
Halibut User Manual

Halibut is a free (MIT-licensed) documentation production system, able to generate multiple
output formats from the same input data. This document is its user manual.

This manual is copyright 2004-2007 Simon Tatham. All rights reserved. You may distribute this
documentation under the MIT licence. See appendix A for the licence text in full.

1

Contents

Chapter 1: Introduction to Halibut . 6

1.1 Output formats supported by Halibut 6

1.2 Features supported by Halibut . 6

Chapter 2: Running Halibut . 7

2.1 Command-line options . 7

Chapter 3: Halibut input format . 11

3.1 The basics . 11

3.2 Simple inline formatting commands 12

3.2.1 \e : Emphasising text . 12

3.2.2 \c and\cw : Displaying computer code inline 12

3.2.3 \q : Quotation marks . 13

3.2.4 \- and_ : Non-breaking hyphens and spaces 14

3.2.5 \date : Automatic date generation 14

3.2.6 \W: WWW hyperlinks 15

3.2.7 \u : Specifying arbitrary Unicode characters 16

3.2.8 \k and\K : Cross-references to other sections 16

3.2.9 \# : Inline comments . 17

3.3 Paragraph-level commands . 17

3.3.1 \c : Displaying whole paragraphs of computer code 17

3.3.2 \b , \n , \dt , \dd , \lcont : Lists 18

3.3.2.1 \b : Bulletted lists 19

3.3.2.2 \n : Numbered lists 19

3.3.2.3 \dt and\dd : Description lists 20

3.3.2.4 Continuing list items into further paragraphs 21

3.3.3 \rule : Horizontal rules 22

2

3.3.4 \quote : Indenting multiple paragraphs as a long quotation 22

3.3.5 \C , \H , \S , \A , \U : Chapter and section headings 23

3.3.6 \copyright , \title , \versionid : Miscellaneous
blurb commands . 24

3.3.7 \# : Whole-paragraph comments 25

3.4 Creating a bibliography . 25

3.5 Creating an index . 26

3.5.1 Simple indexing . 26

3.5.2 Special cases of indexing 27

3.5.3 Fine-tuning the index . 27

3.5.4 Indexing terms that differ only in case 29

3.6 Configuring Halibut . 29

3.7 Defining macros . 31

Chapter 4: Halibut output formats . 33

4.1 Plain text . 33

4.1.1 Output file name . 33

4.1.2 Indentation and line width 33

4.1.3 Configuring heading display 34

4.1.4 Configuring the characters used 35

4.1.5 Miscellaneous configuration options 36

4.1.6 Default settings . 37

4.2 HTML . 37

4.2.1 Controlling the output file names 38

4.2.2 Controlling the splitting into HTML files 39

4.2.3 Including pieces of your own HTML 40

4.2.4 Configuring heading display 41

4.2.5 Configuring standard text 41

4.2.6 Configuring the characters used 42

4.2.7 Miscellaneous options 43

4.2.8 Generating MS Windows HTML Help 44

3

4.2.9 Default settings . 46

4.3 Windows Help . 47

4.3.1 Output file name . 47

4.3.2 Configuring the characters used 47

4.3.3 Miscellaneous configuration options 48

4.3.4 Default settings . 48

4.4 Unixmanpages . 49

4.4.1 Output file name . 49

4.4.2 Configuring headers and footers 49

4.4.3 Configuring heading display 49

4.4.4 Configuring the characters used 50

4.4.5 Default settings . 51

4.5 GNUinfo . 51

4.5.1 Controlling the output filenames 51

4.5.2 Indentation and line width 52

4.5.3 Configuring heading display 52

4.5.4 Controlling the characters used 52

4.5.5 Miscellaneous configuration options 53

4.5.6 Default settings . 54

4.6 Paper formats . 54

4.6.1 PDF . 54

4.6.2 PostScript . 55

4.6.3 Configuring layout and measurements 55

4.6.3.1 Page properties 55

4.6.3.2 Vertical spacing 55

4.6.3.3 Indentation . 56

4.6.3.4 Headings . 56

4.6.3.5 Contents and index 56

4.6.3.6 Fonts . 57

4.6.3.7 Miscellaneous . 58

4

4.6.4 Configuring the characters used 58

4.6.5 Default settings for paper formats 59

Appendix A: Halibut Licence . 61

Appendix B: Halibutmanpage . 62

B.1 NAME . 62

B.2 SYNOPSIS . 62

B.3 DESCRIPTION . 62

B.4 OPTIONS . 62

B.5 MORE INFORMATION . 64

B.6 BUGS . 64

Index . 65

5

Chapter 1: Introduction to Halibut

Halibut is a multi-format documentation processing system.

What that means is that you write your document once, in Halibut's input format, and then the
Halibut program processes it into several output formats which all contain the same text. So,
for example, if you want your application to have a Windows help file, and you also want the
same documentation available in HTML on your web site, Halibut can do that for you.

1.1 Output formats supported by Halibut
Currently Halibut supports the following output formats:

• Plain ASCII text.

• HTML.

• Unix manpage format.

• GNU info format.

• PDF.

• PostScript.

• Old-style Windows Help (.HLP).

(By setting suitable options, the HTML output can also be made suitable for feeding to the
newer-style Windows HTML Help compiler.)

1.2 Features supported by Halibut
Here's a list of Halibut's notable features.

• Halibut automatically assigns sequential numbers to your chapters, sections and
subsections, and keeps track of them for you. You supply akeywordfor each section, and
then you can generate cross-references to that section using the keyword, and Halibut will
substitute the correct section number. Also, in any output format where it makes sense, the
cross-references will be hyperlinks to that section of the document.

• Halibut has some support for Unicode: you can include arbitrary Unicode characters in
your document, and specify fallback text in case any output format doesn't support that
character.

• Halibut's indexing support is comprehensive and carefully designed. It's easy to use in the
simple case, but has powerful features that should make it possible to maintain a high-
quality and useful index.

6

Chapter 2: Running Halibut

In the simplest case, running Halibut is very easy. You provide a set of input files on its command
line, and it produces a set of output files.

$ halibut intro.but gettingstarted.but reference.but index.but

This will generate a large set of output files:

• output.txt will be a plain text version of the input document.

• output.hlp andoutput.cnt will be an old-style Windows Help version of the same
thing. (Most of the text is inoutput.hlp ; output.cnt contains additional contents
data used by the Windows help topic selector. If you lose the latter, the former should still
be usable, but it will look less modern.)

Note that to do this Halibut does not require any external software such as a Help compiler.
It directly generates old-style Windows Help files, and therefore it doesn't need to be run
on Windows to do so: it can generate them even when run from an automated script on a
Unix machine.

• output.1 will be a Unixmanpage.

• The set of files*.html will contain an HTML version of the document. If you have
configured Halibut to generate more than one HTML file (the default), then the file
Contents.html will be the topmost one that users should be directed to initially. If you
have configured Halibut to generate a single file, it will be calledManual.html .

• output.info , and some additional filesoutput.info-1 , output.info-2 etc.,
will be files suitable for use with GNUinfo .

• output.pdf will be a printable PDF manual.

• output.ps will be a printable PostScript manual.

2.1 Command-line options
Halibut supports command-line options in case you don't want to use all of Halibut's output
formats, or you want to configure the names of your output files, or you want to supply additional
configuration on the command line. The supported options are listed here.

Firstly, there are options which indicate which of the output formats you want Halibut to
generate:

--text [=filename]

Specifies that you want to generate plain text output. You can optionally specify a file name

7

(e.g.--text=myfile.txt), in which case Halibut will change the name of the output
file as well.

--html [=filename]

Specifies that you want to generate HTML output. You can optionally specify a file name
(e.g.--html=myfile.html), in which case Halibut will change the name of the output
file as well. Specifying a file name here will also cause the HTML to be output inonlyone
file, instead of the usual behaviour of producing multiple files with links between them.
If you want to produce multiple files and configure their names, you will need to use the
more complete file name configuration directives given in section 4.2.1 (although you may
want to do so on the command line, using the-C option).

--xhtml [=filename]

Synonym for--html .

--winhelp [=filename]

Specifies that you want to generate old-style Windows Help output. You can optionally
specify a file name (e.g.--winhelp=myfile.hlp), in which case Halibut will change
the name of the output file as well.

Your output file name should end with.hlp ; if it doesn't, Halibut will append it. Halibut
will also generate a contents file (ending in.cnt) alongside the file name you specify.

--whlp [=filename]

Synonym for--winhelp .

--hlp [=filename]

Synonym for--winhelp .

--man [=filename]

Specifies that you want to generatemanpage output. You can optionally specify a file name
(e.g.--man=myfile.5), in which case Halibut will change the name of the output file
as well.

--info [=filename]

Specifies that you want to generate GNUinfo output. You can optionally specify a file
name (e.g.--info=myfile.info), in which case Halibut will change the name of the
output file as well.

Unless theinfo output format is configured not to (see section 4.5), Halibut will divide
the info output into many small files. The extra files will have numeric suffixes on
their names; so, for example,output.info might be accompanied by additional files
output.info-1 , output.info-2 and so on.

--pdf [=filename]

Specifies that you want to generate PDF output. You can optionally specify a file name
(e.g.--pdf=myfile.pdf), in which case Halibut will change the name of the output
file as well.

8

--ps [=filename]

Specifies that you want to generate PostScript output. You can optionally specify a file name
(e.g.--ps=myfile.ps), in which case Halibut will change the name of the output file
as well.

If you do not specify any of the above options, Halibut will simply produceall of its output
formats.

Also, there is an option which allows you to specify an arbitrary\cfg configuration directive
(see section 3.6):

-C config-directive: value[: value...]

The text following-C is expected to be a colon-separated list of strings. (If you need a literal
colon, you can escape it with a backslash:\: . If you need a literalbackslash, you can do
the same:\\ .) These strings are used as the parts of a\cfg directive. So, for example,
the option

-Ctext-section-align:2:leftplus

will translate into the configuration directive

\cfg{text-section-align}{2}{leftplus}

(Note that your shell may also take an interest in backslashes, particularly under Unix. You
may find that the backslash with which you escape a colon must be doubled in order to
make the shell pass it to Halibut at all, and to pass a doubled backslash to Halibut you might
have to type four backslashes on your shell command line. This is not part of Halibut's own
behaviour, and it cannot do anything about it.)

Configuration directives created in this way take effect after all other input has been
processed. (In most cases, this has the effect of overriding any other instances of the
directive in the input.)

The options which set the output file names actually work by implicitly generating these
configuration directives. When you specify--text=myfile.txt , for example, Halibut
treats it identically to--text -Ctext-filename:myfile.txt . The Windows Help
and man page formats work similarly. HTML is slightly different, since it also arranges
for single-file output if you pass a filename to--html ; so --html=myfile.html
is equivalent to --html -Chtml-single-filename:myfile.html -Chtml-
leaf-level:0 . (See chapter 4 for explanations of all these configuration directives.)

In addition to these, there are also a few other options:

--input-charset= charset

Changes the default assumed character set for all input files from ASCII to something
else. (-Cinput-charset cannot be used for this, as-C directives are processed after
all other input, so wouldn't affect any files.)

Any \cfg{input-charset} directives within input files override this option.

See section 3.6 for more information about the input character set.

9

--list-charsets

List character sets known to Halibut.

--help

Print a brief help message and exit immediately. (Don't confuse this with--winhelp !)

--version

Print information about Halibut's version number and exit immediately.

--licence

Display Halibut's licence (see also appendix A) and exit immediately.

--license

US English alternative spelling of--licence .

--precise

Report column numbers as well as line numbers when reporting errors in the Halibut input
files.

10

Chapter 3: Halibut input format

This chapter describes the format in which you should write documents to be processed by
Halibut.

3.1 The basics

Halibut's input files mostly look like ordinary ASCII text files; you can edit them with any text
editor you like.

Writing paragraphs of ordinary text is very simple: you just write ordinary text in the ordinary
way. You can wrap a paragraph across more than one line using line breaks in the text file,
and Halibut will ignore this when it rewraps the paragraph for each output format. To separate
paragraphs, use a blank line (i.e. two consecutive line breaks). For example, a fragment of
Halibut input looking like this:

This is a line of text.
This is another line of text.

This line is separated from the previous one by a blank line.

will produce two paragraphs looking like this:

This is a line of text. This is another line of text.

This line is separated from the previous one by a blank line.

The first two lines of the input have been merged together into a single paragraph, and the line
break in the input file was treated identically to the spaces between the individual words.

Halibut is designed to have very few special characters. The only printable characters in Halibut
input which will not be treated exactly literally in the output are the backslash (\) and the braces
({ and}). If you do not use these characters,everythingelse you might type in normal ASCII
text is perfectly safe. If you do need to use any of those three characters in your document, you
will have to precede each one with a backslash. Hence, for example, you could write

This \\ is a backslash, and these are \{braces\}.

and Halibut would generate the text

This \ is a backslash, and these are {braces}.

If you want to write your input file in a character set other than ASCII, you can do so by using
the\cfg{input-charset} command. See section 3.6 for details of this.

11

3.2 Simple inline formatting commands
Halibut formatting commands all begin with a backslash, followed by a word or character
identifying the command. Some of them then use braces to surround one or more pieces of text
acted on by the command. (In fact, the\\ , \{ and\} sequences you met in section 3.1 are
themselves formatting commands.)

This section describes some simple formatting commands you can use in Halibut documents.
The commands in this section areinline commands, which means you can use them in the
middle of a paragraph. Section 3.3 describes someparagraphcommands, which affect a whole
paragraph at a time.

Many of these commands are followed by a pair of braces surrounding some text. In all cases,
it is perfectly safe to have a line break (in the input file) within those braces; Halibut will treat
that exactly the same as a space. For example, these two paragraphs will be treated identically:

Here is some \e{emphasised
text}.

Here is some \e{emphasised text}.

3.2.1 \e : Emphasising text

Possibly the most obvious piece of formatting you might want to use in a document isemphasis.
To emphasise text, you use the\e command, and follow it up with the text to be emphasised in
braces. For example, the first sentence in this paragraph was generated using the Halibut input

Possibly the most obvious piece of formatting you might want
to use in a document is \e{emphasis}.

3.2.2 \c and \cw : Displaying computer code inline

Halibut was primarily designed to produce software manuals. It can be used for other types of
document as well, but software manuals are its speciality.

In software manuals, you often want to format text in a way that indicates that it is something
you might see displayed verbatim on a computer screen. In printed manuals, this is typically
done by setting that text in a font which is obviously fixed-width. This provides a visual cue that
the text being displayed is code, and it also ensures that punctuation marks are clearly separated
and shown individually (so that a user can copy the text accurately and conveniently).

Halibut providestwo commands for this, which are subtly different. The names of those
commands are\c (‘code’) and\cw (‘weak code’). You use them just like\e , by following
them with some text in braces. For example, this...

This sentence contains some \c{code} and some \cw{weak code}.

... produces this:

This sentence contains somecode and someweak code .

The distinction between code and weak code is mainly important when producing plain text
output. Plain text output is typically viewed in a fixed-width font, so there is no need (and no

12

way) to change font in order to make the order of punctuation marks clear. However, marking
text as code is alsosometimesdone to provide a visual distinction between it and the text around
it, so that the reader knows where the literal computer text starts and stops; and in plain text,
this cannot be done by changing font, so there needs to be an alternative way.

So in the plain text output format, things marked as code (\c) will be surrounded by quote
marks, so that it's obvious where they start and finish. Things marked as weak code (\cw) will
not look any different from normal text.

I recommend using weak code for any application where it isobvious that the text is
literal computer input or output. For example, if the text is capitalised, that's usually
good enough. If I talk about the Pentium'sEAX and EDX registers, for example, you
don't need quotes to notice that those are special; so I would write that in Halibut as
‘ the Pentium's \cw{EAX} and \cw{EDX} registers ’. But if I'm talking about
the Unix commandman, which is an ordinary English word in its own right, a reader might be
slightly confused if it appeared in the middle of a sentence undecorated; so I would write that
as ‘the Unix command \c{man} ’.

In summary:

• \c means ‘this textmustbe visually distinct from the text around it’. Halibut's various
output formats will do this by changing the font if possible, or by using quotes if not.

• \cw means ‘it would be nice to display this text in a fixed-width font if possible, but it's
not essential’.

In really extreme cases, you might want Halibut to use quotation marks even in output formats
which can change font. In section 3.2.5, for example, I mention the special formatting command
‘ \. ’. If that appeared at the end of a sentencewithout the quotes, then the two adjacent full
stops would look pretty strange even if they were obviously in different fonts.

For this, Halibut supports the\cq command, which is exactly equivalent to using\q to provide
quotes and then using\cw inside the quotes. So in the paragraph above, for example, I wrote

the special formatting command \cq{\\.}.

and I could equivalently have written

the special formatting command \q{\cw{\\.}}.

There is a separate mechanism for displaying computer code in an entire paragraph; see section
3.3.1 for that one.

3.2.3 \q : Quotation marks

Halibut's various output formats don't all use the same conventions for displaying text in ordinary
quotation marks (‘like these’). Some output formats have access to proper matched quote
characters, whereas others are restricted to using plain ASCII. Therefore, it is not ideal to use
the ordinary ASCII double quote character in your document (although you can if you like).

Halibut provides the formatting command\q to indicate quoted text. If you write

Here is some \q{text in quotes}.

13

then Halibut will print

Here is some ‘text in quotes’.

and in every output format Halibut generates, it will choose the best quote characters available
to it in that format. (The quote characters to use can be configured with the\cfg command.)

You can still use the ordinary quote characters of your choice if you prefer; or you could even
use the\u command (see section 3.2.7) to generate Unicode matched quotes (single or double)
in a way which will automatically fall back to the normal ASCII one if they aren't available.
But I recommend using the built-in\q command in most cases, because it's simple and does
the best it can everywhere.

If you're using the\c or \cw commands to display literal computer code, you will probably
want to use literal ASCII quote characters, because it is likely to matter precisely which quote
character you use. In fact, Halibut actuallydisallowsthe use of\q within either of\c and\cw ,
since this simplifies some of the output formats.

3.2.4 \- and _ : Non-breaking hyphens and spaces

If you use an ordinary hyphen in the middle of a word (such as ‘built-in’), Halibut's output
formats will feel free to break a line after that hyphen when wrapping paragraphs. This is fine for
a word like ‘built-in’, but if you were displaying some literal computer code such as the Emacs
commandM-x psychoanalyze-pinhead , you might prefer to see the whole hyphenated
word treated as an unbreakable block. In some cases, you might even want to prevent thespace
in that command from becoming a line break.

For these purposes, Halibut provides the commands\- and_ , which generate a non-breaking
hyphen and a non-breaking space respectively. So the above Emacs command might be written
as

the Emacs command \c{M\-x_psychoanalyze\-pinhead}

Unfortunately, some of Halibut's output formats do not support non-breaking hyphens, and
others don't supportbreakinghyphens! So Halibut cannot promise to honour these commands
in all situations. All it can do is make a best effort.

3.2.5 \date : Automatic date generation

Sometimes you might want your document to give an up-to-date indication of the date on which
it was run through Halibut.

Halibut supplies the\date command to do this. In its simplest form, you simply say

This document was generated on \date.

and Halibut generates something like

This document was generated on Thu Feb 1 12:20:43 2007.

You can follow the\date command directly with punctuation (as in this example, where it is
immediately followed by a full stop), but if you try to follow it with an alphabetic or numeric
character (such as writing\dateZ) then Halibut will assume you are trying to invoke the name

14

of a macro command you have defined yourself, and will complain if no such command exists.
To get round this you can use the special ‘\. ’ do-nothing command. See section 3.7 for more
about general Halibut command syntax and ‘\. ’.

If you would prefer the date to be generated in a specific format, you can follow the\date
command with a format specification in braces. The format specification will be run through the
standard C functionstrftime , so any format acceptable to that function is acceptable here
as well. I won't document the format here, because the details vary from computer to computer
(although there is a standard core which should be supported everywhere). You should look at
your local system's manual forstrftime for details.

Here's an example which generates the date in the international standard ISO 8601 format:

This document was generated on \date{%Y-%m-%d %H:%M:%S}.

And here's some sample output from that command:

This document was generated on 2007-02-01 12:20:43.

3.2.6 \W: WWW hyperlinks

Since one of Halibut's output formats is HTML, it's obviously useful to be able to provide links
to arbitrary web sites in a Halibut document.

This is done using the\W command.\W expects to be followed bytwosets of braces. In the first
set of braces you put a URL; in the second set you put the text which should be a hyperlink. For
example, you might write

Try searching on \W{http://www.google.com/}{Google}.

and Halibut would generate

Try searching on Google.

Note that hyperlinks, like the non-breaking commands discussed in section 3.2.4, are
discretionary: if an output format does not support them then they will just be left out completely.
So unless you'reonly intending to use the HTML output format, you should avoid storing vital
content in the URL part of a\W command. The Google example above is reasonable (because
most users are likely to be able to find Google for themselves even without a convenient
hyperlink leading straight there), but if you really need to direct users to a specific web site, you
will need to give the URL in actual displayed text (probably displayed as code as well). However,
there's nothing to stop you making it a hyperlinkas wellfor the convenience of HTML readers.

The \W command supports a piece of extra syntax to make this convenient for you. You can
specify\c or \cw betweenthe first and second pairs of braces. For example, you might write

Google is at \W{http://www.google.com/}\cw{www.google.com}.

and Halibut would produce

Google is atwww.google.com .

If you want the link text to be an index term as well, you can also specify\i or \ii ; this has
to come before\c or \cw if both are present. (See section 3.5 for more about indexing.)

15

http://www.google.com/
http://www.google.com/

3.2.7 \u : Specifying arbitrary Unicode characters

Halibut has extensive support for Unicode and character set conversion. You can specify any
(reasonably well known) character set for your input document, and Halibut will convert it all
to Unicode as it reads it in. See section 3.6 for more details of this.

If you need to specify a Unicode character in your input document which is not supported by
the input character set you have chosen, you can use the\u command to do this.\u expects
to be followed by a sequence of hex digits; so that\u0041 , for example, denotes the Unicode
character0x0041 , which is the capital letter A.

If a Unicode character specified in this way is not supported in a particularoutputformat, you
probably don't just want it to be omitted. So you can put a pair of braces after the\u command
containing fallback text. For example, to specify an amount of money in euros, you might write
this:

This is likely to cost \u20AC{EUR_}2500 at least.

Halibut will render that as a Euro signif available, and the text ‘EUR ’ if not. In the output
format you're currently reading in, the above input generates this:

This is likely to cost EUR 2500 at least.

If you read it in other formats, you may see different results.

3.2.8 \k and \K : Cross-references to other sections

Section 1.2 mentions that Halibut numbers the sections of your document automatically, and
can generate cross-references to them on request.\k and\K are the commands used to generate
those cross-references.

To use one of these commands, you simply follow it with a pair of braces containing the keyword
for the section in question. For example, you might write something like

\K{input-xref} expands on \k{intro-features}.

and Halibut would generate something like

Section 3.2.8 expands on section 1.2.

The keywordsinput-xref and intro-features are section keywords used in this
manual itself. In your own document, you would have supplied a keyword for each one of your
own sections, and you would provide your own keywords for the\k command to work on.

The difference between\k and\K is simply that\K starts the cross-reference text with a capital
letter; so you would use\K at the beginning of a sentence, and\k everywhere else.

In output formats which permit it, cross-references act as hyperlinks, so that clicking the mouse
on a cross-reference takes you straight to the referenced section.

The \k commands are also used for referring to entries in a bibliography (see section 3.4 for
more about bibliographies), and can also be used for referring to an element of a numbered list
by its number (see section 3.3.2.2 for more about numbered lists).

See section 3.3.5 for more about chapters and sections.

16

3.2.9 \# : Inline comments

If you want to include comments in your Halibut input, to be seen when reading it directly but
not copied into the output text, then you can use\# to do this. If you follow\# with text in
braces, that text will be ignored by Halibut.

For example, you might write

The typical behaviour of an antelope \#{do I mean
gazelle?} is...

and Halibut will simply leave out the aside about gazelles, and will generate nothing but

The typical behaviour of an antelope is...

This command will respect nested braces, so you can use it to comment out sections of Halibut
markup:

This function is \#{very, \e{very}} important.

In this example, the comment lasts until the final closing brace (so that the whole ‘very,very’
section is commented out).

The \# command can also be used to produce a whole-paragraph comment; see section 3.3.7
for details of that.

3.3 Paragraph-level commands
This section describes Halibut commands which affect an entire paragraph, or sometimes even
morethan one paragraph, at a time.

3.3.1 \c : Displaying whole paragraphs of computer code

Section 3.2.2 describes a mechanism for displaying computer code in the middle of a paragraph,
a few words at a time.

However, this is often not enough. Often, in a computer manual, you really want to show several
lines of code in a display paragraph.

This is also done using the\c command, in a slightly different way. Instead of using it in the
middle of a paragraph followed by braces, you can use it at the start of each line of a paragraph.
For example, you could write

\c #include <stdio.h>
\c
\c int main(int argc, char **argv) {
\c printf("hello, world\n");
\c return 0;
\c }

and Halibut would generate

#include <stdio.h>

int main(int argc, char **argv) {

17

 printf("hello, world\n");
 return 0;
}

Note that the above paragraph makes use of a backslash and a pair of braces, and doesnotneed
to escape them in the way described in section 3.1. This is because code paragraphs formatted
in this way are a special case; the intention is that you can just copy and paste a lump of code
out of your program, put ‘\c ’ at the start of every line, and simplynot have to worryabout
the details - you don't have to go through the whole block looking for characters to escape.

Since a backslash inside a code paragraph generates a literal backslash, this means you cannot
use any other Halibut formatting commands inside a code paragraph. In particular, if you want
to emphasise a particular word in the paragraph, you can't do that using\e (section 3.2.1) in
the normal way.

Therefore, Halibut provides an alternative means of emphasis in code paragraphs. Each line
beginning with\c can optionally be followed by a single line beginning with\e , indicating
the emphasis in that line. The emphasis line contains the lettersb andi (for ‘bold’ and ‘italic’,
although some output formats might renderi as underlining instead of italics), positioned to
line up under the parts of the text that you want emphasised.

For example, if you wanted to do syntax highlighting on the above C code by highlighting the
preprocessor command in italic and the keywords in bold, you might do it like this:

\c #include <stdio.h>
\e iiiiiiiiiiiiiiiiii
\c
\c int main(int argc, char **argv) {
\e bbb bbb bbbb
\c printf("hello, world\n");
\c return 0;
\e bbbbbb
\c }

and Halibut would generate:

#include <stdio.h>

int main(int argc, char **argv) {
 printf("hello, world\n");
 return 0;
}

Note that not every\c line has to be followed by a\e line; they're optional.

Also, note that highlighting within a code paragraph isdiscretionary. Not all of Halibut's output
formats can support it (plain text, in particular, has no sensible way to do it). Unless you
know you are using a restricted range of output formats, you should use highlighting in code
paragraphsonlyas a visual aid, and not rely on it to convey any vital semantic content.

3.3.2 \b , \n , \dt , \dd , \lcont : Lists

Halibut supports bulletted lists, numbered lists and description lists.

18

3.3.2.1 \b : Bulletted lists

To create a bulletted list, you simply prefix each paragraph describing a bullet point with the
command\b . For example, this Halibut input:

Here's a list:

\b One.

\b Two.

\b Three.

would produce this Halibut output:

Here's a list:

• One.

• Two.

• Three.

3.3.2.2 \n : Numbered lists

Numbered lists are just as simple: instead of\b , you use\n , and Halibut takes care of getting
the numbering right for you. For example:

Here's a list:

\n One.

\n Two.

\n Three.

This produces the Halibut output:

Here's a list:

1. One.

2. Two.

3. Three.

The disadvantage of having Halibut sort out the list numbering for you is that if you need to
refer to a list item by its number, you can't reliably know the number in advance (because if you
later add another item at the start of the list, the numbers will all change). To get round this,
Halibut allows an optional keyword in braces after the\n command. This keyword can then be
referenced using the\k or \K command (see section 3.2.8) to provide the number of the list
item. For example:

Here's a list:

19

\n One.

\n{this-one} Two.

\n Three.

\n Now go back to step \k{this-one}.

This produces the following output:

Here's a list:

1. One.

2. Two.

3. Three.

4. Now go back to step 2.

The keyword you supply after\n is allowed to contain escaped special characters (\\ , \{ and
\}), but should not contain any other Halibut markup. It is intended to be a word or two of
ordinary text. (This also applies to keywords used in other commands, such as\B and\C).

3.3.2.3 \dt and \dd : Description lists

To write a description list, you prefix alternate paragraphs with the\dt (‘described thing’) and
\dd (description) commands. For example:

\dt Pelican

\dd This is a large bird with a big beak.

\dt Panda

\dd This isn't.

This produces the following output:

Pelican

This is a large bird with a big beak.

Panda

This isn't.

If you really want to, you are allowed to use\dt and\dd without strictly interleaving them
(multiple consecutive\dt s or consecutive\dd s, or a description list starting with\dd or
ending with\dt). This is probably most useful if you are listing a sequence of things with\dt ,
but only some of them actually need\dd descriptions. You shouldnotuse multiple consecutive
\dd s to provide a multi-paragraph definition of something; that's what\lcont is for, as
explained in section 3.3.2.4.

20

3.3.2.4 Continuing list items into further paragraphs

All three of the above list types assume that each list item is a single paragraph. For a short,
snappy list in which each item is likely to be only one or two words, this is perfectly sufficient;
but occasionally you will find you want to include several paragraphs in a single list item, or
even to nest other types of paragraph (such as code paragraphs, or other lists) inside a list item.

To do this, you use the\lcont command. This is a command which can spanmultiple
paragraphs.

After the first paragraph of a list item, include the text\lcont{ . This indicates that the
subsequent paragraph(s) are acontinuationof the list item that has just been seen. So you
can include further paragraphs, and eventually include a closing brace} to finish the list
continuation. After that, you can either continue adding other items to the original list, or stop
immediately and return to writing normal paragraphs of text.

Here's a (long) example.

Here's a list:

\n One. This item is followed by a code paragraph:

\lcont{

\c code
\c paragraph

}

\n Two. Now when I say \q{two}, I mean:

\lcont{

\n Two, part one.

\n Two, part two.

\n Two, part three.

}

\n Three.

The output produced by this fragment is:

Here's a list:

1. One. This item is followed by a code paragraph:

code
paragraph

2. Two. Now when I say ‘two’, I mean:

21

1. Two, part one.

2. Two, part two.

3. Two, part three.

3. Three.

This syntax might seem a little bit inconvenient, and perhaps counter-intuitive: you might expect
the enclosing braces to have to go around thewholelist item, rather than everything except the
first paragraph.

\lcont is a recent addition to the Halibut input language; previously,all lists were required to
use no more than one paragraph per list item. So it's certainly true that this feature looks like an
afterthought because itisan afterthought, and it's possible that if I'd been designing the language
from scratch with multiple-paragraph list items in mind, I would have made it look different.

However, the advantage of doing it this way is that no enclosing braces are required in the
commoncase: simple lists with only one paragraph per item are really, really easy to write. So
I'm not too unhappy with the way it turned out; it obeys the doctrine of making simple things
simple, and difficult things possible.

Note that\lcont can only be used on\b , \n and\dd paragraphs; it cannot be used on\dt .

3.3.3 \rule : Horizontal rules

The command\rule , appearing on its own as a paragraph, will cause a horizontal rule to be
drawn, like this:

Some text.

\rule

Some more text.

This produces the following output:

Some text.

Some more text.

3.3.4 \quote : Indenting multiple paragraphs as a long quotation

Quoting verbatim text using a code paragraph (section 3.3.1) is not always sufficient for your
quoting needs. Sometimes you need to quote some normally formatted text, possibly in multiple
paragraphs. This is similar to HTML's<BLOCKQUOTE>command.

To do this, you can use the\quote command. Like\lcont , this is a command which expects
to enclose at least one paragraph and possibly more. Simply write\quote{ at the beginning
of your quoted section, and} at the end, and the paragraphs in between will be formatted to
indicate that they are a quotation.

(This very manual, in fact, uses this feature a lot: all of the examples of Halibut input followed
by Halibut output have the output quoted using\quote .)

22

Here's some example Halibut input:

In \q{Through the Looking Glass}, Lewis Carroll wrote:

\quote{

\q{The question is,} said Alice, \q{whether you \e{can} make
words mean so many different things.}

\q{The question is,} said Humpty Dumpty, \q{who is to be
master - that's all.}

}

So now you know.

The output generated by this is:

In ‘Through the Looking Glass’, Lewis Carroll wrote:

‘The question is,’ said Alice, ‘whether youcan make words mean so many different
things.’

‘The question is,’ said Humpty Dumpty, ‘who is to be master - that's all.’

So now you know.

3.3.5 \C , \H , \S , \A , \U : Chapter and section headings

Section 1.2 mentions that Halibut numbers the sections of your document automatically, and can
generate cross-references to them on request; section 3.2.8 describes the\k and\K commands
used to generate the cross-references. This section describes the commands used to set up the
sections in the first place.

A paragraph beginning with the\C command defines a chapter heading. The\C command
expects to be followed by a pair of braces containing a keyword for the chapter; this keyword
can then be used with the\k and \K commands to generate cross-references to the chapter.
After the closing brace, the rest of the paragraph is used as the displayed chapter title. So the
heading for the current chapter of this manual, for example, is written as

\C{input} Halibut input format

and this allows me to use the command\k{input} to generate a cross-reference to that chapter
somewhere else.

The keyword you supply after one of these commands is allowed to contain escaped special
characters (\\ , \{ and\}), but should not contain any other Halibut markup. It is intended to
be a word or two of ordinary text. (This also applies to keywords used in other commands, such
as\B and\n).

The next level down from\C is \H , for ‘heading’. This is used in exactly the same way as\C ,
but section headings defined with\H are considered to be part of a containing chapter, and will
be numbered with a pair of numbers. After\H comes\S , and if necessary you can then move
on to\S2 , \S3 and so on.

23

For example, here's a sequence of heading commands. Normally these commands would be
separated at least by blank lines (because each is a separate paragraph), and probably also by
body text; but for the sake of brevity, both of those have been left out in this example.

\C{foo} Using Foo
\H{foo-intro} Introduction to Foo
\H{foo-running} Running the Foo program
\S{foo-inter} Running Foo interactively
\S{foo-batch} Running Foo in batch mode
\H{foo-trouble} Troubleshooting Foo
\C{bar} Using Bar instead of Foo

This would define two chapters with keywordsfoo andbar , which would end up being called
Chapter 1 and Chapter 2 (unless there were other chapters before them). The sectionsfoo-
intro , foo-running andfoo-trouble would be referred to as Section 1.1, Section 1.2
and Section 1.3 respectively; the subsectionsfoo-inter andfoo-batch would be Section
1.2.1 and Section 1.2.2. If there had been a\S2 command within one of those, it would have
been something like Section 1.2.1.1.

If you don't like the switch from\H to \S , you can use\S1 as a synonym for\S and\S0 as
a synonym for\H . Chapters are still designated with\C , because they need to be distinguished
from other types of chapter such as appendices. (Personally, I like the\C ,\H ,\S notation
because it encourages me to think of my document as a hard disk :-)

You can define an appendix by using\A in place of\C . This is no different from a chapter
except that it's given a letter instead of a number, and cross-references to it will say ‘Appendix
A’ instead of ‘Chapter 9’. Subsections of an appendix will be numbered ‘A.1’, ‘A.2’, ‘A.2.1’
and so on.

If you want a particular section to be referred to as something other than a ‘chapter’, ‘section’
or ‘appendix’, you can include a second pair of braces after the keyword. For example, if you're
writing a FAQ chapter and you want cross-references between questions to refer to ‘question
1.2.3’ instead of ‘section 1.2.3’, you can write each section heading as

\S{question-about-fish}{Question} What about fish?

(The word ‘Question’ should be given with an initial capital letter. Halibut will lower-case it
when you refer to it using\k , and will leave it alone if you use\K .)

This technique allows you to change the designation ofparticular sections. To make an overall
change in whateverysection is called, see section 3.6.

Finally, the\U command defines anunnumberedchapter. These sometimes occur in books,
for specialist purposes such as ‘Bibliography’ or ‘Acknowledgements’.\U does not expect a
keyword argument, because there is no sensible way to generate an automatic cross-reference
to such a chapter anyway.

3.3.6 \copyright , \title , \versionid : Miscellaneous blurb commands

These three commands define a variety of special paragraph types. They are all used in the same
way: you put the command at the start of a paragraph, and then just follow it with normal text,
like this:

\title My First Manual

24

The three special paragraph types are:

\title

This defines the overall title of the entire document. This title is treated specially in some
output formats (for example, it's used in a<TITLE> tag in the HTML output), so it needs
a special paragraph type to point it out.

\copyright

This command indicates that the paragraph attached to it contains a copyright statement
for the document. This text is displayed inline where it appears, exactly like a normal
paragraph; but in some output formats it is given additional special treatment. For example,
Windows Help files have a standard slot in which to store a copyright notice, so that other
software can display it prominently.

\versionid

This command indicates that the paragraph contains a version
identifier, such as those produced by CVS (of the form
$Id: thingy.but,v 1.6 2004/01/01 16:47:48 simon Exp $). This
text will be tucked away somewhere unobtrusive, so that anyone wanting to (for example)
report errors to the document's author can pick out the version IDs and send them as part
of the report, so that the author can tell at a glance which revision of the document is being
discussed.

3.3.7 \# : Whole-paragraph comments

Section 3.2.9 describes the use of the\# command to put a short comment in the middle of a
paragraph.

If you need to use alongcomment, Halibut also allows you to use\# without braces, to indicate
that an entire paragraph is a comment, like this:

Here's a (fairly short) paragraph which will be displayed.

\# Here's a comment paragraph which will not be displayed, no
matter how long it goes on. All I needed to indicate this was
the single \# at the start of the paragraph; I don't need one
on every line or anything like that.

Here's another displayed paragraph.

When run through Halibut, this produces the following output:

Here's a (fairly short) paragraph which will be displayed.

Here's another displayed paragraph.

3.4 Creating a bibliography
If you need your document to refer to other documents (research papers, books, websites,
whatever), you might find a bibliography feature useful.

25

You can define a bibliography entry using the\B command. This looks very like the\C
command and friends: it expects a keyword in braces, followed by some text describing the
document being referred to. For example:

\B{freds-book} \q{The Taming Of The Mongoose}, by Fred Bloggs.
Published by Paperjam & Notoner, 1993.

If this bibliography entry appears in the finished document, it will look something like this:

[1] ‘The Taming Of The Mongoose’, by Fred Bloggs. Published by Paperjam & Notoner,
1993.

I say ‘if’ above because not all bibliography entries defined using the\B command will
necessarily appear in the finished document. They only appear if they are referred to by a
\k command (see section 3.2.8). This allows you to (for example) maintain a single Halibut
source file with a centralised database ofall the references you have ever needed in any of your
writings, include that file in every document you feed to Halibut, and have it only produce the
bibliography entries you actually need for each particular document. (In fact, you might even
want this centralised source file to be created automatically by, say, a Perl script from BibTeX
input, so that you can share the same bibliography with users of other formatting software.)

If you really want a bibliography entry to appear in the document even though no text explicitly
refers to it, you can do that using the\nocite command:

\nocite{freds-book}

Normally, each bibliography entry will be referred to (in citations and in the bibliography itself)
by a simple reference number, such as [1]. If you would rather use an alternative reference
notation, such as [Fred1993], you can use the\BR (‘Bibliography Rewrite’) command to specify
your own reference format for a particular book:

\BR{freds-book} [Fred1993]

The keyword you supply after\B is allowed to contain escaped special characters (\\ , \{ and
\}), but should not contain any other Halibut markup. It is intended to be a word or two of
ordinary text. (This also applies to keywords used in other commands, such as\n and\C).

3.5 Creating an index
Halibut contains a comprehensive indexing mechanism, which attempts to be reasonably easy
to use in the common case in spite of its power.

3.5.1 Simple indexing

In normal usage, you should be able to add index terms to your document simply by using the
\i command to wrap one or two words at a time. For example, if you write

The \i{hippopotamus} is a particularly large animal.

then the index will contain an entry under ‘hippopotamus’, pointing to that sentence (or as close
to that sentence as the output format sensibly permits).

You can wrap more than one word in\i as well:

We recommend using a \i{torque wrench} for this job.

26

3.5.2 Special cases of indexing

If you need to index a computer-related term, you can use the special case\i\c (or \i\cw if
you prefer):

The \i\c{grep} command is what you want here.

This will cause the word ‘grep’ to appear in code style, as if the\i were not present and the
input just said\c{grep} ; the word will also appear in code style in the actual index.

If you want to simultaneously index and emphasise a word, there's another special case\i\e :

This is what we call a \i\e{paper jam}.

This will cause the words ‘paper jam’ to be emphasised in the document, but (unlike the
behaviour of\i\c) they will notbe emphasised in the index. This different behaviour is based
on an expectation that most people indexing a word of computer code will still want it to look
like code in the index, whereas most people indexing an emphasised word willnot want it
emphasised in the index.

(In fact,no emphasis in the text inside\i will be preserved in the index. If you really want a
term in the index to appear emphasised, you must say so explicitly using\IM ; see section 3.5.3.)

Sometimes you might want to index a term which is not explicitly mentioned, but which is highly
relevant to the text and you think that somebody looking up that term in the index might find it
useful to be directed here. To do this you can use the\I command, to create aninvisible index
tag:

If your printer runs out of toner, \I{replacing toner
cartridge}here is what to do:

This input will produce only the output ‘If your printer runs out of toner, here is what to do’;
but an index entry will show up under ‘replacing toner cartridge’, so that if a user thinks the
obvious place to start in the index is under R for ‘replacing’, they will find their way here with
a minimum of fuss.

(It's worth noting that there is no functional difference between\i{foo} and\I{foo}foo .
The simple\i case is only a shorthand for the latter.)

Finally, if you want to index a word at the start of a sentence, you might very well not want it
to show up with a capital letter in the index. For this, Halibut provides the\ii command, for
‘index (case-)insensitively’. You use it like this:

\ii{Lions} are at the top of the food chain in this area.

This is equivalent to\I{lions}Lions ; in other words, the text will say ‘Lions’, but it will
show up in the index as ‘lions’. The text inside\ii is converted entirely into lower case before
being added to the index data.

3.5.3 Fine-tuning the index

Halibut's index mechanism as described so far still has a few problems left:

• In a reasonably large index, it's often difficult to predict which of several words a user will
think of first when trying to look something up. For example, if they want to know how

27

to replace a toner cartridge, they might look up ‘replacing’ or they might look up ‘toner
cartridge’. You probably don't really want to have to try to figure out which of those is more
likely; instead, what you'd like is to be able to effortlessly index the same set of document
locations underbothterms.

• Also, you may find you've indexed the same concept under multiple different index terms;
for example, there might be several instances of\i{frog} and several of\i{frogs} ,
so that you'd end up with two separate index entries for what really ought to be the same
concept.

• You might well not want the word ‘grep ’ to appear in the index without explanation;
you might prefer it to say something more verbose such as ‘grep command’, so
that a user encountering it in the index has some idea of what it iswithout having
to follow up the reference. However, you certainly don't want to have to write
\I{\cw{grep} command}\c{grep} every time you want to add an index term for
this! You wanted to write\i\c{grep} as shown in the previous section, and tidy it all
up afterwards.

All of these problems can be cleaned up by the\IM (for ‘Index Modification’) command.\IM
expects to be followed by one or more pairs of braces containing index terms as seen in the
document, and then a piece of text (not in braces) describing how it should be shown in the
index.

So to rewrite thegrep example above, you might do this:

\IM{grep} \cw{grep} command

This will arrange that the set of places in the document where you asked Halibut to index ‘grep ’
will be listed under ‘grep command’ rather than just under ‘grep ’.

You can specify more than one index term in a\IM command; so to merge the index terms
‘frog’ and ‘frogs’ into a single term, you might do this:

\IM{frog}{frogs} frog

This will arrange that the single index entry ‘frog’ will listall the places in the document where
you asked Halibut to index either ‘frog’ or ‘frogs’.

You can use multiple\IM commands to replicate the same set of document locations in more
than one index entry. For example:

\IM{replacing toner cartridge} replacing toner cartridge
\IM{replacing toner cartridge} toner cartridge, replacing

This will arrange that every place in the document where you have indexed ‘replacing toner
cartridge’ will be listed both thereand under ‘toner cartridge, replacing’, so that no matter
whether the user looks under R or under T they will stil find their way to the same parts of the
document.

In this example, note that although the first\IM commandlooks as if it's a tautology, it
is still necessary, because otherwise those document locations willonly be indexed under
‘toner cartridge, replacing’. If you haveno explicit \IM commands for a particular index
term, then Halibut will assume a default one (typically\IM{foo} foo , although it might
be \IM{foo} \c{foo} if you originally indexed using\i\c); but as soon as you specify
an explicit\IM , Halibut discards its default implicit one, and you must then specify that one

28

explicitly as well if you wanted to keep it.

3.5.4 Indexing terms that differ only in case

Thetagsyou use to define an index term (that is, the text in the braces after\i , \I and\IM) are
treated case-insensitively by Halibut. So if, as in this manual itself, you need two index terms
that differ only in case, doing this will not work:

The \i\c{\\c} command defines computer code.

The \i\c{\\C} command defines a chapter.

Halibut will treat these terms as the same, and will fold the two sets of references into one
combined list (although it will warn you that it is doing this). The idea is to ensure that people
who forget to use\ii find out about it rather than Halibut silently generating a bad index;
checking an index for errors is very hard work, so Halibut tries to avoid errors in the first place
as much as it can.

If you do come across this situation, you will need to define two distinguishable index terms.
What I did in this manual was something like this:

The \i\c{\\c} command defines computer code.

The \I{\\C-upper}\c{\\C} command defines a chapter.

\IM{\\C-upper} \c{\\C}

The effect of this will be two separate index entries, one reading\c and the other reading\C ,
pointing to the right places.

3.6 Configuring Halibut
Halibut uses the\cfg command to allow you to configure various aspects of its functionality.

The\cfg command expects to be followed by at least one pair of braces, and usually more after
that. The first pair of braces contains a keyword indicating what aspect of Halibut you want to
configure, and the meaning of the one(s) after that depends on the first keyword.

The current list of configuration keywords in the main Halibut code is quite small. Here it is in
full:

\cfg{chapter}{ new chapter name}

This tells Halibut that you don't want to call a chapter a chapter any more. For example, if
you give the command\cfg{chapter}{Book} , then any chapter defined with the\C
command will be labelled ‘Book’ rather than ‘Chapter’, both in the section headings and in
cross-references. This is probably most useful if your document is not written in English.

Your replacement name should be given with a capital letter. Halibut will leave it alone if
it appears at the start of a sentence (in a chapter title, or when\K is used), and will lower-
case it otherwise (when\k is used).

\cfg{section}{ new section name}

Exactly likechapter , but changes the name given to subsections of a chapter.

29

\cfg{appendix}{ new appendix name}

Exactly likechapter , but changes the name given to appendices.

\cfg{contents}{ new contents name}

This changes the name given to the contents section (by default ‘Contents’) in back ends
which generate one.

\cfg{index}{ new index name}

This changes the name given to the index section (by default ‘Index’) in back ends which
generate one.

\cfg{input-charset}{ character set name}

This tells Halibut what character set you are writing your input file in. By default, it is
assumed to be US-ASCII (meaningonlyplain ASCII, with no accented characters at all).

You can specify any well-known name for any supported character set. For example,iso-
8859-1 , iso8859-1 andiso_8859-1 are all recognised,GB2312andEUC-CNboth
work, and so on. (You can list character sets known to Halibut with by invoking it with the
--list-charsets option; see section 2.1.)

This directive takes effect immediately after the\cfg command. All text after that until
the end of the input file is expected to be in the new character set. You can even change
character set several times within a file if you really want to.

When Halibut reads the input file, everything you type will be converted into Unicode
from the character set you specify here, will be processed as Unicode by Halibut internally,
and will be written to the various output formats in whatever character sets they deem
appropriate.

\cfg{quotes}{ open-quote}{ close-quote} [{ open-quote}{ close-quote...}]

This specifies the quote characters which should be used. You should separately
specify the open and close quote marks; each quote mark can be one character
(\cfg{quotes}{`}{'}), or more than one (\cfg{quotes}{<<}{>>}).

\cfg{quotes} can be overridden by configuration directives for each individual
backend (see chapter 4); it is a convenient way of setting quote characters for all backends
at once.

All backends use these characters in response to the\q command (see section 3.2.3). Some
(such as the text backend) use them for other purposes too.

You can specify multiple fallback options in this command (a pair of open and close
quotes, each in their own braces, then another pair, then another if you like), and Halibut
will choose the first pair which the output character set supports (Halibut will always use
a matching pair). (This is to allow you to configure quote characters once, generate output
in several different character sets, and have Halibut constantly adapt to make the best use
of the current encoding.) For example, you might write

\cfg{quotes}{\u201c}{\u201d}{"}{"}

and Halibut would use the Unicode matched double quote characters if possible, and fall

30

back to ASCII double quotes otherwise. If the output character set were to contain U+201C
but not U+201D, then Halibut would fall back to using the ASCII double quote character
asbothopen and close quotes. (No known character set is that silly; I mention it only as
an example.)

\cfg{quotes} (and the backend-specific versions) apply to theentireoutput; it's not
possible to change quote characters partway through the output.

In addition to these configuration commands, there are also configuration commands provided
by each individual output format. These configuration commands are discussed along with each
output format, in chapter 4.

The default settings for the above options are:

\cfg{chapter}{Chapter}
\cfg{section}{Section}
\cfg{appendix}{Appendix}
\cfg{contents}{Contents}
\cfg{index}{Index}
\cfg{input-charset}{ASCII}

The default for\cfg{input-charset} can be changed with the--input-charset
option; see section 2.1. The default settings for\cfg{quotes} are backend-specific; see
chapter 4.

3.7 Defining macros
If there's a complicated piece of Halibut source which you think you're going to use a lot, you
can define your own Halibut command to produce that piece of source.

In section 3.2.7, there is a sample piece of code which prints a Euro sign, or replaces it with
‘EUR’ if the Euro sign is not available:

This is likely to cost \u20AC{EUR_}2500 at least.

If your document quotes alot of prices in Euros, you might not want to spend all your time
typing that out. So you could define a macro, using the\define command:

\define{eur} \u20AC{EUR_}

Your macro names may include Roman alphabetic characters (a-z , A-Z) and ordinary Arabic
numerals (0-9), but nothing else. (This is general syntax for all of Halibut's commands, except
for a few special ones such as_ and\- which consist of a single punctuation character only.)

Then you can just write ...

This is likely to cost \eur 2500 at least.

... except that that's not terribly good, because you end up with a space between the Euro sign
and the number. (If you had written\eur2500 , Halibut would have tried to interpret it as a
macro command calledeur2500 , which you didn't define.) In this case, it's helpful to use the
special\. command, which is defined to do nothing at all! But it acts as a separator between
your macro and the next character:

This is likely to cost \eur\.2500 at least.

31

This way, you will see no space between the Euro sign and the number (although, of course,
there will be space between ‘EUR’ and the number if the Euro sign is not available, because the
macro definition specifically asked for it).

32

Chapter 4: Halibut output formats

This chapter describes each of Halibut's current output formats. It gives some general
information about the format, and also describes all the configuration directives which are
specific to that format.

4.1 Plain text
This output format generates the document as a single plain text file. No table of contents or
index is generated.

The precise formatting of the text file can be controlled by a variety of configuration directives.
They are listed in the following subsections.

4.1.1 Output file name

\cfg{text-filename}{ filename}

Sets the output file name in which to store the text file. This directive is implicitly generated
if you provide a file name parameter after the command-line option--text (see section
2.1).

4.1.2 Indentation and line width

This section describes the configuration directives which control the horizontal dimensions of
the output text file: how much paragraphs are indented by and how long the lines are.

\cfg{text-width}{ width}

Sets the width of the main part of the document, in characters. This width will be used
for wrapping paragraphs and for centring titles (if you have asked for titles to be centred
- see section 4.1.3). This width doesnot include the left indentation set by\cfg{text-
indent} ; if you specify an indent of 8 and a width of 64, your maximum output line
length will be 72.

\cfg{text-indent}{ indent}

Sets the left indentation for the document. If you set this to zero, your document will look
like an ordinary text file as someone with a text editor might have written it; if you set
it above zero, the text file will have a margin down the left in the style of some printed
manuals, and you can then configure the section numbers to appear in this margin (see
section 4.1.3).

\cfg{text-indent-code}{ indent}

Specifies how many extra characters of indentation (on top of the normal left indent) should
be given to code paragraphs.

33

\cfg{text-list-indent}{ indent}

Specifies how many extra spaces should be used to indent the bullet or number in a bulletted
or numbered list. The actual body of the list item will be indented by this muchplus the
value configured by\cfg{text-listitem-indent} .

\cfg{text-listitem-indent}{ indent}

Specifies how many extra spaces should be used to indent the body of a list item, over and
above the number configured in\cfg{text-list-indent} .

\cfg{text-indent-preamble}{ boolean}

When this is set totrue , the document preamble (i.e. any paragraphs appearing before the
first chapter heading) will be indented to the level specified by\cfg{text-indent} .
If this setting isfalse , the document preamble will not be indented at all from the left
margin.

4.1.3 Configuring heading display

The directives in this section allow you to configure the appearance of the title, chapter and
section headings in your text file.

Several of the directives listed below specify the alignment of a heading. These alignment
options have three possible values:

left

Align the heading to the very left of the text file (column zero).

leftplus

Align the section title to the left of the main display region (in other words, indented to
the level specified by\cfg{text-indent}). The sectionnumberis placed to the left
of that (so that it goes in the margin if there is room).

centre

Centre the heading.

Also, several of the directives below specify how a title should be underlined. The parameter
to one of these directives should be either blank ({}) or a piece of text which will be repeated
to produce the underline. So you might want to specify, for example,\text-title-
underline{=} but \text-chapter-underline{-} .

You can also specify more than one underline setting, and Halibut will choose the first one
that the output character set supports. So, for example, you could write\text-chapter-
underline{\u203e}{-} , and Halibut would use the Unicode ‘OVERLINE’ character
where possible and fall back to the ASCII minus sign otherwise.

\cfg{text-title-align}{ alignment}

Specifies the alignment of the overall document title:left , leftplus or centre .

34

\cfg{text-title-underline}{ underline-text}

Specifies how the overall document title should be underlined.

\cfg{text-chapter-align}{ alignment}

Specifies the alignment of chapter and appendix headings.

\cfg{text-chapter-underline}{ underline-text}

Specifies how chapter and appendix headings should be underlined.

\cfg{text-chapter-numeric}{ boolean}

If this is set totrue , then chapter headings will not contain the word ‘Chapter’ (or
whatever other word you have defined in its place - see section 3.3.5 and section 3.6); they
will just contain the chapternumber, followed by the chapter title. If you set this tofalse ,
chapter headings will be prefixed by ‘Chapter’ or equivalent.

\cfg{text-chapter-suffix}{ text}

This specifies the suffix text to be appended to the chapter number, before displaying the
chapter title. For example, if you set this to ‘: ’, then the chapter title might look something
like ‘Chapter 2: Doing Things’.

\cfg{text-section-align}{ level}{ alignment}

Specifies the alignment of section headings at a particular level. Thelevel parameter
specifies which level of section headings you want to affect: 0 means first-level headings
(\H), 1 means second-level headings (\S), 2 means the level below that (\S2), and so on.
Thealignmentparameter is treated just like the other alignment directives listed above.

\cfg{text-section-underline}{ level}{ underline-text}

Specifies how to underline section headings at a particular level.

\cfg{text-section-numeric}{ level}{ boolean}

Specifies whether section headings at a particular level should contain the word ‘Section’
or equivalent (iffalse), or should be numeric only (iftrue).

\cfg{text-section-suffix}{ level}{ text}

Specifies the suffix text to be appended to section numbers at a particular level, before
displaying the section title.

4.1.4 Configuring the characters used

\cfg{text-charset}{ character set name}

This tells Halibut what character set the output should be in. Any Unicode characters
representable in this set will be output verbatim; any other characters will not be output
and their fallback text (if any) will be used instead.

The character set names are the same as for\cfg{input-charset} (see section 3.6).
However, unlike\cfg{input-charset} , this directive affects theentireoutput; it's
not possible to switch encodings halfway through.

35

\cfg{text-bullet}{ text} [{ text...}]

This specifies the text which should be used as the bullet in bulletted lists. It can
be one character (\cfg{text-bullet}{-}), or more than one (\cfg{text-
bullet}{(*)}).

Like \cfg{quotes} (see section 3.6), you can specify multiple possible options after
this command, and Halibut will choose the first one which the output character set supports.
For example, you might write\cfg{text-bullet}{\u2022}{\u00b7}{*} , in
which case Halibut would use the Unicode ‘BULLET’ character where possible, fall back
to the ISO-8859-1 ‘MIDDLE DOT’ if that wasn't available, and resort to the ASCII asterisk
if all else failed.

\cfg{text-rule}{ text} [{ text...}]

This specifies the text which should be used for drawing horizontal rules (generated by
\rule ; see section 3.3.3). It can be one character, or more than one. The string you specify
will be repeated to reach the required width, so you can specify something like ‘-= ’ to get
a rule that looks like-=-=-= .

Like \cfg{text-bullet} , you can specify multiple fallback options in this command.

\cfg{text-quotes}{ open-quote}{ close-quote} [{ open-quote}{ close-quote...}]

This specifies a set of quote characters for the text backend, overriding any defined by
\cfg{quotes} . It has the same syntax (see section 3.6).

In this backend, these quotes will also be used to mark text enclosed in the\c command
(see section 3.2.2).

\cfg{text-emphasis}{ start-emph}{ end-emph} [{ start-emph}{ end-emph...}]

This specifies the characters which should be used to surround emphasised text (written
using the\e command; see section 3.2.1).

You should separately specify the start-emphasis and end-emphasis text, each of which
can be more than one character if you want. Also, like\cfg{text-quotes} , you can
specify multiple pairs of fallback options in this command, and Halibut will always use a
matching pair.

4.1.5 Miscellaneous configuration options

\cfg{text-list-suffix}{ text}

This text is appended to the number on a numbered list item (see section 3.3.2.2). So if
you want to label your lists as ‘1)’, ‘2)’ and so on, then you would write\cfg{text-
list-suffix}{)} .

\cfg{text-versionid}{ boolean}

If this is set totrue , version ID paragraphs (defined using the\versionid command
- see section 3.3.6) will be included at the bottom of the text file. If it is set tofalse , they
will be omitted completely.

36

4.1.6 Default settings

The default settings for Halibut's plain text output format are:

\cfg{text-filename}{output.txt}

\cfg{text-width}{68}
\cfg{text-indent}{7}
\cfg{text-indent-code}{2}
\cfg{text-list-indent}{1}
\cfg{text-listitem-indent}{3}
\cfg{text-indent-preamble}{false}

\cfg{text-title-align}{centre}
\cfg{text-title-underline}{\u2550}{=}

\cfg{text-chapter-align}{left}
\cfg{text-chapter-underline}{\u203e}{-}
\cfg{text-chapter-numeric}{false}
\cfg{text-chapter-suffix}{: }

\cfg{text-section-align}{0}{leftplus}
\cfg{text-section-underline}{0}{}
\cfg{text-section-numeric}{0}{true}
\cfg{text-section-suffix}{0}{ }

\cfg{text-section-align}{1}{leftplus}
\cfg{text-section-underline}{1}{}
\cfg{text-section-numeric}{1}{true}
\cfg{text-section-suffix}{1}{ }

... and so on for all section levels below this ...

\cfg{text-charset}{ASCII}
\cfg{text-bullet}{\u2022}{-}
\cfg{text-rule}{\u2500}{-}
\cfg{text-quotes}{\u2018}{\u2019}{`}{'}
\cfg{text-emphasis}{_}{_}

\cfg{text-list-suffix}{.}
\cfg{text-versionid}{true}

4.2 HTML
This output format generates an HTML version of the document. By default, this will be in
multiple files, starting withContents.html and splitting the document into files by chapter
and/or subsection. You can configure precisely how the text is split between HTML files using
the configuration commands described in this section. In particular, you can configure Halibut
to output one single HTML file instead of multiple ones.

Configuration directives with anxhtml- prefix are synonyms for those with anhtml- prefix.

37

4.2.1 Controlling the output file names

\cfg{html-contents-filename}{ filename}

Sets the output file name in which to store the top-level contents page. Since this is the
first page a user ought to see when beginning to read the document, a good choice in many
cases might beindex.html (although this is not the default, for historical reasons).

\cfg{html-index-filename}{ filename}

Sets the file name in which to store the document's index.

\cfg{html-template-filename}{ template}

Provides a template to be used when constructing the file names of each chapter or section
of the document. This template should contain at least oneformatting command, in the
form of a per cent sign followed by a letter. (If you need a literal per cent sign, you can
write %%.)

The formatting commands used in this template are:

%N

Expands to the visible title of the section, with white space removed. So in a chapter
declared as ‘\C{fish} Catching Fish ’, this formatting command would
expand to ‘CatchingFish ’.

%n

Expands to the type and number of the section, without white space. So in
chapter 1 this would expand to ‘Chapter1 ’; in section A.4.3 it would expand to
‘SectionA.4.3 ’, and so on. If the section has no number (an unnumbered chapter
created using\U), this directive falls back to doing the same thing as%N.

%b

Expands to the number of the section, in a format suitable for an HTML fragment
name. The first character of the section type is prepended to the section number. So in
chapter 1 this would expand to ‘C1’; in section A.4.3 it would expand to ‘SA.4.3 ’,
and so on. If the section has no number (an unnumbered chapter created using\U),
this directive falls back to doing the same thing as%N.

%k

Expands to the internal keyword specified in the section title. So in a chapter declared
as ‘\C{fish} Catching Fish ’, this formatting command would expand to
‘ fish ’. If the section has no keyword (an unnumbered chapter created using\U),
this directive falls back to doing the same thing as%N.

These formatting directives can also be used in the\cfg{html-template-
fragment} configuration directive (see section 4.2.7).

\cfg{html-single-filename}{ filename}

Sets the file name in which to store the entire document, if Halibut is configured (using
\cfg{html-leaf-level}{0} to produce a single self-contained file. Both this

38

directiveand \cfg{html-leaf-level}{0} are implicitly generated if you provide
a file name parameter after the command-line option--html (see section 2.1).

4.2.2 Controlling the splitting into HTML files

By default, the HTML output from Halibut is split into multiple files. Each file typically contains
a single chapter or section and everything below it, unless subsections of that chapter are
themselves split off into further files.

Most files also contain a contents section, giving hyperlinks to the sections in the file and/or the
sections below it.

The configuration directives listed below allow you to configure the splitting into files, and the
details of the contents sections.

\cfg{html-leaf-level}{ depth}

This setting indicates the depth of section which should be given a ‘leaf’ file (a file with
no sub-files). So if you set it to 1, for example, then every chapter will be given its own
HTML file, plus a top-level contents file. If you set this to 2, then each chapterandeach
\H section will have a file, and the chapter files will mostly just contain links to their sub-
files.

If you set this option to zero, then the whole document will appear in a single file. If you do
this, Halibut will call that fileManual.html instead ofContents.html by default.

This option is automatically set to zero if you provide a file name parameter after the
command-line option--html (see section 2.1), because you have specified a single file
name and so Halibut assumes you want the whole document to be placed in that file.

You can also specify the special nameinfinity (or infinite or inf) if you want to
ensure thateverysection and subsection ends up in a separate file no matter how deep you
go.

\cfg{html-contents-depth}{ level}{ depth}

This directive allows you to specify how deep any contents section in a particular level of
file should go.

The level parameter indicates which level of contents section you are dealing with. 0
denotes the main contents section in the topmost fileContents.html ; 1 denotes a
contents section in a chapter file; 2 is a contents section in a file containing a\H heading,
and so on.

Thedepthparameter indicates the maximum depth of heading which will be shown in this
contents section. Again, 1 denotes a chapter, 2 is a\H heading, 3 is a\S heading, and so
on.

So, for example:\cfg{html-contents-depth}{1}{3} instructs Halibut to put
contents links in chapter files for all sections down to\S level, but not to go into any more
detail than that.

For backwards compatibility, the alternative syntax\cfg{html-contents-depth-
level}{ depth} is also supported.

39

\cfg{html-leaf-contains-contents}{ boolean}

If you set this totrue , then each leaf file will contain its own contents section which
summarises the text within it.

\cfg{html-leaf-smallest-contents}{ number}

Contents sections in leaf files are not output at all if they contain very few entries (on
the assumption that it just isn't worth bothering). This directive configures the minimum
number of entries required in a leaf contents section to make Halibut bother generating it
at all.

4.2.3 Including pieces of your own HTML

The directives in this section allow you to supply pieces of verbatim HTML code, which will
be included in various parts of the output files.

Note that none of Halibut's usual character set translation is applied to this code; it is assumed
to already be in a suitable encoding for the target HTML files.

\cfg{html-head-end}{ HTML text}

The text you provide in this directive is placed at the end of the<HEAD>section of each
output HTML file. So this is a good place to put, for example, a link to a CSS stylesheet.

\cfg{html-local-head}{ HTML text}

This configuration directive is local: you specify it within a document section, and it acts
on that section only.

The text you provide in this directive is placed at the end of the<HEAD>section of
whichever output HTML file contains the section in which the directive was placed. You
can specify this directive multiple times in multiple sections if you like.

This directive is particularly useful for constructing MacOS on-line help, which is mostly
normal HTML but which requires a special<META NAME="AppleTitle"> tag in the
topmost source file. You can arrange this by placing this configuration directive in the
preamble or the introduction section, something like this:

\cfg{html-local-head}{<meta name="AppleTitle"
content="MyApp Help">}

\cfg{html-body-tag}{ HTML text}

The text you provide in this directive is used in place of the<BODY>tag in each output
file. So if you wanted to define a background colour, for example, you could write
\cfg{html-body-tag}{<body bg="#123456">} .

\cfg{html-body-start}{ HTML text}

The text you provide in this directive is placed at the beginning of the<BODY>section of
each output HTML file. So if you intend your HTML files to be part of a web site with a
standard house style, and the style needs a header at the top of every page, this is where
you can add that header.

40

\cfg{html-body-end}{ HTML text}

The text you provide in this directive is placed at the end of the<BODY>section of each
output HTML file, before any address section. So if you intend your HTML files to be part
of a web site with a standard house style, and the style needs a footer at the bottom of every
page, this is where you can add that footer.

\cfg{html-address-start}{ HTML text}

The text you provide in this directive is placed at the beginning of the<ADDRESS>section
at the bottom of each output HTML file. This might be a good place to put authors' contact
details, for example.

\cfg{html-address-end}{ HTML text}

The text you provide in this directive is placed at the end of the<ADDRESS>section at
the bottom of each output HTML file, after the version IDs (if present).

\cfg{html-navigation-attributes}{ HTML attributes}

The text you provide in this directive is included inside the<P> tag containing the
navigation links at the top of each page (‘Previous’ / ‘Contents’ / ‘Next’). So if you
wanted the navigation links to have a particular CSS style, you could write\cfg{html-
navigation-attributes}{class="foo"} , and the navigation-links paragraph
would then begin with the tag<p class="foo"> .

4.2.4 Configuring heading display

\cfg{html-chapter-numeric}{ boolean}

If this is set totrue , then chapter headings will not contain the word ‘Chapter’ (or
whatever other word you have defined in its place - see section 3.3.5 and section 3.6); they
will just contain the chapternumber, followed by the chapter title. If you set this tofalse ,
chapter headings will be prefixed by ‘Chapter’ or equivalent.

\cfg{html-chapter-suffix}{ text}

This specifies the suffix text to be appended to the chapter number, before displaying the
chapter title. For example, if you set this to ‘: ’, then the chapter title might look something
like ‘Chapter 2: Doing Things’.

\cfg{html-section-numeric}{ level}{ boolean}

Specifies whether section headings at a particular level should contain the word ‘Section’ or
equivalent (iffalse), or should be numeric only (iftrue). Thelevelparameter specifies
which level of section headings you want to affect: 0 means first-level headings (\H), 1
means second-level headings (\S), 2 means the level below that (\S2), and so on.

\cfg{html-section-suffix}{ level}{ text}

Specifies the suffix text to be appended to section numbers at a particular level, before
displaying the section title.

4.2.5 Configuring standard text

These directives let you fine-tune the names Halibut uses in places such as the navigation bar to

41

refer to various parts of the document, and other standard pieces of text, for instance to change
them to a different language.

\cfg{html-preamble-text}{ text}

\cfg{html-contents-text}{ text}

\cfg{html-index-text}{ text}

Text used to refer to the preamble (i.e., any paragraphs before the first chapter heading),
contents, and index respectively, in the navigation bar, contents, and index.

(html-contents-text and html-index-text override the cross-format
configuration keywordscontents and index (see section 3.6, if both appear. They
are legacy keywords preserved for backwards compatibility; you should generally use
contents andindex .)

\cfg{html-title-separator}{ text}

If multiple headings are used in a file's<TITLE> tag, this text is used to separate them.

\cfg{html-index-main-separator}{ text}

Separator between index term and references in the index.

\cfg{html-index-multiple-separator}{ text}

Separator between multiple references for a single index term in the index.

\cfg{html-pre-versionid}{ text}

\cfg{html-post-versionid}{ text}

Text surrounding each output version ID paragraph.

\cfg{html-nav-prev-text}{ text}

\cfg{html-nav-next-text}{ text}

The text used for the ‘previous page’ and ‘next page’ links on the navigation bar.

\cfg{html-nav-separator}{ text}

Separator between links in the navigation bar.

4.2.6 Configuring the characters used

Unlike the other backends, HTML does not have a single\cfg{html-charset} directive,
as there are several levels of character encoding to consider.

The character set names are the same as for\cfg{input-charset} (see section 3.6).
However, unlike\cfg{input-charset} , these directives affect theentireoutput; it's not
possible to switch encodings halfway through.

\cfg{html-output-charset}{ character set name}

The character encoding of the HTML file to be output. Unicode characters in this encoding's
repertoire are included literally rather than as HTML entities.

42

\cfg{html-restrict-charset}{ character set name}

Only Unicode characters representable in this character set will be output; any others will
be omitted and use their fallback text, if any. Characters not in ‘html-output-charset’ will
be represented as HTML numeric entities.

\cfg{html-quotes}{ open-quote}{ close-quote} [{ open-quote}{ close-quote...}]

Specifies the quotation marks to use, overriding any\cfg{quotes} directive. You
can specify multiple fallback options. Works exactly like the\cfg{text-quotes}
directive (see section 4.1.4).

4.2.7 Miscellaneous options

\cfg{html-version}{ version}

Identifies the precise version of HTML that is output. This affects the declaration within
the HTML, and also has minor effects on the body of the HTML so that it is valid for the
declared version. The available variants are:

html3.2

W3C HTML 3.2

html4

W3C HTML 4.01 Strict

iso-html

ISO/IEC 15445:2000

xhtml1.0transitional

W3C XHTML 1.0 Transitional

xhtml1.0strict

W3C XHTML 1.0 Strict

\cfg{html-template-fragment}{ template} [{ template}{ ...}]

This directive lets you specify a template, with exactly the same syntax used in
\cfg{html-template-filename} (see section 4.2.1), to be used for the anchor
names () used to allow URLs to refer to specific sections within a
particular HTML file. So if you set this to ‘%k’, for example, then each individual section
in your document will be addressable by means of a URL ending in a# followed by your
internal section keyword.

If more than one template is specified, anchors are generated in all the specified formats;
Halibut's own cross-references are generated with the first template.

Characters that are not permitted in anchor names are stripped. If there are no valid
characters left, or a fragment is non-unique, Halibut starts inventing fragment names and
suffixes as appropriate.

43

Note that there are potentially fragment names that are not controlled by this mechanism,
such as index references.

\cfg{html-versionid}{ boolean}

If this is set totrue , version ID paragraphs (defined using the\versionid command
- see section 3.3.6) will be included visibly in the<ADDRESS>section at the bottom of
each HTML file. If it is set tofalse , they will only be included as HTML comments.

\cfg{html-rellinks}{ boolean}

If this is set totrue , machine-readable relational links will be emitted in each HTML file
(<LINK REL=" next"> and so on within the<HEAD>section) providing links to related
files. The same set of links are provided as in the navigation bar (with which this should
not be confused).

Some browsers make use of this semantic information, for instance to allow easy navigation
through related pages, and to prefetch the next page. (Search engines can also make use
of it.) However, many browsers ignore this markup, so it would be unwise to rely on it for
navigation.

The use and rendering of this information is entirely up to the browser; none of the other
Halibut options for the navigation bar will have any effect.

\cfg{html-suppress-navlinks}{ boolean}

If this is set totrue , the usual navigation links within thebodyof each HTML file (near
the top of the rendered page) will be suppressed.

\cfg{html-suppress-address}{ boolean}

If this is set totrue , the<ADDRESS>section at the bottom of each HTML file will be
omitted completely. (This will therefore also cause version IDs not to be included visibly.)

\cfg{html-author}{ text}

The text supplied here goes in a<META name="author"> tag in the output HTML
files, so that browsers which support this can automatically identify the author of the
document.

\cfg{html-description}{ text}

The text supplied here goes in a<META name="description"> tag in the output
HTML files, so that browsers which support this can easily pick out a brief description of
the document.

4.2.8 Generating MS Windows HTML Help

The HTML files output from Halibut's HTML back end can be used as input to the MS Windows
HTML Help compiler. In order to do this, you also need some auxiliary files: a project file, and
(probably) a contents file and an index file. Halibut can optionally generate those as well.

To enable the generation of MS HTML Help auxiliary files, use the following configuration
directives:

44

\cfg{html-mshtmlhelp-project}{ filename}

Instructs Halibut to output an HTML Help project file with the specified name. You will
almost certainly want the filename to end in the extension.hhp (although Halibut will
not enforce this). If you use this option, you must also use thehtml-mshtmlhelp-chm
option to specify the desired name of the compiled help file.

\cfg{html-mshtmlhelp-chm}{ filename}

Specifies the desired name of the compiled HTML Help file. You will almost certainly want
this to have the extension.chm (although Halibut will not enforce this). The name you
specify here will be written into the help project file. If you specify this option, you must
also use thehtml-mshtmlhelp-project option to request a help project file in the
first place.

\cfg{html-mshtmlhelp-contents}{ filename}

Instructs Halibut to output an HTML Help contents file with the specified name, and refer to
it in the help project file. You will almost certainly want the filename to end in the extension
.hhc (although Halibut will not enforce this). This option will be ignored if you have not
also specified a help project file.

Creating a contents file like this causes the HTML Help viewer to display a contents tree
in the pane to the left of the main text window. You can choose to generate an HTML Help
project without this feature, in which case the user will still be able to navigate around the
document by using the ordinary internal links in the HTML files themselves just as if it
were a web page. However, using a contents file is recommended.

\cfg{html-mshtmlhelp-index}{ filename}

Instructs Halibut to output an HTML Help index file with the specified name, and refer to it
in the help project file. You will almost certainly want the filename to end in the extension
.hhk (although Halibut will not enforce this). This option will be ignored if you have not
also specified a help project file.

Specifying this option suppresses the generation of an HTML-based index file (see
\cfg{html-index-filename} in section 4.2.1).

Creating an index file like this causes the HTML Help viewer to provide a list of index terms
in a pane to the left of the main text window. You can choose to generate an HTML Help
project without this feature, in which case a conventional HTML index will be generated
instead (assuming you have any index terms at all defined) and the user will still be able
to use that. However, using an index file is recommended.

Halibut will not output an index file at all, or link to one from the help project file, if your
document contains no index entries.

If you use the above options, Halibut will output a help project file which you should be able to
feed straight to the command-line MS HTML Help compiler (HHC.EXE), or load into the MS
HTML Help Workshop (HHW.EXE).

You may also wish to alter other HTML configuration options to make the resulting help file
look more like a help file and less like a web page. A suggested set of additional configuration
options for HTML Help is as follows:

45

• \cfg{html-leaf-level}{infinite} , because HTML Help works best with lots
of small files (‘topics’) rather than a few large ones. In particular, the contents and index
mechanisms can only reference files, not subsections within files.

• \cfg{html-leaf-contains-contents}{false} , to suppress the contents list
above the main text of each bottom-level file.

• \cfg{html-suppress-navlinks}{true} , because HTML Help has its own
navigation facilities and it looks a bit strange to duplicate them.

• \cfg{html-suppress-address}{true} , because the<ADDRESS>section
makes less sense in a help file than it does on a web page.

4.2.9 Default settings

The default settings for Halibut's HTML output format are:

\cfg{html-contents-filename}{Contents.html}
\cfg{html-index-filename}{IndexPage.html}
\cfg{html-template-filename}{%n.html}
\cfg{html-single-filename}{Manual.html}

\cfg{html-leaf-level}{2}
\cfg{html-leaf-contains-contents}{false}
\cfg{html-leaf-smallest-contents}{4}
\cfg{html-contents-depth}{0}{2}
\cfg{html-contents-depth}{1}{3}
... and so on for all section levels below this ...

\cfg{html-head-end}{}
\cfg{html-body-tag}{<body>}
\cfg{html-body-start}{}
\cfg{html-body-end}{}
\cfg{html-address-start}{}
\cfg{html-address-end}{}
\cfg{html-navigation-attributes}{}

\cfg{html-chapter-numeric}{false}
\cfg{html-chapter-suffix}{: }

\cfg{html-section-numeric}{0}{true}
\cfg{html-section-suffix}{0}{ }

\cfg{html-section-numeric}{1}{true}
\cfg{html-section-suffix}{1}{ }

... and so on for all section levels below this ...

\cfg{html-preamble-text}{Preamble}
\cfg{html-contents-text}{Contents}
\cfg{html-index-text}{Index}
\cfg{html-title-separator}{ - }

46

\cfg{html-index-main-separator}{: }
\cfg{html-index-multiple-separator}{, }
\cfg{html-pre-versionid}{[}
\cfg{html-post-versionid}{]}
\cfg{html-nav-prev-text}{Previous}
\cfg{html-nav-next-text}{Next}
\cfg{html-nav-separator}{ | }

\cfg{html-output-charset}{ASCII}
\cfg{html-restrict-charset}{UTF-8}
\cfg{html-quotes}{\u2018}{\u2019}{"}{"}

\cfg{html-version}{html4}
\cfg{html-template-fragment}{%b}
\cfg{html-versionid}{true}
\cfg{html-rellinks}{true}
\cfg{html-suppress-navlinks{false}
\cfg{html-suppress-address}{false}
\cfg{html-author}{}
\cfg{html-description}{}

4.3 Windows Help
This output format generates data that can be used by the Windows Help program
WINHLP32.EXE. There are two actual files generated, one ending in.hlp and the other ending
in .cnt .

Note that as of 2006, MS is discontinuing the Windows Help format in favour of the newer
HTML Help format (.chm files). Halibut is not currently able to generate.chm files directly,
but its HTML back end can write out project files suitable for use as input to the MS HTML
Help compiler. See section 4.2.8 for more information on this.

Currently, the Windows Help output is hardcoded to be in the ‘Win1252’ character set. (If anyone
knows how character sets are encoded in Windows Help files, we'd appreciate help.)

The Windows Help output format supports the following configuration directives:

4.3.1 Output file name

\cfg{winhelp-filename}{ filename}

Sets the output file name in which to store the man page. This directive is implicitly
generated if you provide a file name parameter after the command-line option--winhelp
(see section 2.1).

Your output file name should end with.hlp ; if it doesn't, Halibut will append it. Halibut
will also generate a contents file (ending in.cnt) alongside the file name you specify.

4.3.2 Configuring the characters used

\cfg{winhelp-bullet}{ text} [{ text} ...]

Specifies the text to use as the bullet in bulletted lists. You can specify multiple fallback
options. Works exactly like the\cfg{text-bullet} directive (see section 4.1.4).

47

\cfg{winhelp-quotes}{ open-quote}{ close-quote} [{ open-quote}{ close-quote...}]

Specifies the quotation marks to use, overriding any\cfg{quotes} directive. You
can specify multiple fallback options. Works exactly like the\cfg{text-quotes}
directive (see section 4.1.4).

4.3.3 Miscellaneous configuration options

\cfg{winhelp-contents-titlepage}{ title}

Sets the text used to describe the help page containing the blurb (see section 3.3.6) and
table of contents.

\cfg{winhelp-section-suffix}{ text}

Specifies the suffix text to be appended to section numbers, before displaying the section
title. (Applies to all levels.)

\cfg{winhelp-list-suffix}{ text}

This text is appended to the number on a numbered list item, in exactly the same way as
\cfg{text-list-suffix} (see section 4.1.4).

\cfg{winhelp-topic}{ topic-name}

This directive defines a Windows Help topic name in the current section. Topic names can
be used by the program invokingWINHELP.EXEto jump straight to a particular section.
So you can use this for context-sensitive help.

For example, if you used this directive in a particular section:

\cfg{winhelp-topic}{savingfiles}

then a Windows application could invoke Windows Help to jump to that particular section
in the help file like this:

WinHelp(hwnd, "mydoc.hlp", HELP_COMMAND,
 (DWORD)"JI(`',`savingfiles')");

You can use this configuration directive many times, in many different subsections of your
document, in order to define a lot of different help contexts which you can use in this way.

4.3.4 Default settings

The default settings for the Windows Help output format are:

\cfg{winhelp-filename}{output.hlp}

\cfg{winhelp-bullet}{\u2022}{-}
\cfg{winhelp-quotes}{\u2018}{\u2019}{"}{"}

\cfg{winhelp-contents-titlepage}{Title page}
\cfg{winhelp-section-suffix}{: }
\cfg{winhelp-list-suffix}{.}

and no\cfg{winhelp-topic} directives anywhere.

48

4.4 Unix manpages
This output format generates a Unixmanpage. That is to say, it generatesnroff input designed
to work with the-mandoc macro package.

The available configuration options for this format are as follows:

4.4.1 Output file name

\cfg{man-filename}{ filename}

Sets the output file name in which to store the man page. This directive is implicitly
generated if you provide a file name parameter after the command-line option--man (see
section 2.1).

4.4.2 Configuring headers and footers

\cfg{man-identity}{ text}{ text...}

This directive is used to generate the initial.TH directive that appears at the top of aman
page. It expects to be followed by some number of brace pairs containing text, which will
be used in the headers and footers of the formatted output.

A traditional order for the arguments appears to be:

1. The name of the program.

2. The (numeric) manual section.

3. The date that themanpage was written.

4. The name of any containing suite of which the program is a part.

5. The name of the author of themanpage.

For example, a typicalmanpage might contain

\cfg{man-identity}{make-foo}{1}{June 2003}{foo-utils}{Fred
Bloggs}

4.4.3 Configuring heading display

\cfg{man-headnumbers}{ boolean}

If this is set totrue , then section headings in themanpage will have their section numbers
displayed as usual. If set tofalse , the section numbers will be omitted. (man pages
traditionally have section names such as ‘SYNOPSIS’, ‘OPTIONS’ and ‘BUGS’, and do
not typically number them, sofalse is the setting which conforms most closely to normal
manstyle.)

\cfg{man-mindepth}{ depth}

If this is set to a number greater than 0, then section headingshigherthan the given depth
will not be displayed. If it is set to zero, all section headings will be displayed as normal.

The point of this is so that you can use the same Halibut input file to generate a quick-
referencemanpage for a program,and to include thatmanpage as an appendix in your

49

program's full manual. If you are to include themanpage as an appendix, then the internal
headings within the page will probably need to be at\H or \S level; therefore, when you
format that input file on its own to create themanpage itself, you will need to have defined
a \C and possibly a\H heading beforehand, which you don't want to see displayed.

Here's an example. You might have a fileappendix.but , which simply says

\A{manpages} \cw{man} pages for the Foo tool suite

\cfg{man-mindepth}{2}

Then you have a filemake-foo.but , and probably others like it as well, each of which
looks something like this:

\cfg{man-identity}{make-foo}{1}{June 2003}{foo-utils}{Fred
Bloggs}

\H{man-foo} \cw{man} page for \c{make-foo}

\S{man-foo-name} NAME

\c{make-foo} - create Foo files for the Foo tool suite

\S{man-foo-synopsis} SYNOPSIS

... and so on ...

So when you're generating your main manual, you can includeappendix.but followed
by make-foo.but and any otherman pages you have, and yourman pages will be
formatted neatly as part of an appendix. Then, in a separate run of Halibut, you can just do

halibut appendix.but make-foo.but

and this will generate amanpageoutput.1 , in which the headings ‘manpages for the
Foo tool suite’ and ‘manpage formake-foo ’ will not be displayed because of theman-
mindepth directive. So the first visible heading in the outputmanpage will be ‘NAME’,
exactly as a user would expect.

4.4.4 Configuring the characters used

\cfg{man-charset}{ character set}

Specifies what character set the output should be in, similarly to\cfg{text-charset}
(see section 4.1.4).

\cfg{man-bullet}{ text} [{ text} ...]

Specifies the text to use as the bullet in bulletted lists. You can specify multiple fallback
options. Works exactly like the\cfg{text-bullet} directive (see section 4.1.4).

\cfg{man-rule}{ text} [{ text...}]

This specifies the text which should be used for drawing horizontal rules (generated by
\rule ; see section 3.3.3) when the manual page is rendered into text. It should only be
one character long, but otherwise it works like the\cfg{text-rule} directive (see

50

section 4.1.4).

\cfg{man-quotes}{ open-quote}{ close-quote} [{ open-quote}{ close-quote...}]

Specifies the quotation marks to use, overriding any\cfg{quotes} directive. You
can specify multiple fallback options. Works exactly like the\cfg{text-quotes}
directive (see section 4.1.4).

4.4.5 Default settings

The default settings for themanpage output format are:

\cfg{man-filename}{output.1}

\cfg{man-identity}{}

\cfg{man-headnumbers}{false}
\cfg{man-mindepth}{0}

\cfg{man-charset}{ASCII}
\cfg{man-bullet}{\u2022}{o}
\cfg{man-rule}{\u2500}{-}
\cfg{man-quotes}{\u2018}{\u2019}{"}{"}

4.5 GNU info

This output format generates files which can be used with the GNUinfo program.

There are typically multiple output files: a primary file whose name usually ends in.info , and
one or more subsidiary files whose names have numbers on the end, so that they end in.info-
1, .info-2 and so on. Alternatively, this output format can be configured to output a single
large file containing the whole document.

The info output format supports the following configuration directives:

4.5.1 Controlling the output filenames

\cfg{info-filename}{ filename}

Sets the output file name in which to store theinfo file. This directive is implicitly
generated if you provide a file name parameter after the command-line option--info
(see section 2.1).

The suffixes-1 , -2 , -3 and so on will be appended to your output file name to produce
any subsidiary files required.

Note thatinfo files refer to their own names internally, so these files cannot be renamed
after creation and remain useful.

\cfg{info-max-file-size}{ bytes}

Sets the preferred maximum file size for each subsidiary file. As a special case, if you set
this to zero, there will be no subsidiary files and the whole document will be placed in
a single self-contained output file. (However, note that this file can still not be renamed
usefully.)

51

The preferred maximum file size is only a guideline. Halibut may be forced to exceed it if
a single section of the document is larger than the maximum size (since individualinfo
nodes may not be split between files).

4.5.2 Indentation and line width

\cfg{info-width}{ width}

Sets the width of the main part of the document, in characters. Works exactly like the
\cfg{text-width} directive (see section 4.1.2).

\cfg{info-indent-code}{ indent}

Specifies the extra indentation for code paragraphs. Works exactly like the\cfg{text-
indent-code} directive (see section 4.1.2).

\cfg{info-index-width}{ width}

Specifies how much horizontal space to leave in the index node for the text of index terms,
before displaying the sections the terms occur in.

\cfg{info-list-indent}{ indent}

Specifies the extra indentation before the bullet or number in a list item. Works exactly like
the\cfg{text-list-indent} directive (see section 4.1.2).

\cfg{info-listitem-indent}{ indent}

Specifies the additional indentation before the body of a list item. Works exactly like the
\cfg{text-listitem-indent} directive (see section 4.1.2).

4.5.3 Configuring heading display

\cfg{info-section-suffix}{ text}

Specifies the suffix text to be appended to each section number before displaying the section
title. For example, if you set this to ‘: ’, then a typical section title might look something
like ‘Section 3.1: Something Like This’.

\cfg{info-underline}{ text} [{ text} ...]

Specifies the text to be used to underline section titles. Works very much like the
\cfg{text-chapter-underline} directive (see section 4.1.3). You can specify
more than one option, and Halibut will choose the first one supported by the character set.

4.5.4 Controlling the characters used

\cfg{info-charset}{ character set}

Specifies what character set the output should be in, similarly to\cfg{text-charset}
(see section 4.1.4).

\cfg{info-bullet}{ text} [{ text} ...]

Specifies the text to use as the bullet in bulletted lists. You can specify multiple fallback
options. Works exactly like the\cfg{text-bullet} directive (see section 4.1.4).

52

\cfg{info-rule}{ text} [{ text} ...]

Specifies the text used to draw horizontal rules. You can specify multiple fallback options.
Works exactly like the\cfg{text-rule} directive (see section 4.1.4).

\cfg{info-quotes}{ open-quote}{ close-quote} [{ open-quote}{ close-quote...}]

Specifies the quotation marks to use, overriding any\cfg{quotes} directive. You
can specify multiple fallback options. Works exactly like the\cfg{text-quotes}
directive (see section 4.1.4).

\cfg{info-emphasis}{ start-emph}{ end-emph} [{ start-emph}{ end-emph...}]

Specifies how to display emphasised text. You can specify multiple fallback options. Works
exactly like the\cfg{text-emphasis} directive (see section 4.1.4).

4.5.5 Miscellaneous configuration options

\cfg{info-list-suffix}{ text}

Specifies the text to append to the item numbers in a numbered list. Works exactly like the
\cfg{text-list-suffix} directive (see section 4.1.5).

\cfg{info-dir-entry}{ section}{ short name}{ long name} [{ keyword}]

Constructs anINFO-DIR-ENTRY section and places it in the header of the Info file. This
mechanism is used to automatically generate thedir file at the root of a Unix system's
info collection.

The parameters to this directive are:

section

Specifies the section of thedir file in which you want your document referenced.
For example, ‘Development’, or ‘Games’, or ‘Miscellaneous’.

short name

Specifies a short name for the directory entry, which will appear at the start of the
menu line.

long name

Specifies a long name for the directory entry, which will appear at the end of the menu
line.

keyword

This parameter is optional. If it is present, then the directory entry will cause a
jump to a particular subsection of your document, rather than starting at the top. The
subsection will be the one referred to by the given keyword (see section 3.3.5 for
details about assigning keywords to document sections).

For example, in a document describing many game programs, the configuration directive

\cfg{info-dir-entry}{Games}{Chess}{Electronic chess
game}{chess}

53

might produce text in thedir file looking something like this:

Games
* Chess: (mygames)Chapter 3. Electronic chess game

if the output file were calledmygames.info and the keywordchess had been used to
define Chapter 3 of the document.

4.5.6 Default settings

The default settings for theinfo output format are:

\cfg{info-filename}{output.info}
\cfg{info-max-file-size}{65536}

\cfg{info-width}{70}
\cfg{info-indent-code}{2}
\cfg{info-index-width}{40}
\cfg{info-list-indent}{1}
\cfg{info-listitem-indent}{3}

\cfg{info-section-suffix}{: }
\cfg{info-underline}{\u203e}{-}

\cfg{info-charset}{ASCII}
\cfg{info-bullet}{\u2022}{-}
\cfg{info-rule}{\u2500}{-}
\cfg{info-quotes}{\u2018}{\u2019}{`}{'}
\cfg{info-emphasis}{_}{_}

\cfg{info-list-suffix}{.}

and no\cfg{info-dir-entry} directives.

4.6 Paper formats
These output formats (currently PDF and PostScript) generate printable manuals. As such, they
share a number of configuration directives.

4.6.1 PDF

This output format generates a printable manual in PDF format. In addition, it uses some PDF
interactive features to provide an outline of all the document's sections and clickable cross-
references between sections.

There is one configuration option specific to PDF:

\cfg{pdf-filename}{ filename}

Sets the output file name in which to store the PDF file. This directive is implicitly generated
if you provide a file name parameter after the command-line option--pdf (see section
2.1).

The default settings for the PDF output format are:

54

\cfg{pdf-filename}{output.pdf}

4.6.2 PostScript

This output format generates a printable manual in PostScript format. This should look exactly
identical to the PDF output (see section 4.6.2), and usespdfmark to arrange that if converted
to PDF it will contain the same interactive features.

There is one configuration option specific to PostScript:

\cfg{ps-filename}{ filename}

Sets the output file name in which to store the PostScript file. This directive is implicitly
generated if you provide a file name parameter after the command-line option--ps (see
section 2.1).

The default settings for the PostScript output format are:

\cfg{ps-filename}{output.ps}

4.6.3 Configuring layout and measurements

All measurements are in PostScript points (72 points to the inch).

4.6.3.1 Page properties

\cfg{paper-page-width}{ points}

\cfg{paper-page-height}{ points}

Specify the absolute limits of the paper.

\cfg{paper-left-margin}{ points}

\cfg{paper-top-margin}{ points}

\cfg{paper-right-margin}{ points}

\cfg{paper-bottom-margin}{ points}

Specify the margins. Most text appears within these margins, except:

• Section numbers, which appear in the left margin.

• The footer (containing page numbers), which appears in the bottom margin.

4.6.3.2 Vertical spacing

\cfg{paper-base-leading}{ points}

Specifies the amount of space between lines of text within a paragraph. (So, if the font size
is 12pt and there is 2pt of leading, there will be 14pt between successive baselines.)

\cfg{paper-base-para-spacing}{ points}

Specifies the amount of vertical space between paragraphs. (The vertical space between
paragraphs doesnot includepaper-base-leading .)

55

4.6.3.3 Indentation

\cfg{paper-list-indent}{ points}

Specifies the indentation of the bullet or number in a bulletted or numbered list, similarly
to \cfg{text-list-indent} (see section 4.1.2).

\cfg{paper-listitem-indent}{ points}

Specifies theextra indentation for the body of a list item, over and above the amount
configured in\cfg{paper-list-indent} .

\cfg{paper-quote-indent}{ points}

Specifies the amount of indentation for a level of quoting. Used for\quote (see section
3.3.4) and code quotes with\c (see section 3.2.2).

4.6.3.4 Headings

\cfg{paper-chapter-top-space}{ points}

Specifies the space between the top margin and the top of the chapter heading. (Each
chapter begins on a new page.)

\cfg{paper-chapter-underline-thickness}{ points}

Specifies the vertical thickness of the black rule under chapter headings.

\cfg{paper-chapter-underline-depth}{ points}

Specifies the distance between the base of the chapter heading and thebaseof the
underlying rule.

\cfg{paper-sect-num-left-space}{ points}

Specifies the distance between the left margin and theright of section numbers (which are
in the left margin).

4.6.3.5 Contents and index

\cfg{paper-contents-index-step}{ points}

\cfg{paper-contents-margin}{ points}

\cfg{paper-leader-separation}{ points}

Specifies the horizontal spacing between dots inleaders(the dotted lines that appear
between section headings and page numbers in the table of contents).

\cfg{paper-footer-distance}{ points}

Specifies the distance between the bottom margin and thebaseof the footer (which contains
page numbers).

\cfg{paper-index-columns}{ columns}

Specifies the number of columns the index should be divided into.

56

\cfg{paper-index-gutter}{ points}

Specifies the amount of horizontal space between index columns.

\cfg{paper-index-minsep}{ points}

Specifies the minimum allowable horizontal space between an index entry and its page
number. If the gap is smaller, the page number is moved to the next line.

4.6.3.6 Fonts

The directives in this section control which fonts Halibut uses for various kinds of text. Directives
for setting the font normally take three font names, the first of which is used for normal text,
the second for emphasised text, and the third for code. Any fonts which aren't specified are left
unchanged. Fonts are named using their PostScript names.

Halibut intrinsically knows about some fonts, and these fonts are also built into all PDF and
most PostScript implementations. These are:

• Times-Roman

• Times-Italic

• Times-Bold

• Times-BoldItalic

• Helvetica

• Helvetica-Oblique

• Helvetica-Bold

• Helvetica-BoldOblique

• Courier

• Courier-Oblique

• Courier-Bold

• Courier-BoldOblique

These fonts can be used without further formality. To use any other font, Halibut needs at least
to know its measurements, which are provided in an Adobe Font Metrics (AFM) file. Halibut
can also embed Type 1 fonts in its PDF and PostScript output if provided with font file in either
hexadecimal (PFA) or IBM PC (PFB) format. To provide an AFM, PFA, or PFB file to Halibut,
simply name it on Halibut's command line. If a PFA or PFB file is specified, the corresponding
AFM file must come first.

Font sizes are specified in PostScript points (72 to the inch).

\cfg{paper-title-fonts}{ normal-font} [{ emph-font} [{ code-font}]]

Specifies the fonts to use for text in the document title.

\cfg{paper-title-font-size}{ points}

57

Specifies the font size of the document title.

\cfg{paper-chapter-fonts}{ normal-font} [{ emph-font} [{ code-font}]]

Specifies the fonts to use for text in chapter titles.

\cfg{paper-chapter-font-size}{ points}

Specifies the font size of chapter titles.

\cfg{paper-section-fonts}{ level}{ normal-font} [{ emph-font} [{ code-font}]]

Specifies the fonts to use for text in section headings at thelevelspecified.

\cfg{paper-section-font-size}{ level}{ points}

Specifies the font size of section headings at thelevelspecified.

\cfg{paper-base-fonts}{ normal-font} [{ emph-font} [{ code-font}]]

Specifies the fonts to use for text in the body text.

\cfg{paper-base-font-size}{ points}

Specifies the font size of body text.

\cfg{paper-code-fonts}{ bold-font} [{ italic-font} [{ normal-font}]]

Specifies the fonts to use for text in code paragraps. Thebold-fontis used for bold text, the
italic-font for emphasised text, and thenormal-fontfor normal code.

\cfg{paper-code-font-size}{ points}

Specifies the font size of text in code paragraphs.

\cfg{paper-pagenum-font-size}{ points}

Specifies the font size to use for page numbers.

4.6.3.7 Miscellaneous

\cfg{paper-rule-thickness}{ points}

Specifies the vertical thickness of the rule produced by the\rule command (see section
3.3.3). (Note that no extra space is reserved for thicker rules.)

4.6.4 Configuring the characters used

\cfg{paper-bullet}{ text} [{ text} ...]

Specifies the text to use as the bullet in bulletted lists. You can specify multiple fallback
options. Works exactly like the\cfg{text-bullet} directive (see section 4.1.4).

\cfg{paper-quotes}{ open-quote}{ close-quote} [{ open-quote}{ close-quote...}]

Specifies the quotation marks to use, overriding any\cfg{quotes} directive. You
can specify multiple fallback options. Works exactly like the\cfg{text-quotes}
directive (see section 4.1.4).

58

4.6.5 Default settings for paper formats

The default page size corresponds to 210 × 297 mm, i.e., A4 paper.

\cfg{paper-page-width}{595}
\cfg{paper-page-height}{842}

\cfg{paper-left-margin}{72}
\cfg{paper-top-margin}{72}
\cfg{paper-right-margin}{72}
\cfg{paper-bottom-margin}{108}

\cfg{paper-base-leading}{1}
\cfg{paper-base-para-spacing}{10}

\cfg{paper-list-indent}{6}
\cfg{paper-listitem-indent}{18}
\cfg{paper-quote-indent}{18}

\cfg{paper-chapter-top-space}{72}
\cfg{paper-chapter-underline-thickness}{3}
\cfg{paper-chapter-underline-depth}{14}
\cfg{paper-sect-num-left-space}{12}

\cfg{paper-contents-index-step}{24}
\cfg{paper-contents-margin}{84}
\cfg{paper-leader-separation}{12}
\cfg{paper-footer-distance}{32}
\cfg{paper-index-columns}{2}
\cfg{paper-index-gutter}{36}
\cfg{paper-index-minsep}{18}

\cfg{paper-base-fonts}{Times-Roman}{Times-Italic}{Courier}
\cfg{paper-base-font-size}{12}
\cfg{paper-code-fonts}{Courier-Bold}{Courier-Oblique}{Courier}
\cfg{paper-code-font-size}{12}
\cfg{paper-title-fonts}{Helvetica-Bold}
 {Helvetica-BoldOblique}{Courier-Bold}
\cfg{paper-title-font-size}{24}
\cfg{paper-chapter-fonts}{Helvetica-Bold}
 {Helvetica-BoldOblique}{Courier-Bold}
\cfg{paper-chapter-font-size}{20}
\cfg{paper-section-fonts}{0}{Helvetica-Bold}
 {Helvetica-BoldOblique}{Courier-Bold}
\cfg{paper-section-font-size}{0}{16}
\cfg{paper-section-fonts}{1}{Helvetica-Bold}
 {Helvetica-BoldOblique}{Courier-Bold}
\cfg{paper-section-font-size}{1}{14}
\cfg{paper-section-fonts}{2}{Helvetica-Bold}
 {Helvetica-BoldOblique}{Courier-Bold}
\cfg{paper-section-font-size}{2}{13}

59

... and so on for all section levels below this ...

\cfg{paper-pagenum-font-size}{12}

\cfg{paper-rule-thickness}{1}

\cfg{paper-bullet}{\u2022}{-}
\cfg{paper-quotes}{\u2018}{\u2019}{'}{'}

60

Appendix A: Halibut Licence

Halibut is copyright (c) 1999-2007 Simon Tatham.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software
and associated documentation files (the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or
substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY
KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE
AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

Halibut contains font metrics derived from theFont Metrics for PDF Core 14 Fonts, which carry
the following copyright notice and licence:

Copyright (c) 1985, 1987, 1989, 1990, 1991, 1992, 1993, 1997 Adobe Systems Incorporated.
All Rights Reserved.

This file and the 14 PostScript(R) AFM files it accompanies may be used, copied, and
distributed for any purpose and without charge, with or without modification, provided that
all copyright notices are retained; that the AFM files are not distributed without this file; that
all modifications to this file or any of the AFM files are prominently noted in the modified
file(s); and that this paragraph is not modified. Adobe Systems has no responsibility or
obligation to support the use of the AFM files.

61

Appendix B: Halibut manpage

B.1 NAME
halibut – multi-format documentation formatting tool

B.2 SYNOPSIS
halibut [options] file1.but [file2.but ...]

B.3 DESCRIPTION
halibut reads the given set of input files, assembles them into a document, and outputs that
document in one or more formats.

The available command-line options can configure what formats Halibut should output in, and
can also configure other things about the way Halibut works.

B.4 OPTIONS
The command-line options supported byhalibut are:

--text [=filename]

Makes Halibut generate an output file in plain text format. If the optionalfilename
parameter is supplied, the output text file will be given that name. Otherwise, the name
of the output text file will be as specified in the input files, oroutput.txt if none is
specified at all.

--html [=filename]

Makes Halibut generate one or more output files in HTML format. If the optionalfilename
parameter is supplied, there will be precisely one HTML output file with that name,
containing the whole document. Otherwise, there may be one or more than one HTML file
produced as output; this, and the file names, will be as specified in the input files, or given
a set of default names starting withContents.html if none is specified at all.

--winhelp [=filename]

Makes Halibut generate an output file in Windows Help format. If the optionalfilename
parameter is supplied, the output help file will be given that name. Otherwise, the name
of the output help file will be as specified in the input files, oroutput.hlp if none is
specified at all.

The output help file must have a name ending in.hlp ; if it does not,.hlp will be
added. A secondary contents file will be created alongside the main help file, with the

62

same name except that it will end in.cnt (for exampleoutput.cnt , if the main file is
output.hlp).

--man [=filename]

Makes Halibut generate an output file in Unixmanpage format. If the optionalfilename
parameter is supplied, the outputmanpage will be given that name. Otherwise, the name
of the outputman page will be as specified in the input files, oroutput.1 if none is
specified at all.

--info [=filename]

Makes Halibut generate aninfo file. If the optionalfilenameparameter is supplied, the
outputinfo file will be given that name. Otherwise, the name of the outputinfo file will
be as specified in the input files, oroutput.info if none is specified at all.

By default, unless configured otherwise using the\cfg{info-max-file-size}{0}
directive, theinfo output will be split into multiple files. The main file will have the name
you specify; the subsidiary files will have suffixes-1 , -2 etc.

--pdf [=filename]

Makes Halibut generate an output file in PDF format. If the optionalfilenameparameter is
supplied, the PDF output file will be given that name. Otherwise, the name of the output
PDF file will be as specified in the input files, oroutput.pdf if none is specified at all.

--ps [=filename]

Makes Halibut generate an output file in PostScript format. If the optionalfilename
parameter is supplied, the PostScript output file will be given that name. Otherwise, the
name of the output PostScript file will be as specified in the input files, oroutput.ps if
none is specified at all.

-C word: word[: word...]

Adds a configuration directive to the input processed by Halibut. Using this directive is
exactly equivalent to appending an extra input file to the command line which contains the
directive\cfg{ word}{ word}{ word...} .

--input-charset= charset

Changes the assumed character set for input files from the default of ASCII.

--list-charsets

Makes Halibut list character sets known to it.

--precise

Makes Halibut report the column number as well as the line number when it encounters an
error in an input file.

--help

Makes Halibut display a brief summary of its command-line options.

63

--version

Makes Halibut report its version number.

--licence

Makes Halibut display its licence (MIT).

B.5 MORE INFORMATION
For more information on Halibut, including full details of the input file format, look in the full
manual. If this is not installed locally on your system, you can also find it at the Halibut web
site:

http://www.chiark.greenend.org.uk/~sgtatham/halibut/

B.6 BUGS
This man page isn't terribly complete.

64

http://www.chiark.greenend.org.uk/~sgtatham/halibut/

Index

\A command 23
<ADDRESS> 41, 44
Adobe Font Metrics 57
AFM files 57
alignment 34
 43
A4 paper 59
appendices, renaming 24, 29
appendix 24
appendix configuration directive 30
AppleTitle , <META>tag 40
ASCII 30
ASCII quote characters 14
author, of document 44, 49
%b 38
background colour 40
backslash 11
\B command 26
\b command 19
bibliography 16, 25
blank line 11
<BLOCKQUOTE> 22
blurb commands 24
<BODY> 40, 41
braces 11
\BR command 26
bullet 36, 47, 50, 52, 58
bulletted list, indentation 34, 52, 56
bulletted lists 19
\C command 23
\c command 12, 17
-C command-line option 9
centre 34
\cfg{appendix} 30
\cfg{chapter} 29
\cfg command 9, 29
\cfg{contents} 30
\cfg{html-address-end} 41
\cfg{html-address-start} 41

\cfg{html-author} 44
\cfg{html-body-end} 41
\cfg{html-body-start} 40
\cfg{html-body-tag} 40
\cfg{html-chapter-numeric}

41
\cfg{html-chapter-suffix}

41
\cfg{html-charset} , lack of 42
\cfg{html-contents-depth}

39
\cfg{html-contents-filename}

38
\cfg{html-contents-text} 42
\cfg{html-description} 44
\cfg{html-head-end} 40
\cfg{html-index-filename}

38
\cfg{html-index-main-
separator} 42
\cfg{html-index-multiple-
separator} 42
\cfg{html-index-text} 42
\cfg{html-leaf-contains-
contents} 40
\cfg{html-leaf-level} 39
\cfg{html-leaf-smallest-
contents} 40
\cfg{html-local-head} 40
\cfg{html-mshtmlhelp-chm}

45
\cfg{html-mshtmlhelp-
contents} 45
\cfg{html-mshtmlhelp-index}

45
\cfg{html-mshtmlhelp-
project} 45
\cfg{html-navigation-
attributes} 41
\cfg{html-nav-next-text} 42

65

\cfg{html-nav-prev-text} 42
\cfg{html-nav-separator} 42
\cfg{html-output-charset}

42
\cfg{html-post-versionid}

42
\cfg{html-preamble-text} 42
\cfg{html-pre-versionid} 42
\cfg{html-quotes} 43
\cfg{html-rellinks} 44
\cfg{html-restrict-charset}

43
\cfg{html-section-numeric}

41
\cfg{html-section-suffix}

41
\cfg{html-single-filename}

38
\cfg{html-suppress-address}

44
\cfg{html-suppress-navlinks}

44
\cfg{html-template-filename}

38
\cfg{html-template-fragment}

43
\cfg{html-title-separator}

42
\cfg{html-version} 43
\cfg{html-versionid} 44
\cfg{index} 30
\cfg{info-bullet} 52
\cfg{info-charset} 52
\cfg{info-dir-entry} 53
\cfg{info-emphasis} 53
\cfg{info-filename} 51
\cfg{info-indent-code} 52
\cfg{info-index-width} 52
\cfg{info-list-indent} 52
\cfg{info-listitem-indent}

52
\cfg{info-list-suffix} 53
\cfg{info-max-file-size} 51
\cfg{info-quotes} 53
\cfg{info-rule} 53
\cfg{info-section-suffix}

52
\cfg{info-underline} 52

\cfg{info-width} 52
\cfg{input-charset} 30
\cfg{man-bullet} 50
\cfg{man-charset} 50
\cfg{man-filename} 49
\cfg{man-headnumbers} 49
\cfg{man-identity} 49
\cfg{man-mindepth} 49
\cfg{man-quotes} 51
\cfg{man-rule} 50
\cfg{paper-base-fonts} 58
\cfg{paper-base-font-size}

58
\cfg{paper-base-leading} 55
\cfg{paper-base-para-
spacing} 55
\cfg{paper-bottom-margin}

55
\cfg{paper-bullet} 58
\cfg{paper-chapter-fonts}

58
\cfg{paper-chapter-font-
size} 58
\cfg{paper-chapter-top-
space} 56
\cfg{paper-chapter-
underline-depth} 56
\cfg{paper-chapter-
underline-thickness} 56
\cfg{paper-code-fonts} 58
\cfg{paper-code-font-size}

58
\cfg{paper-contents-index-
step} 56
\cfg{paper-contents-margin}

56
\cfg{paper-footer-distance}

56
\cfg{paper-index-columns}

56
\cfg{paper-index-gutter} 57
\cfg{paper-index-minsep} 57
\cfg{paper-leader-
separation} 56
\cfg{paper-left-margin} 55
\cfg{paper-list-indent} 56
\cfg{paper-listitem-indent}

56

66

\cfg{paper-page-height} 55
\cfg{paper-pagenum-font-
size} 58
\cfg{paper-page-width} 55
\cfg{paper-quote-indent} 56
\cfg{paper-quotes} 58
\cfg{paper-right-margin} 55
\cfg{paper-rule-thickness}

58
\cfg{paper-section-fonts}

58
\cfg{paper-section-font-
size} 58
\cfg{paper-sect-num-left-
space} 56
\cfg{paper-title-fonts} 57
\cfg{paper-title-font-size}

57
\cfg{paper-top-margin} 55
\cfg{pdf-filename} 54
\cfg{ps-filename} 55
\cfg{quotes} 30
\cfg{section} 29
\cfg{text-bullet} 36
\cfg{text-chapter-align} 35
\cfg{text-chapter-numeric}

35
\cfg{text-chapter-suffix}

35
\cfg{text-chapter-underline}

35
\cfg{text-charset} 35
\cfg{text-emphasis} 36
\cfg{text-filename} 33
\cfg{text-indent} 33
\cfg{text-indent-code} 33
\cfg{text-indent-preamble}

34
\cfg{text-list-indent} 34
\cfg{text-listitem-indent}

34
\cfg{text-list-suffix} 36
\cfg{text-quotes} 36
\cfg{text-rule} 36
\cfg{text-section-align} 35
\cfg{text-section-numeric}

35

\cfg{text-section-suffix}
35

\cfg{text-section-underline}
35

\cfg{text-title-align} 34
\cfg{text-title-underline}

35
\cfg{text-versionid} 36
\cfg{text-width} 33
\cfg{winhelp-bullet} 47
\cfg{winhelp-contents-
titlepage} 48
\cfg{winhelp-filename} 47
\cfg{winhelp-list-suffix}

48
\cfg{winhelp-quotes} 48
\cfg{winhelp-section-suffix}

48
\cfg{winhelp-topic} 48
\cfg{xhtml- anything} 37
chapter configuration directive 29
chapter headings 23, 49
chapter headings, configuring display

29, 34, 41
chapter keywords, syntax of 23
chapter numbering 23
chapters, renaming 24, 29
character set 9, 16, 30, 35
character sets, enumerating 10
.chm files 44
citation 26
code 12, 17
code paragraphs 17
code paragraphs, indentation 33, 52
\# command 17, 25
\- command 14
\. command 31
_ command 14
command line 7
command-line options 7
commands, general syntax of 31
commands, paragraph-level 17
comments 17, 25
computer code 12, 17
configuration directives 33
configuring 29
configuring heading display 29, 34, 41

67

contact details 41
‘Contents’ 41
contents, depth 39
contents file 39
Contents.html 39
context-sensitive help 48
continuing list items 21
\copyright command 25
copyright statement 25
\cq command 13
cross-references 16
CSS 40
\cw command 12
date 14
\date command 14
\dd command 20
default settings

31, 37, 46, 48, 51, 54, 55
\define command 31
definition lists 20
depth of contents 39
description lists 20
description, of document 44
dir file 53
display paragraph 17
doing nothing 31
\dt command 20
\e command 12
embedding fonts 57
emphasis 12
emphasis in code paragraphs 18
END-INFO-DIR-ENTRY 53
escaping, special characters 11
fallback text 16, 35
FAQs, writing 24
file name, output 33, 38, 47, 49, 54, 55
fine-tuning the index 27
fixed-width font 12
fonts 57
fonts, embedding 57
font size 57, 58
fonts, Type 1 57
footers 41, 49
formatting command 38
formatting commands, general syntax of

31
formatting commands, inline 12

formatting commands, paragraph-level
17

general syntax of formatting commands
31

GNU info 51
gutter 57
\H command 23
<HEAD> 40, 44
headers 40, 49
heading keywords, syntax of 23
headings 23, 49
headings, configuring display

29, 34, 41
--help command-line option 10
Help compiler, lack of need for 7
Help topic 48
Help, Windows 7, 47
--hlp command-line option 8
horizontal dimensions 33
horizontal rules 22, 36, 50, 53
house style 40, 41
HTML 7, 15, 37, 40
html-address-end configuration
directive 41
html-address-start configuration
directive 41
html-author configuration directive

44
html-body-end configuration directive

41
html-body-start configuration
directive 40
html-body-tag configuration directive

40
html-chapter-numeric
configuration directive 41
html-chapter-suffix configuration
directive 41
html-charset configuration directive,
lack of 42
--html command-line option 8, 39
html-contents-depth configuration
directive 39
html-contents-filename
configuration directive 38
html-contents-text configuration
directive 42

68

html-description configuration
directive 44
HTML entities 42
html-head-end configuration directive

40
HTML Help 44
html-index-filename configuration
directive 38
html-index-main-separator
configuration directive 42
html-index-multiple-
separator configuration directive 42
html-index-text configuration
directive 42
html-leaf-contains-contents
configuration directive 40
html-leaf-level configuration
directive 39
html-leaf-smallest-contents
configuration directive 40
html-local-head configuration
directive 40
html-mshtmlhelp-chm configuration
directive 45
html-mshtmlhelp-contents
configuration directive 45
html-mshtmlhelp-index
configuration directive 45
html-mshtmlhelp-project
configuration directive 45
html-navigation-attributes
configuration directive 41
html-nav-next-text configuration
directive 42
html-nav-prev-text configuration
directive 42
html-nav-separator configuration
directive 42
html-output-charset configuration
directive 42
html-post-versionid configuration
directive 42
html-preamble-text configuration
directive 42
html-pre-versionid configuration
directive 42
html-quotes configuration directive

43

html-rellinks configuration directive
44

html-restrict-charset
configuration directive 43
html-section-numeric
configuration directive 41
html-section-suffix configuration
directive 41
html-single-filename
configuration directive 38
html-suppress-address
configuration directive 44
html-suppress-navlinks
configuration directive 44
html-template-filename
configuration directive 38
html-template-fragment
configuration directive 43
html-title-separator
configuration directive 42
html-version configuration directive

43
html-versionid configuration
directive 44
hyperlinks 15, 16
hyphens, non-breaking 14
\i\c combination 27
\I command 27
\i command 26
\i\cw combination 27
\i\e combination 27
\ii command 27
\IM command 28
indentation 33
indenting multiple paragraphs 22
index 26
index terms 52
info 51
info-bullet configuration directive

52
info-charset configuration directive

52
--info command-line option 8, 51
INFO-DIR-ENTRY 53
info-dir-entry configuration
directive 53
info-emphasis configuration directive

53

69

info-filename configuration directive
51

info-indent-code configuration
directive 52
info-index-width configuration
directive 52
info-list-indent configuration
directive 52
info-listitem-indent
configuration directive 52
info-list-suffix configuration
directive 53
info-max-file-size configuration
directive 51
info-quotes configuration directive

53
info-rule configuration directive 53
info-section-suffix configuration
directive 52
info-underline configuration
directive 52
info-width configuration directive

52
inline formatting commands 12
--input-charset command-line
option 9
input-charset configuration directive

30
invisible index tag 27
ISO 8601 15
%k 38
\K command 16
\k command 16, 26
keywords 16
keywords, syntax of 23
\lcont command 21
leaders 56
leaf file 39
left 34
leftplus 34
length of lines 33, 52
--licence command-line option 10
line breaks 11, 12
line length 33, 52
linking to web sites 15
<LINK> tags 44
--list-charsets command-line
option 10

list, indentation 34, 56
list items, continuing 21
lists 18
lists, bulletted 19
lists, description 20
lists, nested 21
lists, numbered 16, 19, 36, 48, 53
MacOS on-line help 40
macros 31
man-bullet configuration directive

50
man-charset configuration directive

50
--man command-line option 8, 49
man-filename configuration directive

49
man-headnumbers configuration
directive 49
man-identity configuration directive

49
man-mindepth configuration directive

49
manpage 7, 49
man-quotes configuration directive

51
man-rule configuration directive 50
Manual.html 39
margin 33
maximum file size 51
measurements 55
merging index terms 28
<META NAME="AppleTitle"> 40
<META>tags 44
Microsoft HTML Help 44
MS HTML Help 44
%N 38
%n 38
navigation links 41, 44
\n command 19
nested lists 21
‘Next’ 41
\nocite command 26
non-breaking hyphens 14
non-breaking spaces 14
NOP 31
nroff 49
numbered list, indentation 34, 52, 56

70

numbered lists 16, 19, 36, 48, 53
numbering, of sections 23
options, command-line 7
output.cnt 7
output file name 33, 38, 47, 49, 54, 55
output files 7
output formats 7, 33
output.hlp 7
output.txt 7
page footers 41, 49
page headers 40, 49
page numbers 58
paper-base-fonts configuration
directive 58
paper-base-font-size
configuration directive 58
paper-base-leading configuration
directive 55
paper-base-para-spacing
configuration directive 55
paper-bottom-margin configuration
directive 55
paper-bullet configuration directive

58
paper-chapter-fonts configuration
directive 58
paper-chapter-font-size
configuration directive 58
paper-chapter-top-space
configuration directive 56
paper-chapter-underline-
depth configuration directive 56
paper-chapter-underline-
thickness configuration directive 56
paper-code-fonts configuration
directive 58
paper-code-font-size
configuration directive 58
paper-contents-index-step
configuration directive 56
paper-contents-margin
configuration directive 56
paper-footer-distance
configuration directive 56
paper-index-columns configuration
directive 56
paper-index-gutter configuration
directive 57

paper-index-minsep configuration
directive 57
paper-leader-separation
configuration directive 56
paper-left-margin configuration
directive 55
paper-list-indent configuration
directive 56
paper-listitem-indent
configuration directive 56
paper-page-height configuration
directive 55
paper-pagenum-font-size
configuration directive 58
paper-page-width configuration
directive 55
paper-quote-indent configuration
directive 56
paper-quotes configuration directive

58
paper-right-margin configuration
directive 55
paper-rule-thickness
configuration directive 58
paper-section-fonts configuration
directive 58
paper-section-font-size
configuration directive 58
paper-sect-num-left-space
configuration directive 56
paper-title-fonts configuration
directive 57
paper-title-font-size
configuration directive 57
paper-top-margin configuration
directive 55
paragraph-level formatting commands

17
paragraphs of ordinary text 11
paragraphs, wrapping 11, 14
PDF 54
--pdf command-line option 8, 54
pdf-filename configuration directive

54
pdfmark 55
PFA files 57
PFB files 57
plain text 7, 33

71

points 55, 57
Portable Document Format 54
PostScript 55
preamble 34
--precise command-line option 10
‘Previous’ 41
--ps command-line option 9, 55
ps-filename configuration directive

55
\q command 13
quotation 22
quotation marks 13
\quote command 22
quotes configuration directive 30
renaminginfo files 51
renaming sections 24, 29
replicating index terms 27
rewriting index terms 28
\rule command 22, 36, 50
rules, horizontal 22, 36, 50, 53
running Halibut 7
\S command 23
section configuration directive 29
section headings 23, 49
section headings, configuring display

29, 34, 41
section keywords 16
section keywords, syntax of 23
section numbering 23
section numbers 16, 49
sections, renaming 24, 29
spaces, non-breaking 14
special characters 11
special paragraph types 24
\S2 , \S3 commands etc. 24
START-INFO-DIR-ENTRY 53
strftime 15
stylesheet 40
sub-file 39
suffix text, in section titles 35, 48
syntax highlighting 18
syntax of general formatting commands

31
syntax of keywords 23
template 38, 43
text-bullet configuration directive

36

text-chapter-align configuration
directive 35
text-chapter-numeric
configuration directive 35
text-chapter-suffix configuration
directive 35
text-chapter-underline
configuration directive 35
text-charset configuration directive

35
--text command-line option 7, 33
text-emphasis configuration directive

36
text-filename configuration directive

33
text-indent-code configuration
directive 33
text-indent configuration directive

33
text-indent-preamble
configuration directive 34
text-list-indent configuration
directive 34
text-listitem-indent
configuration directive 34
text-list-suffix configuration
directive 36
text, plain 7, 33
text-quotes configuration directive

36
text-rule configuration directive 36
text-section-align configuration
directive 35
text-section-numeric
configuration directive 35
text-section-suffix configuration
directive 35
text-section-underline
configuration directive 35
text-title-align configuration
directive 34
text-title-underline
configuration directive 35
text-versionid configuration
directive 36
text width 33, 52
text-width configuration directive

33
.TH directive 49

72

\title command 25
Type 1 fonts 57
\U command 23
\u command 16
underlining 34
Unicode 16, 30
Unicode matched quotes 14
unnumbered chapter 24
URL 15
verbatim 12
verbatim HTML 40
--version command-line option 10
\versionid command 25, 36, 44
version ID paragraph 42
version IDs 25, 36, 44
\W command 15
weak code 12
web sites 15
--whlp command-line option 8
width, of text 33, 52
Win1252 47
Windows Help 7, 47
Windows HTML Help 44
winhelp-bullet configuration
directive 47
--winhelp command-line option

8, 47
winhelp-contents-titlepage
configuration directive 48
winhelp-filename configuration
directive 47
winhelp-list-suffix configuration
directive 48
winhelp-quotes configuration
directive 48
winhelp-section-suffix
configuration directive 48
winhelp-topic configuration directive

48
wrapping paragraphs 11, 14
writing FAQs 24
WWW hyperlinks 15
xhtml- anything configuration directives

37
--xhtml command-line option 8

73

	Halibut User Manual
	Contents
	Chapter 1: Introduction to Halibut
	1.1 Output formats supported by Halibut
	1.2 Features supported by Halibut

	Chapter 2: Running Halibut
	2.1 Command-line options

	Chapter 3: Halibut input format
	3.1 The basics
	3.2 Simple inline formatting commands
	3.2.1 '\e': Emphasising text
	3.2.2 '\c' and '\cw': Displaying computer code inline
	3.2.3 '\q': Quotation marks
	3.2.4 '\-' and '_': Non-breaking hyphens and spaces
	3.2.5 '\date': Automatic date generation
	3.2.6 '\W': WWW hyperlinks
	3.2.7 '\u': Specifying arbitrary Unicode characters
	3.2.8 '\k' and '\K': Cross-references to other sections
	3.2.9 '\#': Inline comments

	3.3 Paragraph-level commands
	3.3.1 '\c': Displaying whole paragraphs of computer code
	3.3.2 '\b', '\n', '\dt', '\dd', '\lcont': Lists
	3.3.2.1 '\b': Bulletted lists
	3.3.2.2 '\n': Numbered lists
	3.3.2.3 '\dt' and '\dd': Description lists
	3.3.2.4 Continuing list items into further paragraphs

	3.3.3 '\rule': Horizontal rules
	3.3.4 '\quote': Indenting multiple paragraphs as a long quotation
	3.3.5 '\C', '\H', '\S', '\A', '\U': Chapter and section headings
	3.3.6 '\copyright', '\title', '\versionid': Miscellaneous blurb commands
	3.3.7 '\#': Whole-paragraph comments

	3.4 Creating a bibliography
	3.5 Creating an index
	3.5.1 Simple indexing
	3.5.2 Special cases of indexing
	3.5.3 Fine-tuning the index
	3.5.4 Indexing terms that differ only in case

	3.6 Configuring Halibut
	3.7 Defining macros

	Chapter 4: Halibut output formats
	4.1 Plain text
	4.1.1 Output file name
	4.1.2 Indentation and line width
	4.1.3 Configuring heading display
	4.1.4 Configuring the characters used
	4.1.5 Miscellaneous configuration options
	4.1.6 Default settings

	4.2 HTML
	4.2.1 Controlling the output file names
	4.2.2 Controlling the splitting into HTML files
	4.2.3 Including pieces of your own HTML
	4.2.4 Configuring heading display
	4.2.5 Configuring standard text
	4.2.6 Configuring the characters used
	4.2.7 Miscellaneous options
	4.2.8 Generating MS Windows HTML Help
	4.2.9 Default settings

	4.3 Windows Help
	4.3.1 Output file name
	4.3.2 Configuring the characters used
	4.3.3 Miscellaneous configuration options
	4.3.4 Default settings

	4.4 Unix man pages
	4.4.1 Output file name
	4.4.2 Configuring headers and footers
	4.4.3 Configuring heading display
	4.4.4 Configuring the characters used
	4.4.5 Default settings

	4.5 GNU 'info'
	4.5.1 Controlling the output filenames
	4.5.2 Indentation and line width
	4.5.3 Configuring heading display
	4.5.4 Controlling the characters used
	4.5.5 Miscellaneous configuration options
	4.5.6 Default settings

	4.6 Paper formats
	4.6.1 PDF
	4.6.2 PostScript
	4.6.3 Configuring layout and measurements
	4.6.3.1 Page properties
	4.6.3.2 Vertical spacing
	4.6.3.3 Indentation
	4.6.3.4 Headings
	4.6.3.5 Contents and index
	4.6.3.6 Fonts
	4.6.3.7 Miscellaneous

	4.6.4 Configuring the characters used
	4.6.5 Default settings for paper formats

	Appendix A: Halibut Licence
	Appendix B: Halibut man page
	B.1 NAME
	B.2 SYNOPSIS
	B.3 DESCRIPTION
	B.4 OPTIONS
	B.5 MORE INFORMATION
	B.6 BUGS

	Index

