Discrete
 Optimization

The Knapsack Problem: Part I

Goals of the Lecture

- Introduce some basic concepts
- Introduce dynamic programming

The (1-Dimensional) Knapsack Problem

- Given a set of items \mathbf{I}, each item $\mathbf{i} \in \mathbf{I}$ characterized by
- its weight w_{i}
- its value v_{i}

The (1-Dimensional) Knapsack Problem

- Given a set of items I, each item $\mathbf{i} \in I$ characterized by
- its weight w_{i}
- its value v_{i}
and
- a capacity K for a knapsack

The (1-Dimensional) Knapsack Problem

- Given a set of items \mathbf{I}, each item $\mathbf{i} \in \mathrm{I}$ characterized by
- its weight w_{i}
- its value v_{i}
and
- a capacity K for a knapsack
find the subset of items in I
- that has maximum value
- does not exceed the capacity K of the knapsack

Optimization Models

Optimization Models

- How to model an optimization problem

Optimization Models

- How to model an optimization problem
- choose some decision variables
- they typically encode the result we are interested into

Optimization Models

- How to model an optimization problem
- choose some decision variables
- they typically encode the result we are interested into
- express the problem constraints in terms of these variables
- they specify what the solutions to the problem are

Optimization Models

- How to model an optimization problem
- choose some decision variables
- they typically encode the result we are interested into
- express the problem constraints in terms of these variables
- they specify what the solutions to the problem are
- express the objective function
- the objective function specifies the quality of each solution

Optimization Models

- How to model an optimization problem
- choose some decision variables
- they typically encode the result we are interested into
- express the problem constraints in terms of these variables
- they specify what the solutions to the problem are
- express the objective function
- the objective function specifies the quality of each solution
- The result is an optimization model

Optimization Models

- How to model an optimization problem
- choose some decision variables
- they typically encode the result we are interested into
- express the problem constraints in terms of these variables
- they specify what the solutions to the problem are
- express the objective function
- the objective function specifies the quality of each solution
- The result is an optimization model
- It is a declarative formulation - specify the "what", not the "how"

Optimization Models

- How to model an optimization problem
- choose some decision variables
- they typically encode the result we are interested into
- express the problem constraints in terms of these variables
- they specify what the solutions to the problem are
- express the objective function
- the objective function specifies the quality of each solution
- The result is an optimization model
- It is a declarative formulation - specify the "what", not the "how"
- There may be many ways to model an optimization problem

A Knapsack Model

- Decision variables

- x_{i} denotes whether item i is selected in the solution
- $\mathrm{x}_{\mathrm{i}}=1$ means the item is selected
- $x_{i}=0$ means that it is not selected

A Knapsack Model

- Decision variables

- x_{i} denotes whether item i is selected in the solution
- $\mathrm{x}_{\mathrm{i}}=1$ means the item is selected
- $x_{i}=0$ means that it is not selected
- Problem constraint
$\begin{gathered}\text { - The selected item cannot exceed } \\ \text { the capacity of the knapsack }\end{gathered} \sum_{i \in I} w_{i} x_{i} \leq K$

A Knapsack Model

- Decision variables

- x_{i} denotes whether item i is selected in the solution
- $\mathrm{x}_{\mathrm{i}}=1$ means the item is selected
- $x_{i}=0$ means that it is not selected
- Problem constraint
$\begin{gathered}\text { - The selected item cannot exceed } \\ \text { the capacity of the knapsack }\end{gathered} \sum_{i \in I} w_{i} x_{i} \leq K$
- Objective function
- Captures the total value of the selected items

A Knapsack Model

- Putting it all together
maximize

$$
\sum_{i \in I} v_{i} x_{i}
$$

subject to

$$
\begin{aligned}
& \sum_{i \in I} w_{i} x_{i} \leq K \\
& x_{i} \in\{0,1\} \quad(i \in I)
\end{aligned}
$$

Exponential Growth

-How many possible configurations?

- $(0,0,0, \ldots, 0),(0,0,0, \ldots, 1), \ldots,(1,1,1, \ldots, 1)$

Exponential Growth

-How many possible configurations?

- ($0,0,0, \ldots, 0$), ($0,0,0, \ldots, 1$), ..., ($1,1,1, \ldots, 1$)
- Not all of them are feasible
- They cannot exceed the capacity of the knapsack

Exponential Growth

-How many possible configurations?

- ($0,0,0, \ldots, 0$), ($0,0,0, \ldots, 1$), ..., ($1,1,1, \ldots, 1$)
- Not all of them are feasible
- They cannot exceed the capacity of the knapsack
-How many are they?
- $2^{\text {II }}$

Exponential Growth

-How many possible configurations?

- ($0,0,0, \ldots, 0$), ($0,0,0, \ldots, 1$), ..., ($1,1,1, \ldots, 1$)
- Not all of them are feasible
- They cannot exceed the capacity of the knapsack
-How many are they?
- $2^{\text {III }}$
- How much time to explore them all?
- 1 millisecond to test a configuration
- if $|\mathrm{II}|=50$, it will take 1,285,273,866 centuries

Dynamic Programming

- Widely used optimization technique
- for certain classes of problems
- heavily used in computational biology

Dynamic Programming

- Widely used optimization technique
- for certain classes of problems
- heavily used in computational biology
- Basic principle
- divide and conquer
- bottom up computation

Dynamic Programming
maximize $\quad \sum_{i \in 1 . . j} v_{i} x_{i}$
subject to

$$
\begin{aligned}
& \sum_{i \in 1 . . j} w_{i} x_{i} \leq k \\
& x_{i} \in\{0,1\} \quad(i \in 1 . . j)
\end{aligned}
$$

Dynamic Programming

maximize $\quad \sum_{i \in 1 . . j} v_{i} x_{i}$
subject to

$$
\begin{aligned}
& \sum_{i \in 1 . . j} w_{i} x_{i} \leq k \\
& x_{i} \in\{0,1\} \quad(i \in 1 . . j)
\end{aligned}
$$

-Basic conventions and notations

- assume that $\mathrm{I}=\{1,2, \ldots, \mathrm{n}\}$
- $\mathrm{O}(\mathrm{k}, \mathrm{j})$ denotes the optimal solution to the knapsack problem with capacity k and items [1..j]

Dynamic Programming

maximize $\quad \sum_{i \in 1 . . j} v_{i} x_{i}$
subject to

$$
\begin{aligned}
& \sum_{i \in 1 . . j} w_{i} x_{i} \leq k \\
& x_{i} \in\{0,1\} \quad(i \in 1 . . j)
\end{aligned}
$$

-Basic conventions and notations

- assume that $\mathrm{I}=\{1,2, \ldots, \mathrm{n}\}$
- $\mathrm{O}(\mathrm{k}, \mathrm{j})$ denotes the optimal solution to the knapsack problem with capacity k and items [1..j]
- We are interested in finding out the best value $\mathrm{O}(\mathrm{K}, \mathrm{n})$

Recurrence Relations (Bellman Equations)

- Assume that we know how to solve
- O(k,j-1) for all kin 0..K

Recurrence Relations (Bellman Equations)

- Assume that we know how to solve
- O(k,j-1) for all kin 0..K
- We want to solve O(k,j)
- We are just considering one more item, i.e., item j.

Recurrence Relations (Bellman Equations)

- Assume that we know how to solve
- O(k,j-1) for all k in 0..K
- We want to solve O(k,j)
- We are just considering one more item, i.e., item j.
- If $w_{j} \leq k$, there are two cases
- Either we do not select item j, then the best solution we can obtain is $\mathrm{O}(\mathrm{k}, \mathrm{j}-1)$
- Or we select item j and the best solution is $\mathrm{vj}_{\mathrm{j}}+\mathrm{O}\left(\mathrm{k}-\mathrm{w}_{\mathrm{j}, \mathrm{j}} \mathrm{j}-1\right)$

Recurrence Relations (Bellman Equations)

- Assume that we know how to solve
- O(k,j-1) for all k in 0..K
- We want to solve O(k,j)
- We are just considering one more item, i.e., item j.
- If $w_{j} \leq k$, there are two cases
- Either we do not select item j, then the best solution we can obtain is $\mathrm{O}(\mathrm{k}, \mathrm{j}-1)$
- Or we select item j and the best solution is $\mathrm{vj}_{\mathrm{j}}+\mathrm{O}\left(\mathrm{k}-\mathrm{w}_{\mathrm{j}, \mathrm{j}} \mathrm{j}-1\right)$
- In summary
- $O(k, j)=\max \left(O(k, j-1), v_{j}+O\left(k-w_{j}, j-1\right)\right)$ if $w_{j} \leq k$
- $O(k, j)=O(k, j-1)$ otherwise

Recurrence Relations (Bellman Equations)

- Assume that we know how to solve
- O(k,j-1) for all k in 0..K
- We want to solve O(k,j)
- We are just considering one more item, i.e., item j.
- If $w_{j} \leq k$, there are two cases
- Either we do not select item j, then the best solution we can obtain is $\mathrm{O}(\mathrm{k}, \mathrm{j}-1)$
- Or we select item j and the best solution is $\mathrm{vj}_{\mathrm{j}}+\mathrm{O}\left(\mathrm{k}-\mathrm{w}_{\mathrm{j}, \mathrm{j}} \mathrm{j}-1\right)$
- In summary
- $O(k, j)=\max \left(O(k, j-1), v_{j}+O\left(k-w_{j}, j-1\right)\right)$ if $w_{j} \leq k$
- O(k,j) = O(k,j-1) otherwise
- Of course
- $\mathrm{O}(\mathrm{k}, 0)=0$ for all k

Recurrence Relations

- We can write a simple program
-How efficient is this approach?

Recurrence Relations

- We can write a simple program

```
int O(int k,int j) {
    if (j == 0)
        return 0;
    else if ( }\mp@subsup{w}{j}{}<=k
        return max (O(k,j-1), vj + O(k-w w,j-1));
    else
        return O(k,j-1)
}
```

-How efficient is this approach?

Recurrence Relations

- We can write a simple program

```
int O(int k,int j) {
    if (j == 0)
        return 0;
    else if ( }\mp@subsup{w}{j}{}<=k
        return max (O(k,j-1), vj + O(k-w w,j-1));
    else
        return O(k,j-1)
}
```

-How efficient is this approach?

Recurrence Relations - Fibonacci Numbers

- We can write a simple program for finding fibonacci numbers
-How efficient is this approach?
- we are solving many times the same subproblem
- fib(n-1) requires fib(n-2) which we have already solved
- fib(n-3) requires fib(n-4) which we have already solved

Recurrence Relations - Fibonacci Numbers

- We can write a simple program for finding fibonacci numbers

```
int fib(int n) {
    if (n == 0 || n == 1)
        return 1;
    else
        return fib(n-2) + fib(n-1);
}
```

-How efficient is this approach?

- we are solving many times the same subproblem
- fib(n-1) requires fib(n-2) which we have already solved
- $\mathrm{fib}(\mathrm{n}-3)$ requires $\mathrm{fib}(\mathrm{n}-4)$ which we have already solved

Recurrence Relations - Fibonacci Numbers

- We can write a simple program for finding fibonacci numbers

```
int fib(int n) {
    if (n == 0 || n == 1)
        return 1;
    else
        return fib(n-2) + fib(n-1);
}
```

-How efficient is this approach?

- we are solving many times the same subproblem
- fib(n-1) requires fib(n-2) which we have already solved
- $\mathrm{fib}(\mathrm{n}-3)$ requires $\mathrm{fib}(\mathrm{n}-4)$ which we have already solved

Dynamic Programming

- Compute the recursive equations bottom up
- start with zero items
- continue with one item
- then two items
- ...
- then all items

Dynamic Programming - Example

- How to find which items to select?

Capacity	0
0	
1	
2	
3	
4	
5	
6	
7	
8	
9	

Dynamic Programming - Example

- How to find which items to select?

Capacity	0
0	0
1	0
2	0
3	0
4	0
5	0
6	0
7	0
8	0
9	0

Dynamic Programming - Example

- How to find which items to select?

Capacity	0	1
0	0	
1	0	
2	0	
3	0	
4	0	
5	0	
6	0	
7	0	
8	0	
9	0	
		$v_{1}=5$

Dynamic Programming - Example

- How to find which items to select?

Capacity	0	1
0	0	0
1	0	0
2	0	0
3	0	0
4	0	
5	0	
6	0	
7	0	
8	0	
9	0	

Dynamic Programming - Example

- How to find which items to select?

Capacity	0	1
0	0	0
1	0	0
2	0	0
3	0	0
4	0	5
5	0	5
6	0	5
7	0	5
8	0	5
9	0	5

Dynamic Programming - Example

- How to find which items to select?

Capacity	0	1	2
0	0	0	
1	0	0	
2	0	0	
3	0	0	
4	0	5	
5	0	5	
6	0	5	
7	0	5	
8	0	5	
9	0	5	
	$v_{1}=5$		
	$v_{2}=6$		

Dynamic Programming - Example

- How to find which items to select?

Capacity	0	1	2
0	0	0	0
1	0	0	0
2	0	0	0
3	0	0	0
4	0	5	
5	0	5	
6	0	5	
7	0	5	
8	0	5	
9	0	5	
	$v_{1}=5$		
	$v_{2}=6$		

Dynamic Programming - Example

- How to find which items to select?

Capacity	0	1	2
0	0	0	0
1	0	0	0
2	0	0	0
3	0	0	0
4	0	5	5
5	0	5	
6	0	5	
7	0	5	
8	0	5	
9	0	5	
	$v_{1}=5$		
	$v_{2}=6$		

Dynamic Programming - Example

- How to find which items to select?

Capacity	0	1	2
0	0	0	0
1	0	0	0
2	0	0	0
3	0	0	0
4	0	5	5
5	0	5	6
6	0	5	6
7	0	5	6
8	0	5	6
9	0	5	
	$v_{1}=5$		
	$w_{2}=6$		

Dynamic Programming - Example

- How to find which items to select?

Capacity	0	1	2
0	0	0	0
1	0	0	0
2	0	0	0
3	0	0	0
4	0	5	5
5	0	5	6
6	0	5	6
7	0	5	6
8	0	5	6
9	0	5	11
	$v_{1}=5$		
	$w_{2}=6$		

Dynamic Programming - Example

- How to find which items to select?

Capacity	0	1	2	3
0	0	0	0	
1	0	0	0	
2	0	0	0	
3	0	0	0	
4	0	5	5	
5	0	5	6	
6	0	5	6	
7	0	5	6	
8	0	5	6	
9	0	5	11	
	$v_{1}=5$			
	$v_{2}=6$	$v_{3}=3$		

Dynamic Programming - Example

- How to find which items to select?

Capacity	0	1	2	3
0	0	0	0	0
1	0	0	0	0
2	0	0	0	
3	0	0	0	
4	0	5	5	
5	0	5	6	
6	0	5	6	
7	0	5	6	
8	0	5	6	
9	0	5	11	
	$v_{1}=5$			
	$v_{2}=6$	$v_{3}=3$		

Dynamic Programming - Example

- How to find which items to select?

Capacity	0	1	2	3
0	0	0	0	0
1	0	0	0	0
2	0	0	0	3
3	0	0	0	3
4	0	5	5	
5	0	5	6	
6	0	5	6	
7	0	5	6	
8	0	5	6	
9	0	5	11	
	$v_{1}=5$			
	$v_{2}=6$	$v_{3}=3$		

Dynamic Programming - Example

- How to find which items to select?

Capacity	0	1	2	3
0	0	0	0	0
1	0	0	0	0
2	0	0	0	3
3	0	0	0	3
4	0	5	5	
5	0	5	6	
6	0	5	6	
7	0	5	6	
8	0	5	6	
9	0	5	11	

Dynamic Programming - Example

- How to find which items to select?

Capacity	0	1	2	3
0	0	0	0	0
1	0	0	0	0
2	0	0	0	3
3	0	0	0	3
4	0	5	5	5
5	0	5	6	6
6	0	5	6	
7	0	5	6	
8	0	5	6	
9	0	5	11	
	$v_{1}=5$			
	$w_{2}=6$	$v_{3}=3$		

Dynamic Programming - Example

- How to find which items to select?

Capacity	0	1	2	3
0	0	0	0	0
1	0	0	0	0
2	0	0	0	3
3	0	0	0	3
4	0	5	5	5
5	0	5	6	6
6	0	5	6	
7	0	5	6	
8	0	5	6	
9	0	5	11	
	$v_{1}=5$			
	$w_{2}=6$	$v_{3}=3$		

Dynamic Programming - Example

- How to find which items to select?

Capacity	0	1	2	3
0	0	0	0	0
1	0	0	0	0
2	0	0	0	3
3	0	0	0	3
4	0	5	5	5
5	0	5	6	6
6	0	5	6	8
7	0	5	6	9
8	0	5	6	9
9	0	5	11	11
	$v_{1}=5$			
	$v_{2}=6$	$v_{3}=3$		
	$w_{2}=5$			
$w_{3}=2$				

Dynamic Programming - Example

- How to find which items to select?

Capacity	0	1	2	3
0	0	0	0	0
1	0	0	0	0
2	0	0	0	3
3	0	0	0	3
4	0	5	5	5
5	0	5	6	6
6	0	5	6	8
7	0	5	6	9
8	0	5	6	9
9	0	5	11	11

Dynamic Programming - Example

- How to find which items to select?

Capacity	0	1	2	3
0	0	0	0	0
1	0	0	0	0
2	0	0	0	3
3	0	0	0	3
4	0	5	5	5
5	0	5	6	6
6	0	5	6	8
7	0	5	6	9
8	0	5	6	9
9	0	5	11	11
	$v_{1}=$			

Dynamic Programming - Example

- How to find which items to select?

Capacity	0	1	2	3
0	0	0	0	0
1	0	0	0	0
2	0	0	0	3
3	0	0	0	3
4	0	5	5	5
5	0	5	6	6
6	0	5	6	8
7	0	5	6	9
8	0	5	6	9
9	0	5	11	11

Dynamic Programming - Example

- How to find which items to select?

Capacity	0	1	2	3
0	0	0	0	0
1	0	0	0	0
2	0	0	0	3
3	0	0	0	3
4	0	5	5	5
5	0	5	6	6
6	0	5	6	8
7	0	5	6	9
8	0	5	6	9
9	0	5	$11 \&$	11

Dynamic Programming - Example

- How to find which items to select?

Capacity	0	1	2	3
0	0	0	0	0
1	0	0	0	0
2	0	0	0	3
3	0	0	0	3
4	0	5	5	5
5	0	5	6	6
6	0	5	6	8
7	0	5	6	9
8	0	5	6	9
9	0	5	11	11

Dynamic Programming - Example

- How to find which items to select?

Capacity	0	1	2	3		
0	0	0	0	0		
1	0	0	0	0		
2	0	0	0	3		
3	0	0	0	3		
4	0	5	5	5		
5	0	5	6	6		
6	0	5	6	8		
7	0	5	6	9		
8	0	5	6	9		
9	0	5	11	11		Take items 1 and 2
:---						

Dynamic Programming - Example

$$
\begin{array}{ll}
\operatorname{maximize} & 16 x_{1}+19 x_{2}+23 x_{3}+28 x_{4} \\
\text { subject to } & 2 x_{1}+3 x_{2}+4 x_{3}+5 x_{4} \leq 7 \\
& x_{i} \in\{0,1\} \quad(i \in 1 . .4)
\end{array}
$$

Dynamic Programming - Example

$$
\begin{array}{ll}
\operatorname{maximize} & 16 x_{1}+19 x_{2}+23 x_{3}+28 x_{4} \\
\text { subject to } & 2 x_{1}+3 x_{2}+4 x_{3}+5 x_{4} \leq 7 \\
& x_{i} \in\{0,1\} \quad(i \in 1 . .4)
\end{array}
$$

Capacity	0	1	2	3	4
0					
1					
2					
3					
4					
5					
6					
7					

Dynamic Programming - Example

$$
\begin{array}{ll}
\operatorname{maximize} & 16 x_{1}+19 x_{2}+23 x_{3}+28 x_{4} \\
\text { subject to } & 2 x_{1}+3 x_{2}+4 x_{3}+5 x_{4} \leq 7 \\
& x_{i} \in\{0,1\} \quad(i \in 1 . .4)
\end{array}
$$

Capacity	0	1	2	3	4
0	0	0	0	0	0
1	0	0	0	0	0
2	0	16	16	16	16
3	0	16	19	19	19
4	0	16	19	23	23
5	0	16	35	35	35
6	0	16	35	39	39
7	0	16	35	42	44

Dynamic Programming - Example

$$
\begin{array}{ll}
\operatorname{maximize} & 16 x_{1}+19 x_{2}+23 x_{3}+28 x_{4} \\
\text { subject to } & 2 x_{1}+3 x_{2}+4 x_{3}+5 x_{4} \leq 7 \\
& x_{i} \in\{0,1\} \quad(i \in 1 . .4)
\end{array}
$$

Capacity	0	1	2	3	4
0	0	0	0	0	0
1	0	0	0	0	0
2	0	16	16	16	16
3	0	16	19	19	19
4	0	16	19	23	23
5	0	16	35	35	35
6	0	16	35	39	39
7	0	16	35	42	44

Dynamic Programming - Example

$$
\begin{array}{ll}
\operatorname{maximize} & 16 x_{1}+19 x_{2}+23 x_{3}+28 x_{4} \\
\text { subject to } & 2 x_{1}+3 x_{2}+4 x_{3}+5 x_{4} \leq 7 \\
& x_{i} \in\{0,1\} \quad(i \in 1 . .4)
\end{array}
$$

Capacity	0	1	2	3	4
0	0	0	0	0	0
1	0	0	0	0	0
2	0	16	16	16	16
3	0	16	19	19	19
4	0	16	19	23	23
5	0	16	35	35	35
6	0	16	35	39	39
7	0	16	35	42	44

Dynamic Programming - Example

$$
\begin{array}{ll}
\operatorname{maximize} & 16 x_{1}+19 x_{2}+23 x_{3}+28 x_{4} \\
\text { subject to } & 2 x_{1}+3 x_{2}+4 x_{3}+5 x_{4} \leq 7 \\
& x_{i} \in\{0,1\} \quad(i \in 1 . .4)
\end{array}
$$

Capacity	0	1	2	3	4
0	0	0	0	0	0
1	0	0	0	0	0
2	0	16	16	16	16
3	0	16	19	19	19
4	0	16	19	23	23
5	0	16	35	35	35
6	0	16	35	39	39
7	0	16	35	42	44

Dynamic Programming - Example

$$
\begin{array}{ll}
\operatorname{maximize} & 16 x_{1}+19 x_{2}+23 x_{3}+28 x_{4} \\
\text { subject to } & 2 x_{1}+3 x_{2}+4 x_{3}+5 x_{4} \leq 7 \\
& x_{i} \in\{0,1\} \quad(i \in 1 . .4)
\end{array}
$$

Capacity	0	1	2	3	4
0	0	0	0	0	0
1	0	0	0	0	0
2	0	16	16	16	16
3	0	16	19	19	19
4	0	16	19	23	23
5	0	16	35	35	35
6	0	16	35	39	39
7	0	16	35	42	44

Dynamic Programming - Example

$$
\begin{array}{ll}
\operatorname{maximize} & 16 x_{1}+19 x_{2}+23 x_{3}+28 x_{4} \\
\text { subject to } & 2 x_{1}+3 x_{2}+4 x_{3}+5 x_{4} \leq 7 \\
& x_{i} \in\{0,1\} \quad(i \in 1 . .4)
\end{array}
$$

Capacity	0	1	2	3	4
0	0	0	0	0	0
1	0	0	0	0	0
2	0	16	16	16	16
3	0	16	19	19	19
4	0	16	19	23	23
5	0	16	35	35	35
6	0	16	35	39	39
7	0	16	35	42	44

Dynamic Programming - Example

maximize $16 x_{1}+19 x_{2}+23 x_{3}+28 x_{4}$
subject to $\quad 2 x_{1}+3 x_{2}+4 x_{3}+5 x_{4} \leq 7$
$x_{i} \in\{0,1\} \quad(i \in 1 . .4)$

$$
x_{1}=1, x_{2}=0, x_{3}=0, x_{4}=1
$$

Capacity	0	1	2	3	4
0	0	0	0	0	0
1	0	0	0	0	0
2	0	16	16	16	16
3	0	16	19	19	19
4	0	16	19	23	23
5	0	16	35	35	35
6	0	16	35	39	39
7	0	16	35	42	44

Dynamic Programming
-What is the complexity of this algorithm?

- time to fill the table
- i.e., $O(K n)$

Dynamic Programming
-What is the complexity of this algorithm?

- time to fill the table
- i.e., $O(K n)$
- Is this polynomial?

Dynamic Programming

-What is the complexity of this algorithm?

- time to fill the table
-i.e., O(K n)
- Is this polynomial?
- How many bits does K need to be represented on a computer?
- $\log (K)$ bits

Dynamic Programming

-What is the complexity of this algorithm?

- time to fill the table
-i.e., O(K n)
- Is this polynomial?
- How many bits does K need to be represented on a computer?
- $\log (\mathrm{K})$ bits
- Hence the algorithm is in fact
exponential in terms of the input size
- pseudo-polynomial algorithm
- "efficient" when K is small

Until Next Time

Discrete
 Optimization

The Knapsack Problem: Part II

