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Goals of the Lecture
‣ Introduce some basic concepts
‣ Introduce dynamic programming
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The (1-Dimensional) Knapsack Problem
‣Given a set of items I, each item i ∈ I 

characterized by
–  its weight wi

–  its value vi
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The (1-Dimensional) Knapsack Problem
‣Given a set of items I, each item i ∈ I 

characterized by
–  its weight wi

–  its value vi

 and
–  a capacity K for a knapsack

 find the subset of items in I 
–  that has maximum value
–  does not exceed the capacity K of                                                                    

the knapsack
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–  express the objective function
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Optimization Models
‣How to model an optimization problem

–  choose some decision variables
•  they typically encode the result we are interested into

–  express the problem constraints in terms of these                     
variables
• they specify what the solutions to the problem are

–  express the objective function
• the objective function specifies the quality of each solution

‣The result is an optimization model
–  It is a declarative formulation

• specify the “what”, not the “how”
–  There may be many ways to model an                          

optimization problem
4
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A Knapsack Model
‣Decision variables

–  xi denotes whether item i is selected in the 
solution
• xi = 1 means the item is selected
• xi = 0 means that it is not selected
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A Knapsack Model
‣Decision variables

–  xi denotes whether item i is selected in the 
solution
• xi = 1 means the item is selected
• xi = 0 means that it is not selected

‣Problem constraint
– The selected item cannot exceed                    

the capacity of the knapsack
‣Objective function

– Captures the total value                                    
of the selected items

5

X

i2I

wixi  K

X

i2I

vixi
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A Knapsack Model
‣Putting it all together

6

maximize

X

i2I

vi xi

subject to X

i2I

wixi  K

xi 2 {0, 1} (i 2 I)
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Exponential Growth
‣How many possible configurations?

–  (0,0,0,...,0), (0,0,0,...,1), ..., (1,1,1,...,1)
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Exponential Growth
‣How many possible configurations?

–  (0,0,0,...,0), (0,0,0,...,1), ..., (1,1,1,...,1)
‣Not all of them are feasible

–  They cannot exceed the capacity of the 
knapsack

‣How many are they?
–  2|I|

‣  How much time to explore them all?
–  1 millisecond to test a configuration
–  if |I| = 50, it will take                                                                                          

1,285,273,866 centuries
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Dynamic Programming
‣Widely used optimization technique

–  for certain classes of problems
–  heavily used in computational biology
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Dynamic Programming
‣Widely used optimization technique

–  for certain classes of problems
–  heavily used in computational biology

‣Basic principle
–  divide and conquer
–  bottom up computation
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Dynamic Programming
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maximize

P
i21..j vi xi

subject to P
i21..j wixi  k

xi 2 {0, 1} (i 2 1..j)
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Dynamic Programming

‣Basic conventions and notations
–  assume that I = {1,2,...,n}
–  O(k,j) denotes the optimal solution to the 

knapsack problem with capacity k and            
items [1..j]
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Dynamic Programming

‣Basic conventions and notations
–  assume that I = {1,2,...,n}
–  O(k,j) denotes the optimal solution to the 

knapsack problem with capacity k and            
items [1..j]

‣We are interested in finding out the best 
value O(K,n)

9

maximize

P
i21..j vi xi

subject to P
i21..j wixi  k

xi 2 {0, 1} (i 2 1..j)
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Recurrence Relations (Bellman Equations)
‣Assume that we know how to solve 

• O(k,j-1) for all k in 0..K 
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can obtain is O(k,j-1)
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Recurrence Relations (Bellman Equations)
‣Assume that we know how to solve 

• O(k,j-1) for all k in 0..K 

‣We want to solve O(k,j)
• We are just considering one more item, i.e., item j.

‣ If wj ≤ k, there are two cases
• Either we do not select item j, then the best solution we 

can obtain is O(k,j-1)
• Or we select item j and the best solution is vj + O(k-wj,j-1)

‣ In summary
• O(k,j) = max(O(k,j-1), vj + O(k-wj,j-1)) if wj ≤ k
• O(k,j) = O(k,j-1) otherwise

‣Of course
• O(k,0) = 0 for all k
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Recurrence Relations 
‣  We can write a simple program

‣How efficient is this approach?
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‣How efficient is this approach?
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int O(int k,int j) {
   if (j == 0)
     return 0;
   else if (wj <= k)
     return max(O(k,j-1),vj + O(k-wj,j-1));
   else
     return O(k,j-1)
}
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Recurrence Relations - Fibonacci Numbers
‣  We can write a simple program for finding 

fibonacci numbers

‣How efficient is this approach?
– we are solving many times the same subproblem

• fib(n-1) requires fib(n-2) which we have already solved
• fib(n-3) requires fib(n-4) which we have already solved
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‣  We can write a simple program for finding 

fibonacci numbers

‣How efficient is this approach?
– we are solving many times the same subproblem

• fib(n-1) requires fib(n-2) which we have already solved
• fib(n-3) requires fib(n-4) which we have already solved

12

int fib(int n) {
   if (n == 0 || n == 1)
      return 1;
   else 

return fib(n-2) + fib(n-1);
}
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Recurrence Relations - Fibonacci Numbers
‣  We can write a simple program for finding 

fibonacci numbers

‣How efficient is this approach?
– we are solving many times the same subproblem

• fib(n-1) requires fib(n-2) which we have already solved
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12

int fib(int n) {
   if (n == 0 || n == 1)
      return 1;
   else 

return fib(n-2) + fib(n-1);
}
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Dynamic Programming
‣Compute the recursive equations bottom up

–  start with zero items
–  continue with one item
–  then two items
–  ...
–  then all items
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Capacity 0 1 2 3
0
1
2
3
4
5
6
7
8
9

0 0 0 0
0 0 0 0
0 0 0 3
0 0 0 3
0 5 5 5
0 5 6 6
0 5 6 8
0 5 6 9
0 5 6 9
0 5 11 11

w1=4
v1=5 v2=6

w2=5
v3=3
w3=2

Dynamic Programming - Example
‣  How to find which items to select?

14
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14

Trace backTake items 1 and 2
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maximize 16x1 + 19x2 + 23x3 + 28x4

subject to 2x1 + 3x2 + 4x3 + 5x4  7

xi 2 {0, 1} (i 2 1..4)

Dynamic Programming - Example

15

Thursday, 13 June 13



Capacity 0 1 2 3 4
0
1
2
3
4
5
6
7

0 0 0 0 0
0 0 0 0 0
0 16 16 16 16
0 16 19 19 19
0 16 19 23 23
0 16 35 35 35
0 16 35 39 39
0 16 35 42 44

maximize 16x1 + 19x2 + 23x3 + 28x4

subject to 2x1 + 3x2 + 4x3 + 5x4  7

xi 2 {0, 1} (i 2 1..4)

Dynamic Programming - Example

15

Thursday, 13 June 13



Capacity 0 1 2 3 4
0
1
2
3
4
5
6
7

0 0 0 0 0
0 0 0 0 0
0 16 16 16 16
0 16 19 19 19
0 16 19 23 23
0 16 35 35 35
0 16 35 39 39
0 16 35 42 44

maximize 16x1 + 19x2 + 23x3 + 28x4

subject to 2x1 + 3x2 + 4x3 + 5x4  7

xi 2 {0, 1} (i 2 1..4)

Dynamic Programming - Example

15

Thursday, 13 June 13



Capacity 0 1 2 3 4
0
1
2
3
4
5
6
7

0 0 0 0 0
0 0 0 0 0
0 16 16 16 16
0 16 19 19 19
0 16 19 23 23
0 16 35 35 35
0 16 35 39 39
0 16 35 42 44

maximize 16x1 + 19x2 + 23x3 + 28x4

subject to 2x1 + 3x2 + 4x3 + 5x4  7

xi 2 {0, 1} (i 2 1..4)

Dynamic Programming - Example

15

Thursday, 13 June 13



Capacity 0 1 2 3 4
0
1
2
3
4
5
6
7

0 0 0 0 0
0 0 0 0 0
0 16 16 16 16
0 16 19 19 19
0 16 19 23 23
0 16 35 35 35
0 16 35 39 39
0 16 35 42 44

maximize 16x1 + 19x2 + 23x3 + 28x4

subject to 2x1 + 3x2 + 4x3 + 5x4  7

xi 2 {0, 1} (i 2 1..4)

Dynamic Programming - Example

15

Thursday, 13 June 13



Capacity 0 1 2 3 4
0
1
2
3
4
5
6
7

0 0 0 0 0
0 0 0 0 0
0 16 16 16 16
0 16 19 19 19
0 16 19 23 23
0 16 35 35 35
0 16 35 39 39
0 16 35 42 44

maximize 16x1 + 19x2 + 23x3 + 28x4

subject to 2x1 + 3x2 + 4x3 + 5x4  7

xi 2 {0, 1} (i 2 1..4)

Dynamic Programming - Example

15

Thursday, 13 June 13



Capacity 0 1 2 3 4
0
1
2
3
4
5
6
7

0 0 0 0 0
0 0 0 0 0
0 16 16 16 16
0 16 19 19 19
0 16 19 23 23
0 16 35 35 35
0 16 35 39 39
0 16 35 42 44

maximize 16x1 + 19x2 + 23x3 + 28x4

subject to 2x1 + 3x2 + 4x3 + 5x4  7

xi 2 {0, 1} (i 2 1..4)

Dynamic Programming - Example

15

Thursday, 13 June 13



Capacity 0 1 2 3 4
0
1
2
3
4
5
6
7

0 0 0 0 0
0 0 0 0 0
0 16 16 16 16
0 16 19 19 19
0 16 19 23 23
0 16 35 35 35
0 16 35 39 39
0 16 35 42 44

maximize 16x1 + 19x2 + 23x3 + 28x4

subject to 2x1 + 3x2 + 4x3 + 5x4  7

xi 2 {0, 1} (i 2 1..4)

Dynamic Programming - Example

15

Thursday, 13 June 13



Capacity 0 1 2 3 4
0
1
2
3
4
5
6
7

0 0 0 0 0
0 0 0 0 0
0 16 16 16 16
0 16 19 19 19
0 16 19 23 23
0 16 35 35 35
0 16 35 39 39
0 16 35 42 44

x1 = 1, x2 = 0, x3 = 0, x4 = 1

maximize 16x1 + 19x2 + 23x3 + 28x4

subject to 2x1 + 3x2 + 4x3 + 5x4  7

xi 2 {0, 1} (i 2 1..4)

Dynamic Programming - Example

15

Thursday, 13 June 13



Dynamic Programming
‣What is the complexity of this algorithm?

– time to fill the table
– i.e., O(K n)
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Dynamic Programming
‣What is the complexity of this algorithm?

– time to fill the table
– i.e., O(K n)

‣ Is this polynomial?
– How many bits does K need to be                                                                     

represented on a computer?
• log(K) bits

– Hence the algorithm is in fact                                                                            
exponential in terms of the input size
• pseudo-polynomial algorithm
• “efficient” when K is small 
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Until Next Time
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