
No PAIN, No Gain?
The utility of PArallel fault INjections

Stefan Winter∗, Oliver Schwahn∗, Roberto Natella†, Neeraj Suri∗, Domenico Cotroneo†
∗DEEDS Group, TU Darmstadt, Darmstadt, Germany
†DIETI, Federico II University of Naples, Naples, Italy

{sw | os | suri}@cs.tu-darmstadt.de, {roberto.natella | cotroneo}@unina.it,

Abstract—Software fault injection (SFI) is an established
technique for assessing the robustness of a software under test by
exposing it to faults in its operational environment. Depending on
the complexity of this operational environment, the complexity of
the software under test, and the number and type of considered
faults, a thorough SFI assessment can entail (a) numerous
experiments and (b) long experiment run times, which both
contribute to a considerable overhead for the assessments.

In order to counteract this increase when dealing with complex
systems, recent works propose to exploit parallel hardware to
execute multiple experiments at the same time. While PArallel
fault INjections (PAIN) yield higher experiment throughput,
they are based on an implicit assumption of non-interference
among the simultaneously executing experiments. In this paper
we investigate the validity of this assumption and determine
the trade-off between increased throughput and the accuracy
of experimental results obtained from PAIN experiments.

I. INTRODUCTION

Software Fault Injection (SFI) [1]–[3] is used to experi-
mentally assess the robustness of software systems against
faults arising from hardware devices, third-party software
components, untrusted users and other sources.

Given the huge size and complexity of software systems,
SFI typically requires a significant number of experiments to
cover all relevant faults for the validation of fault-tolerance,
with studies reporting thousands, or even millions, of injected
faults [4]–[7]. The problem of high experiment counts is
exacerbated by evidence that simultaneous fault injections, i.e.,
combinations of several injected faults, need to be considered
as well. Recent studies [8], [9] show that recovery protocols
exhibit vulnerabilities to simultaneously occurring faults and
can, hence, only be uncovered by injecting fault combinations.
A “combinatorial explosion” of the number of experiments
is the consequence. Similar findings were obtained in recent
work on fault injection (FI) in operating systems and shared
software libraries, where it was shown that software faults
cause the simultaneous corruption of several interface param-
eters and shared memory contents [10] and that simultaneous
corruptions can uncover robustness issues that would not be
found by singular corruptions [11]. Finally, the injection of
several faults (namely, higher order mutations, HOMs) is being
increasingly investigated in the field of mutation testing1,

1SFI and mutation testing use similar techniques to achieve their objectives,
but these objectives differ with mutation testing primarily targeting the quality
of test suites versus fault tolerance validation for SFI. We point the interested
reader to [12] for a fuller discourse on this.

as HOMs have proven effective at improving the quality
of test suites [12], [13]. Despite the demonstrated utility of
simultaneous fault injections, the combinatorial explosion of
the number of experiments remains a considerable challenge
for their applicability.

In order to cope with the high number of FI experiments,
two differing strategies are followed in the research commu-
nities. The first strategy attempts to reduce the number of
experiments that need to be performed. Search-based tech-
niques and sampling strategies for large test sets (e.g., [7],
[9], [14], [15]) fall into this category. The second strategy
attempts to utilize the increasing computational power of
modern hardware, where several experiments are executed
at the same time on the same machine (parallelization) to
better utilize the parallelism of the underlying hardware (e.g.,
[16]–[18]). While parallelization (“throwing hardware at the
problem”) is less elegant, it is an appealing solution since
it is generally applicable, whereas the applicability of sam-
pling and search-based techniques depends on domain-specific
knowledge in most cases. Parallelization, therefore, seems to
be a promising solution to cope with the high number of
experiments, especially as it can be combined with domain-
specific sampling and pruning.

Nevertheless, parallelization relies on an implicit assump-
tion that executing several experiments in parallel does not af-
fect the validity of results. We hypothesize that this assumption
is not trivial. Even if the experimenter takes great care to avoid
interference between experiments (e.g., by running them on
separate CPUs or virtual machines), there is a number of subtle
factors (such as resource contention and timing of events)
that can change the behavior of the target system (e.g., faults
can lead to different failure modes than those observed under
sequential execution), thus invalidating the results and negating
the benefits of parallelization. This is a concern especially
for embedded, real-time, and systems software, which are an
important target of FI experiments, and where studies have
shown that faults often exhibit non-determinism and time-
sensitive behavior [5], [19].

Hence, in order to conduct efficient and accurate paralleliza-
tion, we propose PArallel fault INjections (PAIN) as a SFI
framework. As SFI is applied mostly for the assessment of
critical systems, a major concern that outweighs performance
considerations is the confidence in the validity of the experi-
mental results; it is of utmost importance to avoid interference

of PAIN experiments that affects their outcome. In addition to
experiment throughput, we therefore also assess the validity
of results from parallel experiments. Our paper makes the
following contributions:

• We introduce an experimental environment for the study
of parallel FI experiments and similar system-level tests.

• We conduct extensive FI experiments on the Linux kernel
under an Android emulator environment, and qualitatively
and quantitatively analyze the impact of parallelism on
the experiment throughput and the validity of the results.

• We provide guidelines to tune the main factors that affect
experiment throughput and the validity of PAIN exper-
iments, including the degree of parallelism and failure
detection timeouts.

Following the related work in Section II we present the
hypotheses that our analyses are based on, followed by the
corresponding experiment design/setup discussion over Sec-
tions III and IV. Section V presents our results and provides
an in-depth analysis of the factors contributing to the observed
effects. Sections VI and VII summarize the lessons learned and
discuss threats to the validity of our empirical study.

II. RELATED WORK: FAULT INJECTION & TEST
PARALLELIZATION

A. Perspectives on Fault Injection (FI)

FI is an approach that deliberately injects faults into a
software to evaluate its fault tolerance properties. Examples
of injections are CPU faults (emulated through memory cor-
ruptions), network faults (emulated through I/O exceptions
and packet corruptions), and software bugs (emulated through
code mutations). These injections are meant to expose the
software under test to exceptional and stressful conditions, and
to achieve confidence in its reliability and performance in the
presence of faults.

The scientific literature reports numerous applications of
this approach, in particular in embedded, real-time, and sys-
tems software, such as operating systems (OSs). Examples are:

• Ng and Chen [20] adopted FI (by emulating both hard-
ware and software faults) to validate the reliability of
their write-back file cache. Using FI experiments, the
authors identified weak points of their file cache design,
and iteratively improved it until its corruption rate (in
the presence of OS crashes) was comparable to a write-
through cache. Swift et al. [21] injected faults in device
drivers’ code to assess the memory isolation of a novel
fault-tolerant OS architecture.

• Arlat et al. [5] applied FI on a microkernel OS composed
from off-the-shelf components to obtain quantitative data
regarding failure modes of the microkernel, the error
propagation among functional system components, and
the coverage and latency of error detection mechanisms.

• Several dependability benchmarks, based on FI, have
been proposed to compare alternative components such as
operating systems [4], [22], web servers [23], and DBMSs
[24]. In [4], [22], [25], UNIX and Windows OSs are
compared with respect to the severity of their failures: for

each FI experiment, the behavior of the OS is classified
according to a failure severity scale, reflecting the impact
of the fault on the stability and responsiveness of the
system. In [23], two web servers are benchmarked with
respect to performance (e.g., throughput and latency) and
fault tolerance (e.g., percentage of failed HTTP requests,
etc.) in the presence of faults injected in the OS.

There are numerous factors that can affect the accuracy and
validity of such assessments, possibly leading experimenters
to false conclusions about the dependability of a system if
they are disregarded. As pointed out by Bondavalli et al. [26],
FI tools and experiments should be regarded as measuring
instruments for dependability attributes and designed with the
principles of measurement theory in mind.

For this reason, much research in this field is focused on
metrological aspects of FI. Several techniques were developed
to reduce the intrusiveness of FI tools on the target system,
by taking advantage of debugging and monitoring facilities
provided by hardware circuitry [27], [28], and by minimizing
changes in the target software [29]. Skarin et al. [30] as-
sessed the metrological compatibility (i.e., comparability from
a statistical point of view) of results obtained from these
alternative FI techniques. Van der Kouwe et al. [31] evaluated
the distortion of results due to injected faults that do not
have effect on the system and are under-represented. In [32],
[33], the precision and the repeatability of FI is evaluated
in the context of distributed systems, which are affected by
non-determinism and by clock skew issues. Irrera et al. [34]
assessed whether virtualization environments could be used for
FI experiments without impacting on system metrics related
to performance and resource usage: While their conclusions
are positive, their experiments show that virtualization actually
had a noticeable impact on some of the monitored metrics.

B. Perspectives on test parallelization

In the software community, the idea of test parallelization
has been mostly driven by the advent of increasingly parallel
system architectures, such as multiprocessor and networked
systems [35]. Kapfhammer proposed parallel executions to
complement sampling techniques for improving the perfor-
mance of regression testing [36]. Lastovetsky used paral-
lel computing to achieve a throughput improvement (in the
following termed speedup) of factor 6.8 to 7.7 for testing
of a complex CORBA implementation on several platforms
compared to sequential execution [16]. Duarte et al. developed
GridUnit as an extension of the JUnit testing framework to
support parallel test execution in a grid computing environ-
ment, achieving experiment speedups ranging between 2 and
71.11 depending on the grid size [17], [37], [38]. Parveen et
al. reported a speedup of 30 for a 150-node cluster using their
MapReduce-based unit testing tool HadoopUnit [39]. Oriol
and Ullah ported the York Extensible Testing Infrastructure
(YETI) to MapReduce architectures using Hadoop [18]. They
reported a speedup of 4.76 for a fivefold increase in com-
putational resources. In contrast to other work, which only
reported on performance, they also compared the results of

sequential versus parallel tests and reported that the numbers
of detected defects are equal in both cases. However, they did
not specify whether the same defects were detected or just
equal numbers. Other recent approaches dealt with Testing-as-
a-Service (TaaS) for both dynamic tests [40], [41] and program
analysis [42]–[45].

While multiple test parallelization approaches have been
advocated, their primary focus was to increase test throughput.
Interferences between parallel tests were not investigated in
these studies, because tests were performed on individual
software units rather than integrated systems, and the execution
of test cases was not influenced by non-deterministic factors
such as timing and resource contention [18], [37]. In other
cases, tests that contended for shared resources were executed
sequentially or on distinct hardware machines to conserva-
tively avoid any interference [16]. Nevertheless, interferences
between parallel experiments are a potential, yet unexplored,
issue for FI experiments, since they usually target complex,
integrated systems rather than individual components, and
since injected faults (like real faults) can result in unforeseen
and non-deterministic behavior [46], [47].

C. FI Validity in Parallel Execution Environments?

While some studies have advocated the potential benefits
of parallelizing FI experiments [45], [48]–[50], none of them
investigated the impact of parallelism on the validity of
results (i.e., whether results from parallel experiments are
metrologically compatible to sequential ones). In these studies,
FI experiments were executed in separate virtual machines
[48], [49] and OS processes [50] to isolate the experiments.
Memory protection mechanisms provided by virtualization and
the OS can prevent data corruptions from propagating among
experiments. For this reason, experiments are assumed to be
independent from each other, and they treat FI as an “embar-
rassingly parallel” problem (i.e., experiments can be arbitrarily
parallelized). Nevertheless, there are potentially adverse effects
of parallelization: in fact, it is difficult to enforce perfect
performance isolation among virtual environments [51], [52],
and performance interferences (e.g., the shortage of resources
or the timing of events) can significantly change the behavior
of a system, and even affect its security [53], [54]. Thus, we
investigate the interplay between parallelism of experiments,
the increase of experiment throughput, and the experimental
results.

III. EXPERIMENTAL DESIGN

We experimentally assess the feasibility of increasing SFI
experiments throughput by parallel execution without compro-
mising the accuracy of the results, by addressing the following
research questions (RQ).

RQ 1 Can parallel executions of SFI experiments on the same
machine increase the throughput of SFI experiments?

RQ 2 Can parallel executions of SFI experiments on the same
machine change the results obtained from SFI experiments?

If the answer to RQ 1 is positive and to RQ 2 negative,
then SFI parallelization has no adverse effects and should be
applied whenever parallel hardware is available. However, if
RQ 1 is negative and RQ 2 positive, parallelization should be
avoided. If both answers are negative, the decision whether to
parallelize or not should be driven by other factors, such as
hardware cost or complexity of the experiment setup. If both
are positive, then parallelism can bring benefits, but it can also
potentially affect the accuracy of results. In this case, we need
to investigate:

RQ 3 If RQ 1 and RQ 2 hold, can the parallelization of
experiments be tuned to both achieve a (desirable) throughput
increase and avoid the (undesirable) inaccuracy of results?

In the following we introduce the basic system and fault
models for our study along with the technical terms to derive
detailed hypotheses from the stated research questions.

A. System Model

We investigate the impact of parallelism in an experimental
context similar to contemporary FI studies (cf. Section II-A).
In particular, the SFI experiments, on which our study is based,
focus on the robustness of operating system (OS) kernels
against faulty device drivers. Device drivers have been shown
to have high defect rates [55], [56] and at the same time their
failures have severe consequences on overall system stability
[57], [58]. FI into device drivers helps identifying faults that
cause critical kernel failures and provides useful feedback to
improve the kernel’s robustness [5], [20].

OS kernel

Workloads

Monitor

Monitor
User
space

Kernel
space

Driver
interface

Drivers &
Faultloads

Failure
Detection

Experiment
Control

Target System Experiment Controller

Fig. 1. System model and experiment setup

Thus, we create faulty versions of driver code, load these
faulty drivers, and execute a workload to trigger the altered
code. Figure 1 depicts our setup. To prevent it from being cor-
rupted by the effects of injected faults, all experiment control
logic is external to the target system, which is encapsulated
in a virtual machine (VM). To detect failures of the target
system, we use external failure detectors that collect and
analyze messages from the target system, while running in
the experiment controller’s separate virtual environment. Using
these detectors, we are able to reliably detect:

• System Crashes (SC) by monitoring kernel messages
emitted by the VM,

• Severe System Errors (SE) in a similar manner,

• Workload Failures (WF) by monitoring application log
information from the workloads forwarded to the system
log that the VM emits.

Our setup also allows to detect stalls (so-called hangs) of the
target system, in which experiments do not make any progress
and do not produce any information about the failure. We
assume that the system hangs if it does not terminate within a
timeout interval, which calculated by adding a generous safety
margin to the maximum time needed by the target to produce
the correct result when no fault is present. Our timeout-based
external detectors assume hangs using these timeouts:

• During system initialization (Init Hang Assumed, IHA),
• After system initialization (System Hang Assumed,

SHA), or
• During workload execution (Workload Hang Assumed,

WHA).
As such timeout-based external detectors are known to be pos-
sibly imprecise or inefficient depending on their configuration
policy [59]–[61], we additionally employ sophisticated hang
detectors inspired by the approach of Zhu et al. [61]. We
include two additional hang detectors in the target system:
A light detector, executing as a user space process, monitors
basic system load statistics. If these statistics indicate lack of
progress, the light detector triggers a heavy detector executing
in kernel space. The heavy detector performs a more accurate
(but also more complex and time consuming) analysis and
triggers a controlled system crash if a hang is detected. The
tests that the light and heavy detectors apply are identical to
those suggested in [61]. The used threshold values for our
hardware configurations are found in our source code at [62].
This target-internal hang detection infrastructure provides us
with two additional failure modes:

• System Hang Detected (SHD)
• Workload Hang Detected (WHD)

B. The SFI Fault Model

The fault model in SFI experiments defines the corruptions
or disturbances to be introduced in the target system. In our
experiments, we consider the injection of driver source code
changes to emulate residual defects of device drivers, in a
similar way to recent studies on OS software fault tolerance
[20], [21] and on dependability benchmarking [22]–[24]. We
adopted the SAFE tool [7] to inject realistic code changes that
were defined on the basis of actual faults found in commercial
and open-source OSs [2], [63].2

As faulty drivers are known to constitute a severe threat to
system stability, the target system in our SFI experiments has
to be executed in a strictly isolated environment that (a) pre-
vents experiments from affecting the test bench and (b) enables
subsequent experiments to start from a clean environment
free from effects of previous experiments. These requirements
results in high experiment overheads and limit experiment
throughput, which parallelism is supposed to compensate for.

2For space restrictions, we refer the reader to [7] for a detailed exposition
on fault types.

A second issue which parallelism is supposed to mitigate
is the high number of experiments to be executed, especially
when combinations of multiple faults are considered. In order
to investigate the impact of parallelism on high volumes of
SFI experiments, we injected both single and multiple faults
into drivers’ code. Multiple faults are injected by repeatedly
invoking SAFE on previously mutated driver code, in a similar
way to emerging Higher-Order Mutation Testing approaches
[12]. The injection of multiple faults leads to a combinatorial
explosion of the number of faulty drivers to test with, and al-
lows us to experiment with a high volume of SFI experiments.

C. Performance and Result Accuracy Measures

Performance measure: We, and other researchers [48],
[49], argue that a speedup of FI experiments is desirable to
achieve a better coverage of fault conditions to test with.
The performance metric of interest is experiment throughput,
measured as average number of experiments per hour.

The accuracy of SFI results needs to be defined in statistical
terms, since the outcome of FI experiments is influenced by
non-deterministic factors. This aspect may not be intuitive,
and requires a more detailed discussion. In order to observe
the effects of injections, the injected code needs to be activated
during experiment execution [47]. As the abstraction from
hardware configuration details and the orchestration of access
to hardware devices are among the core functions of OSs, most
of them do not provide a direct interface to driver functions
for programmers. As a consequence, there can be arbitrarily
complex software layers between the OS interface exposed to
user programs and device drivers (cf. Figure 1). Some driver
functions (e.g., those related to power management) may even
be entirely hidden from user programs and invoked by the OS
upon (possibly non-deterministic) hardware events and task
scheduling.

Accuracy measures: Our measure for result accuracy has
two aspects. Firstly, we are interested whether result distri-
butions change with increased parallelism. However, we also
need to assess the degree of heterogeneity of the samples from
which mean distributions are calculated, as this is a measure
of how representative the mean value is for the actually
obtained results. While for the first case, a binary measure
that indicates statistically significant deviations suffices, we
require a comparative metric for the latter. We choose a Chi
square test for independence to decide whether or not result
distributions for parallel experiments differ significantly from
result distribution for sequential experiments. To measure the
variance of distribution samples we interpret the obtained
distributions as vectors and calculate their Euclidean distances
from the mean. We use the mean value of all such distances
within a set of repetitions for the same setup as heterogeneity
metric d.

D. Hypotheses

On the background of the introduced models and termi-
nology we can derive precise hypotheses from the research
questions stated in the beginning of Section III. We only state

the null hypotheses to be tested. The alternative hypotheses
are the negation of the null hypotheses stated below.

Hypothesis H0 1 If the number of parallel experiment in-
stances running on the same physical machine is increased,
the experiment throughput does not increase.

Hypothesis H0 2 If the number of parallel experiment in-
stances running on the same physical machine is increased,
the obtained result distribution of failure modes is independent
from that increase.

Hypothesis H0 3 If the number of parallel experiment in-
stances running on the same physical machine is increased,
the heterogeneity among repeated injection campaigns does
not increase.

IV. EXPERIMENT SETUP AND EXECUTION

We now detail our experimental setup. All developed soft-
ware (currently 14 159 physical source lines of code3) will be
made publicly available at github [62], upon publication, for
the reproduction and cross-validation of our results.

A. Target System

The operating system we are targeting in our analysis is the
Android mobile OS [64]. We run Android 4.4.2 “KitKat” with
a 3.4 kernel from Google’s repositories [65] in the goldfish
System-on-Chip emulator [66], which is based on the QEMU
emulator/virtualizer [67] and ships with the Android SDK.

We inject faults into the MMC driver for the emulated
SD card reader of the goldfish platform. The driver has 435
physical source lines of code.

We are using two different synthetic workloads to trigger
injected faults in the MMC driver, all of which are based on
code from Roy Longbottom’s Android benchmarks [68].

The first workload (“pure”) performs file operations on the
emulator’s virtual SD card, in order to (indirectly) exercise the
MMC driver, and faults injected there. We use code from the
DriveSpeed benchmark app and configure it to stress the SD
card driver for approximately 30 seconds.

A “mixed” workload adds CPU and memory load to the
pure workload. The goal is to create a more diverse utilization
of system resources by the emulator to cover a wider range of
possible interference between emulator instances competing
for shared system resources. Besides DriveSpeed, we use
code from the LinpackJava and RandMem benchmarks. All
benchmarks are executed as parallel threads and we leave in-
terleavings and execution orders to the scheduling mechanisms
of the Android OS.

We use an additional thread in the workload apps to perform
WF failure detection, as application failures are signaled as
exceptions within Android’s Dalvik runtime and need to be
explicitly forwarded to the external failure detector residing
outside of the emulator.

3generated using David A. Wheeler’s SLOCCount

B. Fault Load

Applying SAFE for creating faulty versions of the MMC
driver we obtain 273 mutants to test with. If we recur-
sively apply SAFE to each of these mutants, as described in
Section III-B, we obtain 70,167 second order mutants and,
hence, a total of 70,440 faulty driver variants to test with.
This drastic increase in numbers from first to second order
mutants illustrates the combinatorial explosion resulting from
simultaneous fault injections and higher order mutation testing.

To test the hypotheses outlined in Section III-D, we restrict
ourselves to a campaign of 400 randomly sampled mutants
from the set of first and second order mutants. As the outcomes
of our experiments are subject to non-determinism and exper-
iment repetitions are required to establish confidence in the
obtained results, we repeat this campaign three times for each
considered setup to account for non-determinism as detailed
in Section III-C.

C. Execution Environments

In order to conduct parallel tests on the same hardware,
we replicate instances of the goldfish emulator, in which the
target system is executing, on a single host machine. This
parallelization by replication of emulator instances reflects the
implicit assumption of non-interference we are questioning,
as emulation and virtualization form the basis of recent ap-
proaches to test parallelization [40], [41], [45], [48], [49].

In order to avoid effects from a single platform to bias our
results, we execute all experiments on two different platforms:

• A desktop configuration with an AMD quad-core CPU,
8 GB main memory, and a 500 GB hard drive operating
at 7,200 RPM.

• A server configuration with two Intel Xeon octa-core
CPUs, 64 GB main memory, and a 500 GB hard drive
operating at 7,200 RPM.

To avoid differing CPU frequencies from biasing results, we
have disabled frequency scaling and set all cores on both
machines to constantly operate at 1.8 GHz (which was the
only possible common configuration on both platforms). We
have also disabled hyper threading on the Intel processors to
achieve better comparability with the AMD processors that do
not provide this feature. The desktop configuration is running
Ubuntu 13.10, the server configuration CentOS 6.5.

The number of parallel instances running on the same
machine, which is the controlled variable in our experiments,
is initially chosen as a) 1 (sequential) and b) 2N, where N is
the total number of physical cores available in the machine. 2N
is a common configuration to maximize hardware utilization.
By launching more instances than actually available processor
cores, the cores are more likely to be occupied during I/O wait
times of some processes without requiring frequent migration
between cores, which would impair the effectiveness of L1 and
L2 caches. These two basic settings suffice for a fundamental
assessment of the hypotheses stated in Section III-D. In order
to answer RQ 3, we expand the analysis to further degrees of
parallelism.

The different factors outlined above yield 8 different con-
figurations (2 workloads, 2 hardware platforms, 2 degrees of
parallelism). For each of these we execute our campaign of
400 experiments three times (cf. Section IV-B). In total, to
test Hypotheses 1 to 3, we execute 24 campaigns with 400
experiments each. We report the results of these experiments
in the following section, along with a set of additional exper-
iments for an in-depth analysis of these results.

V. EXPERIMENTAL RESULTS AND DATA ANALYSIS

A. Initial Results

Table I shows the mean results of the 24 campaigns to test
Hypotheses 1 and 2. Each row lists the results for a different
setup. The HW column specifies the hardware platform, the
column the number of parallel instances of the emulator
performing the experiments, and the WL column the used
workload. The next ten columns contain the average number of
experiments that resulted in the corresponding failure mode. In
addition to the eight failure modes specified in Section III-A,
there are two additional columns for possible experiment
results: An Invalid class of experiment results for cases in
which the experiment control logic had to abort the experiment
due to unforeseen failures within the control logic and a No
Failure (NF) class for experiments that finished execution
without any failure detection. Unforeseen failures include (for
instance) cases, when the host operating system cannot fulfill
requests for resource allocations. The last three columns list
the throughput in experiments per hour, the average experi-
ment duration in seconds, and the average Euclidean distance
of obtained samples from the mean distribution, as introduced
in Section III-C.

From the obtained experiment throughput data, we clearly
reject Hypothesis 1: In the parallel case the average experi-
ment throughput is considerably higher than in the sequential
case. We achieve an average speedup between 4 and 4.5 for a
8-fold increase of instances on the desktop machines and an
average speedup between 9.4 and 10 for a 32-fold increase on
the servers. The throughput calculation is not only based on
experiment execution times, but also includes the processing
overhead of the experiment control logic. From our experience,
however, this overhead is small (less than one second per
experiment) compared to the experiment duration.

To test Hypothesis 2, we conduct a Chi-square test for
independence to assess if the observed result distributions
are statistically independent from the degree of parallelism.
As we perform multiple tests simultaneously on the same
population, we account for the risk of false discoveries (i.e.,
incorrect rejections of the null hypothesis) by adjusting p-
values according to the Benjamini-Hochberg procedure [69].
These adjusted p-values (p) and the corresponding test results
are shown in Table II, along with the normalized Pearson
coefficients (r). The normalized Pearson coefficient indicates
the relative “strength” of correlation and can be used to
compare the degree of correlation between parallel/sequential
execution and the different result distributions. The coefficient
also indicates positive or negative correlation. We have used

the absolute numbers from the distributions rather than the
mean values for the Chi square tests. The results in Table II
indicate that there is no independence of the result distributions
from parallelism in three out of four cases, and we therefore
reject Hypothesis 2.

To test Hypothesis 3, we calculate the Euclidean distance
of the mean distributions shown in Table I to each of the
three distribution samples they were derived from. The mean
values of these distance measures are shown in the d column
of Table I. The heterogeneity of parallel result distributions is
between 1.7 and 10.1 times higher than the heterogeneity of
sequential results and we, therefore, reject Hypothesis 3.

From the presented results, both RQs 1 and 2 are positively
answered and we proceed to address RQ 3.

B. Influence of Timeout-Values on the Result Distribution

In order to better understand the trade-off between exper-
iment throughput and result accuracy, we take a closer look
at the observed changes in the result distributions. While the
numbers for the result classes Invalid, SC, SE, WHD, and
SHA only marginally differ across the different setups, we see
major deviations in SHD and WHA failure modes. As both
failure modes are related to hang detectors and these depend on
timeouts for detection, we suspect that the increased rates for
parallel experiments are false positives of these detectors and
that their timeouts need adjustment in the parallel case. Indeed,
the experiments exhibit longer execution times in the parallel
case, as the Experiment Duration column of Table I shows.
Compared to sequential experiments, the execution times are
roughly doubled. In order to prevent the longer execution times
from affecting the result distributions, we chose to triple the
timeout values for the WHA, SHA, and IHA detectors. A high
timeout value leads to unnecessarily long wait times in the case
of an actual hang failure and we discuss better strategies in
Section V-C. In our case, we see a relatively small fraction of
hang failures and consider the reduced detection efficiency a
reasonable cost for results of higher accuracy.

After eliminating this potential source of deviations in
the result distributions, we performed the parallel campaigns
again with the modified setup. We focus all further analyses
on experiments with the mixed workload, as we observe
higher correlation coefficients for this workload in both setups.
Table III shows the obtained results, which are closer to the
distributions obtained for sequential runs. However, while the
heterogeneity of results has decreased for the server setup,
it has increased for the desktop setup and this divergence
of result accuracy is also reflected by the Chi square test
results in the first two rows of Table V: While the result
distribution for the desktop setup still significantly correlates
with the degree of parallelism, it is statistically independent
for the server setup. The distribution differences that lead to
this indication of diverging results are mostly due to differing
SHD and WHA failure counts. As a consequence, we further
look into timeout selection strategies for the corresponding
detectors on this platform in Section V-C.

The improved accuracy of experimental results on the server

TABLE I
MEAN FAILURE MODE DISTRIBUTIONS, PERFORMANCE AND ACCURACY MEASURES FROM 24 EXPERIMENT CAMPAIGNS

Setup Failure Modes Performance and Accuracy Measures

HW # WL Invalid NF SC SE WF SHD WHD SHA WHA IHA Throughput Experiment
d(exp./h) Duration (s)

Desktop 1 pure 0.00 108.67 97.00 0 182.67 6.33 0 0 0.00 5.33 16.4 219.21 0.89
Desktop 1 mixed 0.00 108.00 97.00 0 182.00 0.00 0 0 6.33 6.67 12.5 286.97 2.02
Server 1 pure 0.00 101.33 97.00 0 183.00 18.67 0 0 0.00 0.00 14.6 246.38 1.26
Server 1 mixed 0.00 114.67 97.00 0 183.00 5.33 0 0 0.00 0.00 12.2 295.36 0.63

Desktop 8 pure 0.00 42.00 97.00 0 181.33 25.67 0 0 48.67 5.33 67.1 416.23 7.34
Desktop 8 mixed 0.00 1.00 96.67 0 6.33 10.00 0 1 281.67 3.33 56.1 493.77 3.50
Server 32 pure 0.33 95.00 97.00 0 182.67 22.00 0 0 0.00 3.00 146.3 496.98 3.37
Server 32 mixed 0.00 65.00 97.00 0 179.00 5.00 0 0 48.00 6.00 115.6 616.19 6.35

TABLE II
CHI-SQUARE TEST OF INDEPENDENCE FOR PARALLELISM AND INITIAL

RESULT DISTRIBUTIONS

HW WL p r Result

Desktop pure 3.2× 10−55 0.45 reject
Desktop mixed 0 0.90 reject
Server pure 2.1× 10−1 0.1 do not reject
Server mixed 4.3× 10−41 0.40 reject

platform raises the question, whether similar systematic causes
of result divergence can be identified. In order to provoke
a stronger impact of such potential effects on the result
distributions, we performed additional campaigns on the server
platform with 36, 40, 44, and 48 instances. The results are
shown in Table IV. The comparatively large improvement in
terms of throughput is probably due to a minor change in the
experiment logic to regularly clean parts of the host file system
from temporary files used by the experiment controller. As the
Chi square tests for independence in Table V show, the result
distributions for 36, 40, and 44 instances do not significantly
differ from the results obtained from the sequential campaigns,
whereas the distributions for 48 instances do. We also observe
a strong increase of the heterogeneity measure d for the
latter. Although the results for the setups with 36, 40, and 44
instances are still more heterogeneous than the results obtained
from sequential experiments, we deem it acceptable and expect
results to further stabilize with moderately higher numbers of
campaign repetitions.

C. Selection of Timeout-Values for Parallel Experiments

As it turns out, the selection of suitable timeout values for
our hang detectors is crucial to avoid false positive hang detec-
tions and good estimates become challenging for parallel SFI
experiments. Initially, we chose timeout values based on our
experience with previous sequential experiments and added a
generous safety margin. This turned out to be insufficient for
parallel executions, as is evident from the drastically increased
WHA detections in Table I. A naïve approach to avoid these
false positives would be to upscale the timeout values with
the number of parallel instances. However, as the degree, by
which execution times increase with the numbers of instances,
is generally unknown and according to our results also depends
on the execution platform (hardware and OS), this entails an

iterative process of trial and error until suitable timeout values
are found.

A better strategy is to estimate values based on observa-
tions made during a number of golden runs on the intended
execution platform without injections. Such runs should be
performed for each targeted level of parallelism and relevant
timing data be recorded as a baseline to derive suitable timeout
values. We performed a number of such calibration runs for
our parallel desktop setup with the mixed workload using a
modified version of our experiment controller. During calibra-
tion runs we record the times needed for system initialization
(sysinit) and for workload completion, as these two time
values are relevant to our IHA and WHA detectors. The
recorded times appear to be normally distributed. Therefore,
we fitted normal distributions to our data and used their
99.99 percentiles as our timeout values, i.e., 99.99% of
experiments should execute without false hang detections if the
fitted distribution matches the actual distribution of run times.
However, the repetition of the original experiments for the
same setup using these timeout values yielded unsatisfactory
results with 106 WHA and 3 IHA detections in average. While
the number of IHA detections is in the expected range for
the 99.99 percentile, the number of WHA detections, which
is considerably lower than with our original timeout values
(cf. Table I), is still 10 times higher than with our tripled
timeouts (cf. Table III). The difference in the quality of the es-
timated timeout values indicates that our calibration approach
is suitable for estimating system initialization timeouts, but
not workload timeouts. Since we used a modified version of
our experiment controller to perform the calibration runs, we
assume the workload behavior for real experiments to differ
from our calibration observations.

In order to further investigate the timing behavior without
such side effects from code or setup modifications, we repeated
the original experiments for our desktop setup with the mixed
workload and stepwise increased degrees of parallelism. To
observe the timing behavior without interference from any
spurious detections, we set extremely high timeout values for
our hang detectors and extracted the system initialization and
workload times from experiment logs. In order to exclude
outliers that we observe in the collected data, we only include
time values between the 0.5 and 99.5 percentiles in our

TABLE III
MEAN FAILURE MODE DISTRIBUTIONS, PERFORMANCE AND ACCURACY MEASURES FROM REPEATED PARALLEL EXPERIMENTS

Setup Failure Modes Performance and Accuracy Measures

HW # WL Invalid NF SC SE WF SHD WHD SHA WHA IHA Throughput Experiment
d(exp./h) Duration (s)

Desktop 8 mixed 0 104 97 0 181.67 5.00 0 0.67 11.33 0.33 47.0 587.25 5.41
Server 32 mixed 0 114 97 0 181.67 6.67 0 0.67 0.00 0 118.1 619.48 1.99

TABLE IV
MEAN FAILURE MODE DISTRIBUTIONS, PERFORMANCE AND ACCURACY MEASURES FROM HIGHLY PARALLEL EXPERIMENTS

Setup Failure Modes Performance and Accuracy Measures

HW # WL Invalid NF SC SE WF SHD WHD SHA WHA IHA Throughput Experiment
d(exp./h) Duration (s)

Server 36 mixed 0.00 113.67 97 0 181.67 7.00 0 0.33 0.33 0 157.1 712.11 2.16
Server 40 mixed 0.67 113.00 97 0 180.00 8.00 0 0.67 0.67 0 154.1 834.14 1.98
Server 44 mixed 0.00 112.00 97 0 180.33 6.67 0 1.33 2.33 0 143.0 951.52 3.54
Server 48 mixed 0.67 104.67 96 0 177.67 11.00 0 2.00 5.00 3 102.5 1069.03 6.81

TABLE V
CHI-SQUARE TEST OF INDEPENDENCE FOR PARALLELISM AND

ADDITIONAL RESULT DISTRIBUTIONS

HW # WL p r Result

Desktop 8 mixed 6.7× 10−7 0.18 reject
Server 32 mixed 1.0 0.05 do not reject

Server 36 mixed 1.0 0.05 do not reject
Server 40 mixed 7.8× 10−1 0.08 do not reject
Server 44 mixed 2.1× 10−1 0.10 do not reject
Server 48 mixed 1.3× 10−4 0.17 reject

analysis. The graph in Figure 2 visualizes the minimum and
maximum times observed. With increasing parallelism, the
difference between the observed minimum and maximum
times also increases, with a maximum difference of about 618
seconds for the system initialization and about 323 seconds for
the workload times. Moreover, the maximum times increase
with increasing parallelism whereas the minimum times are
almost constant.

A comparison of the observed time distributions for our
calibration runs and the repeated experiment runs shows that
the workload execution completes significantly faster in the
calibration setup: With 8 parallel instances, for instance, the
workload completes after about 98 seconds on average in the
calibration, but needs about 304 seconds on average in the
experiment setup.

As our results show that a dedicated calibration setup may
exhibit different timing behavior than real experiments, we
conclude that timing data from real experiments should be
used for choosing suitable timeout values. Using the 99.99
percentile of a distribution fitted to the timing data from
actual experiments, we obtained a number of hang detections
comparable to the number for the original experiments with
tripled timeout values (cf. Table III), confirming the suitability
of our approach. The new timeout value for the IHA detector
is about 300 seconds shorter than the original tripled value,
whereas the new WHA detector timeout is about 30 seconds
longer.

4 5 6 7 8 9 10

10
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

Parallel instances

T
im

e
(s

)

●

●

●

●

●

●

●
●

●

●
●

●

●

●

Sysinit max
Sysinitn min
Workload max
Workload min

Fig. 2. Minimum and maximum times for system initialization and mixed
workload execution observed during experiment runs with increasing levels
of parallelism for the desktop setup.

With timeout values of comparable or even better accuracy
than the previous trial and error approach, our systematic
approach to calculating timeout values is preferable if it results
in acceptable overhead. For the systematic timeout estimation,
we used timing data from 3 complete experiment campaigns,
summing up to 1200 experiments. While this overhead is
acceptable for large SFI campaigns, we attempt to improve
the performance of our timeout value assessment by finding
a subset of the available data samples that provides us with
sufficiently accurate timeout estimations. For this purpose we
randomly select subsets of varying sizes of the timing data
and apply the timeout estimation approach described above.
The resulting timeout values for 10% steps in sample sizes
are illustrated in Figure 3. 1.0 in the figure corresponds to

873 samples for the sysinit times and 298 samples for the
workload times. This is a subset of the total experiment count,
as we only have valid timing data for experiments that did
not finish their execution prematurely. For instance, if in an
experiment the system crashed during initialization, we have
no valid sysinit time for that test case. Since the workload
times have a narrower distribution (cf. Figure 2), less overall
samples are needed to obtain a robust estimation than for the
sysinit times. Starting from a sample size of 0.5 to 0.6, the
estimated timeout values are very close to the value estimated
using all available samples. Thus, the execution of only 2
experiment campaigns would have sufficed for the estimation
of suitable timeout values.

0.2 0.4 0.6 0.8 1.0

45
0

50
0

55
0

60
0

65
0

70
0

75
0

80
0

Sample size (% of available samples)

E
st

im
at

ed
 ti

m
eo

ut
 v

al
ue

s
(s

)

●

●

●

●
● ●

● ● ● ●

●

●

●

●
●

● ●
● ● ●

●

●

Sysinit
Workload

Fig. 3. Estimated timeout values for different samples sizes of observed real
experiment times.

VI. DISCUSSION

The experiments performed in this study provided interest-
ing insights about the result accuracy and performance of FI
experiments, and we summarize the main lessons that can be
drawn from them in this section. A subtle aspect that turned
out to be more important and difficult than what we initially
expected was:

The correct setup and tuning of parallel experiments may
prove difficult and requires special care.

We observed that the parallel execution of experiments had
a significant impact on the duration and the timing behavior of
individual experiments. Besides changing the mean experiment
duration, parallelism also led to incorrect failure detections in
our first round of experiments. Even though failure detector
timeouts were calibrated on the basis of preliminary fault-
free parallel runs, they turned out to be inadequate to account

for non-deterministic execution delays caused by unexpected
interactions among failing and non-failing VMs that were not
observed in fault-free runs.

Moreover, the technical implementation of our PAIN setup
(not discussed in detail in this paper for the sake of brevity),
being concurrent and complex by itself, required significant
efforts for testing and debugging. to achieve a reliable setup,
we had to find and fix transient and subtle issues related to
portability across different platforms (e.g., the desktop and the
server platforms had different limits on the maximum num-
ber of processes and on other resources causing experiment
failures), resource leaks of the target system (in the case of
the Android emulator, temporary files), and communication
between the experiment controller and the target system,
which in some cases went out of sync due to unexpected
timing behavior and the loss of messages. On the basis of
this experience, we advise researchers and practitioners, who
design parallel FI setups, to pay attention to these aspects. As
PAIN has matured to avoid a number of such issues, we hope
that it provides a useful basis for future parallel experiments
and experimentation frameworks.

Going back to the initial research questions, our experiments
provide evidence that parallelism can influence both experi-
ment performance and results. Executing experiments in par-
allel can significantly (RQ1) increase experiment throughput
with a speedup factor of up to 10. Thus, FI experiments can
be included among the computer applications that can benefit
from parallelism. Nevertheless, we also observed that:

The parallel execution of FI experiments can improve
experiment throughput, but can also affect the accuracy
of results.

The statistically significant differences reported in our anal-
ysis show that there are cases in which parallelism can
actually change the results of experiments (RQ2), both in
terms of failure mode distributions and of result stability across
repetitions. Such effects, ultimately, affect the conclusions
about fault tolerance properties of the target system. In our
study, performance interferences between parallel instances
changed the failure mode of a subset of experiments (that were
originally not failing or failing differently) to hang failures of
the OS and the workload. Moreover, these hang failures were
not easily reproducible and led to unstable failure distributions.

Such changes in the results were observed for very high
degrees of parallelism, e.g., up to three times the number of
cores (48 parallel experiments) in the case of our server setup.
Nevertheless, we also found that running parallel experiments
at a lower degree of parallelism (e.g., 32 parallel experiments
for the server setup with appropriate timeouts) do not cause
statistically significant variations from the results of sequential
executions. This observation indicates that parallelism does
not necessarily harm result accuracy (RQ3), if the degree of
parallelism is not too high.

Therefore, to maximize the experiment throughput while

preserving result accuracy, it is important to properly tune the
degree of parallelism. For instance, the best throughput in the
server setup with mixed workload was achieved when running
36 parallel instances (157.1 experiments per hour on average).
Further increasing the number of parallel instances to 48
gradually reduced the throughput (down to 102.5 experiments
per hour) and caused statistically significant inaccuracies. This
behavior illustrates that result inaccuracies occur when the
number of parallel instances exceeds the system’s capacity:

Negative effects on result accuracy can be avoided, if
the degree of parallelism is carefully tuned for best
throughput.

Consequently, the tester has to determine the appropriate
degree of parallelism for his setup by running parallel ex-
periments. For instance, by performing preliminary parallel
runs with an increasing number of instances is a viable
method for finding a suitable degree of parallelism. We have
demonstrated that such runs should not use modified or even
simplified versions of the intended experiment workload, as
these may yield significantly different loads that, for instance,
lead to different timing behavior and inaccurate assessments
of resource utilization.

VII. THREATS TO VALIDITY

For any empirical study, care must be taken when interpret-
ing the results and drawing conclusions. The main threats to
validity that we identified are the choices for the injection tar-
get, the fault model, the workload, and the accuracy measures
of the experimental design.

We chose the Linux kernel as injection target. Even if this
system may not be representative of every software system, it
is representative of embedded, real-time, and systems software,
and as such among the most relevant targets for FI. More-
over, being a complex OS, this system includes several non-
determinism factors whose influence we wanted to investigate,
including concurrency (both in user and kernel space), I/O
interactions between the OS and the environment, and the
use of non-deterministic heuristics adopted in many parts of
the OS, such as in task and I/O scheduling and page reclaim
algorithms.

The fault model adopted in our experiments was based on
the injection of software faults through code mutation, whose
representativeness is supported by extensive analyses of real
faults and mutation operators, and which are an accepted
practice [70]–[73]. In order to investigate the utility of par-
allelization for coping with the high number of experiments
that result from multiple FI, we inject both 1st and 2nd
order mutants. Even if the realism of multiple injections (with
respect to real faults) has not been investigated in depth,
multiple injections are already used in recent FI studies [9],
[11], [12] and are representative of experiments conducted by
practitioners.

As workload, we adopted existing performance benchmarks
for the Android platform. Although benchmarks may not be

representative of specific user scenarios, they are the most
typical workloads in FI experiments, especially in the con-
text of dependability benchmarks [20], [24], [74]. Moreover,
performance benchmarks are stressful workloads, which have
been shows to increase the likelihood of fault activation during
experiments [75].

The accuracy measures in our experiments were focused
on the number and the distribution of failure modes. This
is one of the most important aspects of FI experiments,
since experiments are often aimed at evaluating the likelihood
of high-severity failure modes [4], [20], [22], [76]. More-
over, fault-tolerance properties, such as coverage and latency,
strictly depend on the types of failures occurred during the
experiments. Thus, distortions of the failure distribution affect
their evaluation.

VIII. CONCLUSION

As software systems become more complex and, at the same
time, tend to exhibit sensitivity to complex fault conditions
[8]–[11], the number of relevant fault conditions to test against
also increases drastically. The simultaneous execution of such
tests on parallel hardware has been advocated as a viable
strategy to cope with rapidly increasing test numbers. In
this paper we have addressed the question whether such
strategies can be applied to speed up software fault injection
(SFI) experiments by performing PArallel INjections (PAIN).
Besides assessing the degree of achievable throughput im-
provements, we address the question whether PAIN affects the
outcome of SFI experiments and, thereby, possibly threatens
the validity of SFI results. In order to answer these questions,
we define two measures of “metrological compatibility” for
SFI experiments, i.e., how accurately results from PAIN reflect
results from sequential experiments, and apply them, along
with a throughput assessment, in a case study of simultaneous
fault injections to an Android device driver.

Our results show that while PAIN yields the desired
throughput improvements, it also impairs the metrological
compatibility of the obtained results. As the root cause of
observed result changes we identify timeout configurations,
which constitute a crucial parameter for failure detection in
fault injection scenarios. Tuning these parameters, we achieve
metrological compatibility of SFI experiments that use up to
2.75 times more parallel instances than physically available
processing units.

While it is common practice to choose “safe” timeout values
for sequential experiments from analyzing fault-free execu-
tions, we observe that this strategy does not yield the desired
accuracy in the parallel case: Using such classically derived
timeout values (from parallel fault-free executions), we obtain
experiment results from PAIN that are not metrologically
compatible with sequential experiments. To overcome this
issue we propose an alternative strategy, which requires longer
assessment times than the classical approach, but (contrary to
the classical approach) provides accurate estimates for PAIN
experiments and thereby ensures accurate results.

REFERENCES

[1] J. Voas, F. Charron, G. McGraw, K. Miller, and M. Friedman,
“Predicting How Badly “Good” Software Can Behave,” IEEE
Softw., vol. 14, no. 4, pp. 73–83, 1997.

[2] J. Durães and H. Madeira, “Emulation of Software faults:
A Field Data Study and a Practical Approach,” IEEE Trans.
Softw. Eng., vol. 32, no. 11, pp. 849–867, 2006.

[3] D. Cotroneo and R. Natella, “Fault Injection for Software Cer-
tification,” IEEE Security Privacy, vol. 11, no. 4, pp. 38–45,
2013.

[4] P. Koopman and J. DeVale, “The Exception Handling Effec-
tiveness of POSIX Operating Systems,” IEEE Trans. Softw.
Eng., vol. 26, no. 9, pp. 837–848, 2000.

[5] J. Arlat, J. Fabre, M. Rodríguez, and F. Salles, “Dependability
of COTS Microkernel-Based Systems,” IEEE Trans. Comput.,
vol. 51, no. 2, pp. 138–163, 2002.

[6] D. Di Leo, F. Ayatolahi, B. Sangchoolie, J. Karlsson, and
R. Johansson, “On the Impact of Hardware Faults–An In-
vestigation of the Relationship between Workload Inputs and
Failure Mode Distributions,” in Proc. SAFECOMP’12, 2012,
pp. 198–209.

[7] R. Natella, D. Cotroneo, J. Durães, and H. Madeira, “On Fault
Representativeness of Software Fault Injection,” IEEE Trans.
Softw. Eng., vol. 39, no. 1, pp. 80–96, Jan. 2013.

[8] H. S. Gunawi, T. Do, P. Joshi, P. Alvaro, J. M. Hellerstein,
A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau, K. Sen, and
D. Borthakur, “FATE and DESTINI: A Framework for Cloud
Recovery Testing,” in Proc. NSDI’11, 2011.

[9] P. Joshi, H. S. Gunawi, and K. Sen, “PREFAIL: A Pro-
grammable Tool for Multiple-failure Injection,” in Proc. OOP-
SLA’11, 2011, pp. 171–188.

[10] A. Lanzaro, R. Natella, S. Winter, D. Cotroneo, and N.
Suri, “An Empirical Study of Injected versus Actual Interface
Errors,” in Proc. ISSTA’14, 2014, pp. 397–408.

[11] S. Winter, M. Tretter, B. Sattler, and N. Suri, “simFI: From
single to simultaneous software fault injections,” in Proc.
DSN’13, Jun. 2013, pp. 1–12.

[12] Y. Jia and M. Harman, “Higher Order Mutation Testing,” In-
formation and Software Technology, vol. 51, no. 10, pp. 1379–
1393, 2009.

[13] M. Papadakis and N. Malevris, “An empirical evaluation of
the first and second order mutation testing strategies,” in Proc.
ICSTW’10, 2010, pp. 90–99.

[14] Y. Jia and M. Harman, “Constructing Subtle Faults Using
Higher Order Mutation Testing,” in Proc. SCAM’08, Sep.
2008, pp. 249–258.

[15] A. Siami Namin, J. H. Andrews, and D. J. Murdoch, “Suf-
ficient Mutation Operators for Measuring Test Effectiveness,”
in Proc. ICSE’08, 2008, pp. 351–360.

[16] A. Lastovetsky, “Parallel testing of distributed software,” Infor-
mation and Software Technology, vol. 47, no. 10, pp. 657–662,
2005.

[17] A. Duarte, W. Cirne, F. Brasileiro, and P. Machado, “GridUnit:
Software Testing on the Grid,” in Proc. ICSE’06, 2006,
pp. 779–782.

[18] M. Oriol and F. Ullah, “YETI on the Cloud,” in Proc.
ICSTW’10, Apr. 2010, pp. 434–437.

[19] D. Cotroneo, M. Grottke, R. Natella, R. Pietrantuono, and
K. S. Trivedi, “Fault Triggers in Open-Source Software: An
Experience Report,” in Proc. ISSRE’13, 2013, pp. 178–187.

[20] W. T. Ng and P. M. Chen, “The design and verification of the
rio file cache,” IEEE Trans. Comput., vol. 50, no. 4, pp. 322–
337, 2001.

[21] M. M. Swift, B. N. Bershad, and H. M. Levy, “Improving
the reliability of commodity operating systems,” in Proc.
SOSP’03, 2003, pp. 207–222.

[22] J. Durães and H. Madeira, “Multidimensional characterization
of the impact of faulty drivers on the operating systems
behavior,” IEICE Transactions on Information and Systems,
vol. 86, no. 12, pp. 2563–2570, 2003.

[23] J. Durães, M. Vieira, and H. Madeira, “Dependability Bench-
marking of Web-Servers,” in Computer Safety, Reliability, and
Security, ser. Lecture Notes in Computer Science, vol. 3219,
2004, pp. 297–310.

[24] M. Vieira and H. Madeira, “A dependability benchmark for
OLTP application environments,” in VLDB, 2003, pp. 742–
753.

[25] A. Albinet, J. Arlat, and J.-C. Fabre, “Characterization of the
impact of faulty drivers on the robustness of the linux kernel,”
in Proc. DSN’04, 2004, pp. 867–876.

[26] A. Bondavalli, A. Ceccarelli, L. Falai, and M. Vadursi, “Foun-
dations of measurement theory applied to the evaluation of
dependability attributes,” in Proc. DSN’07, 2007, pp. 522–533.

[27] J. Carreira, H. Madeira, and J. G. Silva, “Xception: a technique
for the experimental evaluation of dependability in modern
computers,” IEEE Trans. Softw. Eng., vol. 24, no. 2, pp. 125–
136, 1998.

[28] J. Aidemark, J. Vinter, P. Folkesson, and J. Karlsson,
“GOOFI: Generic Object-Oriented Fault Injection Tool,” in
Proc. DSN’01, 2001, pp. 83–88.

[29] D. Stott, B. Floering, Z. Kalbarczyk, and R. Iyer, “A Frame-
work for Assessing Dependability in Distributed Systems
with Lightweight Fault Injectors,” in Proc. IPDS’00, 2000,
pp. 91–100.

[30] D. Skarin, R. Barbosa, and J. Karlsson, “Comparing and
validating measurements of dependability attributes,” in Proc.
EDCC’10, 2010, pp. 3–12.

[31] E. van der Kouwe, C. Giuffrida, and A. S. Tanenbaum,
“Evaluating Distortion in Fault Injection Experiments,” in
Proc. HASE’14, 2014.

[32] R. Chandra, R. M. Lefever, K. R. Joshi, M. Cukier, and W. H.
Sanders, “A global-state-triggered fault injector for distributed
system evaluation,” IEEE Trans. Parallel Distrib. Syst., vol. 15,
no. 7, pp. 593–605, 2004.

[33] D. Cotroneo, R. Natella, S. Russo, and F. Scippacercola,
“State-Driven Testing of Distributed Systems,” in Proc.
OPODIS’13, 2013, pp. 114–128.

[34] I. Irrera, J. Durães, H. Madeira, and M. Vieira, “Assessing
the Impact of Virtualization on the Generation of Failure
Prediction Data,” in Proc. LADC’13, 2013, pp. 92–97.

[35] E. Starkloff, “Designing a parallel, distributed test system,” in
Proc. AUTOTESTCON 2000, 2000, pp. 564–567.

[36] G. M. Kapfhammer, “Automatically and Transparently Dis-
tributing the Execution of Regression Test Suites,” in Proc.
ICTCS’01, 2001.

[37] A. N. Duarte, W. Cirne, F. Brasileiro, and P. Duarte De
Lima Machado, “Using the Computational Grid to Speed up
Software Testing,” in Proc. Brazilian Symposium on Software
Engineering, 2005.

[38] A. Duarte, G. Wagner, F. Brasileiro, and W. Cirne, “Multi-
environment Software Testing on the Grid,” in Proc. PAD-
TAD’06, 2006, pp. 61–68.

[39] T. Parveen, S. Tilley, N. Daley, and P. Morales, “Towards a
distributed execution framework for JUnit test cases,” in Proc.
ICSM’09, Sep. 2009, pp. 425–428.

[40] L. Yu, L. Zhang, H. Xiang, Y. Su, W. Zhao, and J. Zhu, “A
Framework of Testing as a Service,” in Proc. MASS’09, Sep.
2009, pp. 1–4.

[41] L. Yu, W.-T. Tsai, X. Chen, L. Liu, Y. Zhao, L. Tang, and
W. Zhao, “Testing as a Service over Cloud,” in Proc. SOSE’10,
Jun. 2010, pp. 181–188.

[42] M. Staats and C. Păsăreanu, “Parallel Symbolic Execution for
Structural Test Generation,” in Proc.ISSTA’10, 2010, pp. 183–
194, ISBN: 978-1-60558-823-0.

[43] G. Candea, S. Bucur, and C. Zamfir, “Automated Software
Testing as a Service,” in Proc. SoCC’10, 2010, pp. 155–160.

[44] L. Ciortea, C. Zamfir, S. Bucur, V. Chipounov, and G. Candea,
“Cloud9: A Software Testing Service,” SIGOPS Oper. Syst.
Rev., vol. 43, no. 4, pp. 5–10, Jan. 2010, ISSN: 0163-5980.

[45] R. Mahmood, N. Esfahani, T. Kacem, N. Mirzaei, S. Malek,
and A. Stavrou, “A whitebox approach for automated security
testing of Android applications on the cloud,” in Proc. Interna-
tional Workshop on Automation of Software Test (AST), 2012,
pp. 22–28.

[46] J. Gray, “Why do computers stop and what can be done about
it?” Tandem Computers, Tech. Rep. TR-85.7, 1986.

[47] M. Grottke and K. Trivedi, “Fighting Bugs: Remove, Retry,
Replicate, and Rejuvenate,” IEEE Computer, vol. 40, no. 2,
pp. 107–109, 2007.

[48] T. Banzai, H. Koizumi, R. Kanbayashi, T. Imada, T. Hanawa,
and M. Sato, “D-Cloud: Design of a Software Testing Envi-
ronment for Reliable Distributed Systems Using Cloud Com-
puting Technology,” in Proc. CCGRID’10, 2010, pp. 631–636.

[49] T. Hanawa, T. Banzai, H. Koizumi, R. Kanbayashi, T. Imada,
and M. Sato, “Large-Scale Software Testing Environment
Using Cloud Computing Technology for Dependable Parallel
and Distributed Systems,” in Proc. ICSTW’10, Apr. 2010,
pp. 428–433.

[50] R. Banabic and G. Candea, “Fast black-box testing of system
recovery code,” in Proc. EuroSys’12, 2012, pp. 281–294.

[51] D. Gupta, L. Cherkasova, R. Gardner, and A. Vahdat, “En-
forcing performance isolation across virtual machines in xen,”
in Proc. Middleware’06, 2006, pp. 342–362.

[52] G. Somani and S. Chaudhary, “Application performance isola-
tion in virtualization,” in Proc. CLOUD’09, 2009, pp. 41–48.

[53] Q. Huang and P. P. Lee, “An experimental study of cascading
performance interference in a virtualized environment,” ACM
SIGMETRICS Performance Evaluation Review, vol. 40, no. 4,
pp. 43–52, 2013.

[54] D. Novaković, N. Vasić, S. Novaković, D. Kostić, and R.
Bianchini, “DeepDive: Transparently Identifying and Manag-
ing Performance Interference in Virtualized Environments,” in
Proc. USENIX ATC’13, 2013, pp. 219–230.

[55] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. Engler, “An
Empirical Study of Operating Systems Errors,” in Proc. SOSP,
2001, pp. 73–88.

[56] N. Palix, G. Thomas, S. Saha, C. Calvès, J. Lawall, and G.
Muller, “Faults in linux: ten years later,” in Proc. ASPLOS,
2011, pp. 305–318.

[57] D. Simpson, Windows XP Embedded with Service Pack 1
Reliability. [Online]. Available: http://msdn.microsoft.com/en-
us/library/ms838661(WinEmbedded.5).aspx.

[58] A. Ganapathi, V. Ganapathi, and D. Patterson, “Windows XP
Kernel Crash Analysis,” in Proc. LISA, 2006, pp. 12–22.

[59] D. Cotroneo, R. Natella, and S. Russo, “Assessment and Im-
provement of Hang Detection in the Linux Operating System,”
in Proc. SRDS, Sep. 2009, pp. 288–294.

[60] A. Bovenzi, M. Cinque, D. Cotroneo, R. Natella, and G.
Carrozza, “OS-Level Hang Detection in Complex Software
Systems,” Int. J. Crit. Comput.-Based Syst., vol. 2, no. 3/4,
pp. 352–377, Sep. 2011.

[61] Y. Zhu, Y. Li, J. Xue, T. Tan, J. Shi, Y. Shen, and C. Ma, “What
Is System Hang and How to Handle It,” in Proc. ISSRE, 2012,
pp. 141–150.

[62] DEEDS/TUD and Mobilab/UniNa, PAIN Software Framework,
https://github.com/DEEDS-TUD/PAIN.git (anonymous/public
access blocked prior to publication of the results presented in
this paper).

[63] J. Christmansson and R. Chillarege, “Generation of an Error
Set that Emulates Software Faults based on Field Data,” in
FTCS, 1996, pp. 304–313.

[64] Google Inc., Android – Discover Android. [Online]. Available:
http://www.android.com/about/.

[65] ——, android Git repositories. [Online]. Available: https : / /
android.googlesource.com/.

[66] ——, Android Emulator. [Online]. Available: http://developer.
android.com/tools/help/emulator.html.

[67] F. Bellard, Qemu. [Online]. Available: http://wiki.qemu.org/
Main_Page.

[68] R. Longbottom, Roy Longbottom’s Android Benchmark Apps.
[Online]. Available: http : / / www . roylongbottom . org . uk /
android%20benchmarks.htm.

[69] Y. Benjamini and Y. Hochberg, “Controlling the False Dis-
covery Rate: A Practical and Powerful Approach to Multiple
Testing,” Journal of the Royal Statistical Society. Series B
(Methodological), vol. 57, no. 1, 1995.

[70] J. Andrews, L. Briand, and Y. Labiche, “Is mutation an
appropriate tool for testing experiments?” In ICSE, 2005,
pp. 402–411.

[71] H. Do and G. Rothermel, “On the use of mutation faults in
empirical assessments of test case prioritization techniques,”
IEEE Trans. Softw. Eng., pp. 733–752, 2006.

[72] J. Durães and H. Madeira, “Emulation of Software faults:
A Field Data Study and a Practical Approach,” IEEE Trans.
Softw. Eng., vol. 32, no. 11, pp. 849–867, 2006.

[73] R. Natella, D. Cotroneo, J. A. Durães, and H. S. Madeira, “On
Fault Representativeness of Software Fault Injection,” IEEE
Trans. Softw. Eng., vol. 39, no. 1, pp. 80–96, 2013.

[74] K. Kanoun and L. Spainhower, Dependability Benchmarking
for Computer Systems. Wiley-IEEE Computer Society, 2008.

[75] T. Tsai, M. Hsueh, H. Zhao, Z. Kalbarczyk, and R. Iyer,
“Stress-based and path-based fault injection,” IEEE Trans. on
Computers, vol. 48, no. 11, pp. 1183–1201, 1999.

[76] A. Avizienis, J. Laprie, B. Randell, and C. Landwehr, “Basic
Concepts and Taxonomy of Dependable and Secure Comput-
ing,” IEEE Trans. Dependable Secure Comput., vol. 1, no. 1,
pp. 11–33, 2004.

