GAUSSIAN INTEGRALS

An apocryphal story is told of a math major showing a psy-
chology major the formula for the infamous bell-shaped curve
or gaussian, which purports to represent the distribution of
intelligence and such:
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The formula for a normalized gaussian looks like this:
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The psychology student, unable to fathom the fact that this
formula contained 7, the ratio between the circumference and
diameter of a circle, asked “Whatever does 7 have to do with
intelligence?” The math student is supposed to have replied,
“If your IQ were high enough, you would understand!” The
following derivation shows where the m comes from.

Laplace (1778) proved that
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This remarkable result can be obtained as follows. Denoting
the integral by I, we can write
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where the dummy variable y has been substituted for x in the
last integral. The product of two integrals can be expressed as
a double integral:
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The differential dx dy represents an elementof area in cartesian
coordinates, with the domain of integration extending over the
entire xy-plane. An alternative representation of the last inte-
gral can be expressed in plane polar coordinates r, 8. The two
coordinate systems are related by

x = rcosb, y=rsind (3)

so that
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The element of area in polar coordinates is given by r dr df, so
that the double integral becomes
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Integration over 6 gives a factor 2. The integral over r can be
done after the substitution v = r?, du = 2r dr:
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Therefore I? = 27 x 1 and Laplace’s result (1) is proven.

A slightly more general result is
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obtained by scaling the variable x to v/aux.
We require definite integrals of the type

o0 2
/ 2" e dux, n=1,2 3... (8)

— 00

for computations involving harmonic oscillator wavefunctions.
For odd n, the integrals (8) are all zero since the contributions
from {—00,0} exactly cancel those from
{0,00}. The following stratagem produces successive integrals
for even n. Differentiate each side of (7) wrt the parameter «
and cancel minus signs to obtain
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Differentiation under an integral sign is valid provided that the
integrand is a continuous function. Differentiating again, we

obtain o
~ —ax? 3
The general result is
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