Issue Solving

Chen Gang

2012-06-20

1 Summary

1) Description:

a. When stress testing under x86_64 for AXS30SP4;

b. Process fsx-linux, pdflush, genload (4 processes), are all in wait_uninterruptable status, they are spend infinite (at least 1 day);
c. Reboot machine will fail for reboot command will wait for them quiting (kill -9 no effect).

2) Root cause: (all happened in fs/nfs sub system, wirte.c file)

a. when nfs_sync_inode_wait is called by a process (such as fsx-linux)
b. At the same time, nfs_commit_inode is called by another process (such as genload)

c. Deadlock occurs:

i. fsx-linux is waiting for the request finishing (which genload will do next);

ii. genload (and for the same to all another process which will sync commit all requests) is waiting for fsx-linux to release commit lock.
iii. It is dead lock.

3) Soving: (kernel-2.6.18-nfs-nfs_sync_inode_wait-deadlock.patch)
a. The issue is from Red Hat kernel-2.6.18-redhat-diff-308.1.1.el5-and-308.4.1.el5.patch
b. In fs/nfs sub system, write.c file, nfs_wait_on_requests_locked function,

i. It should release commit lock, before waiting on request.

ii. After waiting on request succeeds, it should set commit lock again;
iii. All work can be according to the spin_lock and spin_unlock within this function.

c. It also need judge commitlock parameter to know whether need commit lock.
2 Proof
2.1 Testing
1) Modify source code, and build a new rpm and install for testing;

2) Pass the stress testing

3) Issue not occur.

2.2 Disassemble

1) See call stack of all relative process;
a. There are 7 processes;

b. fsx-linux:
waiting for ??? when calling nfs_sync_inode_wait; (will give answer next)
c. pdflush:
waiting for nfs_commit_set_lock when calling nfs_sync_inode_wait;

d. nfsd:

waiting for nfs_commit_set_lock when calling nfs_commit_inode;
e. genload(1):
waiting for nfs_commit_set_lock when calling nfs_commit_inode;

f. genload(2):
waiting for nfs_commit_set_lock when calling nfs_commit_inode;

g. genload(3):
waiting for nfs_commit_set_lock when calling nfs_commit_inode;

h. genload(4):
waiting for nfs_commit_set_lock when calling nfs_commit_inode;

2) Disassemble all relative functions;

a. dis_nfs_commit_inode.S:

i. know nfs_inode saved location under Both under all genloads tasks stack and for nfsd task stack. (so know the nfs_inode value for compare next)
b. dis_nfs_writepage.S:

i. so we can know inode_reference saved location under its task stack (for pdflush process);

ii. also need according to source code;

iii. so we can know about it work flow (what pdflush want to do)

c. dis_out_of_line_wait_on_bit_lock.S:

i. so we can know regester %12 saved location under its task stack (for all relative processes);
d. dis_nfs_sync_inode_wait.S:

i. Can know fsx-linux is waiting for nfs_wait_on_request in nfs_wait_on_requests_locked which is inlined into nfs_sync_inode_wait by compiler

ii. Can know the commitlock saved location under fs-linux task stack (so we can judge whether fsx-linux lock the commit lock, also for pdflush is trying to lock the commit lock);
iii. Can know the idx_start and npages saved location under both fs-linux task stack and pdflush task stack; (so we can see fs-linux and pdflush whether process the same data)
iv. Can know nfs_inode saved location under both fs-linux task stack and pdflush task stack; (so know the nfs_inode value for compare next)
v. Can know the req->wb_index saved location under fs-linux task stack; (so know fs-linux wheter the file data which fs-linux wants to operate is well or corrupted)
vi. Can know “how” value saved location under fs-linux task stack and pdflush task stack; (so know what they want to dn next)

3) Analyze relative data

a. data_genload_3391.S: (according to the disassemble code)
i. It is task stack data;
ii. know nfs_inode = ffff8100b45260c0 (all are same);

b. data_genload_3392.S: (according to the disassemble code)
i. It is task stack data;

ii. know nfs_inode = ffff8100b45260c0 (all are same);

c. data_genload_3393.S: (according to the disassemble code)
i. It is task stack data;

ii. know nfs_inode = ffff8100b45260c0 (all are same);

d. data_genload_3394.S: (according to the disassemble code)
i. It is task stack data;

ii. know nfs_inode = ffff8100b45260c0 (all are same);

e. data_nfsd.S: (according to the disassemble code)
i. It is task stack data;

ii. know nfs_inode = ffff8100b45260c0 (all are same);

f. data_pdflush.S: (according to the disassemble code)
i. It is task stack data;

1. know nfs_inode = ffff8100b45260c0 (all are same);

2. idx_start = 0x1c; npages = 0x01 (pdflush and fsx-linux operate different data, pdflush is no use for fsx-linux);

g. data_nfsd.S(according to the disassemble code)
i. nfs_inode data:

1. know the nfs_inode attributes; it is ASYNC inode.
ii. req data:

1. know req->wb_index attributes; idx_start == idx_end == 0x10;
iii. supper_block data;

1. know supper_block attributes; so need process as ASYNC inode;
iv. task stack data:

1. know nfs_inode = ffff8100b45260c0 (all are same);

2. idx_start = 1, npages = 1; (pdflush and fsx-linux operate different data, pdflush is no use for fsx-linux);
3. how = 0x00000004;
4. commitlock has effect, so fsx-linux fist lock the commit lock, but not release now.

Conclusion:

a. fsx-linux lock commit lock; and waiting for nfs_wait_on_request;

b. all the other processes (pdflush, genloads, nfsd) are waiting for fsx-linux release commit lock;

c. all of them are process the same inode;

d. pdflush is relative with fsx-linux by the same function.

e. genloads and nfsd are relative with fsx-linux by nfs_commit_inode;

f. all relative data and work flow seems no problems (not corrupts)

2.3 Source code

1) net/sunrpc/sched.c and relative files(net/sunrpc/*, fs/lockd/*, fs/nfsd/*);
a. from sched.c can know when rpc command finished, it will call callback functions to release the informations (which truly call nfs_unlock_request at last);
b. from relative files, can know the nfsd is not relative with fsx-linux, it is no use for fsx-linux;

2) include/linux/nfs_fs.h

a. know the nfs_inode structure;
b. also all important inline functions and macros;

3) kernel/wait.c, include/linux/wait.h and relative files;

a. know all relative wait functions;

b. so it is can be referenced when disassembling;

4) fs/nfs/pagelist.c

a. Read through all things.

b. For current issue, all things are called only by write.c;

c. It just contents the tools for write.c uses;

d. It is can be referenced when disassembling;

5) fs/nfs/write.c

a. Read through all things;

b. Also read carefully for some relative main functions;

c. For fsx-linux (in nfs_sync_inode_wait):

i. it first gets commit lock;

ii. and then it must wait all same data area ASYNC operation finished firstly (which is tagged by NFS_PAGE_TAG_WRITEBACK, the mark is PG_BUSY).

iii. After finished, it will find the dirty pages and commit pages in the specified data area, then mark them NFS_PAGE_TAG_WRITEBACK;

iv. Then call nfs_commit_list;

1. commit them with rpc command;

2. When rpc command finished, it will call the call back function to release the NFS_PAGE_TAG_WRITEBACK mark and also reset the flag PG_BUSY;
d. For anothers (in nfs_commit_inode):

i. Firstly, get commit loc;

ii. And then find all pages and mark them NFS_PAGE_TAG_WRITEBACK;

iii. Then call nfs_commit_list;

1. commit them with rpc command;

2. When rpc command finished, it will call the call back function to release the NFS_PAGE_TAG_WRITEBACK mark and also reset the flag PG_BUSY;

Conclusion:

a. pdflush is useless for fsx-linux waiting

b. function nfs_sync_inode_wait and nfs_commit_inode have deadlock;
a. nfs_sync_inode_wait lock the commit lock; and waiting for PG_BUSY flag release;

b. nfs_commit_inode which will reset PG_BUSY flag is waiting for the commit lock;

· Reference

· File Patch
	--- linux-2.6.18-308.3.AXS3.x86_64/fs/nfs/write.c
2012-06-20 19:04:35.000000000 -0400
+++ linux-2.6.18-308.3.AXS3.x86_64.gchen/fs/nfs/write.c
2012-06-20 19:04:35.000000000 -0400
@@ -80,6 +80,8 @@ static struct nfs_page * nfs_update_requ

 unsigned int, unsigned int);
 static int nfs_flush_inode(struct inode *inode, unsigned long idx_start,

 unsigned int npages, int how);
+static void nfs_commit_clear_lock(struct nfs_inode *nfsi);
+static int nfs_commit_set_lock(struct nfs_inode *nfsi, int may_wait);
 static const struct rpc_call_ops nfs_write_partial_ops;
 static const struct rpc_call_ops nfs_write_full_ops;
 static const struct rpc_call_ops nfs_commit_ops;
@@ -615,7 +617,7 @@ int nfs_reschedule_unstable_write(struct
 *
 * Interruptible by signals only if mounted with intr flag.
 */
-static int nfs_wait_on_requests_locked(struct inode *inode, unsigned long idx_start, unsigned int npages)
+static int nfs_wait_on_requests_locked(struct inode *inode, unsigned long idx_start, unsigned int npages, bool commitlock)
 {

struct nfs_inode *nfsi = NFS_I(inode);

struct nfs_page *req;
@@ -638,8 +640,12 @@ static int nfs_wait_on_requests_locked(s

atomic_inc(&req->wb_count);

spin_unlock(&nfsi->req_lock);
+

if (commitlock)
+

nfs_commit_clear_lock(nfsi);

error = nfs_wait_on_request(req);

nfs_release_request(req);
+

if (commitlock)
+

nfs_commit_set_lock(nfsi, 1);

spin_lock(&nfsi->req_lock);

if (error < 0)

return error;
@@ -1572,6 +1578,15 @@ static inline int nfs_commit_list(struct
 {

return 0;
 }
+static int nfs_commit_set_lock(struct nfs_inode *nfsi, int may_wait)
+{
+
return 0;
+}
+
+static void nfs_commit_clear_lock(struct nfs_inode *nfsi)
+{
+}
+
 #endif
 static int nfs_flush_inode(struct inode *inode, unsigned long idx_start,
@@ -1642,7 +1657,7 @@ int nfs_sync_inode_wait(struct inode *in

spin_lock(&nfsi->req_lock);

do {
-

ret = nfs_wait_on_requests_locked(inode, idx_start, npages);
+

ret = nfs_wait_on_requests_locked(inode, idx_start, npages, commitlock);

if (ret != 0)

continue;

pages = nfs_scan_dirty(inode, &head, idx_start, npages);

[image: image1.png]

 2 / 9

