
Home Projects User Stories Community Blog Wiki Documentation

Middleware ArchitectureMiddleware Architecture

AbstractAbstract

The Keystone middleware architecture supports a common authentication protocol in use between the

OpenStack projects. By using keystone as a common authentication and authorization mechanisms,

the OpenStack project can plug in to existing authentication and authorization systems in use by

existing environments.

In this document, we describe the architecture and responsibilities of the authentication middleware

which acts as the internal API mechanism for OpenStack projects based on the WSGI standard.

For the architecture of keystone and its services, please see Keystone Architecture. This

documentation primarily describes the implementation in keystoneclient/middleware/auth_token.py

(keystoneclient.middleware.auth_token.AuthProtocol)

Specification OverviewSpecification Overview

‘Authentication’ is the process of determining that users are who they say they are. Typically,

‘authentication protocols’ such as HTTP Basic Auth, Digest Access, public key, token, etc, are used to

verify a user’s identity. In this document, we define an ‘’authentication component’’ as a software

module that implements an authentication protocol for an OpenStack service. OpenStack is using a

token based mechanism to represent authentication and authorization.

At a high level, an authentication middleware component is a proxy that intercepts HTTP calls from

clients and populates HTTP headers in the request context for other WSGI middleware or applications

to use. The general flow of the middleware processing is:

clear any existing authorization headers to prevent forgery

collect the token from the existing HTTP request headers

validate the token

if valid, populate additional headers representing the identity that has been authenticated

and authorized

in invalid, or not token present, reject the request (HTTPUnauthorized) or pass along a

header indicating the request is unauthorized (configurable in the middleware)

if the keystone service is unavailable to validate the token, reject the request with

HTTPServiceUnavailable.

Authentication ComponentAuthentication Component

Figure 1. Authentication Component

Middleware Architecture — keystone 2013.2.b1.6... http://docs.openstack.org/developer/keystone/mid...

1 of 4 06/10/2013 10:32 AM



The middleware may also be configured to operated in a ‘delegated mode’. In this mode, the decision

reject an unauthenticated client is delegated to the OpenStack service, as illustrated below.

Here, requests are forwarded to the OpenStack service with an identity status message that indicates

whether the client’s identity has been confirmed or is indeterminate. It is the OpenStack service that

decides whether or not a reject message should be sent to the client.

Authentication Component (Delegated Mode)Authentication Component (Delegated Mode)

Figure 2. Authentication Component (Delegated Mode)

Deployment StrategyDeployment Strategy

The middleware is intended to be used inline with OpenStack wsgi components, based on the

openstack-common WSGI middleware class. It is typically deployed as a configuration element in a

paste configuration pipeline of other middleware components, with the pipeline terminating in the

service application. The middleware conforms to the python WSGI standard [PEP-333]. In initializing

the middleware, a configuration item (which acts like a python dictionary) is passed to the middleware

with relevant configuration options.

ConfigurationConfiguration

The middleware is configured within the config file of the main application as a WSGI component.

Example for the auth_token middleware:

[app:myService]
paste.app_factory = myService:app_factory

[pipeline:main]
pipeline = tokenauth myService

[filter:tokenauth]
paste.filter_factory = keystoneclient.middleware.auth_token:filter_factory
auth_host = 127.0.0.1
auth_port = 35357
auth_protocol = http
auth_uri = http://127.0.0.1:5000/
admin_token = Super999Sekret888Password777
admin_user = admin
admin_password = SuperSekretPassword
admin_tenant_name = service
;Uncomment next line and check ip:port to use memcached to cache tokens
;memcache_servers = 127.0.0.1:11211
;Uncomment next 2 lines if Keystone server is validating client cert
certfile = <path to middleware public cert>
keyfile = <path to middleware private cert>

For services which have separate paste-deploy ini file, auth_token middleware can be alternatively

configured in [keystone_authtoken] section in the main config file. For example in Nova, all middleware

parameters can be removed from api-paste.ini:

[filter:authtoken]
paste.filter_factory = keystoneclient.middleware.auth_token:filter_factory

Middleware Architecture — keystone 2013.2.b1.6... http://docs.openstack.org/developer/keystone/mid...

2 of 4 06/10/2013 10:32 AM



and set in nova.conf:

[DEFAULT]
...
auth_strategy=keystone

[keystone_authtoken]
auth_host = 127.0.0.1
auth_port = 35357
auth_protocol = http
auth_uri = http://127.0.0.1:5000/
admin_user = admin
admin_password = SuperSekretPassword
admin_tenant_name = service

Note that middleware parameters in paste config take priority, they must be removed to use values in

[keystone_authtoken] section.

Configuration OptionsConfiguration Options

auth_host: (required) the host providing the keystone service API endpoint for validating and

requesting tokens

admin_token: either this or the following three options are required. If set, this is a single shared

secret with the keystone configuration used to validate tokens.

admin_user, admin_password, admin_tenant_name: if admin_token is not set, or invalid, then

admin_user, admin_password, and admin_tenant_name are defined as a service account which

is expected to have been previously configured in Keystone to validate user tokens.

delay_auth_decision: (optional, default 0) (off). If on, the middleware will not reject invalid auth

requests, but will delegate that decision to downstream WSGI components.

auth_port: (optional, default 35357) the port used to validate tokens

auth_protocol: (optional, default https)

auth_uri: (optional, defaults to auth_protocol://auth_host:auth_port)

certfile: (required, if Keystone server requires client cert)

keyfile: (required, if Keystone server requires client cert) This can be the same as the certfile if

the certfile includes the private key.

Caching for improved responseCaching for improved response

In order to prevent every service request, the middleware may be configured to utilize a cache, and the

keystone API returns the tokens with an expiration (configurable in duration on the keystone service).

The middleware supports memcache based caching.

memcache_servers: (optonal) if defined, the memcache server(s) to use for cacheing

token_cache_time: (optional, default 300 seconds) Only valid if memcache_servers is defined.

Exchanging User InformationExchanging User Information

The middleware expects to find a token representing the user with the header X-Auth-Token or

X-Storage-Token. X-Storage-Token is supported for swift/cloud files and for legacy Rackspace use. If

the token isn’t present and the middleware is configured to not delegate auth responsibility, it will

respond to the HTTP request with HTTPUnauthorized, returning the header WWW-Authenticate with the

value Keystone uri=’...’ to indicate where to request a token. The auth_uri returned is configured with

the middleware.

The authentication middleware extends the HTTP request with the header X-Identity-Status. If a

request is successfully authenticated, the value is set to Confirmed. If the middleware is delegating the

auth decision to the service, then the status is set to Invalid if the auth request was unsuccessful.

Middleware Architecture — keystone 2013.2.b1.6... http://docs.openstack.org/developer/keystone/mid...

3 of 4 06/10/2013 10:32 AM



Extended the request with additional User InformationExtended the request with additional User Information

The keystone client auth_token middleware extends the request with additional information if the user

has been authenticated.

X-Identity-Status

Provides information on whether the request was authenticated or not.

X-Tenant-Id

The unique, immutable tenant Id

X-Tenant-Name

The unique, but mutable (it can change) tenant name.

X-User-Id

The user id of the user used to log in

X-User-Name

The username used to log in

X-Roles

The roles associated with that user

Deprecated additionsDeprecated additions

X-Tenant

Provides the tenant name. This is to support any legacy implementations before Keystone

switched to an ID/Name schema for tenants.

X-User

The username used to log in. This is to support any legacy implementations before Keystone

switched to an ID/Name schema for tenants.

X-Role

The roles associated with that user

ReferencesReferences

[PEP-333] pep0333 Phillip J Eby. ‘Python Web Server Gateway Interface v1.0.’’
http://www.python.org/dev/peps/pep-0333/.

Middleware Architecture — keystone 2013.2.b1.6... http://docs.openstack.org/developer/keystone/mid...

4 of 4 06/10/2013 10:32 AM


