Homework 1 - Partial Differential Equations
 (ODE "Review")

Give careful write-ups of the following problems. Your submitted work must include the problems being worked in the order given below, with the solutions written in a neat and organized fashion.

Note: The discussion in the first lecture might help with a few of the problems.

1. Give the general solutions to the differential equations:
a. $\frac{d u}{d t}=1+2 e^{-t}-3 u$
b. $u^{\prime \prime}(x)+u^{\prime}(x)-2 u(x)=\cos (x)$
c. $u^{\prime \prime}(x)+u(x)=3-e^{-x}$
2. Give the unique solution to the initial value problems:
a. $\frac{d u}{d t}=1+2 e^{-t}-3 u, u(0)=2$
b. $u "(x)+u^{\prime}(x)-2 u(x)=\cos (x), u(0)=-1, u^{\prime}(0)=2$
c. $\quad u "(x)+u(x)=3-e^{-x}, u(0)=1, u^{\prime}(0)=-1$
3. Determine whether the following boundary value problems have solutions. If so, then give the solution(s).
a. $\quad u "(x)-u(x)=0, u(0)=1, u(1)=2$
b. $u "(x)=\sin (2 \pi x), u(0)=0, u(1)=0$
c. $u^{\prime \prime}(x)-4 u(x)=0,-u^{\prime}(0)+u(0)=1, u^{\prime}(1)=2$
d. $u^{\prime \prime}(x)-u(x)=\int_{0}^{1} x u(s) d s,-u^{\prime}(0)+u(0)=1, u^{\prime}(1)=2$ (think!!)
4. Suppose $f(t)$ is a continuous function, and a and u_{0} are real numbers. Derive a formula for the solution to the initial value problem

$$
u^{\prime}(t)=a u(t)+f(t), u(0)=u_{0}
$$

5. Suppose $u(t)$ is a nonnegative continuous function for $t \geq 0$. In addition, suppose a, b are a real numbers such that

$$
u(t) \leq a+b \int_{0}^{t} u(s) d s, \text { for all } t \geq 0
$$

Prove that. $u(t) \leq a e^{b t}$ for all $t \geq 0$.

