JBoss Enterprise
SOA Platform 5.2

JBoss Rules 5
Reference Guide

for JBoss Programmers and Business Rules Developers

[Mg
® ®
o JBoSsS
O
@@ - red Hat

JBoss Rules 5 Reference Guide

JBoss Enterprise SOA Platform 5.2 JBoss Rules 5 Reference
Guide

for JBoss Programmers and Business Rules Developers
Edition 5.2.0

Portions of this book are based
on the Drools Expert User Guide,
written by Mark Proctor, Michael
Neale, Edson Tirelli and the
Drools open source community.
Further details about Drools can
be found at the project's website
http://www.jboss.org/drools.

Copyright © 2011 Red Hat, Inc..

The text of and illustrations in this document are licensed by Red Hat under the Apache Software
License, Version 2. You may obtain a copy of the License at http://www.apache.org/licenses/
LICENSE-2.0.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, MetaMatrix, Fedora, the Infinity
Logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other countries.

Linux® is the registered trademark of Linus Torvalds in the United States and other countries.

All other trademarks are the property of their respective owners.

Use this book as a reference guide when developing business rules for your company.

http://www.jboss.org/drools
http://www.apache.org/licenses/LICENSE-2.0
http://www.apache.org/licenses/LICENSE-2.0

Preface vii
I B o Tox 0 g 1= o | o] o V7= o1 i o o E- TP vii
1.1. Typographic CONVENTIONSuuiiiiiiiieiiii ettt e e vii

1.2. PUll-QUOtE CONVENTIONSiiiiiiiiiiei e e et e e e s e e e e e e et e e e et e e et e eeanneees viii

I N o) (== L (o ALY = Vg 1T £ iX

2. Getting Help and Giving FEEADACKcouuiiiiiiii e (¢
2.1. DO YOU NEEA HEIP? ..o et eens ix

2.2. GIVE US FEEUDACK .. .evuiieiiii ettt e X

3. ACKNOWIEAGEMENTS ...ttt et e et e e et eeeeba s X
1. Introduction 1
1.1. What IS @ RUIE ENQINE? ..ovniiiiiii e e e e e e e e e et e e e e e aanas 1
1.1.1. Introduction and BacKgrOUNGoceuuiiiiiiiiiii e 1

1.2. Strong and LOOSE COUPING ...eeiiiiiiiiiiei e eeeees 4
2. Quick Start 5
2.0 TRE BASICS oitniiiiiii et 5
2.1.1. Stateless KNowledge SESSIONScc..ieiuiiiiiiiieiiieei e e e e e e e 5
2.1.2. Stateful KNOWIEAQE SESSIONScuuuiiiiiiiiii e 9

A N 111 (=T I =T o PP 12
2.2.1. Methods and RUIESiiiiiii e e e s 12
A O {0 13T o 0T [o £ 13
2.2.3. Activations, Agendas and Conflict SetSccoiiiiii i 14
A S 101 (=Y (=] Vo SO PPRTPPR 18
2.2.5. Inference and TruthMainteNaNCeooeiuiiiiiiiiiii e 19

2.3. Further Comments on Building and Deployingcccuieieiiiiiiiieeee e 20
2.3.1. Using Change-Sets t0 Add RUIEScoooiiiiiiiiiieii e 20
2.3.2. The KNOWIEAQE AQENTiiiieii et e e e e e e e e e ean s 22

3. User Guide 23
30 I =011 o [T o PRSPPI 23
3.1.1. BUildiNg WIith COOEeniiiiieii e e 24
3.1.2. Building via Configurations and the Change-Set XMLcccoiiiiiiiiiiiieiiiiieeenns 27

2 B =T o] (o)1 o o N TSP PPTR 30
3.2.1. The KnowledgePackage and Knowledge Definitionsccccoeviveviiivinieennns 30
3.2.2. KNOWIEAGE BASES ...cvuiiiiieiiii ettt e e e e e e e e e e e e e e e e ean s 31
3.2.3. In-Process Building and Deploymentcouuiiiiiiiiiiiieee e 32
3.2.4. Building and Deployment as Separate ProCESSEScveeuuiiiviiiiiiiieiiiaieieaeines 33
3.2.5. Stateful Knowledge Sessions and Knowledge Base Modifications 34
3.2.6. KNOWIEAGEAGENT ...ttt ettt e e e e e 34

G T8 T {1 1T 38
3.3.1. The KNOWIEAQE BASEccuuiiiiiiiii it e e e e e e e e e e eees 38
3.3.2. StatefulKNOWIEAGESESSIONuiiii i e 38
3.3.3. KNOWIEAGERUNTIME ... e e eea e ees 38
3.3 AGEBNUA .ottt 47
3.3.5. BVENE MOGEI ..cenieiei e e 51
3.3.6. KNoWIedgeRUNIIMELOGUET .. ovvuiiiiiieiie et e e e e e e e e e e e eees 53
3.3.7. StatelessKNoWIEAgESESSIONcvvviiiiiiei e e 54
3.3.8. Commands and the CommManNdEXECULONc..iiiiuuiiiiiiiiiieiii e 58
3.3.9. MArShaliNg . ..ueieiiii e e 66

4. The Rule Language 69
T O 1Y =Y T 69
A L1 A TUIE il e e 69
4.1.2. Structure of @ RUIEcouei e 69

o (=YY o] (o [U 70

JBoss Rules 5 Reference Guide

e T O] 1111 1=] o1 T PPN 71
4.4, EITON MESSAUES ...eeuniiiiiiiti ettt ettt ettt et et et e ettt e e et et et e e et e e et e e ae e ea e ee 71
4.4.1. 101: NO Vviable @alterNatiVec..iiiiiiiiiiie e 72
4.4.2. 102: MismatChed INPULiiiiei e e e e e e e e e eees 73
4.4.3. 103: Failed prediCatecocvuuiiii e 74
4.4.4. 104: Trailing semi-colon not allowedccooiiiiiiiiiii e 75
A.4.5. 105: BArlY EXIE ..eeeiiiiiiei e et 75

A5, PACKAGE ... it 75
T 1111 o To] PSPPSR 76
A.5.2. gIODAI ... 76

T U 1o] PP 78
A.7. TYPE DECIATAION ...c.uniiitiiii e ettt e et e e e 79
4.7.1. DeClaring NEW TYPES ...cuuiiiiieiii it e e e et e e e et eea e eennas 80
4.7.2. DecClaring Metadatalieiiiiiieiiiii e 81
4.7.3. Declaring Metadata for EXiStiNg TYPES ...c.uuuiiiiiiiiiiiiiii et 82
4.7.4. Accessing Declared Types from the Application Codeccovvvviiiiiiiiiiieeinnns 82

8. RUIE o e et aeaaan 84
4.8.1. RUle ALIDULES ..o e 85
4.8.2. TIMers and Calendarscoou i e e 88
4.8.3. Left-Hand Side Conditional EIEMEeNtSc.ooiiiiiiiiiiii e 89
4.8.4. The RIight-Hand Side ... 115

R TR O 11 = Y 117
4.10. DOMaiN-SPeCIfiC LANQUAGES ...cevueeinieiiiieeiiieeeieeeie et s e e e e e e e et s e st e e san e eatneaeanaeaenaes 118
4.10.1. When to Use a Domain-Specific Languageooeeeuiiiiiiiiiineeiieciieeeieeeennn 118
4.10.2. Creating a Domain-Specific Languagecccoeuiiiiiiiiiiiiiiiiieci e 118
4.10.3. Managing a Domain-Specific LanQUagecooeeviiiiiiiiiiiinieii e 119
4.10.4. Adding Constraints t0 FACLSoovieuiiiiiiiii e 121
4.10.5. DSL and DSLR REfErENCEoeiiiiiiieiiiiie e 122
4.10.6. The Transformation of @ DSLR Filecc.oviiiiiiiiiiiiiic e 124
4.10.7. String Transformation FUNCLIONSccouiiiiiiiii e 125
4.10.8. Domain-Specific Languages in the BRMS and in the IDEccooee. 125
4.11. XML RUIE LANQUAGE ...euueiiiiiieeiiii ettt ettt et e et e e e e e e enanns 126
4.217.1. WHEN 10 USE XML euiiiiiiiii et e e e et e e e eens 126
4.11.2. The XML FOIMAL ...ieiiiiiiei e e e eaaans 126
4.11.3. Automatic transforming between formats (XML and DRL)ccccoovvviveennnnnn. 130

5. Using Spreadsheet Decision Tables 131
5.1. When Should Decision Tables be USed? ... 131
L O 1YY o T 131
5.3. How Decision Tables WOTKoiiiiii e 133
L N VY] o ESR= T o S} | = VG 136
L I =10] o = L LTSV] = G PP 136
B.4.2. KEYWOIAS ...ttt et e e e et et eean e e et e e ea e aeaes 139

5.5. Creating and Integrating Spreadsheet Based Decision Tablesc.c.cccooeviiiiiiis 142
5.6. Managing Business Rules in Decision Tables ... 143
5.6.1. Workflow and Collaborationccuuoiiiiiiiiiiiiii e 143
5.6.2. Using Spreadsheet FEAUIEScccuiiiiiiiiiiii e e 143

6. The Java Rule Engine Application Programming Interface 145
1200 1o o o 18 od 1T o I PSPPSR 145
6.2. HOW TO USE the AP ..o e e e ean s 145
6.2.1. Building and Registering RUIEEXECUtIONSELSuiviiiiiiiiiiiiiiieci e 145
6.2.2. Using "Stateful" and "Stateless" Rule SEeSSIONSccoceevieviiiiiiiiieiii e, 147
B.2.3. GIODAIS ..o 148

6.3, REFEIBINCES ... ettt et 149

7. JBoss Developer Studio

A T O AV =] 4V 11T A
T.2. DIOOIS RUNTIMES ..ottt ettt e e e e e e e e e eanes

7.2.1. Defining a Drools Runtime

7.2.2. Selecting a runtime for your DroolS Projectcoeevuieviiieeiiiieiii e eeaeeeaenn

7.3. Creating a Rule Project
7.4. Creating a New Rule and Wizards

7.5. Textual Rule Editor

7.6. The Guided Editorc.ceeveneen.n.

7.7. JBoss Rules VIEWScceeeevvnnee

7.7.1. The Working Memory View
7.7.2. The Audit View
7.8. Domain-Specific Languages
7.8.1. Editing languages
7.9. The Rete VieWcoceeeveveiveinnnnnnnn.

7.10. Large .drl Filescceunen.

7.11. Debugging Rulescceuneeee.

7.11.1. Creating Breakpoints

7.11.2. Debugging Rules

8. Examples
8.1. HelloWorld Example

8.2, State EXAMPIE ...
8.2.1. Understanding the State EXamPpleccoouiiiiiiiiiiicci e

8.3. Fibonacci Examplec............
8.4. Banking Tutorialcccoeeeeunnne.

8.5. Pricing Rule Decision Table EXamPIEocoiiiiiiiiiiieeee e e

8.5.1. Executing the Example

8.5.2. The DECISION TabIEcvieiiiii e

8.6. Pet Store Examplecccoeveennnis
8.7. Sudoku Examplecccoeeeiin,

8.7.1. OVEIVIEW OFf SUAOKUcuieiiitiii i ettt e e et e e e e e et eaaaas

8.7.2. Running the Example

8.7.3. Java Source and RUIES OVEIVIEWuiuiniieiieeeeee ettt a e

8.7.4. Validation Rules
8.7.5. Solving Rules

8.7.6. Suggestions for Future Developmentscc.oviiiiiiiiiiiii e

8.8. Number GUESScccovveiviiiiiinnns

8.9. Miss Manners and Benchmarkingcooouiiiiiiiii e

8.9.1. Introduction
8.9.2. In-Depth Analysis
8.9.3. Summary of Output
8.10. Conway's Game Of Life Example

A. © 2011

B. Revision History

151
152
152
152
155
157
159
161
163
164
165
165
167
167
169
170
170
170
171

175
175
181
181
187
191
202
202
203
205
215
216
216
219
220
220
222
223
229
229
231
236
238

247
249

vi

Preface

1. Document Conventions

This manual uses several conventions to highlight certain words and phrases and draw attention to
specific pieces of information.

In PDF and paper editions, this manual uses typefaces drawn from the Liberation Fonts" set. The
Liberation Fonts set is also used in HTML editions if the set is installed on your system. If not,
alternative but equivalent typefaces are displayed. Note: Red Hat Enterprise Linux 5 and later includes
the Liberation Fonts set by default.

1.1. Typographic Conventions

Four typographic conventions are used to call attention to specific words and phrases. These
conventions, and the circumstances they apply to, are as follows.

Mono-spaced Bold

Used to highlight system input, including shell commands, file names and paths. Also used to highlight
keycaps and key combinations. For example:

To see the contents of the file my_next_bestselling_novel in your current
working directory, enter the cat my_next_bestselling_novel command at the
shell prompt and press Enter to execute the command.

The above includes a file name, a shell command and a keycap, all presented in mono-spaced bold
and all distinguishable thanks to context.

Key combinations can be distinguished from keycaps by the hyphen connecting each part of a key
combination. For example:

Press Enter to execute the command.

Press Ctrl1+Alt+F2 to switch to the first virtual terminal. Press Ctr1+Alt+F1 to
return to your X-Windows session.

The first paragraph highlights the particular keycap to press. The second highlights two key
combinations (each a set of three keycaps with each set pressed simultaneously).

If source code is discussed, class names, methods, functions, variable names and returned values
mentioned within a paragraph will be presented as above, in mono-spaced bold. For example:

File-related classes include filesystem for file systems, file for files, and dir for
directories. Each class has its own associated set of permissions.

Proportional Bold

This denotes words or phrases encountered on a system, including application names; dialog box text;
labeled buttons; check-box and radio button labels; menu titles and sub-menu titles. For example:

Choose System - Preferences — Mouse from the main menu bar to launch Mouse
Preferences. In the Buttons tab, click the Left-handed mouse check box and click

! https://fedorahosted.org/liberation-fonts/

Vii

https://fedorahosted.org/liberation-fonts/
https://fedorahosted.org/liberation-fonts/

Preface

Close to switch the primary mouse button from the left to the right (making the mouse
suitable for use in the left hand).

To insert a special character into a gedit file, choose Applications - Accessories

- Character Map from the main menu bar. Next, choose Search - Find... from
the Character Map menu bar, type the name of the character in the Search field
and click Next. The character you sought will be highlighted in the Character Table.
Double-click this highlighted character to place it in the Text to copy field and then

click the Copy button. Now switch back to your document and choose Edit - Paste
from the gedit menu bar.

The above text includes application names; system-wide menu names and items; application-specific
menu names; and buttons and text found within a GUI interface, all presented in proportional bold and
all distinguishable by context.

Mono-spaced Bold Italic or Proportional Bold Italic

Whether mono-spaced bold or proportional bold, the addition of italics indicates replaceable or
variable text. Italics denotes text you do not input literally or displayed text that changes depending on
circumstance. For example:

To connect to a remote machine using ssh, type ssh username@domain. name at
a shell prompt. If the remote machine is example . com and your username on that
machine is john, type ssh john@example.com.

The mount -0 remount file-system command remounts the named file
system. For example, to remount the /home file system, the command is mount -o
remount /home.

To see the version of a currently installed package, use the rpm -q package
command. It will return a result as follows: package-version-release.

Note the words in bold italics above — username, domain.name, file-system, package, version and
release. Each word is a placeholder, either for text you enter when issuing a command or for text
displayed by the system.

Aside from standard usage for presenting the title of a work, italics denotes the first use of a new and
important term. For example:

Publican is a DocBook publishing system.

1.2. Pull-quote Conventions
Terminal output and source code listings are set off visually from the surrounding text.

Output sent to a terminal is set in mono-spaced roman and presented thus:

books Desktop documentation drafts mss photos stuff svn
books_tests Desktopl downloads images notes scripts svgs

Source-code listings are also set in mono-spaced roman but add syntax highlighting as follows:

package org.jboss.book.jca.ex1;

import javax.naming.InitialContext;

viii

Notes and Warnings

public class ExClient

{
public static void main(String args[])
throws Exception
{
InitialContext iniCtx = new InitialContext();
Object ref = iniCtx.lookup("EchoBean");
EchoHome home = (EchoHome) ref;
Echo echo = home.create();
System.out.println("Created Echo");
System.out.println("Echo.echo('Hello') = " + echo.echo("Hello"));
}
}

1.3. Notes and Warnings
Finally, we use three visual styles to draw attention to information that might otherwise be overlooked.

@

Notes are tips, shortcuts or alternative approaches to the task at hand. Ignoring a note should
ve nNo negative consequences, but you might miss out on a trick that makes your life easier.

Important boxes detail things that are easily missed: configuration changes that only apply to
the current session, or services that need restarting before an update will apply. Ignoring a box
Igkeled 'Important’ will not cause data loss but may cause irritation and frustration.

Warnings should not be ignored. Ignoring warnings will most likely cause data loss.

2. Getting Help and Giving Feedback

2.1. Do You Need Help?

If you experience difficulty with a procedure described in this documentation, visit the Red Hat
Customer Portal at http.://access.redhat.com. Through the customer portal, you can:

» search or browse through a knowledgebase of technical support articles about Red Hat products.
» submit a support case to Red Hat Global Support Services (GSS).
 access other product documentation.

Red Hat also hosts a large number of electronic mailing lists for discussion of Red Hat software and
technology. You can find a list of publicly available mailing lists at https.//www.redhat.com/mailman/
listinfo. Click on the name of any mailing list to subscribe to that list or to access the list archives.

http://access.redhat.com
https://www.redhat.com/mailman/listinfo
https://www.redhat.com/mailman/listinfo

Preface

2.2. Give us Feedback

If you find a typographical error, or know how this guide can be improved, we would love to hear from
you. Submit a report in Bugzilla against the product JBoss Enterprise SOA Platform and the
component doc-JBoss_Rules_5_Reference_Guide. The following link will take you to a pre-filled
bug report for this product:; http://bugzil/a.redhat.com/z.

Fill out the following template in Bugzilla's Description field. Be as specific as possible when
describing the issue; this will help ensure that we can fix it quickly.

Document URL:

Section Number and Name:
Describe the issue:
Suggestions for improvement:

Additional information:

Be sure to give us your name so that you can receive full credit for reporting the issue.

3. Acknowledgements

Certain portions of this text first appeared in the work Drools Expert by Mark Proctor, Michael Neale,
and Edson Tirelli, copyright © 2010 JBoss Inc, available from http://www.jboss.org/drools.

JBoss Enterprise BRMS Platform JBoss Rules 5 Reference Guide edited by Darrin Mison (Red Hat)
and David Le Sage (Red Hat).

2 https://bugzilla.redhat.com/enter_bug.cgi?product=JBoss%20Enterprise%20SOA%20Platform%205&component=doc-
JBoss_Rules_5_Reference_Guide&version=52

X

https://bugzilla.redhat.com/enter_bug.cgi?product=JBoss%20Enterprise%20SOA%20Platform%205&component=doc-JBoss_Rules_5_Reference_Guide&version=52
http://www.jboss.org/drools
https://bugzilla.redhat.com/enter_bug.cgi?product=JBoss%20Enterprise%20SOA%20Platform%205&component=doc-JBoss_Rules_5_Reference_Guide&version=52
https://bugzilla.redhat.com/enter_bug.cgi?product=JBoss%20Enterprise%20SOA%20Platform%205&component=doc-JBoss_Rules_5_Reference_Guide&version=52

Chapter 1.

Introduction

1.1. What Is a Rule Engine?

1.1.1. Introduction and Background

JBoss Rules is an advanced artificial intelligence system that utilises Turing-complete Rete
algorithms to create and interpret production rules. Study this book to learn how to use this system
to write and modify business rules and procedures as they evolve over time. Once rules have been
written, use the software to manage, deploy and analyse them.

Read this first section to gain a broad understanding of how the software works. This overview
introduces basic terms and some theory, explaining the major aspects of the system.

The "brain” of a rules system is an inference engine that is able to scale to a large number of
production rules and facts.
Inference Engine
An inference engine matches facts and data, against the rules, to infer conclusions which result in
actions.

Production Rule
A production rule is a two-part structure that uses first order logic to represent knowledge:

when
<conditions>

then
<actions>

Pattern Matching
Pattern matching is the process of matching facts agains rules. It is performed by the inference
engine, using Linear, Rete, Treat and Leaps algorithms.

ReteOO
The Rete implementation used is called Rete00. This is an enhanced and optimized
implementation of the Rete algorithm specifically for Object Oriented systems.

Conflict Resolution Strategy
If a system has a large number of rules, sometimes more than one may be true for the same fact
assertion. If so, these rules are said to be in conflict. The agenda manages these situations by
using a conflict resolution strategy to dictate the order in which they are to be executed.

The rules are stored in the production memory whilst the facts are asserted into the working memory.
Once the facts are in the working memory, one can modify or retract them.

Chapter 1. Introduction

Inference Engine
{Rete0O / Leaps)

Pattern
Matcher

Agenda

Figure 1.1. High-Level Overview of a Rules Engine

A production rule system's inference engine is stateful and is responsible for truth maintenance.
Truth maintenance
The inference engine's ability to enforce truthfulness.

Use actions to declare logical relationships.

Logical Relationship
A logical relationship exists when the action's state depends on the inference remaining true.
When it is no longer true, the dependent action is undone.

Introduction and Background

There are three types of production rule systems: forward-chaining, backward-chaining and hybrids

whic
Forv

Rule
Base

Bac

3
\.

[
.

Recursively back-chain

Each condition of fired rule is a goal

For sach rule

conditicn, recursively
backchain with

condition as goal_

L4

All remh

(Examlna warking memaory

.| and goals to see if goals Working
v are “known” true in Memory
L knowledge bass

Return Do goals
True [* yes match?

Mo
(retumn false to recursive procedure)

Determine next possible
rules to fire by checking
conclusions and goals

Fule
Found

Mo Rule
Foursd

retums trua?

One or more goals failed, Check next matching rule

als found Lo be true, exist, retuming true true

v

Figure 1.3. Backward-Chaining

Chapter 1. Introduction

Understanding these modes of operation is the key to understanding the differences between
systems and how best to optimize each of them.

Generally, a design exhibiting loose-coupling is preferable, as this grants a great deal of flexibility. If
the rules are all strongly-coupled, they are likely to be inflexible. More significantly, it indicates that
deploying a rule engine is overkill for the situation.
loose-coupling

A design in which the execution of one rule will not lead to the execution of another.

strong-coupling
If rules are strongly-coupled, it means that the firing of one rule will directly result in the firing of
another and so on; in other words, there is a clear chain of logic.

A clear chain can be hard-coded, or implemented using a decision tree.

e

Strong coupling is not inherently bad but remember the arguments against it when designing the
way in which rules are to be captured.

A loosely-coupled system is more flexible and allows one to add, change and remove rules
without a follow-on effect.

Chapter 2.

Quick Start

2.1. The Basics

New users sometimes find JBoss Rules a little overwhelming because there is so much functionality
because the software has been designed to deal with many different use-cases. The purpose of this
chapter is to introduce this functionality little by little. Some very simple examples are provided to help
one learn.

2.1.1. Stateless Knowledge Sessions

The simplest use-case is known as a stateless session.
stateless session
A session without inference.

A stateless session can be called like a function, as one passes it some data and then receives the
result back. There are many common use-cases for stateless sessions. Here are a few:

« validation, an example being, "Is this person eligible for a mortgage?"
« calculation, an example being, "Compute a mortgage premium for me."

* routing and filtering, an for example, "Filter my incoming messages into folders" or, "Send incoming
messages to a destination."

Here is a simple example involving an application for a driver's license.

1. Gather the data needed, as this will form the set of facts that are going to be passed to the rule. In
this case, there is only one piece of data:

package com.company.license;

public class Applicant
{

private String name;
private int age;
private boolean valid;

public Applicant (String name, int age, boolean valid)

{

this.name = name;
this.age = age;
this.valid = valid;

}

//add getters & setters here

}

2. Now that one has a data model, it is time to write a first rule. The purpose of this one will be to
disqualify any applicant younger than eighteen years of age:

package com.company.license;

rule "Is of valid age"
when

$a : Applicant(age < 18)
then

Chapter 2. Quick Start

$a.setvalid(false);
end

When the Applicant object is inserted into the rule engine, each rule's constraints evaluate it,
looking for a match. (Note that there is always an implied constraint of "object type" after which
there can be any number of explicit field constraints.)
Pattern

A collection of constraints is known as a pattern.

Pattern Matching
The process whereby each rule's group of constraints evaluates an object, looking for a
match.

Matched
When an inserted object satisfied all of the constraints for a rule, it is said to be matched.

For example, In the Is of valid age rule there are two constraints:

a. The fact being matched must be of type Applicant.
b. The value of Age must be less than eighteen.

$a is a binding variable. It exists to make possible a reference to the matched object in the rule's
consequence (from which place the object's properties can be updated.)

Use of the dollar sign ($) is optional. It helps to differentiate between variable names and field
es.

Just for the moment, assume that the rules are in the same folder as the classes, so that the
class-path resource loader can be used to build the first knowledge base.

Knowledge Base
A knowledge base is a collection of rules which have been compiled by the
KnowledgeBuilder.

KnowledgeBuilder kbuilder = KnowledgeBuilderFactory.newKnowledgeBuilder();
kbuilder.add(ResourceFactory.newClassPathResource(
"licenseApplication.drl", getClass()), ResourceType.DRL);
if (kbuilder.hasErrors()) {
System.err.println(kbuilder.getErrors().toString());

3

The piece of code quoted above uses the newClassPathResource () method to search the
class-path for the 1icenseApplication.drl file. The ResourceType is written in the Drools
Rule Language.
Drools Rule Language

Drools Rule Language (DRL) is JBoss Rules' native rules language.

Stateless Knowledge Sessions

Check the KnowledgeBuilder for any errors. If there are none, one is now ready to build the
session.

Execute the data against the rules. (Since the applicant is under the age of eighteen, their
application will be marked as "invalid.")

KnowledgeBase kbase = KnowledgeBaseFactory.newKnowledgeBase();
kbase.addKknowledgePackages(kbuilder.getKnowledgePackages());
StatelessknowledgeSession ksession = kbase.newStatelessKnowledgeSession();
Applicant applicant = new Applicant("Mr John Smith", 16, true);

assertTrue(applicant.isValid());
ksession.execute(applicant);
assertFalse(applicant.isValid());

So far, the data has consisted of but a single object. What if one wanted to use more than this? It is
possible to execute against any object-implementing iterable, such as a collection. In this next
example, one will be taught how to add another class called Application, which contains the date
of the driver's licence application. Another skill one will be taught is how to move the Boolean field
entitled valid to the Application class.

1.

2.

Here is the code:

public class Applicant {
private String name;
private int age;

public Applicant (String name, int age)
{

this.name = name;
this.age = age;

}
3

// getter and setter methods here

public class Application {
private Date dateApplied;
private boolean valid;

public Application (boolean valid)
{

}

// getter and setter methods here

this.valid = valid;

In order to check that the application was made within a legitimate time-frame, add this rule:

package com.company.license

rule "Is of valid age"
when

Applicant(age < 18)

$a : Application()
then

$a.setvalid(false);
end

rule "Application was made this year"
when

Chapter 2. Quick Start

$a : Application(dateApplied > "@1-jan-2009")
then

$a.setvalid(false);
end

3. Unfortunately, Java arrays are unable to implement the iterable interface, so use the JDK
converter methodinstead. (This method commences with the line, Arrays.asList(...).)

The code shown below executes against an iterable list. Every collection element is inserted
before any matched rules are fired:

StatelessknowledgeSession ksession = kbase.newStatelessKnowledgeSession();
kbase.addKnowledgePackages(kbuilder.getKnowledgePackages());

Applicant applicant = new Applicant("Mr John Smith", 16);

Application application = new Application(true);

assertTrue(application.isValid());

ksession.execute(Arrays.asList(new Object[] {application, applicant}));
assertFalse(application.isValid());

The execute(Object object) and execute(Iterable objects) methods are
actually wrappers around a further method called execute (Command command) which
comes from the BatchExecutor interface.

4. Use the CommandFactory to create instructions, so that the following is equivalent to
execute(Iterable it):

ksession.execute(
CommandFactory.newInsertElements(Arrays.asList(new Object[] {application,applicant}))

)i

5. One will find the BatchExecutor and CommandFactory are particularly useful when working
with many different commands and result output identifiers:

List<Command> cmds = new ArrayList<Command>();
cmds.add(

CommandFactory.newInsertObject(new Person("Mr John Smith"), "mrSmith"));
cmds.add(

CommandFactory.newInsertObject(new Person("Mr John Doe"), "mrDoe"));

ExecutionResults results =
ksession.execute(CommandFactory.newBatchExecution(cmds));

assertEquals(new Person("Mr John Smith"), results.getValue("mrSmith"));

CommandFactory supports many other commands that can be used in the BatchExecutor.
Some of these are StartProcess, Query and SetGlobal.

Stateful Knowledge Sessions

2.1.2. Stateful Knowledge Sessions
Here are some of the many common use cases for stateful sessions:

Stateful Session
Stateful sessions allow one to make iterative changes to facts over time.

» monitoring: for instance, one can monitor a stock market and automate the buying process.

« diagnostics: for instance, once can use it to run fault-finding processes. It could also be used for
medical diagnostic processes.

* logistical: for instance, it could be applied to problems involving parcel tracking and delivery
provisioning.

» ensuring compliance: for instance, it could be used to validate the legality of market trades.

Ensure that the dispose () method is called afterward running a stateful session. This is to
ensure that there are no memory leaks. This is due to the fact that knowledge bases will obtain
references to stateful knowledge sessions when they are created.

As with the StatelessKnowledgeSession, the StatefulKnowledgeSession supports the
BatchExecutor interface, the only difference being that, in this case, the FireA11Rules command
is not automatically called at the end.

To illustrate the "monitoring" use-case, here is an example involving the development of a fire alarm
system.

1. Create a model representing the rooms in the house, each of which has one sprinkler. A fire can
start in any of the rooms:

public class Room

{

private String name
// getter and setter methods here

}

public class Sprinkler

{

private Room room;
private boolean on;
// getter and setter methods here

}

public class Fire

{
private Room room;
// getter and setter methods here

}

public class Alarm

{
}

2. The rules must express the relationships between multiple objects, (to define things such as the
presence of a sprinkler in a certain room.)

Chapter 2. Quick Start

Achieve this by using a binding variable as a constraint in a pattern. Doing so results in a cross-
product.

3. Create an instance of the Fire class. Insert the instance into the session.

The rule below adds a binding to the Fire object's room field to constrain matches. This so that
only the sprinkler for that room is checked. When this rule fires and the consequence executes,
the sprinkler activates:

rule "When there is a fire turn on the sprinkler"
when
Fire($room : room)
$sprinkler : Sprinkler(room == $room, on == false)
then
modify($sprinkler) { setOn(true) };
System.out.println("Turn on the sprinkler for room "+$room.getName());
end

Whereas the stateless session employed standard Java syntax to modify a field, the rule above
uses the modify statement. (It acts much like a "with" statement.)

It contains a series of comma-separated Java expressions, which are, to all intents and purposes,
calls to those object "setters" that have been selected by the modify statement's contro/
expression. These setters modify the data and then make the engine aware of the changes so
that it can "reason" its way through them once more. This process is known as inference and it is
the key to understanding how a stateful session's operates. (By contrast, stateless sessions do not
use inference, so the engine does not need to be aware of changes to data.)

To deactivate inference use the sequential mode.

The tutorials have, thus far, show rules that operate when matches exist but what happens when
nothing matches? How does one determine that a fire has been extinguished? The previous
constraints were "sentences" according to propositional logic, whereby the engine constrains
individual instances. However, JBoss Rules also supports first order logic, which allows one to look at
sets of data. A pattern featuring the keyword not matches only when something does not exist.

This rule turns the sprinkler off when the fire is extinguished:

rule "When the fire is gone turn off the sprinkler"

when
$room : Room()
$sprinkler : Sprinkler(room == $room, on == true)
not Fire(room == $room)

then

modify($sprinkler) { setOn(false) };
System.out.println("Turn off the sprinkler for room "+$room.getName());
end

Whilst there is one sprinkler for each room, there is just one alarm for the entire building. An Alarm
object is created when there is a fire, but only one Alarm is needed for the entire building, no matter
how many fires there might be. not's complement, exists can now be introduced. It matches one or
more instances of a category:

10

Stateful Knowledge Sessions

rule "Raise the alarm when we have one or more fires"
when
exists Fire()
then
insert(new Alarm());
System.out.println("Raise the alarm");
end

If there are no more fires, the alarm must be deactivated. To turn it off, use not again:

rule "Cancel the alarm when all the fires have gone"
when
not Fire()
$alarm : Alarm()
then
retract($alarm);
System.out.println("Cancel the alarm");
end

Finally, this code print a general health status message when the application first starts and also when
the alarm and all of the sprinklers have been deactivated:

rule "Status output when things are ok"
when
not Alarm()
not Sprinkler(on == true)
then
System.out.println("Everything is ok");
end

Store the rules in a file called fireAlarm.dr1. Save this file in a sub-directory on the class-path.
Now build a knowledge base, using the new name, fireAlarm.drl:

KnowledgeBuilder kbuilder = KnowledgeBuilderFactory.newKnowledgeBuilder();
kbuilder.add(ResourceFactory.newClassPathResource("fireAlarm.drl",
getClass()), ResourceType.DRL);

if (kbuilder.hasErrors())
System.err.println(kbuilder.getErrors().toString());

StatefulKnowledgeSession ksession = kbase.newStatefulKnowledgeSession();

In this next example, four room objects are created and inserted, along with one sprinkler object for
each room. (The matching process has ended but no rules have yet been fired.)

1. Cal ksession.fireAllRules(). This grants the matched rules permission to run but, since
there is no fire, they will merely produce the health message:

String[] names = new String[]{"kitchen", "bedroom", "office","livingroom"};
Map<String, Room> name2room = new HashMap<String, Room>();

for(String name: names)

{

Room room = new Room(name);

name2room.put(name, room);
ksession.insert(room);

Sprinkler sprinkler = new Sprinkler(room);
ksession.insert(sprinkler);

}

11

Chapter 2. Quick Start

ksession.fireAllRules();

> Everything is Okay

2. Now create and insert two fires. (A fact handle will be kept.)
fact handle
A fact handle is an internal reference to the inserted instance. It allows instances to be
retracted or modified at a later point in time.

3. With the fires now in the engine, call fireAllRules(). The alarm will be raised and the
respective sprinklers will be turned on:

Fire kitchenFire = new Fire(name2room.get("kitchen"));
Fire officeFire = new Fire(name2room.get("office"));

FactHandle kitchenFireHandle = ksession.insert(kitchenFire);
FactHandle officeFireHandle = ksession.insert(officeFire);

ksession.fireAllRules();

> Raise the alarm
> Turn on the sprinkler for room kitchen
> Turn on the sprinkler for room office

4. When the fires are extinguished, the fire objects are retracted and the sprinklers are turned off. At
this point in time, the alarm is canceled and the health message displays once more:

ksession.retract(kitchenFireHandle);
ksession.retract(officeFireHandle);

ksession.fireAllRules();

Turn off the sprinkler for room office
Turn off the sprinkler for room kitchen
Cancel the alarm
Everything is ok

V V V V

Turn off the sprinkler for room office
Turn off the sprinkler for room kitchen
Cancel the alarm
Everything is ok

V V. V V

These simple examples demonstrate some of the functionality of the rule system and given the user
some idea of how to program for it.

2.2. A Little Theory

2.2.1. Methods and Rules

New users often confuse methods and rules. To summarise methods:
« they are called directly

« specific instances are passed

12

Cross-Products

» asingle call results in a single execution

publ
{

if (person.getName().equals("Chuck"))

{

}
b

rule
when

then

end

ic void hellowWorld(Person person)

System.out.println("Hello Chuck");

"Hello World"
Person(name == "Chuck")

System.out.println("Hello Chuck");

To summarise rules:

 they execute by matching against any data that has been inserted into the engine

» they can never be called directly

« specific instances cannot be passed to a rule

» depending on the matches, a rule may fire once, several times or never at all

2.2.2. Cross-Products

Cross

When two or more sets of data are combined, the result is called a cross-product.

Consider the following rule from the fire alarm example:

rule
when

then

end

-products

"show sprinklers in rooms"

$room : Room()

$sprinkler : Sprinkler()

System.out.println("room:" + $room.getName() +
" sprinkler:" + $sprinkler.getRoom().getName());

This is analogous with the Structured Query Language command to select * from Room,
Sprinkler, which instructs every row in the Room table to join every row in the Sprinkler table,
thereby resulting in the following output:

room:

room
room

room:
room:
room:
room:
room:

room

room:

room

office sprinker:office
:office sprinkler:kitchen
:office sprinkler:livingroom
office sprinkler:bedroom
kitchen sprinkler:office
kitchen sprinkler:kitchen
kitchen sprinkler:livingroom
kitchen sprinkler:bedroom
:livingroom sprinkler:office
livingroom sprinkler:kitchen
:livingroom sprinkler:livingroom

13

Chapter 2. Quick Start

room:livingroom sprinkler:bedroom
room:bedroom sprinkler:office
room:bedroom sprinkler:kitchen
room:bedroom sprinkler:livingroom
room:bedroom sprinkler:bedroom

Cross-products can become huge and, therefore, have the potential to cause performance problems.
To prevent this, use variable constraints to eliminate nonsensical results:

rule "show sprinklers in rooms"
when

$room : Room()

$sprinkler : Sprinkler(room == $room)
then

System.out.println("room:" + $room.getName() +

" sprinkler:" + $sprinkler.getRoom().getName());

end

This results in just four rows of data, with the correct Sprinkler assigned to each Room. As written
in SQL, the corresponding query would be select * from Room, Sprinkler where Room ==
Sprinkler.room

room:office sprinkler:office
room:kitchen sprinkler:kitchen
room:livingroom sprinkler:livingroom
room:bedroom sprinkler:bedroom

2.2.3. Activations, Agendas and Conflict Sets

So far, the data and the matching process have been small and relatively simple. However, over time,
one will insert many facts and rules. At this point, the rule engine will need a way to manage the
execution of outcomes. JBoss Rules achieves this using activations, agendas and a conflict resolution
Strategy.

This next, more complex example demonstrates the handling of cash-flow calculations over multiple
date periods.

It is assumed that one is comfortable with the Java code needed to create knowledge bases
and populating a StatefulKnowledgeSession with facts, so that code will not be repeated
here.

Diagrams will illustrate the state of the rule engine at key stages.
The data model consists of three classes, Cashflow, Account and AccountPeriod:

public class Cashflow

{

private Date date;
private double amount;

private int type;

long accountNo;

// getter and setter methods here
}

14

Activations, Agendas and Conflict Sets

public class Account

{

private long accountNo;

private double balance;

// getter and setter methods here

}

public AccountPeriod

{

private Date start;

private Date end;

// getter and setter methods here

}

By now, you already know how to create knowledge bases and how to instantiate facts to populate

the StatefulKnowledgeSession. Therefore, tables will be used to show the state of the inserted
data, as this makes things clearer for illustrative purposes. The tables below show that a single fact
was inserted for the Account. A series of debits and credits extending over two quarters were also

inserted into the Account as Cashflow objects.

Figure 2.1, “Cash-Flows and the Account” shows that a single Account fact was inserted along with

four Cashflow facts.

Figure 2.1. Cash-Flows and the Account

The two rules which follow are used to, firstly, determine the debit and credit totals for the specified
period and, secondly, update the account balance. (The && operator is used to avoid the need to

repeat the field name.)

rule "increase balance for credits"
when
ap : AccountPeriod()
acc : Account($accountNo : accountNo)
CashFlow(type == CREDIT,
accountNo == $accountNo,
date >= ap.start && <= ap.end,
$amount : amount)
then
acc.setBalance(acc.getBalance() + $amount);
end

rule "decrease balance for debits"
when
ap : AccountPeriod()
acc : Account($accountNo : accountNo)

CashFlow
date amount type accountMo

12-Jan-07 100|CREDIT 1
2-Feb-07 200|DEBIT 1
16-May-07 50|CREDIT 1
9-Mar-07 T5|CREDIT 1
Account

accountMo balance
1 0

15

Chapter 2. Quick Start

CashFlow(type == DEBIT,
accountNo == $accountNo,
date >= ap.start && <= ap.end,
$amount : amount)
then
acc.setBalance(acc.getBalance() - $amount);
end

As shown in Figure 2.2, “Cash-Flows and the Account”, the accounting period start date is set to the
1st of January and the end is set to the 31st of March. This constrains the data to two Cashflow
objects for credit and one for debit.

AccountingPeriod

start end

01-Jan-07 21-M ar-07

CashFlow

date amount type
12-Jan-07 T00ICREDIT
9-Mar-07 T5|CREDIT
CashFlow

date amount type
2-Feb-07 200DEBIT

Figure 2.2. Cash-Flows and the Account

1. The data is matched during the insertion stage but, because this is a stateful session, the rules'
consequences do not execute immediately. The matched rules and the corresponding data are
referred to as activations.

2. Each activation is added to a list called the agenda.

3. Each activation on the agenda is executed when the fireAllRules() method is called. Unless
specified otherwise, the activations are executed one after another in an arbitrary order.

Agenda
1 Increase balance
2 decrease balance arbitrary
3 Increase balance

Figure 2.3. Cash-Flows and the Account

After all of the activations noted above are fired, the account will have a balance of minus twenty-five.

Account
accountiMo balance
1 -25

Figure 2.4. Cash-Flows and the Account

If the accounting period is updated to the second quarter, one will only have a single matched row of
data and, thus, a single activation on the agenda.

16

Activations, Agendas and Conflict Sets

AccountingP eriod
start end
01-A pr-07 30-Jun-07
CashFlow
date amount type
18-May-07 AOICREDIT

Figure 2.5. Cash-Flows and the Account

When the activation fires, the result will be a balance of twenty-five.

accountMo balance
1 25

Figure 2.6. Cash-Flows and the Account

When there are one or more activations on the agenda, they are said to be "in conflict", and a conflict
resolution strategy is used to determine the order of execution. At the simplest level, the default
strategy uses salience to determine rule priority. Each rule has a default salience value of zero and the
higher the value, the higher the priority shall be. The salience can also be a negative value. This lets
one order the execution of rules relative to each other.

@e

The execution order for rules with the same salience value is still arbitrary.

To illustrate this, the next step is to add a rule to print the account balance. This rule is to be executed
after all the debits and credits have been applied for all accounts. It has a negative salience value so,
thus, it will execute after the rules with the default salience value of zero.

rule "Print balance for AccountPeriod"
salience -50
when
ap : AccountPeriod()
acc : Account()
then
System.out.println(acc.getAccountNo() + " : " + acc.getBalance());
end

The table below depicts the resulting agenda. The three debit and credit rules are shown to be in
arbitrary order, while the print rule is ranked last, so that it will execute afterwards.

M

JBoss Rules includes ruleflow-group attributes. Use these to declare work-flow diagrams

in order to specify when rules can be fired. The screen-shot below is taken from the JBoss
Developer Studio. It has two ruleflow-group nodes. These ensure that the calculation rules are
executed before the reporting rules.

17

Chapter 2. Quick Start

Agenda
1 increase balance
2 decrease balance arbitrary
3 Increase balance
4 print balance

Figure 2.7. Cash-Flows and Account

2.2.4. Inference

Inference is the act of using one piece of data to infer something else. For instance, given a Person
fact with an age field and a rule that provides age policy control, we can infer whether a Person is an
adult or a child and act on this.

Example 2.1. Inferring Adulthood

rule "Infer Adult"

when

$p : Person(age >= 18)
then

insert(new IsAdult($p))
end

Every Person who is 18 or over will have an instance of IsAdult inserted for them. This kind of fact
is known as a relation. Relations can use this inferred relation in any rule:

$p : Person()
IsAdult(person == $p)

2.2.4.1. Inference in Action

Example Government Department is responsible for issuing ID cards when people become adults.
The ID department uses a decision table includes logic that states, when an adult living in London is
18 years old or over, issue the card:

3 le) =g
COMNDITION COMNDITION ACTION
p ¢ Person
bocation 208 == 51 issueldCand %1)
Select Person Select Adults Issue ID Card
Issue ID Card to Adults London 18 P

Figure 2.8. Monolithic Decision Table

The ID department does not set the policy on who an adult is. If the central government changes the
age a person is considered to be an adult to 21, there is a change management process and this need
to be communicated to the ID department to ensure their systems are updated to reflect the change.

The change management process can be costly and introduce errors. The ID department is
maintaining more information than it needs with the decision table in Figure 2.8, “Monolithic Decision
Table”, by storing the age at which a person is considered an adult, the ID department must keep this
information up to date.

18

Inference and TruthMaintenance

It is possible to split, or de-couple, the authoring responsibilities, with each department maintaining

their own rules. In effect this means, if the central government changes the age a person is considered

an adult, the central government updates their central repository with the new rules, which others (the

ID department) use:

COMDITION ACTION
p ! Person
2ge == &1 ins=ry €1
Adult Age Policy Add Adult Relation
Infer Adult 18
new [sAdult(p)

Figure 2.9. Rule Table Age Policy

The IsAdult fact, as discussed previously, is inferred from the policy rules. Because the central

government now maintains the IsAdult fact, the ID department only needs to know if the person is

an adult or not, and do not need to maintain their rules to stay inline with current policy.

aple [} ard
COMDITION CONDITION ACTION
p : Person 1A dult
kocation person == S1 iszueldCand(£1)
Select Person Select Adults Issue ID Card
Issue ID Card to Adults London] P

Figure 2.10. Rule Table ID Card

2.2.5. Inference and TruthMaintenance

Truth Maintence and Logical Inserts (1ogicalInsert) can be used to provide a separation of
concerns. The following example issues either a child or adult bus pass:

rule "Issue Child Bus Pass" when
$p : Person(age < 16)
then
insert(new ChildBusPass($p));
end

rule "Issue Adult Bus Pass" when
$p : Person(age >= 16)
then
insert(new AdultBusPass($p));
end

A separation of concerns can be achieved by using logicalInsert:

rule "Infer Child" when
$p : Person(age < 16)
then
logicalInsert(new IsChild($p))
end

19

Chapter 2. Quick Start

rule "Infer Adult" when
$p : Person(age >= 16)
then
logicalInsert(new IsAdult($p))
end

The fact is logically inserted, dependent on the truth of the when clause. If the truth of the when
clause changes to false, the fact is automatically retracted. This works well for rules that are
mutually exclusive, for instance, when the person's age changes from 15 to 16, the IsChild factis
automatically retracted and the IsAdult fact is inserted.

We can now bring back in the code to issue the passes, these two can also be logically inserted, as
the TMS supports chaining of logical insertions for a cascading set of retracts.

rule "Issue Child Bus Pass" when
$p : Person()
IsChild(person =$p)
then
logicalInsert(new ChildBusPass($p));
end

rule "Issue Adult Bus Pass" when
$p : Person(age >= 16)
IsAdult(person =$p)
then
logicalInsert(new AdultBusPass($p));
end

LogicalInsert can be combined with the not conditional element to handle notifications, in this
situation a request could be sent for the return of the bus pass. When the ChildBusPass object is
retracted a rule triggers and sends a request to the person:

rule "Return ChildBusPass Request "when
$p : Person()
not(ChildBusPass(person == $p))
then
requestChildBusPass($p);
end

2.3. Further Comments on Building and Deploying

2.3.1. Using Change-Sets to Add Rules

The examples so far have all used the JBoss Rules API to build knowledge bases. They have done
so by manually adding each rule. JBoss Rules also provide a means to declare the resources to be
added to a knowledge base through an XML file. This feature is called a change-set.

The change-set XML file contains a list of the rule resources that can be added to a knowledge
base. One can also point this file to another.

M

At the current moment in time, change-sets only support the <add> element. Red Hat will add
support for the <remove> and <modify> elements in the future.

20

Using Change-Sets to Add Rules

<change-set xmlns='http://drools.org/drools-5.0/change-set’
xmlns:xs="http://www.w3.0rg/2001/XMLSchema-instance’
xs:schemaLocation="http://drools.org/drools-5.0/change-set
drools-change-set-5.0.xsd' >

<add>
<resource source='http://hostname/myrules.drl' type='DRL' />
</add>

</change-set>

URLSs specify the location of each resource. Every protocol provided by java.net.URL is supported. A
protocol called classpath can also be used. This protocal refers to the current processes class-
path for the resource.

The type attribute must always be specified for a resource but it is not inferred from the file name
sion.

When using the XML above, note that the code is almost identical as that depicted before, with
the exception that the ResourceType has been altered to CHANGE_SET.

KnowledgeBuilder kbuilder = KnowledgeBuilderFactory.newKnowledgeBuilder();
kbuilder.add(ResourceFactory.newClasspathResource("myChangeSet.xml",
getClass()), ResourceType.CHANGE_SET);

if (kbuilder.hasErrors()) {
System.err.println(kbuilder.getErrors().toString());
}

Change-sets can include any number of resources. One can also add additional configuration
information for decision tables to them. The example below loads rules from both an HTTP uniform
resource locator and from a decision table spreadsheet via the class-path protocol:

<change-set xmlns='http://drools.org/drools-5.0/change-set'
xmlns:xs="http://www.w3.0rg/2001/XMLSchema-instance’
xs:schemaLocation="http://drools.org/drools-5.0/change-set.xsd' >
<add>
<resource source='http://hostname/myrules.drl' type='DRL' />
<resource source='classpath:data/IntegrationTest.xls' type="DTABLE">
<decisiontable-conf input-type="XLS" worksheet-name="Tables 2" />
</resource>
</add>
</change-set>

To add all of the files in a directory, use its name as the resource source. (Note that all of the files
must be of the specified type.)

<change-set xmlns='http://drools.org/drools-5.0/change-set’
xmlns:xs="http://www.w3.0rg/2001/XMLSchema-instance’
xs:schemaLocation="http://drools.org/drools-5.0/change-set.xsd' >

21

Chapter 2. Quick Start

<add>
<resource source='file://rules/' type='DRL' />
</add>
</change-set>

2.3.2. The Knowledge Agent

The KnowledgeAgent automatically loads, re-loads and caches rule resources. Configure it via its
properties file.

If the resources used by a knowledge base change, the KnowledgeAgent can update or rebuild it.
To set a strategy for these updates, re-configure the KnowledgeAgentFactory:

KnowledgeAgent kagent = KnowledgeAgentFactory.newKnowledgeAgent ("MyAgent");
kagent.applyChangeSet(ResourceFactory.newUrlResource(url));
KnowledgeBase kbase = kagent.getKnowledgeBase();

The KnowledgeAgent scans every resource added, the default polling interval being sixty seconds. If
the "last-modified" date of a resource has changed, the KnowledgeAgent will rebuild the knowledge
base. (If a directory has been set as one of the resources, then every contents of that directory will be
scanned for changes.)

M

The previous knowledge base reference will still exist after change, so one must call
getKnowledgeBase () to access the newly-built version.
Having studied this chapter, the reader now understands how this software works in a little more
detail, having learned of the differences between methods and rules, seen how agendas, activations
and conflict-sets come into play and been taught how the KnowledgeAgent and knowledge bases
interact. The reader should also now have a a more comprehensive understanding of stateless and
stateful sessions.

22

Chapter 3.

User Guide
3.1. Building

org.drools bhuilder

RuleBiilder ProcessBuilder

o

KnowledgeBuilder

ResourceConfrguration

DecisionTableConfiguration
KnowledgeBuilderConfiguration

KnowledgeBiniderError
KnowledgeBiniderErrors

KnowledgeBuilderProvider

DecisionTablelnputType KnowledgeBuilderFactory

ResourceType

Figure 3.1. org.drools.builder

23

Chapter 3. User Guide

3.1.1. Building with Code

The Knowledge Builder is responsible for taking source data and turning it into a knowledge
package. A knowledge package contains rule and process definitions which the Knowledge Base
then consumes.

As its name implies, the ResourceType object class indicates the type of resource being built.

M

When dealing with binaries, (such as decision tables), do not use a Reader-based resource
handler. These are only suitable for use with plain text.

org.drools. builder

 ProcessBuilder, (RuleBuilder

A A

[

arg.drools. builder

==interfaces= arg.drools builder
KnowledgeBuilder L ———:au-cj:'_"l'fr;uwl'edgeﬂﬂﬂderf ﬂ_ﬁi"s'_'}
+ add{Resource, ResourceTypea) | vorid L ———:aa{'"kﬁ;'c_:u_rceﬂnnﬁgr_u;ai'iﬁﬁ"}
+ gaddf Resource, ResourceType, ResourceConfiguration) void e
+ getErrors() | KnowledgeBuilderErrors - ___T Resource Type
+ getk nowledgeFackages() | Collection=KnowledgeFackage=

+ hasErrors() | boolean

java.util

I ___:T;'_'E:'Enecﬁnn-é'é's_'_;.

arg.droals.io

L == Resource
\'--.__ =

Figure 3.2. KnowledgeBuilder

24

Building with Code

The Knowledge Builder is created by the KnowledgeBuilderFactory.

java.lang

org.drools.builder
org.drools.builder . java.lang ‘
KnowledgeBuilderFactory

< KnowledgeBuilderProvider -/ Classl oader

+KnowledgeBuilderFactory(i

+newDecisionTableCaonfiguration() : DecisionTahleCaonfiguration

+newknowledgeBuilder() : KnowledgeBuilder

+ newkKnowledgeBuilder(KnowledgeBuilderConfiguration) : KnowledgeBuilder BIEEEELES ETIEED

+ newkKnowledgeBuilder(KnowledgeBase) : KnowledgeBuilder N “Dex . _T:xhlnf‘ o i
+ newkr Builder(kr Base, Kr BuilderConfiguration) : KnowledgeBuilder o — — -

+newknowledgeBuilderConfiguration() : KnowledgeBuilderConfiguration ~ -'k,’,;,w,edwmimi"- S
+newknowledgeBuilderConfiguration{Properties, ClassLoader) : KnowledaeBuilderConfiguration D ———

Java.util

= Properties

org.drools

2 KnowledgeBase)

Figure 3.3. KnowledgeBuilderFactory

Create a Knowledge Builder by using the default configuration:

Example 3.1. Creating a new Knowledge Builder

KnowledgeBuilder kbuilder = KnowledgeBuilderFactory.newKnowledgeBuilder();

Create a configuration by using the KnowledgeBuilderFactory. Such a configuration allows one to
modify the behaviour of the Knowledge Builder.

Many users do this to provide a custom class loader that allows the Knowledge Builder object
to resolve classes that are not in the default path.
The first parameter is for propertie is optional and can, therefore, be left null, in which case the
default options will be used. The options parameter can be used for such tasks as changing the dialect
and registering new accumulator functions.

Example 3.2. Creating a new Knowledge Builder with a Custom Class Loader

KnowledgeBuilderConfiguration kbuilderConf =
KnowledgeBuilderFactory.newKnowledgeBuilderConfiguration(
null, classLoader);

25

Chapter 3. User Guide

KnowledgeBuilder kbuilder =
KnowledgeBuilderFactory.newkKnowledgeBuilder (kbuilderConf);

Resources of any type can be added on an iterative basis. In the example below, a .dr1 file is added.

The Knowledge Builder can now handle multiple name-spaces, which was not the case with
JBoss Rules 4.0 Package Builder. Therefore, one can just keep adding resources, regardless of
the name-space.

__Example 3.3. Adding DRL Resources

kbuilder.add(ResourceFactory.newFileResource("/project/myrules.drl"),
ResourceType.DRL);

Always check the hasgrrors() method after making an addition. Do not add more resources or
retrieve the Knowledge Packages if there are errors. (getKnowledgePackages() returns an
empty list if there are errors.)

__Example 3.4. Validating

if(kbuilder.hasErrors())

{
System.out.println(kbuilder.getErrors());

return;

}

Once all the resources have been added and there are no longer any errors, retrieve the collection of
Knowledge Packages. (This is termed a "collection" because there is one Knowledge Package
per package name-space.) These Knowledge Packages are serializable and are often used as a
unit of deployment.

Example 3.5. Obtaining the Knowledge Packages

Collection<kKnowledgePackage> kpkgs = kbuilder.getKnowledgePackages();

The final example combines all of these elements:

Example 3.6. Combining All Elements

KnowledgeBuilder kbuilder = KnowledgeBuilderFactory.newKnowledgeBuilder();
if(kbuilder.hasErrors()) {

System.out.println(kbuilder.getErrors());

return;

26

Building via Configurations and the Change-Set XML

KnowledgeBuilder kbuilder = KnowledgeBuilderFactory.newKnowledgeBuilder();

kbuilder.add(ResourceFactory.newFileResource("/project/myrulesil.drl"),
ResourceType.DRL);

kbuilder.add(ResourceFactory.newFileResource("/project/myrules2.drl"),
ResourceType.DRL);

if(kbuilder.haskErrors())

{
System.out.println(kbuilder.getErrors());
return;

}

Collection<KnowledgePackage> kpkgs = kbuilder.getKnowledgePackages();

3.1.2. Building via Configurations and the Change-Set XML

It is possible to create definitions via configurations, rather than programming them by adding
resources. You do so via the Change-Set XML. The simple XML file supports three elements: add,
remove, and modify, each of which has a sequence of resource sub-elements which serve to define a
configuration entity.

A Warning

The following XML schema is not normative: it is included for illustrative purposes only.
Example 3.7. Schema for Change-Set XML (Not "Normative")

<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns="http://drools.org/drools-5.0/change-set"
targetNamespace="http://drools.org/drools-5.0/change-set">

<xs:element name='"change-set" type="ChangeSet"/>

<xs:complexType name="ChangeSet">
<xs:choice maxOccurs="unbounded">
<xs:element name="add" type="Operation"/>
<xs:element name="remove" type="Operation"/>
<xs:element name="modify" type="Operation"/>
</xs:choice>
</xs:complexType>

<xs:complexType name="Operation">
<Xs:sequence>
<xs:element name="resource" type="Resource"
maxOccurs="unbounded" />
</xs:sequence>
</xs:complexType>

<xs:complexType name="Resource'>
<xs:sequence>
<!-- To be used with <resource type="DTABLE"...>> -->
<xs:element name="decisiontable-conf" type="DecTabConf"
minOccurs="0"/>
</Xs:sequence>

<!-- java.net.URL, plus "classpath" protocol -->
<xs:attribute name="source" type="xs:string"/>
<xs:attribute name="type" type="ResourceType"/>

</xs:complexType>

<xs:complexType name="DecTabConf">
<xs:attribute name="input-type" type="DecTabInpType"/>

27

Chapter 3. User Guide

<xs:attribute name="worksheet-name" type="xs:string"
use="optional"/>
</xs:complexType>

<!-- according to org.drools.builder.ResourceType -->
<xs:simpleType name="ResourceType'">
<xs:restriction base="xs:string">
<xs:enumeration value="DRL"/>
<xs:enumeration value="XDRL"/>
<xs:enumeration value="DSL"/>
<xs:enumeration value="DSLR"/>
<xs:enumeration value="DRF"/>
<xs:enumeration value="DTABLE"/>
<xs:enumeration value="PKG"/>
<xs:enumeration value="BRL"/>
<xs:enumeration value="CHANGE_SET"/>
</xs:restriction>
</xs:simpleType>

<!-- according to org.drools.builder.DecisionTableInputType -->
<xs:simpleType name="DecTabInpType">
<xs:restriction base="xs:string">
<xs:enumeration value="XLS"/>
<xs:enumeration value="CSV'"/>
</xs:restriction>
</xs:simpleType>

</xs:schema>

Currently only the add element is supported. The others will soon be implemented so that
iterative changes can be supported.
This example loads a single .dr1 file:

Example 3.8. Simple Change-Set XML

<change-set xmlns='http://drools.org/drools-5.0/change-set'
xmlns:xs="http://www.w3.0rg/2001/XMLSchema-instance’
xs:schemaLocation="http://drools.org/drools-5.0/change-set.xsd' >
<add>
<resource source='file:/project/myrules.drl' type='DRL' />
</add>
</change-set>

Take note of the file: prefix, as this signifies the protocol for the resource. The Change-Set supports
all of the protocols provided by java.net.URL, such as file and http, as well as an additional
version of classpath.

Remember to always specify the type attribute for a resource, because it is not inferred from the
filename extension.

28

Building via Configurations and the Change-Set XML

Utilise the ClassPath resource loader in Java to specify the class loader to be used to
locate the resource (this is not possible in XML.) The class loader to be used will, by default, be
that which is employed by the Knowledge Builder (unless the Change-Set XML is loaded by the
ClassPath resource. If so, the class loader specified for that resource will be used instead.)

Example 3.9. Loading the Change-Set XML

kbuilder.add(ResourceFactory.newUrlResource(url), ResourceType.CHANGE_SET);

Any number of resources can be included in a change-set. Eventually, they will even support
additional configuration information (though this use is currently restricted to decision tables only.)

Example 3.10, “Change-Set XML with Resource Configuration” loads rules from both an HTTP uniform

resource location and an Excel decision table found on the class-path.
Example 3.10. Change-Set XML with Resource Configuration

<change-set xmlns='http://drools.org/drools-5.0/change-set'
xmlns:xs="http://www.w3.0rg/2001/XMLSchema-instance’
xs:schemalLocation="http://drools.org/drools-5.0/change-set.xsd' >
<add>
<resource source='http:org/domain/myrules.drl' type='DRL' />
<resource source='classpath:data/IntegrationExampleTest.xls'
type="DTABLE">
<decisiontable-conf input-type="XLS" worksheet-name="Tables_2" />
</resource>
</add>
</change-set>

The Change-Set is especially useful when working with a Knowledge Agent, as it provides change

notification functionality and automatically rebuilds the Knowledge Base. (These features are

covered in more detail under the sub-heading "Deploying” in the section on the Knowledge Agent.)

One can also specify a directory. Do this in order to add all of the resources found within it. (The
software expects that all of the resources will be of the same type.) If one uses the Knowledge
Agent, it will continuously scan for changes to the resources. It will also rebuild the cached
Knowledge Base.

Change-sets can also be used in conjunction with the Knowledge Agent. Refer to
Section 3.2.6, “ KnowledgeAgent ” for more information.

Example 3.11. Change-Set XML Code for Adding a Directory's Contents.

<change-set xmlns='http://drools.org/drools-5.0/change-set'
xmlns:xs="http://www.w3.0rg/2001/XMLSchema-instance’
xs:schemalLocation="http://drools.org/drools-5.0/change-set.xsd' >
<add>
<resource source='file:/projects/myproject/myrules' type='DRL' />
</add>
</change-set>

29

Chapter 3. User Guide

3.2. Deploying

3.2.1. The KnowledgePackage and Knowledge Definitions

A KnowledgePackage is a collection of Knowledge Definitions, which is simply another term for rules
and processes. A KnowledgePackage is created by the KnowledgeBuilder, as described in
Section 3.1, “ Building ”. KnowledgePackages are self-contained and serializable. They form the
current basic deployment unit.

org.drools definition

=<interface== AT
KnowledgePackage —————== String
+ getName() : String
+ getProcesses() | Collection=Process=
java il

+ getRules() . Collection=Rule=

Figure 3.4. KnowledgePackage

M

KnowledgePackages are added to the Knowledge Base. However, it is important to
understand that a KnowledgePackage instance cannot be re-used once this has occurred.
To add it to another knowledge base, try serializing it first and using the "cloned" result. This
limitation will be removed in a future version of JBoss Rules.

30

Knowledge Bases

3.2.2. Knowledge Bases

org.drools.event knowledgebase

< Knowled'greBaseEvenﬂﬂanagrer)

Javalang

org.drools
=<interface==
KnowledgeBase
+ addk) ledgePackages(Collection=Ki ledgePackage=) : void
+ getFactType(String, String) © FactType
+ gtk ledgePackage(String) . Ki ledgeFPackage

+ getknowledgeFackages() . Collection=KnowledgeFackage=
+ getProcess(String) - Process
+ getRule(String, String) : Rule

+ removeFrocess(String) - void
+ removeRule(String, String) : void

org.drools.runtime

) E l;m‘n

= _'_Kﬁo-wi'edges essionConﬁg-ur.a‘i-'l't.).'_l_)

. Statefuik

+ 1K nowledg ion() : Statefulkknowledg

+ 1K g ot ig onfiguration, £

. e fecly jon(- Statelessk fedg .

+ tatelessk ledy ionfKnowledg ionConfiguration) : Statels
+ Ki ledgePackage(String) . void

'S-:h-fe.fuﬂ(nowled'greSe.s.sfdh_'_')

5 StatelessKnowledgeSession

Jjava.util
e Collection<E>)

org.drools.definition

K TocfryaPa ek ~
HKno q q

org.drools.definition.type
) I Facffype',.

org.drools.definition.rule
R Rulé'_-

org.drools.definition.process
e | Process)

Figure 3.5. A Knowledge Base

A knowledge base is a repository that contains all of the application's knowledge definitions. 1t may
contain rules, processes, functions and type models. The knowledge base itself does not contain
"instance" data, (known as facts.) Instead, sessions are created from the Knowledge Base into
which facts can be inserted and from which process instances can be commenced.

Creating a knowledge base is a rather resource-intensive process, whereas creating a session
is not. Therefore, Red Hat recommends caching knowledge bases where possible to facilitate

the repeated creation of sessions.

31

Chapter 3. User Guide

A knowledge base object is also serializable so it may be preferable to build it and then store it. By
so doing, one can treat it, rather than the knowledge packages, as the unit of deployment.

One way to create a knowledge base by using the KnowledgeBaseFactory class:

org.drools.util

ProviderLocator

org.drools

org.drools javalang
KnowledgeBaseFactory

KnowledgeBaseProvider =——— 0 ——— _—_~— = > ClassLoader

+KnowledgeBaseFactory()

+newEnvironment(: Environment

+newknowledgeBase(: KnowledgeBase
+newknowledgeBase(KnowledgeBaseConfiguration) : KnowledgeBase
+newknowledgeBaseConfiguration() : KnowledgeBaseConfiguration | . = Environment
+newknowledgeBaseConfiguration(Properties, ClassLoader) : KnowledgeBaseConfiguration
+newknowledgeSessionConfiguration() : KnowledgeSessionConfiguraton L ___ = = KnowledgeSessionConfiguration
+newkKnowledgeSessionConfiguration{Properies) : KnowledgeSessionConfiguration

org.drools.runtime

java.util

org.drools
_______ = KnowledgeBase

——————— == KnowledgeBaseConfiguration

Figure 3.6. KnowledgeBaseFactory

Another way to create one is by employing the default configuration:
Example 3.12. Creating a New Knowledge Base

KnowledgeBase kbase = KnowledgeBaseFactory.newKnowledgeBase();

If one wishes to use a customised class-1loader in conjunction with the Knowledge Builder
to resolve types that were not in the default 1oader, then set it on the Knowledge Base. (The
technique for this is the same as that which applies to the Knowledge Builder.)

Example 3.13. Creating a New Knowledge Base with a Custom Class-Loader

KnowledgeBaseConfiguration kbaseConf =
KnowledgeBaseFactory.newKnowledgeBaseConfiguration(null, cl);
KnowledgeBase kbase = KnowledgeBaseFactory.newKnowledgeBase(kbaseConf);

3.2.3. In-Process Building and Deployment

The simplest form of deployment is known as in-process building. In this case, the knowledge
definitions are compiled and added to the knowledge base that is residing in the same Java Virtual
Machine.

32

Building and Deployment as Separate Processes

Ensure that the drools-core. jar and drools-compiler. jar files are on the class-path
when using this approach.

__Example 3.14. Add Knowledge Packages to a Knowledge Base

Collection<KnowledgePackage> kpkgs = kbuilder.getKnowledgePackages();
KnowledgeBase kbase = KnowledgeBaseFactory.newKnowledgeBase();
kbase.addKnowledgePackages(kpkgs);

Understand that the addKnowledgePackages (kpkgs) method can be called on an iterative

basis. Do so in order to add additional knowledge.

Both the Knowledge Base and the KnowledgePackage are units of deployment. They can,
therefore, be serialized. This means that one can assign one machine to undertake any necessary
building that requires drools-compiler . jar, and have another machine reserved to deploy and
execute everything. This second machine will only require drools-core. jar.

Although "serializing" is a standard Java practice, the examples below show one machine might write
out the deployment unit and how another machine might read it in and use it.

Example 3.15. Writing the KnowledgePackage to an Output Stream

ObjectOutputStream out =

new ObjectOutputStream(new FileOutputStream(fileName));
out.writeObject(kpkgs);
out.close();

Example 3.16. Reading the KnowledgePackage from an Input Stream

ObjectInputStream in = new ObjectInputStream(new FileInputStream(fileName));
// The input stream might contain an individual
// package or a collection.
@SuppressWarnings("unchecked")
Collection<kKnowledgePackage> kpkgs =
()in.readObject(Collection<KnowledgePackage>);
in.close();

KnowledgeBase kbase = KnowledgeBaseFactory.newKnowledgeBase();
kbase.addKnowledgePackages(kpkgs);

The actual knowledge base itself is also serializable, so one may prefer to build and store it rather
than the knowledge packages.

33

Chapter 3. User Guide

Red Hat's server-side management system, Drools Guvnor , uses this deployment approach.
After it has compiled and published serialized knowledge packages to a uniform resource
location, it can use this address resource type to load them.

3.2.5. Stateful Knowledge Sessions and Knowledge Base

Modifications

Stateful Knowledge Sessions are discussed in more detail in Section 3.3.2,
“StatefulKnowledgeSession”. The Knowledge Base creates and returns them. It also may, optionally,
keep references to them. When the Knowledge Base is modified, these changes are applied to the
data in the sessions. This is a weak, optional reference, controlled by a Boolean flag.

3.2.6. KnowledgeAgent

The KnowledgeAgent is a class that provides automatic loading, caching and re-loading of
resources. It is configured via a properties files. The KnowledgeAgent can update or rebuild the
Knowledge Base, as the resources it uses are changed. The factory's configuration determines
the strategy that will be used (normally, it will typically be pull-based and use regular polling.)

The capacity for push-based updates and rebuilds will be added in a future version.
The KnowledgeAgent continuously scans all of the added resources, using a default polling interval
of sixty seconds. If the date of the last modification is updated, the cached Knowledge Base is
automatically rebuilt using the new resources.

org.drools.agent

=<interface== java.lang

KnowledgeAgent ______
+ applyChangeSet{Resource) . void

+ getkKnowledgeBase() | KnowledgeBase

org.drools.runtime
+ getName() : String

+ monitorResourceChangeEvents(boolean) : void o kﬁo-wied_'geSessionCo:;ﬁg_u}a}i'dn 5
+ newStatelessKnowledgeSession() : StatelessKnowledgeSession T — —

+ newStatelessKnowledgeSession{Knowledge SessionConfiguration) : StatelesskKnowled =1 — "'-S"-‘. I 'fnowled'geSeééidii')
+ setSystemEventListener(SystemEventListener) : void I — -

org.drools.io
~-—---Z= Resource

org.drools
R :K};owledgeéése:.?

R "Syséenfveniﬁeﬁe'i")

Figure 3.7. KnowledgeAgent

KnowledgeAgent

A KnowledgeBuilderFactory object is used to create the Knowledge Builder. The agent must
specify a name because this will be needed by the log files. (This is so that the log entries can be
associated against the correct agents.)

Example 3.17. Creating the KnowledgeAgent

KnowledgeAgent kagent =
KnowledgeAgentFactory.newKnowledgeAgent("MyAgent");

java.lang

org.drools.agent

org.drools.agent Jjava.lang |
KnowledgeAgentFactory
< Knol!\flfdg!ﬂg!ﬂﬂjr!fbilder oy + KnowledgeAgentFactary() =

+ newknowledgeAgent{String) : KnowledgeAgent

+ newknowledgeAgent(String, KnowledgeAgentConfiguration) : KnowledgeAgent "

+ newknowlsdgsAgant(String, KnowlsdgaBass) : KnowlsdgsAgant e

+ newknowledgeAgent(String, KnowledgeBase, KnowledgeAgentConflguration) : Kr Agen =/ Properties
+ newknowledgeAgentConfiguration() : KnowledgeAgentConfiguration

+ newknowledgeAgentConfiguration(Properies) : KnowledgeAgentConfiguration

org.drools

org.drools.agent

Figure 3.8. KnowledgeAgentFactory

The following example constructs an agent that will build a new knowledge base from the specified
change-set.

Refer to Section 3.1.2, “ Building via Configurations and the Change-Set XML ” for additional
jnfarmation about change-sets.

The method can be called on an iterative basis. This enables one to add new resources over
time.

edgeAgen J 10dedo ANg)
default interval), to see if they are updated. Whenever changes are found, it will construct a new
Knowledge Base. In addition, if a directory has been specified as the resource, its contents will be

scanned.

35

Chapter 3. User Guide

Example 3.18. Writing the KnowledgePackage to an Output Stream

KnowledgeAgent kagent =

KnowledgeAgentFactory.newKnowledgeAgent("MyAgent");
kagent.applyChangeSet(ResourceFactory.newUrlResource(url));
KnowledgeBase kbase = kagent.getKnowledgeBase();

Resource scanning is switched off by default. It is a service, so it must be specifically started. The
same is true of notifications. Activate both of these via the ResourceFactory.

Example 3.19. Starting the Scanning and Notification Services

ResourceFactory.getResourceChangeNotifierService().start();
ResourceFactory.getResourceChangeScannerService().start();

Change the default resource scanning period via the ResourceChangeScannerService class.
(An updated ResourceChangeScannerConfiguration object is passed to the service's
configure() method, thereby allowing for the service to be reconfigured on demand.)

Example 3.20. Changing the Scanning Intervals

ResourceChangeScannerConfiguration sconf =
ResourceFactory.getResourceChangeScannerService().
newResourceChangeScannerConfiguration();
// Set the disk scanning interval to 30s, default is 60s.
sconf.setProperty("drools.resource.scanner.interval", "30");
ResourceFactory.getResourceChangeScannerService().configure(sconf);

KnowledgeAgents can handle both empty and populated Knowledge Bases. If a populated
Knowledge Base is provided, the KnowledgeAgent will run an iterator from within it and subscribe
to each resource that it finds.

Whilst it is possible to make the KnowledgeBuilder build all of the resources in a directory,

that information it will then lose that information. This means that those directories will not be

continuously scanned. Only directories specified via the applyChangeSet (Resource) method
onitored.

One of the advantages of using Knowledge Base as the starting point is that one can provide
it with a KnowledgeBaseConfiguration class. When resource changes are detected and a
new Knowledge Base is instantiated, it will use the KnowledgeBaseConfiguration class
belonging to the previous Knowledge Base object.

36

KnowledgeAgent

Example 3.21. Using an Existing Knowledge Base

KnowledgeBaseConfiguration kbaseConf =

KnowledgeBaseFactory.newKnowledgeBaseConfiguration(null, cl);
KnowledgeBase kbase = KnowledgeBaseFactory.newKnowledgeBase(kbaseConf);
// Populate kbase with resources here.

KnowledgeAgent kagent =
KnowledgeAgentFactory.newKnowledgeAgent("MyAgent", kbase);
KnowledgeBase kbase = kagent.getKnowledgeBase();

In the example above, the getkKnowledgeBase () method returns the same Knowledge Base
instance until resource changes are detected and a new Knowledge Base is built. When this
happens, it is done with the KnowledgeBaseConfiguration that was provided to the previous
Knowledge Base.

Example 3.22. Change-Set XML Which Adds the Contents of a Directory

<change-set xmlns='http://drools.org/drools-5.0/change-set’
xmlns:xs="http://www.w3.0rg/2001/XMLSchema-instance’
xs:schemaLocation="http://drools.org/drools-5.0/change-set.xsd' >
<add>
<resource source='file:/projects/myproject/myrules' type='PKG' />
</add>
</change-set>

The drools-compiler dependency is not needed for the resource type entitled PKG, as the
KnowledgeAgent is able to handle those with drools-core alone.

Use the KnowledgeAgentConfiguration to modify a KnowledgeAgent's default behaviour. Do
this to load the resources from a directory, whilst inhibiting the continuous scan of that directory for
changes.

Example 3.23. Change the Scanning Behaviour

KnowledgeBase kbase = KnowledgeBaseFactory.newKnowledgeBase();

KnowledgeAgentConfiguration kaconf =
KnowledgeAgentFactory.newKnowledgeAgentConfiguration();
// Do not scan directories, just files.
kaconf.setProperty("drools.agent.scanDirectories", "false"),
KnowledgeAgent kagent =
KnowledgeAgentFactory.newKnowledgeAgent("test agent", kaconf);

Previously, one was taught how the JBoss Enterprise BRMS Platform can build and publish
serialized Knowledge Packages through a uniform resource location and also how the Change-
Set XML can handle both URLs and packages. Taken together, these form an important deployment
scenario for the Knowledge Agent.

37

Chapter 3. User Guide

3.3. Running

3.3.1. The Knowledge Base

The KnowledgeBase is a repository that contains all of the application's knowledge definitions. It may
contain rules, processes, functions and type models. The Knowledge Base itself does not contain
instance data, (known as facts.) Instead, sessions are created from the KnowledgeBase into which
facts can be inserted and from where process instances may be started.

@e

Knowledge Base creation is a resource-intensive process, whereas session creation is not.
Cache Knowledge Bases whenever possible to facilitate repeated session creation.

Example 3.24. Creating a New Knowledge Base

KnowledgeBase kbase = KnowledgeBaseFactory.newKnowledgeBase();

3.3.2. StatefulKnowledgeSession

The StatefulKnowledgeSession stores and executes the run-time data. It is created from the
KnowledgeBase.

org.drools runtime org.crools runtime process org drools runtime rule

CommandExecutor -~ KnowledgeRuntime StatefulProcessSession StatefulRuleSession

- = e

org.drools runtime |

=<interface==

StatefulKnowledgeSession

+ dispose() : void
+ getld() : int

Figure 3.9. StatefulKnowledgeSession
Example 3.25. Create a StatefulKnowledgeSession from a KnowledgeBase

StatefulkKnowledgeSession ksession = kbase.newStatefulKnowledgeSession();

3.3.3. KnowledgeRuntime

3.3.3.1. WorkingMemoryEntryPoint

The WorkingMemoryEntryPoint provides the methods for inserting, updating and retrieving facts.

38

KnowledgeRuntime

The term, entry point, is related to the fact that there are multiple partitions in a working
memory and one can choose into which of these the facts will be inserted. However this use case
is aimed at event-processing and most rule-based applications will only make use of the default
entry point.

The KnowledgeRuntime interface provides the main interaction with the engine and is available
in rule consequences and process actions. While the focus is on the methods and interfaces related
to rules, you'll notice that the KnowledgeRuntime inherits methods from both the WorkingMemory
and the ProcessRuntime. This provides a unified API to work with processes and rules. When
working with rules three interfaces form the KnowledgeRuntime: WorkingMemoryEntryPoint,
WorkingMemory, and the KnowledgeRuntime itself.

org drools runtime rule

==interfaces== java.lang

WorkingMemoryEntryPoint L =% Object

+ getFactHandlef Object) : FactHandle
+ getFactHandles() : Collection=? extends FactHandle=
+ getFactHandles{ ObjectFilter) : Collection=? extends FactHandle>

org.drools runtime

+ getQbject(FactHandie) - Object F—————Z3= (OlyjectFilter
+ getObjects() - Collection=7? extends Object=

+ getObjects ObjectFilter) : Collection=? extends Object=

+ insertf Qbject) . FactHandle

+ retract{FactHandle) : void

+ updlate(FactHandie, Object) : void ——————"2= Colfection<E>

java.til

org.drools. runtime rule

——————== FactHandle

Figure 3.10. WorkingMemoryEntryPoint

3.3.3.1.1. Insertion

Insertion is the act of telling the WorkingMemory about a fact. (Here is an example:
ksession.insert(yourObject).) As they are inserted, the system examines each fact for
matches against rules. All of the decisions about whether or not to fire a rule happen at the time of
insertion. However, no rule is executed until fireAllRules() is called. Do this only after inserting all
of the facts.

39

Chapter 3. User Guide

In the past, users have sometimes erroneously held the belief that the condition evaluation
rs when fireAllRules() is called.

The term assert or assertion is normally used in relation to expert systems to refer to facts that
have been made available. However, due to "assert" being a keyword in most languages, Red
Hat has decided to use the insert keyword to avoid clashes, so the two terms are often used
interchangeably.

When an object is inserted it returns a fact handle. A FactHandle is the token used to represent
the inserted object within the working memory. It is also used for interactions with the working
memory when objects are modified or retracted.

Cheese stilton = new Cheese("stilton");
FactHandle stiltonHandle = ksession.insert(stilton);

Aworking memory can operate in either one of these two assertion modes: equality or identity.
(Identity is the default one.)

* If Identity is used, the working memory utilises an IdentityHashMap to store all of the
asserted objects. New instance assertions always result in the return of a new FactHandle.
Repeated insertions of the same instance will simply return the original fact handle.

* IfEquality is used, the working memory utilises a HashMap to store all of the asserted
objects. New instance assertions will only return a new FactHandle if no equal objects have been
asserted.

3.3.3.1.2. Retraction

The term retraction refers to the removal of a fact from the working memory. The fact will no longer
be tracked or matched to rules. Furthermore, any rules that are activated and dependent on that fact
will be cancelled. Retraction is achieved via utilisation of the FactHandle that was returned at the
time of assertion.

It is possible to create rules (using the not and exist keywords) that will fire when certain facts
do not exist. In these cases, retracting a fact may cause the rule to activate.

Cheese stilton = new Cheese("stilton");
FactHandle stiltonHandle = ksession.insert(stilton);

ksession.retract(stiltonHandle);

40

KnowledgeRuntime

3.3.3.1.3. Update

The rule engine must be notified of modified facts, so that it can reprocess them. When a fact
which is identified as having been updated, it is automatically retracted from the working memory
and inserted again.

If an modified object is unable to notify the working memory itself, use the update method to do so.
The update method always takes the modified object as a secondary parameter. This allows one to
specify new instances for immutable objects.

@

The update method can only be used with objects for which shadow proxies have been turned
OR.

The update method is only for use in conjunction with Java code. Within a rule, use the modify
keyword as this provides calls to an object's "setter" methods.

Cheese stilton = new Cheese("stilton");
FactHandle stiltonHandle = workingMemory.insert(stilton);

stilton.setPrice(100);
workingMemory.update(stiltonHandle, stilton);

3.3.3.2. Working Memory

The working memory provides access to the agenda, permits query executions and allows one to
access named entry points.

41

Chapter 3. User Guide

org.drools.runtime.rule

WorkingMemoryE ntryPoint

arg.drools.runtime.rule

=<interface== Java.lang
WorkingMemory ~—-——--2= Ohject
+ getdgendaf) . Agenda F-————=3= String
+ getQueryResultsString) - QueryResults
+ getQueryResulta(String, Objectl]) : QueryResults
+ getSessionClock() - <T extends SessionClock=T java.util
+ getWorkinghMemoryEntryPoint{String) - WorkinghemoryE ntryPoint
+ getWorkinghemoryEntryPoints() . Collection=7 extends WorkingMemoryEntryFointz- - —--- === Collection<E>

+ halt{) ; void

org.drools.runtime.rule

------2= Agenda
——----Z= QueryResulis

-————-2= WorkingMemoryEntryPoint

Figure 3.11. Working Memory

3.3.3.2.1. Query

Use queries to retrieve fact-sets. They are based on patterns as they are used in rules. These patterns
may make use of optional parameters.

Define queries in the Knowlege Base, from which place they are called to return the matching
results. Whilst iterating over the result collection, any bound identifier in the query can be accessed
using the get (String identifier) method. Any FactHandle for that identifier can be retrieved
using getFactHandle(String identifier).

42

KnowledgeRuntime

java.lang

fterable<QueryResuftsRow=

il

org.drools rurtime rule

=<interfaces=»

QueryResults

java.lang

e

String

+ getldentifiers() : Stringf]

+ fterator]) ; Rerator<=QueryResultsRow=

+ sizel) int

Figure 3.12. Query Results

org.drools runtime. rule

java.til

Le————Z3= [terator<g>

=<interfaces= javalang
QueryResultsRow ———————= Object
+ gel String) © Qbfect % String

Figure 3.13. QueryResultsRow
Example 3.26. Simple Query Example

QueryResults results =
ksession.getQueryResults("my query",

for (QueryResultsRow row : results) {
System.out.println(row.get("varName"

}

))i

new Object[] { "string" });

43

Chapter 3. User Guide

3.3.3.3. Live Queries
JBoss Enterprise BRMS 5.2 supports live queries.

Live Queries use an attached listener and remain open as a view and publish change events for the
contents of this view. This makes it possible to execute a query with parameters and listen to changes
in the resulting view.

Example 3.27. Implementing ViewChangedEventListener

final List updated = new ArrayList();
final List removed = new ArrayList();
final List added = new ArraylList();

ViewChangedEventListener listener = new ViewChangedEventListener() {
public void rowUpdated(Row row) {
updated.add(row.get("$price"));
}

public void rowRemoved(Row row) {
removed.add(row.get("$price"));

}

public void rowAdded(Row row) {
added.add(row.get("$price"));
}

¥

// Open the LiveQuery

LiveQuery query = ksession.openLiveQuery("cheeses",
new Object[] { "cheddar", "stilton" },
listener);

query.dispose() // make sure you call dispose when you want the query to close

3.3.3.4. KnowledgeRuntime

The KnowledgeRuntime provides further methods applicable to both rules and processes. Some
examples are those for setting globals and registering ExitPoints.

44

KnowledgeRuntime

org.drools.event

KnowledgeRuntimeEventManager

org.drools runtime. process

ProcessRuntime

org.drools runtime.rule

WorkingMemory

org.droals.runtime

==jnterface==

KnowledgeRuntime

java.lang

~--—--== Object

+ getEnvironment() - Enviranment

+ getGloballString) - Object

+ getGlobalsf) - Globais

+ getknowledgeBase() - KnowledgeBase

rr———-2= String

org.drools runtime

+ registerExitPoint{String, ExitPaint) : void

+ aetGloballString, Object) : void
+ unregisterExitPaint{ String) © void

Figure 3.14. KnowledgeRuntime

3.3.3.4.1. Globals

F-————Zz Environment
bt ———— == ExitPoint

-———-== Globals

org.drools

LL == KnowledgeBase

Globals are named objects that can be passed to the rule engine. There is no need to insert them.
Most often they are used for static information, or for services that are used in the right-hand side of a
rule, or perhaps as a means to return objects from the rule engine.

To use a global on the left-hand side of a rule, follow these steps:

1. Make sure that it is immutable.

2. Declareitin a rules file before it is set on the session:

global java.util.List list

3. With the Knowlege Base now aware of the global identifier and its type, call
ksession.setGlobal for any session.

45

Chapter 3. User Guide

Failure to declare the global type and identifier first will result in an exception being thrown.

4. To set the global on the session use ksession.setGlobal(identifier, value):

List list = new ArraylList();
ksession.setGlobal("list", list);

If a rule evaluates on a global before it is set, a Nul1lPointerException exception will be
thrown.

3.3.3.5. StatefulRuleSession

The StatefulRuleSession is inherited by the StatefulKnowledgeSession. It provides the rule-
related methods that are applicable outside the engine.

org.drools runtime.rule

ey e org.drools rurtime rule

StatefulRuleSession - = AgendaFilter

+ fireAiNRoles() - int

+ fireAlIRules(int) : int

+ fireAlIRwles(AgendaFilter) : int
+ fireUintilHait() - void

+ fireUntiiHalt{AgendaFilter) : void

Figure 3.15. StatefulRuleSession

46

Agenda

3.3.3.5.1. Agenda Filters

org.drools rurtime rule

T e org.drools rurtime rule

AgendaFilter - ———-—== Activation

+ goceptfdctivation) - boolean

Figure 3.16. AgendaFilters

Agenda filters are optional implementations of the filter interface. Use them to allow or deny an
activation the right to fire. (That which can be filtered is entirely dependent upon the implementation.)

@

Earlier versions of JBoss Rules supplied several filters which are not provided in version 5.0.
They are simple to implement. Refer to the JBoss Rules 4 code base in order to do so.

To use a filter specify it when calling fireAl1lRules (). The following example permits only rules
those ending in the string Test to fire. It filters out all others:

ksession.fireAllRules(new RuleNameEndsWithAgendaFilter("Test"));

3.3.4. Agenda

The Agenda is a Rete feature. When actions are performed on the working memory, rules may
become fully matched and, therefore, eligible for execution. A single working memory action can
result in multiple rules being made eligible. When a rule is fully matched an activation is created. This
references both the rule and the matched facts, and is placed onto the Agenda. The Agenda then
determines the order of these Activations via a conflict resolution strategy.

The engine then cycles repeatedly through two phases:

1. The first is termed the Working Memory Actions Phase. Most of the work takes place at this time,
either in the consequence (the right-hand side) or the main Java application process. Once the
consequence has finished or the main Java application process calls fireAllRules() the
engine switches to the Agenda second phase.

2. This is termed the Agenda Evaluation Phase. At this time, the system searches for a rule to fire.
If none is found it exits. Otherwise, it fires the rule it has found and then switches itself back to
Working Memory Actions Phase.

47

Chapter 3. User Guide

Working Memory Action

" Agenda Evaluation

r

b
Rule
Found Select

Fire Rule |+

Figure 3.17. Two Phase Execution

3. The process repeats over and over until the agenda is cleared, at which time control is returned to

the calling application.

ﬁh Fire

Mo Rule
Found

axit

No rules are fired whilst working memory actions are taking place.

48

Agenda

org.drools rurtime. rule

=zinterface== java.lang

Agenda —————— = String

+ clear() : void

+ getdctivalion Group(String) : Activation Group
+ getdgends Group(String) : Agenda Group

+ getRuleFlowGroup(String) : RuleFlowGroup || ____ =, Acmﬁ;ﬂm

org.crools runtime rule

| i AgendaGroap

Figure 3.18. Agenda

3.3.4.1. Conflict Resolution

When there are multiple rules on the agenda a conflict resolution strategy is required. As the firing of
a rule may have an impact upon the working memory, the rule engine needs to know in which
order the rules are to be executed. (For example, firing ruleA may cause ruleB to be removed from
the agenda.)

JBoss Rules employs two conflict resolution strategies. These are:

« Salience
e LIFO (Last In, First Out)

Use the salience strategy, to can specify that a certain rule has a higher priority (by giving it a higher
number) than other rules. In this case, the rule with the higher salience will be given preferential
treatment.

The LIFO strategy prioritises based on the assigned working memory's action counter value,
with each rule created during the same action receiving the same value. (If a set of firings has the
same priority value, the execution order will be arbitrary.)

M

Although sometimes unadvoidable, try always to avoid writing rules that are reliant upon being
fired in a specific order to work correctly. Do not think of rules in terms of being steps in a
imperative process.

49

Chapter 3. User Guide

@e

Previous versions of JBoss Rules supported custom conflict resolution strategies. This capability
still exists in version 5 but the application programming interface is no longer exposed.

Yroubp
roup

org.drocls rurtime.rule

==interfaces== java.lang
AgendaGroup - -——--— = String
+ clear() : void

+ getName() . String

+ setFocws() ; void

Figure 3.19. AgendaGroup
Use agenda groups, (known as "modules” in CLIPS terminology), to partition activations on the

agenda. At any time, only one group can have "focus", and only the activations belonging to that
group will be able to take effect.

Agenda groups are most commonly used to define one or more subsets of rules that apply to

specific circumstances, (such as phases of processing), and to control as to when these sets of
rules can be applied.

is matched.)

Each time setFocus () is called, it pushes an agenda group onto a stack. When the focus group
is empty, it is removed from the stack and the next focus group (now the topmost one) is permitted to
evaluate.

e

An agenda group can appear in multiple locations on the stack.

ksession.getAgenda().getAgendaGroup("Group A").setFocus();

50

Event Model

The default agenda group group is called MAIN. It is the first group on the stack and, hence, initially
has the focus. Any rule without an agenda group is automatically placed in this group.

3.3.4.3. Activation Group

org.crools . runtime.rule

==jnterfaces:= java lang
ActivationGroup ---———== String
+ clear) : void
+ getName() : String

Figure 3.20. ActivationGroup

An activation group is set of rules bound together by the activation-group rule attribute. In this
group only one rule can fire. After that rule has fired, all of the other rules are cancelled.

Call the clear () method at any time, to cancel all of the activations before any have had a
chance to fire.

ksession.getAgenda().getActivationGroup("Group B").clear();

3.3.5. Event Model

The event package notifies one of rule engine events. Use it to separate logging and auditing
activities from the main part of the application and from the rules.

The KnowledgeRuntimeEventManager interface is implemented by the KnowledgeRuntime class
which provides two interfaces, WorkingMemoryEventManager and ProcessEventManager.

@oe

This book only covers the WorkingMemoryEventManager.

51

Chapter 3. User Guide

org.drools event.rule org.drools event process

WorkinghfemoryEventiianager ProcessEventianager

org.drools event

z<=imerface==

KnowledgeRuntimeEventManager

Figure 3.21. KnowledgeRuntimeEventManager

Use the WorkingMemoryEventManager to add and remove listeners. Adding a listener enables one
to "listen" to events affecting the working memory and the agenda.

org.drools. event.rule

=zzinterface== arg.crools event rule

WorkingMemoryEventManager L ————=m AgendaEventlistener

+ addEventListenerfAgendaEventListener) ; void | . WorkingMemoryEventl istener
+ addEventListener{ WorkingMemoryEventListener) : void

+ getdgendabventListeners() : Collection<AgendaEventListensr=

+ getWorkingMemoryEventListeners() . Collection=WorkingMemoryEventlistener= java.util

+ removeEventListenerfAgendaEventListener) . void

+ remove EventListener{ WorkingMemoryEventListener) : void =% Colfection<E>

Figure 3.22. WorkingMemoryEventManager

The following code shows how to declare a simple agenda listener and attached it to a session. It
prints activations after they have fired.

Example 3.28. Adding an AgendaEventListener

ksession.addEventListener(new DefaultAgendaEventListener() {
public void afterActivationFired(AfterActivationFiredEvent event) {
super.afterActivationFired(event);
System.out.println(event);

1

JBoss Rules also provides two classes called DebugWorkingMemoryEventListener and
DebugAgendaEventListener which implement each method with a debug print statement. To print
every working memory event, add one of these listeners.

52

KnowledgeRuntimelLogger

Example 3.29. Creating a new KnowledgeBuilder

ksession.addEventListener(new DebugWorkingMemoryEventListener());

Use the KnowledgeRuntimeEvent interface in order to retrieve the KnowledgeRuntime from

which the event originated.

org.drools event

=<interfaces=:=

org.drools runtime

KnowledgeRuntimeEvent = ______- = KnowledgeRuntime

+ getknowledgeRuntime() . KnowledgeRuntime

Figure 3.23. KnowledgeRuntimeEvent

These are the supported events:

ActivationCreatedEvent ActivationCancelledEvent
BeforeActivationFiredEvent AfterActivationFiredEvent
AgendaGroupPushedEvent AgendaGroupPoppedEvent
ObjectinsertEvent ObjectRetractedEvent
ObjectUpdatedEvent ProcessCompletedEvent
ProcessNodeLeftEvent ProcessNodeTriggeredEvent
ProcessStartEvent

3.3.6. KnowledgeRuntimeLogger

The KnowledgeRuntimeLogger uses JBoss Rules's event systems to create an audit log each
time an application is executed. Inspect this log with a tools such as the JBoss Rules IDE's Audit

Viewer.

Jjava.lang

Object

Al

org.drools.logger

org.drools.logger B
KnowledgeRuntimeLoggerFactory

org.drools.logger:

e + KnowledgeRuntimeLoaaerFactory(

+ newConsoleLogger(KnowledgeRuntimeEventianager) : KnowledgeRuntimelLogger

+ newFileLogger(KnowledgeRuntimeEventManager, String) - KnowledgeRuntimelogger
+ newThreadedFileLogger(KnowledgeRuntimeEventianager, String, int) : KnowledgeRuntimeLo

ogger

d org.drools.event

javalang

Figure 3.24. KnowledgeRuntimeLoggerFactory

53

Chapter 3. User Guide

Example 3.30. FileLogger

KnowledgeRuntimelLogger logger =
KnowledgeRuntimeLoggerFactory.newFileLogger (ksession, "logdir/mylogfile");

iééger.close();
Use the newFileLogger () method to automatically append the file extension, .log, to any file.

3.3.7. StatelessKnowledgeSession

The StatelessKnowledgeSession wraps the StatefulKnowledgeSession. Itis used in
relation to decision service-type scenarios. Its presence mitigates the need to call dispose().

One cannot perform iterative insertions or call the fireAllRules () method from Java code when
using stateless sessions. The execute() method instantiates a StatefullKnowledgeSession
internally, adds all of the user data and executes user commands. It then calls the fireAllRules()
and dispose() methods.

The usual way to work with this class is via the BatchExecution command (as supported by the
CommandExecutor interface.) However, two convenience methods have also been provided. Use
these when only simple object insertion is required. (The CommandExecutor and BatchExecution
are discussed in detail in their own sections.)

org.drools event org.drools runtime org.drools runtime process org.drools runtime rule

KnowledgeRuntimeEventManager CommandExecutor StatelessProcess Session StatelessRuleSession

‘f ‘F]

org.drools runtime

==jnterfaces== java.lang

StatelessKnowledgeSession | ____-:
+getGlobais() : Glebals L ____ =

+ setGlobal{String, Object) : void

org.drools runtime

——————— = Globals

Figure 3.25. StatelessKnowledgeSession

This example shows a stateless session executing using the Convenience API to execute a
given collection of Java objects . It iterates the collection, inserting each element in turn.

Example 3.31. Simple StatelessKnowledgeSession execution with a Collection

KnowledgeBuilder kbuilder = KnowledgeBuilderFactory.newKnowledgeBuilder();
kbuilder.add(ResourceFactory.newFileResource(fileName), ResourceType.DRL);
if (kbuilder.hasErrors()) {

System.out.println(kbuilder.getErrors());
} else {

KnowledgeBase kbase = KnowledgeBaseFactory.newKnowledgeBase();

54

StatelessKnowledgeSession

kbase.addKnowledgePackages(kbuilder.getKnowledgePackages());
StatelesskKnowledgeSession ksession = kbase.newStatelessKnowledgeSession();
ksession.execute(collection);

To do the same thing as a single command, use this code:
Example 3.32. Simple StatelessKknowledgeSession execution with InsertElements Command

ksession.execute(CommandFactory.newInsertElements(collection));

To insert the collection itself without iterating it or inserting the elements, use
CommandFactory.newInsert(collection).

The CommandFactory contains details of the supported commands. To marshal any of them use
XStream and the BatchExecutionHelper. Also use BatchExecutionHelper to learn details
of the XML format being utilised. Use JBoss Rules Pipeline to automatically marshal the
BatchExecution and ExecutionResults.

The StatelessKnowledgeSession allows one to scope globals in a number of ways. The first of
these is the non-command way. Commands are scoped to a specific execution call. (Globals can be
resolved in three ways.)

» The StatelessKnowledgeSession's getGlobals() method returns a Globals instance. As
its name implies, this provides access to the session's globals. These are shared for all execution
calls.

Exercise caution when handling mutable globals because execution calls can be run
simultaneously in different threads.

Example 3.33. Session-Scoped Global

StatelessknowledgeSession ksession = kbase.newStatelessKnowledgeSession();
// sets a global hibernate session, that can be used

// for DB interactions in the rules.

ksession.setGlobal("hbnSession", hibernateSession);

// Execute while being able to resolve the "hbnSession" identifier.
ksession.execute(collection);

» Another way to perform global resolution is to use a delegate. Assigning a value to a global (with
setGlobal(String, Object)) results in the value being stored in an internal collection, the
purpose of which is to map identifiers to values. These identifiers will have priority over any delegate
supplied: only if an identifier cannot be found will the delegate global (if, indeed, there is any) be
used.

» The third way of resolving globals is to have execution-scoped globals. In this case, a command to
set a global is passed to the CommandExecutor.

The CommandExecutor interface also offers the ability to export data via out parameters. Inserted
facts, globals and query results can all be returned.

55

Chapter 3. User Guide

Example 3.34. Out identifiers

// Set up a list of commands

List cmds = new ArrayList();

cmds.add(CommandFactory.newSetGlobal("list1", new ArrayList(), true));
cmds.add(CommandFactory.newInsert(new Person("jon", 102), "person"));
cmds.add(CommandFactory.newQuery("Get People" "getPeople");

// Execute the list
ExecutionResults results =
ksession.execute(CommandFactory.newBatchExecution(cmds));

// Retrieve the ArraylList

results.getValue("listli");

// Retrieve the inserted Person fact
results.getvalue("person");

// Retrieve the query as a QueryResults instance.
results.getValue("Get People");

3.3.7.1. Sequential Mode

Rete provides a a stateful session into which objects can be asserted over time, and to which rules
can also be added and removed. However, with a stateless session, after the initial data set has been
provided, no more data can be asserted or modified and rules cannot be added and removed. In this
case, it will not be necessary to re-evaluate rules, and the engine can be operated in a simplified
way. Follow thse steps:

1. Order the rules by salience and position in the rule-set (by setting a sequence attribute on the
rule terminal node).

2. Create an array with one element for each possible rule activation. The position of the elements
will indicate the firing order.

3. Turn off all of the node memories, except for the right-input object memory.

4. Disconnectthe Left Input Adapter Node propagation and let a command object refer to
the object and the nodes. Added this command object to a list in the working memory for later
execution.

5. Assert all of the objects. When this has occurred and thus right-input node memories are
populated, check the command list and execute each item in turn.

6. Place all resulting activations in the array, basing their order upon the sequence number
determined for the rule. Record those elements populated first and last in order to reduce the
iteration range.

7. lterate the array of activations, thereby executing each populated element in turn.

8. If the maximum number of allowed rule executions exists, exit the network evaluations early in
order to fire all of the rules in the array.

56

StatelessKnowledgeSession

@

The LeftInputAdapterNode no longer creates a tuple, adds the object or propagates the
tuple. Rather, a command object is created and added to a list in the working memory. This
object contains references to both the LeftInputAdapterNode and the propagated object.
This stops any left-input propagations from occurring at insertion time which means that no right-
input propagation will ever attempt a join with the left-inputs (thereby removing the need for left-
input memory).

early every node's memory is turned off, including the left-input tuple memory but excluding the
right-input object memory, meaning that the latter is the only node which remembers an insertion
propagation.

Once all of the assertions have concluded and, as a result, all of the right-input memories have been
populated, iterate the list of LeftInputAdapterNode command objects by calling each in turn.

They will be passed down the network and attempt to join with the right-input objects, but will not be
remembered in the left input because there will be no further object assertions or propagations into the
right-input memory.

There is no longer an agenda with a priority queue to schedule the tuples; instead, there is
simply an array for the number of rules. The RuleTerminalNode's sequence number indicates
the element within the array upon which to place the activation.

To improve performance, remember the first and the last populated cells in the array. The
network is constructed, with each RuleTerminalNode being given a sequence number. This
number is based on a salience number and the order in which it has been added to the network.

However in th|s case, there will be no object retractlons so use a list as the object values are not
indexed.

For large numbers of indexed objects, hash maps provide a performance increase but if an object
type has only a few instances, indexing will not be advantageous, so a list can be used.

|t on, elther call RuleBaseConflguratlon setSequentlal(true) or set the Rule base
Configuration's drools.sequential property to true.

57

Chapter 3. User Guide

@e

Call setSequentialAgenda with SequentialAgenda.DYNAMIC to make the sequential
mode fall back to a dynamic agenda. One may also set the drools.sequential.agenda property to
sequential or dynamic.

3.3.8. Commands and the CommandExecutor

JBoss Rules makes use of stateful and stateless sessions. Stateful sessions use the standard
working memory with which one can worke iteratively over time. A stateless session is a one-

off execution of aworking memory with a provided data-set. It may return some results, and the
session is disposed at the end, prohibiting further iterative interactions. Think of stateless sessions as
a way in which to treat a rule engine as a function call with optional return results.

org.drools rurtime

ccirterfacass org.drools .command

CommandExecutor I I Command<T>

+ executel Command) | ExecutionResults

org.drools runtime

-—————I3 ExecutionResults

Figure 3.26. CommandExecutor

58

Commands and the CommandExecutor

org.drools rurtime

=<interface== java lang
ExecutionResults ———————=% Obhject
+ getldentifiers() | Collection=String= ______ = String
+ getlWalue(String) . Object
java il

b3 Coffection<kE>

Figure 3.27. ExecutionResults

The CommandFactory allows one to execute commands on stateful and stateless sessions, (the only
difference being that the stateless knowledge session executes fireAllRules () at the end before it
is disposed.) These commands are currently supported:

FireAllRules GetGlobal
SetGlobal InsertObject
InsertElements Query
StartProcess BatchExecution

As its name implies, InsertObject inserts a single object, with an optional out identifier.
InsertElements runs through an iterable object, inserting each of the elements. As a result, one
is no longer limited to just inserting objects into a stateless knowledge session, but can now start
processes or execute queries and do this in any order.

Example 3.35. Insert Command

StatelesskKnowledgeSession ksession = kbase.newStatelessKnowledgeSession();
ExecutionResults bresults =

ksession.execute(CommandFactory.newInsert(new Cheese("stilton"), "stilton_id"));
Stilton stilton = bresults.getValue("stilton_id");

The execute method always returns an ExecutionResults instance. This allows one access to any
command result if an out identifier, such as the "stilton_id" above, has been specified.

Example 3.36. InsertElements Command

StatelesskKnowledgeSession ksession = kbase.newStatelessKnowledgeSession();
Command cmd = CommandFactory.newInsertElements(
Arrays.asList(new Object[] {
new Cheese("stilton"), new Cheese("brie"), new Cheese('"cheddar")}

59

Chapter 3. User Guide

)):

ExecutionResults bresults = ksession.execute(cmd);

This method only allows for a single command. BatchExecution is a composite command
that takes a list of instructions and iterates and execute each of these in turn. This means one
can insert some objects, start a process, call fireAllRules and execute a query all in a single
execute(...) call, making it much more powerful.
The stateless knowledge session executes fireAllRules () method automatically as it finishes
processing. However, the FireAllRules command is also allowed, and using it will disable the
automatic execution at the end - it is a manual override.

Commands support out identifiers. Any command upon which one will be set will add its results to the
ExecutionResults instance that is returned. Here is an example that depicts the way in which it
works:

Example 3.37. BatchExecution Command

StatelessknowledgeSession ksession = kbase.newStatelessKnowledgeSession();

List cmds = new ArrayList();

cmds.add(CommandFactory.newInsertObject(new Cheese("stilton", 1), "stilton"));
cmds.add(CommandFactory.newStartProcess("process cheeses"));

cmds.add(CommandFactory.newQuery('"cheeses"));

ExecutionResults bresults = ksession.execute(CommandFactory.newBatchExecution(cmds));
Cheese stilton = (Cheese) bresults.getValue("stilton");

QueryResults qresults = (QueryResults) bresults.getValue("cheeses");

In this example, multiple commands are executed, two of which populate the ExecutionResults.
The query command uses the same identifier as the query hame by default, but it can also be mapped
to a different identifier.

A customised XStream marshaller can be used in conjunction with the JBoss Rules Pipeline to
provide XML scripting, making it ideal for services. Here are two simple XML samples, one for the
BatchExecution and the other for the ExecutionResults.

Example 3.38. Simple BatchExecution XML

<batch-execution>
<insert out-identifier='outStilton'>
<org.drools.Cheese>
<type>stilton</type>
<price>25</price>
<oldPrice>0</0ldPrice>
</org.drools.Cheese>
</insert>
</batch-execution>

Example 3.39. Simple ExecutionResults XML

<execution-results>

60

Commands and the CommandExecutor

<result identifier='outStilton'>
<org.drools.Cheese>
<type>stilton</type>
<oldPrice>25</0ldPrice>
<price>30</price>
</org.drools.Cheese>
</result>
</execution-results>

The pipeline allows one to use a series of stage objects. Combine these to more easily move data
into and out of sessions.

There is a stage that implements the CommandExecutor interface. Use this to make the pipeline
script either a stateful, or a stateless, session. Configure it in this way:

Example 3.40. Pipeline for CommandExecutor

Action executeResultHandler = PipelineFactory.newExecuteResultHandler();
Action assignResult = PipelineFactory.newAssignObjectAsResult();
assignResult.setReceiver(executeResultHandler);

Transformer outTransformer =
PipelineFactory.newXStreamToXmlTransformer (
BatchExecutionHelper.newXStreamMarshaller());
outTransformer.setReceiver(assignResult);

KnowledgeRuntimeCommand cmdExecution =
PipelineFactory.newCommandExecutor();
batchExecution.setReceiver(cmdExecution);

Transformer inTransformer =
PipelineFactory.newXStreamFromXmlTransformer (
BatchExecutionHelper.newXStreamMarshaller());
inTransformer.setReceiver(batchExecution);

Pipeline pipeline =
PipelineFactory.newStatelessknowledgeSessionPipeline(ksession);
pipeline.setReceiver(inTransformer);

BatchExecutionHelper is used to provide a specially-configured XStream with custom converters
for command objects and the new BatchExecutor stage.

To use the pipeline, provide an implementation of the ResultHandler. This called when the
pipeline executes the ExecuteResultHandler stage.

61

Chapter 3. User Guide

org.crools runtime pipeline

==interfaces:= java.lang

ResuitHandler ______- = Ohject

+ handieResullf Object) : void

Figure 3.28. Pipeline ResultHandler

Example 3.41. Simple Pipeline ResultHandler

public static class ResultHandlerImpl implements ResultHandler {
Object object;

public void handleResult(Object object) {
this.object = object;
}

public Object getObject() {
return this.object;

}

Example 3.42. Using a Pipeline

ResultHandler resultHandler = new ResultHandlerImpl();
pipeline.insert(inXml, resultHandler);

Now, use the BatchExecution created earlier to insert some objects and execute a query. The XML
representation to be used with the pipeline example is shown below. Parameters have been added
to the query:

Example 3.43. BatchExecution Marshalled to XML

<batch-execution>
<insert out-identifier="stilton">
<org.drools.Cheese>
<type>stilton</type>
<price>1</price>
<oldPrice>0</o0ldPrice>
</org.drools.Cheese>
</insert>
<query out-identifier='cheeses2' name='cheesesWithParams'>
<string>stilton</string>
<string>cheddar</string>
</query>
</batch-execution>

The CommandExecutor returns the ExecutionResults, and this is handled by the pipeline code
snippet as well.

62

Commands and the CommandExecutor

Here is the similar output produced by the <batch-execution> XML sample:

Example 3.44. ExecutionResults Marshalled to XML

<execution-results>
<result identifier="stilton">
<org.drools.Cheese>
<type>stilton</type>
<price>2</price>
</org.drools.Cheese>
</result>
<result identifier='cheeses2'>
<query-results>
<identifiers>
<identifier>cheese</identifier>
</identifiers>
<row>
<org.drools.Cheese>
<type>cheddar</type>
<price>2</price>
<oldPrice>0</0ldPrice>
</org.drools.Cheese>
</row>
<row>
<org.drools.Cheese>
<type>cheddar</type>
<price>1</price>
<oldPrice>0</0ldPrice>
</org.drools.Cheese>
</row>
</query-results>
</result>
</execution-results>

The BatchExecutionHelper provides a pre-configured XStream instance. Use it to support the
marshalling of batch executions, (for which the resulting XML can be used as a message format,
as shown above.) Only commands supported via the Command Factory have pre-configured
converters. One can add other converters for user objects. (This is very useful when scripting for
stateless or stateful knowledge sessions, especially when services are involved.)

No XML schema currently exists to support validation. The basic format is outlined here, and the
drools-transformer-xstream module has a unit test called XStreamBatchExecutionTest.
The root element is named <batch-execution> and it can contain any humber of command elements:

Example 3.45. Root XML Element

<batch-execution>

</batch-execution>

This contains a list of elements that represent commands. The commands supported are limited to
those provided by the Command Factory The most basic of these is the <insert> element, which
inserts objects. The contents of the insert element is the user object, as dictated by XStream.

Example 3.46. Insert

<batch-execution>
<insert>

63

Chapter 3. User Guide

...<!-- any user object -->
</insert>
</batch-execution>

The insert element features an attribute called out-identifier. This demands that the inserted object
be returned as part of the result payload.

Example 3.47. Insert with Out Identifier Command

<batch-execution>
<insert out-identifier='uservar'>

</insert>
</batch-execution>

It is also possible to insert a collection of objects using the <insert-elements> element. This command
does not support an out-identifier. (The org.domain.UserClass is just an illustrative user
object that XStream can serialize.)

Example 3.48. Insert Elements command

<batch-execution>
<insert-elements>
<org.domain.UserClass>

</org.domain.UserClass>
<org.domain.UserClass>

</org.domain.UserClass>
<org.domain.UserClass>

</org.domain.UserClass>
</insert-elements>
</batch-execution>

As its name implies, the <set-global> element is used to set a global for the session:
Example 3.49. Insert Elements Command

<batch-execution>
<set-global identifier='userVvar'>
<org.domain.UserClass>

</org.domain.UserClass>
</set-global>
</batch-execution>

<set-global> also supports two other optional attributes, out and out-identifier. A true value for the
Boolean out will add the global to the <batch-execution-results> payload, using the name from the
identifier attribute. out-identifier works like out but, additionally, allows one to override the identifier
used in the <batch-execution-results> payload.

64

Commands and the CommandExecutor

Example 3.50. Set Global Command

<batch-execution>
<set-global identifier='userVarl' out='true'>
<org.domain.UserClass>

</org.domain.UserClass>

</set-global>

<set-global identifier='userVar2' out-identifier='alternativeUservar2'>
<org.domain.UserClass>

</org.domain.UserClass>
</set-global>
</batch-execution>

There is also a <get-global> element, without contents, with just an out-identifier attribute. (There is no
need for an out attribute because retrieving the value is the sole purpose of a <get-global> element.)

Example 3.51. Get Global Command

<batch-execution>
<get-global identifier='uservarl' />
<get-global identifier='userVar2' out-identifier='alternativeUserVvar2'/>
</batch-execution>

The out attribute can only be used to return specific instances as a result payload. A different
approach is needed to run actual queries. Fortunately, queries both with and without parameters
are supported. The name attribute is the name of the query to be called, and the out-identifier is the
identifier to be used for the query results in the <execution-results> payload.

Example 3.52. Query Command

<batch-execution>
<query out-identifier='cheeses' name='cheeses'/>
<query out-identifier='cheeses2' name='cheesesWithParams'>
<string>stilton</string>
<string>cheddar</string>
</query>
</batch-execution>

The <start-process> command accepts optional parameters.
Example 3.53. Start Process Command

<batch-execution>
<startProcess processId='org.drools.actions'>
<parameter identifier='person'>
<org.drools.TestVariable>
<name>John Doe</name>
</org.drools.TestVariable>
</parameter>

65

Chapter 3. User Guide

</startProcess>
</batch-execution

Example 3.54. Signal Event Command

<signal-event process-instance-id='1' event-type='MyEvent'>
<string>MyValue</string>
</signal-event>

Example 3.55. Complete Work Item Command

<complete-work-item id='" + workItem.getId() + "' >
<result identifier='Result'>
<string>SomeOtherString</string>
</result>
</complete-work-item>

Example 3.56. Abort Work Item Command

<abort-work-item id='21' />

More commands will be added over time.

archalina
[] [] [] AT T ITCATITT]

Use the MarshalerFactory to marshal and unmarshal stateful knowledge sessions.

javalang

org.drools.marshalling

org.droo\s.marshalllng| MarshallerFact Java.\ang|
arshallerFactory
T s + MarshallerFactoryQ = String
+ newClassFilterAcceptor{Strin ObjectMarshallingStrate gyAcceptor
+ newldentityMarshallingStrate: ObjectMarshallingStrategy *‘
drool
+ newldentityMarshallingStrategy(OhjectMarshalling StrategyAcceptor) : OhjeciMarshallingStrateg R
+ newMarshaller{iknowledgeBase) : Marshaller o Knowlel -Bars 9
+ newMarshaller(KnowledgeBase, ObjectMarshallingStrategy[]) : Marshaller —

+ newSerializeMarshallingStrategy() : ObjectMarshallingStrategy
+ newSerializeMarshallingStrategy(QhjectMarshalling Strate gyAcceptor) : Q shallingStrate

org.droo\s.marshalling|

HlingStrategy

llingS: lmfegy:ﬂ. éﬂephr >

Figure 3.29. MarshalerFactory

This is the simplest way in which to use the MarshalerFactory:

66

Marshaling

Example 3.57. Simple Marshaller Example

// ksession is the StatefulKnowledgeSession

// kbase is the KnowledgeBase

ByteArrayOutputStream baos = new ByteArrayOutputStream();
Marshaller marshaller = MarshallerFactory.newMarshaller(kbase);
marshaller.marshall(baos, ksession);

baos.close();

However, ones need to have more flexibility when marshaling referenced user data. The
ObjectMarshalingStrategy interface has been added to provide this. Two implementations of
this interface are provided, and users can create their own additional ones. The two that are supplied
are called:

« IdentityMarshalingStrategy
 SerializeMarshalingStrategy

The SerializeMarshalingStrategy is the default (it was used in the example above.) It simply
calls either the Serializable or the Externalizable method on a user instance.

By contrast, the IdentityMarshalingStrategy creates an integer identification number for
each user object and stores these in a map, whilst the identification is written to the stream. Whilst
unmarshaling, it accesses the IdentityMarshalingStrategy map to retrieve the instance.
(Hence, if the IdentityMarshalingStrategy is used, it remains stateful for the life of the
Marshaller instance and will create identifiers and keep references to every objects that it attempts to
marshal.) Here is the code to use with an IdentityMarshalingStrategy:

Example 3.58. IdentityMarshallingStrategy

ByteArrayOutputStream baos = new ByteArrayOutputStream();
ObjectMarshallingStrategy oms = MarshallerFactory.newIdentityMarshallingStrategy()
Marshaller marshaller =

MarshallerFactory.newMarshaller(kbase, new ObjectMarshallingStrategy[]{ oms });
marshaller.marshall(baos, ksession);
baos.close();

For added flexibility the ObjectMarshalingStrategyAcceptor interface has also been provided.
Each Object Marshaling Strategy contains this interface. The Marshaler has a chain of
strategies, and when it attempts to read or write to or from a user object, it iterates the strategies,
"asking" them if they accept responsibility for marshaling the user object. One of the implementations
provided is called the ClassFilterAcceptor. It allows strings and wild cards to be used to match
classnames. The default is *. * so, in the above example, the IdentityMarshalingStrategy to
be used is that which has the default * . * acceptor.

To serialize every class bar one, (for which the identity look-up shall be used), do this:

Example 3.59. IdentityMarshalingStrategy with Acceptor

ByteArrayOutputStream baos = new ByteArrayOutputStream();
ObjectMarshallingStrategyAcceptor identityAcceptor =
MarshallerFactory.newClassFilterAcceptor(new String[] { "org.domain.pkgl1.*" });
ObjectMarshallingStrategy identityStrategy =
MarshallerFactory.newIdentityMarshallingStrategy(identityAcceptor);
ObjectMarshallingStrategy sms = MarshallerFactory.newSerializeMarshallingStrategy();

67

Chapter 3. User Guide

Marshaller marshaller =
MarshallerFactory.newMarshaller(kbase,
new ObjectMarshallingStrategy[]{ identityStrategy,
sms });
marshaller.marshall(baos, ksession);
baos.close();

The acceptance checking order is in the supplied array's natural order.

68

Chapter 4.

The Rule Language

4.1. Overview

Jboss Rules has a "native" rule language. This format is very light in terms of punctuation, and
supports natural and domain specific languages via "expanders" that allow the language to adapt to
your problem domain. This chapter explains this native rule format.

The diagrams used to present the syntax are known as railroad diagrams, and are like flow charts for
the language terms. Interested readers can also refer to Antlr3 grammar for the rule language which
is in DRL . g but this is not required. If you use the Rule Workbench, a lot of the rule structure is done
for you with content assistance, for example, type "ru" and press ctrl+space, and it will build the rule
structure for you.

4.1.1. A rule file

A rule file is typically a file with a .dr1 extension. In a DRL file you can have multiple rules, queries
and functions, as well as some resource declarations like imports, globals and attributes that are
assigned and used by your rules and queries. However, you are also able to spread your rules across
multiple rule files and in that case, the extension . rule is suggested but not required. Spreading rules
across files can help with managing large numbers of rules. A DRL file is simply a text file.

The overall structure of a rule file is:

package package-name
imports

globals

functions

queries

rules

The order in which the elements are declared is not important, except for the package name that,
if declared, must be the first element in the rules file. All elements are optional, so you will use only
those you need. We will discuss each of them in the following sections.

4.1.2. Structure of a Rule

A rule has the following rough structure:

rule "name"
attributes
when
LHS
then
RHS
end

Punctuation is, for the most part, not needed; even the double quotes for "name" are optional, as

are newlines. Attributes are simple (always optional) hints to how the rule should behave. LHS is the
conditional parts of the rule, which follows a certain syntax which is covered below. RHS is basically a
block that allows dialect specific semantic code to be executed.

69

Chapter 4. The Rule Language

It is important to note that white space is not important, except in the case of domain specific
languages. When using a domain specific language each line is processed before the following line

and spaces may be significant to the domain language.

4.2. Keywords

This section introduces the concept of hard and soft keywords.

Hard keywords are reserved, meaning that they cannot be used when naming domain objects,
properties, methods, functions or any other elements that are used in the rule text.

Here is the list of hard keywords. Do not use these as identifiers when writing rules:

true
collect
over

false
from
then

accumulate
null
when

Soft keywords are only recognized in their immediate context. These means one can use these words
in any other place.

Here is the list of soft keywords:

lock-on-active date-effective
no-loop auto-focus

date-expires
activation-group

agenda-group ruleflow-group entry-point
duration package import
dialect salience enabled
attributes rule extend
template query declare
function global eval

not in or

and exists forall
action reverse result

end init

Both hard and soft keywords can be used in method names, such as, for example, notSomething()
and accumulateSomething().

The DRL language also allows one to escape hard keywords on rule text. This feature enables one
to use existing domain objects without worrying about keyword "collisions." To escape a word, simply
enclose it in grave accents, like this:

Holiday(“when™ == "july")

Use the escape anywhere, except within code expressions in the left-hand side and right-hand side
code blocks. Here are sme examples of proper usage:

rule "validate holiday by eval"
dialect "mvel"

when

hi : Holiday()

eval(hil.when == "july")
then

System.out.println(hl.name + ":" + hil.when);
end

rule "validate holiday"

70

Comments

dialect "mvel"

when

hil : Holiday(“when® == "july")
then

System.out.println(hl.name + ":" + hl.when);
end

4.3. Comments

Comments are sections of text that are ignored by the rule engine. Upon encountering them, it
strips them out, unless they are inside semantic code blocks, like the right-hand side of a rule. There
are two kinds, these being single-line comments and multi-line comments.

oD E-0

- U
Figure 4.1. A single-line comment

Use either # or // to create single-line comments. The parser will ignore anything in the line after the
comment symbol.

Here is an example:

rule "Testing Comments"
when
this is a single line comment
// this is also a single line comment
eval(true) # this is a comment in the same line of a pattern
then
// this is a comment inside a semantic code block
this is another comment in a semantic code block
end

O—»[f]—-[fext]—»[=]—»O

Figure 4.2. A multi-line comment

Use multi-line comments to indicate blocks of text, both inside and outside of semantic code blocks.

Here is an example:

rule "Test Multi-line Comments"
when
/* this is a multi-line comment
in the left hand side of a rule */
eval(true)
then
/* and this is a multi-line comment
in the right hand side of a rule */
end

4.4. Error Messages

JBoss Rules possesses standardized error message functionality. This helps users to find and
resolve problems quickly and easily. Read this section to learn how to identify and interpret those error
messages and to receive instruction on how to solve some of the problems that they report.

71

Chapter 4. The Rule Language

This is the format of an error message:

[ERR 101] Lime &:35 no viable alternative at input) in rule “test rule® in pattern WorkerPerformanceContext

15t 2nd
Block Block

Figure 4.3. Error Message Format

3rd Block 4th Block 5th Block

1st Block
This area identifies the error code.

2nd Block
This area displays line and column information.

3rd Block
This area displays some text describing the problem.

4th Block

This is the first context. It usually indicates the rule, function, template or query in which the error
occurred. (This block is not mandatory.)

5th Block
This identifies the pattern in which the error occurred. (This block is not mandatory.)

Here are all of the error messages:

4.4.1. 101: No viable alternative

This message appears for the most common errors. It occurs when the parser comes to a decision
point but cannot identify an alternative. Here are some examples:

rule one
when
exists Foo()
exits Bar()
then
end

This first example generates this message:
[ERR 101] Line 4:4 no viable alternative at input 'exits' in rule one

At first glance, this may have seemed to be valid syntax but, in reality, it is not because exits !=
exists.

Here is another example:

package org.drools;
rule
when
Object()
then
System.out.println("A RHS");
end

The above code generates this error message:

72

102: Mismatched input

[ERR 101] Line 3:2 no viable alternative at input 'WHEN'

This message means that the parser has encountered the WHEN token, (which is actually a "hard"
keyword), but it is in the wrong place because the rule name is missing.

The same error message also appears when one makes a simple lexical mistake. Here is an example
of just such a problem:

rule simple_rule
when
Student(name == "Andy)
then
end

The closing quote is missing, so the the parser generates this error message:

[ERR 101] Line ©:-1 no viable alternative at input
'<eof>' in rule simple_rule in pattern Student

Usually the line and column information is accurate but, in some cases, the parser generates
a 0: -1 position. If so, check that quotes quotes, apostrophes and parentheses have all been

closed.

This error indicates that the parser was looking for a particular symbol that it could not find at the
current input position. Here are some examples:

rule simple_rule
when
foo3 : Bar(

That code generates this message:

[ERR 102] Line 0:-1 mismatched input '<eof>' expecting
')" in rule simple_rule in pattern Bar

To fix this problem, complete the rule statement.

package org.drools;

rule "Avoid NPE on wrong syntax"
when
not (Cheese((type=="stilton", price==10)| | (type=="brie", price==15))

73

Chapter 4. The Rule Language

from $cheeselList)
then
System.out.println("0K");
end

These are the errors associated with this source:

[ERR 102] Line 5:36 mismatched input ',' expecting ')' in rule
"Avoid NPE on wrong syntax" in pattern Cheese

[ERR 101] Line 5:57 no viable alternative at input 'type' in
rule "Avoid NPE on wrong syntax"

[ERR 102] Line 5:106 mismatched input ')' expecting 'then' in
rule "Avoid NPE on wrong syntax"

Note that the second problem is related to the first. To fix it, just replace the commas (,) with an &&
operator.

If there is more than one error message, it is a good idea to try to fix them one by one, starting
with the first. Some error messages are generated merely as consequences of others.

This means that a validating semantic predicate evaluated as false. Usually, these semantic
predicates are used to identify "soft" keywords. This example shows that exact situation:

package nesting;
dialect "mvel"

import org.drools.Person
import org.drools.Address

fdsfdsfds

rule "test something"
when
p: Person(name=="Michael")
then
p.name = "other";
System.out.println(p.name);
end

Here is the error message produced by this sample:

[ERR 103] Line 7:0 rule 'rule_key' failed predicate:
{(validateIdentifierKey(DroolsSoftKeywords.RULE))}? in rule

fdsfdsfds is invalid text and the parser could not identify it as the soft keyword rule.

This error is very similar to 102: Mismatched input, but usually involves soft keywords.

74

104: Trailing semi-colon not allowed

4.4.4. 104: Trailing semi-colon not allowed

This error is associated with the eval clause. It occurs if the expression is incorrectly terminated with a
semi-colon. Here is an example:

rule simple_rule

when
eval(abc();)

then

end

This error message appears due to the trailing semi-colon within the eval clause:

[ERR 104] Line 3:4 trailing semi-colon not allowed in rule
simple_rule

This problem is simple to fix: just remove the semi-colon.

4.4.5. 105: Early Exit

This occurs if the recognizer encounters a sub-rule in the grammar that does not match any
alternative. In other words, it means that the parser has entered a branch from which there is no way
out. Here is an example that illustrates this scenario:

template test_error
aa s 11;
end

Here is the resulting error message in full;

[ERR 165] Line 2:2 required (...)+ loop did not match anything
at input 'aa' in template test_error

To fix this problem, remove the numeric value as it is neither a valid data type which might begin a
new template slot nor a possible start for any other rule file construct.

Having studied this section, the user now knows the meaning of the error messages and ways of fixing
the problems that they indicate.

4.5. Package

A package is a collection of rules and other related constructs, such as imports and globals. The

package members are typically related to each other - perhaps HR rules, for instance. A package
represents a namespace, which ideally is kept unique for a given grouping of rules. The package
name itself is the namespace, and is not related to files or folders in any way.

It is possible to assemble rules from multiple rule sources, and have one top level package
configuration that all the rules are kept under (when the rules are assembled). Although, it is not
possible to merge into the same package resources declared under different names. A single
Rulebase, can contain multiple knowledge packages built on it. It is common practice to have all the
rules for a package in the same file as the package declaration so that is it entirely self contained.

The following railroad diagram shows all the components that may make up a package. Note that

a package must have a namespace and be declared using standard Java conventions for package
names; i.e., no spaces, unlike rule names which allow spaces. In terms of the order of elements, they
can appear in any order in the rule file, with the exception of the package statement which must be at
the top of the file. In all cases, the semicolons are optional.

75

Chapter 4. The Rule Language

= O

“—b[‘package’ H Namespace

|

i
axpandar X

_|'I

[)]
s 3

=
5
EI

-
—

g

EQF

7

6

Figure 4.4. package

@

Notice that any rule atttribute (as described the section Rule Attributes) may also be written
at package level, superseding the attribute's default value. The modified default may still be
replaced by an attribute setting within a rule.

O~ Tt Jo{_ses H—L0

Figure 4.5. import

51 _imbort
A AT llll"vl‘

Import statements work like import statements in Java. You need to specify the fully qualified paths
and type names for any objects you want to use in the rules. JBoss Rules automatically imports
classes from the Java package of the same name, and also from the package java.lang.

4.5.2. global

L
O—b[‘global’ H class H name H

Figure 4.6. global

76

global

With global you define global variables. They are used to make application objects available to the
rules. Typically, they are used to provide data or services that the rules use, especially application
services used in rule consequences, and to return data from the rules, like logs or values added in
rule consequences, or for the rules to interact with the application, doing callbacks. Globals are not
inserted into the Working Memory, and therefore a global should never be used to establish conditions
in rules except when it has a constant immutable value. The engine cannot be notified about value
changes of globals and does not track their changes. Incorrect use of globals in constraints may yield
surprising results - surprising in a bad way.

If multiple knowledge packages declare globals with the same identifier they must be of the same type
and all of them will reference the same global value.

In order to use globals you must:

1. Declare your global variable in your rules file and use it in rules. Example:

global java.util.List myGloballist;

rule "Using a global"
when
eval(true)
then
myGloballList.add("Hello World");
end

2. Set the global value on your working memory. It is a best practice to set all global values before
asserting any fact to the working memory. Example:

List list = new ArrayList();
WorkingMemory wm = rulebase.newStatefulSession();
wm.setGlobal("myGloballList", list);

Note that these are just named instances of objects that you pass in from your application to the
working memory. This means you can pass in any object you want: you could pass in a service
locator, or perhaps a service itself. With the new from element it is now common to pass a Hibernate
session as a global, to allow from to pull data from a named Hibernate query.

One example may be an instance of a Email service. In your integration code that is calling the rule
engine, you obtain your emailService object, and then set it in the working memory. In the DRL, you
declare that you have a global of type EmailService, and give it the name "email". Then in your rule
consequences, you can use things like email.sendSMS(number, message).

Globals are not designed to share data between rules and they should never be used for that purpose.
Rules always reason and react to the working memory state, so if you want to pass data from rule to
rule, assert the data as facts into the working memory.

It is strongly discouraged to set or change a global value from inside your rules. We recommend to
you always set the value from your application using the working memory interface.

77

Chapter 4. The Rule Language

4.6. Functions

—(ocamertaton }—
C)

C O 0
)
=)0

Figure 4.7. A function

Use functions to put semantic code into the rule source file, (rather than into normal Java classes.)
They cannot do anything more than helper classes (in fact, the compiler generates the helper class
"behind the scenes") but their main advantage stems from the fact that one can use them to keep all
of the logic all in one place. Also one can change functions as one's needs alter (this can be both good
and bad.)

Functions are most useful for invoking actions on a rule's consequence, especially if that particular
action is used over and over (with, perhaps. only differing parameters for each rule; for example, the
contents of an e. mail message.)

This is a standard function declaration:

function String hello(String name) {
return "Hello "+name+"!";

}

@

The function keyword is used, even though it is not actually a part of Java. Parameters are, to
the function, just like normal methods (and one does not have to use parameters if they are not
required.) Return type is just like a normal method.
An alternative is to use a static method in a helper class, like this: Foo.hello(). JBoss Rules allows
one to use function imports. This code sample shows how to do so:

import function my.package.Foo.hello

In both of these cases, to use the function, just call it by its name in either the consequence or inside a
semantic code block. Here is a final example, showing this:

rule "using a static function"
when

eval(true)
then

78

Type Declaration

System.out.println(hello("Bob"));
end

4.7. Type Declaration

Lk value

Figure 4.8. meta_data

©)

‘—-[‘declare’]—i{ name

-
I Y

| I
|

mela_data

Figure 4.9. type_declaration

Type declarations have two main goals in the rules engine: to allow the declaration of new types, and
to allow the declaration of metadata for types.
» Declaring new types: JBoss Rules works out of the box with plain POJOs as facts. Although,

sometimes the users may want to define the model directly to the rules engine, without worrying
to create their models in a lower level language like Java. At other times, there is a domain model

79

Chapter 4. The Rule Language

already built, but eventually the user wants or needs to complement this model with additional
entities that are used mainly during the reasoning process.

» Declaring metadata: facts may have meta information associated to them. Examples of meta
information include any kind of data that is not represented by the fact attributes and are consistent
among all instances of that fact type. This meta information may be queried at runtime by the engine
and used in the reasoning process.

4.7.1. Declaring New Types

To declare a new type, all you need to do is use the keyword declare, followed by the list of fields and
the keyword end.

Example 4.1. declaring a new fact type: Address

declare Address
number : int
streetName : String
city : String

end

The previous example declares a new fact type called Address. This fact type will have 3 attributes:
number, streetName and city. Each attribute has a type that can be any valid Java type, including any
other class created by the user or even other fact types previously declared.

For instance, we may want to declare another fact type Person:

Example 4.2. declaring a new fact type: Person

declare Person
name : String
dateOfBirth : java.util.Date
address : Address

end

As we can see on the previous example, dateOfBirth is of type java.util.Date, from the Java API,
while address is of the previously defined fact type Address.

You may avoid having to write the fully qualified name of a class every time you write it by using the
import clause, previously discussed.

Example 4.3. avoiding the need to use fully qualified class names by using import

import java.util.Date

declare Person
name : String
dateOfBirth : Date
address : Address
end

When you declare a new fact type, JBoss Rules will, at compile time, generate bytecode implementing
a POJO that represents the fact type. The generated Java class will be a one-to-one Java Bean
mapping of the type definition. So, for the previous example, the generated Java class would be:

80

Declaring Metadata

Example 4.4. generated Java class for the previous Person fact type declaration

public class Person implements Serializable {
private String name;
private java.util.Date dateOfBirth;
private Address address;

// getters and setters
// equals/hashCode
// toString

Since it is a simple POJO, the generated class can be used transparently in the rules, like any other
fact.

Example 4.5. using the declared types in rules

rule "Using a declared Type"
when
$p : Person(name == "Bob")
then
System.out.println("The name of the person is "+)
// lets insert Mark, that is Bob's mate
Person mark = new Person();
mark.setName("Mark");
insert(mark);
end

4.7.2. Declaring Metadata

Metadata may be assigned to several different constructions in JBoss Rules, like fact types, fact
attributes and rules. JBoss Rules uses the @ symbol to introduce metadata, and it always uses the
form:

@matadata_key(metadata_value)

The parenthesis and the metadata_value are optional.

For instance, if you want to declare a metadata attribute like author, whose value is Bob, you could
simply write:

Example 4.6. declaring an arbitrary metadata attribute

@author(Bob)

JBoss Rules allows the declaration of any arbitrary metadata attribute, but some will have special
meaning to the engine, while others are simply available for querying at runtime. JBoss Rules allows
the declaration of metadata both for fact types and for fact attributes. Any metadata that is declared
before the fields of a fact type are assigned to the fact type, while metadata declared after an attribute
are assigned to the attribute in particular.

Example 4.7. declaring metadata attributes for fact types and attributes

import java.util.Date

81

Chapter 4. The Rule Language

declare Person
@author(Bob)
@dateOfCreation(01-Feb-2009)

name : String @key @maxLength(30)
dateOfBirth : Date
address : Address

end

In the previous example, there are two metadata declared for the fact type (@author and
@dateOfCreation), and two more defined for the name attribute (@key and @maxLength). Please
note that the @key metadata has no value, and so the parenthesis and the value were omitted.

4.7.3. Declaring Metadata for Existing Types

JBoss Rules allows the declaration of metadata attributes for existing types in the same way as when
declaring metadata attributes for new fact types. The only difference is that there are no fields in that
declaration.

For instance, if there is a class org.drools.examples.Person, and one wants to declare metadata for it,
just write the following code:

Example 4.8. declaring metadata for an existing type

import org.drools.examples.Person

declare Person
@author(Bob)
@dateOfCreation(01-Feb-2009)
end

Instead of using the import, it is also possible to reference the class by its fully qualified name, but
since the class will also be referenced in the rules, usually it is shorter to add the import and use the
short class name everywhere.

Example 4.9. declaring metadata using the fully qualified class name

declare org.drools.examples.Person
@author(Bob)
@dateOfCreation(01-Feb-2009)
end

4.7.4. Accessing Declared Types from the Application Code

Declared types are usually used inside rules files, while Java models are used when sharing the
model between rules and applications. Although, sometimes, the application may need to access and
handle facts from the declared types, specially when the application is wrapping the rules engine and
providing higher level, domain specific, user interfaces for rules management.

In such cases, the generated classes can be handled as usual with the Java Reflection APIs, but
as we know, that usually requires a lot of work for small results. This way, JBoss Rules provides a
simplified API for the most common fact handling the application may want to do.

82

Accessing Declared Types from the Application Code

The first important thing to realize is that a declared fact will belong to the package where it was
declared. So, for instance, in the example below, Person will belong to the org.drools.examples
package, and so the generated class fully qualified name will be: org.drools.examples.Person.

Example 4.10. declaring a type in the org.drools.examples package

package org.drools.examples
import java.util.Date

declare Person
name : String
dateOfBirth : Date
address : Address
end

Declared types, as discussed previously, are generated at knowledge base compilation time, i.e., the
application will only have access to them at application run time. As so, these classes are not available
for direct reference from the application.

JBoss Rules then provides an interface through which the users can handle declared types from the
application code: org.drools.definition.type.FactType. Through this interface, the user can instantiate,
read and write fields in the declared fact types.

Example 4.11. handling declared fact types through the API

// get a reference to a knowledge base with a declared type:
KnowledgeBase kbase = ...

// get the declared FactType
FactType personType = kbase.getFactType("org.drools.examples",
"Person");

// handle the type as necessary:
// create instances:
Object bob = personType.newInstance();

// set attributes values

personType.set(bob,
Ilnamell,
"Bob"),

personType.set(bob,
Ilagell,
42);

// insert fact into a session
StatefulKnowledgeSession ksession = ...
ksession.insert(bob);
ksession.fireAllRules();

// read attributes
String name = personType.get(bob, "name");
int age = personType.get(bob, "age");

The API also includes other helpful methods, like setting all the attributes at once, reading values from
a Map, or read all attributes at once, populating a Map.

83

Chapter 4. The Rule Language

Although the API is similar to Java reflection it does not use reflection. It instead relies on much faster
bytecode generated accessors.

4.8. Rule
Or
.,[rule'] _,[name h
ST
|'"- I

i tHs)

Figure 4.10. Rule

A rule specifies that when a particular set of conditions occur, specified in the left-hand side, then do
what is specified as a list of actions in the right-hand side. A common question from users is "Why
use when instead of if?" "When" was chosen over "if" because "if" is normally part of a procedural
execution flow, where, at a specific point in time, a condition is to be checked. In contrast, "when"
indicates that the condition evaluation is not tied to a specific evaluation sequence or point in time,

but that it happens continually, at any time during the life time of the engine; whenever the condition is
met, the actions are executed.

A rule must have a name, unique within its rule package. If a rule is defined twice in a single DRL,

an error will appear when one loads it. If a DRL that includes a rule name already in the package is
added, the previous rule is repalced. If a rule name is to have spaces, then it will need to be enclosed
in double quotes. (Always use double quotes).

Attributes are optional. Always write them on a one-per-line basis.

The left-hand side of the rule follows the when keyword (ideally on a new line), similarly the right-hand
side follows the then keyword (again, ideally on a newline). The rule is terminated by the keyword end.
Rules cannot be nested.

Example 4.12. Rule Syntax Overview

rule "<name>"

84

Rule Attributes

<attribute>*
when

<conditional element>*
then

<action>*
end

Example 4.13. A simple rule

rule "Approve if not rejected"
salience -100
agenda-group "approval"
when
not Rejection()
p : Policy(approved == false, policyState:status)
exists Driver(age > 25)
Process(status == policyState)
then
log("APPROVED: due to no objections.");
p.setApproved(true);
end

JBoss Rules attempts to preserve numbers in their primitive or object wrapper form, so a
variable bound to an int primitive when used in a code block or expression will no longer need
manual unboxing; unlike JBoss Rules 3.0 for which all primitives were "auto-boxed," requiring
manual "unboxing." A variable bound to an object wrapper will remain as an object; the existing
JDK 1.5 and JDK 5 rules to handle auto-boxing and unboxing apply in this case. When evaluating
field constraints, the system attempts to coerce one of the values into a comparable format; so a
primitive is comparable to an object wrapper.

4.8.1. Rule Attributes

These provide a declarative way to influence the behaviour of a rule. Some are quite simple, whilst
others are part of complex sub-systems such as Ruleflow. To obtain the most value from JBoss
Rules it is beneficial to gain a thorough understanding of each attribute. Read this section to do just
that.

85

Chapter 4. The Rule Language

.[‘dialect’]

| ‘lock-on-active’ | ——
—{ ‘mgenda-group’ | —
et)
—Csowaros)

—{ ‘activation-group’]—

—-{ 'date-affactive’]—

- .[‘date-expires’],

—i[‘enabled' _]—

'*—-[‘duration”]—-[duration-value (ms)]—

Figure 4.11. rule attributes
Table 4.1. Rule Attributes

Attribute Default Type

Value

no-loop false Boolean

Comments

When the rule's consequence modifies
a fact it may cause the rule to activate
again, causing recursion. Set no-loop to
true so that the attempt to create the
activation for the current set of data
will be ignored.

ruleflow- N/A string

group

Use the rule-flow feature to exercise
control over the firing of rules. (Rules that
are assembled by the same ruleflow-
group identifier will only fire when their
group is active.)

lock-on- False Boolean

active

Whenever a ruleflow-group becomes
active or an agenda-group receives the
focus, any rule within that group that
has lock-on-active set to true will not be
activated any more; irrespective of the
origin of the update, the activation of

a matching rule is discarded. This is a

86

Rule Attributes

Attribute

Default
Value

Type

Comments

stronger version of no-loop, because the
change could now be caused not only

by the rule itself. It's ideal for calculation
rules where you have a number of rules
that modify a fact and you don't want any
rule re-matching and firing again. Only
when the ruleflow-group is no longer
active or the agenda-group loses the
focus those rules with lock-on-active set
to true become eligible again for their
activations to be placed onto the agenda.

salience

integer

Each rule has a salience attribute that
can be assigned an integer number, the
default being zero. Salience is a form of
priority whereby rules with higher values
are given higher priority when ordered
onto the activation queue.

agenda-
group

MAIN

string

Agenda groups allow the user to partition
the Agenda providing more execution
control. Only rules in the agenda group
that has acquired the focus are allowed to
fire.

auto-focus

false

Boolean

If a rule, for which the auto-focus
value is true, is activate and if the rule's
agenda group does not yet have focus,
then focus is granted to it, allowing the
rule to potentially fire.

activation-
group

N/A

string

This string value identifies rules that
belong to the same activation group.
Rules in such a group will only fire
exclusively of each other. In other words,
the first rule in an activation group to
fire will cancel the other rules' activations,
stopping them from firing in turn.

(Orr—

This was once called the Xor group
but, strictly speaking, it does not
meet the definition of Xor.

dialect

as specified
by the
package

string, with possible values
being java and mvel

Use this attribute to specify the language
to be used for any code expression on
either the left-hand side or the right-hand
side. Currently two dialects are available,
Java and the MVFLEX Expression
Language. (Whilst the dialect can also
be specified at the package level, this

87

Chapter 4. The Rule Language

Attribute Default Type Comments
Value
attribute allows one to override the
package definition for a rule.)
date- N/A string, containing date and | A rule can only activate if the current date
effective time definitions and time indicate it is after the timestamp
set in this attribute.
date- N/A string, containing date and | A rule will not activate if the current date
expires time definitions and time indicate it is after the timestamp
set in this attribute.
duration no default long Use this attribute to dictate that the
value rule will fire after a specified duration,
provided that it is still true.

This code extract shows how to put some common attributes into practice:

rule "my rule"
salience 42

agenda-group "number 1"
when ...

4.8.2. Timers and Calendars
Rule's now suport both interval and cron based timers, which replace the now deprecated duration

attribute.

Example 4.14. Sample timer attribute uses

timer
timer
timer

timer
timer

int: <initial delay> <repeat interval>?)

int: 30s)

int: 30s 5m)

cron: <cron expression>)
cron:* @/15 * * * 2)

Interval "int;" timers follow the JDK semantics for initial delay optionally followed by a repeat interval.
Cron "cron:" timers follow standard cron expressions:

Example 4.15. A Cron Example

rule "Send SMS every 15 minutes"
timer (cron:* /15 * * * ?)

when

$a :

then

Alarm(on == true)

channels["sms"].insert(new Sms($a.mobileNumber, "The alarm is still on");

end

Example 4.16. Adapting a Quartz Calendar

Calendar weekDayCal = QuartzHelper.quartzCalendarAdapter(org.quartz.Calendar quartzCal)

88

Left-Hand Side Conditional Elements

Calendars are registered with the StatefulKnowledgeSession:

Example 4.17. Registering a Calendar

ksession.getCalendars().set("week day", weekDayCal);

They can be used in conjunction with normal rules and rules including timers. The rule calendar
attribute can have one or more comma calendar names.

Example 4.18. Using Calendars and Timers together

rule "weekdays are high priority"

calendars "weekday"

timer (int:0 1h)
when

Alarm()
then

send("priority high - we have an alarm”);

end

rule "weekend are low priority"
calendars "weekend"
timer (int:0 4h)
when
Alarm()
then
send("priority low - we have an alarm”);
end

4.8.3. Left-Hand Side Conditional Elements

The left-hand side (LHS) is a common name for the conditional (when) part of the rule. It consists of
conditional elements. (It is possible to not have any. If the left-hand side is left empty, it is re-written as
eval(true). This means that the rule's condition will always remain true.)

The left-hand side will be activated once, this being when a new working memory session is
created.

O .[c'a-rru'ﬁr.l'c'n;fEn'arr?&nif _]—"l O

Figure 4.12. The Left-Hand Side

Here is a rule without a conditional element:

rule "no CEs"
when
then

<action>*
end

This is re-written internally as:

rule "no CEs"
when
eval(true)

89

Chapter 4. The Rule Language

then
<action>*
end

Conditional elements work on one or more patterns (these are described in more detail below.) The
most common one is and, which is implied when there are multiple, totally-unrelated patterns in the
left-hand side of a rule.

e

In contrast to the or pattern, an and cannot have a leading declaration binding. This is because
a declaration can only refer to a single fact, and when the and is "satisfied", it matches more than
one fact, hence it would not know to which of these it should be bound.

4.8.3.1. The Pattern

A pattern is the most important type of conditional element. The entity relationship diagram
below provides an overview of the various parts that make up the pattern's constraints and shows how
they work together. Later in this section each part is covered in more detail with further diagrams and
sample code.

90

Left-Hand Side Conditional Elements

patternBinding

—

Gorerancon)

1y y
(" fieldNeme) (restricion

1y *1
@IngleValuaR&stﬂctlnn} C multiRestriction) L
.1

'y

'
G CaeD)

! g’
lified|dentif turn'al iteral iabl
(qIJEIII enler)(:re rmialue (ra) ‘1

[Cmmpnundh’alueﬂasirl::ﬂnn}
.1

|: | ‘mot in’ :|
[walue }
1

y y vy
(qualifiscicentier) Cretum".-’ﬂlue) (Cineral) Ganama)

Figure 4.13. Pattern Entity Relationship Diagram

Look at the top of the entity relationship diagram and observe that the pattern consists of zero or more
constraints and that pattern binding is optional. This next diagram shows the format of its syntax:

91

Chapter 4. The Rule Language

O {pataminng }) {patarte)—{0)— (i) —{(T)—O

Figure 4.14. Pattern

In its simplest form, (meaning with no constraints), a pattern matches against a fact of a given type. In
the following case the type is Cheese, which means that the pattern will match against every Cheese
object in the working memory.

@

The "type" need not be the actual class of some fact object. Patterns may refer to super-classes
or even interfaces and, therefore, it is possible that they may match facts from many different
classes.

Cheese()

Use a pattern binding variable, such as $c¢, to refer to the matched object. A helpful option is to use
make use of the $ prefix. This can be advantageous when dealing with complex rules as it helps one
to differentiate between variables and fields more easily.

$c : Cheese()

The key element the syntax is the parentheses. It is within these that the constraints are placed. The
key types are field constraints, inline evals and constraint groups.

Use any of , && or | | to separate constraints. However, note that they have slightly different abilities.

O—l‘—u[constrain

Figure 4.15. Constraints

3N

—

\
fleldConstraint | . p(:}

'—»[fﬂ#'neEvaFCmm‘mfnt]—

—-[constraintGrou]—/

Figure 4.16. Constraint

O} (T} O

Figure 4.17. constraintGroup

The comma character (,) is used to separate constraint groups. It has implicit and connective
semantics:

Cheese type is stilton and price < 10 and age is mature.

92

Left-Hand Side Conditional Elements

Cheese(type == "stilton", price < 10, age == "mature")

In this example, there are three constraint groups, each of which has a single constraint:
1. The type is stilton as type == "stilton".

2. The price is less than ten, as price < 10.

3. The age is "mature,” as age == "mature".

The && and | | separators allow groups to have multiple constraints. Here is an example:

// Cheese type is "stilton" and price < 10, and age is mature

Cheese(type == "stilton" && price < 10, age == "mature")
// Cheese type is "stilton" or price < 10, and age is mature
Cheese(type == "stilton" || price < 10, age == "mature")

In this case, there are two constraint groups. The first has two constraints and the second has one
constraint.

The connectives are evaluated in this order, from first to last:

1. &&

To change the evaluation priority, use parentheses, as for any logic or mathematical expression. Here
is an example:

Cheese type is stilton and (price is less than 20 or age is mature).
Cheese(type == "stilton" && (price < 20 || age == "mature"))

In this case, the use of parentheses ensures that the | | connective is evaluated before the &&
connective.

Be aware that, besides having the same semantics, the && and , connectives are resolved with
different priorities. Hence , cannot be embedded in a composite constraint expression:

// invalid as ',' cannot be embedded in an expression:

Cheese((type == "stilton", price < 10) || age == "mature")
// valid as '&&' can be embedded in an expression:

Cheese((type == "stilton" && price < 10) || age == "mature")

4.8.3.1.1. Field Constraints

Use field constraints to place a restriction on a nhamed field. The field name can, optionally, have a
variable binding.

O——(FeiBindng }—(_) ®

Figure 4.18. fieldConstraint
Restrictions come in three forms:

* single-value restrictions

93

Chapter 4. The Rule Language

« compound-value restrictions

¢ multi-restrictions

| singleValueRestrion |

. »[ﬂmmnundl-’arugﬁs-srﬁun] 5

. —-[multiRestrciion]— ’

Figure 4.19. restriction

4.8.3.1.2. Java Beans as Facts

A field is derived from an object's accessible method. If a model objects follow the Java bean pattern,
then fields are exposed using either the get XXX method or the 1 sXXX method, in which cases these
methods take no arguments but return something.

Access fields within patterns by using the bean naming convention, (so that, for instance, getType is
accessed as type. (JBoss Rules uses the standard Java Development Kit Introspector class to
undertake this mapping process.)

Referring back to the Cheese class example, the Cheese(type == "brie") pattern applies

the getType () method to a Cheese instance. If a field name cannot be found, the compiler will
resort to using the name as a method without arguments. Thus, the toString() is called due to

a Cheese(toString == "cheddar") constraint. In this case, use the full name of the method
with correct capitalization but without parentheses. Ensure that methods being accessed do not take
parameters, and that they are, in fact, accessors which will not change the state of the object in a
way that affects the rules. (Remember that the rule engine caches the results of its matching in
between invocations for performance reasons.)

4.8.3.1.3. Values

The field constraints can take a variety of values, including:

* literals

qualifiedldentifiers (enums)

* variables

returnValues

O—\ .[nLmanc } ,.—n::)

,[date } y

.[siring } 4

Figure 4.20. literal

94

Left-Hand Side Conditional Elements

P o identifier |—)

Figure 4.21. qualifiedldentifier

O—-[identifiar]—O

Figure 4.22. variable

O—{)—{(Swresor

Figure 4.23. returnValue

To checks against fields that are null, use == and != in the usual way. The literal null keyword, (as in
Cheese(type != null), whereby the evaluator will not throw an exception will return true if the
value is null.)

The system always attempts to undertake type coercion if the field and the value are of different types.
If one attempts to do a "bad" coercion, an exception will occur. For instance, providing ten as a string
in a numeric evaluator will cause an exception, whereas providing 10 will coerce to a numeric ten.
(Coercion always favours the field type, not the value type.)

4.8.3.1.4. The Single Value Restriction

Oﬁ—{ litaralRestriction]—,._uj:}
— variableRestriction |——
' raturnValuaRastriction |——

| qualifiedidentifisrRestriction |-

Figure 4.24. singleValueRestriction

4.8.3.1.5. Operators

' | te=t | e | == | == | 1= | 'contains’ | 'not contains' |
‘memberof | ‘'not memberof’ | ‘matches’ | "not matches'

Figure 4.25. Operators

The == and != operators are valid for all types. Other relational operators may be used whenever the
type values are ordered; for date fields, < means "before." The pair of matches and not matches
only apply to string fields, whereas contains and not contains require the field to be that of a
Collection type. (It will attempt to coerce it to the correct value for the evaluator and the field.)

The matches Operator
This matches a field with any valid Java regular expression. The regular expression is normally a
string literal, but one is also allowed to use variables that resolve to a valid regular expression.

95

Chapter 4. The Rule Language

In contrast to Java, escapes are not needed within regular expressions written as string
literals.

Cheese(type matches "(Buffalo)?\S*Mozarella")

The not matches Operator
This operator returns true if the string does not match the regular expression. The same rules
apply as for the matches operator. Here is an example of its use:

Cheese(type not matches "(Buffulo)?\S*Mozerella")

The contains Operator
Use this operator to check whether a collection or array field contains the specified value.

CheeseCounter(cheeses contains "stilton") // contains with a String literal
CheeseCounter(cheeses contains $var) // contains with a variable

The not contains Operator
Use this operator to check whether a specified value is absent from a collection or array field.

CheeseCounter(cheeses not contains "cheddar") // not contains with a String literal
CheeseCounter(cheeses not contains $var) // not contains with a variable

To ensure backward compatibility, the excludes operator is still supported. It is synonymous
with not contains.
The/member0f Operator
Use this operator to check whether a field is a member of a collection or an array; note that the
collection must be a variable.

CheeseCounter(cheese memberOf $matureCheeses)

The not memberOf Operator
Use this operator to check whether a field is not a member of a collection or an array; note that the
collection must be a variable.

CheeseCounter(cheese not memberOf $matureCheeses)

The soundslike Operator
This operator is similar to matches but it checks as to whether or not a word has almost the same
sound as the given value. To do so, it uses the the Soundex algorithm and is based on English
pronunciations of the words.

96

Left-Hand Side Conditional Elements

// match cheese "fubar" or "foobar"
Cheese(name soundslike 'foobar')

4.8.3.1.6. Literal Restrictions

These are the simplest form of restriction. They evaluate a field against a specified literal, which may
be numeric, a date, a string or a Boolean.

O 0

Figure 4.26. literalRestriction

Literal Restrictions using the operator '==" provide for faster execution as we can index using hashing
to improve performance.

Numeric
All of the standard Java humeric primitives are supported.

Cheese(quantity == 5)
Date
The default date format is dd-mmm-yyyy. To change this, provide an alternative date format mask

for the drools.dateformat property. (If more control is required, use the inline-eval constraint.)

Cheese(bestBefore < "27-0ct-2013")

String
Use any valid Java string.

Cheese(type == "stilton")

Booleans
One can only use true or false; 0 and 1 are not acceptable. A lone Boolean field (as in
Cheese(smelly) is not permitted; it must be compared to a Boolean literal.

Cheese(smelly == true)

Qualified Identifier
Both Java Development Kit 1.4 and 1.5-style enums are supported but the latter can only be used
with a JDK 5 environment.

Cheese(smelly == SomeClass.TRUE)

4.8.3.1.7. Bound Variable Restriction

O— oo e

Figure 4.27. variableRestriction

One can bind variables to facts and their fields and then use them in subsequent field
constraints. A bound variable is called a declaration. The type of the field being constrained

97

Chapter 4. The Rule Language

determines which operators are valid; coercion will be attempted where possible. Use the == operator
to bind variable restrictions for very fast performance.

Person(likes : favouriteCheese)
Cheese(type == likes)

In this example, the 1ikes variable is bound to the favouriteCheese field of every matching
Person instance. (It then constrains the type of Cheese in the next pattern.) Any valid Java variable
name can be used, and it may be prefixed with $, which is often used to help differentiate declarations
from fields.

The example below shows a declaration for $stilton, bound to the object matching the first pattern.
It is used in conjuction with a contains operator. (Note the optional use of $.)

$stilton : Cheese(type == "stilton")
Cheesery(cheeses contains $stilton)

4.8.3.1.8. Return Value Restriction

O—A oo O

Figure 4.28. returnValueRestriction

A return value restriction is a parenthesized expression comprising of literals, any valid Java primitive
or object, previously bound variables, function calls and operators. The functions used must not return
time-dependent results.

Person(girlAge : age, sex == "F")
Person(age == (girlAge + 2)), sex == 'M')

4.8.3.1.9. Compound Value Restriction

Use the compound value restriction when there is more than one possible value to match. (Currently
only the in and not in evaluators support this.)

The second operand must be a comma-separated list of values, enclosed in parentheses. Values
may be given as variables, literals, return values or qualified identifiers. Bothevaluators are actually
"syntactic sugar", internally rewritten as a list of multiple restrictions using the != and == operators.

| —()—0

(o)

l. .
r]—\ | variable ~|

| qualifiedidentifier |—

g
|
A
),

+ qualifiedidentifier

Figure 4.29. compoundValueRestriction

98

Left-Hand Side Conditional Elements

Person($cheese : favouriteCheese)
Cheese(type in ("stilton", "cheddar", $cheese)

4.8.3.1.10. Multi-Restrictions

Use the multi-restriction constraint to place more than one restriction on a field (using the && or | |
separators.) Grouping via parentheses is permitted; this will result in a recursive syntactical pattern.

[—-l[restnicion
o— | e J— [
I--—L{msrﬂmmﬁmup]—J—f’

Figure 4.30. multiRestriction

O— {0} {CmutiRestricton }—{ 1 }—(O

Figure 4.31. restrictionGroup

// Simple multi restriction using a single &&
Person(age > 30 && < 40)
// Complex multi restriction using groupings of multi restrictions
Person(age ((> 30 && < 40) ||
(> 20 && < 25)))
// Mixing muti restrictions with constraint connectives
Person(age > 30 && < 40 || location == "london")

4.8.3.1.11. Inline Eval Constraints

O {lewalt}—{ expression }—{ 1 }—O

Figure 4.32. Inline Eval Expression

An inline eval constraint can use any valid dialect expression as long as it resolves to a primitive
Boolean. The expression must be constant over time. Any previously-bound variable, from the current
or previous pattern, can be used; auto-vivification is also used to automatically create field binding
variables.

When an identifier that is not a current variable is found, the builder checks to determine if the
identifier is a field on the current object type; if it is, the field binding is auto-created as a variable
of the same name. This is called auto-vivification of field variables.

This example will find all of the possible male-female pairs in which the male is two years older than
the female; the age variable is auto-created in the second pattern by the auto-vivification process.

Person(girlAge : age, sex = "F")
Person(eval(age == girlAge + 2)’ sex = 'M')

99

Chapter 4. The Rule Language

4.8.3.1.12. Nested Accessors

JBoss Rules allows one to use nested accessors in the field constraints. Use MVFLEX Expression
Language accessor graph notation to do so. (Field constraints possessing nested accessors are
actually re-written as MVFLEX Expression Language inline-eval constraints.)

Take care when using nested accessors as the working memory is not aware of any of the
nested values and does not know when they change. Always regard them as immutable whilst
any of their parent references are in working memory.

To modify a nested value, remove the parent objects first and re-assert them afterwards. If there
is only one parent at the root of the graph, one can use the MVEL dialect's modify construct and
its block setters to write the nested accessor assignments whilst retracting and inserting the the
root parent object as required. (Nested accessors can be used on either side of the operator
symbol.)

// Find a pet older than its owners first-born child
$p : Person()
Pet(owner == $p, age > $p.children[0].age)

This is rewritten internally as an MVEL inline eval:

// Find a pet older than its owners first-born child
$p : Person()
Pet(owner == $p, eval(age > $p.children[0].age))

Use nested accessors carefully as they have a much greater performance impact than
direct field accesses.

4.8.3.2. The and Conditional Element

Use the and conditional element to group other conditional elements into a logical
conjunction.

The root element of the left-hand side is an implicit prefix and. It does not need to be specified.
JBoss Rules supports both and as both a prefix and as an infix but the prefix is the preferred option
as its implicit grouping eliminates confusion.

OO @) — A E O

Figure 4.33. prefixAnd

(and Cheese(cheeseType : type)
Person(favouriteCheese == cheeseType))

when

100

Left-Hand Side Conditional Elements

Cheese(cheeseType : type)
Person(favouriteCheese == cheeseType)

Should it be needed, infix and is supported, along with explicit grouping via parentheses.

@oe

The && symbol can be used as an alternative to and. This is deprecated but is still currently
available for legacy support reasons.

Figure 4.34. infixAnd

//infixAnd

Cheese(cheeseType : type) and Person(favouriteCheese == cheeseType)
//infixAnd with grouping

(Cheese(cheeseType : type) and

(Person(favouriteCheese == cheeseType) or

Person(favouriteCheese == cheeseType))

4.8.3.3. The or Conditional Element

Use the or conditional element to group other conditional element into a logical
disjunction.

@e

JBoss Rules allows one to use or as either a prefix or as an infix, but the prefix is the preferred

option as its implicit grouping avoids confusion.
The behaviour of this conditional element is different to that of the connective | | for field
constraints and restrictions. The engine actually has no understanding of or; rather, via a number of
different logic transformations, a rule that uses or is rewritten as a number of sub-rules. This results
in a rule that has a single root node or and one sub-rule for each of its conditional elements.
Each sub-rule can activate and fire like any normal rule; there is no special behaviour or interaction
between them, a fact which sometimes confuses new developers.

o)
O g 0

Figure 4.35. prefixOr

(or Person(sex == "f", age > 60)
Person(sex == "m", age > 65)

Infix or is supported along with explicit grouping with parentheses, should it be needed.

101

Chapter 4. The Rule Language

The | | symbol can be used as an alternative to or. This is deprecated but it is still currently
available for legacy support reasons.

A G M i N i
o~ D R W W ey, WS B

Figure 4.36. infixOr

O

//infix0or

Cheese(cheeseType : type) or Person(favouriteCheese == cheeseType)
//infix0r with grouping

(Cheese(cheeseType : type) or

(Person(favouriteCheese == cheeseType) and

Person(favouriteCheese == cheeseType))

One has the option of using pattern binding with or. This means that each resulting sub-rule will
bind to the pattern. Each pattern must be bound separately, using eponymous variables, as in this
example:

(or pensioner : Person(sex == "f", age > 60)
pensioner : Person(sex == "m", age > 65))

Myriad sub-rules are created when or is used, one for each possible outcome. The simple example
shown above will generate two rules. These will function independently of each other within the
working memory, meaning that they can both match, activate and fire. No short-cuts are taken.

It can be helpful to consider or as a way to generate two or more similar rules. A single rule may have
multiple activations if two or more terms of the disjunction are true.

4.8.3.4. The eval Conditional Element

O— ()~ —(Eweon)—(T—O

Figure 4.37. eval

The eval conditional element is essentially a "catch-all* which allows one to execute any
semantic code that returns a primitive Boolean. This code can refer either to variables that were bound
to the left-hand side of the rule, or to functions in the rule package.

Do not overuse eval because it reduces the declarativeness of the rules which can lead to a

poorly performing engine. Whilst eval can be used anywhere in the patterns, best practice

dictates that one should add it as the last conditional element in the left-hand side of a rule.
Evals cannot be indexed and, thus, are not as efficient as field constraints. However they are ideal
for use as functions that return values which are subject change over time, (an ability which field
constraints do not possess.)

102

Left-Hand Side Conditional Elements

pl : Parameter()

p2 : Parameter()

eval(pl.getList().containsKey(p2.getItem()))
// call function isValid in the LHS

eval(isvalid(p1, p2))

4.8.3.5. The not Conditional Element

Atap -
mnditlnnalElemm] / \ "O'

Figure 4.38. not

The not conditional element is the first-order logic's non-existential quantifier. Its purpose is to
check that something does not exist in the working memory.

The not keyword must be followed by conditional element that are, themselves, in parentheses.
(In the simplest use cases, these parentheses can be omitted.)

not Bus()

// Brackets are optional:
not Bus(color == "red")

// Brackets are optional:
not (Bus(color == "red", number == 42))

// "not" with nested infix and - two patterns,
// brackets are requires:
not (Bus(color == "red") and Bus(color == "blue"))

4.8.3.6. The exists Conditional Element

A -
mmditlnnalElemt} :)

Figure 4.39. exists

The exists conditional element is the first order logic's existential quantifier. Its purpose is to
check for the existence of something in the working memory. Some programmers find it easiest to
think of exists as meaning "there is at least one". (It is different from just having the pattern on its
own, which is more like saying "for each one of.")

When exists is used with a pattern, the rule will only activate once, regardless of how much data
there is inworking memory that matches its condition. Since only the very existence matters, no
bindings will be established.

The exists keyword must be followed by the conditional elements to which it applies. These
must be contained within parentheses. (In the simplest of single patterns, like that depicted below, one
may has the option of omitting the parentheses.)

103

Chapter 4. The Rule Language

exists Bus()

exists Bus(color == "red")
// brackets are optional:
exists (Bus(color == "red", number == 42))

// "exists" with nested infix and,
// brackets are required:

exists (Bus(color == "red") and
Bus(color == "blue"))

4.8.3.7. The forall Conditional Element

o (I) T O

Figure 4.40. forall

The forall conditional element completes the first-order logic support in JBoss Rules.
forall evaluates as true when all of the facts that match the first pattern also match every
remaining pattern. Here is an example:

rule "All English buses are red"

when
forall($bus : Bus(type == 'english')
Bus(this == $bus, color = 'red'))
then
all english buses are red
end

This rule selects every Bus object for which the type is english. Then, for each fact that matches
this pattern, the following patterns are evaluated. If they, too, match, the forall conditional
element will evaluate as true.

To state that every fact of a given type must match a set of constraints, write a simple single pattern
like this:

rule "All Buses are Red"

when

forall(Bus(color == 'red'))
then

all asserted Bus facts are red
end

By way of contrast, here are multiple patterns:

rule "all employees have health and dental care programs"
when
forall($emp : Employee()
HealthCare(employee == $emp)
DentalCare(employee == $emp)
)
then
all employees have health and dental care
end

Forall can be nested inside other conditional elements such as not.

104

Left-Hand Side Conditional Elements

M

Note that parentheses are only optional when dealing with single patterns, so a nested one must
have them.

rule "not all employees have health and dental care"
when
not (forall($emp : Employee()
HealthCare(employee == $emp)
DentalCare(employee == $emp))
)
then
not all employees have health and dental care
end

As an aside, not(forall(pl1 p2 p3...)) is equivalent to this piece of code:

not(pl and not(and p2 p3...))

Be aware that forall is a scope delimiter. Therefore, it can use any previously bound variable
but no such variable bound within it will be available for use outside of it.

4.8.3.8. The from Conditional Element

O——{gatem) (ot }—{amrssion)}——O

Figure 4.41. from

Use the from conditional element to specify an arbitrary source for data to be matched by left-
hand side patterns. Doing so allows the engine to "reason over" data not found in the working
memory. The data source could be a sub-field on a bound variable or the result of a method call.

It is a powerful construction that allows "out-of-the-box" integration with other application components
and frameworks. One common example is the integration with data retrieved on-demand from
databases using Hibernate-named queries.

Use any expression that follows regular MVFLEX Expression Language syntax to define the object
source. In this way, one can easily execute method calls, access maps and collections elements and
utilise object-property navigation.

Here is a simple example that demonstrates both reasoning and binding to another pattern sub-field:

rule "validate zipcode"
when

Person($personAddress : address)

Address(zipcode == "23920W") from $personAddress
then

105

Chapter 4. The Rule Language

zip code is ok
end

This shows how to do the same thing using graph notation:

rule "validate zipcode"

when

$p : Person()

$a : Address(zipcode == "23920W") from $p.address
then

zip code 1is ok
end

Previous examples were single-pattern evaluations. One can also use from on object sources to
return a collection of objects. In this case, from will iterate over every objects in the collection and
try to match each of them individually. Here is an example, featuring a rule designed to a ten percent
discount to every item in an order:

rule "apply 10% discount to all items over $ 100,00 in an order"

when

$order : Order()

$item : OrderItem(value > 100) from $order.items
then

apply discount to $item
end

The rule will fire once for every item with a value greater than one hundred on each given order.

Take caution, when using from, especially in conjunction with the lock-on-active rule attribute as it
may produce unexpected results. Consider the example provided earlier, but now slightly modified as
follows:

rule "Assign people in Queensland (QLD) to sales region 1"
ruleflow-group "test"
lock-on-active true

when

$p : Person()

$a : Address(state == "QLD") from $p.address
then

modify ($p) {} #Assign person to sales region 1 in a modify block
end

rule "Apply a discount to people in the city of Brisbane"
ruleflow-group "test"
lock-on-active true

when

$p : Person()

$a : Address(city == "Brisbane") from $p.address
then

modify ($p) {} #Apply discount to person in a modify block
end

In this example, persons in Brisbane, QLD are supposed to be assigned to Sales Region 1 and
receive a discount (in other words, both rules are expected to activate and fire. However, one will find
that only the second rule fires.

If one were to turn on the audit log, one would see that when the second rule fires, it deactivates the
first rule. Since the lock-on-active rule attribute prevents a rule from creating new activations when a
set of facts change, the first rule fails to re-activate. (Though the set of facts have not changed, the
use of from, for all intents and purposes, returns a new fact each time it is evaluated.)

106

Left-Hand Side Conditional Elements

Follow these steps:

1.

Review the need to use the above pattern.

It may be because there are many rules across different rule-flow groups. When rules modify
working memory and other rules downstream of in rule-flow in question and needs must be
reevaluated, the use of modify is critical. Do not, however, make other rules in the same rule-flow
group place activations on one another recursively.

In this case, the no-loop attribute is ineffective, as it will only prevent a rule from activating itself
recursively so use lock-on-active.

There are now a number of ways in which to address this issue:

« either avoid the use of from when it is possible to assert all facts into working memory or use
nested object references in the constraint expressions (shown below).

 place the variable assigned for use in the modify block as the last sentence in the left-hand
side condition.

 avoid the use of lock-on-active when it is possible to explicitly manage the way in which rules
within the same rule-flow group place activations on one another. (This is explained below.)

Of these, the preferred solution is to minimize the use of from when it is possible to assert all
facts directly into working memory.

In the example above, both the Person and the Address instances can be asserted into
working memory. Because the graph is fairly simple, an even easier solution is to modify the
rules in the following way:

rule "Assign people in Queensland (QLD) to sales region 1"
ruleflow-group "test"
lock-on-active true
when
$p : Person(address.state == "QLD")
then
modify ($p) {} #Assign person to sales region 1 in a modify block
end

rule "Apply a discount to people in the city of Brisbane"
ruleflow-group "test"
lock-on-active true
when
$p : Person(address.city == "Brisbane")
then
modify ($p) {} #Apply discount to person in a modify block
end

Both rules will now fire as expected. However, it is not always possible to access nested facts

in this way. Consider an example whereby a Person holds one or more Addresses and one
wishes to use an existential quantifier to match people with at least one address that meets certain
conditions. In this case, one will have to resort to the use of from to reason over the collection.

There are several ways to achieve this and not all of them exhibit an issue with the use of lock-on-
active. For example, using from in the following way causes both rules to fire as expected:

rule "Assign people in Queensland (QLD) to sales region 1"
ruleflow-group "test"
lock-on-active true

107

Chapter 4. The Rule Language

when

$p : Person($addresses : addresses)

exists (Address(state == "QLD") from $addresses)
then

modify ($p) {} #Assign person to sales region 1 in a modify block
end

rule "Apply a discount to people in the city of Brisbane"
ruleflow-group "test"
lock-on-active true
when
$p : Person($addresses : addresses)
exists (Address(city == "Brisbane") from $addresses)
then
modify ($p) {} #Apply discount to person in a modify block
end

A slightly different approach does, however, exhibit the problem:

rule "Assign people in Queensland (QLD) to sales region 1"
ruleflow-group "test"
lock-on-active true
when
$assessment : Assessment()
$p : Person()
$addresses : List() from $p.addresses
exists (Address(state == "QLD") from $addresses)
then
modify ($assessment) {} #Modify assessment in a modify block
end

rule "Apply a discount to people in the city of Brisbane"

ruleflow-group "test"

lock-on-active true
when

$assessment : Assessment()

$p : Person()

$addresses : List() from $p.addresses

exists (Address(city == "Brisbane") from $addresses)
then

modify ($assessment) {} #Modify assessment in a modify block
end

In this case, using from returns the $addresses variable. This example also introduces a new
object, assessment, which points the way to a possible solution. If the $addresses variable is
moved so that it becomes the last condition in each rule, both fire as expected.

Though the examples above demonstrate how to combine the use of from with lock-on-active
without loss of rule activations, they carry the drawback of being dependent on the placement
order of conditions on the left-hand side. In addition, the solutions present greater complexity for
the rule author, who must suddenly keep track of conditions with the potential to cause issues.

A better alternative is to assert more facts into working memory. In this case, once the person's
addresses are asserted into working memory it will no longer be necessary to use from.

108

Left-Hand Side Conditional Elements

One will, however, encounter cases in which asserting all of the data into working memory will
not be practical and other solutions will need to be found.

One option is to reevaluate the need for lock-on-active. An alternative is to directly manage the
way in which rules within the same rule-flow group activate one another by including conditions in
each rule that prevent them from activating each other recursively when working memory has
been modified. For example, to use the example above once more, one would add a condition to
the rule that checks whether the discount has already been applied and, if so, ensures that the
rule does not activate.

4.8.3.9. The collect Conditional Element

~

O —{patiom)——{ o) eatiert {7 H

Figure 4.42. collect

Use the collect conditional element to make rules "reason” over a collection of objects that
have been obtained from either a given source or from the working memory.

In first-order logic terms this is known as the cardinality quantifier.

import java.util.ArrayList
rule "Raise priority if system has more than 3 pending alarms"
when

$system : System()

$alarms : ArraylList(size >= 3)

from collect(Alarm(system == $system, status == 'pending'))
then

Raise priority, because system $system has

3 or more alarms pending. The pending alarms

are $alarms.
end

In this case, the rule looks in the working memory for any pending alarms for each given system. It
then groups them in ArrayLists. If it finds three or more alarms for a given system, it fires.

collect's result pattern can be any "concrete" class that implements the java.util.Collection
interface and provides a default public constructor with no arguments. This means that one can use
Java collections like ArrayList, LinkedList, HashSet or even a custom class, as long as it
implements the java.util.Collection as long as it meets these requirements.

109

Chapter 4. The Rule Language

One can constrain both source and result patterns as any other pattern.

Variables bound before the collect conditional element are in the scope of both the source
and the result patterns. Use them to constrain these patterns. However, note that collect is a scope
delimiter for bindings, so that any binding made inside of it is not available for use outside of it.

collect can accept nested from conditional elements. Hence, the following example is a valid
use of collect:

import java.util.LinkedList;
rule "Send a message to all mothers"
when
$town : Town(name == 'Paris')
$mothers : LinkedList()
from collect(
Person(gender == 'F', children > 0)
from $town.getPeople()
)
then
send a message to all mothers
end

4.8.3.10. The accumulate Conditional Element

pafterm from']—-[‘accumulate’]7
|

A

accumuateFunction]"\

collact l H@_O

(v)
-

I.-"
Ly ——

Figure 4.43. accumulate

The accumulate conditional element is a more flexible and powerful form of collect. It
allows a rule to iterate over a collection of objects, executing custom actions for each of the elements.
Upon completion, it returns a result object.

110

Left-Hand Side Conditional Elements

This is the general syntax of the accumulate conditional element:

<result pattern> from accumulate(<source pattern>,
init(<init code>),
action(<action code>),
reverse(<reverse code>),
result(<result expression>))

Here is the meaning of each of these elements:

<source pattern>: thisis a regular pattern that the engine attempts to match with each of the
source objects.

<init code>: this is a semantic block of code in the selected dialect. It is executed once for each
tuple, before iterating over the source objects.

<action code>: this is a semantic block of code in the selected dialect that is executed for each of
the source objects.

<reverse code>: this is an optional semantic block of code in the selected dialect. If present,

it is executed for each source object that no longer matches the source pattern. The objective is
to undo any calculation performed in the <action code> block, so that the engine can do a
decremental calculation when a source object is modified or retracted. This improves performance
of these operations quite dramatically.

<result expression>: this is a semantic expression in the selected dialect that is executed after
all source objects are iterated.

<result pattern>: this is a regular pattern that the engine tries to match with the object
returned from the <result expression>. If it matches, the accumulate conditional element
evaluates it as true and the engine proceeds to evaluate the next conditional element in the rule.

If it does not match, the accumulate conditional element evaluates it as false and the engine
stops evaluating conditional elements for that rule.

Here is an example:

rule "Apply 10% discount to orders over US$ 100,00"
when
$order : Order()
$total : Number(doublevValue > 100)
from accumulate(OrderItem(order == $order, $value : value),
init(double total = 0;),
action(total += $value;),
reverse(total -= $value;),
result(total))
then
apply discount to $order
end

In this case, the following occurs:

1.

The engine executes the init code for each order in the working memory. This initialises the
total variable as zero.

It then iterates over all of the OrderItem objects for that order, executing the action for each one
(in this case, it sums the total value of all of the items and puts this into the total variable.)

It returns the value corresponding with the result expression (the value of variable total.)

111

Chapter 4. The Rule Language

4. The engine tries to match the result with the Number pattern, and if the double value is greater
than 100, the rule fires.

M

That example used Java as the semantic dialect. Because of this, note that the usage of the

semi-colon as the statement delimiter is mandatory in the init, action and reverse code

blocks. The result is an expression and, as such, it does not admit ;. If using any other dialect,
ays comply with its specific syntax.

Remember that the reverse code is optional, but Red Hat strongly recommends using it in
order to benefit from improved performance when using update and retract.
Use the accumulate conditional element to execute any action on source objects. The
example in the next section instantiates and populates a custom object.

4.8.3.10.1. Accumulate Functions

The accumulate conditional element is very powerful CE, but it is particularly easy to

use when utilising those predefined functions known as accumulate functions. They work almost
exactly like accumulate with the difference that, instead of explicitly writing custom code in every
accumulate conditional element, one can use the predefined code for common operations.

Here is an example. This demonstrates that the rule to apply a discount to orders can be programmed
in the following way with accumulate functions:

rule "Apply 10% discount to orders over US$ 100,00"

when

$order : Order()

$total : Number(doublevalue > 100)

from accumulate(OrderItem(order == $order, $value : value),
sum($value))

then

apply discount to $order

end

In this case, sum is an accumulate function. As its name implies, it sums the $value of every
OrderItem and returns the result.

JBoss Rules ships with the following built-in accumulate functions:

e average
e min

* max

* count

e sum

These common functions accept any expression as input. For instance, to calculate the average profit
on all of the items in an order, write a rule using the average function like this:

112

Left-Hand Side Conditional Elements

rule "Average profit"
when
$order : Order()
$profit : Number()
from accumulate(OrderItem(order == $order, $cost : cost, $price : price)
average(1 - $cost / $price))
then
average profit for $order is $profit
end

Every accumulate function is pluggable. This means that, if needed, customised, domain-specific
functions can be added to the engine quite easily. The rules can then start to use them without any
restrictions. To implement a new accumulate function all one needs to do is:

1. Create a Java class that implements the
org.drools.base.acumulators.AccumulateFunction interface.

2. Add a line to the configuration file or set a system property to let the engine know about the new
function.

The following example depicts an implementation of the average function:

*

* Copyright 2007 JBoss Inc

* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at

* http://www.apache.org/licenses/LICENSE-2.0

* Unless required by applicable law or agreed to in writing, software

* distributed under the License is distributed on an "AS IS" BASIS,

* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and

* limitations under the License.

* Created on Jun 21, 2007
*/
package org.drools.base.accumulators;

/**
* An implementation of an accumulator capable of calculating average values
*

* @author etirelli

*
*/
public class AverageAccumulateFunction implements AccumulateFunction {

protected static class AverageData {

public int count = 0;
public double total = 0;
}

/* (non-Javadoc)

* @see org.drools.base.accumulators.AccumulateFunction#createContext()
*/

public Object createContext() {

return new AverageData();

}

/* (non-Javadoc)
* @see org.drools.base.accumulators.AccumulateFunction#init(java.lang.Object)

113

Chapter 4. The Rule Language

3.

*/

public void init(Object context) throws Exception {
AverageData data = (AverageData) context;
data.count = 0;

data.total = 0;

}

/* (non-Javadoc)
* @see org.drools.base.accumulators.AccumulateFunction#accumulate(java.lang.Object,
* java.lang.Object)
*/
public void accumulate(Object context,
Object value) {
AverageData data = (AverageData) context;
data.count++;
data.total += ((Number) value).doubleValue();

}

/* (non-Javadoc)
* @see org.drools.base.accumulators.AccumulateFunction#reverse(java.lang.Object,
* java.lang.Object)
*/
public void reverse(Object context,
Object value) throws Exception {
AverageData data = (AverageData) context;
data.count--;
data.total -= ((Number) value).doubleValue();

}

/* (non-Javadoc)
* @see org.drools.base.accumulators.AccumulateFunction#getResult(java.lang.0Object)
*
/
public Object getResult(Object context) throws Exception {
AverageData data = (AverageData) context;
return new Double(data.count == 0 ? @ : data.total / data.count);

}

/* (non-Javadoc)

* @see org.drools.base.accumulators.AccumulateFunction#supportsReverse()
*/

public boolean supportsReverse() {

return true;

}
}

The code is very simple because all of integration work is undertaken by the engine.

To plug the functionality into the engine, add it to the configuration file:

drools.accumulate.function.average =
org.drools.base.accumulators.AverageAccumulateFunction

Always use the drools.accumulate.function. prefix.

org.drools.base.accumulators.AverageAccumulateFunction is the fully-qualified
name of the class that implements the behaviour of the function.

114

The Right-Hand Side

4.8.4. The Right-Hand Side

4.8.4.1. Usage

The right-hand side is the common name for the consequence or action part of the rule. It is here that
one places the list of actions that are to be executed.

7

It is bad practice to use imperative or conditional code on the right-hand side because a rule
should be atomic in nature ("When this, then do this", rather than "When this, maybe do this.")

The right-hand side of a rule should also be kept small, thus ensuring it remains declarative and
readable. If it seems that imperative and/or conditional code is heeded on the right-hand side,
then consider breaking the rule down into a number of smaller rules.
Use the right-hand side to insert, retract or modify working memory data. That is its purpose. To
assist with this, one can take advantage of the following convenience methods that modify working
memory without the need for one to firstly reference a working memory instance:

* Use update(object, handle) to tell the engine that an object (that has been bound
to something on the left-hand side) has changed and the rules may, therefore need to be
"reconsidered.”

* Use update(object) to make the Knowledge Helper look up the facthandle required. It does
so by using identity-checking the passed object. (If one is providing the Java beans with property
change listeners, one is inserting them into the engine, so there is no need to call update()
when the object changes.)

* Use insert(new Something ()) to place a newly-created object in working memory.

* insertLogical(new Something()) is similar to insert, with the difference that the object is
automatically retracted when there are no more facts to support the truth of the currently-firing rule.

* Use retract(handle) to removes an object from working memory.

The convenience methods are, in fact, just macros that provide short cuts to the Knowledge Helper
instance. By doing so, they allow one to access the working memory from the rules files.

The pre-defined KnowledgeHelper variable allows one to call several other useful methods:

* use drools.halt () to terminate rule execution immediately. Do this to return control to the point
at which the current session was started with fireuUntilHalt ().

» the insert(Object o), update(Object o) and retract(Object o) methods can be called
as well. (Due to their frequent use they can be called without the object reference.)

e use drools.getWorkingMemory () to return the working memory object.
* use drools.setFocus(String s) to setthe focus upon the specified agenda group.
e use drools.getRule().getName() to return the name of the rule.

« use drools.getTuple() to return the tuple that matches the currently executing rule.
drools.getActivation() returns the corresponding activation. (One will find these calls
useful during the debugging process.)

115

Chapter 4. The Rule Language

The full Knowlege Runtime application programming interface is exposed through

another predefined variable, kcontext, which is of the type KnowledgeContext. Its
getKnowledgeRuntime () method delivers an object of the type KnowledgeRuntime, which, in
turn, provides access to numerous methods, many of which are quite useful for coding right-hand side
logic.

« use the kcontext.getKnowledgeRuntime().halt () call to terminate rule execution
immediately.

« use the getAgenda() accessor to return a reference to this session's agenda. This, in turn will
provide access to the various activation, agenda and rule-flow groups. A relatively common use is
the activation of some agenda group, demonstrated here:

// give focus to the agenda group CleanUp
kcontext.getKnowledgeRuntime().getAgenda().getAgendaGroup("CleanUp").setFocus();

@

One can achieve the same thing in another way by by using
drools.setFocus("CleanUp").

e torun a query, call getQueryResults(String query), after which one may process the results
in the ways explained in Section 4.9, “Query”.

« there are a set of methods for dealing with event management that lets one add and remove
working memory and agenda event listeners.

« use the getkKnowledgeBase () method to return the KnowledgeBase object, which is the
"backbone" of the system and, indeed, the originator of the current session.

* manage globals with setGlobal(...), getGlobal(...) and getGlobals().

e use getEnvironment () to return the run-time's environment. (This is much like an operating
system's environment.)

4.8.4.2. The modify Statement

This is a language extension that provides a structured approach to undertaking fact updates. It
combines the update operation with a number of setter calls that change the object's fields. Here is
the syntactical schema for it;

modify (<fact-expression>) {
<expression> [, <expression>]*

}

M

The parenthesized <fact -expression> must yield a fact-object reference. Ensure that the
block's expression list consists of setter calls for the given object. (These will be written without
the usual object reference, which is automatically prep-ended by the compiler.)

116

Query

Here is a simple example of fact modification in practice:

rule "modify stilton"
when
$stilton : Cheese(type == "stilton")
then
modify($stilton){
setPrice(20),
setAge("overripe")

end

4.9. Query
(Cquery }—+((name }~—{(0)

Figure 4.44. query

A query is a simple way to search the working memory for facts that match the stated conditions.
Therefore, it contains only the structure of the LHS of a rule, so that you specify neither "when" nor
"then". A query has an optional set of parameters, each of which can also be optionally typed. If the
type is not given then the type Object is assumed. The engine will attempt to coerce the values as
needed. Query names are global to the KnowledgeBase, so do not add queries of the same name to
different knowledge packages for the same RuleBase.

To return the results use ksession.getQueryResults("name"), where "name" is the query's
name. This returns a list of query results, which allow you to retrieve the objects that matched the

query.

The first example is a simple query for all the people over the age of 30. The second one, using
parameters, combines the age limit with a location.

Example 4.19. Query People over the age of 30

query "people over the age of 30"
person : Person(age > 30)
end

117

Chapter 4. The Rule Language

Example 4.20. Query People over the age of x, and who live iny

query "people over the age of x" (int x, String y)
person : Person(age > X, location ==y)
end

We iterate over the returned QueryResults using a standard for loop. Each element is a
QueryResultsRow which we can use to access each of the columns in the tuple. These columns can
be accessed by bound declaration name or index position.

Example 4.21. Query People over the age of 30

QueryResults results = ksession.getQueryResults("people over the age of 30");
System.out.println("we have " + results.size() + " people over the age of 30");

System.out.println("These people are are over 30:");

for (QueryResultsRow row : results) {
Person person = (Person) row.get("person");
System.out.println(person.getName() + "\n");

4.10. Domain-Specific Languages

Domain Specific Languages (or DSLs) are a way of creating a rule language that is dedicated to your
problem domain. A set of DSL definitions consists of transformations from DSL "sentences" to DRL
constructs, which lets you use of all the underlying rule language and engine features. Given a DSL,
you write rules in DSL rule (or DSLR) files, which will be translated into DRL files.

DSL and DSLR files are plain text files, and can be created or modified with a text editor. DSL and
DSLRs can be can be used with both integrated development environments and the Business Rules
Management System web user interface.

4.10.1. When to Use a Domain-Specific Language

Domain-specific languages provide the following advantages:

» They can serve as a layer of separation between rule authoring and the domain objects upon which
the engine operates. This is useful if rules need to be read and validated by domain experts (such
as business analysts) who are not programmers. DSLs hide implementation details and focuses on
the rule logic.

« DSL sentences can also act as templates for conditional elements and consequence actions that
are used repeatedly in rules.

« DSLs have no impact on the rule engine at runtime, they are a compile time feature, requiring a
special parser and transformer.

4.10.2. Creating a Domain-Specific Language
Consider the following points when starting to develop a Domain-Specific Language:

« Technical and domain experts need to collaborate to create a domain-specific language.

118

Managing a Domain-Specific Language

« Initially write representative samples of the rules the application requires to gain an idea of their size
and complexity.

« Identify similar and recurring statements in the rules and mark the variable parts as parameters.
» Test the rules as the language is developed.
« Writing rules is generally easier if the application's data model represents the data types as facts.

» Implementation decisions concerning conditions and actions may be postponed during the initial
design phase by leaving conditional elements and actions in their DRL form by prefixing a line with a
greater than sign (">"). (This is also useful for inserting debugging statements.)

» Rules can be written by reusing the existing DSL definitions, or by adding a parameter to an existing
condition or consequence entry

e Try to keep the number of DSL entries small. Using parameters lets you apply the same DSL
sentence for similar rule patterns or constraints.

4.10.3. Managing a Domain-Specific Language
A domain-specific language's configuration is stored in a plain text file.

The DSL mechanism allows you to customize conditional expressions and consequence actions. A
global substitution mechanism keyword is also available.

[when]Something is {color}=Something(color=="{color}")

The following applies to the previous example:

» The [when] keyword indicates the scope of the expression, i.e., whether it is valid for the LHS or
the RHS of a rule.

» The part after the bracketed keyword is the expression to use in the rule; typically a natural
language expression, but it doesn't have to be.

» The part to the right of the first equal sign = is the mapping of the expression into the rule language.
The form of this string depends on its destination, RHS or LHS. If it is for the LHS, then it should to
be a term according to the regular LHS syntax; if it is for the RHS then it might be a Java statement.

Whenever the DSL parser matches a line from the rule file written in the DSL with an expression in

the DSL definition, it performs three steps of string manipulation. First, it extracts the string values
appearing where the expression contains variable names in braces (for instance, {color}). Then, the
values obtained from these captures are interpolated wherever that name, again enclosed in braces,
occurs on the right hand side of the mapping. Finally, the interpolated string replaces whatever was
matched by the entire expression in the line of the DSL rule file.

Note that the expressions (i.e., the strings on the left hand side of the equal sign) are used as regular
expressions in a pattern matching operation against a line of the DSL rule file, matching all or part of
a line. This means you can use a ? to indicate that the preceding character is optional. This helps to
overcome variations in the natural language phrases of your DSL. however, as these expressions are
regular expression patterns, this also means that all magic characters of Java's pattern syntax have to
be escaped with a preceding backslash ('\").

119

Chapter 4. The Rule Language

@ore

It is important to note that the compiler transforms DSL rule files line by line. In the above

example, all the text after "Something is " to the end of the line is captured as the replacement

value for "{colour}", and this is used for interpolating the target string.
To merge different DSL expressions to generate a composite DRL pattern, it is necessary to transform
a DSLR line in several independent operations. Do this by ensuring the captures are surrounded by
characteristic text - words or even single characters. The matching operation performed by the parser
extracts a substring from the line. In the example below, quotes are used as distinctive characters.
The characters used to surround the capture are not included during interpolation, just the content
between the characters.

Use quotes for textual data that a rule editor may want to enter. it is also possible to enclose the
capture with words to ensure that the text is correctly matched.

For instance:

[when]This is "{something}" and "{another}"=Something(something=="{something}",
another=="{another}")
[when]This is {also} valid=Another(something=="{also}")

Avoid using punctuation (other than quotes) in the domain-specific language expressions. Punctuation
is easily forgotten by rule authors using the DSL, and some punctuation marks (parentheses, period,
and question mark) requiring escaping in the DSL definition.

In a DSL mapping, the curly braces { and } should only be used to enclose a variable definition or
reference, resulting in a capture. If they should occur literally, either in the expression or within the
replacement text on the right hand side, they must be escaped with a preceding backslash ("\"):

[then]do something= if (foo) \{ doSomething(); \}

@vore

If curly braces { and } should appear in the replacement string of a DSL definition, escape them
with a backslash (\").
When capturing plain text from a DSL rule line and want to use it as a string literal in the expansion,
you must provide the quotes on the right hand side of the mapping.

Example 4.22. DSL Mapping Entries

#This is a comment to be ignored.

[when]There is a Person with name of "{name}"=Person(name=="{name}")

[when]Person is at least {age} years old and lives in "{location}"=Person(age >= {age},
location=="{location}")

[then]Log "{message}"=System.out.println("{message}");

[when]And = and

Given the Example 4.22, “DSL Mapping Entries”, the following examples show the expansion of
various DSLR snippets:

120

Adding Constraints to Facts

Example 4.23. DSL Mapping Entries Expansions

There is a Person with name of "kitty"
==> Person(name="kitty")
Person is at least 42 years old and lives in "Atlanta"
==> Person(age > 42, location="Atlanta")
Log "boo"
==> System.out.println("boo");
There is a Person with name of "Bob" and Person is at least 30 years old and lives in
"Atlanta"
==> Person(name="kitty") and Person(age > 30, location="Atlanta")

4.10.4. Adding Constraints to Facts

A common requirement when writing rule conditions is to be able to add an arbitrary combination of
constraints to a pattern. Given that a fact type may have many fields, having to provide an individual
DSL statement for each combination could be extremely difficult.

The DSL facility allows constraints to be added to a pattern by adding a hyphen - to the beginning of
the DSL expression. If the expression starts with a hypen it is assumed to be a field constraint and is
added to the last pattern line preceding it.

For example, with the Cheese class, which has the following fields: type, price, age, and country, it is
possible to express some left-hand side conditions in a normal DRL file as follows:

Example 4.24. LHS Conditions in a DRL
Cheese(age < 5, price == 20, type=="stilton", country=="ch")

The DSL definitions given in Example 4.25, “Adding Constraints” result in three DSL phrases which
may be used to create any combination of constraint involving these fields.

Example 4.25. Adding Constraints

[when]There is a Cheese with=Cheese()

[when]- age is less than {age}=age<{age}

[when]- type is '{type}'=type=='{type}'

[when]- country equal to '{country}'=country=="'{country}'

You can then write rules with conditions as follows:

Example 4.26. Writing Constraints

There is a Cheese with
- age is less than 42
- type is 'stilton'

The parser will pick up a line beginning with - and add it as a constraint to the preceding pattern,
inserting a comma when it is required. For Example 4.26, “Writing Constraints” example, the resulting
DRL is:

Cheese(age<42, type=='stilton')

121

Chapter 4. The Rule Language

Combining all all numeric fields with all relational operators (according to the DSL expression "age is
less than..." in the preceding example) produces a lot of DSL entries. DSL Phrases can be defined
for the various operators and even a generic expression that handles any field constraint, as shown
below. (Notice that the expression definition contains a regular expression in addition to the variable
name.)

[when][]is less than or equal to=<=
[when][]is less than=<

[when][]is greater than or equal to=>=
[when][]is greater than=>

[when][]is equal to===
[when][]equals===

[when][]There is a Cheese with=Cheese()

These definitions mean it is possible to write conditions textual (i.e., is less than).

@voe

The order of the entries in the DSL is important if separate DSL expressions are intended to
h the same line, one after the other.

To make a filtered list of field constraints appear with the Context Assistant, press - followed by
Ctrl+Space, and then choose an item from this list.)
Alter the domain-specific language code for the first item to read: [when] [org.drools.Cheese]-
age is less than {age}. Do the same to all of the other items in the example above.

The extra [org.drools.Cheese] code indicates that the sentence only applies to the main
constraint directly above it (which, in this case reads There is a Cheese with.)

For example, if there is a class called Cheese and a constraint is being added via the
Content Assistance approach, then only those items marked with an object-scope of
com.yourcompany .Something are valid, so only they will appear in the list. This is entirely optional.

4.10.5. DSL and DSLR Reference

A DSL file is a text file in a line-oriented format. Its entries are used for transforming a DSLR file into a
file with DRL syntax.

» Aline starting with # or // (with or without preceding white space) is treated as a comment. A
comment line starting with #/ is scanned for words requesting a debug option, see below.

* Any line starting with an opening square bracket [is assumed to be the first line of a DSL entry
definition.

* Any other line is appended to the preceding DSL entry definition, with the line end replaced by a
space.

A DSL entry consists of the following four parts:

* A scope definition:

122

DSL and DSLR Reference

¢ [condition] or [when]

¢ [consequence] or [then]
¢ [keyword], for instance rule or end.

The keyword indicates the scope of the entry, whether it has global significance, i.e., it is
recognized anywhere in a DSLR file.

* A type definition, written as a Java class name, enclosed in brackets. This part is optional unless the
the next part begins with an opening bracket. An empty pair of brackets is also valid.

» A DSL expression consists of a (Java) regular expression, with any number of embedded variable
definitions, terminated by an equal sign =. A variable definition is enclosed in curly braces { and
}. It consists of a variable name and two optional attachments, separated by colons :. If there is
one attachment, it is a regular expression for matching text that is to be assigned to the variable; if
there are two attachments, the first one is a hint for the GUI editor and the second one the regular
expression.

Note that all characters that are "magic” in regular expressions must be escaped with a preceding
backslash \ if they should occur literally within the expression.

» The remaining part of the line after the delimiting equal sign is the replacement text for any DSLR
text matching the regular expression. It may contain variable references, i.e., a variable name
enclosed in curly braces. Optionally, the variable name may be followed by an exclamation mark !
and a transformation function, see below.

Note that curly braces { and } must be escaped with a preceding backslash \ if they should occur
literally within the replacement string.

Debugging of DSL expansion can be turned on, selectively, by using a comment line starting with #/
which may contain one or more words from the table presented below. The resulting output is written
to standard output.

Table 4.2. Debug options for DSL expansion

Word Description

result Prints the resulting DRL text, with line numbers.

steps Prints each expansion step of condition and
consequence lines.

keyword Dumps the internal representation of all DSL
entries with scope keyword.

when Dumps the internal representation of all DSL
entries with scope when or *.

then Dumps the internal representation of all DSL
entries with scope then or *.

usage Displays a usage statistic of all DSL entries.

Below are some sample DSL definitions, with comments describing the language features they
illustrate.

Comment: DSL examples

123

Chapter 4. The Rule Language

#/ debug: display result and usage

#

keyword definition: replaces '"regula" by "rule"

[keyword][]Jregula=rule

#

conditional element: "T" or "t", "a" or "an", convert matched word

[when][][Tt]here is an? {entity:\w+}=

#

${entity!lc}: ${entitylucfirst} ()

consequence statement: convert matched word, literal braces

[then][]Jupdate {entity:\w+}=modify(${entity!lc})\{ \}

4.10.6. The Transformation of a DSLR File

The transformation of a DSLR file proceeds as follows:

1.

2.

The text is read into memory.

Each of the keyword entries is applied to the entire text. First, the regular expression from the
keyword definition is modified by replacing white space sequences with a pattern matching any
number of white space characters, and by replacing variable definitions with a capture made from
the regular expression provided with the definition, or with the default " . *?. Then, the DSLR text
is searched exhaustively for occurrences of strings matching the modified regular expression.
Substrings of a matching string corresponding to variable captures are extracted and replace
variable references in the corresponding replacement text, and this text replaces the matching
string in the DSLR text.

Sections of the DSLR text between when and then, and then and end, respectively, are located
and processed in a uniform manner, line by line, as described below.

For a line, each DSL entry pertaining to the line's section is taken in turn, in the order it appears in
the DSL file. Its regular expression part is modified: white space is replaced by a pattern matching
any number of white space characters; variable definitions with a regular expression are replaced
by a capture with this regular expression, its default being . *?. If the resulting regular expression
matches all or part of the line, the matched part is replaced by the suitably modified replacement
text.

Modification of the replacement text is done by replacing variable references with the text
corresponding to the regular expression capture. This text may be modified according to the string
transformation function given in the variable reference; see below for details.

If there is a variable reference naming a variable that is not defined in the same entry, the
expander substitutes a value bound to a variable of that name, provided it was defined in one of
the preceding lines of the current rule.

If a DSLR line in a condition is written with a leading hyphen, the expanded result is inserted
into the last line, which should contain a pattern CE, i.e., a type name followed by a pair of
parentheses. If this pair is empty, the expanded line (which should contain a valid constraint) is
simply inserted, otherwise a comma , is inserted beforehand.

If a DSLR line in a consequence is written with a leading hyphen, the expanded result is inserted
into the last line, which should contain a modify statement, ending in a pair of curly braces {
and }. If this pair is empty, the expanded line (which should contain a valid method call) is simply
inserted, otherwise a comma , is inserted beforehand.

124

String Transformation Functions

@

It is currently not possible to use a line with a leading hyphen to insert text into other conditional
element forms (e.g., accumulate) or it may only work for the first insertion (e.g., eval).

4.10.7. String Transformation Functions
All string transformation functions are described in Table 4.3, “String transformation functions”.

Table 4.3. String transformation functions

Name Description

uc Converts all letters to upper case.
Ic Converts all letters to lower case.
ucfirst Converts the first letter to upper case, and all

other letters to lower case.

num Extracts all digits and - from the string. If the
last two digits in the original string are preceded
by . or,, adecimal period is inserted in the
corresponding position.

a?blc Compares the string with string a, and if they are
equal, replaces it with b, otherwise with c. But ¢
can be another triplet a, b, ¢, so that the entire
structure is, in fact, a translation table.

The following DSL examples show how to use string transformation functions.

Example 4.27. DSL String Transformation Functions

definitions for conditions

[when][]There is an? {entity}=${entity!lc}: {entityl!ucfirst}()

[when][]- with an? {attr} greater than {amount}={attr} <= {amount!num}

[when][]- with a {what} {attr}={attr} {what!positive?>0/negative?%lt;0/zero?==0/ERROR}

A file containing a DSL definition is customarily given the extension .ds1. It is passed to the
Knowledge Builder with ResourceType .DSL. For a file using DSL definition, the extension .dslr
should be used. The Knowledge Builder expects ResourceType.DSLR. The IDE, however, relies on
file extensions to correctly recognize and work with your rules file.

The DSL must be passed to the Knowledge Builder ahead of any rules file using the DSL.

KnowledgeBuilder kBuilder = new KnowledgeBuilder();

Resource dsl = ResourceFactory.newClassPathResource(dslPath, getClass());
kBuilder.add(dsl, ResourceType.DSL);

Resource dslr = ResourceFactory.newClassPathResource(dslrPath, getClass());
kBuilder.add(dslr, ResourceType.DSLR);

For parsing and expanding a DSLR file the DSL configuration is read and supplied to the parser. The
parser can recognize the DSL expressions and transform them into native rule language expressions.

4.10.8. Domain-Specific Languages in the BRMS and in the IDE

If you are using the Guided Editor to develop rules, domain-specific languages can still be used.

125

Chapter 4. The Rule Language

M

Keep them as simple as possible because the Guided Editor cannot handle some complex
expressions.
The Guided Editor allows you to define little data-capture text field "forms." (i.e., upon picking a
domain-specific language expression, it will add an item to the GUI which only allows you to enter data
to the {token}.

The domain-specific languages will be included automatically when a package is built in the BRMS.

To include domain-specific languages in the integrated development environment, use the drools-
ant task, or alternatively, incorporate the code shown in Section 4.11, “XML Rule Language”.

4.11. XML Rule Language

As an option, JBoss Rules also supports a "native" XML rule language as an alternative to DRL. This
allows you to capture and manage your rules as XML data. Just like the non-XML DRL format, the
XML format is parsed into the internal "AST" representation - as fast as possible (using a SAX parser).
There is no external transformation step required. All the features are available with XML that are
available to DRL.

4.11.1. When to use XML

There are several scenarios that XML is desirable. However, we recommend that it is not a default
choice, as XML is not readily human readable (unless you like headaches) and can create visually
bloated rules.

Other scenarios where you may want to use the XML format are if you have a tool that generates
rules from some input (programmatically generated rules), or perhaps interchange from another rule
language, or from another tool that emits XML (using XSLT you can easily transform between XML
formats). Note you can always generate normal DRL as well.

Alternatively you may be embedding JBoss Rules in a product that already uses XML for
configuration, so you would like the rules to be in an XML format. You may be creating your own rule
language on XML - note that you can always use the AST objects directly to create your own rule
language as well (the options are many, due to the open architecture).

4.11.2. The XML format

A full W3C standards (XML Schema) compliant XSD is provided that describes the XML language,
which will not be repeated here verbatim. A summary of the language follows.

<?xml version="1.0" encoding="UTF-8"?>

<package name="com.sample"
xmlns="http://drools.org/drools-4.0"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema-instance"
xs:schemaLocation="http://drools.org/drools-4.0 drools-4.0.xsd">

<import name="java.util.HashMap" />
<import name="org.drools.*" />

<global identifier="x" type="com.sample.X" />
<global identifier="yada" type="com.sample.Yada" />

126

The XML format

<function return-type="void" name="myFunc">
<parameter identifier="foo" type="Bar" />
<parameter identifier="bada" type="Bing" />
<body>System.out.println("hello world");</body>
</function>

<rule name="simple_rule">
<rule-attribute name="salience" value="10" />
<rule-attribute name="no-loop" value="true" />
<rule-attribute name="agenda-group" value="agenda-group" />
<rule-attribute name="activation-group" value="activation-group" />

<lhs>
<pattern identifier="fo002" object-type="Bar" >
<or-constraint-connective>
<and-constraint-connective>
<field-constraint field-name="a">
<or-restriction-connective>
<and-restriction-connective>
<literal-restriction evaluator=">" value="60" />
<literal-restriction evaluator="<" value="70" />
</and-restriction-connective>
<and-restriction-connective>
<literal-restriction evaluator="<" value="50" />
<literal-restriction evaluator=">" value="55" />
</and-restriction-connective>
</or-restriction-connective>
</field-constraint>

<field-constraint field-name="a3">
<literal-restriction evaluator="==" value="black" />
</field-constraint>
</and-constraint-connective>

<and-constraint-connective>
<field-constraint field-name="a">
<literal-restriction evaluator="==" value="40" />
</field-constraint>

<field-constraint field-name="a3">
<literal-restriction evaluator="==" value="pink" />
</field-constraint>
</and-constraint-connective>

<and-constraint-connective>
<field-constraint field-name="a">
<literal-restriction evaluator="==" value="12"/>
</field-constraint>

<field-constraint field-name="a3">
<or-restriction-connective>
<literal-restriction evaluator="==" value="yellow"/>
<literal-restriction evaluator="==" value="blue" />
</or-restriction-connective>
</field-constraint>
</and-constraint-connective>
</or-constraint-connective>
</pattern>

<not>
<pattern object-type="Person">
<field-constraint field-name="1likes">
<variable-restriction evaluator="==" identifier="type"/>
</field-constraint>
</pattern>

<exists>

127

Chapter 4. The Rule Language

<pattern object-type="Person">
<field-constraint field-name="1likes">
<variable-restriction evaluator="==" identifier="type"/>
</field-constraint>
</pattern>
</exists>
</not>

<or-conditional-element>
<pattern identifier="fo03" object-type="Bar" >
<field-constraint field-name="a">
<or-restriction-connective>
<literal-restriction evaluator="==" value="3" />
<literal-restriction evaluator="==" value="4" />
</or-restriction-connective>
</field-constraint>
<field-constraint field-name="a3">
<literal-restriction evaluator="==" value="hello" />
</field-constraint>
<field-constraint field-name="a4'">
<literal-restriction evaluator="==" value="null" />
</field-constraint>
</pattern>

<pattern identifier="foo4" object-type="Bar" >
<field-binding field-name="a" identifier="a4" />
<field-constraint field-name="a">

<literal-restriction evaluator="1!=" value="4" />
<literal-restriction evaluator="1!=" value="5" />
</field-constraint>
</pattern>

</or-conditional-element>

<pattern identifier="foo05" object-type="Bar" >
<field-constraint field-name="b">
<or-restriction-connective>
<return-value-restriction evaluator="==" >
a4 + 1
</return-value-restriction>
<variable-restriction evaluator=">" identifier="a4" />
<qualified-identifier-restriction evaluator="==">
org.drools.Bar.BAR_ENUM_VALUE
</qualified-identifier-restriction>
</or-restriction-connective>
</field-constraint>
</pattern>

<pattern identifier="fo006" object-type="Bar" >
<field-binding field-name="a" identifier="a4" />
<field-constraint field-name="b">
<literal-restriction evaluator="==" value="6" />
</field-constraint>
</pattern>
</lhs>
<rhs>
if (a==Db) {
assert(foo3);
} else {
retract(foo4);
}
System.out.println(a4);
</rhs>
</rule>

</package>

128

The XML format

In the preceding XML text you will see the typical XML element, the package declaration, imports,
globals, functions, and the rule itself. Most of the elements are self explanatory if you have some
understanding of the JBoss Rules features.

The import elements import the types you wish to use in the rule.
The global elements define global objects that can be referred to in the rules.

The function contains a function declaration, for a function to be used in the rules. You have to
specify a return type, a unique name and parameters, in the body goes a snippet of code.

The rule is discussed below.

Example 4.28. Detail of rule element

<rule name="simple_rule">

<rule-attribute name="salience" value="10" />

<rule-attribute name="no-loop" value="true" />

<rule-attribute name="agenda-group" value="agenda-group" />
<rule-attribute name="activation-group" value="activation-group" />

<lhs>
<pattern identifier="cheese" object-type="Cheese">
<from>
<accumulate>
<pattern object-type="Person"></pattern>
<init>
int total = 0;
</init>
<action>
total += $cheese.getPrice();
</action>
<result>
new Integer(total));
</result>
</accumulate>
</from>
</pattern>

<pattern identifier="max" object-type="Number">
<from>
<accumulate>
<pattern identifier="cheese" object-type="Cheese"></pattern>
<external-function evaluator="max" expression="$price"/>
</accumulate>
</from>
</pattern>
</1lhs>
<rhs>
list1.add($cheese);
</rhs>
</rule>

In the above detail of the rule we see that the rule has LHS and RHS (conditions and consequence)
sections. The RHS is simple, it is just a block of semantic code that will be executed when the rule
is activated. The LHS is slightly more complicated as it contains nested elements for conditional
elements, constraints and restrictions.

A key element of the LHS is the Pattern element. This allows you to specify a type (class) and perhaps
bind a variable to an instance of that class. Nested under the pattern object are constraints and
restrictions that have to be met. The Predicate and Return Value constraints allow Java expressions to
be embedded.

129

Chapter 4. The Rule Language

That leaves the conditional elements, not, exists, and, or etc. They work like their DRL counterparts.
Elements that are nested under and an "and" element are logically "anded" together. Likewise with
"or" (and you can nest things further). "Exists" and "Not" work around patterns, to check for the
existence or nonexistence of a fact meeting the pattern's constraints.

The Eval element allows the execution of a valid snippet of Java code - as long as it evaluates to a
boolean (do not end it with a semi-colon, as it is just a fragment) - this can include calling a function.
The Eval is less efficient than the columns, as the rule engine has to evaluate it each time, but it is a
"catch all" feature for when you can express what you need to do with Column constraints.

4.11.3. Automatic transforming between formats (XML and DRL)

JBoss Rules comes with some utility classes to transform between formats. This works by parsing the
rules from the source format into the AST, and then "dumping" out to the appropriate target format.
This allows you, for example, to write rules in DRL, and when needed, export to XML if necessary at
some point in the future.

The classes to look at if you need to do this are:

XmlDumper - for exporting XML.
DrlDumper - for exporting DRL.
DrlParser - reading DRL.

XmlPackageReader - reading XML.

Using combinations of the above, you can convert between any format (including round trip). Note that
DSLs will not be preserved (from DRLs that are using a DSL) - but they will be able to be converted.

Feel free to make use of XSLT to provide all sorts of possibilities for XML, XSLT and its ilk are what
make XML powerful.

130

Chapter 5.

Using Spreadsheet Decision Tables

Read this chapter to learn about the ways in which decision tables can be used.

Decision tables are a way of representing conditional logic, and are well-suited to the task of depicting
business-level rules.

JBoss Rules lets you manage rules by storing them in a spreadsheet format, such as CSV or . XLS.

JBoss Rules uses decision tables to generate rules derived the data entered into the spreadsheet.
One can take advantage of all the usual data capture and manipulation features of a spreadsheet to
build these data sets.

5.1. When Should Decision Tables be Used?

Consider using decision tables if there are rules that can be expressed as templates and data. In each
row of a decision table, data is collected. It is then combined with the templates to generate a rule.

Do not use decision tables if the rules in question do not follow a set of templates, or where there are
a small number of rules. It also comes down to personal preference: some users simply prefer using
spreadsheet applications and some do not.

Decision tables also insulate the user underlying object model, which may or may not be preferable.

5.2. Overview

Here are some example decision tables:

B17 - # Catastrophic Claim
1
s
112 B | C D E
|£
Type of New Claim Iz case catastrophic Allocation code Claim 1
16
1 T Catastrophic Claim v
New Claim with previous Accident num 2
18
Previous Open claim 1 P
19
20 Dependency Claim 8
2‘] Dependency Claim]
29 Interstate Claim A
23 Interstate Claim D
24 Interstate Claim N
Interstate Claim 5

25
M 4 » »’\Tables/ Lists / < >
Figure 5.1. Using Excel to Edit a Decision Table

131

Chapter 5. Using Spreadsheet Decision Tables

d | L
mer Allocate to Team Stop processing Log reason
Team Red) . .
Stop processing The claim was catastrophic

Figure 5.2. Multiple Actions for a Rule Row

File Edit View Insert Format Tools Data Window Help X

Bl PRSRIVE L hR-¢ 60 AU QY HOBEA| D |

REC

i by |Tahoma 7 MBru szz==# s%%an =09 -4,
B17 M f & = |Catastroph|ccla|m |
1
4
iz B [T D E F G |
A
#
16 Type of New Claim Is case catastrophic Allocation code Claim Type | Insurance Class |Date of accident is after
17 ‘ Catastrophic Claim v

18 Lew Claim with previous Accident| 2
num

19 Previous Open claim 1 4

20 Dependency Claim 8

21 Dependency Claim 9

22 Interstate Claim A

23 Interstate Claim D

24 Interstate Claim N

25 Interstate Claim s

26 Interstate Claim T |ﬂ
44 » Fl ' Tables <l m E|
| Sheet1/2 || Pagestyle_Tables \l:l \:IEH Sum=0 |

Figure 5.3. Using OpenOffice.org Calc

In the above examples, the technical aspects of the decision table have been collapsed (a
standard spreadsheet feature).

The rules start from row seventeen. (Each row results in a rule.) The conditions are in column C, D, E
and so forth. (The actions are off-screen.) As can be seen, the values in the cells are quite simple, and
have meaning when one observes the headers in row sixteen. (Column B is just a description.)

It can sometimes be helpful to use colour to indicate the meanings of different areas of the table.

132

How Decision Tables Work

Although the decision tables look like they process the data from the top down, this is not
necessarily the case. It is best practice to write rules in such a way that order does not matter
(simply because it will make maintenance easier and eliminate the need to constantly shift rows
around.)

Each row is a rule and so, hence, the same principles apply. As the rule engine processes the facts,
any rules that match will "fire." Users are sometimes confused by this; it is possible to clear the
agenda when a rule fires and simulate a very simple decision table at the point where the first match
exists. Decision tables are simply a tool to generate DRL packages automatically.

You can have multiple tables on the one spreadsheet. This is helpful because rules can be
grouped when they share common templates, yet still ultimately be combined into a single rule
package.)

T T H] |)

1
2| Module
& RuleSet
g
£l

1.validarAperturaCaja (Caja, Registro Estado Sucursal, Transaccion)

ID_Caso de Uso| Caso de Uso Identificadores de las Reglas pn:;:‘;::::e Nombres de las Reglas Descripciones
12
Esta Regla tiene por Mision Validar que la sucursal de k
se encuentre abierta
1 2000 ValdaraperturaCajasucursal Trabaja sobre la Caja que se intenta abrir, la Sucurse

Ablerta corresponde a esa caja v la Transaccidn de Car
" apertura
Esta Regla tiene por Mision Validar que en la sucursal
Caja se encuentre abierta para la misma fecha de ape
ValidarAperturaCajaMismaFe |de la caja.

cha Trabaja sobre la Caja que se intenta abrir, la Sucurse
corresponde a esa caja y la Transaccion de Ca
L} aperfura

2 2000

2.ValidarCierreCajasSucursal(Registro Estado Sucursal, TransaccionCaja)
Prioridades de

ID_Caso de Uso| Caso de Uso Identificadores de las Reglas las Reglas Nombres de las Reglas Descripciones
2z
Esta Regla tiene por Misidn Validar que al momeni
C PRSC 503 efectuarse el Cierre Contable de una Sucursal de FO?
- 7 odas las Cajas de esta Ulima se encuentren en E
C_PRSC_504 1 1000 ValidarCierreCajassucursal K has.
C_PRSC_513 Cerrado, es decir la Fecha de Cierre de Caja debe ser

a la Fecha de cierre de la entidad Registro_Cierre_Suc

3.validarTransaccionCaja(Caja, Transaccion_Caja)

RuleTable[3] ValidarTransaccionCaja(CajaVO caja, MovimientoCajaVO movimientoCaja)
ID_Caso deUso Caso de Uso Identificador Prioridad Nombre

Figure 5.4. A Real-Life Example Using Multiple Tables to Group Like Rules

5.3. How Decision Tables Work

The key point to keep in mind is that in a decision table, each row is a rule, and each column in
that row is either a condition or action for that rule.

133

Chapter 5. Using Spreadsheet Decision Tables

M
2 li
A2 B C D E F G
+
=+ Tape of New Claim Is case catastrophic Allocation code Each column Insurance Class Date of accident is after
16 may be a
) . condition. or
17 Catastrophic Claim v action ste
Mew Claim with previous Aceident num z
L |
Each row results in a rule
A L
vy
21 Dependency Claim
22 Interstate Claim
23 Interstate Claim
24 Interstate Claim -
o5 Claim I']
M 4 » v\ Tables Lists / I« i [>]]

Figure 5.5. Rows and Columns

The spreadsheet looks for the RuleTable keyword to indicate the starting row and column of a

rule table. (Other keywords used to define other package level attributes are covered later in this
chapter.) It is important to keep the keywords in the one column. By convention, the second column
("B") is used for this, but it can be any column (it is also a convention is to leave a margin on the left
for notes). In the following diagram, "C" is actually the column where it starts. Everything to the left of

this is ignored.

Expand the hidden sections so that more can be seen if this helps one to understand it.

Note the keywords in Column "C."

134

How Decision Tables Work

File Edit View Insert Format Tools Data Window Help ®
= .) 3
B-2lia @ &GEEE T XE = @& s P Q]
H [Tahoma F [ERE BEEEE hwwws BED
c17 [~] fo 2 = |
1]z B | c | D | E | [+]
Vi
8
5 | [P
10 mpaort org.drools.decisiontable. Cheese, org.drools.dec
L |1 | TP 1
12
- [13 T — S R
14 CONDITION CONDITION ACTION B
15 Person Cheese list
16
(descriptions) age type add® Fparam”)
17 Case Persons age Cheese type Log
— 0ld guy 42 stilton 0ld man stilton
19 Young guy
21 cheddar Young man cheddar
20
_'_l 21 I\l'ariahle; java.util List list]
22 =
73 _
“ Tables /Tists / K 3 |
Sheet 1/ 2 PageStyle_Tables 100% STD Sum=0 Average=

Figure 5.6. Expanded for Rule Templates

The RuleSet keyword indicates the name to be used in the rule package under which all of the
rules are to be grouped. (Not that the name is optional. It will have a default but the RuleSet keyword
must be present.) The other keywords visible in Column C are Import and Sequential, which will
are covered later in this chapter. At this stage, just note that, in general, the keywords make up name/
value pairs.

The RuleTable keyword is important as it indicates that a group of rules will follow, and that these
will be based on some rule templates.

After the RuleTable keyword there is a name. This is used as a prefix of the rules names that are
generated. (The row numbers are appended to create unique rule names.) The RuleTable column
indicates the column in which the rules start (the columns to the left of it are ignored.)

The CONDITION and ACTION keywords in Row 14 indicate that the data in the columns below is
either for the LHS or the RHS part of a rule. (There are other attributes that can also be optionally set
in this way.)

Row 15 contains declarations of ObjectTypes. The content in this row is optional, leave a blank row
if you do not want to use it. When this row is used, the values in the cells below (in Row 16) become
constraints on that object type. In the above case, it will generate: Person(age=="42") (where

42 comes from Row 18). In the above example, the == is implicit, if you just put a field name, it will
assume that you are looking for exact matches.

135

Chapter 5. Using Spreadsheet Decision Tables

@e

It is possible to make the ObjectType declaration span columns (by merging cells). This results

in all of those columns below the merged range being combined into a single set of constraints.
Row 16 contains the rule templates themselves. They can use the $para place holder to indicate
where data from the cells will be populated. Use $param, or $1, $2 and so forth to indicate
parameters from a comma-separated list located in a cell below.)

Row 17 is ignored; it contains a textual description of the rule template.

Row 18 to 19 show data, which will be combined (interpolated) with the templates in Row 15, to
generate the actual rules. If a cell contains no data, then its template is ignored. Rule rows are read
until a blank row is encountered. (One can have multiple RuleTables in a sheet.)

Row 20 contains another keyword and a value. (Remember that the row positions of keywords like this
do not matter but it is best practice to put them at the top. However, their column should be the same
one as that in which the RuleTable or RuleSet keywords appear (in this case column C has been
chosen but one can use Column A if this is preferred.)

In the above example, rules will be rendered like this (as the ObjectType row is being used):

//row 18
rule "Cheese_fans_18"
when
Person(age=="42")
Cheese(type=="stilton")
then
list.add("0ld man stilton");
end

Note that [age=="42"] and [type=="stilton"] are interpreted as single constraints to be added
to the respective ObjectTypes in the cell above (if the cells above were spanned, then there would
be multiple constraints on one "column".)

5.4. Keywords and Syntax

5.4.1. Template Syntax

The syntax used is slightly differs between the CONDITION column and ACTION column. In most
cases, it is identical to "vanilla" DRL for the LHS or RHS respectively. This means in the LHS, the
constraint language must be used and, in the RHS, it is a snippet of code intended for execution.

The $param place holder is used in templates to indicate where data form the cell will be interpolated.
You can also use $1 to the same effect. If the cell contains a comma separated list of values, the
symbols $1, $2, etc. may be used to indicate which positional parameter from the list of values in

the cell will be used. The forall(DELIMITER){SNIPPET} function can be used to loop over all
available comma separated values.

Here is an example:

If the templates is [Foo(bar == $param)] and the cell is [42] then the result will be
[Foo(bar == 42)]

136

Template Syntax

If the template is [Foo(bar < $1, baz == $2)] and the cell is [42,43] then the result will be
[Foo(bar > 42, baz ==43)]

For conditionals, snippets are rendered dependent on the presence or absence of ObjectType
declarations in the row above. If they are present, the snippets are rendered as individual constraints
on that ObjectType. If there are not any, they are simply rendered as is (with values substituted.)

If a plain field (as in the example above) is entered, it will assume this means equality. If another
operator is placed at the end of the snippet, the values will be interpolated at the end of the constraint,
otherwise it will look for $param as outlined previously.

For consequences, snippets are rendered dependent on the presence or absence of anything in the
row immediately above it. If there is no entry, the output is simply the interpolated snippets. If there
is something there, such as a bound variable or a global (like in the example above), then it will be
appended as a method call on that object.

Here are some more examples:

RuleTable Cheese fans
15 [Person
16
dge Ype
17 Persons age Cheese type
18]
42 stilton
19
21 cheddar

Figure 5.7. Spanned Column

The example above shows how the Person ObjectType declaration spans two spreadsheet
columns. Thus, both constraints will appear as Person(age == ... , type == ...). As before,
only the field names are present in the snippet, implying an equality test.

137

Chapter 5. Using Spreadsheet Decision Tables

[CONDITION
Person

_|lpge=="§param’

Persons age

42

Figure 5.8. With Parameters

In this example, interpolation is used to place the values in the snippet (the result being Person(age
—_— ll42ll))

[CONDITION 1
Person

Persons age

42

Figure 5.9. Operator Completion

The conditional example above demonstrates that if an operator is put on the end by itself, the values
will be placed after the operator automatically.

138

Keywords

c: Cheese

type

Cheese type

stilton
Figure 5.10. With Binding

It is possible to put a binding in before the column (the constraints will be added from the cells below.)
Anything can be placed in the ObjectType row, an example being a pre-condition for the columns
that follow.)

ACTION

list.add("§ param”);

Log

Old man stilton

Figure 5.11. Consequence

This final example shows how the consequence can be achieved by simple interpolation, just by
leaving the cell above blank (the same applies to condition columns.) Using this method, anything can
put in the consequence, not just one method call.

5.4.2. Keywords

The following table describes the keywords that are necessary for the rule table structure.

Table 5.1. Keywords

Description Inclusion Status
RuleSet The cell to the right of this One only (if left out, it will
contains the ruleset name. default).

139

Chapter 5. Using Spreadsheet Decision Tables

Keyword

Sequential

Description

The cell to the right of this can
be true or false. If true, then
salience is used to ensure the
rules fire from the top down.

Inclusion Status

Optional

Import

The cell to the right contains a
comma separated list of Java
classes to import.

Optional

RuleTable

RuleTable indicates the start
of a rule table definition. (The
actual rule table starts on the
next row down.) The rule table
is read from left to right, top to
bottom, until the next blank row
is encountered.

At least one, if there are more,
then they are all added to the
one ruleset

CONDITION

Indicates that this column will
be for rule conditions.

At least one per rule table

ACTION

Indicates that this column will
be for rule consequences.

At least one per rule table

PRIORITY

Indicates that this column's
values will set the 'salience'
values for the rule row. Over-
rides the 'Sequential’ flag.

Optional

DURATION

Indicates that this column's
values will set the duration
values for the rule row.

Optional

NAME

Indicates that this column's
values will set the name for the
rule generated from that row.

Optional

Functions

The cell immediately to the
right can contain functions
which can be used in the

rule snippets. JBoss Rules
supports functions defined

in the DRL, allowing logic to
be embedded in the rule, and
changed without hard coding,
use with care. Same syntax as
regular DRL.

Optional

Variables

The cell immediately to the right
can contain global declarations
which JBoss Rules supports.
This is a type, followed by

a variable name. If multiple
variables are needed, separate
them with commas.

Optional

No-loop or Unloop

Placed in the header of a table,
no-loop or unloop will both
complete the same function

of not allowing a rule (row) to

Optional

140

Keywords

Keyword Description Inclusion Status

loop. For this option to function
correctly, there must be a value
(true or false) in the cell for the
option to take effect. If the cell
is left blank then this option will
not be set for the row.

XOR-GROUP Cell values in this column mean | Optional
that the rule row belongs to
the given Activation group .

An Activation group means
that only one rule in the named
group will fire (i.e., the first one
to fire cancels the other rules'
activations).

AGENDA-GROUP Cell values in this column mean | Optional
that the rule row belongs to
the given Agenda group. (This
is one way of controlling flow
between groups of rules - see
also "rule flow").

RULEFLOW-GROUP Cell values in this column mean | Optional
that the rule row belongs to the
given rule-flow group.

Worksheet By default, the first worksheet N/A
is only looked at for decision
tables.

Here are some use-cases for the HEADER keyword, which affects the rules generated for each row.
Note that the header name itself is the most significant thing in most cases. If no value appears in the
cells below it, the attribute will not be applied to that specific row.

RuleTable Old Driver™
CONDITION CONMDITION RULEFLOW-GROUP NO-LOOP ACTION ACTION

Sdriver: Driver

3 ‘iptions) licenceYears priorClaims insert{naw Apprave("$param”}; ystem_out .printlnl "Spa
100 a5e Persons age Prior Claims Inserting approvment
11 d guy 30 1 risk assessment Safe and mature Old driver Approved

Figure 5.12. Example Usage of Keywords

This example demonstrates the following keywords: Import (which is comma-delimited), Variables
(which is a global and also comma-delimited) and function block (which can be comprised of
multiple functions and uses the normal DRL syntax. It can appear in the same column as the RuleSet
keyword or be below all of the rule rows.)

141

Chapter 5. Using Spreadsheet Decision Tables

[GontroiGaasii j

Import foo.Bar, bar.Baz

Variables Parameters parametros, RulesResult resultado, b
EvalDate fecha

Functions Yfunction boolean isRango(int iValor, int iRangolInicio, bl

int iRangoFinal) {
if (IRangoInicio <= iValor && iValor <= iRangoFinal)
return true;
return false;

by

function boolean isIgualTipo(TipoVO tipoVQ, int
p_tipo, boolean isNull) {
if (tipoVO == null)
return isNull;
return tipoVO0.getSecuencia().intValue() == p_tipo;
by

Figure 5.13. Example Usage of Keywords for Functions

5.5. Creating and Integrating Spreadsheet Based Decision
Tables

Find the application programming interface used in conjunction with spreadsheet based decision
tables in the drools-decisiontables module. Only one class is of relevance, this being
SpreadsheetCompiler. This class takes spreadsheets in various formats and generates DRL rules
which can then be used in the normal way.

The SpreadsheetCompiler can also be used to generate partial rule files which can later be
assembled into a complete rule package. (Use this to separate the technical and non-technical
aspects of the rules.)

Base them on a sample spreadsheet or, if using the Rule Workbench IDE plug-in, utilise its in-
built wizard to generate a spreadsheet from a template and then edit it with an XLS- compatible
spreadsheet application.

142

Managing Business Rules in Decision Tables

d

x

‘*'fv :ﬁ;v@v%v étﬂ’@’

Mew Rule Project

Mew Rule resource

MNew Domain Specific Language
Mew Decision Table

1 N s

Figure 5.14. Using the Integrated Development Environment

5.6. Managing Business Rules in Decision Tables

5.6.1. Workflow and Collaboration

Decision tables are ideal for situations where there is a need for close collaboration between IT and
domain experts, using decision tables keeps the business rules clear for analysts.

To create business rules, follow this process:

1.

The business analyst obtains a decision table template (from a repository or from IT staff).
The business analyst enters decision table business language descriptions into the template.
Decision table rules (rows) are entered (as a rough draft)

The decision table is handed to a programmer, who maps the business language (descriptions) to
scripts (this may involve software development, if it is a new application or data model)

The programmer reviews the modifications with the business analyst.
The business analyst can continue editing the rule rows as needed (moving columns, etc).

The programmer can develop test cases for the rules to be used to verify rule changes once the
system is running.

5.6.2. Using Spreadsheet Features

Use LibreOffice's Calc features to assist in entering spreadsheet data. Lists stored in other worksheets
can be used to provide valid lists of values for cells.

a
-

A ”
—0 bl
_N —
. |

T
— |
_IIIIIIIII —
— v—

Figure 5.15. Using Worksheet Lists

143

Chapter 5. Using Spreadsheet Decision Tables

M

Red Hat recommends using a version control system to maintain a history of the changes.

144

Chapter 6.

The Java Rule Engine Application
Programming Interface

6.1. Introduction

JBoss Rules provides an implementation of JSR94, the Java rule engine application programming
interface (API.) Multiple rule engines can be run with this single API. Read this chapter to learn more
about the capabilities of this API.

@voe

JSR94 does not, in any way, interact with the rule language itself.
It is important to remember that the JSR94 standard represents the "lowest common denominator"
in terms of features across rule engines. This means that there is less functionality in the JISR94 API
than can be found in the standard JBoss Rules API. Hence, by using JSR94, one will forfeit some of
the capabilities granted by JBoss Rules' rule engine.

To access fuller functionality (including globals and DRL, DSL and XML files), use property maps.
Note that, by doing this, non-portable functionality is, of course, introduced. Furthermore, as JSR94
does not provide a rule language, one is only reducing complexity by a small fraction when switching
rule engines. There is very little to gain from the move. Therefore, whilst Red Hat provides support for
JSR94 if one insists upon using it, programmers are strongly recommended to use the JBoss Rules
APl instead.

6.2. How To Use the API

JSR94 consists of two parts. The first of these is the Administrative API, which is used to build
and register RuleExecutionSets. The second part is the run-time session, used to execute
those same RuleExecutionSets.

6.2.1. Building and Registering RuleExecutionSets

The RuleServiceProviderManager manages the registration and retrieval of
RuleExecutionSets. The JBoss Rules RuleServiceProvider implementation is automatically
registered via a static block when the class is loaded using Class . forNamem. (This occurs in much
the same way as it does for JDBC drivers.)

Example 6.1. Automatic RuleServiceProvider Registration

// RuleServiceProviderImpl is registered to "http://drools.org/"
// via a static initialization block
Class.forName("org.drools.jsr94.rules.RuleServiceProviderImpl");

// Get the rule service provider from the provider manager.
RuleServiceProvider ruleServiceProvider =
RuleServiceProviderManager.getRuleServiceProvider("http://drools.org/");

The RuleServiceProvider provides access to the RuleRuntime and RuleAdministration
APIs. The RuleAdministration provides an administration API for the management of

145

Chapter 6. The Java Rule Engine Application Programming Interface

RuleExecutionSets. This makes it possible to register a RuleExecutionSet that can then be
retrieved via the RuleRuntime.

To create and register a RuleExecutionSet, follow these steps:

1. Create a RuleExecutionSet;the RuleAdministrator provides factory methods to return
either an empty LocalRuleExecutionSetProvider or RuleExecutionSetProvider.

2. Use the LocalRuleExecutionSetProvider to load a RuleExecutionSet from a local, non-
serialisable source, such as a stream.

The RuleExecutionSetProvider can be used to load RuleExecutionSets from serializable
sources, like DOM elements or knowledge packages.

The ruleAdministrator.getLocalRuleExecutionSetProvider(null); and
ruleAdministrator.getRuleExecutionSetProvider(null); methods both accept
null as a parameter. This is because the properties map for these methods is not currently
being used.

Example 6.2. Registering a LocalRuleExecutionSet with the RuleAdministrator API

// Get the RuleAdministration

RuleAdministrator ruleAdministrator = ruleServiceProvider.getRuleAdministrator();

LocalRuleExecutionSetProvider ruleExecutionSetProvider =
ruleAdministrator.getLocalRuleExecutionSetProvider(null);

// Create a Reader for the drl
URL drlUrl = new URL("http://mydomain.org/sources/myrules.drl");
Reader drlReader = new InputStreamReader(drlUrl.openStream());

// Create the RuleExecutionSet for the drl
RuleExecutionSet ruleExecutionSet =
ruleExecutionSetProvider.createRuleExecutionSet(drlReader, null);

In the example above, the

ruleExecutionSetProvider.createRuleExecutionSet(reader, null) takes a null
parameter for theproperties map; (however, it can actually be used to provide configuration
information for the incoming source.) When null is passed, the default is used to load the input from
a DRL file. The keys which one is allowed to use for a map are source and dsl. source takes dr1l or
xml as its value. Simply set source to drl to load a DRL file and, likewise, set it to xml to load an XML
file. (xm1 will ignore any dsl key/value settings.) The dsl key can use either a reader ora string
(the contents of the domain-specific language) as a value.

Example 6.3. Specifying a Domain-Specific Language When Registering a LocalRuleExecutionSet

// Get the RuleAdministration

RuleAdministration ruleAdministrator = ruleServiceProvider.getRuleAdministrator();

LocalRuleExecutionSetProvider ruleExecutionSetProvider =
ruleAdministrator.getLocalRuleExecutionSetProvider(null);

// Create a Reader for the drl
URL drlUrl = new URL("http://mydomain.org/sources/myrules.drl");
Reader drlReader = new InputStreamReader(drlUrl.openStream());

146

Using "Stateful" and "Stateless" Rule Sessions

// Create a Reader for the dsl and a put in the properties map
URL dslUrl = new URL("http://mydomain.org/sources/myrules.dsl");
Reader dslReader = new InputStreamReader(dslUrl.openStream());
Map properties = new HashMap();

properties.put("source", "drl");

properties.put("dsl", dslReader);

// Create the RuleExecutionSet for the drl and dsl
RuleExecutionSet ruleExecutionSet =
ruleExecutionSetProvider.createRuleExecutionSet(reader, properties);

The name to be used for the retrieval of a RuleExecutionSet must be specified when it is
registered. (There is also a field intended to allow one to "pass" properties; as this is currently
unused, just pass hull.)

Example 6.4. Register the RuleExecutionSet

// Register the RuleExecutionSet with the RuleAdministrator
String uri = ruleExecutionSet.getName();
ruleAdministrator.registerRuleExecutionSet(uri, ruleExecutionSet, null);

6.2.2. Using "Stateful" and "Stateless" Rule Sessions

The run-time is obtained from the RuleServiceProvider. It is used to create stateful and
stateless rule engine sessions.

Example 6.5. Obtaining the RuleRunTime

RuleRuntime ruleRuntime = ruleServiceProvider.getRuleRuntime();

In order to create a rule session, follow these instructions:

1. Use either one of the two public constants for RuleRuntime, namely
RuleRuntime.STATEFUL_SESSION_TYPE or RuleRuntime.STATELESS_SESSION_TYPE.

2. Provide the uniform resource indicator for the RuleExecutionSet to be used to instantiate the
RuleSession.

3. Either set the properties map to null or use it to specify globals. (This is shown in the next
section.)

4. The createRuleSession(....) method returns a RuleSession instance. Cast this to either
StatefulRuleSession or StatelessRuleSession.

Example 6.6. Stateful Rule

(StatefulRuleSession) session =
ruleRuntime.createRuleSession(uri,
null,
RuleRuntime.STATEFUL_SESSION_TYPE);
session.addObject(new PurchaseOrder("lots of cheese"));

147

Chapter 6. The Java Rule Engine Application Programming Interface

session.executeRules();

The StatelessRuleSession has a very simple API; use it to call executeRules(List 1list)
(which passes a list of objects) and, optionally, a filter. The resulting objects will then be returned.

Example 6.7. Stateless Rule

(StatelessRuleSession) session =
ruleRuntime.createRuleSession(uri,
null,
RuleRuntime.STATELESS_SESSION_TYPE);
List list = new ArrayList();
list.add(new PurchaseOrder("even more cheese"));

List results = new ArrayList();
results = session.executeRules(list);

6.2.3. Globals

It is possible to support globals with JSR94, albeit in a non-portable manner. To achieve this, use a
method that passes the properties map to the RuleSession factory. Firstly, define the globals in
either the DRL or the XML file, lest an exception be thrown.

The key represents the identifier declared in either the DRL or the XML file. The value of this key is
the instance to use in the execution. In the following example, the results are collected in a global
java.util.List list:

Example 6.8. Globals

java.util.List globallList = new java.util.ArrayList();

java.util.Map map = new java.util.HashMap();

map.put("list", globallList);

//0pen a stateless Session

StatelessRuleSession srs =

(StatelessRuleSession) runtime.createRuleSession("SistersRules",

map,
RuleRuntime.STATELESS_SESSION_TYPE);

// Persons added to List

// call executeRules() giving a List of Objects as parameter
// There are rules which will put Objects in the List

// fetch the list from the map

List list = (java.util.List) map.get("list");

Do not forget to declare the global list in the DRL file. Do so in this way:

Example 6.9. Global List

package SistersRules;

import org.drools.jsr94.rules.Person;

global java.util.List list

rule FindSisters

when
$personl : Person ($namel:name)
$person2 : Person ($name2:name)
eval($personl.hasSister($person2))

then

148

References

list.add($personl.getName() + " and " + $person2.getName() +" are sisters");
assert($personl.getName() + " and " + $person2.getName() +" are sisters");
end

6.3. References

To learn more about JSR94, please refer to one or more of the following documents:

« Official JCP Specification for Java Rule Engine API (JSR 94)
http://www.jcp.org/en/jsr/detail?id=94

» The Java Rule Engine APl Documentation
http://www.javarules.org/api_doc/api/index.html|

» Friedman-Hill, E. Jess and the javax.rules API. TheServerSide.com, 2003
http://www.theserverside.com/articles/article.tss?I=Jess

* Mahmoud, Q. H. Getting Started with the Java Rule Engine API (JSR 94): Toward Rule-Based
Applications. Sun Developer Network, 2005

http://java.sun.com/developer/technicalArticles/J2SE/JavaRule.html

* Rupp, N. A. The Logic From The Bottom Line: an Introduction to the Drools Project.
TheServiceSide.com, 2004

http://www.theserverside.com/articles/article.tss?I=Drools

149

http://www.jcp.org/en/jsr/detail?id=94
http://www.javarules.org/api_doc/api/index.html
http://www.theserverside.com/articles/article.tss?l=Jess
http://java.sun.com/developer/technicalArticles/J2SE/JavaRule.html
http://www.theserverside.com/articles/article.tss?l=Drools

150

Chapter 7.

JBoss Developer Studio

The JBoss Developer Studio application is the only supported integrated development environment
(IDE) for JBoss Rules. It provides a set of features that many programmers find very helpful. Read
this chapter to learn how to use it.

JBoss Rules IDE's components are also available separately as Eclipse plug-ins.

The JBoss Developer Studio is not required to write rules and the JBoss Rules engine is in no
way dependent on the Eclipse environment.

File Edit Nawvigate Search Project Run Window Help —
|ror & |9~ [0 Q- | B @G | &R bR | B
[Package E 5 %% Navigator| = O il iiiiiii ﬁ i =8
& v package com.sample B
= =4 FinancialRules = “import com.sample.DroolsTest.Message;
P src/mainfjava
W Erefmaliri Srule "Hello World”
~ @ src/mainfrules = when
Q sarnple.dri m : Message(status == Message.HELLO, message : me
) then
P =\ JRE System Library [java-1.50| | System.out.println(message);
b =) Drools Library m.setMessage("Goodbye cruel world" };
m.setStatus(Message.GOODBYE)| |
b E=src || update(m }; 3
[P g Nl end
[4] 11l [»]
o ; =g “rule "GoodBye"
o= Cutline &3 when
G Qe o @ Message(status == Message.GOODBYE, message : mess
then
< f com.sample System.out.println(message);
d
i) GoodBye en
%) Hello World =
‘= com.sample DroolsTest Messag; (] il [1»]
Text Editor| Rete Tree
[Z Problems 2 . B Properties} 49 Audit View} = =08
0 items
Description Resource Path
(o] Il [Te]]|(<d n | [»]
E<’ Writable Insert 11 : 40

Figure 7.1. Overview

151

Chapter 7. JBoss Developer Studio

7.1. Overview

JBoss Developer Studio possesses the following features:

« A DRL syntax aware-editor that provides content assistance functionality (including an outline view)

* A domain-specific language extension-aware editor that also provides content assistance
functionality

* A Rule-Flow Graphical Editor for editing rule-flow graphs (which represent processes). These can
then be applied to the rule packages, granting them imperative control.

« Wizards to create the following:
 "rules" projects
* Rule resources, (in the form of either DRL or BRL files.

» Domain Specific language.

Decision tables.
* Rule-flows.

+ a domain-specific language editor for creating and managing mappings between the custom
language and the rule language.

* Rule validation automatically re-builds the rule every time a change is made to it. It reports any
errors encountered via the Problem View.

7.2. Drools Runtimes

A Drools runtime is a collection of jar files that represent one specific release of the Drools project jars.
To create a runtime, you must point the IDE to the release of your choice. If you want to create a new
runtime based on the latest Drools project jars included in the plugin itself, you can also easily do that.
You are required to specify a default Drools runtime for your Eclipse workspace, but each individual
project can override the default and select the appropriate runtime for that project specifically.

7.2.1. Defining a Drools Runtime

To define one or more Drools runtimes using the Eclipse preferences view you open up your
Preferences, by selecting the "Preferences" menu item in the menu "Window". A "Preferences"
dialog should show all your settings. On the left side of this dialog, under the Drools category, select
"Installed Drools runtimes". The panel on the right should then show the currently defined Drools
runtimes. If you have not yet defined any runtimes, it should look like the figure below.

152

Defining a Drools Runtime

‘e Preferences |3

[._ pe Filter text eg] @ select a default Drools Runtime -

General F Add, remove or edit Drools Runtime definitions. By default, the checked Drools Runtime is added to the build path of newly created
Ant Drools projects.
Data Management

Drools
Drools Flow nodes Name Location Add...

Installed Drools Rul —

Drools Task
I Google BB
Guvnor
Help
Install/Update
Java
JavaEE
Java Persistence
Javascript
Maven

Installed Drools Runtimes

d v = - |,

Plug-in Development
Remote Systems
Run/Debug

Server

Tasks

[T .

® Come [o

T T T OV W W WV VY VW W W

(]

To define a new Drools runtime, click on the add button. A dialog such as the one shown below should
pop up, asking for the name of your runtime and the location on your file system where it can be
found.

Either select an existing Drools Runtime on your file system or create a new one.

Mame:

Path:

Create a new Drools 5 Runtime ...

Cancel

In general, you have two options:

1.

To use the default jar files as included in the Drools Eclipse plug-in, you can create a new Drools
runtime automatically by clicking the "Create a new Drools 5 runtime ..." button. A file browser will
show up, asking you to select the folder on your file system where you want this runtime to be
created. The plug-in will then automatically copy all required dependencies to the specified folder.
After selecting this folder, the dialog should look like the figure shown below.

If you want to use one specific release of the Drools project, you should create a folder on your file
system that contains all the necessary Drools libraries and dependencies. Instead of creating a

153

Chapter 7. JBoss Developer Studio

new Drools runtime as explained above, give your runtime a name and select the location of this
folder containing all the required jars.

& Drools Runtime 3
Either seleckt an existing Drools Runtime on your file system or create a new one.
MName: drools-5.1.1

Path: /home/manstis/libraries/drools/drools-5.1.1

| Create a new Drools 5 Runtime ...

Cancel | | (o] .4

After clicking the OK button, the runtime should show up in your table of installed Drools runtimes, as
shown below. Click on checkbox in front of the newly created runtime to make it the default Drools
runtime. The default Drools runtime will be used as the runtime of all your Drools project that have not
selected a project-specific runtime.

[Preferences 3

[t;-p-‘: filter text gl Installed Drools Runtimes -

b General Add, remove or edit Drools Runtime definitions. By default, the checked Drools Runtime is added to the build path of newly created

b Ant Drools projects.
> Data Management
= Drools
Drools Flow nodes Name Location Add...

drools5.1.1 ' /home/manstis/libraries/drools/droolss.1.1
Drools Task

P Google Remove
Guvnor

Installed Drools Runtimes

Help
Install/Update
Java

Java EE

Java Persistence
JavaScript
Maven

Plug-in Development
Remote Systems
Run/Debug
Server

Tasks

s)

©) [ol |[oc |

TV VWY VYV YV VYV VYWV

You can add as many Drools runtimes as you need. For example, the screenshot below shows a
configuration where two runtimes have been defined: a Drools 5.1.1 runtime and a Drools 5.2.0.M2
runtime. The Drools 5.1.1 runtime is selected as the default one.

154

Selecting a runtime for your Drools project

Installed Drools Runtimes -

) (&

General Add, remove or edit Drools Runtime definitions. By default, the checked Drools Runtime is added to the build path of newly created

Ant Drools projects.
Data Management

Installed Drools Runtimes
Drools

[

P
P
P

Drools Flow nodes Name ' Location
| Installed Drools Ru drools-5.1.1 §,"home,"manstis,l’libraries,"drools,"drools-s.I.I |

Edit. |
Drools Task E—

P Google | Remove |
Guvnor

Help
Install/Update
Java

Java EE

Java Persistence
JavaScript
Maven

Plug-in Development
Remote Systems
Run/Debug

Server

Tasks

- 0]
(T >

@:l | Cancel | | OK |

vV v OV VY WV WV VY W W W W

Note that you will need to restart Eclipse if you changed the default runtime and you want to make
sure that all the projects that are using the default runtime update their classpath accordingly.

7.2.2. Selecting a runtime for your Drools project

Whenever you create a Drools project (using the New Drools Project wizard or by converting an
existing Java project to a Drools project using the action "Convert to Drools Project” that is shown
when you are in the Drools perspective and you right-click an existing Java project), the plugin will
automatically add all the required jars to the classpath of your project.

When creating a new Drools project, the plugin will automatically use the default Drools runtime for
that project, unless you specify a project-specific one. You can do this in the final step of the New
Drools Project wizard, as shown below, by deselecting the "Use default Drools runtime" checkbox
and selecting the appropriate runtime in the drop-down box. If you click the "Configure workspace
settings ..." link, the workspace preferences showing the currently installed Drools runtimes will be
opened, so you can add new runtimes there.

155

Chapter 7. JBoss Developer Studio

w

Drools Runtime

)

Select a Drools Runtime

Use default Drools Runtime (currently drools-5.1.1)

Drools Runtime:

Configure Workspace Settings...

L

Cenerate code compatible with: | Drools 5.0.x

@ < Back Mext Cancel l [Finish

You can change the runtime of a Drools project at any time by opening the project properties and
selecting the Drools category, as shown below. Mark the "Enable project specific settings" checkbox
and select the appropriate runtime from the drop-down box. If you click the "Configure workspace
settings ..." link, the workspace preferences showing the currently installed Drools runtimes will be
opened, so you can add new runtimes there. If you deselect the "Enable project specific settings"
checkbox, it will use the default runtime as defined in your global preferences.

156

Creating a Rule Project

Properties For DroolsProjeck

[t:.-pe filter text @] Drools

P Resource ole orch o i
Builders [] Enable project specific settings

Configure Workspace Settings...

Drools Runtime: | drools-5.1.1

| - |

P Google

Java Build Path

Java Code Skyle

Java Compiler

P Java Editor
Javadoc Location

= =

Project Facets
Project References
Run/Debug Settings
Task Repository

-

Task Tags
P Walidation
WikiText

®@

[Restore Qel‘aulljl [

Apply

[Cancel

I

oK |

7.3. Creating a Rule Project

The aim of the new project wizard is to set up an executable scaffold project to start using rules
immediately. This will set up a basic structure, the classpath, sample rules and a test case to get you

started.

157

Chapter 7. JBoss Developer Studio

New Drools Project @

Create a new Drools Project

Project name: [Financial Rules l

[Use default location

Location: [r’hnmer’demeJBDSIFinanciaIRules ” Browse. . |

7 Next > H Finish H Cancel

Figure 7.2. Scaffolding for a New Rules Project

When you creating a new rule project, choose whether to add default artifacts such as rules, decision
tables and rule flows. These will serve as starting points and will give one an executable almost
immediately. Treat this as a scaffold to customize. Study this simple Hello World rule:

5% =0

& financialRules

= [src/mainfjava
< 1 com.sample
[> [J] DroolsTestjava
~ & src/main/rules
4} Sample.dr|
[> =i |RE Systemn Library [java-1.60-5un-1.6.0.7]
[> =i Drools Library

[= src

Figure 7.3. New Rule Project Result

The newly created project contains an example rule file (Sample.drl) in the src/rules directory and an
example Java file (DroolsTest.java) that can be used to execute the rules in a Drools engine. You'll
find this in the folder src/java, in the com.sample package. All the other jars that are necessary during

158

Creating a New Rule and Wizards

execution are also added to the classpath in a custom classpath container called Drools Library. Rules
do not have to be kept in "Java" projects at all, this is just a convenience for people who are already
using Eclipse as their Java IDE.

@roe

Strictly speaking, rules do not have to be kept in Java projects at all. This is just a convenience
for those readers who are already using JBoss Developer Studio as their Java IDE.

The JBoss Developer Studio provides a feature called the JBoss Rules Builder which
automatically re-builds and validates rules every time the resources they use change. When
projects are created using the Rule Project Wizard, this feature is enabled by default. One can
ajso enable it manually for any other kind of project.

Significantly more processing is incurred when files have large numbers of rules (typically more
than five hundred.) This is because each rule will be rebuilt every time there is a file change. If
this becomes a problem, one has two options. The easiest solution is to temporarily disable the
builder. The alternative is to move the large rules into . rule files. These files are ignored by the
builder but one will need to run them in a unit test to validate the rules they contain.

Create a rule either by generating an empty text file with a . dr1 file extension or by using the Wizard.
Invoke the Wizard's menu by pressing Control+N or simply click on the toolbar's JBoss Rules icon.

159

Chapter 7. JBoss Developer Studio

Select a wizard —

Wizards:

ype filter text

< = Drools

[+]

|j Decision Table

|xxx|

& Domain specific Language
{;) Drools Project
{7 Guided Rule

¥ Rule Resource

=2 RuleFlow File

L¢]

[* (= Eclipse Modeling Framewark

o

(7 < Back Next = Finish Cancel

Figure 7.4. The Wizard Menu

The Wizard will then prompt the user for input by presenting some options related to generating a rule
resource. (If unsure of what to input, note that the responses can be changed later.)

To store rule files, create a directory called src/rules and add suitably named subdirectories. Note
that the package name is mandatory and is similar to that for a package in Java (in other words, it
establishes a name-space in which to group related rules.)

160

Textual Rule Editor

Mew Rules File @

Hint: Press CTRL+5PACE when editing rules to get content
sensitive assistance/popups.

Enter or select the parent folder:

FinancialRules

L S

v & FinancialRules

File name:

Type of rule resource: | New DRL (rule package) |*-*

Use a DSL: []

Use functions: []

Rule package name:

Advanced ==

\£) =< Back MNext = Finish Cancel

Figure 7.5. New Rule Wizard

Having run the Wizard, a scaffold or skeleton has been created, which one can now "flesh out." As
with all wizards, it is merely an optional helper; there is no obligation to use it if one does not desire to
do so.

7.5. Textual Rule Editor

The Rule Editor is the tool which rule managers and developers will be using the most. The Rule
Editor possesses the standard features of a normal JBoss Developer Studio text editor. In addition

161

Chapter 7. JBoss Developer Studio

to these, it provides provides "pop-up" contextual assistance. To access this functionality, press the
Control and Space keys simultaneously.

% *Basic-rules.drl ©2 i hr-lang.dsl
#created on: 7/03/2006
package YourRulePackage

expander hr-lang.dsl

rule "Your First Rule"

when
#conditions
There exists a Person with name of {name}

then there exists a Person with name of {name}
Person is at least {age} years old and lives in {locatic
then lessage {Messagel
end
rule "Yo
#inc " here._ ..
when
[4 I 111} | m
then—
#actions
end

Figure 7.6. The Rule Editor in Action

The Rule Editor can open files that have a .drl or . rule extension. Usually these contain a number
of related rules but it is also possible to have each rule in an individual file, grouped by virtue of being

in the same package namespace.

@

Data in DRL files is stored in plain text format.
In the example above, the rule group is using a domain-specific language. Note the presence of the
expander keyword, which tells the rule compiler to look for a . ds1 file of that name, the purpose of
which is to resolve the rule language. Even with the domain-specific language available, the rules are
still stored as plain text, mirroring what can be seen onscreen. This makes management of rules much

more simple when, for instance, comparing versions.

162

The Guided Editor

The editor features an outline view. This remains synchronised with the rule structure (it updates
each time the file is saved.) Use it to quickly and efficiently navigating among rules by name. It is
particularly helpful in larger files with many hundreds of rules. Note that, by default, it lists items
alphabetically.

= COMm.sample

1) GoodBye
49 Hello World

‘= cc:nmsampIE.DrnnlsTest.Messagl

Figure 7.7. The Rule Outline View

7.6. The Guided Editor

The JBoss Developer Studio also possesses a feature known as the Guided Editor. This is similar
to the web based editor available in the BRMS. It allows one to build rules graphically.

-
Guided rule editor
* WHEN |_-=<j
Persan K
iF age O |is less than v| | 42 | D
5F name B |is equal ko V| | EBiob | Q@
Yehicle ¥ &=
5 type B |is equal ko v|| | S
 THEN |_-=<j
assert slert =R message I:I =]
! (options) =5
Rle Builder] BRL Source | Generated DRL (read-onky) |

Figure 7.8. The Guided Editor

To create a rule using this tool, follow these steps:

1. Click on the Wizard menu.

163

Chapter 7. JBoss Developer Studio

2. Create a .brl file and open it in the Guided Editor

K

The Editor works by using a . package file in the same directory as the .br1 file. In this
file resides the package name and import statements, just like those one finds at the top of a
normal .dr1l file.

3. Populate the package file with the required fact classes.

4. Having added this information, follow the prompts presented by the Guided Editor as it presents
facts and their associated fields.

Once the model or fact classes have been supplied, Guided Editor is able to render a graphical
representation of the rule. Alternatively, one can use it and then build rules through direct use of

the business rules language. One way to achieve this is by using the drools-ant module, which
creates all of the rule assets as a rule package in a directory, enabling one to deploy it as a binary file.
Alternatively, use the following snippet of code to convert the BRL file to a .dr1 rule.

Example 7.1. Conversion Code

BRXMLPersitence read = BRXMLPersitence.getInstance();
BRDRLPersistence write = BRDRLPersistence.getInstance();
String brl = ... // read from the .brl file as needed...
String outputDRL = write.marshall(read.unmarshal(brl));
// Pass the outputDRL to the PackageBuilder, as usual

7.7. JBoss Rules Views

Use views to check the state of the JBoss Rules engine when debugging an application. Three view
are provided, namelyworking memory, the Working Memory View, the Agenda View and the
Global Data View. (There is also an Audit View.) To use them, create break-points in the code that
will invoke the working memory. (The line that calls workingMemory.fireAllRules() isa
good candidate.) If the debugger halts at that joinpoint, select the working memory variable in
the Debugging Variables view. Next, use the following features to show the details of the selected
working memory:

* The Working Memory View will show all of the elements in JBoss Rules' working memory.

* The Agenda View will, as its name implies, show all of the elements on the agenda. (The name
and bound variables for each rule are shown.)

» The Global Data View displays all of the global data currently defined in JBoss Rules' working
memory.

* The Audit View displays, in the form of a tree, the audit logs that were generated when the rules
engine executed.

164

The Working Memory View

7.7.1. The Working Memory View

e S —— s =
i
+
b

| Agenda View E}] Warking Memary View X Global Data View |

Tearest user 1™

The Working Memory View shows all elements in the working memory of the Drools engine.
An action is added to the right of the view, to customize what is shown:

Click the Show Logical Structure icon to toggle between two options, these being that of showing the
logical structure of each of the elements in the working memory, and that of showing the details of
these elements. Logical structures help one to visualise sets of elements easily. The logical structure
of AgendaItems shows both its rule and the values of all the parameters used by that rule.

7.7.2. The Audit View

|Problems | Jauadocé Dedlaration | Console Audit View X Error Log

= ¥ Activation executed: Rule assignFirstSeat context=[fid: 10: 10]; count=[fid: 11: 11]; quest=[fid:3:5]
B Object asserted (12): [Seatingid=1 , pid=0 , pathDone=true , leftSeat=1, leftGuestiame=n5, rightSeat=1
- B (Object asserted (13): [Path id=1, seat=1, guest=n5]
= Object modified (11): [Count value=2]
: Activation created: Rule assignFirstSeat context=[fid: 10: 10]; count=[fid: 11: 15]; guest=[fid:0:0]
Activation created: Rule assignFirstseat context=[fid: 10: 10]; count=[fid: 11: 15]; quest=[fid: 1:1]

Activation created: Rule assignFirstSeat context=[fid: 10: 10]; count=[fid: 11: 15]; guest=[fid: 3:3]
Activation created: Rule assignFirstSeat context=[fid: 10: 10]; count=[fid: 11: 15]; guest=[fid: 4:4]
Activation created: Rule assignFirstSeat context=[fid: 10: 10]; count=[fid: 11: 15]; guest=[fid: 5:5]
Activation created: Rule assignFirstSeat context=[fid: 10:10]; count=[fid: 11: 15]; guest=[fid:&:8]
Activation created: Rule assignFirstSeat context=[fid: 10:10]; count=[fid: 11: 15]; quest=[fid: 7:7]
: Activation created: Rule assignFirstSeat context=[fid: 10: 10]; count=[fid: 11: 15]; guest=[fid:3:8]
El Object modified (10): [Context state=ASSIGN_SEATS]

Rl A ctivation cancell ™ Show Caee t context=[fid: 10:16]; count=[fid: 11:15]; guest=[fid: 2:Z

7 Activation cancelleas = t context=[fid: 10: 16]; count=[fid: 11: 15]; guest=[fid: 4:4]

1353334183

Use the following code to create an audit log:

Example 7.2. Set Up Audit Log

WorkingMemory workingMemory = ruleBase.newwWorkingMemory();

// Create a new Working Memory Logger, that logs to file.
wWorkingMemoryFileLogger logger = new WorkingMemoryFilelLogger (workingMemory);
// An event.log file is created in the subdirectory log (which must exist)
// of the working directory.

logger.setFileName("log/event");

165

Chapter 7. JBoss Developer Studio

workingMemory.assertObject(...);
workingMemory.fireAllRules();

// stop logging
logger .writeToDisk();

Open the log by clicking the Open Log action, the first icon in the Audit View, and select the file.
The Audit View now shows all events that were logged during the executing of the rules. There are
different types of events, each with a different icon:

1. Object inserted (green square)

2. Object updated (yellow square)

3. Object removed (red square)

4. Activation created (right arrow)

5. Activation canceled (left arrow)

6. Activation executed (blue diamond)

7. Rule-flow started or ended ("process" icon)

8. Rule-flow group activated or deactivated ("activity" icon)
9. Rule package added or removed ("JBoss Rules" icon)
10. Rule added or removed (also the "JBoss Rules" icon)

All of these event records provide extra information about what has occurred. In the case of working
memory events (such as insert, modify and retract), these details include the id and toString
representation of the object. In case of an activation event (created, cancelled or executed), these
include the name of the rule and all the variables bound in the activation.

e

If an event occurs whilst an activation is being executed, it is shown as a child of that execution.

To find out the cause of an event, select it. The cause, if available, will be displayed in green.
Alternatively, right-click on the action and select the Show Cause menu entry. This will cause the
cursor to jump down to the point in the log at which the cause is recorded.

@e

The cause of an object "modification™ or "retraction” is recorded as the last event for that object.
This is either the "object asserted" or the last "object modified" event against that same object.

The cause of an "activation canceled" or "executed" event is the corresponding "activation
created" event.

Domain-Specific Languages

7.8. Domain-Specific Languages

Domain-specific language functioanlity allows one to create a custom language in which English-
language rules can be written. In other words, the domain-specific language reads like a natural
language. To utilise, follow this process:

1. Note how a business analyst describes the rule in his own words.

2. Map this to the object model via rule constructs. (An additional benefit of this is that it can provide
an insulation layer between the domain objects and the rules themselves.)

A domain-specific language will grow as the number of rules expands. It is most efficient when
on terms are used repeatedly, albeit with different parameters.

The Rule Workbench provides an editor for domain-specific languages. (As the languages

are stored in plain text format, one can use any editor that one desires; however, the Rule
Workbench tool has the advantage of providing a slightly-enhanced version of the Properties
file format.)

The Editor will be invoked on any file with a .ds1 extension (there is also a wizard to create a
sample .dsl1 file).

7.8.1. Editing languages

{5 *hr-lang.dsl &2 =g

Editing Domain specific language: [fFnancialRules/hr-lang.dsl]

Description:

Language Expression Rule Language Mapping Ohbject | Scope

There is an Person with name of {name} Person{name == "{name}") [condition]

Person is at least {age} and lives in {location} Person{age = {age} location == "{loc [condition]

Log : "{message}" System.outprintin("{message}"); [consequence]

Send a message to {Person} with message {Me EmailUtil.sendEmail("{Person [consequence]
Expression: [Person is at least {age} and lives in {location} l l Edit]
Mapping: [Person(age = {age}.location == "{location}" l l Remove]
Object: [| [Add]
Sort by: [~ [Sort]

Figure 7.9. The Domain-Specific Language Editor

The Domain-Specific Language Editor provides a tabular view of the mapping of language to
rule expressions. (The "Language Expressions" are those that are used in the rules.) The Domain-
Specific Language Editor also feeds the content assistance for the Rule Editor. This is so that it can

167

Chapter 7. JBoss Developer Studio

suggest language expressions to the domain-specific language configuration. (The Rule Editor loads
this configuration when the rule resource file is opened.) The rule's language mapping defines the
"code" into which the language expressions will be compiled by the rule engine.

The form taken by a rule language expression depends upon whether it is intended for the "condition"
or the "action” part of the rule. (For the right-hand side it may, for instance, be a snippet of Java.) The

scope item indicates where the expression belongs: when indicates the left-hand side, then the right-
hand side, and * means "anywhere."

@voe

It is also possible to create aliases for keywords.

Select a mapping item (that is, a row in the table) to see the expression and mapping in the text fields
below the table. Double-click it or press the edit button and the Edit dialogue box will open. From
here, one can remove items or add new ones.

Only remove items when certain that the expression is no longer in use.

Edit an existing language mapping item.

Language expression: [Perscn is at least {age} and lives in {location} l

Rule mapping: [Person[age = {age}.location == "{location}" l
Object: | |
Scope: [cunditicn =

@ oK] [Cancel l

Figure 7.10. Language Mapping Editor Dialogue

The translation process occurs in the following manner:

1. The parser reads the rule text in a DSL file, line by line, and tries to match it against some
language expressions, depending on the scope.

2. After a match is made, the values that correspond to a placeholder between braces (such as
{age}) are extracted from the rule source.
3. The placeholders in the "Rule Expression” are replaced by their corresponding value. (In the

example above, the natural language expression maps to two constraints on a fact of the type
"Person," based on the fields "age" and "location," and the {age} and {location} values that
are extracted from the original rule text.)

The Rete View

@

If you does not wish to use a language mapping for a particular rule in a .dr1 file, prefix
the expression with > and the compiler will ignore it. Also, please note that domain-specific
languages are optional.

When the rule is compiled, the .ds1 file will also need to be available.
7.9. The Rete View
The Rete Tree View shows you the Rete Network for the current . dr1 file. To display it, click on the
tab entitled Rete Tree at the bottom of the DRL Editor window. Once it is open, "drag-and-drop"
individual nodes to arrange an optimal overview. (One can also select multiple nodes by dragging

a rectangle over them; in that way, the entire group can be moved around.) The JBoss Rules IDE
toolbar magnification icons can be used in the customary manner.

@e

A future version will allow exporting the Rete Tree as an image. Until this feature becomes
available, take screen-shots as a workaround.

Gianer s Fists Vit | package com.sample

= Jimport com, samole. DroolsTest. Massage;
i: 4
: Srule "Hello World"
when
rm ; Messagel status == Message HELLL
then
Systern.out.println message);
m. setMessage "Goodbye crusl world”);
m. setStatus] Message GOODEYE)
modify mJ;

I}
3
(=15

]
P
P Ged bb = Dy D=0

Srule "GoodBye"
no-loop true
whien
E m : Message(status == Message, GOOC
= 1% then
: 20 System.out. printlng message ;
21 m.setMessagel message);
i Z2end

T

[-
mim Bt om0

4 »
Texk Edbor | Rete Tree Text Editor | Rete Tree

The Rete View is an advanced feature which takes full advantage of the JBoss Developer Studio's
Graphical Editing Framework.

169

Chapter 7. JBoss Developer Studio

M

This functionality can only be used with JBoss Rules projects, in which case the JBoss Rules
Builder is configured in the project’s properties.

7.10. Large .drl Files

Depending on the Java Development Kit being used, it may be necessary to increase the permanent
generation setting's maximum size. Both SUN and IBM JDKs have a permanent generation setting,
whereas BEA's JRockit does not.

To increase the permanent generation size, start the JBoss Rules IDE with -
XX :MaxPermSize=###m. Here is an example that shows how to do so:

Example: c:\Eclipse\Eclipse.exe -XX:MaxPermSize=128m

Set the permanent generation to at least 128 Mb in cases where there are more than four thousand
rules.

@voe

This may also apply more generally when you compiling large numbers of rules. This is because
there are generally one or more classes per rule.
Alternatively, put the rules in a file with the . rule extension. Having done so, the background
builder will not try to compile them upon each change. This may result in performance
improvements, particularly if the IDE is becoming sluggish when processing very large volumes of
rules.

7.11. Debugging Rules

It is possible to debug rules whilst JIBoss Rules is executing. You can add break-points to the
consequences of rules. Whenever such a break-point is encountered during the execution of the
rules, the processing will halted, allowing one to inspect the variables known at that point and use any
of the default debugging actions to decide what should happen next. You can also use the Debugging
View to inspect the content of the working memory and the agenda.

7.11.1. Creating Breakpoints

Add or remove rule breakpoints in one of the following two ways:

1. by double-clicking on the Ruler in the DRL Editor when on the line on which the break-point is to
be added.

M

Such breakpoints can only be created in the consequence of a rule. Double-clicking on a
line at which no breakpoint is allowed will do nothing.
To remove a breakpoint, double-click on the Ruler once more.

170

Debugging Rules

If you right-click the ruler, a popup menu will show up, containing the "Toggle breakpoint” action.
Note that rule breakpoints can only be created in the consequence of a rule. The action is
automatically disabled if no rule breakpoint is allowed at that line. Clicking the action will add a
breakpoint at the selected line, or remove it if there was one already.

The Debug Perspective contains a Breakpoint View. Use this to see all of the defined breakpoints,
obtain their properties, and enable, disable or remove them.

7.11.2. Debugging Rules

To enable the breakpoints, the program must be debugged as a JBoss Rules Application.

8 srecfmainfiava
=} com.sample

ST1IMPOTT COM. Sanple .. UIool31le3t .. [es3a

Ci— L s § 17 T - rn
mm SZrule "Hello World

[zrejmainrules Mew } phen . s = u
,aE] Sample.dir m : Message(status == Hes
4) Cpen F3 then
=k JRE System Librar . ’)
=4 Drools Library Open With Sy=stem.out.println(messag
& s Open Type Hierarchy F4 m.setMessage | "Goodbyve cru
D . m.3etitatus [MHessage . GOODE
.classpath = Copy Cirl+C
D et = opdate m) ;
+Rrajec E= Copy Qualified Mame
(£ Paste Ctrl+
¥ Delete Delete "GoodBye™
po—-loop troe
Build Path ' bhen
Source Alt+Shift+5 ¥ m : Message(status == Mes
Refactor Alt+5hift4T * fhen
System.out.println(messa
Exg Import. .. ¥ E i “
m.setHMes=zage (| message) ;
£y Export. ..
References »
Dedarations r
wﬁ' Refresh F5
Run As k
% L0rods Appcaton
Team *| I3 2 Java Application Alt+Shift+D,]
Compare With r
Replace With k ff" Debug...
Restore from Local Histary... [

Figure 7.11. Debug as JBoss Rules Application

1.

Select the application's main class, then right click it, select the Debug As sub-menu, and then
choose JBoss Rules Application.

Alternatively select the Debug ... menu item. A new dialogue box for creating, managing and
running debug configurations appears (see the screenshot below.)

Select the JBoss Rules Application item in the left-hand side tree and click the New Launch
Configuration button (the leftmost icon in the toolbar above the tree.) This will create a new
configuration with some of the properties (like project and main class) already set, (based on
the main class selected at the beginning.) All of these properties are the same as those for any
standard Java program.

171

Chapter 7. JBoss Developer Studio

3. Change the name of the debug configuration to something meaningful.

4. To start debugging the application, click on the Debug button at the bottom of the window.

The debug configuration only needs to be defined once, use the same configuration the next time

you need to debug.

The JBoss Rules IDE toolbar also contains shortcut buttons to quickly re-execute one of
your previous configurations (at least when one of the Java, Java Debug, or JBoss Rules
perspectives has been selected).

Debug a JBoss Rules application

2 X | 3 3

| type filter text |

-4 Edlipse Application

2 ‘3‘-" Equinox OSGi Framework
&G Java Applet
i Java Application
=] @ JBoss Rules Application
) @ DroolsTest Debug
- Ju Junit

i 2Unit Plug-n Test

I’=lu;'.. Remote Java Application
o] SWT Application

Create, manage, and run configurations

Mame: | DroolsTest

mt’ﬂ= Arguments | ==, JRE | {5‘@ Classpath: Ei.// Source | E Environment | £ Common ||

Project:

|£es_t |[Browse...]
Main dass:
!iom.sample.DroolsTest |[Search...]

[include libraries when searching for a main dass
[Jindude inherited mains when searching for a main dass

|:| Stop in main

[Apply ”_ Revert]

7 [_ Debug] ’ Close]

Figure 7.12. "Debug as JBoss Rules Application" Configuration

Having clicked the Debug button, the application will start executing and will halt if any break-point is
encountered. (This can be a JBoss Rules rule break-point, or any other standard Java break-point.)
Whenever a JBoss Rules rule break-point is encountered, the corresponding DRL file will open, with
the active line highlighted. The Variables View also contains all of the rule parameters and the values
associated with them.

Use the default Java debug actions to decide what to do next, be it to resume, terminate or step over
the line. The Debug View can also be used to inspect the contents of the working memory and the

172

Debugging Rules

agenda at that time as well. (There is no need to select a working

currently executingis displayed automatically.

Fle Edit Navigate Search Project Run Window Help

iM-rHag 9 i %-0-Q%- i@ -

28

memory now, as that which is

RS

(%5 Debug 52 s
& 1) DroolsTest [J8oss Rules Appication]
&® com.sample.DroolsTest at localhost: 3538
& o Thread [main] (Suspended (breakpaint at line 7in Rule_Hello_World_0))
~= Rule_Hello_World_0.consequence(KnowledgeHelper, DroolsTestsMessage, FactHandle, String, FactHandle) lin
Rule_Helo_orld_0C sceInvoker. evall {elper, WorkingMemory) ine: 24
DefaultAgenda freActivation(Activation) line: 484
= DefaultAgenda. fireNextItem{AgendaFilter) line: 448
=2 ReteooworkingMemory(AbstractiorkingMemory). freAIRules (AgendaFilter) ine: 365
ReteooWorkingMemory(AbstractWorkingMemory). freAlRules() line: 346
= DroolsTest.main(String[]} line: 29
#5 C:\Program Files\lavaljre1.5.0_07\bin\javaw.exe (22-feb-07 23:13:42)

(9= Variables 51 - Breakpaints

b« @Y =0

Hame
2 C%m
® message
| status
@ message

I~

Value
DroolsTestsMessage (d=21)
“Hello World™
0
“Hello World™

v

£ il | >
[4] DroolsTest.java ‘m&ln = O B2 outine 52 G Qe o GO
1 package com.sample Al = £ com.sample
2 | -4) GoodBye
3-import com.sample.DroolsTest.Message; -4) Hello world
4 “= com.sample.DrooleTest Message
sE&rule "Hello World"
& when
7 m : Message(status == Message.BELLO, message @ message)]
s then
System.ouf.printin(message };
m.setMessage("Goodbye cruel world"):
m.setStatus (Message.GOODBYE) ;
modify(m);
end L
rule "GoodSye"
18 no-leop true
when
- S Sy S FARNBAT cmammmn s mmammen b
Text Editor | Rete Tree |
B Console 5 Tasks | = O/ Agenda View 22 . |2t = 5[Q workingMemory view 52 " [+ = 5[Q Global Data View 58 [+4= 0O
DrooleTest [1Boss Rules Appiication] C:\Program Files\lava\re 1. & MAIN[focus] = AgendaGrouplmpl (id=1214) = & [0]=DroolsTestsMessage (id=21) The selected working memery has no globals defined.
X% Gl MBS 8 cooDBYE= 1
¥ reo=o0
¥ @ message= Hello World™
Com status=0
it
it Writable Insert 9:18

Figure 7.13. Debugging

173

174

Chapter 8.

Examples

This book ends with a series of tutorials that provide practical examples of how to use some of the
functionality taught in this Guide To follow the examples in this chapter, download the Examples ZIP
archive file from http://download.jboss.org/drools/release/5.0.1.26597. FINAL/drools-5.0-examples.zip

8.1. HelloWorld Example

Name: HelloWorld Example

Main class: org.drools.examples.helloworld.HelloworldExample
Type: Java application

Objective: Tutorial that demonstrates simple Rules usage.

This tutorial provides a simple example of rules usage and demonstrates both the MVFLEX
Expression Language and Java dialects. It also teaches the reader how to build knowledge bases
and sessions and demonstrates the audit logging and debugging output (both of which are omitted
from other the other examples.)

A Knowledge Builder is used to turn a Drools Rule Language (DRL) source file into multiple
Package objects which a knowledge base canthen consume.

The add method takes both a Resource interface and a Resource Type as parameters. Use the
Resource interface to retrieve the DRL source file from the class-path via a ResourceFactory.

@

Although not demonstrated here, the Resource interface can also be used to retrieve DRL files
from other locations, such as URL address. More than one file can be added if necessary.

Also, one can add DRL files with different name-spaces. (In this scenario, the Knowledge
Builder will create a package for each name-space.) Multiple knowledge packages, each with a
different name-space, can all be added to the same knowledge base.

Having added all of the DRL, check the Knowledge Builder for errors. (Whilst the knowledge
base will validate the package, it will only have access to the error information in the form of a string
so one must debug it through the the Knowledge Builder instance.)

Once any errors have been rectified, obtain the Package collection, instantiate a Knowledge
Builder from the KnowledgeBaseFactory and add the collection of knowledge packages.

Example 8.1. Helloworld Example: Creating the Knowledge Base and Session

final KnowledgeBuilder kbuilder = KnowledgeBuilderFactory.newKnowledgeBuilder();

// this will parse and compile in one step
kbuilder.add(ResourceFactory.newClassPathResource
("Helloworld.drl",HelloworldExample.class), ResourceType.DRL);

// Check the builder for errors
if (kbuilder.hasErrors())

175

http://download.jboss.org/drools/release/5.0.1.26597.FINAL/drools-5.0-examples.zip

Chapter 8. Examples

{
System.out.println(kbuilder.getErrors().toString());

throw new RuntimeException("Unable to compile \"Helloworld.dr1\".");

}

// get the compiled packages (which are serializable)
final Collection<KnowledgePackage> pkgs = kbuilder.getKnowledgePackages();

// add the packages to a knowledgebase (deploy the knowledge packages).
final KnowledgeBase kbase = KnowledgeBaseFactory.newKnowledgeBase();
kbase.addknowledgePackages(pkgs);

final StatefulKnowledgeSession ksession =
kbase.newStatefulKnowledgeSession();

JBoss Rules's event model exposes most of its own internal processes. Two default debug
listeners, DebugAgendaEventListener and DebugWorkingMemoryEventListener, are
supplied. These output debugging information to the Error Console. (It is easy to add 1isteners to
a session and the process for doing so is discussed later in this section.)

The KnowledgeRuntimelLogger is a specialised derivative of the the Agenda and Working
Memory listeners. It provides execution auditing, the output of which can be viewed on a graphical
display.

n the engine has finished executing, 1ogger.close () must be called.

Most of the examples in this book use JBoss Rules's audit logging features to record execution
flow for future inspection.
__Example 8.2. HelloWorld Example: Event Logging and Auditing

// setup the debug listeners
ksession.addEventListener(new DebugAgendaEventListener());
ksession.addEventListener(new DebugWorkingMemoryEventListener());

// setup the audit logging
KnowledgeRuntimelLogger logger =
KnowledgeRuntimelLoggerFactory.newFileLogger (ksession, "log/helloworld");

This is a simple example of a single class with only two fields, these being the message, which is a
string, and the status, which can be either of the two integers HELLO or GOODBYE.

Example 8.3. HellowWor1ld Example: Message Class

public static class Message

{
public static final int HELLO
public static final int GOODBYE =

I
R o

176

Helloworld Example

private String message;
private int status;

This creates a single Message object containing the words Hello World and possessing a status of
HELLO. This object is then inserted into the engine, at which point fireAllRules() is executed.

@

Remember that all network evaluation is undertaken during the period of insertion so that, by
the time the executing program reaches the fireAllRules () method call, the engine already
knows which rules are full matches that can be fired legitimately.

Example 8.4. Execution

final Message message = new Message();
message.setMessage("Hello World");
message.setStatus(Message.HELLO);
ksession.insert(message);
ksession.fireAllRules();

logger.close();

ksession.dispose();

In order to execute the example as a Java application, follow these steps:

1. Openthe org.drools.examples.helloworld.HelloWorldExample class in the JBoss
Rules IDE.

2. Right-click on the class and select Run as... and then Java application from the context menu.

@ve

By adding a break-point to the fireAllRules() method and selecting the ksession variable,
one will see that the Hello World view has already been activated and added to the Agenda.
(This confirms that all of the pattern-matching work was already undertaken during the insert.)

177

Chapter 8. Examples

4| HelloWorldExample java I

ksession. insert(message);
E 2] ksession.fireAllRules();

logger.close();

(4]

] Console 4 Tasks] 23

= a MAIN[nofocus]= BinaryHeapQueueAgendaGroup (id=2144)
= & [0]= Activation
I & ruleName= “Hello World* (id=2151)
P & m= HelloWordExample$Message (id=55)

I & message= "Hello World" (id=2157)
Figure 8.1. fireAllRules Agenda View

Any application print-outs are sent to System.out, whilst the debug listener print-outs are
directed to System.err.

Example 8.5. System.out in the Console Window

Hello World
Goodbye cruel world

Example 8.6. System.err in the Console Window

==>[ActivationCreated(0): rule=Hello World;

tuple=[fid:1:1:0rg.drools.examples.HellowWorldExample$Message@17cec96]]

[ObjectInserted: handle=[fid:1:1:org.drools.examples.HellowWorldExample$Message@l7cec96];
object=org.drools.examples.HelloWorldExample$Message@17cec96]

[BeforeActivationFired: rule=Hello World;

tuple=[fid:1:1:0rg.drools.examples.HellowWorldExample$Message@l7cec96]]

==>[ActivationCreated(4): rule=Good Bye;
tuple=[fid:1:2:0rg.drools.examples.HellowWorldExample$Message@l7cec96]]

[ObjectUpdated: handle=[fid:1:2:o0rg.drools.examples.HellowWorldExample$Message@l7cec96];
old_object=org.drools.examples.HelloWorldExample$Message@17cec96;

new_object=org.drools.examples.HellowWorldExample$Message@1l7cec96]
[AfterActivationFired(0): rule=Hello World]
[BeforeActivationFired: rule=Good Bye;

tuple=[fid:1:2:0rg.drools.examples.HellowWorldExample$Message@l7cec96]]
[AfterActivationFired(4): rule=Good Bye]

178

HelloWworld Example

The "left-hand" portion of the rule (after when) states that it will be activated for each Message object
with a status of Message . HELLO upon insertion into working memory.

Additionally, the left-hand portion of the code dictates that two variable bindings be created: message
(which is bound to the message attribute) and m (which is bound to the matched Message object
itself.)

The right-hand side (after then) is the "consequence” part of the rule. Observe that it is written in
MVEL, (as declared in the rule's dialect attribute.) This part of the rule sends the contents of the
bound variable message to System.out. After that, it changes the message and status
attributes values contained in the message object bound to m via MVEL's modify statement. This
statement allows one to apply a block of assignments all at once, (with the engine being automatically
notified of the changes once the block is completed.)

Example 8.7. Hello World Rule

rule "Hello World"
dialect "mvel"
when
m : Message(status == Message.HELLO, message : message)
then
System.out.println(message);
modify (m) { message="Goodbye cruel world", status=Message.GOODBYE };
end

To inspect the Agenda view again whilst the rule consequence is executing, follow these steps:
1. Set a break-point on the modify call in the DRL file.
2. Openthe org.drools.examples.HelloWorldclass in the JBoss Rules IDE.

3. Start executing it by going to the context menu and clicking on Debug As... and then JBoss
Rules Application.

The other rule, entitled Good Bye, uses the Java. It is now activated and placed on the agenda.

179

Chapter 8. Examples

“rule "Hello World™
dialect "wrrel®

when
m : Message | status == Meszage.HELLO, n
then
@ Gvstem.out.printlni message) ;
modify [w] { wessage = "Goodbyte crusl wo
> status = Message.GOODEYE b :

end

Text Editor | Rete Tree

Console | Tasks ‘E] Agenda Yiew % Audit Yiew | Global Data Yiew Rules View

= & MAIMFfocus]= BinaryHeapQueuedgendaGroup (id=1530)
= & [0]= Ackivation
& ruleMame= "Good Bye"
& message= "Goodbyvte cruel world"

Figure 8.2. Hello World Rule Agenda View

The Good Bye rule, is similar to the Hello World rule except that it matches those Message
objects with a status of Message . GOODBYE.

Example 8.8. The Good Bye Rule

rule "Good Bye"
dialect "java"

when

Message(status == Message.GOODBYE, message : message)
then

System.out.println(message);
end

Think back to the Java code which used the KnowledgeRuntimeLoggerFactory method's
newFilelLogger to create a KnowledgeRuntimeLogger. It then called logger.close() at the
end. In doing so, it created an audit log file that can be seen in the Audit view.

@voe

The Audit view is used in many of the examples as it provides a way of showing the execution
flow.

Look at the screen-shot below. It depicts the following items:

1. The object is inserted, creating an activation for the Hello World rule

180

State Example

2. The activation is then executed which updates the Message object which subsequently causes
the Good Bye rule to activate and execute.

3. Selecting an event in the Audit view highlights the original event in green. (In this example,
the Activation created eventis highlighted in green as the origin of the Activation
executed event.)

[=l- ™ Object inserted (1) org.drools, examples, HelloWorldExampleftessage@bial 7
= Activation created: Rule Hello Woaorld m=org.drools, examples.HelloW'orldE:

=4 Activation executed: Rule Hello Warld m=org.drools, examples, HelloWorldExar
= iObject updated (1): org.drools. examples.HelloWorldExamplefMessage@b

L 5 chivakion
Figure 8.3. Audit View

8.2. State Example

Name: State Example

Main class: org.drools.examples.state.StateExampleUsingSalience

Type: Java application

Rules file: StateExampleUsingSalience.drl

Objective: demonstrate basic rule use and how to resolve conflicts in rule firing priority.

There are three different implementations of this example, each of which demonstrates an alternative
way of implementing the same basic behavior, called forward chaining. Forward chaining is the
engine’s ability to evaluate, activate and fire rules in sequence, based on changes to the facts in
working memory.

8.2.1. Understanding the State Example

The org.drools.examples.state.State class has two fields, these being its name and current
status. The current status can be one of:

* NOTRUN

* FINISHED

Example 8.9. State Class

public class State {
public static final int NOTRUN
public static final int FINISHED

0;
1;

private final PropertyChangeSupport changes =
new PropertyChangeSupport(this);

private String name;
private int state;

. setters and getters go here...

181

Chapter 8. Examples

Study the example above. Ignoring the PropertyChangeSupport, (which will be explained later),
one can see that four State objects named A, B, C and D have been created. Initially, their states are
set to NOTRUN, this being the default for the constructor used. Each instance is asserted, in turn, into
the session and then fireAllRules() is called.

Example 8.10. Salience State Example Execution

State a = new State("A");
State b = new State("B");
State ¢ = new State("C");
final State d = new State("D");

// By setting dynamic to TRUE, JBoss Rules will use JavaBean
// PropertyChangeListeners so you do not have to call modify or update().
boolean dynamic = true;

session.insert(a, dynamic);
session.insert(b, dynamic);
session.insert(c, dynamic);
session.insert(d, dynamic);

session.fireAllRules();

session.dispose(); // Stateful rule session must always be disposed when finished</
programlisting>

In order to execute the application:

1. Openthe org.drools.examples.state.StateExampleUsingSalience class in the JBoss
Rules IDE.

2. Right-click on the class and select Run as... and then Java Application.

The following output appears in the JBoss Rules IDE Console window:

Example 8.11. Salience State Console Output

A finished
B finished
C finished
D finished

There are four rules in total. The Bootstrap rule runs first, setting A to the FINISHED state, which
then causes B to also become FINISHED. (C and D are both dependent on B, causing a temporary
conflict which is resolved by the salience values.)

Next, analyse the way in which this process was executed. To do so, use the audit logging feature.
This allows one to view a graphical representation of the results of each operation. Follow these steps
to obtain an audit log:

1. If the Audit View is not visible, click on Window and then select Show View, Other..., JBoss
Rules and, finally, Audit View.

2. Once in the Audit View, click on the Open Log button and select the file entitled drools -
examples-drl-dir>/log/state.log.

At this point, the Audit View onscreen will look like this:

182

Understanding the State Example

— % Activation executed: Rule A to B b=B[MOTRUN](2)
- Object modified (2): B[FINISHED]
= Activation created: Rule B to C c=C[NOTRUMN](3)
= Activation created: Rule B to D d=D[NOTRUN](4)

conflict

— % Activation executed: Rule B to C c=C[NOTRUMN](3)
Object modified (3): C[FINISHED]
— % Activation executed: Rule B to D d=D[NOTRUMN]{4)

Object modified (4): D[FINISHED]
Figure 8.4. Salience State Example Audit View

Read the log in the Audit View, from top to bottom. As one can see, every action, and the
corresponding change it has wrought in working memory, has been recorded. Hence, one can
observe that asserting State object A with a status of NOTRUN activates the Bootstrap rule, whilst
asserting the other State objects has no immediate effect.

Example 8.12. Salience State: Bootstrap Rule

rule Bootstrap
when
a : State(name == "A", state == State.NOTRUN)
then
System.out.println(a.getName() + " finished");
a.setState(State.FINISHED);
end

Executing the Bootstrap rule changes the state of A to FINISHED, which, in turn, activates A to B
rule.

Example 8.13. A to B Rule

rule "A to B"

when

State(name == "A", state == State.FINISHED)

b : State(name == "B", state == State.NOTRUN)
then

System.out.println(b.getName() + " finished");
b.setState(State.FINISHED);
end

Executing the A to B rule changes the state of B to FINISHED, which, in turn, activates both the B
to Cand B to D rules, and places their activations on the agenda.

From this moment on, both rules may fire and, therefore, they can be said to be "in conflict." The
conflict resolution strategy allows the engine's agenda to decide which rule to fire. Asrule B to C
has the higher salience value (ten, as opposed to the default value of zero), it fires first, setting object
C to a state of FINISHED.

The Audit View depicted above shows the modification to the State objectinthe A to B rule, which
results in two activations being in conflict. The Agenda View can also be used to investigate the state
of the agenda, as it allows one to place debugging points within the rules themselves whilst the Audit

183

Chapter 8. Examples

View is open. The screen-shot below shows a break-point in the A to B rule. It also illustrates the
state of the agenda whilst the two rules are in conflict.

rule "L to BT

when
State (name == "L, state == State.FINIZHED)
b : 3tate(name == "ET, state == State.MNOTRUN |
then
SJvstem.out.printlnib.getName () + " finished™ |:
- b.setState| State.FINIIHED):
¥ end

Text Editor | Rete Tree

Consale | Tasks ‘-'_l' Agenda YWiew X

audit Wiew | Global Data Wiew | Rules Yiew | Working Mer

= & MaIM[focus]= BinaryHeapQueusAgendaGroup (id=1392)
= & [0]= Ackivation
& ruleMame="g to "
= & rc=5take (id=1406)
& FINISHED= 1
& noTRUN=O
g changes= PropertyChangeSupport (id=1433)
B name="C"
E state=10

= & [1]= Activation
& ruleMame="Bto D"
0 & c=State (id=1408)

& FINISHED= 1

o NoTRUN=O
o changes= PropertyiChangesupport (id=1433)
B name="C"

E state=10

Figure 8.5. State Example: Agenda View

Example 8.14. B to C Rule

rule "B to C"
salience 10

when

State(name == "B", state == State.FINISHED)

c : State(name == "C", state == State.NOTRUN)
then

System.out.println(c.getName() + " finished");
c.setState(State.FINISHED);
end

The B to D rule fires last of all, modifying the status of object D to FINISHED.

184

Understanding the State Example

Example 8.15. B to D Rule

rule "B to D"

when

State(name == "B", state == State.FINISHED)

d : State(name == "D", state == State.NOTRUN)
then

System.out.println(d.getName() + " finished");
d.setState(State.FINISHED);
end

At this point in time, there are no more rules to execute and, thus, the engine stops.

A notable facet of this example is the use of dynamic facts, which are based upon
PropertyChangelListener objects. In order for the engine to "see" and react to changes in

fact properties, it must be informed of these by the application. This can either be undertaken
explicitly via the rules (via the modify statement) or, implicitly, (by letting the engine know through
PropertyChangeSupport that the facts have implemented.)

PropertyChangeSupport is defined in the Java Beans Specification.

Study the next example to learn how to use PropertyChangeSupport. (By making use of it, one
can avoid cluttering one's rules with modify statements.) To use this feature, firstly make the facts
implement PropertyChangeSupport, in the same way that the org.drools.example.State
class does. Then, use the following code to insert the facts into working memory:

Example 8.16. Inserting a Dynamic Fact

// By setting dynamic to TRUE, JBoss Rules will use JavaBean
// PropertyChangelListeners so that one does not have to call modify or update().
final boolean dynamic = true;

session.insert(fact, dynamic);

When the PropertyChangelListener objects are being used, each setter must implement a little
extra code (for the notification.) Here is the setter for the State in the org.drools.examples class:

Example 8.17. PropertyChangeListener Support in a "Setter"

public void setState(final int newState) {
int oldState = this.state;
this.state = newState;
this.changes.firePropertyChange("state",oldState,newState);

There are two other classes in this example. They are called StateExampleUsingAgendGroup
and StateExamplewWithDynamicRules. Both execute from A to Bto C to D, as demonstrated
above.

185

Chapter 8. Examples

» The StateExampleUsingAgendGroup class uses agenda groups to control the conflict of rules
and to determine which one shall fire first.

* The StateExamplewWithDynamicRules class shows how an additional rule can be added to a
running working memory session.

Use agenda groups to partition the agenda into groups and to determine which of these groups have
permission to execute. By default, all rules are in the agenda group entitled MAIN. The agenda-group
attribute lets one specify a different agenda group for the rule. Initially, the MAIN agenda group is
used by working memory.

M

A group's rules will only fire when that group receives the focus. Achieve this by using either
the setFocus () method or the auto-focus rule attribute. (With the latter technique, the rule
automatically sets the focus to its agenda group when it is matched and activated, hence the
name auto-focus. It is this method that enables Rule B to C to fire before Rule B to D.)
Example 8.18. Agenda Group State Example: Rule B to C

rule "B to C"
agenda-group "B to C"
auto-focus true
when
State(name == "B", state == State.FINISHED)
c : State(name == "C", state == State.NOTRUN)
then
System.out.println(c.getName() + " finished");
c.setState(State.FINISHED);

kcontext.getKnowledgeRuntime().getAgenda().getAgendaGroup("B to D").setFocus();
end

B to Ccalls setFocus() onthe B to D agenda group. This allows it to fire its active rules,
which, in turn, triggers those belongingto B to D.

Example 8.19. Agenda Group State Example: Rule B to D

rule "B to D"
agenda-group "B to D"

when

State(name == "B", state == State.FINISHED)

d : State(name == "D", state == State.NOTRUN)
then

System.out.println(d.getName() + " finished");
d.setState(State.FINISHED);
end

The StateExampleWithDynamicRules example adds another rule to the base after
fireAllRules() is run. This new rule is another state transition:

Example 8.20. Dynamic State Example: RuleD to E

rule "D to E"
when
State(name == "D", state == State.FINISHED)

186

Fibonacci Example

e :
then

State(name == "E", state == State.NOTRUN)

System.out.println(e.getName() + " finished");
e.setState(State.FINISHED);

end

It produces the following, final piece of output:

Example 8.21. Dynamic Sate Example Output

A finished
B finished
C finished
D finished
E finished

8.3. Fibonacci Example

Name: Fibonacci

Main class: org.drools.examples.fibonacci.FibonacciExample
Type: java application

Rules file: Fibonacci.drl

Objective: Demonsrate Recursion, 'not' CEs and Cross Product Matching.

The Fibonacci Numbers (http://en.wikipedia.org/wiki/Fibonacci_number), discovered by Leonardo of
Pisa (see http://en.wikipedia.org/wiki/Fibonacci), are a sequence that start with zero and one. The next
Fibonacci number is obtained by adding the two preceding ones together. Therefore, the Fibonacci
sequence begins with 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181,
6765, 10946, and continues infinitely onwards following that pattern. This example uses the number
sequence to demonstrate recursion and how use of salience values can resolve conflicts.

This example uses the Fibonacci single-fact class. It has two fields, sequence and value. The
sequence field is used to indicate the position of the object in the Fibonacci number sequence. The
value field shows the value of a Fibonacci object for a specific sequence position, (using -1 to indicate
a value that still needs to be computed.)

Example 8.22. Fibonacci Class

public static class Fibonacci {

private int sequence;
private long value;

public Fibonacci(final int sequence) {

this.sequence = sequence;
this.value = -1;

. setters and getters go here...

Follow these steps to execute the example:

1. openthe org.drools.examples.FibonacciExample class in the JBoss Rules integrated
development environment.

187

http://en.wikipedia.org/wiki/Fibonacci_number
http://en.wikipedia.org/wiki/Fibonacci

Chapter 8. Examples

2. right-click on the class and select Run as... and then Java application

The following output will be displayed in the JBoss Rules IDE Console window (with . ..ship. ..
indicating lines where lines have been removed to save space):

Example 8.23. Fibonacci Example: Console Output

recurse for 50
recurse for 49
recurse for 48
recurse for 47
00 oSMLDa o c
recurse for
recurse for
recurse for
recurse for
1==1

N W h O

w

1l

1
a wN B

6 == 8

00 0SMLDa o c

47 == 2971215073
48 == 4807526976
49 == 7778742049
50 == 12586269025

To run it from Java, insert a single Fibonacci object with a sequence field of fifty. A recursive rule is
then run, inserting the other forty-nine objects automatically.

This example does not use PropertyChangeSupport. Rather, it utilises the MVFLEX
Expression Language, meaning that the modify keyword can be exploited. This keyword allows
one to utilise a block setter action. (It also notifies the engine of changes.)

Example 8.24. Fibonacci Example: Execution

ksession.insert(new Fibonacci(50));
ksession.fireAllRules();

The Recurse rule is very simple. It matches each asserted Fibonacci object with a value of -1,
thereby creating and asserting a new Fibonacci object with a sequence of one less than the current
one. Each time a Fibonacci object is added whilst none with a sequence field of 1 exist, the rule fires
again.

The not conditional element is used to stop the rule's matching once all fifty Fibonacci objects are in

memory. The rule also has a salience value, because you need to have all fifty Fibonacci objects
asserted before you execute the Bootstrap rule.

Example 8.25. Fibonacci Example: "Recurse” Rule

rule Recurse

188

Fibonacci Example

salience 10
when
f : Fibonacci (value == -1)
not (Fibonacci (sequence == 1))
then
insert(new Fibonacci(f.sequence - 1));
System.out.println("recurse for " + f.sequence);
end

The Audit view shows the original assertion (with a sequence field of 50.) After that, it shows the
continual recursion of the rule, whereby each asserted Fibonacci object causes the Recurse rule to
run again and again.

(= ™ Object asserted (1) Fibonacci{s0/-1)
= Activation created: Rule Recurse F=Fibonacci{S0/-1)(1)
=4 Activation executed: Rule Recurse F=Fibonacci{so,-13(1)
= ™ Ohbject asserted (2): Fibonaccii49)-1]

Ackivation execuked: Rule Recurse F=Fibonacci{49/-1)
= ™ Qbject asserted (3); Fibonacci{45/-1)
= Ackivation created: Rule Recurse F=Fibonacci{48/-1)(3)
=4 Activation executed: Rule Recurse F=Fibonaccii48-1)(3)
= ™ Ohbject asserted (4): Fibonacci(47/-1)
=r Ackivation created: Rule Recurse F=Fibonacci{47/-1(4)

Figure 8.6. Fibonacci Example: Recur se Audit View One

When a Fibonacci object with a sequence field value of 2 is asserted, it will match the Bootstrap
rule, activating this alongside the Recurse rule.

@

There are multiple restrictions on the sequence field; they test if the value of the field equals 1 or
2.

Example 8.26. Fibonacci Example: Bootstrap Rule

rule Bootstrap

when

f : Fibonacci(sequence == 1 || == 2, value == -1)
// this is a multi-restriction || on a single field
then

modify (f){ value = 1 };

System.out.println(f.sequence + " == " + f.value);
end

At this point, the agenda looks as it does in the following diagram. However, theBootstrap rule will
not run because the Recurse rule has a higher salience.

189

Chapter 8. Examples

= & [0]= &ckivation
& ruleMame= "Recurse"
& F=FibonacciExamplefFibonacc (id=1413)
= & [1]= Activation
A ruleMame= "Bootskrap"
& [= FibonacciExample$Fibonacc (id=1413)
Figure 8.7. Fibonacci Example: Recurse Agenda View One

When a Fibonacci object with a sequence value of 1 is asserted, there will be a match against
Recurse rule again, causing it to activate twice.

@voe

The Recurse rule does not match and activate because the not conditional element prevents
the rules from matching as soon as a Fibonacci object with a sequence value of 1 comes into

existence.
= & MAIN[Focus]= BinaryHeapQueushgendaGroup (id=1402)

= & [0]= Activation
A ruleMame= "Bootskrap"
& [= FibonacciExampledFibonacc (id=1445)

= & [1]= &ckivation
& ruleMame= "Bootstrap"
& F=FibonacciExamplefFibonacc (id=1413)

Figure 8.8. Fibonacci Example: Recurse Agenda View Two

Once there are two objects with values that do not equal -1, the Calculate rule will run. (Remember
that it was the Bootstrap rule that set the objects with sequence values of 1 and 2 to 1.)

At this point, there are fifty Fibonacci objects in working memory. Select a suitable "triple" to
calculate the values of each in turn.

If there were three Fibonacci patterns in a rule that did not utilise field constraints to confine the
possible cross-products, 50x49x48 possible combinations would exist, potentially leading to 125,000
rule executions, that majority of which would be incorrect. To prevent this problem arising, the
Calculate rule uses field constraints to restrict the three Fibonacci patterns to a correct order: this
technique is called cross-product matching. This is how it works:

1. The first pattern finds any Fibonacci object with a value !'= -1 and binds both the pattern and the
field together.

2. The second Fibonacci object does this too, but, in addition, it adds an extra field constraint. This is
in order to ensure that its sequence is greater by one than the Fibonacci object bound to f1. When
this rule fires for the first time, only the first two sequences have values of 1. The two constraints
ensure that f1 references the first sequence and f2 references sequence two.

3. The final pattern finds the Fibonacci object with a value equal to -1 and with a sequence value
one greater than that contained in f2.

190

Banking Tutorial

At this point, there are three Fibonacci objects correctly selected from the available cross-products, so
a value for the third object (bound to £3) can be calculated.

Example 8.27. Fibonacci Example: Calculate Rule

rule Calculate

when

// Bind f1 and si

f1 : Fibonacci(s1 : sequence, value != -1)

// Bind f2 and v2; refer to bound variable si1

f2 : Fibonacci(sequence == (s1 + 1), v2 : value != -1)

// Bind f3 and s3; alternative reference of f2.sequence

f3 : Fibonacci(s3 : sequence == (f2.sequence + 1), value == -1)
then

// Note the various referencing rechniques.

modify (f3) { value = fi1.value + v2 };

System.out.println(s3 + " == " + f3.value);
end

The Modify statement updates the value of the object bound to 3. As a result, there is now another
new object with a value not equal to -1. The very creation of this object allows the Calculate rule
to re-match. It will then process the next Fibonacci number. The Audit view depicted in the next
image summarises this process. It shows how the last execution of the Bootstrap rule modifies the
Fibonacci object, triggering the Calculate rule. This then modifies another Fibonacci object allowing
the Calculate rule to run again. This cycle continues until the values are set for all of the objects.

= Activation cancelled: Rule Recurse F=Fibonacoif20/-13(31)
<= Activation cancelled: Rule Recurse F=Fibonacci(d/-13(43)
A Activation cancelled: Rule Recurse F=Fibonacci{Z1/-13(30)
A Activation cancelled: Rule Recurse F=Fibonacci{36,-13(15)
—- 4 Activation executed: Rule Bootstrap F=Fibonaccii2/-17(49)
= Object modified (49): Fibonacci(zf1)
= Activation created: Rule Calculate F2=Fibonacci(2f13(49); f1=Fibonacci{1/1)50); s1=1{50); s3=3(48); F3=Fibonacci(3/-1){4a)
= 4 Activation execubed: Rule Calculate F2=Fibanacci(2/1)(43); F1=Fibonacci{1/1)(50); s1=1{50); s3=3(48); F3=Fhonacd(3/-1)(45)
= Object modified (48): Fibonacci{3/2)
= Activation created: Rule Calculate F2=Fibonacci{3/2){48); Fl=Fibonacci{2/1349); s1=2{49); s3=4{47); F3=Fibonacci{4/-1){47)
—|- 4 Activation executed: Rule Calculate F2=Fibonacci(3/2)(48); F1=Fbonacd(2/1)(49); s1=2{49); s3=4(47); F3=Fbonacd(4,-13(47)
= Chject modified (47): Fibonacci(4)3)
= Activation created: Rule Calculate F2=Fibonacci(4)3)(47); F1=Fibonacci{3/2)(48); s1=3{48); s3=5(4A); F3=Fibonacci(S/-1){46)

Figure 8.9. Fibonacci Example: Bootstrap Audit View

8.4. Banking Tutorial

Name: Banking Tutorial

Main class: org.drools.tutorials.banking.BankingExamplesApp.java
Type: java application

Rules file: org.drools.tutorials.banking.*.drl

Objective: Demonstrate pattern matching, basic sorting and calculation rules.

This tutorial demonstrates the process of developing a complete personal banking application to
handle credits and debits on multiple accounts. It uses a set of design patterns that have been created
for this process.

191

Chapter 8. Examples

The RuleRunner class executes one or more DRL files against a set of data, by compiling the
knowledge packages and creating a knowledge base for each execution. This is fine for testing
and tutorial purposes, but it is important to realise that this is not a good solution for a production
system, where the knowledge base should be built just once and then cached.

Example 8.28. Banking Tutorial: RuleRunner

public class RuleRunner {

public RuleRunner() {}

public void runRules(String[] rules,Object[] facts) throws Exception

{

KnowledgeBase kbase = KnowledgeBaseFactory.newKnowledgeBase();
KnowledgeBuilder kbuilder =

KnowledgeBuilderFactory.newKnowledgeBuilder();

for (int 1 = 0; i < rules.length; i++) {

String ruleFile = rules[i];

System.out.println("Loading file: " + ruleFile);

kbuilder.add(ResourceFactory.newClassPathResource
(ruleFile, RuleRunner.class),ResourceType.DRL);

}

Collection<KnowledgePackage> pkgs = kbuilder.getKnowledgePackages();
kbase.addKnowledgePackages(pkgs);
StatefulkKnowledgeSession ksession =
kbase.newStatefulKnowledgeSession();

for (int i = @; i < facts.length; i++) {
Object fact = facts[i];

System.out.println("Inserting fact: " + fact);
ksession.insert(fact);

}

ksession.fireAllRules();
}
}

The first Java classloads and executes a single DRL file, namely Example.dr1; however, it does so
without inserting any data.

Example 8.29. Banking Tutorial: Java Example One

public class Examplel

{

public static void main(String[] args) throws Exception
{

new RuleRunner().runRules(new String[]{"Examplel.drl"},
new Object[0]);

}
3

This is the first simple rule to execute. It has a single eval condition this will always be true. This
means that it will always match and "fire" at once after starting.

192

Banking Tutorial

Example 8.30. Banking Tutorial: Rule in Examplel.drl

rule "Rule 01"

when

eval(1==1)

then

System.out.println("Rule 01 Works");
end

Here is the output, showing that the rule matches and executes the single print statement:
Example 8.31. Banking Tutorial: Output of Examplel. java

Loading file: Examplel.drl
Rule 01 Works

Next, assert some simple facts and print them out:

Example 8.32. Banking Tutorial: Java Example Two

public class Example2
{

private static Integer wrap(int i) {return new Integer(i);}

public static void main(String[] args) throws Exception

{

Number[] numbers = new Number[] {wrap(3), wrap(1l), wrap(4),
wrap(1), wrap(5)};

new RuleRunner().runRules(new String[] { "Example2.drl" },numbers);
}
}

This does not use any specific facts. Instead, it utilises a set of java.lang.Integer classes. (This
is not considered "best practice" as a collection number is neither a "fact" nor a "thing." A bank acount
has a number, this being the balance it contains, therefore in that case, the account is the "fact."
However, asserting integers shall suffice for the purposes of these initial demonstrations.)

Next, create a simple rule to print out these numbers:

Example 8.33. Banking Tutorial: Rule in Example2.drl

rule "Rule 02"

when

Number ($intvValue : intValue)

then

System.out.println("Number found with value: " + $intValue);
end

193

Chapter 8. Examples

Once again, this is a very simple rule. It identifies any "facts" that are numbers and prints them out.
Note the use of interfaces here: integers were inserted but the pattern-matching engine was able to
match the interfaces and super-classes of the objects that have been asserted.

The output firstly shows the DRL being loaded, then the facts being inserted and then the rules being
matched and fired. (Each inserted number is matched and fired and, thus, printed.)

Example 8.34. Banking Tutorial: Output of Example2. java

Loading file: Example2.drl
Inserting fact: 3
Inserting fact: 1
Inserting fact: 4
Inserting fact: 1
Inserting fact: 5
Number found with value:
Number found with value:
Number found with value:
Number found with value:
Number found with value:

WE AR O

There are certainly many better ways to sort numbers than by using rules, but since one task will be to
apply some Cashflow classes in date order later in this example, it is best to learn the process now.

Example 8.35. Banking Tutorial: Example3. java

public class Example3

{

private static Integer wrap(int i) {return new Integer(i);}

public static void main(String[] args) throws Exception

{

Number[] numbers = new Number[] {wrap(3), wrap(l), wrap(4),
wrap(1), wrap(5)};

new RuleRunner().runRules(new String[]{ "Example3.drl"}, numbers);

3
3

This time the rule is slightly different:
Example 8.36. Banking Tutorial: Rule in Example3.drl

rule "Rule 03"
when
$number : Number()
not Number(intValue &1lt; $number.intValue)
then
System.out.println("Number found with value: "+$number.intValue());
retract($number);
end

194

Banking Tutorial

The first line of the rule identifies a number and extracts the value. The second line ensures that there
does not exist a smaller number than that found by the first pattern. One may be expecting to match
only one number, the smallest in the set. However, the retraction of the number after it has been
printed means that the smallest number has been removed, revealing the next smallest number, and
So on.

Here is the generated output. (Note that the numbers are now sorted numerically.)
Example 8.37. Banking Tutorial: Output of Example3. java

Loading file: Example3.drl
Inserting fact: 3
Inserting fact: 1
Inserting fact: 4
Inserting fact: 1
Inserting fact: 5
Number found with value:
Number found with value:
Number found with value:
Number found with value:
Number found with value:

OhWR R

Now is the time to start developing some personal accounting rules. The first step is to create a
Cashflow class object.

Example 8.38. Banking Tutorial: Cashflow Class

public class Cashflow

{

private Date date;
private double amount;

public Cashflow() {}

public Cashflow(Date date,double amount)

this.date = date;this.amount = amount;

public Date getDate() { return date; }

public void setDate(Date date) { this.date = date; }

public double getAmount() { return amount; }
public void setAmount(double amount) { this.amount = amount; }

public String toString()
{

return "Cashflow[date=" + date + ",amount=" + amount + "]";

3
}

The Cashflow class has two simple attributes: a date and an amount. A toString method has been
added, so that it can be printed. (Note that using the double type for monetary units is generally not a
good idea because the floating point form cannot represent most types of number accurately.)

195

Chapter 8. Examples

There is also an "overloaded" constructor that can be used to set the values: the following example
inserts five Cashflow objects, each possessing a different date and amount.

Example 8.39. Banking Tutorial: Example4. java

public class Example4

{
public static void main(String[] args) throws Exception
{
Object[] cashflows = {
new Cashflow(new SimpleDate("01/01/2007"), 300.00),
new Cashflow(new SimpleDate("05/01/2007"), 100.00),
new Cashflow(new SimpleDate("11/01/2007"), 500.00),
new Cashflow(new SimpleDate("07/01/2007"), 800.00),
new Cashflow(new SimpleDate("02/01/2007"), 400.00),
}
new RuleRunner().runRules(new String[] {"Example4.drl"}, cashflows;
}
}

The SimpleDate "convenience" class extends the java.util.Date class by providing a
constructor that takes an input string and defines a date format. The code is listed below:

Example 8.40. Banking Tutorial: Class SimpleDate

public class SimpleDate extends Date

{

private static final SimpleDateFormat format =
new SimpleDateFormat("dd/MM/yyyy");

public SimpleDate(String datestr) throws Exception

setTime(format.parse(datestr).getTime());

Now, examine the rule@4.dr1 file in order to learn how the sorted cashflows were printed:

Example 8.41. Banking Tutorial: Rule in Example4.drl

rule "Rule 04"

when

$cashflow : Cashflow($date : date, $amount : amount)
not Cashflow(date < $date)

then

System.out.println("Cashflow: "+$date+" :: "+$amount);
retract($cashflow);

end

It is at this point that a cashflow can be identified and its date and amount extracted. In the second
line of the rule, ensure that there is no cashflow with a date earlier than the one found. In the
consequence, print the cashflow that satisfies the rule and then retract it, making way for the next
earliest one.

196

Banking Tutorial

Example 8.42. Banking Tutorial: Output of Example4. java

Loading file: Example4.drl

Inserting fact: Cashflow[date=Mon
Inserting fact: Cashflow[date=Fri
Inserting fact: Cashflow[date=Thu
Inserting fact: Cashflow[date=Sun
Inserting fact: Cashflow[date=Tue
Cashflow: Mon Jan 01 00:00:00 GMT
Cashflow: Tue Jan 02 00:00:00 GMT
Cashflow: Fri Jan 05 00:00:00 GMT
Cashflow: Sun Jan 07 00:00:00 GMT
Cashflow: Thu Jan 11 00:00:00 GMT

01 0
05 0
11 0
Jan 07 0O
Jan 02 0
2007 ::
2007 ::
2007 ::
2007 ::
2007 ::

Jan
Jan
Jan

0:
0:
0:
0:
0:

00:
00:
00:
00:
00:
300.
400.
100.
800.
500.

00
00
00
00
00

GMT 2007, amount=300.0]
GMT 2007, amount=100.0]
GMT 2007, amount=500.0]
GMT 2007, amount=800.0]
GMT 2007, amount=400.0]

[clclNcNoNo]

The next step is to extend the Cashflow class to create a TypedCashflow (this can be either a
credit or debit operation.) (Normally, it is simplest to just add this to the Cashflow class but here the
extension will be used in order to keep the previous version of the class intact.)

public class TypedCashflow extends Cashflow {
public static final int CREDIT = 0;
public static final int DEBIT = 1;
private int type;
public TypedCashflow() { }
public TypedCashflow(Date date, int type,
{
super(date, amount);
this.type = type;
}
public int getType()
{
return type;
}
public void setType(int type)
{
this.type = type;
}

public String toString()

return "TypedCashflow[date=" + getDate()

+ ", type=" + (type CREDIT ? "Credit"
+ ",amount=" + getAmount()
+ Il]ll;

}

double amount)

"Debit")

This code can be improved in a multitude of ways, but for the sake of the example this will suffice for

the present.

Next, create a class for running the code.

197

Chapter 8. Examples

Example 8.43. Banking Tutorial: Example5. java

public class Example5

{
public static void main(String[] args) throws Exception
{
Object[] cashflows = {
new TypedCashflow(new SimpleDate("01/01/2007"),
TypedCashflow.CREDIT, 300.00),
new TypedCashflow(new SimpleDate("05/01/2007"),
TypedCashflow.CREDIT, 100.00),
new TypedCashflow(new SimpleDate("11/01/2007"),
TypedCashflow.CREDIT, 500.00),
new TypedCashflow(new SimpleDate("07/01/2007"),
TypedCashflow.DEBIT, 800.00),
new TypedCashflow(new SimpleDate("02/01/2007"),
TypedCashflow.DEBIT, 400.00),
};
new RuleRunner().runRules(
new String[] { "Example5.drl" }, cashflows);
}
}

Here, a set of Cashflow objects has been created, each of which is either a credit or debit operation.
They have then be supplied, along with Example5.drl, to the RuleEngine.

Now, examine this rule. It prints the sorted Cashflow objects.

Example 8.44. Banking Tutorial: Rule in Example5.drl

rule "Rule 05"
when
$cashflow : TypedCashflow($date : date, $amount : amount,
type == TypedCashflow.CREDIT)
not TypedCashflow(date < $date, type == TypedCashflow.CREDIT)
then
System.out.println("Credit: "+$date+" :: "+$amount);
retract($cashflow);
end

It is now possible to identify a Cashflow fact with a type of CREDIT and extract the date and the
amount. In the second line of the rule, ensure that there is no Cashflow of the same type with a date
earlier than that which is found. In the consequence, print the Cashflow satisfying the patterns and
then retract it, making way for the next earliest one of type CREDIT.

The output generated is described in the following example:

Example 8.45. Banking Tutorial: Output of Example5. java

Loading file: Example5.drl

Inserting fact: TypedCashflow[date=Mon Jan 01 00:00:00 GMT 2007, type=Credit, amount=300.0]
Inserting fact: TypedCashflow[date=Fri Jan 05 00:00:00 GMT 2007, type=Credit,amount=100.0]
Inserting fact: TypedCashflow[date=Thu Jan 11 00:00:00 GMT 2007, type=Credit, amount=500.0]
Inserting fact: TypedCashflow[date=Sun Jan 07 00:00:00 GMT 2007, type=Debit, amount=800.0]
Inserting fact: TypedCashflow[date=Tue Jan 02 00:00:00 GMT 2007, type=Debit,amount=400.0]

198

Banking Tutorial

Credit: Mon Jan 01 00:00:00 GMT 2007 :: 300.0
Credit: Fri Jan 05 00:00:00 GMT 2007 :: 100.0
Credit: Thu Jan 11 00:00:00 GMT 2007 :: 500.0

The next step is to process both the credits and debits on two bank accounts, calculating the account
balances for each. In order to do this, firstly create two separate Account objects and inject them into
the Cashflow class before passing them to the RuleEngine. (The reason for doing this is to provide
easy access to the correct account without having to resort to helper classes.)

Study the Account class first. This is a simple Java object and has both an account number and a
balance:

public class Account

{
private long accountNo;
private double balance = 0;
public Account() { }

public Account(long accountNo)

this.accountNo = accountNo;

}
public long getAccountNo()

return accountNo;

}

public void setAccountNo(long accountNo)

this.accountNo = accountNo;

}
public double getBalance()

return balance;

}
public void setBalance(double balance)

this.balance = balance;

}

public String toString()

return "Account[" + "accountNo=" + accountNo
+ ",balance=" + balance + "]";

}

Now, extend the TypedCashflow, to create an AllocatedCashflow class, by including an
Account reference.

Example 8.46. AllocatedCashflow Class

public class AllocatedCashflow extends TypedCashflow
{

private Account account;

199

Chapter 8. Examples

public AllocatedCashflow() {}

public AllocatedCashflow(Account account, Date date,
int type, double amount)

{

super(date, type, amount);

this.account = account;

}
public Account getAccount()
{
return account;
}
public void setAccount(Account account)
{
this.account = account;
}

public String toString()

{
return "AllocatedCashflow["

+ "account=" + account

+ ",date=" + getDate()
+ ", type=" + (getType() == CREDIT ? "Credit" : "Debit")
+ ", amount=" + getAmount()
+ ll]ll;
}
}

Example5. java creates two Account objects and, with the constructor call, passes one of them into
each cashflow.

Example 8.47. Banking Tutorial: Example5. java

public class Example6
{
public static void main(String[] args) throws Exception

{

Account accl = new Account(1);
Account acc2 = new Account(2);

Object[] cashflows =

{

new AllocatedCashflow(accl, new SimpleDate("01/01/2007"),
TypedCashflow.CREDIT, 300.00),

new AllocatedCashflow(accl, new SimpleDate("05/02/2007"),
TypedCashflow.CREDIT, 100.00),

new AllocatedCashflow(acc2,new SimpleDate("11/03/2007"),
TypedCashflow.CREDIT, 500.00),

new AllocatedCashflow(accl, new SimpleDate("07/02/2007"),
TypedCashflow.DEBIT, 800.00),

new AllocatedCashflow(acc2,new SimpleDate("02/03/2007"),
TypedCashflow.DEBIT, 400.00),

new AllocatedCashflow(accl,new SimpleDate("01/04/2007"),
TypedCashflow.CREDIT, 200.00),

new AllocatedCashflow(accl, new SimpleDate("05/04/2007"),
TypedCashflow.CREDIT, 300.00),

new AllocatedCashflow(acc2,new SimpleDate("11/05/2007"),
TypedCashflow.CREDIT, 700.00),

new AllocatedCashflow(accl,new SimpleDate("07/05/2007"),
TypedCashflow.DEBIT, 900.00),

200

Banking Tutorial

new AllocatedCashflow(acc2,new SimpleDate("02/05/2007"),
TypedCashflow.DEBIT, 100.00)

}i

new RuleRunner().runRules(new String[]{"Example6.drl"}, cashflows);
}
}

Now, take look at the rule in the Example6 .dr1 file to see how each Cashflow should be applied in
date order, then calculate and print out the balance.

rule "Rule 06 - Credit"
when
$cashflow : AllocatedCashflow($account : account,
$date : date, $amount : amount, type==TypedCashflow.CREDIT)

not AllocatedCashflow(account == $account, date < $date)
then
System.out.println("Credit: " + $date + " :: " + $amount);
$account.setBalance($account.getBalance()+$amount);
System.out.println("Account: " + $account.getAccountNo() +
" - new balance: " + $account.getBalance());

retract($cashflow);
end

rule "Rule 06 - Debit"

when

$cashflow : AllocatedCashflow($account : account,

$date : date, $amount : amount, type==TypedCashflow.DEBIT)

not AllocatedCashflow(account == $account, date < $date)
then

System.out.println("Debit: " + $date + " :: " + $amount);
$account.setBalance($account.getBalance() - $amount);
System.out.println("Account: " + $account.getAccountNo() +

" - new balance: " + $account.getBalance());

retract($cashflow);
end

Although there are now separate rules for credits and debits, do not specify a type when checking for
earlier Cashflows. This is so that all Cashflows are checked in date order, regardless of type. The
conditions have been used to identify the account with which to work, and the consequences have
been used to update it with the Cashflow amount.

Loading file: Example6.drl

Inserting fact: AllocatedCashflow[account=Account[accountNo=1, balance=0.0],date=Mon Jan 01
00:00:00 GMT 2007, type=Credit, amount=300.0]

Inserting fact: AllocatedCashflow[account=Account[accountNo=1,balance=0.0],date=Mon Feb 05
00:00:00 GMT 2007, type=Credit, amount=100.0]

Inserting fact: AllocatedCashflow[account=Account[accountNo=2,balance=0.0],date=Sun Mar 11
00:00:00 GMT 2007, type=Credit, amount=500.0]

Inserting fact: AllocatedCashflow[account=Account[accountNo=1, balance=0.0],date=Wed Feb 07
00:00:00 GMT 2007, type=Debit, amount=800.0]

Inserting fact: AllocatedCashflow[account=Account[accountNo=2,balance=0.0],date=Fri Mar 02
00:00:00 GMT 2007, type=Debit,amount=400.0]

Inserting fact: AllocatedCashflow[account=Account[accountNo=1, balance=0.0],date=Sun Apr 01
00:00:00 BST 2007, type=Credit, amount=200.0]

Inserting fact: AllocatedCashflow[account=Account[accountNo=1, balance=0.0],date=Thu Apr 05
00:00:00 BST 2007, type=Credit, amount=300.0]

Inserting fact: AllocatedCashflow[account=Account[accountNo=2,balance=0.0],date=Fri May 11
00:00:00 BST 2007, type=Credit, amount=700.0]

Inserting fact: AllocatedCashflow[account=Account[accountNo=1, balance=0.0],date=Mon May 07
00:00:00 BST 2007, type=Debit, amount=900.0]

201

Chapter 8. Examples

Inserting fact: AllocatedCashflow[account=Account[accountNo=2,balance=0.0], date=Wed May 02
00:00:00 BST 2007, type=Debit,amount=100.0]
Debit: Fri Mar 02 00:00:00 GMT 2007 :: 400.0

Account: 2 - new balance: -400.0

Credit: Sun Mar 11 00:00:00 GMT 2007 :: 500.0
Account: 2 - new balance: 100.0

Debit: Wed May 02 00:00:00 BST 2007 :: 100.0

Account: 2 - new balance: 0.0

Credit: Fri May 11 00:00:00 BST 2007 :: 700.0
Account: 2 - new balance: 700.0

Credit: Mon Jan 01 00:00:00 GMT 2007 :: 300.0
Account: 1 - new balance: 300.0

Credit: Mon Feb 05 00:00:00 GMT 2007 :: 100.0
Account: 1 - new balance: 400.0

Debit: Wed Feb 07 00:00:00 GMT 2007 :: 800.0

Account: 1 - new balance: -400.0

Credit: Sun Apr 01 00:00:00 BST 2007 :: 200.0
Account: 1 - new balance: -200.0

Credit: Thu Apr 05 00:00:00 BST 2007 :: 300.0
Account: 1 - new balance: 100.0

Debit: Mon May 07 00:00:00 BST 2007 :: 900.0

Account: 1 - new balance: -800.0

8.5. Pricing Rule Decision Table Example

Name: Example Policy Pricing

Main class: org.drools.examples.decisiontable.PricingRuleDTExample
Type: Java application

Rules file: ExamplePolicyPricing.xls

Objective: Demonstrate spreadsheet-based decision tables.

This tutorial demonstrates how a spreadsheet-based decision table can be used to calculate the retail
cost of an insurance policy. The set of rules that are provided calculate a base price and discount for
a motorist who is applying for a specific policy. The driver's age and history, along with the policy type
are factors that are taken into account when determining the basic premium amount. A number of
additional rules then refine this result by calculating a discount percentage.

8.5.1. Executing the Example

Open the PricingRuleDTExample. java file and run it as a Java application. The following output
will appear in the Console window:

Cheapest possible
BASE PRICE IS: 120
DISCOUNT IS: 20

The execution code adheres to the standard pattern: the rules are loaded, the facts are inserted and a
stateless session is created. The difference lies in the way in which the rules are added.

DecisionTableConfiguration dtableconfiguration =
KnowledgeBuilderFactory.newDecisionTableConfiguration();
dtableconfiguration.setInputType(DecisionTableInputType.XLS);

202

The Decision Table

KnowledgeBuilder kbuilder = KnowledgeBuilderFactory.newKnowledgeBuilder();

Resource xlsRes = ResourceFactory.newClassPathResource("ExamplePolicyPricing.xls",
getClass());
kbuilder.add(x1lsRes,
ResourceType.DTABLE,
dtableconfiguration);

Note the use of the DecisionTableConfiguration object. Its input type is set to
DecisionTablelnputType.XLS.

If one is using the Business Rules Management System, this is all configured automatically.

Two fact types are utilized in this example, namely Driver and Policy. The default values of
both are used. The Driver is thirty years of age, has had no prior claims and has a LOW risk profile.
The Policy for which the driver is applying is COMPREHENSIVE. It has not yet been approved.

8.5.2. The Decision Table

In this decision table, each row represents a rule and each column represents either a condition or an
action.

C O E F G H
RuleTable Pricing bracket|
[COMDITION [CONDITION [COMDITION [COMDITION ACTION (ACTION
|Drver policy: ooy |
e == §1, age <= §2 locationRiskProfile pricrCiams [type etfasel 3 | System, out prntin"$param’).
Age Bracket Location risk profile Number of pricr claims Policy type applying for Ease § AUD Record Reason

Figure 8.10. Decision Table Configuration

Study the spreadsheet shown above. Note that the RuleSet declaration provides the package

name. Other optional items can also be added here, such as Variables (for global variables) and
Imports (used to import classes.) In this case, the rules name-space is the same as that for the fact
classes, so it is omitted.

Further down, there is a RuleTable declaration. The next words, Pricing Bracket, are assigned
as a prefix to the name of every rule generated.

Next is the CONDITION or ACTION. This indicates the purpose of a column. In other words, it dictates
whether the column will form part of the condition or the consequence of the generated rule.

Observe that the data about the motorist spans three cells. The template expressions below each
fact are applied to this data. The driver's age-range data uses $1 and $2, (populated with comma-
separated values), locationRiskProfile and priorClaims, which are found in their respective
columns.

The policy base price is set in the action columns. One can also log messages there.

203

Chapter 8. Examples

Cc

D

E

F

G

Base pricing rules

Age Bracket

Location risk profile

Number of prier claims

Policy type applying for

Base § AUD

Record Reason

13

14

Young safe package

COMPREHENSIVE

FIRE_THEFT

COMPREHENSIVE

FIRE_THEFT

15

16

17

Young risk

HIGH

450

Priors not relevant

COMPREHENSIVE

COMPREHENSIVE

=

Location risk

e et

18

19

20

Pal

Mature drivers

25,30

25,30

2530

5 38

COMPREHENSIVE

COMPREHENSIVE

COMPREHENSIVE

[

Chaapast possible

EEl

Figure 8.11. Base Price Calculation

Broad category brackets are indicated by the comments in the leftmost column. Now, use the known
facts about the motorist and the policies to manually determine the base cost.

The answer is Row Eighteen, (as the motorist has had no prior accidents) and, as they are thirty
years of age, the base price equals 120.

Figure 8.12. Discount Calculation

29 Promotional discount rules Age Bracket Number of prior claims Paolicy type applying for Discount %
30 18,24 o COMPREHENSIVE 1
31
18.24 1] FIRE_THEFT 2
32 Rewards for safe drivers 2530 " COMPREHENSIVE 5
33
25,30 2 COMPREHENSIVE 1
34
aE

The next step is to calculate any discount, based on the conditions listed above. The discount results
from a mixture of factors, including the Age bracket, the number of prior claims and the policy type. In
this example case, the driver is thirty, has had no prior claims and is applying for a COMPREHENSIVE
policy. This results in a twenty percent discount.

204

Pet Store Example

@

The discount information is stored in a separate table in the same worksheet. This is so that
Kferent templates can be applied.

It is important to understand that decision tables generate rules. As a result, they do not simply
employ "top-down" logic. Think of them as a means to capture the data from which the rules are
created. This is a subtle difference that has confused some users. The evaluation of the rules is
not necessarily in the given order, since all the normal mechanics of the rule engine still apply.

8.6. Pet Store Example

Name: Pet Store

Main class: org.drools.examples.petstore.PetStoreExample

Type: Java application

Rules file: PetStore.drl

Objective: demonstrate the use of agenda groups, global variables and graphical user
interface integration (including callbacks from within rules.)

This example shows how to use rules in conjunction with a program possessing a graphical user
interface (in this case, it is a Swing-based desktop application).

Within the Rules file, there is an example which teaches how to use agenda groups and auto-focus
functionality in order to dictate which member of a set of rules is permitted to run at a given time. This
example also shows how Java and MVFLEX Expression Language dialects can be mixed together,
and also demonstrates the use of accumulate and how Java functions can be called from within the
rule-set.

All of the Java code is contained in the PetStore. java file. This code defines the principal classes
listed below. (It also contains several unlisted minor classes which are used to handle Swing events.)

* Petstore - this contains the main () method.

* PetStoreUI - this is responsible for creating and displaying the Swing-based graphical user
interface. It contains several smaller classes, which are mainly responsible for responding to various
GUI events such as mouse and button clicks.

* TableModel - this holds the table data. Consider it a Java Bean that extends the Swing
AbstractTableModel class.

» CheckoutCallback - this class allows the graphical user interface to interact with the rules.
» Ordershow - this holds the items that the user wishes to buy.
* Purchase - this stores details of the order and the products being bought.

* Product - this is a Java Bean and holds the pricing information and other details of the products
available for purchase.

205

Chapter 8. Examples

Much of the code is either Swing-based or in the form of plain Java Beans. Swing will
not be discussed in very much detail but a good tutorial on its use is found here on the Sun
Microsystems website: http.//java.sun.com/docs/books/tutorial/uiswing/.

Here are the pieces of Java code in the Petstore. java file that relate to rules and facts:
Example 8.48. Creating the Pet Store RuleBase in PetStore.main

KnowledgeBuilder kbuilder = KnowledgeBuilderFactory.newKnowledgeBuilder();

kbuilder.add(ResourceFactory.newClassPathResource("PetStore.drl",
PetStore.class),
ResourceType.DRL);
KnowledgeBase kbase = KnowledgeBaseFactory.newKnowledgeBase();
kbase.addKnowledgePackages(kbuilder.getKnowledgePackages());

// Create the stock.

Vector<Product> stock = new Vector<Product>();
stock.add(new Product("Gold Fish", 5));
stock.add(new Product("Fish Tank", 25));
stock.add(new Product("Fish Food", 2));

// A callback is responsible for populating the
// Working Memory and for firing all rules.
PetStoreUI ui = new PetStoreUI(stock,
new CheckoutCallback(kbase));
ui.createAndShowGUI();

The code shown above loads the rules from a DRL file that is located on the class-path. In contrast to
the other examples, in which the facts are asserted and executed immediately, this time, that step is
deferred until later. This is dictated by the second last line in which a PetStoreUI object is created
using a constructor accepting the Vector object, stock. This collects the products and an instance of
the CheckoutCallback class containing the rule-base which loaded just prior to this.

The actual Java code that fires the rules is called by the CheckoutCallBack.checkout () method.
It triggers when the user clicks the Checkout button.

public String checkout(JFrame frame, List<Product> items) {
Order order = new Order();

// Iterate through list and add to cart
for (Product p: items) {
order.addItem(new Purchase(order, p));

}
// Add the JFrame to the ApplicationData to allow for user interaction

StatefulKnowledgeSession ksession = kbase.newStatefulKnowledgeSession();
ksession.setGlobal("frame", frame);
ksession.setGlobal("textArea", this.output);

ksession.insert(new Product("Gold Fish", 5));
ksession.insert(new Product("Fish Tank", 25));
ksession.insert(new Product("Fish Food", 2));

206

http://java.sun.com/docs/books/tutorial/uiswing/

Pet Store Example

ksession.insert(new Product("Fish Food Sample", 0));

ksession.insert(order);
ksession.fireAllRules();

// Return the state of the cart
return order.toString();

Two items are passed via this method. One is the handle for the JFrame Swing component that
surrounds the output text frame (at the bottom of the graphical user interface.) The second is a list of
order items. This list comes from the TableModel, which holds the information displayed in the Table
area in the top right section of the screen.

The for loop transforms the list of order items into the Order Java Bean, (which is found in the
PetStore. java file.)

It is possible to refer directly to the Swing data-set in the rules but it is better to do it this way,
using simple Java objects. As a result of following this method, one is not bound Swing if one
iches to transform the sample into a web application.

All of the states depicted in this example are stored in the Swing components; the rules
themselves are effectively "stateless." Each time the Checkout button is clicked, the contents of
the Swing TableModel are copied into the session's working memory.

Within this code, there are nine calls to the working memory. The first of these creates a new
working memory stateful knowledge session (in the Knowledge Base.) (Remember, this
Knowledge Base was passed in the CheckoutCallBack class was created in the main()
method.)

The next two calls pass in two objects that will be held by the rules as global variables. These objects
are the Swing text area and the Swing frame and are used to write messages.

More inserts put information on the products themselves into both working memory and the order
list. The final call is the standard fireAllRules () method. Next, look at what this method does
when the rules file:

Example 8.49. Package, Imports, Globals and Dialect - Extracts from the PetStore.drl

package org.drools.examples

import org.drools.WorkingMemory

import org.drools.examples.PetStore.Order
import org.drools.examples.PetStore.Purchase
import org.drools.examples.PetStore.Product
import java.util.ArrayList

import javax.swing.JOptionPane;

207

Chapter 8. Examples

import javax.swing.JFrame

global JFrame frame
global javax.swing.JTextArea textArea

The first part of the PetStore.dr1 file contains the standard package and import statements
(which are used to make various Java classes available to the rules.) In addition to these, there
are the two global variables, namely frame and textArea. These hold the references to Swing's
JFrame and Textarea components. (Unlike Rules variables, which expire as soon as they have
been fired, global variables retain their values for the lifetime of the session.)

The following example is taken from the end portion of the PetStore.drl file. It contains two
functions that are referenced by the rules. (These two function will be the topic of study in the next
section.)

function void doCheckout(JFrame frame, WorkingMemory workingMemory)

{
Object[] options = {"Yes","No"};

int n = JOptionPane.showOptionDialog(frame,
"Would you like to checkout?","",
JOptionPane.YES_NO_OPTION,
JOptionPane.QUESTION_MESSAGE,
null,options,options[0]);

if (n == 0) {workingMemory.setFocus("checkout");}

}

function boolean requireTank(JFrame frame, WorkingMemory workingMemory,
Order order, Product fishTank, int total)

{
Object[] options = {"Yes","No"};

int n = JOptionPane.showOptionDialog(frame,
"Would you like to buy a tank for your " +
total + " fish?",
"Purchase Suggestion",
JOptionPane.YES_NO_OPTION,
JOptionPane.QUESTION_MESSAGE,
null,options,options[0]);

System.out.print("SUGGESTION: Would you like to buy a tank for your "
+ total + " fish? - ");

if (n == 0) {

Purchase purchase = new Purchase(order, fishTank);
workingMemory.insert(purchase);

order.addItem(purchase);

System.out.println("Yes");

} else {

System.out.println("No");

}

return true;

}

208

Pet Store Example

Having these functions in the Rules file is simply to make the Pet Store example more compact.
In real life scenarios, one should put the functions in a separate file, either within the same

rules package or as a static method on a standard Java class. Import them in this way: import
function my.package.Foo.hello.

The purpose of these two functions is as follows:

« doCheckout () displays a dialogue box that asks the user if they wish to check out. If he or she
does, focus is set to the checkOut agenda group, giving the rules in that group the potential
permission to fire.

* requireTank() displays a dialogue box that asks the user if they wish to buy a fish tank. If so, one
is added to the order listin working memory.

The rules that call upon these functions are taught later in this tutorial. The next set of examples are,
themselves, derived from the pet store rules. The first extract is that which runs first, (partly because
the auto-focus attribute has been set to true.)

Example 8.50. Putting Items into Working Memory - Extract from the PetStore.dr1 File

/// Insert each item in the shopping cart into the Working Memory
// Insert each item in the shopping cart into the Working Memory
rule "Explode Cart"
agenda-group "init"
auto-focus true
salience 10
dialect "java"
when
$order : Order(grossTotal == -1)
$item : Purchase() from $order.items
then
insert($item);
kcontext.getKnowledgeRuntime().getAgenda().getAgendaGroup("show items").setFocus();
kcontext.getKnowledgeRuntime().getAgenda().getAgendaGroup("evaluate").setFocus();
end

This rule matches against all orders for which the gross total (Order .grossTotal) has not yet been
calculated. It loops for each purchase item in order. Some parts of the Explode Cart rule should be
familiar, such as the rule name, the salience (which suggests the order in which rules should be fired)
and the dialect, (which is set to Java.) There are also three new items in the rule:

« agenda-group "init" - this is the name of the agenda group. In this case, there is only one rule
in the group. However, neither the Java code nor a rule consequence sets the focus to this group
and, therefore, it is reliant upon the next attribute for it to be given an opportunity to fire.

- auto-focus true ensures that this rule, whilst being the only one in the agenda group, receives a
chance to fire when fireAllRules() is called from the Java code.

e drools.setFocus() gives the focus to the show items and evaluate agenda groups in turn,
permitting them to execute their rules. (In practice, all order items are looped, ensuring that they are
inserted into memory. The other rules are fired each subsequent time.)

209

Chapter 8. Examples

The next two listings show the rules in the show items and evaluate agenda groups.

Example 8.51. Show Items in the GUI - Extract from the PetStore.drl File

rule "Show Items"
agenda-group "show items"
dialect "mvel"

when

$order : Order()

$p : Purchase(order == $order)
then

textArea.append($p.product + "\n");
end

The show items agenda group is called first. It has only one rule, which is called Show Items (note
the difference in case.) This rule directs log details of each purchase to the text area (at the bottom of
the GUI screen). (The textArea variable used to do this is one of the globals discussed earlier.)

The evaluate agenda group also gains focus from the explode cart code listed previously. This
agenda group has two rules: Free Fish Food Sample and Suggest Tank.

Example 8.52. Evaluate Agenda Group: Extract from the PetStore.dr1 File

// Free Fish Food sample when we buy a Gold Fish if we have not already
//bought Fish Food and dont already have a Fish Food Sample

rule "Free Fish Food Sample"

agenda-group "evaluate"

dialect "mvel"

when

$order : Order()

not ($p : Product(name == "Fish Food") &&

Purchase(product == $p))

not ($p : Product(name == "Fish Food Sample") &&

Purchase(product == $p))

exists ($p : Product(name == "Gold Fish") &&

Purchase(product == $p))

$fishFoodSample : Product(name == "Fish Food Sample");
then

System.out.println("Adding free Fish Food Sample to cart");
purchase = new Purchase($order, $fishFoodSample);

insert(purchase);

$order.addItem(purchase);
end

// Suggest a tank if we have bought more than 5 gold fish and do not
// already have one

rule "Suggest Tank"

agenda-group "evaluate"

dialect "java"

when
$order : Order()
not ($p : Product(name == "Fish Tank") &&

Purchase(product == $p))
ArrayList($total : size > 5) from collect(Purchase

(product.name == "Gold Fish"))
$fishTank : Product(name == "Fish Tank")
then

requireTank(frame, drools.getWorkingMemory(),
$order, $fishTank, $total);
end

210

Pet Store Example

The Free Fish Food Sample rule will only execute if:

« the user does not already have any fish food
* the user does not already have a free fish food sample
« the user's order includes goldfish.

If these conditions are met, the rule fires and a new product (called Fish Food Sample)is
generated. It is added to the order in working memory.

Likewise, the Suggest Tank rule will only fire if these two conditions are met:
« the user has not already ordered a fish tank
* the user has ordered more than five goldfish products

If these conditions are met, the rule fires and calls the requireTank () function, which in turn
presents the user with a dialogue box. Then a tank is added to the order if confirmed. Note that the
rule passes the global frame variable when it calls the requireTank () function. This is so that the
function has a handle on the Swing graphical user interface.

The next rule is entitled do checkout.

Example 8.53. Undertaking the Check-Out: Extract from the PetStore.dr1 File

rule "do checkout"
dialect "java"
when
then
doCheckout (frame, drools.getWorkingMemory());
end

The do checkout rule has no set agenda group or auto-focus attribute. As such, it is deemed part of
the default agenda group, which automatically receives focus when all of the rules that had been set to
receive explicit focus have completed.

There is no left-hand side to the rule, so the right-hand side will always call the doCheckout ()
function. When it does so, the rule passes the global frame variable to give the function a handle
on the Swing graphical user interface. (As detailed above, the doCheckout () function displays
a confirmation dialogue box to the user. If confirmed, the function then passes the focus to the
checkout agenda group, allowing the next set of rules to execute.)

Example 8.54. Checkout Rules: Extract from the PetStore.drl File

rule "Gross Total"
agenda-group "checkout"
dialect "mvel"
when
$order : Order(grossTotal == -1)
Number(total : doublevValue) from accumulate(Purchase ($price : product.price
), sum($price))
then

211

Chapter 8. Examples

modify($order) { grossTotal = total };
textArea.append("\ngross total=" + total + "\n");
end

rule "Apply 5% Discount"

agenda-group "checkout"

dialect "mvel"
when

$order : Order(grossTotal >= 10 && < 20)

then

$order.discountedTotal = $order.grossTotal * 0.95;
textArea.append("discountedTotal total="+$order.discountedTotal+"\n");
end

rule "Apply 10% Discount"
agenda-group "checkout"
dialect "mvel"
when
$order : Order(grossTotal >= 20)
then
$order.discountedTotal = $order.grossTotal * 0.90;
textArea.append("discountedTotal total="+$order.discountedTotal+"\n");
end

There are three rules in the checkout agenda group:

e Gross Total -ifithas notalready been done, this accumulates the product prices into a
total, puts this total into working memory, and displays it in the Swing Text Area (using the
textArea global variable yet again.)

« if the gross total is between ten and twenty, Apply 5% Discount calculates the discounted total,
adds it to working memory and displays it in the text area.

« if the gross total is more than twenty, Apply 10% Discount calculates the discounted total, adds
it to the working memory and displays it in the text area.

That completes the summary of how the code works from a theoretical point of view. Now, one must
observe what happens in practice. The file named PetStore. java contains a main() method,
meaning that it can be run as a standard Java application from either the command line or within the
IDE (assuming the class-path has been set correctly.)

The first screen contains the Pet Store Demo. It has a list of available products (on the top left), an
empty list of selected products (top right), checkout and reset buttons (in the middle) and an empty
system messages area (at the bottom.)

212

Pet Store Example

List Table
Gold Fish 5.0 Mame | Price
Fish Tank 25.0
Fish Food 2.0

Checkout Resegt

Figure 8.13. Depiction of Pet Store Demonstration Immediately After Launch

In order to reach this point, the following events have transpired:

1. The main() method has run and loaded the rule-base but it has not yet fired the rules. (So far,
this is the only code connected to the rules in any way which has run.)

2. A new PetStoreUI object has been created and given a handle on the rule-base. It will use th
later.

3. Various Swing components have performed their operations. It is only then that the above scre
is shown and begins to await user input.

Click on various products from the list to see screens similar to that shown below.

is

en

List Table
\Gold Fish 5.0 Name Price
Fish Tank 25,/ Gold Fish 5.0
Fish Food 2.0 Gold Fish 5.0

Gold Fish 2.0

Gold Fish 5.0

Gold Fish 5.0

Gold Fish 5.0

Checkout Reset

Figure 8.14. Depiction of Pet Store Demonstration with Products Selected

213

Chapter 8. Examples

@e

To reiterate, no rules code has been fired yet. This is only Swing code, whose role it is to "listen”
for mouse click events and, subsequently, add some selected products to the TableModel
object for display in the top, right-hand section. (As an aside, note that this is a classic
implementation of the Model View Controller design pattern.)

It is only when Checkout is clicked that the business rules are executed, in roughly the same
order as that described earlier.

When the Checkout button is clicked, the CheckOutCallBack.checkout () method is called
by the Swing class. It inserts the data from the TableModel object (represented on the top right-
hand side of the graphical user interface), and also places it in the session's working memory. It
then fires the rules.

The Explode Cart rule is the first to fire, because its auto-focus setting is true. It loops through
all of the products in the cart, ensuring that they are in the working memory. It then gives the
Show Items and Evaluation agenda groups permission to fire. The rules in these groups add
the contents of the cart to the text area (at the bottom of the window) and determine whether or
not to give the customer free fish food and ask them if they desire to buy a fish tank. This latter
step is depicted below:

? Would you like to buy a tank for your 6 fish?

Yes Mo

Figure 8.15. Do You Want to Buy a Fish Tank?

The Do Checkout rule is the next to fire as, firstly, no other agenda group currently has focus
and, secondly, it is part of the default agenda group. It always calls the doCheckout () function,
which displays a dialogue box containing this question:

"Would you like to Checkout?"

The doCheckout () function sets the focus to the checkout agenda group, giving the rules in
that group the option to fire.

The rules in the checkout agenda group display the contents of the "cart" and apply the
appropriate discount.

Swing waits for user input, based upon which it will either check out more products (thus causing
the rules to fire again) or close the graphical user interface, as per the final image:

214

Sudoku Example

List Table

Gold Fish 5.0 Hame Frice

Fish Tank 25.0 Gold Fish 5.0

Fish Food 2.0 Gold Fish 5.0
Gold Fish 510
Gold Fish 50
Gold Fish 5.0
Gold Fish 5.0

Checkout Reset

Fish Food Sample 0.0
Gold Fish 5.0

Gold Fish 5.0

Gold Fish 5.0

Gold Fish 5.0

Gold Fish 5.0

Fish Tank 25.0

Gold Fish 5.0

gross total=55.0
discountedTotal total=449.5

Figure 8.16. All Rules Having Fired, the Application Closes.

One could also add more System. out calls to demonstrate this flow of events. The output of the
Console depicted in the above sample is mirrored in this listing:

Example 8.55. Console Output After Running the Pet Store GUI

Adding free Fish Food Sample to cart

SUGGESTION: Would you like to buy a tank for your 6 fish? - Yes

8.7. Sudoku Example

Name: Sudoku

Main class: org.drools.examples.sudoku.Main

Type: Java application

Rules file: sudokuSolver.drl, sudokuValidator.drl

Objective: demonstrates how to solve logic problem and shows how to employ complex
pattern matching.

215

Chapter 8. Examples

This example demonstrates how to use JBoss Rules to find an answer in a potentially-large solution-
space that is derived from a number of constraints. It also teaches how to integrate JBoss Rules
with a graphical user interface-based application by using callbacks to update the display based on
changes to the working memory at run-time.

8.7.1. Overview of Sudoku

Sudoku is a logic-based number-placement puzzle that originated in Japan. The objective is to fill a
9x9 square grid so that each column, row and 3x3 "zone" contains the digits from one to nine once
and once only.

The player is presented with a partially-completed grid and given the task of completing it whilst
abiding by the rules.

Each new number the player adds must be simultaneously unique in its particular row, column and
3x3 square.

8.7.2. Running the Example

Download and install drools-examples file as per the procedure described earlier. Having done so,
execute java org.drools.examples.sudoku.Main. (Note that this example requires Java 5.) A
relatively simple, partially-filled grid will appear in a window:

File

5> 6 9 4

8
6
4
9

U1 W~
P00 O

0w
O ~J|—= 00 W

@) [s IRt INe

O U oo~ O
@) O
oo =IO 8)! W U=

~J U1

4 9 3 5

Solve

Figure 8.17. Patrtially-Filled Grid

Click on the Solve button and the rules engine will fill in the remaining values. The Console will
display detailed information about the rules as they are are executed, thereby demonstrating how the
puzzle is solved.

Rule #3 determined the value at (4,1) could not be 4 as this value already exists in the same
column at (8,1)

Rule #3 determined the value at (5,5) could not be 2 as this value already exists in the same
row at (5,6)

216

Running the Example

Rule #7 determined (3,5) is 2 as this is the only possible cell in the column that can have
this value

Rule #1 cleared the other PossibleCellvalues for (3,5) as a ResolvedCellvValue of 2 exists for
this cell.

Rule #1 cleared the other PossibleCellvalues for (3,5) as a ResolvedCellvalue of 2 exists for
this cell.

Rule #3 determined the value at (1,1) could not be 1 as this value already exists in the
same zone at (2,1)

Rule #6 determined (1,7) is 1 as this is the only possible cell in the row that can have this
value

Rule #1 cleared the other PossibleCellvalues for (1,7) as a ResolvedCellvValue of 1 exists for
this cell.

Rule #6 determined (1,1) is 8 as this is the only possible cell in the row that can have this
value

Once all of the "solving logic" rules have been activated and executed, the engine processes a
second rule base. This one checks that the solution is complete and valid. In the case of the
example, it finds that all is well, so, consequentially, the Solve button is disabled and this message
appears:

Solved (1052ms)

!
=

N CYUT A = 00|~ (D W
£ WG N WO—= 00 W
Colle] =1 ("2 HSILN] | (SN NTg)
~JUT MW O = Oh GO
= W 00 UT =0 PO~
00 & WOIN OYN|W U =
W= &I 0O YU~ WO
U1 Q0O I WO =
O O N|—= = U100 W N

Figure 8.18. Solved Grid

The example comes with a number of grids which can be loaded and solved. Click on File, then
Samples and finally Medium to load a more challenging grid. (Note that the Solve button becomes
enabled once more when the new grid loads.)

Having experimented with it a little, go now and load a deliberately invalid grid by clicking on File, then
Samples and finally IDELIBERATELY BROKEN!. Have a look for some of the errors. (For example, 5
appears twice in the first row.)

217

Chapter 8. Examples

File

>
6

Chy U

= N

~N 00 00
W)

9

= U1

Figure 8.19. Broken Grid

Knowing that it will not work, click on the Solve button anyway to learn what happens when the

Solve

"solving rules" are applied to this invalid grid.

Observe that the Solve button is relabeled to indicate that the resulting solution is invalid and that the

Validation Rule Set outputs all of the problems it discovers to the Console.

cells
cells
cells
cells
cells
cells
cells
cells
cells
cells
cells
cells
cells
cells
cells
cells

two
two
two
two
two
two
two
two
two
two
two
two
two
two
two
two

There
There
There
There
There
There
There
There
There
There
There
There
There
There
There
There

are
are
are
are
are
are
are
are
are
are
are
are
are
are
are
are

on
on
on
on
on
on
on
on
on
on
on
on
in
in
on
on

the
the
the
the
the
the
the
the
the
the
the
the
the
the
the
the

same
same
Same
same
same
Same
same
same
Same
same
same
Same
same
same
Same
same

column with the same value
column with the same value
row with the same value at
row with the same value at
row with the same value at
row with the same value at
column with the same value
column with the same value
row with the same value at
row with the same value at
column with the same value
column with the same value

at (6,0) and (4,0)
at (4,0) and (6,0)
(2,4) and (2,2)
(2,2) and (2,4)
(6,3) and (6,38)
(6,8) and (6,3)
at (7,4) and (0,4)
at (0,4) and (7,4)
(0,8) and (0,0)
(0,0) and (0,8)
at (1,2) and (3,2)
at (3,2) and (1,2)

zone with the same value at (6,3) and (7,3)
zone with the same value at (7,3) and (6,3)

column with the same value
column with the same value

at (7,3) and (6,3)
at (6,3) and (7,3)

The answers to some puzzles that are theoretically solvable cannot, in practice, be found by the
engine in its current state. To see an example, click on File, then Samples and finally Hard 3. A
sparsely-populated grid is loaded.

Now click on the Solve button and observe that the current rules are unable to complete the grid, even
though a human being may be able to see the way to a solution.

Up until this point, the program has used a ten-rule set to deduce the solutions. This rule set must now
be extended to give the engine the logic it needs to tackle more complex puzzles like this one.

218

Java Source and Rules Overview

8.7.3. Java Source and Rules Overview

The Java source code is found in the /src/main/java/org/drools/examples/sudoku
directory. The two DRL rule definition files are located in the /src/main/rules/org/drools/
examples/sudoku directory.

The org.drools.examples.sudoku.swing package contains a set of classes which implement a
framework for Sudoku puzzles.

@

This package does not depend on the JBoss Rules libraries.

Implement the SudokuGridModel interface to store a Sudoku puzzle as a 9x9 grid of integer values,
(some of which may be null, indicating that the value for the cell has not yet been determined.)

The SudokuGridView is a Swing component. It can depict any implementation of the
SudokuGridModel graphically.

The SudokuGridEvent and the SudokuGridListener are used to communicate model "state"
changes to the view; events are fired when a cell's value is resolved or changed. This will be familiar
to those readers acquainted with the model-view-controller patterns used in other Swing components
such as JTable. (SudokuGridSamples provides a number of partially-completed puzzles to
demonstrate these concepts.)

The org.drools.examples.sudoku. rules package contains an implementation of the
SudokuGridModel based on JBoss Rules. Two Java objects are used, both of which extend
AbstractCellValue and both of which represent a value for a specific cell in the grid. This value
includes the row and column location of the cell, an index number for the 3x3 zone in which it is
contained and, thirdly, and the actual number held in the cell.

PossibleCellVvalue indicates that the value of a cell is currently unknown. (There can be between
two and nine possible values for any given cell.)

ResolvedCellValue indicates that the value of the cell has been determined. There can be only
one resolved value for a given cell.

DroolsSudokuGridModel implements the SudokuGridModel. It is responsible for converting an
(initially two-dimensional) array of partially-specified cells into a set of Cel1lValue Java objects. Doing
so creates aworking memory session based on the solverSudoku.drl rules file. It also inserts
the CellValue objects into working memory.

When the solve () method is called it, in turn, calls fireAllRules (), which attempts to solve the
puzzle.

DroolsSudokuGridModel attaches a WorkingMemoryListener to the working memory,

which allows it to be called back on insert and retract events as the puzzle is solved. When a new
ResolvedCellValue is inserted into the working memory, this callback allows the implementation
to fire a SudokuGridEvent to its SudokuGridListener clientele, updating them in real time.

Once all of the rules fired by the "solver" working memory have run, the
DroolsSudokuGridModel executes a second set of rules. (These come from the
validatorsSudoku.drl file). They work with the same set of Java objects and their purpose is to
determine if the resulting grid is a valid and a complete solution.

219

Chapter 8. Examples

@e

The org.drools.examples.sudoku.Main class implements a Java application that

combines the components described above.
The org.drools.examples.sudoku package contains two DRL files. These are, namely,
solverSudoku.drl, (which defines the rules used to solve a Sudoku puzzle) and validator.drl,
(which defines the rules which test as to whether or not the current state of the working
memory represents a valid solution.) Both of these rule-sets use the PossibleCellvalue and
ResolvedCellValue objects as their facts. Also, they both output data to the Console window as
they run.

@

In a real-life situation, one would insert logging information and utilize the
WorkingMemorylListener to display the output to users, rather than use the Console in this
manner.

8.7.4. Validation Rules

This is the process that the validation rules found in the validatorSudoku. dr1 file follow:

1. The first rule simply checks that no PossibleCellValue objects remain in the working
memory. (Once the puzzle is solved, only ResolvedCellValue objects should be present, one
for each cell.)

2. The other three rules match all of the ResolvedCellValue objects and bind them to the variable
entitled $resolvedl. They then look for the ResolvedCellValues that both contain the same
value and are located, respectively, in the same row, column and 3x3 zone.

3. Ifthese rules are fired they add a message, describing the reason why the solution is invalid, to

a global list of strings. The DroolsSudokoGridModel injects this list before it runs the rule-set.
(It also checks whether or not the list is empty after having called fireAllRules(). If it is not
empty, then it prints all of the strings in the list and sets a flag to indicate that the grid has not been
solved.)

8.7.5. Solving Rules

This is the somewhat more complex process followed by the "solving" rules found in the
solverSudoku.dr1 file:

1. Rule #1 clears the working memory of any PossibleCellValues that correspond with rows
and columns holding invalid answers. Several of the other rules insert ResolvedCellvValues
into the working memory at specific rows and columns after they have determined that a given
cell must have a certain value.

Because of the importance of this rule, it is given a higher salience than the others. This ensures
that, as soon as the left-hand side is true, the activations are moved to the top of the agenda
and fired. This, in turn, prevents the other rules from firing spuriously.

This rule also runs update() on the ResolvedCellValue. (This happens even though the rule
has not been modified to make JBoss Rules send the event to any WorkingMemorylListeners

Solving Rules

attached to the working memory. Firing such an event would enable them to update
themselves.) This makes the graphical user interface display the new state of the grid.

Rule #2 identifies cells in the grid for which there can be only one possible value. The first line of
the when clause matches all of the PossibleCellValue objects in the working memory. The
second line demonstrates use of the not keyword.

@

This rule only fires if there are no other PossibleCellValue objects in the same row and
column with differing values.

When it fires, the single PossibleCellValue in that row and that column is retracted from the
working memory and replaced with the ResolvedCellValue of the same value.

Rule #3 removes PossibleCellValues from a row if they are the same value as a
ResolvedCellValue. In other words, when a cell contains a resolved value, any other cells

in the same row containing the same value must be cleared so as to adhere to the rules of

the puzzle. The first line of the when clause finds all of the ResolvedCellValue objects in

the working memory. The second line locates PossibleCellValues which have both the
same row and the same value as these ResolvedCellValue objects. If any are found the rule
activates and, when fired, retracts them since they cannot be the correct solutions for those cells
after all.

Rules #4 and #5 act in the same way as Rule #3 but check for columns and zones for the
redundant PossibleCellValues that clash with ResolvedCellValues.

Rule #6 checks for the scenario whereby a cell's possible value appears only once in a given
row. The first line on the left-hand side matches against all PossibleCellValue facts in the
working memory and stores the results in a number of local variables. The second line checks
that no other PossibleCellValue objects with the same value exist on the same row. The third
to fifth lines check that there is not a ResolvedCellValue with the same value in the same
zone, row or column. (This so that this rule does not fire prematurely.)

@oe

As an aside, one could also remove lines three to five and give Rules #3, #4 and #5 a higher
salience to make sure they always fire before Rules #6, #7 and #8.

When the rule fires, $possible must represent the value for the cell; so retract it and replace it
with the equivalent ResolvedCellValue. (This is the same process as that detailed in Rule #2.)

Rules #7 and #8 act in the same way as Rule #2 but check for single PossibleCellValues in
a given column and zone of the grid respectively.

Rule #9 is the most complex. It implements the logic that dictates, "If we know that a pair of given
values can only occur in two cells on a specific row, (for example we have determined the values
of 4 and 6 can only appear in the first row in cells [0,3] and [0,5]) and this pair of cells can not hold
other values, then, although we do not know which of the pair contains a four and which contains
a six, we do know that these two values must be in these two cells. Hence we can remove the
possibility of them occurring anywhere else in the same row."

221

Chapter 8. Examples

8. Rules #10 and #11 act in the same way as Rule #9 but check for the existence of only two
possible values in a given column or zone respectively.

In order to solve more difficult grid puzzles, extend the rule-set further by coding custom laws that
encapsulate more complex reasoning. The following section provides some suggestions on ways to do
this.

8.7.6. Suggestions for Future Developments

There are a number of ways in which this example could be developed. The reader is encouraged to
consider the following propositions as exercises to try in order to build skills.

« Agenda Groups: use this declarative tool for phased execution. In this example, it is easy to see
there are two phases, namely "resolution" and "validation". At present, they are executed via two
separate rule base files. It would be a better practice to define agenda groups for all the rules, by
splitting them into "resolution” and "validation" categories. They would then all be loaded from a
single rule-base. The engine would execute them one immediately after the other.

» Auto-focus: use this method to handle exceptions to regular rule execution. In the present case, if
an inconsistency is found in either the input data or the resolution rules, it would be better to report
it immediately than waste time continuing to run the rules futilely. To do this, having already created
the single rule-base, simply define the auto-focus attribute for every rule used to validate puzzle
consistency.

 Logical insert: an inconsistency only exists whilst wrong data is in working memory. As such, one
can state that the validation rules logically insert inconsistencies. (As soon as the offending data is
retracted, the inconsistency no longer exists.)

e session.iterateObjects(): at the moment, a global list is used to record problems but
it would be more interesting to ask the stateful session to call the desired issues by via
session.iterateObjects(new ClassObjectFilter(Inconsistency.class)).
Using the inconsistency class also enables one to paint the offending cells a colour (such as
red), making them easy to spot.

* kcontext.getKnowledgeRuntime().halt(): even if the software reports the error as soon as
it is found, one needs a way to tell the engine to stop evaluating rules. Create one by programming
a rule that, in the presence of inconsistencies, calls the halt () code.

e Queries: look at the getPossibleCellvValues(int row, int col) method inthe
DroolsSudokuGridModel. One can see that it iterates over all Ce11Value objects as it searches
for the few that it actually wants. This process can be made more efficient by the use of a JBoss
Rules query. Simply define a query to return the wanted objects and cleanly iterate over it. (Define
other queries as they are needed.)

» Globals as services: the main objective of this change is to facilitate that which follows, but it is also
useful in its own right. In order to learn the use of globals as services, one should, ideally, first have
a callback configured. This change means that each rule that finds the ResolvedCellvalue for
a given cell can "call" the graphical user interface and update it, providing the user with immediate
feedback. Also, the number in the last cell found can be "painted"” a different colour so that the
conclusions of the different rules can be identified quickly.

« Step-by-step execution: having set the callback so that immediate user feedback is given, one can
make use of JBoss Rules's restricted run feature. Add a button to the graphical user interface, that,
when clicked, executes a single rule by calling fireAllRules(1). This way, users will be able
to see what the engine is doing on a "step-by-step" basis.

222

Number Guess

8.8. Number Guess

Name: Number Guess

Main class: org.drools.examples.numberguess.NumberGuessExample
Type: Java application

Rules file: NumberGuess.drl

Obijective: to demonstrate the use of a rule-flow to organize rules.

Study the Number Guess example in this section to learn how to use rule-flow, which provides a
way of controlling the order in which rules are fired. Standard work-flow diagrams are used to clearly
indicate the order in which groups of rules are to be executed.

Example 8.56. Creating the Number Guess Rule-Base

final KnowledgeBuilder kbuilder = KnowledgeBuilderFactory.newKnowledgeBuilder();

kbuilder.add(ResourceFactory.newClassPathResource("NumberGuess.drl",
ShoppingExample.class),ResourceType.DRL);

kbuilder.add(ResourceFactory.newClassPathResource("NumberGuess.rf",
ShoppingExample.class),ResourceType.DRF);

final KnowledgeBase kbase = KnowledgeBaseFactory.newKnowledgeBase();
kbase.addknowledgePackages(kbuilder.getKnowledgePackages());

The process of creating this package and the loading of the rules (via the add () method) is identical
to that for the previous examples, with one optional further step: to specify the ability to use different
rule-flows with the one knowledge base, append the NumberGuess.rf line to the current
rule-flow. (Omitting this step simple means that the the knowledge base will be created in the
same manner as before.)

Example 8.57. Starting the Rule-Flow

final StatefulKnowledgeSession ksession =
kbase.newStatefulKnowledgeSession();

KnowledgeRuntimeLogger logger = KnowledgeRuntimelLoggerFactory.newFilelLogger
(ksession, "log/numberguess");

ksession.insert(new GameRules(100,5));
ksession.insert(new RandomNumber());
ksession.insert(new Game());

ksession.startProcess("Number Guess");
ksession.fireAllRules();

logger.close();
ksession.dispose();

Once generated, use the knowledge base to obtain a "stateful" session. Into this session insert the
facts (this is another term for standard Java objects.) For the sake of simplicity, in this sample, all of
these classes are contained within a single file, entitled NumberGuessExample. java:

223

Chapter 8. Examples

» the GameRules class provides the maximum range and the number of guesses allowed

» the RandomNumber class automatically generates a number between zero and one hundred and
makes it available to the rules after insertion via the getValue() method.

« the Game class tracks the guesses that have been made previously, and the number of guesses
being made currently.

M

Before calling the standard fireAllRules() method, start the process that was loaded earlier
iathe startProcess() method).

In a real-life scenario, one would make further use of the objects in their final state (for instance,
the number of guesses, so that this figure could be added to a table of the highest scores.)
However, for the purposes of this tutorial, it is enough simply to ensure that the working
memory session is cleared by a call to the dispose () method.

[} Select
[::-_ Marques D start

—+ Connection Creation

(== Components *
) start

End

() RuleFlowGroup

=g Split

>+ Jain

() Milestone

=<5 SubFlaw

{c}} Action

No more Guesses

@ Guess Correct

GlEss incarrect

Figure 8.20. Rule-Flow for the Number Guess Example

To see the above diagram, open the NumberGuess. rf file in the JBoss Rules IDE. At first glance,
it can be seen that this image is very much like a standard flowchart, with icons that are very similar
(though not identical) to those found in the JBoss jBPM Workflow application.

To edit the diagram, use the menu of components found to the left of screen. This area is called the
palette. Diagrams are saved in a human-readable XML format, through X-Stream.

Open the Properties view if it is not already visible. Do so by selecting Window > Show View >
Other, and then clicking on the Properties view. Do this before selecting any item on the rule-flow
(or after clicking on a blank space in the rule-flow.) The following set of properties will then be
available:

224

Number Guess

Property Value
Id Number Guess
Name Number Guess
Router Layout Shortest Path
Version

Figure 8.21. Properties for the Number Guess Rule-Flow

@

It is a good idea to continually observe the Properties view whilst working through the rest of this
tutorial as it provides valuable information. At this stage, it is displaying the identity number for
the rule-flow process that was started when the session.startprocess() method was
initially run.

These are the node types in the Number Guess rule-flow:

the start and end nodes (the green arrow and red box respectively) indicate where the rule-flow
starts and ends.

the RuleFlowGroup (indicated by the plain yellow box maps to the RuleFlowGroups in the
DRL file discussed later in this section. For example, when the flow reaches the Too High
RuleFlowGroup, only those rules marked with the complementary ruleflow-group Too High
attribute will be allowed to potentially fire.

action nodes (indicated by the yellow boxes with cog-like emblems) can perform standard Java
method calls. Most of the action nodes in this example call System.out.println to give the
user an indication of what is occurring.

split and join nodes (blue ovals) such as Guess Correct and More Guesses Join indicate
where the flow of control can split (subject to various conditions) and/or be rejoined.

arrows indicate the direction of flow between the various nodes.

These various nodes work in conjunction with the rules to form the Number Guess Game. For
example, the Guess RuleFlowGroup permits only the Get User Guess rule to fire (more details
below) as that is the only rule to possess the matching attribute of ruleflow-group "Guess".

Example 8.58. Example of a Rule that Will Only Fire at a Specific Point in the Rule-Flow

rule "Get user Guess"
ruleflow-group "Guess"
no-loop
when
$r : RandomNumber ()
rules : GameRules(allowed : allowedGuesses)
game : Game(guessCount < allowed)
not (Guess())
then
System.out.println("You have " + (rules.allowedGuesses - game.guessCount)

225

Chapter 8. Examples

+ " out of " + rules.allowedGuesses
+ " guesses left.\nPlease enter your guess from 0 to "
+ rules.maxRange);

br = new BufferedReader(new InputStreamReader(System.in));

i = br.readLine();

modify (game) { guessCount = game.guessCount + 1 }

insert(new Guess(i));

end

The rest of this rule is relatively straightforward. The left-hand side (the when section) dictates that
it will be activated for every RandomNumber object is inserted into the working memory, where
guessCount is less than the number of allowedGuesses (read from the GameRules class) and
where the user has not yet guessed the correct number.

The right-hand side (known as the consequence, and featuring the keyword then) prints a message
for the user, then awaits the user's response to arrive via System. in. After receiving this input (as
System. in blocks until the return key is pressed) it updates/modifies the guess count and the
actual guess and makes both available in the working memory.

The rest of the Rules file is rather straightforward: the package declares the dialect is set to MVEL
and various Java classes are imported. In total, there are five rules in this file:

1. Get User Guess (which is the rule examined above.)

2. arule to record the highest guess.

3. arule to record the lowest guess.

4. arule to inspect the guess and retract it from memory if it is incorrect.
5. arule that notifies the user that all guesses have been used.

One point of integration between the standard rules and the rule-flow is via the ruleflow-group
attribute. A second is that between the DRL rules file and the rule-flow. rf files. The split nodes
(the blue ovals) can use values in working memory (as updated by the rules) to decide which flow
of action to take. To see how this works, click on Guess Correct Node. From within the Properties
view, open the Constraints Editor (by pressing the button at the right that appears after one has
clicked on the Constraints property line). The following will appear:

To node Guess Correct; correct Edit

To node Too Low: too low Edit
To node Too High: too high Edit
Ok ‘ ‘ Cancel

Figure 8.22. Edit Constraints for the GuessCorrect Node

226

Number Guess

Click on Edit. The dialogue box below shall appear. The values in the Textual Editor follow the
standard left-hand side rule format and can refer to objects in working memory. The consequence
(coded on the right-hand side) is that the flow of control will follow this node if the left-hand expression

is found to be true.

Name: too high
Priority: 1

[Always true

Textual Editor

RandomMNumber{ randomValue : value) &&
Guess(value = randomValue)

0K | | Cancel

Figure 8.23. Constraints Editor for the GuessCorrect Node

Since the NumberGuess. java example contains a main() method, it can be run as a standard Java
application (either from BASH or via the IDE.) A typical game will feature the following interaction (the

numbers are typed in by the user):

Example 8.59. Example Console Output for a Game in Which the Number Guess Program Beats

the Human

You have 5 out of 5 guesses left.
Please enter your guess from 0 to

50
Your guess was too high

You have 4 out of 5 guesses left.
Please enter your guess from 0 to

25
Your guess was too low

You have 3 out of 5 guesses left.
Please enter your guess from 0 to

37
Your guess was too low

You have 2 out of 5 guesses left.
Please enter your guess from 0 to

44
Your guess was too low

You have 1 out of 5 guesses left.
Please enter your guess from 0 to

47
Your guess was too low

100

100

100

100

100

227

Chapter 8. Examples

You have no more guesses
The correct guess was 48

In summary, here are the key points:

1.

NumberGuessExample. java's Main () method loads the RuleBase, obtains a
StatefulSession and inserts the Game, GameRules and RandomNumber (the latter containing
the target number) objects into it. This method sets the process flow to be used and fires all of the
rules. Control then passes to the RuleFlow.

The NumberGuessExample.rf RuleFlow begins on the Start node.
Control passes to the Guess node, transiting through the More Guesses join node.

At the Guess node, the Get User Guess RuleFlowGroup is enabled. In this case, the Guess
rule (found in the NumberGuess.dr1 file) is triggered. It displays a message to the user, takes
the response, and puts it into memory. Control then flows on to the next node, Guess Correct.

At this node, constraints inspect the current session and determine the path to take.
If the guess in Step Four was too high or too low, flow proceeds along a path which has both:

« an action node which uses normal Java code to print one of the following two statements:

Too high

Too low

e a RuleFlowGroup which causes a highest- or lowest-guess rule to be triggered from within the
Rules file.

Flow passes from these nodes to that designated in Step Six.

If the guess in Step Four is correct, an action node with normal Java code prints this statement:
You guessed correctly.

There is a join node here (just before the Rule Flow End) so that the no-more-guesses path
(Step Seven) will also terminate the RuleFlow.

Control passes to the RuleFlow via a join node and then onto a Guess Incorrect
RuleFlowGroup item (which triggers a rule to retract the guess from working memory.) It then
moves onto the More Guesses decision node.

The More Guesses decision node (the right-hand side of the rule-flow) uses constraints (by
again looking at values that the rules have placed in working memory) to decide if more
guesses are still to be made available and if so, skips back to Step Three. If there are none left,
control proceeds to the end of the the work-flow, via a RuleFlowGroup that triggers a rule which
states:

You have no more guesses

228

Miss Manners and Benchmarking

8. The loop of Steps Three to Seven continues until the number is guessed correctly, or the number
of guesses available is exhausted.

8.9. Miss Manners and Benchmarking

Name: Miss Manners

Main class: org.drools.benchmark.manners.MannersBenchmark

Type: Java application

Rules file: manners.drl

Objective: Advanced walk-through of the Manners benchmark, covering depth conflict
resolution.

8.9.1. Introduction

Miss Manners is throwing a party and, being a good hostess, she wants to arrange seating
appropriately. Her initial design arranges her guests in male-female pairs but then she worries that
people may not have mutual topics of interest to discuss. What is a good hostess to do? She decides
to note the hobby of each guest. She can then arrange them by alternating gender and ensure that
everybody is seated, on at least one side, next to someone with whom they have a hobby in common.

8.9.1.1. Bench-Marking Scripts

» Miss Manners uses a depth-first search approach to determine the seating arrangements.
It alternates the placement of ladies and gents, whilst ensuring one mutual hobby between
neighbours.

» Waltz establishes a three-dimensional interpretation of a line drawing. It does so by labeling lines
and using constraint propagation.

» WaltzDB is a more generalised version of Waltz, in that it supports junctions of more than three
lines and it uses a database.

» Automatic Route Planner (ARP) is a route planner that has been designed for a robotic vehicle. It
uses the A* search algorithm.

* Weavera is a Very Large Scale Integration (VLSI) router for channels and boxes. It uses a
blackboard technique.

@e

Miss Manners is the rule engine industry's de facto standard bench-marking test. Its behaviour,
however, is now well-known so many engines have been optimised to run it efficiently, thereby
negating its usefulness. For this reason, Waltz is becoming more and more popular.

8.9.1.2. Miss Manners' Execution Flow

After the first seating arrangement has been assigned, the system executes the depth-first recursion
code. This repeatedly processes the correct seating arrangements until the last seat is assigned.
Miss Manners uses a context instance to control execution flow. The following activity diagram

is partitioned in order to show the relationship between the rule execution and the current state of the
context.

229

Chapter 8. Examples

START UP ASSIGN SEATS MAK PATH CHECK DONE PRINT RESULTS

Assign First Seat

—:-| Assign Seat I

= Make Path (Continue?)
Has the last seat
been assigned?

Are We Done Yet? '—ﬁ@asult&

Figure 8.24. Miss Manners Activity Diagram

8.9.1.3. The Data and the Results

Before exploring the rules in detail, take a look at the asserted data and the resulting seating
arrangement. The data is a simple set of five guests who are to be arranged so that genders alternate
and neighbours have a common hobby.

8.9.1.4. The Data

The data is given in OPS5 (Official Production System 5) syntax. Each attribute possesses a
parenthesised list of name- and value-pairs. Each person has only one hobby.

(guest (name n1) (sex m) (hobby h1)
(guest (name n2) (sex f) (hobby h1)
(guest (name n2) (sex f) (hobby h3)
(guest (name n3) (sex m) (hobby h3)
(guest (name n4) (sex m) (hobby h1)
(guest (name n4) (sex f) (hobby h2)
(guest (name n4) (sex f) (hobby h3)
(guest (name n5) (sex f) (hobby h2)
(guest (name n5) (sex f) (hobby h1)
(last_seat (seat 5))

— O

230

In-Depth Analysis

8.9.1.5. The Results

Each line of the results list is printed when the Assign Seat rule is executed. The key element to
which one should pay attention is that each line has a pid value one greater than that preceding it.
(The significance of this will be explained in the discussion of the Assign Seat rule later on in this
section.) The 1s, rs, 1n and rn abbreviations refer to the seats to the left and right and the names
of the neighbours in these positions. The actual implementation uses longer attribute names (such as
leftGuestName, but in this Guide the notation used in the original implementation is retained.

[Seating id=1, pid=0, done=true, 1ls=1, 1ln=n5, rs=1, rn=n5]
[Seating id=2, pid=1, done=false, 1s=1, 1ln=n5, rs=2, rn=n4]
[Seating id=3, pid=2, done=false, 1s=2, 1ln=n4, rs=3, rn=n3]
[Seating id=4, pid=3, done=false, 1s=3, rn=n3, rs=4, rn=n2]
[Seating id=5, pid=4, done=false, 1s=4, 1ln=n2, rs=5, rn=n1l]

8.9.2. In-Depth Analysis

8.9.2.1. Cheating

Miss Manners has been designed to exercise cross-product joins and Agenda activities. Sometimes
people, failing to understanding this, try to "tweak" the example in an attempt to achieve better
performance. This makes their port of the Manners benchmark pointless. Here is a list of known
cheats and porting errors for Miss Manners:

 using arrays for a guest's hobbies, instead of asserting each one as a single fact. This massively
reduces the cross products.

« altering the sequence of data. This reduces the amount of matching, thereby increasing execution
speed.

» changing the not conditional element so that the test algorithm only uses the first-best-match
code. This is, basically, transforming the test algorithm so that it performs backward-chaining.
The results of this are only comparable to other backward-chaining rule engines or ports of Miss
Manners.

» removing the context so that the rule engine matches the guests and seats prematurely. A
proper port will prevent facts from matching because of the context start.

» preventing the rule engine from performing combinational pattern-matching.

« the port is flawed if no facts are retracted in the reasoning cycle as a result of NOT CE.

8.9.2.2. Assign First Seat

Once the context changes to START_UP, activations are created for every asserted guest.
Because each and every activation is created as the result of a single working memory action,
they all have the same activation time tag. (The last guest to be asserted will have a higher
fact time tag.)

The execution order has little bearing upon this rule but has a significant impact upon the Assign
Seat rule.

231

Chapter 8. Examples

The activation fires and asserts the first seating arrangement and a path. It then sets the Context
attribute's state to create an activation for the findSeating rule.

rule assignFirstSeat
when
context : Context(state == Context.START_UP)
guest : Guest()
count : Count()
then
String guestName = guest.getName();

Seating seating = new Seating(count.getValue(),
1!
true,
1,
guestName,
1,
guestName);
insert(seating);

Path path = new Path(count.getValue(), 1, guestName);
insert(path);

modify(count) { setvValue (count.getvValue() + 1) }
System.out.println("assign first seat : "+seating+" : "+path);

modify(context) { setState(Context.ASSIGN_SEATS) }
end

8.9.2.3. "findSeating" Rule

The findSeating rule determines the seating arrangements. When run, it generates cross-
product solutions for every asserted seating arrangement against each asserted guests with the
exception of itself and any already-assigned chosen solutions.

rule findSeating

when
context : Context(state == Context.ASSIGN_SEATS)
$s : Seating(pathDone == true)
$g1 : Guest(name == $s.rightGuestName)
$g2 : Guest(sex != $gl.sex, hobby == $gi.hobby)
count : Count()

not (Path(id == $s.id, guestName == $g2.name))

not (Chosen(id == $s.id, guestName == $g2.name, hobby == $g1.hobby))
then

int rightSeat = $s.getRightSeat();

int seatlId = $s.getId();

int countValue = count.getValue();

Seating seating = new Seating(countValue,
seatId,
false,
rightSeat,
$s.getRightGuestName(),
rightSeat + 1,
$92.getName()
)i

insert(seating);

Path path = new Path(countValue, rightSeat + 1, $g2.getName());
insert(path);

Chosen chosen = new Chosen(seatId, $g2.getName(), $g1.getHobby());

232

In-Depth Analysis

insert(chosen);
System.err.println("find seating : "+seating+" : "+path+" : "+chosen);

modify(count) {setValue(countValue + 1)}
modify(context) {setState(Context.MAKE_PATH)}
end

=>[ActivationCreated(35): rule=findSeating

[fid:19:33]:[Seating id=3, pid=2, done=true, 1ls=2, 1n=n4, rs=3, rn=n3]
[fid:4:4]:[Guest name=n3, sex=m, hobbies=h3]

[fid:3:3]:[Guest name=n2, sex=f, hobbies=h3]

=>[ActivationCreated(35): rule=findSeating

[fid:15:23]:[Seating id=2, pid=1, done=true, 1ls=1, 1ln=n5, rs=2, rn=n4]
[fid:5:5]:[Guest name=n4, sex=m, hobbies=h1]

[fid:2:2]:[Guest name=n2, sex=f, hobbies=h1]

=>[ActivationCreated(35): rule=findSeating

[fid:13:13]:[Seating id=1, pid=0, done=true, ls=1, 1ln=n5, rs=1, rn=n5]
[fid:9:9]:[Guest name=n5, sex=f, hobbies=h1]

[fid:1:1]:[Guest name=nl, sex=m, hobbies=h1]

Creating redundant activations might seem pointless but it must be remembered that good

rule design was not a motive in creating Miss Manners ; it was intentionally designed as a badly

written rule-set to fully stress-test the cross-product matching process and the Agenda
jonality.

Be aware that each activation has an identical time tag value of 35. This is because they were
all activated by the change in the Context object to ASSIGN_SEATS. With OPS5 and LEX, it
would correctly fire the activation with the seating asserted last. With Depth, the accumulated
fact time tag ensures thatthe activation for the last seat to be asserted fires.

8.9.2.4. The "makePath™ and "pathDone" Rules

The makePath rule must always execute before pathDone. A path object is asserted for each
seating arrangement, up to the very last. (Note that the conditions in pathDone are a subset of those
in makePath, which may lead one to wonder how it is that makePath can be ensured to execute
first.)

rule makePath
when
Context(state == Context.MAKE_PATH)
Seating(seatingId:id, seatingPid:pid, pathDone == false)
Path(id == seatingPid, pathGuestName:guestName, pathSeat:seat)
not Path(id == seatingId, guestName == pathGuestName)
then
insert(new Path(seatingId, pathSeat, pathGuestName));
end

rule pathDone
when

233

Chapter 8. Examples

context : Context(state == Context.MAKE_PATH)
seating : Seating(pathDone == false)

then
modify(seating) {setPathDone(true)}
modify(context) {setState(Context.CHECK_DONE)}

end

234

In-Depth Analysis

Make Path

Context

Path Done

Seating

state==MAKE_PATH

pathDone==true |

modify Seating(pathDone = true)

Path

Path

| Pathid==Seating.pid |
Path.name=5Seating.In |

Path.id==Seating.id
Path.name=Seating.In

assert Path(id=Seating.id,
nama=Seaating.In,

seat=Path.seat)

. ObjectTypeMode

. AlphaNode
O LeftinputAdapterNode

Figure 8.25. Rete Diagram

JoinNode

- TerminalNode

MNotMode

235

Chapter 8. Examples

Both rules end up conflicting in the Agenda. Both will have identical activation time tags but the
accumulate fact time tag is greater for the makePath rule so it is given precedence.

8.9.2.5. The "Continue" and "Are We Done?" Rules

Are We Done only activates when the last seat is assigned, at which point both rules are executed.
For the same reason that makePath always has precedence over pathDone, Are We Done has
priority over Continue.

rule areWeDone
when
context : Context(state == Context.CHECK_DONE)
LastSeat(lastSeat: seat)
Seating(rightSeat == lastSeat)
then
modify(context) {setState(Context.PRINT_RESULTS)}
end

rule continue
when
context : Context(state == Context.CHECK_DONE)
then
context.setState(Context.ASSIGN_SEATS);
update(context);
end

8.9.3. Summary of Output

Assign First Seat

=>[fid:13:13]:[Seating id=1, pid=0, done=true, 1ls=1, 1ln=n5, rs=1, rn=n5]
=>[fid:14:14]:[Path id=1, seat=1, guest=n5]

==>[ActivationCreated(16): rule=findSeating
[fid:13:13]:[Seating id=1, pid=0, done=true, 1ls=1, 1ln=n5, rs=1, rn=n5]
[fid:9:9]:[Guest name=n5, sex=f, hobbies=h1]
[fid:1:1]:[Guest name=nl1l, sex=m, hobbies=h1]

==>[ActivationCreated(16): rule=findSeating

[fid:13:13]:[Seating id=1 , pid=0, done=true, 1ls=1, 1ln=n5, rs=1, rn=n5]
[fid:9:9]:[Guest name=n5, sex=f, hobbies=h1]

[fid:5:5]:[Guest name=n4, sex=m, hobbies=h1]*

Assign Seating

=>[fid:15:17] :[Seating id=2 , pid=1 , done=false, 1ls=1, 1lg=n5, rs=2, rn=n4]
=>[fid:16:18]:[Path id=2, seat=2, guest=n4]

=>[fid:17:19]:[Chosen id=1, name=n4, hobbies=h1]
=>[ActivationCreated(21): rule=makePath

[fid:15:17] : [Seating id=2, pid=1, done=false, 1ls=1, 1ln=n5, rs=2, rn=n4]
[fid:14:14] : [Path id=1, seat=1, guest=n5]*

==>[ActivationCreated(21): rule=pathDone
[Seating id=2, pid=1, done=false, 1s=1, 1ln=n5, rs=2, rn=n4]*

Make Path
=>[fid:18:22:[Path id=2, seat=1, guest=n5]]

Path Done

236

Summary of Output

Continue Process

=>[ActivationCreated(25): rule=findSeating

[fid:15:23]:[Seating id=2, pid=1, done=true, 1ls=1, 1ln=

[fid:7:7]:[Guest name=n4, sex=f, hobbies=h3]
[fid:4:4] : [Guest name=n3, sex=m, hobbies=h3]*

=>[ActivationCreated(25): rule=findSeating

[fid:15:23]:[Seating id=2, pid=1, done=true, ls=1, 1ln=

[fid:5:5]:[Guest name=n4, sex=m, hobbies=h1]

[fid:2:2]:[Guest name=n2, sex=f, hobbies=h1], [fid:12:

=>[ActivationCreated(25): rule=findSeating

[fid:13:13]:[Seating id=1, pid=0, done=true, 1ls=1, 1ln=

[fid:9:9]:[Guest name=n5, sex=f, hobbies=h1]
[fid:1:1]:[Guest name=nl, sex=m, hobbies=h1]

Assign Seating

=>[fid:19:26]:[Seating id=3, pid=2, done=false, 1s=2,
=>[fid:20:27]:[Path id=3, seat=3, guest=n3]]
=>[fid:21:28]:[Chosen id=2, name=n3, hobbies=h3}]

=>[ActivationCreated(30): rule=makePath

n5, rs=2, rn=n4]

n5, rs=2, rn=n4]

20] : [Count value=3]

n5, rs=1, rn=n5]

1nn4, rs=3,

[fid:19:26]:[Seating id=3, pid=2, done=false, 1s=2, 1ln=n4, rs=3,

[fid:18:22]:[Path id=2, seat=1, guest=n5]*

=>[ActivationCreated(30): rule=makePath

[fid:19:26]:[Seating id=3, pid=2, done=false, 1s=2, 1ln=n4, rs=3,

[fid:16:18]:[Path id=2, seat=2, guest=n4]*

=>[ActivationCreated(30): rule=done

[fid:19:26]:[Seating id=3, pid=2, done=false, 1ls=2, 1ln=n4, rs=3,

Make Path

=>[fid:22:31]:[Path id=3, seat=1, guest=n5]
Make Path

=>[fid:23:32] [Path id=3, seat=2, guest=n4]
Path Done

Continue Processing

=>[ActivationCreated(35): rule=findSeating

[fid:19:33]:[Seating id=3, pid=2, done=true, 1ls=2, 1ln=

[fid:4:4]:[Guest name=n3, sex=m, hobbies=h3]

[fid:3:3]:[Guest name=n2, sex=f, hobbies=h3], [fid:12:

=>[ActivationCreated(35): rule=findSeating

[fid:15:23]:[Seating id=2, pid=1, done=true, 1ls=1, 1ln=

[fid:5:5]:[Guest name=n4, sex=m, hobbies=h1]
[fid:2:2]:[Guest name=n2, sex=f, hobbies=h1]

=>[ActivationCreated(35): rule=findSeating

[fid:13:13]:[Seating id=1, pid=0, done=true, 1ls=1, 1ln=
[fid:9:9]:[Guest name=n5, sex=f, hobbies=h1], [fid:1:1]

Assign Seating

=>[fid:24:36]:[Seating id=4, pid=3, done=false, 1s=3,
=>[fid:25:37]:[Path id=4, seat=4, guest=n2]]
=>[fid:26:38]:[Chosen id=3, name=n2, hobbies=h3]

==>[ActivationCreated(40): rule=makePath

rn=n3]]

rn=n3]

rn=n3]

rn=n3]*

n4, rs=3, rn=n3]

29]*

n5, rs=2, rn=n4]

n5, rs=1, rn=n5]

1n=n3, rs=4,

[Guest name=n1,

rn=n2]]

sex=m, hobbies=h1]

237

Chapter 8. Examples

[fid:24:36]:[Seating id=4, pid=3, done=false, 1s=3, 1n=n3, rs=4, rn=n2]
[fid:23:32]:[Path id=3, seat=2, guest=n4]*

==>[ActivationCreated(40): rule=makePath

[fid:24:36]:[Seating id=4, pid=3, done=false, 1s=3, 1n=n3, rs=4, rn=n2]
[fid:20:27]:[Path id=3, seat=3, guest=n3]*

=>[ActivationCreated(40): rule=makePath

[fid:24:36]:[Seating id=4, pid=3, done=false, 1s=3, 1n=n3, rs=4, rn=n2]
[fid:22:31]:[Path id=3, seat=1, guest=n5]*

=>[ActivationCreated(40): rule=done
[fid:24:36]:[Seating id=4, pid=3, done=false, 1s=3, 1n=n3, rs=4, rn=n2]*

Make Path

=>fid:27:41:[Path id=4, seat=2, guest=n4]

Make Path

=>fid:28:42]:[Path id=4, seat=1, guest=n5]]

Make Path

=>f1d:29:43]:[Path id=4, seat=3, guest=n3]]

Path Done

Continue Processing

=>[ActivationCreated(46): rule=findSeating

[fid:15:23]:[Seating id=2, pid=1, done=true, 1ls=1, 1ln=n5, rs=2, rn=n4]
[fid:5:5]:[Guest name=n4, sex=m, hobbies=h1], [fid:2:2]

[Guest name=n2, sex=f, hobbies=h1]

=>[ActivationCreated(46): rule=findSeating

[fid:24:44]:[Seating id=4, pid=3, done=true, 1s=3, 1n=n3, rs=4, rn=n2]
[fid:2:2]:[Guest name=n2, sex=f, hobbies=h1]

[fid:1:1]:[Guest name=nl, sex=m, hobbies=h1]*
=>[ActivationCreated(46): rule=findSeating

[fid:13:13]:[Seating id=1, pid=0, done=true, 1ls=1, 1ln=n5, rs=1, rn=n5]
[fid:9:9]:[Guest name=n5, sex=f, hobbies=h1]

[fid:1:1]:[Guest name=nl1, sex=m, hobbies=h1]

Assign Seating

=>[f1d:30:47]:[Seating id=5, pid=4, done=false, 1ls=4, 1n=n2, rs=5, rn=nl]

=>[fid:31:48]:[Path id=5, seat=5, guest=n1]
=>[fid:32:49]:[Chosen id=4, name=nl1, hobbies=h1]

Having studied this section, the reader now knows how to the Miss Manners bench-marking script
works and some of the caveats and pitfalls of which to be aware when using it.

8.10. Conway's Game Of Life Example

Name: Conway's Game Of Life

Main class: org.drools.examples.conway.ConwayAgendaGroupRun
org.drools.examples.conway.ConwayRuleFlowGroupRun

Type: Java application

Rules file: conway-ruleflow.drl conway-agendagroup.drl

238

Conway's Game Of Life Example

Objective: Demonstrates accumulate, collect and from.

Conway's Game Of Life is a well-known simulation model. The application presented here is a Swing-
based implementation of the it. The laws governing the Game are implemented using JBoss Rules.
Read this document to learn how this implementation works.

First, look at the grid shown below. It helps one to visualise the game, by showing the "arena" in which
the life simulation takes place. Initially the grid is empty, meaning that there are no live cells in the
system. Each cell is either "alive" or "dead," with living cells depicted as green balls. Pre-selected
patterns of live cells can be chosen from the Pattern drop-down list. (Alternatively, individual cells can
be doubled-clicked, which has the effect of toggling them between "live" and "dead" states.)

It is important to understand that each cell is related to its neighbours. This is fundamental to the
Game's rules. "Neighbours" include not only cells to the left, right, top and bottom but also those cells
that are connected diagonally. Thus, each cell has a total of eight neighbours. The exceptions are the
four corner cells which have only three neighbours apiece, and the cells along the four borders, which
each have only five neighbours.

Conway's Game Of Life

Conway's Game Of Life is a cellular automaton originalhy
conceived by John Conway in the early 1970°s. This particular
implemenation happens to use the Drools Java Rules Engine
to impose the "business rules" that constrain the game.

:’:ﬁﬂzﬁﬂzﬁ :F'; :F'; :’:'; :F';_
S ﬂjl : ERmacn

_| ’7[_| _| Select a predefined pattern from the list below or use the mouse
to imteractisehy define a starting grid by clicking on cells in
the grid to bring them to life.

Click the “Next Generation™ button to iterate through generations

one at a time or click the “Start” button to let the system evolve
itself.

| Next Generation || Start || Clear

Figure 8.26. Starting a New Game

For each generation (a complete iteration and evaluation of all cells), the system evolves and cells
may be born or killed. There are a very simple set of rules that govern what the next generation will
look like.

« if a living cell has fewer than two live neighbours, it dies of loneliness.
« if a living cell has more than three live neighbours, it dies from overcrowding.
« if a dead cell has exactly three live neighbours, it comes back to life.

Any cell that fails to meet any of those criteria is left as is until the next iteration. With those simple
rules in mind, go and play with the system for a while. Step through some iterations one at a time and
observe the rules take effect.

239

Chapter 8. Examples

Conway's Game Of Life

Conway's Game Of Life is a cellular autnmaii_]n originally
conceived by John Conway in the early 1970's. This particular
implemenation happens to use the Drools Java Rules Engine
to impose the "business rules” that constrain the game.

Select a predefined patte_rn from the list below or use the mouse
to interactmvely define a starting grid by clicking on cells in
the grid to bring them to life.

Click the “Next Generation™ button to iterate through generations

one at a time or click the "Start™ button to let the system evolve
itself.

Pattern : ’—'

| Next Generation || Start || Clear |

Figure 8.27. A Running Game

Now it is time to study the code. (Because this is an advanced example, it is assumed that the
reader by now has an understanding of the JBoss Rules framework.) The example presents two
ways in which to manage execution flow: via AgendaGroups (ConwayAgendaGroupRun) and
RuleFlowGroups (ConwayRuleFlowGroupRun.) It is very instructive to compare them both to see
the differences. This chapter will discuss the rule-flow version, as it is what most readers will use.

All of the cells are inserted into the session. The rules in the group called register neighbour
are granted permission to run by the rule-flow process. The rule group registers the north-eastern,
northern, north-western, and western neighbours of each cell by using the Neighbour Relation
class. Notice this relation is bi-directional, which is why there is no need to create rules for
southwards-facing cells. Also note that the constraints ensure that cells are placed one column back
from the end and one row back from the top. By the time all of the activations have run, all of the cells
will be related to all of their neighbours.

Example 8.60. Register all Cell Neighbour Relations

rule "register north east"

ruleflow-group "register neighbour"
when

CellGrid($numberOfColumns : numberOfColumns)

$cell: Cell($row : row > O, $col : col <

($numberofColumns - 1))

$northEast : Cell(row == ($row - 1), col == ($col + 1))
then

insert(new Neighbor($cell, $northEast));

insert(new Neighbor($northEast, $cell));
end

rule "register north"
ruleflow-group "register neighbour"
when
$cell: Cell($row : row > O, $col : col)
$north : Cell(row == ($row - 1), col == $col)
then
insert(new Neighbor($cell, $north));
insert(new Neighbor($north, $cell));
end

240

Conway's Game Of Life Example

rule "register north west"
ruleflow-group "register neighbour"
when
$cell: Cell($row : row > O, $col : col > 0)
$northwest : Cell(row == ($row - 1), col == ($col - 1))
then
insert(new Neighbor($cell, $northWest));
insert(new Neighbor($northwest, $cell));
end

rule "register west"
ruleflow-group "register neighbour"
when
$cell: Cell($row : row >= 0, $col : col > 0)
$west : Cell(row == $row, col == ($col - 1))
then
insert(new Neighbor($cell, $west));
insert(new Neighbor($west, $cell));
end

Once all of the cells are inserted, some Java code runs, applying the pattern to the grid and setting
certain cells to "alive." Clicking Start or Next Generation makes the Generation rule-flow run. This
rule-flow is responsible for the managing all changes to cells in each iterative cycle.

241

Chapter 8. Examples

[:\S‘ Seleck

r=1
Ly Marquee

2 start

calculake
evaluate

= _onnection Creation

[~ Campaonents >
i) Start

End

(] RuleFlowiaroup

=2 split

=+ Join

(7) Milestane

=2 SubFlow

% Action

reset calculate

End

Figure 8.28. Generation Rule-Flow

242

Conway's Game Of Life Example

The rule-flow process first runs through the evaluate group of rules. As a result, any active rule in
that group can fire. (The rules in this group apply the main Game rules discussed at the beginning of
this section. They determines which cells must die and which ones must be brought back to life.

The phase attribute dictates the way in which each cell responds to specific groups of rules. This
attribute is normally tied to one of the RuleFlowGroups defined in the rule-flow process.

This attribute does not actually change the state of any cells at this point; this is because it must fully
evaluate all of the grid before it applies any edits. Rather, it temporarily sets the cell to one of these
two phases: Phase.KILL or Phase.BIRTH. These are used to apply the changes later.

Example 8.61. Evaluate Cells with State Changes

rule "Kill The Lonely"

ruleflow-group "evaluate"
no-loop

when

A live cell has fewer than 2 live neighbors
theCell: Cell(liveNeighbors < 2, cellState ==
CellState.LIVE, phase == Phase.EVALUATE)then
theCell.setPhase(Phase.KILL);
update(theCell);

end

rule "Kill The Overcrowded"
ruleflow-group "evaluate"
no-loop

when

A live cell has more than 3 live neighbors
theCell: Cell(liveNeighbors >; 3, cellState ==
Cellstate.LIVE, phase == Phase.EVALUATE)then
theCell.setPhase(Phase.KILL);
update(theCell);

end

rule "Give Birth"
ruleflow-group "evaluate"
no-loop

when

A dead cell has 3 live neighbors
theCell: Cell(liveNeighbors == 3, cellState ==
CellState.DEAD, phase == Phase.EVALUATE)then
theCell.setPhase(Phase.BIRTH);
update(theCell);

end

Once all the cells have been evaluated, the reset calculate rule clears any calculation activations
that resulted from previous data changes from the calculate group. Next, a "split" is entered.

This allows all activations in both the "kill" and "birth" groups to fire. (These rules are responsible for
applying the state change.)

Example 8.62. Applying the Changes

rule "reset calculate"
ruleflow-group "reset calculate"
when

243

Chapter 8. Examples

then
WorkingMemory wm = drools.getWorkingMemory();
wm.clearRuleFlowGroup("calculate");

end
rule "kill"
ruleflow-group "kill"
no-loop
when
theCell: Cell(phase == Phase.KILL)
then
modify(theCell){
setCellState(CellState.DEAD),
setPhase(Phase.DONE);
}
end
rule "birth"
ruleflow-group "birth"
no-loop
when
theCell: Cell(phase == Phase.BIRTH)
then

modify(theCell){
setCellState(CellState.LIVE),
setPhase(Phase.DONE);

At this stage, a number of cells have been modified due to their states having been changed to either
"live" or "dead." Next, the neighbour relation is used to drive the iteration over all surrounding
cells, increasing or decreasing the living neighbour count. Any cell for which the count has changed
will be set to an evaluate phase. This means they will be evaluated during the next stage of the rule-
flow process.

Notice that there is no need to run the iteration process manually. Simply by applying the relations

in the rules, the rule engine can be made to do all of the hard work and even it only needs a minimal
amount of code. Once the "live" count for all cells has been determined and set, the rule-flow process
comes to an end. The user can either tell it to evaluate another generation or, if start was clicked, the
engine will run the rule-flow process again.

Example 8.63. Evaluating Cells for Which There Have Been State Changes

rule "Calculate Live"
ruleflow-group "calculate"
lock-on-active
when
theCell: Cell(cellState == CellState.LIVE)
Neighbor(cell == theCell, $neighbor : neighbor)
then
modify($neighbor){
setLiveNeighbors($neighbor.getLiveNeighbors() + 1),
setPhase(Phase.EVALUATE);
}

end

rule "Calculate Dead"
ruleflow-group "calculate"
lock-on-active

when

244

Conway's Game Of Life Example

theCell: Cell(cellState == CellState.DEAD)
Neighbor(cell == theCell, $neighbor : neighbor)
then
modify($neighbor){
setLiveNeighbors($neighbor.getLiveNeighbors() - 1),
setPhase(Phase.EVALUATE);

end

245

246

Appendix A. © 2011

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in
compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/
LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the
License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
KIND, either express or implied. See the License for the specific language governing permissions and
limitations under the License.

247

248

Appendix B. Revision History

Revision Wed Dec 15 2010 L Carlon Icarlon@redhat.com
5.2.0-0

Updated for 5.2.0

Revision Wed Dec 15 2010 David Le Sage dlesage@redhat.com
5.1.0-0

Updated for 5.1.0

Revision Tue Jun 29 2010 David Le Sage dlesage@redhat.com
5.0.2-0
BRMS 341 - Removed archaic information. Sections 3.3.8 and 3.3.11.

Revision Wed May 5 2010 Darrin Mison dmison@redhat.com
5.0.2-0

Updated for 5.0.2.

Revision Tue Oct 6 2009 David Le Sage dlesage@redhat.com
5.0.1-0

5.0.1 updates. First phase of grammar clean-up of this document.

Revision Mon May 18 2009 Darrin Mison dmison@redhat.com
5.0.0-0
Published

249

mailto:lcarlon@redhat.com
mailto:dlesage@redhat.com
mailto:dlesage@redhat.com
mailto:dmison@redhat.com
mailto:dlesage@redhat.com
mailto:dmison@redhat.com

250

	JBoss Rules 5 Reference Guide
	Table of Contents
	Preface
	1. Document Conventions
	1.1. Typographic Conventions
	1.2. Pull-quote Conventions
	1.3. Notes and Warnings

	2. Getting Help and Giving Feedback
	2.1. Do You Need Help?
	2.2. Give us Feedback

	3. Acknowledgements

	Chapter 1. Introduction
	1.1. What Is a Rule Engine?
	1.1.1. Introduction and Background

	1.2. Strong and Loose Coupling

	Chapter 2. Quick Start
	2.1. The Basics
	2.1.1. Stateless Knowledge Sessions
	2.1.2. Stateful Knowledge Sessions

	2.2. A Little Theory
	2.2.1. Methods and Rules
	2.2.2. Cross-Products
	2.2.3. Activations, Agendas and Conflict Sets
	2.2.4. Inference
	2.2.4.1. Inference in Action

	2.2.5. Inference and TruthMaintenance

	2.3. Further Comments on Building and Deploying
	2.3.1. Using Change-Sets to Add Rules
	2.3.2. The Knowledge Agent

	Chapter 3. User Guide
	3.1. Building
	3.1.1. Building with Code
	3.1.2. Building via Configurations and the Change-Set XML

	3.2. Deploying
	3.2.1. The KnowledgePackage and Knowledge Definitions
	3.2.2. Knowledge Bases
	3.2.3. In-Process Building and Deployment
	3.2.4. Building and Deployment as Separate Processes
	3.2.5. Stateful Knowledge Sessions and Knowledge Base Modifications
	3.2.6. KnowledgeAgent

	3.3. Running
	3.3.1. The Knowledge Base
	3.3.2. StatefulKnowledgeSession
	3.3.3. KnowledgeRuntime
	3.3.3.1. WorkingMemoryEntryPoint
	3.3.3.1.1. Insertion
	3.3.3.1.2. Retraction
	3.3.3.1.3. Update

	3.3.3.2. Working Memory
	3.3.3.2.1. Query

	3.3.3.3. Live Queries
	3.3.3.4. KnowledgeRuntime
	3.3.3.4.1. Globals

	3.3.3.5. StatefulRuleSession
	3.3.3.5.1. Agenda Filters

	3.3.4. Agenda
	3.3.4.1. Conflict Resolution
	3.3.4.2. AgendaGroup
	3.3.4.3. Activation Group

	3.3.5. Event Model
	3.3.6. KnowledgeRuntimeLogger
	3.3.7. StatelessKnowledgeSession
	3.3.7.1. Sequential Mode

	3.3.8. Commands and the CommandExecutor
	3.3.9. Marshaling

	Chapter 4. The Rule Language
	4.1. Overview
	4.1.1. A rule file
	4.1.2. Structure of a Rule

	4.2. Keywords
	4.3. Comments
	4.4. Error Messages
	4.4.1. 101: No viable alternative
	4.4.2. 102: Mismatched input
	4.4.3. 103: Failed predicate
	4.4.4. 104: Trailing semi-colon not allowed
	4.4.5. 105: Early Exit

	4.5. Package
	4.5.1. import
	4.5.2. global

	4.6. Functions
	4.7. Type Declaration
	4.7.1. Declaring New Types
	4.7.2. Declaring Metadata
	4.7.3. Declaring Metadata for Existing Types
	4.7.4. Accessing Declared Types from the Application Code

	4.8. Rule
	4.8.1. Rule Attributes
	4.8.2. Timers and Calendars
	4.8.3. Left-Hand Side Conditional Elements
	4.8.3.1. The Pattern
	4.8.3.1.1. Field Constraints
	4.8.3.1.2. Java Beans as Facts
	4.8.3.1.3. Values
	4.8.3.1.4. The Single Value Restriction
	4.8.3.1.5. Operators
	4.8.3.1.6. Literal Restrictions
	4.8.3.1.7. Bound Variable Restriction
	4.8.3.1.8. Return Value Restriction
	4.8.3.1.9. Compound Value Restriction
	4.8.3.1.10. Multi-Restrictions
	4.8.3.1.11. Inline Eval Constraints
	4.8.3.1.12. Nested Accessors

	4.8.3.2. The and Conditional Element
	4.8.3.3. The or Conditional Element
	4.8.3.4. The eval Conditional Element
	4.8.3.5. The not Conditional Element
	4.8.3.6. The exists Conditional Element
	4.8.3.7. The forall Conditional Element
	4.8.3.8. The from Conditional Element
	4.8.3.9. The collect Conditional Element
	4.8.3.10. The accumulate Conditional Element
	4.8.3.10.1. Accumulate Functions

	4.8.4. The Right-Hand Side
	4.8.4.1. Usage
	4.8.4.2. The modify Statement

	4.9. Query
	4.10. Domain-Specific Languages
	4.10.1. When to Use a Domain-Specific Language
	4.10.2. Creating a Domain-Specific Language
	4.10.3. Managing a Domain-Specific Language
	4.10.4. Adding Constraints to Facts
	4.10.5. DSL and DSLR Reference
	4.10.6. The Transformation of a DSLR File
	4.10.7. String Transformation Functions
	4.10.8. Domain-Specific Languages in the BRMS and in the IDE

	4.11. XML Rule Language
	4.11.1. When to use XML
	4.11.2. The XML format
	4.11.3. Automatic transforming between formats (XML and DRL)

	Chapter 5. Using Spreadsheet Decision Tables
	5.1. When Should Decision Tables be Used?
	5.2. Overview
	5.3. How Decision Tables Work
	5.4. Keywords and Syntax
	5.4.1. Template Syntax
	5.4.2. Keywords

	5.5. Creating and Integrating Spreadsheet Based Decision Tables
	5.6. Managing Business Rules in Decision Tables
	5.6.1. Workflow and Collaboration
	5.6.2. Using Spreadsheet Features

	Chapter 6. The Java Rule Engine Application Programming Interface
	6.1. Introduction
	6.2. How To Use the API
	6.2.1. Building and Registering RuleExecutionSets
	6.2.2. Using "Stateful" and "Stateless" Rule Sessions
	6.2.3. Globals

	6.3. References

	Chapter 7. JBoss Developer Studio
	7.1. Overview
	7.2. Drools Runtimes
	7.2.1. Defining a Drools Runtime
	7.2.2. Selecting a runtime for your Drools project

	7.3. Creating a Rule Project
	7.4. Creating a New Rule and Wizards
	7.5. Textual Rule Editor
	7.6. The Guided Editor
	7.7. JBoss Rules Views
	7.7.1. The Working Memory View
	7.7.2. The Audit View

	7.8. Domain-Specific Languages
	7.8.1. Editing languages

	7.9. The Rete View
	7.10. Large .drl Files
	7.11. Debugging Rules
	7.11.1. Creating Breakpoints
	7.11.2. Debugging Rules

	Chapter 8. Examples
	8.1. HelloWorld Example
	8.2. State Example
	8.2.1. Understanding the State Example

	8.3. Fibonacci Example
	8.4. Banking Tutorial
	8.5. Pricing Rule Decision Table Example
	8.5.1. Executing the Example
	8.5.2. The Decision Table

	8.6. Pet Store Example
	8.7. Sudoku Example
	8.7.1. Overview of Sudoku
	8.7.2. Running the Example
	8.7.3. Java Source and Rules Overview
	8.7.4. Validation Rules
	8.7.5. Solving Rules
	8.7.6. Suggestions for Future Developments

	8.8. Number Guess
	8.9. Miss Manners and Benchmarking
	8.9.1. Introduction
	8.9.1.1. Bench-Marking Scripts
	8.9.1.2. Miss Manners' Execution Flow
	8.9.1.3. The Data and the Results
	8.9.1.4. The Data
	8.9.1.5. The Results

	8.9.2. In-Depth Analysis
	8.9.2.1. Cheating
	8.9.2.2. Assign First Seat
	8.9.2.3. "findSeating" Rule
	8.9.2.4. The "makePath" and "pathDone" Rules
	8.9.2.5. The "Continue" and "Are We Done?" Rules

	8.9.3. Summary of Output

	8.10. Conway's Game Of Life Example

	Appendix A. © 2011
	Appendix B. Revision History

