Introduction to Geotechnical Site Investigation

What is Site Investigation

Module: Engineering Surveying

Dr Jonathan Black

Lecture 1

Introduction to SI Lecture Content

•What is Site investigation & Why ?

How to conduct a site investigation - stages

Site investigation methods

- Insitu testing
- Lab testing
- Design Parameters

Resources

Introduction to SI What is Site investigation ?

General definition....

"Site investigation is the process whereby all relevant information concerning the site of a proposed civil engineering development and its surrounding area are gathered"

Introduction to SI Why do we need SI ?

- Assess suitability of ground conditions
- Assess risk for construction
- Determine the ground profile
 - Soil conditions insitu & lab tests
 - Water table
- Generate design parameters
 - Determine ground bearing capacity
 - Settlement consideration
- Plan for construction economic design
- Foresee difficulties & ground changes

Investigate previous failures

Introduction to SI Ground investigation - Aims

- Determine soil profile
 - Soil properties & design parameters

Collection of samples - Lab investigation

- Classification
- strength properties
- design parameters
- specialist contaminants
- In-situ testing

Ground investigation – factors to consider

- Geological nature of the site
 Topography, type of ground & ground water, previous failures
- Type of building Foundations design & technical requirements
- Amount of existing information
 Secondary information Desk study
- Variability of the soil
 More variable greater extent of investigation

Resources

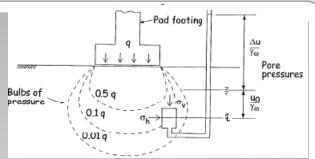
Cost & Time, availability of plant

Introduction to SI Lecture Content

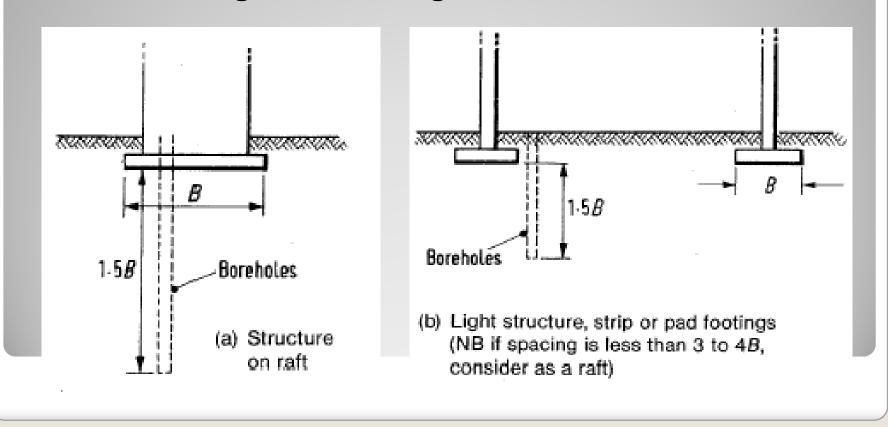
•What is Site investigation & Why ?

How to conduct a site investigation - stages

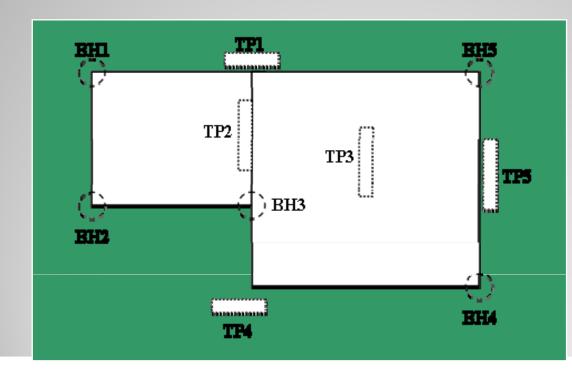
Site investigation methods


- Insitu testing
- Lab testing
- Design Parameters

Resources


How to conduct a SI ?

- Desk Study
- Site Reconnaissance
- Detailed site exploration and Sampling
 - Trial pits, Borings, collect samples
- In-situ Testing
- Laboratory testing of samples
 - Design parameters
 - Reporting results
- Final Report



 Depths to which the proposed development affects the ground and groundwater

Ground Investigation Extent of investigation

- No set rules
 - Common sense and experience

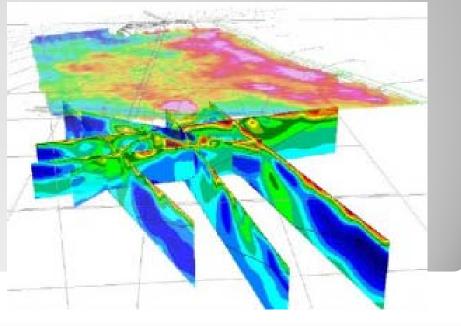
Introduction to SI Lecture Content

•What is Site investigation & Why ?

How to conduct a site investigation - stages

•Site investigation methods

- Insitu testing
- Lab testing
- Design Parameters


Resources

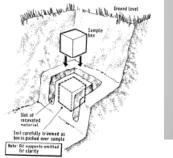
Ground investigation – Sample qualities

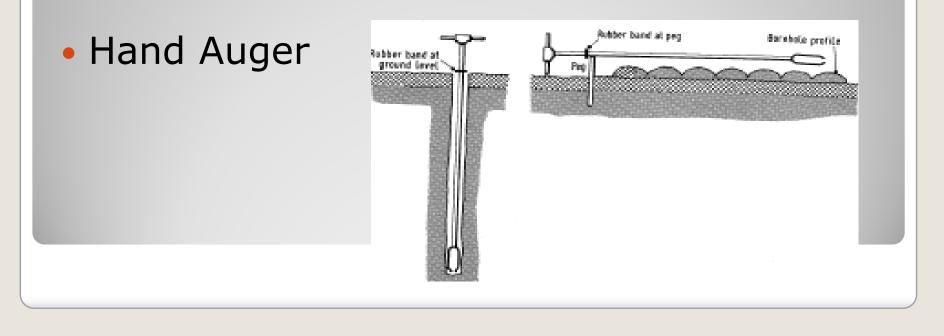
- Class 1 undisturbed borings
 - Index tests, moisture content, density, strength, deformation
- Class 2 undisturbed borings
 - Index tests, moisture content, grading, density
- Class 3 disturbed bulk samples
 - Index tests & moisture content
- Class 4– disturbed bulk samples
 - Index tests
- Class 5 disturbed bulk samples Strata identification

Ground investigation – Geophysical

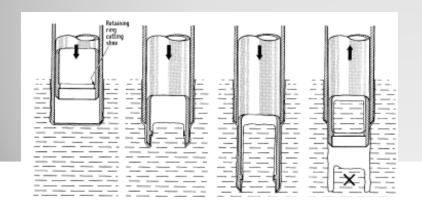
- None intrusive
- Sender & receiver geophone
- Signal reflections & speed used to determine soil profile
- Difficult to interpret

Ground investigation – Trial Pits


- Economical
- Trenches excavated by JCB or hand
- Typically 2 3 m deep but dependent on the water table
- Possible pumping required
- Usually in cohesive soils not sands...think of digging a hole at the beach!


Ground Investigation Trial Pits

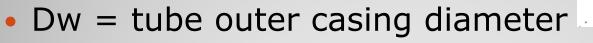
- Sample collection types
 - Disturbed Sample Samples where the soils insitu properties are not retained.
 - Block Sample A sample that is not undisturbed but retains some in-situ properties.
 - Push in tube sample Tube samples of the soil in a trial pit.

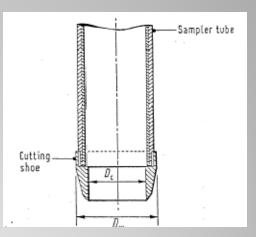

Ground Investigation Boreholes

- A borehole is used to determine the nature of the ground (usually below 3m depth)
- The two principal types
 - light percussive and drilling machines

Ground Investigation Boreholes – Light percussion

- Light Percussive is the process of making boreholes by striking the soil then removing it
- Clay Cutter Used in cohesive materials
- Shell Used for boring in silts and sands




Ground Investigation Boreholes – sample disturbance

Affects quality of sample

 $Ar = \frac{(D_w)^{^2} - (D_o)^{^2}}{(D_w)^{^2}} \times 10$

- Dc = tube internal diameter
- Below 20% Undisturbed
- Above 20% Disturbed

Ground Investigation Boreholes – sample disturbance

- Open Tube Sampler
 - Typically used in firm to stiff clays Samples
 - 100mm diameter (referred U4)
 - 450mm long
 - Triaxial tests
 - Disadvantage sample disturbance
 - Disturbance typically 20 30%

Ground Investigation Boreholes – sample disturbance

- Thin walled Sampler
 - Typically used is soft soils (more sensitive)
 - Diameter 75mm 100mm
 - Lower sample disturbance (10%)
 - Static sampling can be applied
 - Sample cutting edge easily damaged by boulders No cutting shoe
 - Class 1 & 2 samples for
 - triaxial tests
 - Consolidation tests

Ground Investigation Rotator Borings

Flight auger

- helix blade attached to a central shaft
- disturbed samples can be obtained at surface level
- Index properties/moisture content tests
- recent advance
 - Undisturbed samples
 - Hollow central shaft
 - helix rotates, cuts
 - soil samples hollow centre

Introduction to SI Lecture Content

•What is Site investigation?

•Why is it needed ?

How to conduct a site investigation

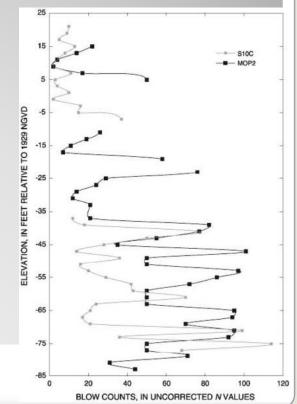
Site investigation methods

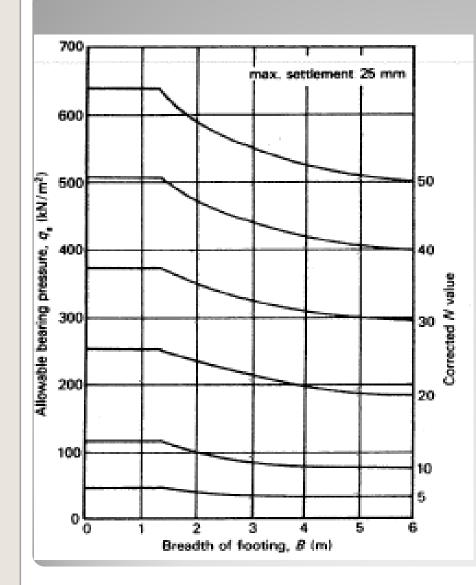
- Insitu testing
- Lab testing
- Design Parameters

Resources

Ground Investigation In-situ tests

- In certain soils, such as sensitive silts and clays it is difficult to obtain good quality undisturbed samples
- In-situ tests


Test	Required to measure	
Standard Penetration Test (SPT)	Relative Density (Shear strength)	
Shear Vane (hand vane)	Shear Strength	
Cone penetration Test	Compressibility & Shear Strength	
(CPT)		
California bearing capacity	Compressibility (Bearing capacity)	
(CBR)		
Plate bearing capacity	Compressibility (Bearing Capacity)	
Piezometer	In situ stresses	
Pumping test	Permeability	


Ground Investigation In-situ tests - SPT

- Standard Penetration Test
 - dynamic test
 - determine the soil relative density and shear strength characteristics
- 50mm sampler is driven
- drop hammer of 65kg falling through a distance of 0.76m
- driven a total of 450mm
- blows recorded for the last 300mm penetration

Ground Investigation In-situ tests - SPT

- test is strongly influenced by the presence of ground water, as it leads to a reduction in effective stress
- Corrections to N-value
 - Overburden pressure
 - Energy Blow loss

SPT N-value	Relative density	
	Description	1,(%)
<4	Very loose	0-15
4-10	Loose	15-35
10-30	Medium dense	35-65
30-50	Dense	65-85
>50	Very dense	85-100
(b) Cohosius -	1	
(b) Cohesive s SPT N-value	1	Approximate undraine shear strength (kPa)
SPT N-value	oils Consistency	Approximate undraine shear strength (kPa)
SPT N-value	coils Consistency Very soft	
SPT N-value <2 2-4	consistency Very soft Soft	shear strength (kPa) <20 20-40
SPT N-value <2 2-4 4-8	consistency Very soft Soft Firm	shear strength (kPa)
SPT N-value <2 2-4	consistency Very soft Soft	shear strength (kPa) <20 20-40

Table 11.6 Classification alara (SAMEAL

Ground Investigation In-situ tests - SPT

- SPT generates Relative density or shear strength
- Meyerhof (1965) proposed relationships to determine the allowable bearing pressure:

• For B < 1.25 m
$$q_a = \frac{S_L N}{1.9}$$

• For B > 1.25 m
$$q_a = \frac{S_L N}{1.9} \left[\frac{B + 0.33}{B} \right]^2$$

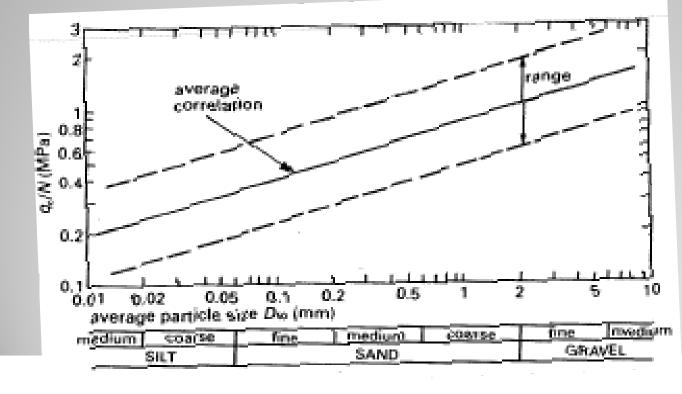
• Where SL = permitted settlement limit (mm)

- N = Average N value between z = D and z = D + B
- B = Breadth of footing

Ground Investigation In-situ tests - CPT

- Cone Penetration Test
 - Static test
 - determine the soil relative density and compressibility
 - Cone angle of 60° and an end diameter of 35.7 mm
 - end area of 1000mm²
 - Pushed 80mm into the soil at a constant rate of 20 mm/s

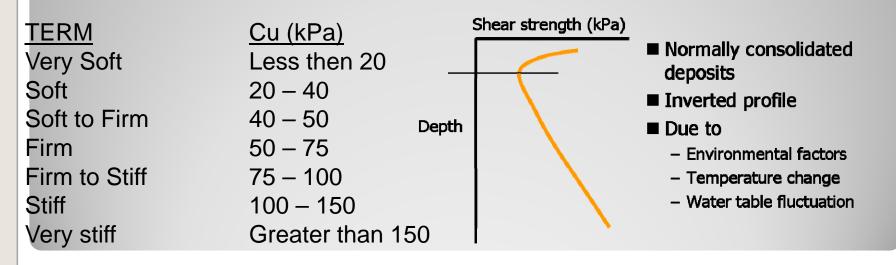
compressibility coefficient similar to c_v


$$C = \frac{1.5q_c}{\sigma'_0}$$

Qc = cone resistance (Mpa)

• σ'_{o} = effective overburden (MPa)

Ground Investigation In-situ tests - CPT


- Burland and Burbidge (1985)
- link between the SPT and CPT

Ground Investigation In-situ tests – Shear Vane

- Shear vane tests (hand vane tests)
 - determine the in situ undrained shear strength (c_u)
 - four bladed vane
 - driven into the soil the vane is rotated

Introduction to SI Lecture Content

•What is Site investigation?

•Why is it needed ?

How to conduct a site investigation

Site investigation methods
Insitu testing
Lab testing & Design Parameters

Resources

Ground Investigation Lab tests

- laboratory tests include:
 - Atterberg limits and water content
 - Particle-size analysis type of soil structure
 - Consolidation Cc/Cs/cv/Mv/T90/U/OCR
 - Soil compaction
 - \circ Direct shear and Triaxial shear $\phi/$ ϕ' / Cu / c'
 - Critical state parameters
 - California bearing ratio CBR

Ground Investigation Lab tests – shear strength

- Test depends on material
 - Sand direct shear box
 - Clay Triaxial
- soil composition: mineralogy, grain size and grain distribution, shape of particles, pore fluid.
- state: void ratio, effective normal stress and stress history.
- structure: arrangement of particles layers, joints, fissures.
- loading conditions: drained and undrained; type of loading, i.e., magnitude, rate (static, dynamic).

Introduction to Surveying Lecture Resources

Simons, Menzies and Mathews (2002) A short course in Geotechnical Site Investigation

BS5930:1981 Code of Practice for SI

Weltman and Head (1983) Site investigation manual

Chris Clayton – Site investigation (MOLE)