language from source ™ 3:2 46137MB[| §®

A
kCFA mCF

1CFA 1CFA EXPTIME PTIME Variable Throw-Catch

- OE O M O B W W NN W EE W EEE O EEEE T-me

0CFA points-to edges

SubOCFA antlr (40503, 614) 2277 >4 hours
. 35KLOC (681, 2) 65 1.1 hours
Simple

closure

Precision

lusearch (22970, 348) 2378 46 minutes
87KLOC (709, 2) 59 46 minutes

omd | (25286, 343) 2284 56 minutes
EvaLVATOR L . , . 55KLOC | (1017, 2) 38 22 minutes

A

Precision

® 00 snake.rktl - DrRacket

snakerktlY (define) Save #(5] Debug @] Check Syntax 4 Macro Stepper §§'Bl Run b Stop il

#lang var
;: —-— Primitive modules
(module image racket
; (require 2htdp/image)
(provide/contract
[image? (any/c . -> . boolean?)
[circle (exact-nonnegative-integer? string? string? .
[empty-scene (exact-nonnegative-integer? exact-nonnega
[place-image (image? exact-nonnegative-integer? exact-

;i =-- Source

(module data racket
(struct posn (x y))
(struct snake (dir segs))
(struct world (snake food)

; Contracts
(define direction/c
(one-of/c 'up 'down 'left 'right)
(define posn/c
(struct/c posn
exact-nonnegative-integer?
exact-nonnegative-integer?))
(define snake/c
(struct/c snake
direction/c
(non-empty-listof posn/c)))

Welcome to DrRacket, version 5.3.1.1--2012-10-13(2b902d0e/d) [3m].
Language: var; memory limit: 128 MB.
>

Determine language from source ™ 3:2 46137MB[| §®

kCFA mCF

1CFA 1CFA

0CFA

Sub0CFA

Simple
closure

EXPTIME

World

church
maze
103 | nucleic
boyer
matrix
lattice

carley aeeenen
mbrotZ — — =
Fnbody —=—==
graphs = — - —

PTIME

‘
554

‘
§55

FACTOR IMPROVEMENT OF ANALYSIS TIME

EvaLVATOR L . , .

antlr
35KLOC

Variable

points-to

(40503,
(681,

614)
2)

Throw-Catch

edges

2277
65

Time

>4 hours
1.1 hours

lusearch
87KLOC

(22970,
(709,

348)
2)

2378
59

46 minutes

46 minutes

pmd
55KLOC

(25286,

(1017,

343)
2)

2284

56 minutes

22 minutes

Precision

Robust, Reliable Software
and Trustworthy Systems

1.1-2012-10-13(26002000/d) (3]
B,

JGEALICRR L

0CFA
Sub0OCFA
Simple
closure

Program

FACTOR IMPROVEMENT OF ANALYSIS TIME

Variable

AnaDroid @F

Throw-Catch

Time

points-to edges
antlr (40503, 614) 2077 >4 hours
35KLOC (681, 2) 65 1.1 hours
lusearch | (22970, 348) 2378 46 minutes
87KLOC (709, 2) 59 46 minutes
pmd (25286, 343) 2284 56 minutes
55KLOC (1017, 2) 38 22 minutes

85

1 < a.length()

/ (1.

<

Q
.j@
/7&/7
O)

25

1 < a.length()

/ (1.

<

Q
. j@
)
$E
he),

25

1 < a.length()

|

THE

SPIN MODEL
CHECKER

\ ¢
2
¥ A

PRIMER AND REFERENCE MANUAL:

Gerard J. Holzmann

Temporal Higher-Order Contracts

Tim Disney

University of California, Santa Cruz

Abstract

Behavioral contracts are embraced by software engineers because
they document module interfaces, detect interface violations, and
help identify faulty modules (packages, classes, functions, etc).
This paper extends prior higher-order contract systems to also ex-
press and enforce temporal properties, which are common in soft-
ware systems with imperative state, but which are mostly left im-
plicit or are at best informally specified. The paper presents both
a programmatic contract API as well as a temporal contract lan-
guage, and reports on experience and performance results from im-
plementing these contracts in Racket.

Our development formalizes module behavior as a trace of
events such as function calls and returns. Our contract system pro-
vides both non-interference (where contracts cannot influence cor-
rect executions) and also a notion of completeness (Where contracts
can enforce any decidable, prefix-closed predicate on event traces).

Categories and Subject Descriptors D.3.1 [Formal Definitions
and Theory]: Semantics; D.3.3 [Language Constructs and Fea-
tures]: Constraints

General Terms Languages, Reliability, Security, Verification.

Keywords Higher-order Programming, Temporal Contracts

Cormac Flanagan

University of California, Santa Cruz

Jay McCarthy

Brigham Young University

a sort routine, not all of which are supported by existing contract
systems.

1. The sort function takes two arguments, an array of positive
integers and a comparison function cmp.
This standard, first-order precondition constrains how sort
should be called, that is, what arguments are valid. These kinds
of basic first-order contracts are supported by most contract
systems, for example, Eiffel [36].

N

The argument function cmp in turn requires two arguments, both
positive integers.

This higher-order precondition constrains how the sort module
can call the function argument cmp, and so is a guarantee pro-
vided by sort rather than an obligation on the client. Higher-
order contract systems [19, 15, 22, 24, 45] support such precon-
ditions by wrapping the cmp argument to enforce this property
dynamically.

w

. The sort function is not re-entrant—it can only be called after
all previous sort invocations have completed.
Unlike the previous contracts that constrain how functions may
be called, this temporal contract constrains when sort can be
called [12, 13]. This constraint implies that sort must be used

Robust, Reliable Software
and Trustworthy Systems

Thank you

I —

FACTOR IMPROVEMENT OF ANALYSIS TIME

ion 5.3.1.1-2012-10-13(2b8020ed) (3]

kCFA mCF

JQRICH

Variable Throw-Catch

Precision

Program Time
0CFA points-to edges
Sub0OCFA antlr (40503, 614) 2077 >4 hours
: 35KLOC 681, 2 65 1.1h

Simple (661.2) o
closure lusearch | (22970, 348) 2378 46 minutes
87KLOC (709, 2) 59 46 minutes
pmd (25286, 343) 2284 56 minutes
55KLOC (1017, 2) 38 22 minutes

® ®

e @

®

Robust, Reliable Software
and Trustworthy Systems

Thank you

I —

FACTOR IMPROVEMENT OF ANALYSIS TIME

ion 5.3.1.1-2012-10-13(2b8020ed) (3]

kCFA mCF

JQRICH

Variable Throw-Catch

Precision

Program Time
0CFA points-to edges
Sub0OCFA antlr (40503, 614) 2077 >4 hours
: 35KLOC 681, 2 65 1.1h

Simple (661.2) o
closure lusearch | (22970, 348) 2378 46 minutes
87KLOC (709, 2) 59 46 minutes
pmd (25286, 343) 2284 56 minutes
55KLOC (1017, 2) 38 22 minutes

® ®

e @

®

Robust, Reliable Software
and Trustworthy Systems

Thank you

I —

FACTOR IMPROVEMENT OF ANALYSIS TIME

ion 5.3.1.1-2012-10-13(2b8020ed) (3]

kCFA mCF

JQRICH

Variable Throw-Catch

Precision

Program Time
0CFA points-to edges
Sub0OCFA antlr (40503, 614) 2077 >4 hours
: 35KLOC 681, 2 65 1.1h

Simple (661.2) o
closure lusearch | (22970, 348) 2378 46 minutes
87KLOC (709, 2) 59 46 minutes
pmd (25286, 343) 2284 56 minutes
55KLOC (1017, 2) 38 22 minutes

® ®

e @

®

Robust, Reliable Software
and Trustworthy Systems

Thank you

I —

FACTOR IMPROVEMENT OF ANALYSIS TIME

ion 5.3.1.1-2012-10-13(2b8020ed) (3]

kCFA mCF

JQRICH

Variable Throw-Catch

Precision

Program Time
0CFA points-to edges
Sub0OCFA antlr (40503, 614) 2077 >4 hours
: 35KLOC 681, 2 65 1.1h

Simple (661.2) o
closure lusearch | (22970, 348) 2378 46 minutes
87KLOC (709, 2) 59 46 minutes
pmd (25286, 343) 2284 56 minutes
55KLOC (1017, 2) 38 22 minutes

® ®

e @

®

Robust, Reliable Software
and Trustworthy Systems

Thank you

I —

FACTOR IMPROVEMENT OF ANALYSIS TIME

ion 5.3.1.1-2012-10-13(2b8020ed) (3]

kCFA mCF

JQRICH

Variable Throw-Catch

Precision

Program Time
0CFA points-to edges
Sub0OCFA antlr (40503, 614) 2077 >4 hours
: 35KLOC 681, 2 65 1.1h

Simple (661.2) o
closure lusearch | (22970, 348) 2378 46 minutes
87KLOC (709, 2) 59 46 minutes
pmd (25286, 343) 2284 56 minutes
55KLOC (1017, 2) 38 22 minutes

® ®

e @

®

What about numbers, strings, arrays, etc.?

1 sqr(5) = T

What about numbers, strings, arrays, etc.?

Neg Pos

1 sqr(>) = Pos

