
Discrete
Optimization
The Knapsack Problem: Part I

Thursday, 13 June 13

Goals of the Lecture
‣ Introduce some basic concepts
‣ Introduce dynamic programming

2

Thursday, 13 June 13

3

The (1-Dimensional) Knapsack Problem
‣Given a set of items I, each item i ∈ I

characterized by
– its weight wi

– its value vi

Thursday, 13 June 13

3

The (1-Dimensional) Knapsack Problem
‣Given a set of items I, each item i ∈ I

characterized by
– its weight wi

– its value vi

 and
– a capacity K for a knapsack

Thursday, 13 June 13

3

The (1-Dimensional) Knapsack Problem
‣Given a set of items I, each item i ∈ I

characterized by
– its weight wi

– its value vi

 and
– a capacity K for a knapsack

 find the subset of items in I
– that has maximum value
– does not exceed the capacity K of

the knapsack

Thursday, 13 June 13

Optimization Models

4

Thursday, 13 June 13

Optimization Models
‣How to model an optimization problem

4

Thursday, 13 June 13

Optimization Models
‣How to model an optimization problem

– choose some decision variables
• they typically encode the result we are interested into

4

Thursday, 13 June 13

Optimization Models
‣How to model an optimization problem

– choose some decision variables
• they typically encode the result we are interested into

– express the problem constraints in terms of these
variables
• they specify what the solutions to the problem are

4

Thursday, 13 June 13

Optimization Models
‣How to model an optimization problem

– choose some decision variables
• they typically encode the result we are interested into

– express the problem constraints in terms of these
variables
• they specify what the solutions to the problem are

– express the objective function
• the objective function specifies the quality of each solution

4

Thursday, 13 June 13

Optimization Models
‣How to model an optimization problem

– choose some decision variables
• they typically encode the result we are interested into

– express the problem constraints in terms of these
variables
• they specify what the solutions to the problem are

– express the objective function
• the objective function specifies the quality of each solution

‣The result is an optimization model

4

Thursday, 13 June 13

Optimization Models
‣How to model an optimization problem

– choose some decision variables
• they typically encode the result we are interested into

– express the problem constraints in terms of these
variables
• they specify what the solutions to the problem are

– express the objective function
• the objective function specifies the quality of each solution

‣The result is an optimization model
– It is a declarative formulation

• specify the “what”, not the “how”

4

Thursday, 13 June 13

Optimization Models
‣How to model an optimization problem

– choose some decision variables
• they typically encode the result we are interested into

– express the problem constraints in terms of these
variables
• they specify what the solutions to the problem are

– express the objective function
• the objective function specifies the quality of each solution

‣The result is an optimization model
– It is a declarative formulation

• specify the “what”, not the “how”
– There may be many ways to model an

optimization problem
4

Thursday, 13 June 13

A Knapsack Model
‣Decision variables

– xi denotes whether item i is selected in the
solution
• xi = 1 means the item is selected
• xi = 0 means that it is not selected

5

Thursday, 13 June 13

A Knapsack Model
‣Decision variables

– xi denotes whether item i is selected in the
solution
• xi = 1 means the item is selected
• xi = 0 means that it is not selected

‣Problem constraint
– The selected item cannot exceed

the capacity of the knapsack

5

X

i2I

wixi K

Thursday, 13 June 13

A Knapsack Model
‣Decision variables

– xi denotes whether item i is selected in the
solution
• xi = 1 means the item is selected
• xi = 0 means that it is not selected

‣Problem constraint
– The selected item cannot exceed

the capacity of the knapsack
‣Objective function

– Captures the total value
of the selected items

5

X

i2I

wixi K

X

i2I

vixi

Thursday, 13 June 13

A Knapsack Model
‣Putting it all together

6

maximize

X

i2I

vi xi

subject to X

i2I

wixi K

xi 2 {0, 1} (i 2 I)

Thursday, 13 June 13

Exponential Growth
‣How many possible configurations?

– (0,0,0,...,0), (0,0,0,...,1), ..., (1,1,1,...,1)

7

Thursday, 13 June 13

Exponential Growth
‣How many possible configurations?

– (0,0,0,...,0), (0,0,0,...,1), ..., (1,1,1,...,1)
‣Not all of them are feasible

– They cannot exceed the capacity of the
knapsack

7

Thursday, 13 June 13

Exponential Growth
‣How many possible configurations?

– (0,0,0,...,0), (0,0,0,...,1), ..., (1,1,1,...,1)
‣Not all of them are feasible

– They cannot exceed the capacity of the
knapsack

‣How many are they?
– 2|I|

7

Thursday, 13 June 13

Exponential Growth
‣How many possible configurations?

– (0,0,0,...,0), (0,0,0,...,1), ..., (1,1,1,...,1)
‣Not all of them are feasible

– They cannot exceed the capacity of the
knapsack

‣How many are they?
– 2|I|

‣ How much time to explore them all?
– 1 millisecond to test a configuration
– if |I| = 50, it will take

1,285,273,866 centuries

7

Thursday, 13 June 13

Dynamic Programming
‣Widely used optimization technique

– for certain classes of problems
– heavily used in computational biology

8

Thursday, 13 June 13

Dynamic Programming
‣Widely used optimization technique

– for certain classes of problems
– heavily used in computational biology

‣Basic principle
– divide and conquer
– bottom up computation

8

Thursday, 13 June 13

Dynamic Programming

9

maximize

P
i21..j vi xi

subject to P
i21..j wixi k

xi 2 {0, 1} (i 2 1..j)

Thursday, 13 June 13

Dynamic Programming

‣Basic conventions and notations
– assume that I = {1,2,...,n}
– O(k,j) denotes the optimal solution to the

knapsack problem with capacity k and
items [1..j]

9

maximize

P
i21..j vi xi

subject to P
i21..j wixi k

xi 2 {0, 1} (i 2 1..j)

Thursday, 13 June 13

Dynamic Programming

‣Basic conventions and notations
– assume that I = {1,2,...,n}
– O(k,j) denotes the optimal solution to the

knapsack problem with capacity k and
items [1..j]

‣We are interested in finding out the best
value O(K,n)

9

maximize

P
i21..j vi xi

subject to P
i21..j wixi k

xi 2 {0, 1} (i 2 1..j)

Thursday, 13 June 13

Recurrence Relations (Bellman Equations)
‣Assume that we know how to solve

• O(k,j-1) for all k in 0..K

10

Thursday, 13 June 13

Recurrence Relations (Bellman Equations)
‣Assume that we know how to solve

• O(k,j-1) for all k in 0..K

‣We want to solve O(k,j)
• We are just considering one more item, i.e., item j.

10

Thursday, 13 June 13

Recurrence Relations (Bellman Equations)
‣Assume that we know how to solve

• O(k,j-1) for all k in 0..K

‣We want to solve O(k,j)
• We are just considering one more item, i.e., item j.

‣ If wj ≤ k, there are two cases
• Either we do not select item j, then the best solution we

can obtain is O(k,j-1)
• Or we select item j and the best solution is vj + O(k-wj,j-1)

10

Thursday, 13 June 13

Recurrence Relations (Bellman Equations)
‣Assume that we know how to solve

• O(k,j-1) for all k in 0..K

‣We want to solve O(k,j)
• We are just considering one more item, i.e., item j.

‣ If wj ≤ k, there are two cases
• Either we do not select item j, then the best solution we

can obtain is O(k,j-1)
• Or we select item j and the best solution is vj + O(k-wj,j-1)

‣ In summary
• O(k,j) = max(O(k,j-1), vj + O(k-wj,j-1)) if wj ≤ k
• O(k,j) = O(k,j-1) otherwise

10

Thursday, 13 June 13

Recurrence Relations (Bellman Equations)
‣Assume that we know how to solve

• O(k,j-1) for all k in 0..K

‣We want to solve O(k,j)
• We are just considering one more item, i.e., item j.

‣ If wj ≤ k, there are two cases
• Either we do not select item j, then the best solution we

can obtain is O(k,j-1)
• Or we select item j and the best solution is vj + O(k-wj,j-1)

‣ In summary
• O(k,j) = max(O(k,j-1), vj + O(k-wj,j-1)) if wj ≤ k
• O(k,j) = O(k,j-1) otherwise

‣Of course
• O(k,0) = 0 for all k

10

Thursday, 13 June 13

Recurrence Relations
‣ We can write a simple program

‣How efficient is this approach?

11

Thursday, 13 June 13

Recurrence Relations
‣ We can write a simple program

‣How efficient is this approach?

11

int O(int k,int j) {
 if (j == 0)
 return 0;
 else if (wj <= k)
 return max(O(k,j-1),vj + O(k-wj,j-1));
 else
 return O(k,j-1)
}

Thursday, 13 June 13

Recurrence Relations
‣ We can write a simple program

‣How efficient is this approach?

11

int O(int k,int j) {
 if (j == 0)
 return 0;
 else if (wj <= k)
 return max(O(k,j-1),vj + O(k-wj,j-1));
 else
 return O(k,j-1)
}

Thursday, 13 June 13

Recurrence Relations - Fibonacci Numbers
‣ We can write a simple program for finding

fibonacci numbers

‣How efficient is this approach?
– we are solving many times the same subproblem

• fib(n-1) requires fib(n-2) which we have already solved
• fib(n-3) requires fib(n-4) which we have already solved

12

Thursday, 13 June 13

Recurrence Relations - Fibonacci Numbers
‣ We can write a simple program for finding

fibonacci numbers

‣How efficient is this approach?
– we are solving many times the same subproblem

• fib(n-1) requires fib(n-2) which we have already solved
• fib(n-3) requires fib(n-4) which we have already solved

12

int fib(int n) {
 if (n == 0 || n == 1)
 return 1;
 else

return fib(n-2) + fib(n-1);
}

Thursday, 13 June 13

Recurrence Relations - Fibonacci Numbers
‣ We can write a simple program for finding

fibonacci numbers

‣How efficient is this approach?
– we are solving many times the same subproblem

• fib(n-1) requires fib(n-2) which we have already solved
• fib(n-3) requires fib(n-4) which we have already solved

12

int fib(int n) {
 if (n == 0 || n == 1)
 return 1;
 else

return fib(n-2) + fib(n-1);
}

Thursday, 13 June 13

13

Dynamic Programming
‣Compute the recursive equations bottom up

– start with zero items
– continue with one item
– then two items
– ...
– then all items

Thursday, 13 June 13

Capacity 0 1 2 3
0
1
2
3
4
5
6
7
8
9

0 0 0 0
0 0 0 0
0 0 0 3
0 0 0 3
0 5 5 5
0 5 6 6
0 5 6 8
0 5 6 9
0 5 6 9
0 5 11 11

w1=4
v1=5 v2=6

w2=5
v3=3
w3=2

Dynamic Programming - Example
‣ How to find which items to select?

14

Thursday, 13 June 13

Capacity 0 1 2 3
0
1
2
3
4
5
6
7
8
9

0 0 0 0
0 0 0 0
0 0 0 3
0 0 0 3
0 5 5 5
0 5 6 6
0 5 6 8
0 5 6 9
0 5 6 9
0 5 11 11

w1=4
v1=5 v2=6

w2=5
v3=3
w3=2

Dynamic Programming - Example
‣ How to find which items to select?

14

Thursday, 13 June 13

Capacity 0 1 2 3
0
1
2
3
4
5
6
7
8
9

0 0 0 0
0 0 0 0
0 0 0 3
0 0 0 3
0 5 5 5
0 5 6 6
0 5 6 8
0 5 6 9
0 5 6 9
0 5 11 11

w1=4
v1=5 v2=6

w2=5
v3=3
w3=2

Dynamic Programming - Example
‣ How to find which items to select?

14

Thursday, 13 June 13

Capacity 0 1 2 3
0
1
2
3
4
5
6
7
8
9

0 0 0 0
0 0 0 0
0 0 0 3
0 0 0 3
0 5 5 5
0 5 6 6
0 5 6 8
0 5 6 9
0 5 6 9
0 5 11 11

w1=4
v1=5 v2=6

w2=5
v3=3
w3=2

Dynamic Programming - Example
‣ How to find which items to select?

14

Thursday, 13 June 13

Capacity 0 1 2 3
0
1
2
3
4
5
6
7
8
9

0 0 0 0
0 0 0 0
0 0 0 3
0 0 0 3
0 5 5 5
0 5 6 6
0 5 6 8
0 5 6 9
0 5 6 9
0 5 11 11

w1=4
v1=5 v2=6

w2=5
v3=3
w3=2

Dynamic Programming - Example
‣ How to find which items to select?

14

Thursday, 13 June 13

Capacity 0 1 2 3
0
1
2
3
4
5
6
7
8
9

0 0 0 0
0 0 0 0
0 0 0 3
0 0 0 3
0 5 5 5
0 5 6 6
0 5 6 8
0 5 6 9
0 5 6 9
0 5 11 11

w1=4
v1=5 v2=6

w2=5
v3=3
w3=2

Dynamic Programming - Example
‣ How to find which items to select?

14

Thursday, 13 June 13

Capacity 0 1 2 3
0
1
2
3
4
5
6
7
8
9

0 0 0 0
0 0 0 0
0 0 0 3
0 0 0 3
0 5 5 5
0 5 6 6
0 5 6 8
0 5 6 9
0 5 6 9
0 5 11 11

w1=4
v1=5 v2=6

w2=5
v3=3
w3=2

Dynamic Programming - Example
‣ How to find which items to select?

14

Thursday, 13 June 13

Capacity 0 1 2 3
0
1
2
3
4
5
6
7
8
9

0 0 0 0
0 0 0 0
0 0 0 3
0 0 0 3
0 5 5 5
0 5 6 6
0 5 6 8
0 5 6 9
0 5 6 9
0 5 11 11

w1=4
v1=5 v2=6

w2=5
v3=3
w3=2

Dynamic Programming - Example
‣ How to find which items to select?

14

Thursday, 13 June 13

Capacity 0 1 2 3
0
1
2
3
4
5
6
7
8
9

0 0 0 0
0 0 0 0
0 0 0 3
0 0 0 3
0 5 5 5
0 5 6 6
0 5 6 8
0 5 6 9
0 5 6 9
0 5 11 11

w1=4
v1=5 v2=6

w2=5
v3=3
w3=2

Dynamic Programming - Example
‣ How to find which items to select?

14

Thursday, 13 June 13

Capacity 0 1 2 3
0
1
2
3
4
5
6
7
8
9

0 0 0 0
0 0 0 0
0 0 0 3
0 0 0 3
0 5 5 5
0 5 6 6
0 5 6 8
0 5 6 9
0 5 6 9
0 5 11 11

w1=4
v1=5 v2=6

w2=5
v3=3
w3=2

Dynamic Programming - Example
‣ How to find which items to select?

14

Thursday, 13 June 13

Capacity 0 1 2 3
0
1
2
3
4
5
6
7
8
9

0 0 0 0
0 0 0 0
0 0 0 3
0 0 0 3
0 5 5 5
0 5 6 6
0 5 6 8
0 5 6 9
0 5 6 9
0 5 11 11

w1=4
v1=5 v2=6

w2=5
v3=3
w3=2

Dynamic Programming - Example
‣ How to find which items to select?

14

Thursday, 13 June 13

Capacity 0 1 2 3
0
1
2
3
4
5
6
7
8
9

0 0 0 0
0 0 0 0
0 0 0 3
0 0 0 3
0 5 5 5
0 5 6 6
0 5 6 8
0 5 6 9
0 5 6 9
0 5 11 11

w1=4
v1=5 v2=6

w2=5
v3=3
w3=2

Dynamic Programming - Example
‣ How to find which items to select?

14

Thursday, 13 June 13

Capacity 0 1 2 3
0
1
2
3
4
5
6
7
8
9

0 0 0 0
0 0 0 0
0 0 0 3
0 0 0 3
0 5 5 5
0 5 6 6
0 5 6 8
0 5 6 9
0 5 6 9
0 5 11 11

w1=4
v1=5 v2=6

w2=5
v3=3
w3=2

Dynamic Programming - Example
‣ How to find which items to select?

14

Thursday, 13 June 13

Capacity 0 1 2 3
0
1
2
3
4
5
6
7
8
9

0 0 0 0
0 0 0 0
0 0 0 3
0 0 0 3
0 5 5 5
0 5 6 6
0 5 6 8
0 5 6 9
0 5 6 9
0 5 11 11

w1=4
v1=5 v2=6

w2=5
v3=3
w3=2

Dynamic Programming - Example
‣ How to find which items to select?

14

Thursday, 13 June 13

Capacity 0 1 2 3
0
1
2
3
4
5
6
7
8
9

0 0 0 0
0 0 0 0
0 0 0 3
0 0 0 3
0 5 5 5
0 5 6 6
0 5 6 8
0 5 6 9
0 5 6 9
0 5 11 11

w1=4
v1=5 v2=6

w2=5
v3=3
w3=2

Dynamic Programming - Example
‣ How to find which items to select?

14

Thursday, 13 June 13

Capacity 0 1 2 3
0
1
2
3
4
5
6
7
8
9

0 0 0 0
0 0 0 0
0 0 0 3
0 0 0 3
0 5 5 5
0 5 6 6
0 5 6 8
0 5 6 9
0 5 6 9
0 5 11 11

w1=4
v1=5 v2=6

w2=5
v3=3
w3=2

Dynamic Programming - Example
‣ How to find which items to select?

14

Thursday, 13 June 13

Capacity 0 1 2 3
0
1
2
3
4
5
6
7
8
9

0 0 0 0
0 0 0 0
0 0 0 3
0 0 0 3
0 5 5 5
0 5 6 6
0 5 6 8
0 5 6 9
0 5 6 9
0 5 11 11

w1=4
v1=5 v2=6

w2=5
v3=3
w3=2

Dynamic Programming - Example
‣ How to find which items to select?

14

Thursday, 13 June 13

Capacity 0 1 2 3
0
1
2
3
4
5
6
7
8
9

0 0 0 0
0 0 0 0
0 0 0 3
0 0 0 3
0 5 5 5
0 5 6 6
0 5 6 8
0 5 6 9
0 5 6 9
0 5 11 11

w1=4
v1=5 v2=6

w2=5
v3=3
w3=2

Dynamic Programming - Example
‣ How to find which items to select?

14

Thursday, 13 June 13

Capacity 0 1 2 3
0
1
2
3
4
5
6
7
8
9

0 0 0 0
0 0 0 0
0 0 0 3
0 0 0 3
0 5 5 5
0 5 6 6
0 5 6 8
0 5 6 9
0 5 6 9
0 5 11 11

w1=4
v1=5 v2=6

w2=5
v3=3
w3=2

Dynamic Programming - Example
‣ How to find which items to select?

14

Trace back

Thursday, 13 June 13

Capacity 0 1 2 3
0
1
2
3
4
5
6
7
8
9

0 0 0 0
0 0 0 0
0 0 0 3
0 0 0 3
0 5 5 5
0 5 6 6
0 5 6 8
0 5 6 9
0 5 6 9
0 5 11 11

w1=4
v1=5 v2=6

w2=5
v3=3
w3=2

Dynamic Programming - Example
‣ How to find which items to select?

14

Trace back

Thursday, 13 June 13

Capacity 0 1 2 3
0
1
2
3
4
5
6
7
8
9

0 0 0 0
0 0 0 0
0 0 0 3
0 0 0 3
0 5 5 5
0 5 6 6
0 5 6 8
0 5 6 9
0 5 6 9
0 5 11 11

w1=4
v1=5 v2=6

w2=5
v3=3
w3=2

Dynamic Programming - Example
‣ How to find which items to select?

14

Trace back

Thursday, 13 June 13

Capacity 0 1 2 3
0
1
2
3
4
5
6
7
8
9

0 0 0 0
0 0 0 0
0 0 0 3
0 0 0 3
0 5 5 5
0 5 6 6
0 5 6 8
0 5 6 9
0 5 6 9
0 5 11 11

w1=4
v1=5 v2=6

w2=5
v3=3
w3=2

Dynamic Programming - Example
‣ How to find which items to select?

14

Trace back

Thursday, 13 June 13

Capacity 0 1 2 3
0
1
2
3
4
5
6
7
8
9

0 0 0 0
0 0 0 0
0 0 0 3
0 0 0 3
0 5 5 5
0 5 6 6
0 5 6 8
0 5 6 9
0 5 6 9
0 5 11 11

w1=4
v1=5 v2=6

w2=5
v3=3
w3=2

Dynamic Programming - Example
‣ How to find which items to select?

14

Trace backTake items 1 and 2

Thursday, 13 June 13

maximize 16x1 + 19x2 + 23x3 + 28x4

subject to 2x1 + 3x2 + 4x3 + 5x4 7

xi 2 {0, 1} (i 2 1..4)

Dynamic Programming - Example

15

Thursday, 13 June 13

Capacity 0 1 2 3 4
0
1
2
3
4
5
6
7

0 0 0 0 0
0 0 0 0 0
0 16 16 16 16
0 16 19 19 19
0 16 19 23 23
0 16 35 35 35
0 16 35 39 39
0 16 35 42 44

maximize 16x1 + 19x2 + 23x3 + 28x4

subject to 2x1 + 3x2 + 4x3 + 5x4 7

xi 2 {0, 1} (i 2 1..4)

Dynamic Programming - Example

15

Thursday, 13 June 13

Capacity 0 1 2 3 4
0
1
2
3
4
5
6
7

0 0 0 0 0
0 0 0 0 0
0 16 16 16 16
0 16 19 19 19
0 16 19 23 23
0 16 35 35 35
0 16 35 39 39
0 16 35 42 44

maximize 16x1 + 19x2 + 23x3 + 28x4

subject to 2x1 + 3x2 + 4x3 + 5x4 7

xi 2 {0, 1} (i 2 1..4)

Dynamic Programming - Example

15

Thursday, 13 June 13

Capacity 0 1 2 3 4
0
1
2
3
4
5
6
7

0 0 0 0 0
0 0 0 0 0
0 16 16 16 16
0 16 19 19 19
0 16 19 23 23
0 16 35 35 35
0 16 35 39 39
0 16 35 42 44

maximize 16x1 + 19x2 + 23x3 + 28x4

subject to 2x1 + 3x2 + 4x3 + 5x4 7

xi 2 {0, 1} (i 2 1..4)

Dynamic Programming - Example

15

Thursday, 13 June 13

Capacity 0 1 2 3 4
0
1
2
3
4
5
6
7

0 0 0 0 0
0 0 0 0 0
0 16 16 16 16
0 16 19 19 19
0 16 19 23 23
0 16 35 35 35
0 16 35 39 39
0 16 35 42 44

maximize 16x1 + 19x2 + 23x3 + 28x4

subject to 2x1 + 3x2 + 4x3 + 5x4 7

xi 2 {0, 1} (i 2 1..4)

Dynamic Programming - Example

15

Thursday, 13 June 13

Capacity 0 1 2 3 4
0
1
2
3
4
5
6
7

0 0 0 0 0
0 0 0 0 0
0 16 16 16 16
0 16 19 19 19
0 16 19 23 23
0 16 35 35 35
0 16 35 39 39
0 16 35 42 44

maximize 16x1 + 19x2 + 23x3 + 28x4

subject to 2x1 + 3x2 + 4x3 + 5x4 7

xi 2 {0, 1} (i 2 1..4)

Dynamic Programming - Example

15

Thursday, 13 June 13

Capacity 0 1 2 3 4
0
1
2
3
4
5
6
7

0 0 0 0 0
0 0 0 0 0
0 16 16 16 16
0 16 19 19 19
0 16 19 23 23
0 16 35 35 35
0 16 35 39 39
0 16 35 42 44

maximize 16x1 + 19x2 + 23x3 + 28x4

subject to 2x1 + 3x2 + 4x3 + 5x4 7

xi 2 {0, 1} (i 2 1..4)

Dynamic Programming - Example

15

Thursday, 13 June 13

Capacity 0 1 2 3 4
0
1
2
3
4
5
6
7

0 0 0 0 0
0 0 0 0 0
0 16 16 16 16
0 16 19 19 19
0 16 19 23 23
0 16 35 35 35
0 16 35 39 39
0 16 35 42 44

maximize 16x1 + 19x2 + 23x3 + 28x4

subject to 2x1 + 3x2 + 4x3 + 5x4 7

xi 2 {0, 1} (i 2 1..4)

Dynamic Programming - Example

15

Thursday, 13 June 13

Capacity 0 1 2 3 4
0
1
2
3
4
5
6
7

0 0 0 0 0
0 0 0 0 0
0 16 16 16 16
0 16 19 19 19
0 16 19 23 23
0 16 35 35 35
0 16 35 39 39
0 16 35 42 44

x1 = 1, x2 = 0, x3 = 0, x4 = 1

maximize 16x1 + 19x2 + 23x3 + 28x4

subject to 2x1 + 3x2 + 4x3 + 5x4 7

xi 2 {0, 1} (i 2 1..4)

Dynamic Programming - Example

15

Thursday, 13 June 13

Dynamic Programming
‣What is the complexity of this algorithm?

– time to fill the table
– i.e., O(K n)

16

Thursday, 13 June 13

Dynamic Programming
‣What is the complexity of this algorithm?

– time to fill the table
– i.e., O(K n)

‣ Is this polynomial?

16

Thursday, 13 June 13

Dynamic Programming
‣What is the complexity of this algorithm?

– time to fill the table
– i.e., O(K n)

‣ Is this polynomial?
– How many bits does K need to be

represented on a computer?
• log(K) bits

16

Thursday, 13 June 13

Dynamic Programming
‣What is the complexity of this algorithm?

– time to fill the table
– i.e., O(K n)

‣ Is this polynomial?
– How many bits does K need to be

represented on a computer?
• log(K) bits

– Hence the algorithm is in fact
exponential in terms of the input size
• pseudo-polynomial algorithm
• “efficient” when K is small

16

Thursday, 13 June 13

Until Next Time

17

Thursday, 13 June 13

Discrete
Optimization
The Knapsack Problem: Part II

Thursday, 13 June 13

