JBoss Enterprise
SOA Platform 5.2

Rule Flow
Component Guide

for Business Rules Developers

[Mg
® ®
o JBoSsS
O
@@ - red Hat

Rule Flow Component Guide

JBoss Enterprise SOA Platform 5.2 Rule Flow Component Guide
for Business Rules Developers
Edition 1

Copyright © 2011 Red Hat.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution—Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is available
at http://creativecommons.org/licenses/by-sa/3.0/. In accordance with CC-BY-SA, if you distribute this
document or an adaptation of it, you must provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, MetaMatrix, Fedora, the Infinity
Logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other countries.

Linux® is the registered trademark of Linus Torvalds in the United States and other countries.
Java® is a registered trademark of Oracle and/or its affiliates.

XFS® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL® is a registered trademark of MySQL AB in the United States, the European Union and other
countries.

All other trademarks are the property of their respective owners.

Read this guide to learn how to use JBoss Enterprise SOA Platform's Rule Flow component to
develop business rules and undertake service orchestration tasks.

http://creativecommons.org/licenses/by-sa/3.0/

Preface v

I B o Tox 0 o T=T o | 0] o V7= o1 i o o £ PP \

1.1. Typographic CONVENTIONSco.uuiiiiiiieeeiii et e et e s v

1.2. PUll-QUOtE CONVENTIONSiiiiiiii it e e e e e e e e e e e e et e e e e eeees Vi

I N N o) (= SR= U (o BT = T T 1 Vi

2. Getting Help and Giving FEEADACKccouuiiiiiiiii e Vi

2.1. DO YOU NEEA HEIP? .oeiieii e vii

2.2. GIVE US FEEUDACKcuniiiiiii et e viii

1. Introduction 1
2. Using Rule Flow for the First Time 3
2.1. Creating YOUr FirSt PrOCESS ...ttt e e e e e e e eeens 3

2.2. EXECULING YOUI FIrSt PrOCESS ...uciviiiiiiiiei ettt e et e et e e n e et e et e e e e e e eenns 5

3. Rule Flows 9
3.1. Creating a RUIE FIOW PrOCESSuuiiiiiiii i e e e eans 9
3.1.1. Using the Graphical Rule FIOW Editorccciiiiiiiiiiiccie e, 9

3.1.2. Defining Processes USING XMLoiiniiiiiiii e e e 10

3.1.3. Defining Processes Using the Process APlc.oiiiiiiiiiiiiii e 11

3.2. Using a Process in Your APPIICALIONcoiuuuiiiiiiiieeiiii e 13

3.3. Detailed Explanation of the Different Node TYPEScoouuiiiiiiiiiiiiiiii e 14

G S D - | - 23

ST Oe] 1S3 = 1] | T PP 24

BB, ACTIONS et et ettt a e e eaas 25

BT BV BN e et 26

3.8. EXCEPLIONS ...ttt ettt e e e 28

G T8 N I 0 T 28
3.10. Updating RUIE FIOWSiiiiii et eeeens 29
3.10.1. Rule Flow Instance MIigrationcccceuiieiiiioiiin e ee e e e e e e e e aeaees 29

3.11. Assigning Rules to @ RuUle FIOW GIOUPcoviiiiiiiiii e 30
3.12. EXampPle RUIE FIOWSeiiiiiii et e e e e eees 31

4. The API 35
4.1, KNOWIEAGE BASEooiiiieiiiiiie ettt ettt ettt e et e et e e e ene 35

S 1= 1= (o) o 35

T TR Y o £ 35

5. Persistence 37
5.1 RUN-TIME SEALE L.uuiiiiiiiii et e e e e et e ettt e e e et r e e e et reeeetbn s e eeeebnaeeees 37
5.1.1. BiNAry PerSISIENCEccouuiiiiiiiiii ettt e e e 37

5.1.2. SAf@ POINS ... et 37

5.1.3. Configuring PersiSIENCEt e 37

5.1.4. Transaction BOUNGANEScoeuiiiiiiiiieeii e e e e e e e e e eeaaees 39

5.2, ProCess DefiNItIONSciieniiiiii e e 40

LR T o 151 o) Y o T 40
5.3.1. Storing Process Events in a Databaseccoocviiiiiiiiiii i, 41

6. Rules and Processes 43
L0 AN o] o] £ 7= (o1 o N 43
6.1.1. Teaching a Rules Engine AbOUt ProCESSESccouiiiiiiiiiiiiiii e 43

B.2. EXAMPIE e e 43
6.2.1. Evaluating a Set of RuUleS in YOUr PrOCESSccuiiiiiiiiiiiiiiieeeiei e 43

6.2.2. Using Rules to Evaluate CONSIIAINTSoveiiiiiiiiiiiiieeeeiine et 44

6.2.3. ASSIGNMENT RUIESoiiiiii e e e e e 44

6.2.4. Describing Exceptional Situations Using RUIEScccoeeiiiiiiiiiiiii e, 45

6.2.5. Modularising Concerns UsiNg RUIESoiiuiiiiiiiiii e 45

Rule Flow Component Guide

6.2.6. Rules for Altering Process Behaviour Dynamicallycccoooiiiiiiiiiiiiiininennnn.
6.2.7. Integrated TOOING ...coovuieiiiii e
6.2.8. Domain-Specific RUlES and PrOCESSEScccuvuiiiiiiiiiieiiiii e

7. Domain-Specific Processes
4% T 1411 (o Yo 11T 1o o I TSP
7.2. Example: NOUFICAtIONSccuuiiiiiii e e s
7.2.1. Creating the Work Definitioncoooeuiiiiii e
7.2.2. Registering the Work Definitioncooeeuiiiiiiiiiie e
7.2.3. Using Your New Work Item in YOUr ProCESSESccccuviiiiiiiiiieiiiiiineeiiie e
7.2.4. EXecUting WOTK ItEMSuuiiiiii e e e e aan s

8. Human Tasks
8.1. Adding Human Tasks t0 RUIE FIOWScoouiiiiiii e
8.1 1. SWIMIBNES ...t et et e e e e e et e e e eeas
8.2. Human Task Management COMPONENTuiiiiiiieiiiiie et e e
8.2.1. TASK LIfE-CYCIE ..o e e e
8.2.2. Linking the Task Component to the Rule Flow ENginecccovvviiivinivincennnn.
8.2.3. Starting the Task Management COMPONENTcceuiieiiiieiiii e e e e
8.2.4. Interacting With the Task Management COMPONENtcccuuviiiiiiiiineiiiniiiieeennnn.
8.3. Human Task Management INtErfaceoiiiiiiiiiiiii e
8.3.1. IBDS INTEGIALION ...evvtiiiiiii ettt ettt et e e e e

9. Debugging Processes
9.1, A SIMPIE EXAMPIE . oeeiiiei e
9.2. DebUQQING thE PrOCESSciviiiiiii i e e e e e e e et e e e e eanns
9.2.1. The Process INStANCES VIBWcouuiiiiiniiiiiiii e et
9.2.2. THE AUGIE VIBW .evuiiiiiiii ettt e et e e et e e et a e e e et e e e e eaa s

10. JBoss Rules IDE Features
10.1. JBOSS RUIES RUN-TIMES ..oouiiiiiii e e e e e e ees
10.1.1. Defining a JBoSS RUlES RUN-TIMEiviiiiiiici e e
10.1.2. Selecting a Run-time for Your JBoss RUIES Projectcccevvveviiniiineiiiiieeieeennnn,
10.2. ProCeSS SKINSiiiiiiiii i

11. Business Activity Monitoring
0 O R =T o o 1 o o [OO P TR PRN
8 O T =Yt 1) =Y V=T 1T o

12. Business Process Model and Notation (BPMN 2.0)
12.1. Current LIMITAtIONSiiiiiiie e e et e e et eeaae s

13. Console
13.1. Running the Process Management CONSOIEoiiiuiiiiiiiiiiiiei e
13.1.1. Managing Rule FIOW INSTANCESuiiiiiiiiiiiiiii e
13.1.2. HUM@N TASK LIStS ..uuiiiiiiiii ettt e e e e e e e e e e anes
IR 200 O T = L= o o] 11 o
13.2. Adding NEW TasK FOIMMS ... ccuuiiiiiiii e e e e e e e e e e e e et e e e e e eanees

A. © 2011
B. Revision History

Index

Preface

1. Document Conventions

This manual uses several conventions to highlight certain words and phrases and draw attention to
specific pieces of information.

In PDF and paper editions, this manual uses typefaces drawn from the Liberation Fonts" set. The
Liberation Fonts set is also used in HTML editions if the set is installed on your system. If not,
alternative but equivalent typefaces are displayed. Note: Red Hat Enterprise Linux 5 and later includes
the Liberation Fonts set by default.

1.1. Typographic Conventions

Four typographic conventions are used to call attention to specific words and phrases. These
conventions, and the circumstances they apply to, are as follows.

Mono-spaced Bold

Used to highlight system input, including shell commands, file names and paths. Also used to highlight
keycaps and key combinations. For example:

To see the contents of the file my_next_bestselling_novel in your current
working directory, enter the cat my_next_bestselling_novel command at the
shell prompt and press Enter to execute the command.

The above includes a file name, a shell command and a keycap, all presented in mono-spaced bold
and all distinguishable thanks to context.

Key combinations can be distinguished from keycaps by the hyphen connecting each part of a key
combination. For example:

Press Enter to execute the command.

Press Ctrl1+Alt+F2 to switch to the first virtual terminal. Press Ctr1+Alt+F1 to
return to your X-Windows session.

The first paragraph highlights the particular keycap to press. The second highlights two key
combinations (each a set of three keycaps with each set pressed simultaneously).

If source code is discussed, class names, methods, functions, variable names and returned values
mentioned within a paragraph will be presented as above, in mono-spaced bold. For example:

File-related classes include filesystem for file systems, file for files, and dir for
directories. Each class has its own associated set of permissions.

Proportional Bold

This denotes words or phrases encountered on a system, including application names; dialog box text;
labeled buttons; check-box and radio button labels; menu titles and sub-menu titles. For example:

Choose System - Preferences — Mouse from the main menu bar to launch Mouse
Preferences. In the Buttons tab, click the Left-handed mouse check box and click

! https://fedorahosted.org/liberation-fonts/

https://fedorahosted.org/liberation-fonts/
https://fedorahosted.org/liberation-fonts/

Preface

Close to switch the primary mouse button from the left to the right (making the mouse
suitable for use in the left hand).

To insert a special character into a gedit file, choose Applications - Accessories

- Character Map from the main menu bar. Next, choose Search - Find... from
the Character Map menu bar, type the name of the character in the Search field
and click Next. The character you sought will be highlighted in the Character Table.
Double-click this highlighted character to place it in the Text to copy field and then

click the Copy button. Now switch back to your document and choose Edit - Paste
from the gedit menu bar.

The above text includes application names; system-wide menu names and items; application-specific
menu names; and buttons and text found within a GUI interface, all presented in proportional bold and
all distinguishable by context.

Mono-spaced Bold Italic or Proportional Bold Italic

Whether mono-spaced bold or proportional bold, the addition of italics indicates replaceable or
variable text. Italics denotes text you do not input literally or displayed text that changes depending on
circumstance. For example:

To connect to a remote machine using ssh, type ssh username@domain. name at
a shell prompt. If the remote machine is example . com and your username on that
machine is john, type ssh john@example.com.

The mount -0 remount file-system command remounts the named file
system. For example, to remount the /home file system, the command is mount -o
remount /home.

To see the version of a currently installed package, use the rpm -q package
command. It will return a result as follows: package-version-release.

Note the words in bold italics above — username, domain.name, file-system, package, version and
release. Each word is a placeholder, either for text you enter when issuing a command or for text
displayed by the system.

Aside from standard usage for presenting the title of a work, italics denotes the first use of a new and
important term. For example:

Publican is a DocBook publishing system.

1.2. Pull-quote Conventions
Terminal output and source code listings are set off visually from the surrounding text.

Output sent to a terminal is set in mono-spaced roman and presented thus:

books Desktop documentation drafts mss photos stuff svn
books_tests Desktopl downloads images notes scripts svgs

Source-code listings are also set in mono-spaced roman but add syntax highlighting as follows:

package org.jboss.book.jca.ex1;

import javax.naming.InitialContext;

vi

Notes and Warnings

public class ExClient

{
public static void main(String args[])
throws Exception
{
InitialContext iniCtx = new InitialContext();
Object ref = iniCtx.lookup("EchoBean");
EchoHome home = (EchoHome) ref;
Echo echo = home.create();
System.out.println("Created Echo");
System.out.println("Echo.echo('Hello') = " + echo.echo("Hello"));
}
}

1.3. Notes and Warnings
Finally, we use three visual styles to draw attention to information that might otherwise be overlooked.

@

Notes are tips, shortcuts or alternative approaches to the task at hand. Ignoring a note should
ve nNo negative consequences, but you might miss out on a trick that makes your life easier.

Important boxes detail things that are easily missed: configuration changes that only apply to
the current session, or services that need restarting before an update will apply. Ignoring a box
Igkeled 'Important’ will not cause data loss but may cause irritation and frustration.

Warnings should not be ignored. Ignoring warnings will most likely cause data loss.

2. Getting Help and Giving Feedback

2.1. Do You Need Help?

If you experience difficulty with a procedure described in this documentation, visit the Red Hat
Customer Portal at http.://access.redhat.com. Through the customer portal, you can:

» search or browse through a knowledgebase of technical support articles about Red Hat products.
» submit a support case to Red Hat Global Support Services (GSS).
 access other product documentation.

Red Hat also hosts a large number of electronic mailing lists for discussion of Red Hat software and
technology. You can find a list of publicly available mailing lists at https.//www.redhat.com/mailman/
listinfo. Click on the name of any mailing list to subscribe to that list or to access the list archives.

Vii

http://access.redhat.com
https://www.redhat.com/mailman/listinfo
https://www.redhat.com/mailman/listinfo

Preface

2.2. Give us Feedback

If you find a typographical error, or know how this guide can be improved, we would love to hear from
you. Submit a report in Bugzilla against the product JBoss Enterprise SOA Platform and the
component doc-Rule_Flow_Component_Guide. The following link will take you to a pre-filled bug
report for this product: http:/bugzilla.redhat. com/.

Fill out the following template in Bugzilla's Description field. Be as specific as possible when
describing the issue; this will help ensure that we can fix it quickly.

Document URL:

Section Number and Name:
Describe the issue:
Suggestions for improvement:

Additional information:

Be sure to give us your name so that you can receive full credit for reporting the issue.

2 https://bugzilla.redhat.com/enter_bug.cgi?product=JJB0oss%20Enterprise%20SOA%20Platform%205&component=doc-
Rule_Flow_Component_Guide&version=52

viii

https://bugzilla.redhat.com/enter_bug.cgi?product=JJBoss%20Enterprise%20SOA%20Platform%205&component=doc-Rule_Flow_Component_Guide&version=52
https://bugzilla.redhat.com/enter_bug.cgi?product=JJBoss%20Enterprise%20SOA%20Platform%205&component=doc-Rule_Flow_Component_Guide&version=52
https://bugzilla.redhat.com/enter_bug.cgi?product=JJBoss%20Enterprise%20SOA%20Platform%205&component=doc-Rule_Flow_Component_Guide&version=52

Chapter 1.

Introduction

The JBoss Enterprise SOA Platform's Rule Flow module is a work-flow or business process engine.
It allows you to integrate your corporation's processes and rules in a sophisticated way.

A business process describes the order in which a series of steps must be executed. They are

traditionally depicted using flow charts. For example, the following figure shows a process where,
first of all, Task1 and Task2 must be executed in parallel. After they are completed, Task3 must be

executed:
% Taskl
() Start { % Task3 @ End
% Task2

The following chapters will teach you everything you need to know about using the JBoss Enterprise
SOA Platform Rule Flow Engine. These are some of its distinguishing features:

1. Advanced integration of processes and rules: processes and rules are usually considered to be
two different paradigms when it comes to defining business logic. While loose-coupling between
a processes and rules is possible by integrating both a process and a rules engine, Rule Flow
provides a high level of integration "out-of-the-box." This allows you to use rules to define parts of
your company's business logic when you are documenting business processes and vice versa.

2. Unification of processes and rules: conceptually, rules, processes and event processing are all
different types of knowledge. A unified API and tooling are provided so that you can combine
these three types from the one tool. Unified knowledge repositories, audit logs, debugging and
debugging features are also provided.

3. Declarative modelling: the Rule Flow Engine tries to keep processes as declarative as possible. In
other words, it allows you to focus on what you want to happen without worrying about how.

Because of this, you rarely have to hard-code details into your process. Instead, Ruleflow offers
you the ability to describe your work in an abstract way (by, for instance, letting you use pluggable
work items or a business scripting language).

You can create domain-specific extensions which will make it simpler to read, update or create
these processes as they are using domain-specific concepts that are closely related to the
problem at hand.

4. Generic process engine supporting multiple process languages: Red Hat does not believe that
there is one process language that fits all purposes. Therefore, the Rule Flow engine allows you to
define and execute different types of process languages, including the native Rule Flow language,
WS-BPEL (a standard targeted towards web service orchestration), OSWorkflow (another existing
work-flow language), JPDL (the JBoss Business Process Definition Language) and so on.

Chapter 1. Introduction

K

All of these languages are based on the same set of core "building blocks." This makes it
easier for you to implement your own process language by reusing and recombining them
should you wish to do so.

Chapter 2.

Using Rule Flow for the First Time

Read this section to learn how to create and execute your first Ruleflow process.

2.1. Creating Your First Process

Use the JBoss Business Developer Studio (JBDS) to create an executable project that contains the
files necessary to start defining and executing processes.

Step through the wizard to generate a basic project structure, a class-path, a sample process and
execution code. (To create a new JBoss Rules project, left-click on the JBoss Rules action button
(with the JBoss Rules heading) in the IDE toolbar and select New JBoss Rules Project.

e

The JBoss Rules action button only shows up in the JBoss Rules perspective. To open the JBoss
Rules perspective (if you haven't done so already), click the Open Perspective button in the top
right corner of your IDE window, select Other... and pick the JBoss Rules perspective.

Alternatively, you could select File, then New followed by Project..., and in the JBoss Rules
directory, select JBoss Rules Project.

Give your project a name and click Next.

In the following dialogue box, you can select which elements you wish to add to your project by
default. Since you are creating a new process, "untick” the first two check-boxes and select the last
two. This will generate a sample process and a Java class to execute this process.

If you have not yet set up a JBoss Rules run-time, do so now. A JBoss Rules run-time is a collection of
Java Archive files (JARS) that represent one specific release of the JBoss Rules project JARSs.

To create a runtime, either point the IDE to the release of your choice, or create a hew runtime on your
file system from the JARs included in the JBoss Rules IDE plug-in. (Since you want to use the JBoss
Rules version included in this plug-in, you will do the latter this time.)

@oe

You will only have to do this once; the next time you create a JBoss Rules project, it will
automatically use the default runtime (unless you specify otherwise).

Unless you have already set up a JBoss Rules run-time, click the Next button.

A dialogue box will appear, telling you that you have not yet defined a default JBoss Rules runtime
and that you should configure the workspace settings first. Do this by clicking on the Configure
Workspace Settings... link.

The dialogue box that will appear shows you the workspace settings for the JBoss Rules run-times.
(The first time you do this, the list of installed JBoss Rules run-times will be empty.)

To create a new run-time on your file system, click the Add... button.

w

Chapter 2. Using Rule Flow for the First Time

Use the dialogue box that appears to give the new run-time a name (such as "JBoss Rules 5.2
runtime"), and put a path to your JBoss Rules run-time on your file system.

Click the Create a new JBoss Rules 5 runtime... button and select the directory in which you want
this run-time to be stored.

Click the OK button. You will see the path you selected showing up in the dialogue box.

Click the OK button. You will see the newly created run-time shown in your list of all the JBoss Rules
run-times.

Select this runtime and make it the new default by clicking on the check box next to its name and
clicking OK.

After successfully setting up your run-time, you can now dismiss the Project Creation Wizard by
clicking on the Finish button.

The end result will contain the following:

1. ruleflow. rf: this is the process definition file. In this case, you have a very simple process
containing a Start node (the entry point), an Action node (that prints out "Hello World") and an End
node (the end of the process).

2. RuleFlowTest.java: this is the Java class that executes the process.

3. the libraries you require. These are automatically added to the project class-path in the form of a
single JBoss Rules library.

Double-click on the ruleflow. rf file. The process will open in the Rule Flow Editor. (The Rule Flow
Editor contains a graphical representation of your process definition. It consists of nodes that are
connected to each other.) The Editor shows the overall control flow, while the details of each of the
elements can be viewed (and edited) in the Properties View at the bottom.

On the left-hand side of the Editor window, you will see a palette. Use this to drag-and-drop new
nodes. You will also find an outline view on the right-hand side.

Executing Your First Process

While most readers will find it easier to use the Editor, you can also modify the underlying XML
directly if you wish. The XML for your sample process is shown below (note that the graphical
information is omitted here for the sake of simplicity).

The process element contains parameters like the name and id. of the process, and consists of
three main subsections: a header (where information like variables, globals and imports can be
defined), the nodes and the connections.

<?xml version="1.0" encoding="UTF-8"?>
<process xmlns="http://drools.org/drools-5.0/process"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema-instance"
xs:schemalLocation="http://drools.org/drools-5.0/process drools-
processes-5.0.xsd"
type="RuleFlow"
name="ruleflow"
id="com.sample.ruleflow"
package-name="com.sample" >

<header>
</header>

<nodes>
<start id="1" name="Start" x="16" y="16" />
<actionNode id="2" name="Hello" x="128" y="16" >
<action type="expression"
dialect="mvel">System.out.println("Hello World");</action>
</actionNode>
<end id="3" name="End" x="240" y="16" />
</nodes>

<connections>
<connection from="1" to="2" />
<connection from="2" to="3" />
</connections>
</process>

2.2. Executing Your First Process

To execute your process, right-click on RuleFlowTest . java and select Run As..., followed by Java
Application.

When the process executes, the following output will appear in the Console window:

Hello World

Look at the code of RuleFlowTest class:

package com.sample;

import org.drools.KnowledgeBase;
import org.drools.builder.KnowledgeBuilder;
import org.drools.builder.KnowledgeBuilderFactory;

Chapter 2. Using Rule Flow for the First Time

import
import
import
import
import

VAR

org.drools.
org.drools.
org.drools.
org.drools.
org.drools.

builder.ResourceType;
io.ResourceFactory;
logger.KnowledgeRuntimelLogger;
logger.KnowledgeRuntimeLoggerFactory;
runtime.StatefulkKnowledgeSession;

* This is a sample file to launch a process.

*/

public class ProcessTest {

public static final void main(String[] args) {

tr

"test

}
3

y {

// load up the knowledge base

KnowledgeBase kbase = readkKnowledgeBase();

StatefulKnowledgeSession ksession = kbase.newStatefulKnowledgeSession();
KnowledgeRuntimeLogger logger = KnowledgeRuntimelLoggerFactory.newFilelLogger (ksession,

")

// start a new process instance
ksession.startProcess("com.sample.ruleflow");
logger.close();

} catch (Throwable t) {

t.printStackTrace();

private static KnowledgeBase readkKnowledgeBase() throws Exception {
KnowledgeBuilder kbuilder = KnowledgeBuilderFactory.newKnowledgeBuilder();
kbuilder.add(ResourceFactory.newClassPathResource("ruleflow.rf"), ResourceType.DRF);
return kbuilder.newKnowledgeBase();

}

As you can see, the execution process is made up of a number of steps:

1. Firstly, a knowledge base is created. A knowledge base contains all the knowledge (such as
words, processes, rules, and so forth) that are needed by your application. This knowledge base is
usually created once, and then reused multiple times. In this case, the knowledge base consists of
the sample process only.

2. Next, a session for interaction with the engine is generated.

A logger is then added to the session. This records all execution events and make it easier for you
to visualise what is happening.

3. Finally, you can start a new instance of the process by invoking the startProcess(String
processId) method on the session. When you do this, your process instance begins to run,
resulting in the executions of the Start node, the Action node, and the End node in order. When
they finish the process instance will conclude.

Because you added a logger to the session, you can review what happened by looking at the audit

log:

Select the Audit View tab on the bottom right of the window, (next to the Console tab.)

Click on the Open Log button (the first one on the right) and navigate to the newly created test.log
file (in your project directory.)

Executing Your First Process

@

If you are not sure where this project directory is located, right-click on it and you will find the
location listed in the Resource section
A tree view will appear. This shows the events that occurred at run-time. Events that were executed as
the direct result of another event are shown as the children of that event.

This log shows that after starting the process, the Start node, the Action node and the End node were
triggered, in that order, after which the process instance was completed.

You can now start to experiment by designing your own process by modifying the example. To
validate your processes, click on the Check the rule-flow model button (this is the green check
box action in the upper tool-bar that appears when you are editing a process.) Processes are also
automatically validated when you save them. You can see the debugging information in the Error
View.

Chapter 3.

Rule Flows

| — L !

Figure 3.1. A Rule Flow

A rule flow is a flow chart that describes the order in which a series of steps need to be undertaken.

It consists of a collection of nodes that are linked to each other by connections. Each of the nodes
represents one step in the overall process while the connections specify how to transition from one
node to the other. A large selection of predefined node types have been supplied. Read the rest of this
chapter to learn how to define and use rule flows in your application.

3.1. Creating a Rule Flow Process

Create rule flows in one of these three ways:
1. By using the graphical Rule Flow Editor (part of the JBDS' JBoss Rules plug-in.)

2. By writing an XML file, according to the XML process format as defined in the XML Schema
definition for JBoss Rules processes.

3. By directly creating a process using the Process API.

3.1.1. Using the Graphical Rule Flow Editor

The Rule Flow Editor is a graphical tool that allows you to create a process by dragging and dropping
different nodes onto a canvas. It then allows you to edit the properties of these nodes.

Once you have set up a JBoss Rules project in the JBDS, you can start adding processes: When in
a project, launch the New wizard by using the Ctrl+N shortcut or by right-clicking on the directory in
which you would like to put your rule flow and selecting New, then Other....

Choose the section on JBoss Rules and then pick Rule Flow file. A new . rf file is created.
The Rule Flow Editor now appears.

Switch to the JBoss Rules Perspective. This will tweak the user interface so that it is optimal for
rules. Then,

Next, ensure that you can see the Properties View (at the bottom of the JBDS window). If you cannot
see the properties view, open it by going to the Window menu, clicking Show View and then Other....

Next, under the General directory, select the Properties View.

The Rule Flow Editor consists of a palette, a canvas and an Outline View. To add new elements
to the canvas, select the element you would like to create and add it by clicking on your preferred

Chapter 3. Rule Flows

location. For example, click on the RuleFlowGroup icon in the Components palette of the GUI and
then draw a few rule flow groups.

Clicking on an element in your rule flow allows you to set its properties. You can connect the nodes
(as long as it is permitted by the different types of nodes) by using Connection Creation from the
Components palette.

Keep adding nodes and connections to your process until it represents the business logic that you
want to specify.

Finally, check the process for any missing information (by pressing the green Check icon in the IDE
menu bar) before using it in your application.

3.1.2. Defining Processes Using XML

You can also specify processes by writing the underlying XML by hand. The syntax of these XML
processes is defined by a schema definition. For example, the following XML fragment shows a simple
process made up of a Start node, an Action node that prints "Hello World" to the console, and an End
node:

<?xml version="1.0" encoding="UTF-8"?>

<process xmlns="http://drools.org/drools-5.0/process"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema-instance"
xs:schemaLocation="http://drools.org/drools-5.0/process drools-processes-5.0.xsd"
type="RuleFlow" name="ruleflow" id="com.sample.ruleflow" package-name='"com.sample" >

<header>
</header>

<nodes>
<start id="1" name="Start" x="16" y="16" />
<actionNode id="2" name="Hello" x="128" y="16" >
<action type="expression" dialect="mvel" >System.out.println("Hello World");</action>
</actionNode>
<end id="3" name="End" x="240" y="16" />
</nodes>

<connections>
<connection from="1" to="2" />
<connection from="2" to="3" />
</connections>

</process>

The process XML file must contain only one <process> element. This element contains parameters
related to the process (its type, name, id. and package name), and consists of three subsections:

a <header> (where process-level information like variables, globals, imports and swimlanes are
defined), a <nodes> section that defines each of the nodes in the process, and a <connections>
section that contains the connections between all the nodes in the process.

In the nodes section, there is a specific element for each node. Use these to define the various
parameters and sub-elements for that node type.

10

Defining Processes Using the Process API

3.1.3. Defining Processes Using the Process API

Red Hat does not recommend using the APIs directly. You should always use the Graphical
Editor or hand-code XML. This section is only included for the sake of completeness.
It is possible to define a rule flow directly via the Process API. The most important process elements
are defined in the org.drools.workflow.core and org.drools.workflow.core.node
packages.

The fluent API allows you to construct processes in a readable manner using factories. At the end,
you can validate the process that you were constructing manually.

3.1.3.1. Example One

This is a simple example of a basic process that has a rule set node only:

RuleFlowProcessFactory factory =
RuleFlowProcessFactory.createProcess("org.drools.HellowWorldRuleSet");
factory
// Header
.name("HelloWorldRuleSet")
.version("1.0")
.packageName("org.drools")
// Nodes
.startNode(1).name("Start").done()
.ruleSetNode(2)
.name("RuleSet")
.ruleFlowGroup("someGroup").done()
.endNode(3) .name("End").done()
// Connections
.connection(1, 2)
.connection(2, 3);
RuleFlowProcess process = factory.validate().getProcess();

Note from the above that you start by calling the static createProcess () method from the
RuleFlowProcessFactory class. This method creates a new process with the given id.

A typical process consists of three parts:

The header part is made up of global elements like the name of the process, imports, variables and so
on.

The nodes section contains all the different nodes that make up the process.
The connections section finally links these nodes to each other to create a flow chart.

In the example above, the header contains the name and the version of the process. It also contains

the package name. Following on from that, you can start adding nodes to the current process. If you

are using auto-completion you can see that you different methods are available to you to create each
of the supported node types at your disposal.

To start adding nodes to the process in this example, call the startNode(), ruleSetNode() and
endNode () methods.

You will see that these methods return a specific NodeFactory, that allows you to set their
properties.

11

Chapter 3. Rule Flows

Once you have finished configuring a specific node, call the done () method to return to the current
RuleFlowProcessFactory so you can add more nodes if necessary.

When you have finished adding all the nodes, connect them by calling the connection method.

Finally, call the validate() method to check your work. This will also retrieve the
RuleFlowProcess object you created.

3.1.3.2. Example Two

This example shows you how to use Split and Join nodes:

RuleFlowProcessFactory factory =
RuleFlowProcessFactory.createProcess("org.drools.HelloWorldJoinSplit");
factory
// Header
.name ("HelloworldJoinSplit")
.version("1.0")
.packageName("org.drools")
// Nodes
.startNode(1).name("Start").done()
.splitNode(2).name("Split").type(Split.TYPE_AND).done()
.actionNode(3).name("Action 1")
.action("mvel", "System.out.println(\"Inside Action 1\")").done()
.actionNode(4).name("Action 2")
.action("mvel", "System.out.println(\"Inside Action 2\")").done()
.joinNode(5).type(Join.TYPE_AND) .done()
.endNode(6) .name("End").done()
// Connections
.connection(1, 2)
.connection(2, 3)
.connection(2, 4)
.connection(3, 5)
.connection(4, 5)
.connection(5, 6);
RuleFlowProcess process = factory.validate().getProcess();

Note from the above that a Split node can have multiple outgoing connections, and a Join node
multiple incoming connections.

3.1.3.3. Example Three

This more complex example demonstrates the use of a ForEach node and nested action nodes:

RuleFlowProcessFactory factory =
RuleFlowProcessFactory.createProcess("org.drools.HelloWorldForeach");
factory
// Header
.name ("HelloworldForeach")
.version("1.0")
.packageName("org.drools")
// Nodes
.startNode(1).name("Start").done()
.forEachNode(2)
// Properties
.linkIncomingConnections(3)
.linkOutgoingConnections(4)
.collectionExpression("persons")
.variable("child", new ObjectDataType("org.drools.Person"))
// Nodes

12

Using a Process in Your Application

.actionNode(3)

.action("mvel", "System.out.println(\"inside actioni\")").done()
.actionNode(4)

.action("mvel", "System.out.println(\"inside action2\")").done()

// Connections
.connection(3, 4)
.done()
.endNode(5) .name("End") .done()
// Connections
.connection(1, 2)
.connection(2, 5);

RuleFlowProcess process = factory.validate().getProcess();

Note how the 1inkIncomingConnections() and 1inkOutgoingConnections() methods that
are called to link the ForEach node with the internal action node. These methods are used to specify
the first and last nodes inside the ForEach composite node.

3.2. Using a Process in Your Application

There are two things you need to do to be able to execute processes from within your application:

Firstly, you need to create a knowledge base that contains the definition of the process,

Secondly you need to start the process by creating a session to communicate with the process engine.

1.

Creating a knowledge base: once you have a valid process, you can add it to your knowledge
base. Note that this process is almost identical to that for adding rules to the knowledge base: only
the type of knowledge that is added is changed:

KnowledgeBuilder kbuilder = KnowledgeBuilderFactory.newKnowledgeBuilder();
kbuilder.add(ResourceFactory.newClassPathResource("MyProcess.rf"),
ResourceType.DRF);

After adding all your knowledge to the builder (you can add more than one process, and even
rules), create a new knowledge base:

KnowledgeBase kbase = kbuilder.newKnowledgeBase();

This will throw an exception if the knowledge base contains errors (because it will not be able
to parse your processes correctly).

Starting a process: processes are only executed if you explicitly state that they should be. This is
because you could potentially define a lot of processes in your knowledge base and the engine
has no way to know when you would like to start each of them. To activate a particular process,
call the startProcess method:

StatefulKnowledgeSession ksession = kbase.newStatefulKnowledgeSession();
ksession.startProcess("com.sample.MyProcess");

13

Chapter 3. Rule Flows

The startProcess method's parameter represents the id. of the process to be started. This
process id. needs to be specified as a property of the process, shown in the Properties View
when you click the background canvas.

M

If your process also needs to execute rules, you must also call the
ssion.fireAllRules() method.

You can specify additional parameters to pass input data to the process. To do so, use the
startProcess(String processId, Map parameters) method. This method takes
an additional set of parameters as name-value pairs and copies to the newly-created process
j nce as top-level variables.

To start a process from within a rule consequence, or from inside a process action, use the
predefined kcontext parameter:

kcontext.getKnowledgeRuntime().startProcess("com.sample.MyProcess");

3.3. Detailed Explanation of the Different Node Types
A rule-flow process is a flow chart that depicts different types of nodes which are linked by
connections. The process itself exposes the following properties:

« Id: this is the process' unique id.

« Name: this is the process' unique display name.

« Version: this is the process' version number.

» Package: this is the paclage (or name-space) in which the process is stored.

 Variables: you can define variables to store data during the execution of your process.

» Swimlanes: these specify the actor responsible for the execution of human tasks.

« Exception Handlers: use these specify what is expected to happen when a fault occurs in the
process.

« Connection Layouts: use these to specify what your connections are to look like on the canvas:
» Manual always draws your connections as lines going straight from their start points to their end

points (with the option to use intermediate break points).

14

Detailed Explanation of the Different Node Types

« Shortest path is similar, but it tries to go around any obstacles it might encounter between the

start and end point, to avoid lines crossing nodes.

« The Manhattan option draws connections using horizontal and vertical lines only.

You can use these types of nodes when creating a rule flow:

1.

Start Event: this is the start of the rule flow. (A rule flow must have only one start node. It cannot
have incoming connections but must have one outgoing connection.) Whenever a rule flow
process is started, execution will commence at this node and automatically continue to the first
node linked from it, and so on.

The Start Event node possesses the following properties:

« [d: this is the id. of the node (and is unique within one node container).
» Name: this is the node's display name.

 Triggers: you can specify triggers that, when activated, will automatically start the process.
Examples are a constraint trigger that automatically launches the process if a given rule or
constraint is satisfied, and an event trigger that automatically starts the process if a specific
event is signalled.

You cannot yet specify these triggers in the Graphical Editor. Edit the XML file instead to
add them.

» MetaData: this is meta-data related to this node.

End Event: this is the end of the rule flow. A rule flow must have at least one end node. The End
node must have one incoming connection and cannot have any outgoing connections.

This node possesses the following properties:
* Id: this is the id. of the node (and is unique within one node container).
» Name: this is the node's display name.

» Terminate: an End node can be terminate the entire process (this is the default) or just one path.
If the process is terminated, every active node (even those on parallel paths) in this rule flow is
cancelled.

Non-terminating End nodes end terminate the current path, while other parallel paths remain.
* MetaData: this is meta-data related to this node.

Rule Task (or RuleFlowGroup): use this node to represent a set of rules you wish to have
evaluated. A RuleFlowGroup node should have one incoming connection and one outgoing
connection.

To make rules part of a specific rule flow group, use the ruleflow-group header attribute. When
a RuleFlowGroup node is reached, the engine will start executing any rules that are part of the
corresponding ruleflow-group. Execution will automatically continue to the next node once
there are no more active rules in that group.

15

Chapter 3. Rule Flows

This means that you can add new activations (belonging to the currently active rule flow group) to
the Agenda even if the facts have been modified by other rules.

The rule flow will immediately process the next node if it encounters a rule flow group
containing no active rules. If the rule flow group was already active, it will remain so and
execution will only continue if every active rule has been run.

This contains the following properties:

« Id: this is the id. of the node (and is unique within one node container).
« Name: this is the node's display name.

* RuleFlowGroup: this is the name of the rule flow group that represents the set of rules for this
node.

* Timers: these are any timers that are linked to this node.
* MetaData: this is meta-data related to this node.

Diverging Gateway (or Split): use this to create branches in your rule flow. A Split node must
have one incoming connection and two or more outgoing connections.

There are three types of Split node:
< AND means that the control flow will continue in all outgoing connections simultaneously.

* XOR means that no more or less than one of the outgoing connections will be chosen.
The decision is made by evaluating the constraints that are linked to each of the outgoing
connections. Constraints are specified using the same syntax as the left-hand side of a rule. The
constraint with the lowest priority number that evaluates to true is selected.

Make sure that at least one of the outgoing connections will evaluate to true at run time
(the rule flow will throw an exception if there are none). For example, you could use a
connection which is always true (default) with a high priority number to specify what should
happen if none of the other connections can be taken.

* OR means that all outgoing connections whose condition evaluates to true are selected.
Conditions are similar to the XOR split, except that no priorities are taken into account.

16

Detailed Explanation of the Different Node Types

Make sure that at least one of the outgoing connections will evaluate to true at run time
(the rule flow will throw an exception if there are none). For example, you could use a
connection which is always true (default) with a high priority number to specify what should
happen if none of the other connections can be taken.

This node contains the following properties:

Id: this is the id. of the node (and is unigque within one node container).
Name: this is the node's display name.
Type: this is the node type (AND, XOR or OR.)

Constraints: these are the constraints linked to each of the outgoing connections (in case of an
(X)OR split).

MetaData: this is meta-data related to this node.

Converging Gateway (or Join): use this to synchronise multiple branches. A join node must have
two or more incoming connections and one outgoing connection. Four types of split are available
to you:

AND means that it will wait until all incoming branches are completed before continuing.

XOR means that it continues as soon as one of its incoming branches has been completed. (If
it is triggered from more than one incoming connection, it will activate the next node for each of
those triggers.)

Discriminator means that it will continue if one of its incoming branches has been
completed. Other incoming branches are registered as they complete until all connections have
finished At that point, the node will be reset, so that it can be triggered again when one of its
incoming branches has been completed once more.

n-of-m means that it continues if n of its m incoming branches have been completed. The
variable n could either be hard-coded to a fixed value, or refer to a process variable that will
contain the number of incoming branches for which it must wait.

This node contains the following properties:

Id: this is the id. of the node (and is unique within one node container).

Name: this is the node's display hame.

Type: this is the node type (AND, XOR or OR.)

n: this is the number of incoming connections for which it must wait (in case of a n-of-m join).

MetaData: this is meta-data related to this node.

State: this node represents a wait state. A state must have one incoming connection and one or
more outgoing connections.

17

Chapter 3. Rule Flows

For each of the outgoing connections, you can specify a rule constraint to define how long the
process should wait before continuing. For example, a constraint in an order entry application
might specify that the process should wait until no more errors are found in the given order.

To specify a constraint, use the same syntax as you would for the left-hand side of a rule.

When it reaches this node, the engine will check the associated constraints. If one of the

constraint evaluates to true directly, the flow will continue immediately. Otherwise, the flow will
continue if one of the constraints is satisfied later on, for example when a fact is inserted, updated
or removed from the working memory.

You can also signal a state manually to make it progress to the next state, using
ksession.signalEvent("signal", "name") where name should either be the name
of the constraint for the connection that should be selected, or the name of the node to which
you wish to move.

A state contains the following properties:

« Id: this is the id. of the node (and is unique within one node container).
« Name: this is the node's display name.

« Constraints: use these to define when the process can leave this state and continue for each of
the outgoing connections.

* Timers: these are any timers that are linked to this node.

« On-entry and on-exit actions: these are actions that are executed upon entry or exit of this node,

respectively.
* MetaData: this is meta-data related to this node.

Reusable Sub-Process (or SubFlow): this represents the invocation of another process from
within the parent process. A sub-process node must have one incoming connection and one
outgoing connection.

When a SubFlow node is reached, the engine will start the process with the given id.
This node contains the following properties:

« Id: this is the id. of the node (and is unique within one node container).
« Name: this is the node's display name.
* Processld: this is the id. of the process that is to be executed.

» Wait for completion: if you set this property to true, the SubFlow node will only continue if
it has terminated its execution (by other completing or aborting it); otherwise it will continue
immediately after having started the sub-process.

» Independent: if you set this property to true, the sub-process will start as an independent
process. This means that the SubFlow process will not terminate if this it reaches an end node;
otherwise the active sub-process will be cancelled on termination (or abortion) of the process.

18

Detailed Explanation of the Different Node Types

» On-entry and on-exit actions: these are actions that are executed upon entry or exit of this node,
respectively.

» Parameter in/out mapping: you can also define sub-flow nodes by using in- and out-mappings
for variables. The value of variables in this process will be used as parameters when starting
the process. The value of the variables in the sub-process will be copied to the variables of this
process when the sub-process has been completed.

You can only use out mappings when Wait for completion is set to true.

» Timers: these are any timers that are linked to this node.
» MetaData: this is meta-data related to this node.

Action (or Script Task): this node represents an action that should be executed in this rule

flow. An action node should have one incoming connection and one outgoing connection. The
associated action specifies what should be executed, the dialect used for coding the action (such
as Java or MVEL), and the actual action code.

This code can access any global, the predefined variable called drools referring to a
KnowledgeHelper object (which can, for example, be used to retrieve the Working Memory
by calling drools.getWorkingMemory()), and the variable kcontext that references the
ProcessContext object. (This latter object can, for example, be used to access the current
ProcessInstance or NodeInstance, and to obtain and set variables).

When the rule flow reaches an Action node, it will execute the action and then continue to the next
node.

The Action node possesses the following properties:

Id: this is the id. of the node (and is unique within one node container).
» Name: this is the node's display name.

 Action: this is the action associated with the node.

* MetaData: this is meta-data related to this node.

Timer Event: this node represents a timer that can trigger one or multiple times after a given
period. A Timer node must have one incoming connection and one outgoing connection.

The timer delay specifies how long (in milliseconds) the timer should wait before triggering the first
time. The timer period specifies the time between two subsequent triggers. A period of @ means
that the timer should only be triggered once. When the rule flow reaches a Timer node, it starts the
associated timer.

The timer is cancelled if the timer node is cancelled (by, for instance, completing or aborting the
process).

The Timer node contains the following properties:

« [d: this is the id. of the node (and is unique within one node container).

19

Chapter 3. Rule Flows

10.

11.

* Name: this is the node's display name.

« Timer delay: this is the delay (in milliseconds) that the node should wait before triggering the
first time.

« Timer period: this is the period (in milliseconds) between two subsequent triggers. If the period
is 0, the timer should only be triggered once.

* MetaData: this is meta-data related to this node.

Error Event (or Fault): use a Fault node to signal an exceptional condition in the process. It must
have one incoming connection and no outgoing connections.

When the rule flow reaches a fault node, it will throw a fault with the given name. The process will
search for an appropriate exception handler that is capable of handling this kind of fault. If no fault
handler is found, the process instance is aborted.

A Fault node contains the following properties:

« Id: this is the id. of the node (and is unique within one node container).
« Name: this is the node's display name.

» FaultName: this is the name of the fault. This name is used to search for appropriate exception
handlers that are capable of handling this kind of fault.

» FaultVariable: this is the name of the variable that contains the data associated with this fault.
This data is also passed on to the exception handler (if one is found).

* MetaData: this is meta-data related to this node.

(Message) Event: use this Event node to respond to internal or external events during the
execution of the process. An Event node must have no incoming connections and one outgoing
connection. It specifies the type of event that is expected. Whenever that type of event is detected,
the node connected to this Event node is triggered.

It contains the following properties:

* Id: this is the id. of the node (and is unique within one node container).
« Name: this is the node's display name.
» EventType: this is the type of event that is expected.

» VariableName: this is the name of the variable that will contain the data (if any) associated with
this event.

» Scope: you can use this node to listen to internal events only (that is, events that are signalled
to this process instance directly, by using processInstance.signalEvent (String type,
Object data).)

You can define it as external, by using workingMemory.signalEvent(String type,
Object event). In this case, it will also be listening to external events that are signalled to the
process engine directly .

* MetaData: this is meta-data related to this node.

20

Detailed Explanation of the Different Node Types

12. User Task (or Human Task): Processes can also involve tasks that need to be executed by
humans. A Human Task node represents an atomic task to be executed by a human actor. It must
have one incoming connection and one outgoing connection. Human Task nodes can be used in
combination with Swimlanes to assign multiple human tasks to similar actors.

@

A Human Task node is actually nothing more than a specific type of work item node (of type
"Human Task").

A Human Task node contains the following properties:

« [d: this is the id. of the node (and is unique within one node container).
» Name: this is the node's display name.

» TaskName: this is the name of the human task.

* Priority: this is an integer indicating the priority of the human task.

« Comment: this is a comment associated with the human task.

 Actorld: this is the id. of the actor responsible for executing the human task. You can specify a
list of them, using a comma to separate each one.

» Skippable: this specifies whether the human task can be skipped, (that is, whether the actor is
allowed to decide if he or she should do the task or not).

» Content: this is the data associated with the task.

» Swimlane: this is the swimlane to which the node belongs. Swimlanes make it easy to assign
multiple human tasks to the same actor.

» Wait for completion: If you set this property to true, the human task node will only continue if
the human task has been terminated; otherwise it will continue immediately after creating the
human task.

» On.entry and on-exit actions: these are the actions that are executed upon entry and exit of this
node, respectively.

» Parameter mapping: use this to copy the value of process variables to human task parameters.
Upon creation of the human tasks, the values are copied.

» Result mapping: this allows copying of the human task's result parameters value to a process
variable. Upon completion of the human task, the values are copied.

@roe

You can use result mappings only when Wait for completion is set to true. A human task
has a result variable called Result that contains the data returned by the human actor.

The ActorId variable contains the id. of the actor who actually executed the task.

21

Chapter 3. Rule Flows

* Timers: these are the Timers that are linked to this node.
* MetaData: this is meta-data related to this node.

13. Sub-Process (or Composite): A Composite node is a node that can contain other nodes so
that it acts as a node container. This allows not only the embedding of a part of the flow within
such a Composite node, but also the definition of additional variables and exception handlers that
are accessible for all nodes inside this container. A Composite node should have one incoming
connection and one outgoing connection. It contains the following properties:

* Id: this is the id. of the node (and is unique within one node container).
* Name: this is the node's display name.
« StartNodeld: this is the id. of the node container node that should be triggered.

« EndNodeld: this is the id. of the node container node that that represents the end of the flow.
When this node is completed, the composite node will also complete and move to the outgoing
connection. Every other node executing within this composite node will be cancelled.

» Variables: you can add additional data storage variables.
« Exception Handlers: use these to specify the behaviour to occur when a fault is encountered.

14. Multiple Instance (or ForEach): a ForEach node is a special composite that allows you to
execute the flow contained therein multiple times, once for each element in a collection. A
ForEach node must have one incoming connection and one outgoing connection.

A ForEach node awaits the completion of the embedded flow for each of the collection”s elements
before continuing.

This node contains the following properties:

Id: this is the id. of the node (and is unique within one node container).
* Name: this is the node's display name.
« StartNodeld: this is the id. of the node container node that should be triggered.

« EndNodeld: this is the id. of the node container node that that represents the end of the flow.
When this node is completed, the composite node will also complete and move to the outgoing
connection. Every other node executing within this composite node will be cancelled.

» CollectionExpression: this is the name of a variable that represents the collection of elements
over which you will iterate. Set the collection variable to java.util.Collection.

* VariableName: this is the name of the variable which contains the current element from the
collection. This gives sub-nodes contained in the composite node access to the selected
element.

15. Workltem (or Service Task): this node represents an abstract unit of work that is to be executed
during this rule flow. You must represent all work that is executed outside the process engine (in a
declarative way) using this type of node.

Some different types of work are predefined. These include sending an e.-mail and logging a
message.

22

Data

You can define domain-specific work items. To do so, use a unique name and defining the input
and output that you expect.

When the rule flow reaches Workltem node, the associated work item is executed. A Workltem
node must have one incoming connection and one outgoing connection.

Id: this is the id. of the node (and is unique within one node container).
Name: this is the node's display hame.

Wait for completion: If the property "Wait for completion" is true, the Workltem node will only
continue if the created work item has terminated (completed or aborted) its execution; otherwise
it will continue immediately after starting the work item.

Parameter mapping: use this to copy the process variables' values to the work item's
parameters.

Result mapping: use this to copy the result parameters to a process variable. Each type of work
can have result parameters. These can be returned after the work item has been completed.
Use a result mapping to copy the given result parameter's value to the process variable. For
example, the "FileFinder" work item returns a list of files that match the given search criteria
within the result parameter Files. You can then bind this list of files to a process variable for use
within the rule flow. Upon completion of the work item, the values will be copied.

You can only use result mappings when Wait for completion is set to true.

On-entry and on-exit actions: these are actions that are executed upon entry or exit of this node,
respectively.

Timers: these are the timers that are linked to this node.

Additional parameters: you can define additional parameters for each type of work. For
example, the Email work item has thse additional parameters: From, To, Subject and Body. You
can either provide values for these parameters directly, or define a parameter mapping that will
copy the given variable's values to the appropriate parameter; if both are specified, the mapping
will have precedence.

To embed a value, use parameters of type String with #{expression} . The value will be
retrieved when the work item is created and the substitution expression will be replaced by

the result of calling toString() on the variable. The expression can simply be the name of a
variable (in which case it resolves to the value of the variable), but you can use more advanced
MVEL expressions as well, such as #{person.name.firstname}.

MetaData: this is meta-data related to this node.

3.4. Data

While the rule flow is designed specifically to allow you to create process control flows, you also have
to plan it from a data perspective. Throughout the execution of a process, data is retrieved, stored,
passed on and used.

23

Chapter 3. Rule Flows

To store run-time data while a process is executing, use variables. A variable is defined by a name
and a data type. This could be something very basic, such as Boolean, int, or String, or it could be any
kind of Object sub-class.

Define variables inside a variable scope. The top-level scope is that for the process itself. Subscopes
can be defined via a composite node. Variables that are defined in sub-scopes can only be accessed
by nodes within that scope.

Whenever a variable is accessed, the process will search for the appropriate definitive variable scope.

You are allowed to nest variable scopes. A node will always search for a variable in its parent
container. If the variable cannot be found, it will look in that one's parent container, and so on, until
the process instance itself is reached. If the variable cannot be found, a read access yields null, and a
write access produces an error message, with the process continuing its execution.

You can use variables in these ways:

e you can set process-level variables when starting a process by providing a map of parameters to
the invocation of the startProcess method. These parameters are then set as variables on the
process scope.

 actions can access variables directly. They do so by using the name of the variable as a parameter
name:

// call method on the process variable "person"
person.setAge(10);

You can change the value of a variable via the knowledge context:

kcontext.setVariable(variableName, value);

« you can make Workltem and SubFlow nodes pass the value of parameters to the "outside world" by
mapping the variable to one of the work item parameters. To do so, either use a parameter mapping
or interpolate it into a String parameter, using #{expression} . You can also copy a Workltem's
output to a variable via a result mapping.

« various other nodes can also access data. Event nodes, for example, can store the data associated
with an event in a variable. Exception handlers can read error data from a specific variable. Check
the properties of the different node types for more information.

Finally, every process and rule can access globals. These are globally-defined variables that are
considered immutable with regard to rule evaluation and data in the knowledge session.

You can access the knowledge session via the actions in the knowledge context:

kcontext.getKnowledgeRuntime().insert(new Person(...));

3.5. Constraints

You can use constraints in a multitude of locations in your rule flow. You can, for example use them
in a Split node using OR or XOR decisions, or as a constraint for a State node. The Rules Flow Engine
supports two types of constraints:

24

Actions

» Code constraints are Boolean expressions, evaluated directly immediately upon arrival. You can
write them in either of these two dialects: Java and MVEL. Both have direct access to the globals
and variables defined in the process.

Here is an example of a constraint written in Java, person being a variable in the process:

return person.getAge() > 20;

Here is the same constraint written in MVEL:

return person.age > 20;

* Rule constraints are the same as normal JBoss Rules conditions. They use the JBoss Rules Rule
Language's syntax to express what are potentially very complex constraints. These rules can, (like
any other rule), refer to data in the working memory. You can also refer to globals directly.

Here is an example of a valid rule constraint:
Person(age > 20)

This searches the working memory for people older than twenty.

Rule constraints do not have direct access to variables that have been defined inside the rule flow.
You can, however, possible to refer to the current process instance inside a rule constraint, by adding
the process instance to the working memory and matching it to the process instance in your rule
constraint.

Red Hat has added special logic to make sure that a processinstance variable of the type
WorkflowProcessinstance will only match the current process instance and not to other process
instances in the working memory. You, however, are responsible for inserting the process instance
into the session and, updating it, using, for example, either Java code or an on-entry or on-exit or
explicit process action.

The following example of a rule constraint will search for a person with the same name as the value
stored in the process variable name:

processInstance : WorkflowProcessInstance()
Person(name == (processInstance.getVariable("name")))
add more constraints here ...

3.6. Actions

You can use actions in these ways:
 within an Action node,

 as entries or exits, (with a number of nodes),
« to specify the the behaviour of exception handlers.

Actions have access to globals and those variables that are defined for the process and the predefined
context variable. This latter is of the type org.drools.runtime.process.ProcessContext
and can be used for the following tasks:

25

Chapter 3. Rule Flows

obtaining the current node instance. The node instance can be queried for such information as its
name and type. You can also cancel it:

NodeInstance node = context.getNodeInstance();
String name = node.getNodeName();

 obtaining the current process instance. A process instance can be queried for such information as
its name and processld. It can also be aborted or signalled via an internal event:

wWorkflowProcessInstance proc = context.getProcessInstance();
proc.signalEvent(type, eventObject);

 obtaining or setting the value of variables.

» accessing the knowledge run-time, in order to do things like start a process, signal external events
or insert data.

Java actions should be valid Java code.

MVEL actions can use this business scripting language to express the action. MVEL accepts any valid
Java code but also provides support for nested accesses of parameters (such as, person.name
instead of person.getName()), and various other advantages. Thus, MVEL expressions are
normally more convenient for the business user. For example, an action that prints out the name of the
person in the rule flow's requester variable will: look like this:

// Java dialect
System.out.println(person.getName());

// MVEL dialect
System.out.println(person.name);

3.7. Events

¥ Eventl

(J start —»[Action

¥ Event2

Actinnj—» B End

Figure 3.2. A sample process using events

When you execute a process, the Rule Flow Engine makes sure that all of the relevant tasks are
executed according to the process plan. It does so by requesting the execution of work items and
waiting for the results. However, you can also make the rule flow respond to events that were not

26

Events

directly requested by the Engine. By explicitly representing these events in a rule flow, you allow
yourself to specify how the process should react to them.

Each events has an associated type. It may also have associated data. You can define your own
event types and their associated data.

To specify how a rule flow is to respond to events, use Event nodes. An Event node needs to specify
the type of event the node is interested in. It can also define the name of a variable, which will receive
the data that is associated with the event. This allows subsequent nodes in the process to access the
event data and take appropriate action based on this data.

You can signal an event to a running instance of a process in these ways:

« via internal events: to make an action inside a rule flow signal the occurrence of an internal event,

using code like this:

context.getProcessInstance().signalEvent(type, eventData);

* via external event: to notify a process instance of an external event use code like this:

processInstance.signalEvent(type, eventData);

* via external event using event correlation: instead of notifying a process instance directly, you can
make the Rule Flow Engine automatically determine which process instances might be interested
in an event using event correlation. This is based on the event type. Use this code to make a
process instance that contains an event node listening for a particular external event will be notified
whenever such an event occurs:

workingMemory.signalEvent(type, eventData);

You can also use events to start a rule flow. Whenever a Start node defines an event trigger of a
specific type, a new rule flow instance will launch.

27

Chapter 3. Rule Flows

3.8. Exceptions

CompositeNode

Action

(2 Start |—m

o Fault

P
¥ Fault |—» i} Action @ End
.

Figure 3.3. A sample process using exception handlers
If an exceptional condition occurs during the execution of a rule flow, a fault will be raised. The rule
flow will then search for an appropriate exception handler that is capable of handling this type of fault.

As with events, each fault has an associated type. They may also have associated data. You can
define both your own types and your own data.

If the Fault node specifies a fault variable, the value of the given variable will be associated with the
fault.

Whenever a fault is created, the process will search for the exception handler to match.
Rule flows and Composite nodes can both define exception handlers.

You can nest exception handlers; a node will always search for an appropriate exception handler in
its parent container. If none is found, it will look in that one's parent container, and so on, until the
process instance itself is reached. If no exception handler can be found, the process instance will
abort, resulting in the cancellation of all nodes inside the process.

You can also use exception handlers to specify a fault variable. In this case, any data associated with
the fault will be copied to this variable. This allows subsequent Action nodes in the rule flow to access
the fault data and take appropriate action based on it.

Exception handlers need to be told how to respond to a given fault. In most cases, the behaviour
required of them cannot be expressed in a single action. Red Hat therefore recommends that you
have the exception handler signal an event of a specific type (in this case "Fault") by using this code:

context.getProcessInstance().signalEvent("FaultType", context.getVariable("FaultVariable");

3.9. Timers

Use timers to set a time delay for a trigger. You can use them to specify supervision periods, to trigger
certain logic after a certain period, or to repeat some action at regular intervals.

28

Updating Rule Flows

You must configure a timer node so that it has both a delay and a period. The delay specifies the how
long (in milliseconds) to wait after node activation before triggering the timer for the first time. The
period defines the duration of time between subsequent trigger activations. If you set the period to 0,
the timer will only run once.

The timer service is responsible for making sure that timers are triggered at the correct moment. You
can also cancel timers. This means that they will no longer be triggered.

You can use timers in these ways:

» you can add a Timer node to the rule flow. When the node is activated, it starts the timer, and its
triggers (once or repeatedly) activate the Timer node's successor. This means that the timer's
outgoing connection is triggered multiple times if you set the period. Cancelling a Timer node also
cancels the associated timer, after which nothing will be triggered anymore.

* you can associate timers with event-based nodes like Workltem, SubFlow and so forth. A timer
associated with a node is activated whenever the node becomes active. The associated action
is executed whenever the timer triggers. You may use this, for instance, to send out regular
notifications to alert that the execution of tasks is taking too long to perform, or to signal a fault if a
supervision period expires.

When the node owning the timer completes, the timer is automatically cancelled.

3.10. Updating Rule Flows

Over time, your business processes are likely to evolve as you refine them or due to changing
requirements. You cannot actually update a rule flow to mirror this but you can deploy a new version
of it. The old process will still exist because existing process instances might still need the old one's
definition. Because of this, you have to give the new process different id., but you can use the same
name and version parameter.

Whenever a rule flow is updated, it is important that you determine what is to happen to the already
process instances that are already running. Here are your options:

* Proceed: you allow the running process instance to proceed as normal, using the definition as it was
defined when the instance was started. In other words, the already-running instance will proceed as
if the rule flow has not been updated. Only when you start new instances, will the updated version
be used.

» Abort (and restart): you abort the running instance. If necessary, restart it so that it will use the new
version of the rule flow.

» Transfer: you migrate the process instance to the new process definition, meaning that it will
continue executing based on the updated rule flow logic.

By default, the Rule Flow Engine uses the "proceed" approach.

3.10.1. Rule Flow Instance Migration

A rule flow instance contains all the run-time information needed to continue execution at some later
point in time. This includes all of the data linked to this process instance (stored in variables), and also
the current state of the process diagram. For each active node, a node instance represents this.

A node instances also contain an additional state linked to the execution of that specific node only.
There are different types of node instances, one for each type of node.

29

Chapter 3. Rule Flows

A rule flow instance only contains the run-time state. It is only indirectly linked to a particular rule flow
(via an id. reference) that represents the logic that it needs to follow when running. As a result, to
update a running process instance to a newer version of the new rule flow, you simply have to update
the linked process id.

However, this does not take into account fact that you might need to migrate the state of the rule flow
instance as well. In cases where the process is only extended and all existing wait states are kept, this
is relatively straightforward, as the run-time state does not need to change at all. However, at other
times a more sophisticated mapping may be needed. For example, when you remove an existing wait
state, or split into multiple wait states, you cannot update the existing rule flow instance. Likewise,
when a new process variable is introduced, you might need to initialise that variable correctly prior to
using it in the remainder of the process.

To handle this, you can use the WorkflowProcessInstanceUpgrader to upgrade a rule flow
process instance to a newer one. To use this tool, you will need to provide the process instance and
the new process' id. By default, the Rules Flow Engine will automatically map old node instances to
new ones with the same id but you can provide a mapping of the old (unique) node id. to the new
node id. (The unique node id is the node id., preceded by the node ids of its parents, separated by a
colon). These ids allow you to uniquely identify a node when composites are used (as a node id. is
only unique within its node container.)

Here is an example:

// create the session and start the process "com.sample.ruleflow"
KnowledgeBuilder kbuilder = ...

StatefulkKnowledgeSession ksession = ...

ProcessInstance processInstance = ksession.startProcess("com.sample.ruleflow");

// add a new version of the process "com.sample.ruleflow2"
kbuilder = KnowledgeBuilderFactory.newKnowledgeBuilder();
kbuilder.add(..., ResourceType.DRF);
kbase.addKnowledgePackages(kbuilder.getKnowledgePackages());

// migrate process instance to new version
Map<String, Long> mapping = new HashMap<String, Long>();
// top level node 2 is mapped to a new node with id 3
mapping.put("2", 3L);
// node 2, which is part of composite node 5, is mapped to a new node with id 4
mapping.put("5.2", 4L);
WorkflowProcessInstanceUpgrader.upgradeProcessInstance(
ksession, processInstance.getId(),
"com.sample.ruleflow2", mapping);

If this kind of mapping is still insufficient, you can generate your own custom mappers for specific
situations. To do so, follow these instructions:

Firstly, disconnect the process instance.
Next, change the state accordingly.

Finally, reconnect the process instance.

3.11. Assigning Rules to a Rule Flow Group

When you are dealing with many large rule sets, managing the order in which rules are evaluated can
become complex. Rule Flow allows you to specify the order in which rule sets are to be evaluated.
It does so by providing you with a flow chart. Use this chart to define which rule sets should be

30

Example Rule Flows

evaluated in sequence and which in parallel, and to specify conditions under which rule sets should be
evaluated. Read this section to learn more about this functionality and to see some examples.

A rule flow can handle conditional branching, parallelism, and synchronisation.
To use a rule flow to describe the order in which rules should be evaluated, follow these steps:
First sort your rules into groups using the ruleflow-group rule attribute (options in the GUI).

Next, create a rule flow graph (which is a flow chart) that graphically orders the sequence in which the
ruleflow-group should be evaluated.Here is an example:

rule 'YourRule'
ruleflow-group 'groupl'
when

then

end

This rule belongs to the ruleflow-group called group1.

Rules that are executing as part of a ruleflow-group that is triggered by a process, can also access
the rule consequence's rule flow context. Through this context, you can access the rule flow or node
instance that triggered the ruleflow-group. You can also set or retrieve variables:

drools.getContext(ProcessContext.class).getProcessInstance()

3.12. Example Rule Flows

‘) Start Chesck; Order Pracess Order i End

Figure 3.4. A Simple Rule Flow

The rule flow above specifies that the rules in the Check Order group must be executed before

the rules in the Process Order group. You could achieve similar results using salience, but this is
harder to maintain and makes a time relationship implicit in the rules (or Agenda groups.) By contrast,
using a rule-flow makes the processing order explicit, in its own layer on top of the rule structure,
allowing you to manage complex business processes more easily.

In practice, if you are using rule-flow, you are most likely doing more than just setting a linear
sequence of groups to progress though. You will be using Split and Join nodes to model branches and
define flows by connections, from the Start to ruleflow-groups, to Splits and then on to more groups,
Joins, and so on. Do all of via a graphical editor:

31

Chapter 3. Rule Flows

File Edit Navigate Search Project Run Window Help

JBoss Rules = MyRuleFlow.rfi = Eclipse SDK

[Sind B | QuickSearch | Q- B~ O- Q- | B H G- | @& & |G- | B | @ 100% |~ | Grid | v [| © JBoss Rules| #Ruby &Fscala TIJCR Lisp £°Team Sync...
® Gv
[% Package Explorer i3 Navigator =8 M) test_ExplicitAnd.drl = Something2.rf = 0| E= outline 38 U =
=) = = [y select
N =, Marquee
Canu-nl [| — Connection
Creation
Eorg.nexb.easyedipse.drools.deployer
(= Components #
Capatrick-contrib o5t
CIPLEAC End
Cipredicate-reader O RuleFlowGroup
Ciruleml = ol
4 > Join "
¥ RulePlay H I\
b #Bsrofjava =
- (@srcfrules
= [
2 MyRuleFlow.rfm
Q) sample.drl
Esre
Ciruleproject =
I T D]
Q) Rules View & G @ e o @70
b o =

b E#HHRL
b EBHHR2
b & Helloworld
b & Number
b g samplePackage
b & some_business_rules
b & Some_other_business_rules
b & This_is_a_ruleset
b & TrafficControl
&2 br.com.auster.drools.sample
b 5 comfoo Problems | I Properties &2 Console Audit View JUnit| Coverlipse Class View, ®»m v=0
b & com.sample Property. Value
b gevalmodify Constraints
& expanderFoo Name Low value?
b oo L Tvee XOR

i

Figure 3.5. A Complex Rule Flow

The rule flow depicted above represents a more complex business process for finalising an insurance
claim:

First of all, the claim data validation rules are processed. These perform data integrity checks for
consistency and completeness.

Next, in a Split node, a conditional decision is made based on the value of the claim. Processing will
either move on to an auto-settlement group, or to another Split node, which checks whether there was
a fatality in the incident.

If so, it determines whether the "regular" set of fatality-specific rules should take effect, with more
processing to follow.

Based on a few conditions, many different control flows are possible.

All the rules can be in one package, with the control flow definition being stored separately.
To edit Split nodes, follow this process:

Firstly, click on the node.

From the properties panel that appears, choose the type: AND, OR or XOR. If you choose OR, then any
of the split's potential outputs will be allowed to occur, meaning that processing can proceed in parallel
along two or more different paths. If you chose XOR, then only one path will be taken.

If you choose OR or XOR, there will be a square button on the right-hand side of the Constraints row.

Click on this button to open the Constraint Editor. This is a text editor with which you add constraints
(which are like the conditional part of a rule.)

32

Example Rule Flows

@

These constraints operate on facts in the working memory. In the example above, there is a
check for claims with a value of less than 250. Should this condition be true, then the associated
path will be followed.

33

34

Chapter 4.

The API

Use the API for these two tasks: to create a knowledge base containing your rule flow definitions and
to create a session.

4.1. Knowledge Base

The knowledge-based API allows you to create a single knowledge base that contains all the
knowledge your rule flows need. You can be reuse it across sessions.

The knowledge base includes all your rule flow definitions (and other "knowledge types" such as
example rules).

This code shows you how to create a knowledge base consisting of only one process definition, using
a knowledge builder to add the resource (which comes from the class-path in this case):

KnowledgeBuilder kbuilder = KnowledgeBuilderFactory.newKnowledgeBuilder();
kbuilder.add(ResourceFactory.newClassPathResource("MyProcess.rf"), ResourceType.DRF);
KnowledgeBase kbase = kbuilder.newKnowledgeBase();

The knowledge-based API allows you to add different types of resources, such as processes and
rules, in almost identical ways, to the same knowledge base. This enables a user who knows how
to use the Rule Flow engine to start using JBoss Rules Fusion almost immediately, and even to
integrate these different types of knowledge.

4.2. Session

Next, you must create a session to interact with the Engine. The following code shows you how to do
this, and how to start a process (via its id.):

StatefulKnowledgeSession ksession = kbase.newStatefulKnowledgeSession();
ProcessInstance processInstance = ksession.startProcess('"com.sample.MyProcess");

The ProcessRuntime interface defines all of the session methods:

ProcessInstance startProcess(String processId);

ProcessInstance startProcess(String processId, Map<String, Object> parameters);
void signalEvent(String type, Object event);

void signalEvent(String type, Object event, long processInstanceld);
Collection<ProcessInstance> getProcessInstances();

ProcessInstance getProcessInstance(long id);

void abortProcessInstance(long id);

WorkItemManager getWorkItemManager();

4.3. Events

Both the stateful and stateless knowledge sessions provide methods that allow you to register and
remove listeners. Use ProcessEventListener objects to listen to process-related events (like
starting or completing a process or entering or leaving a node.) Here are the different methods for it:

35

Chapter 4. The API

public

void
void
void
void
void
void
void
void

interface ProcessEventListener {

beforeProcessStarted(ProcessStartedEvent event);
afterProcessStarted(ProcessStartedEvent event);
beforeProcessCompleted(ProcessCompletedEvent event);
afterProcessCompleted(ProcessCompletedEvent event);
beforeNodeTriggered(ProcessNodeTriggeredEvent event);
afterNodeTriggered(ProcessNodeTriggeredEvent event);
beforeNodeLeft(ProcessNodeLeftEvent event);
afterNodeLeft(ProcessNodeLeftEvent event);

You can create an audit log based on the information provided by these process listeners. Red Hat
provides you with the following ones out-of the-box:
1. Console logger: this outputs every event to the console.

2. File logger: this outputs every event to an XML file. This log file might then be used in the IDE to
generate a tree-based visualisation of the events that occurred during execution.

3. Threaded file logger: Because a file logger writes the events to disk only when closing the logger
or when the number of events in the logger reaches a pre-defined threshold, it cannot be used
when debugging processes at run-time. The threaded file logger writes the events to a file after
a specified time interval, making it possible to use the logger to visualise progress in real-time,
making it useful for debugging.

Use the KnowledgeRuntimeLoggerFactory to add a logger to your session:

KnowledgeRuntimeLogger logger =
KnowledgeRuntimelLoggerFactory.newFileLogger(ksession, "test");

// add

// e.g.

logger.

invocations to the process engine here,
ksession.startProcess(processId);

close();

When creating a console logger, pass the knowledge session for it as an argument.

The file logger must also be supplied requires the name of the log file to be created.

The threaded file logger requires the interval (in milliseconds) after which the events are to be

saved.

You can open the log file in JBDS. To do so, go to the Audit View. Here you will see the events
depicted in the form of a tree. (Anything that occurs between the before and after events is shown
as a child of that event.)

36

Chapter 5.

Persistence

The Rule Flow Engine lets you store certain information (such as the rule flow run-time state and
definitions) persistently.

5.1. Run-Time State

Whenever you start a rule flow, a process instance is created. This process instance represents
the execution of the rule flow in that specific context. For example, when executing a rule flow that
specifies how to process a sales order, one instance is created for each sales request.

M

The instance contains the minimal run-time information that it needs to resume process instance
at some later time. It does not include information about the history of that instance if that
information is no longer needed.
You can make the run-time state of an executing process persistent. This allows you to restore the
state of execution of all running processes in case of unexpected failure, or to temporarily remove
running instances from memory and restore them at some later time.

You can "plug" different persistence tools into the Rule Flow Engine to achieve this. By default,
though, persistence functionality is switched off.

5.1.1. Binary Persistence

A binary persistence mechanism allows you to save the state of a process instance as a binary data
set. Note that these binary data sets are usually relatively small, as they only contain the minimal
amount of data needed to resume execution. For a simple process instance, this usually consists of
a few node instances, (that is, any nodes that are currently executing and, possibly, some variable
values.)

5.1.2. Safe Points

The state of a process instance is stored at so-called safe points during execution. When no more
actions can be performed, the engine has reached the next safe state, and the state of the process
instance and all other process instances that might have been affected is stored persistently.

5.1.3. Configuring Persistence

To activate the persistence functionality, you must firstly supply a configuration file and some
dependencies.

@ve

The persistence feature is based on the Java Persistence API (JPA) and can thus work with
several persistence mechanisms.

Red Hat supplies you with Hibernate, but feel free to employ an alternative. An H2 database is
used to store the data, but you might want to choose your own alternative to this, as well.

37

Chapter 5. Persistence

First, add the necessary dependencies to your class-path. If you are using JBDS, add the JAR files to
your JBoss Rules run-time directory or by manually adding these dependencies to your project. The
first one you must add is drools-persistence-jpa.jar, as this file contains the code for saving
the run-time state whenever necessary. The other other dependencies you supply will vary depending
on the persistence solution and database you have chosen. For the default combination of Hibernate
and H2, these are the dependencies you need:

1. drools-persistence-jpa (org.drools)

2. persistence-api-1.0.jar (javax.persistence)

3. hibernate-entitymanager-3.4.0.GA. jar (org.hibernate)
4. hibernate-annotations-3.4.0.GA. jar (org.hibernate)

5. hibernate-commons-annotations-3.1.0.GA. jar (org.hibernate)
6. hibernate-core-3.3.0.SP1.jar (org.hibernate)

7. dom4j-1.6.1.jar (dom4))

8. jta-1.0.1B.jar (javax.transaction)

9. btm-1.3.2.jar (org.codehaus.btm)

10. javassist-3.4.GA. jar (javassist)

11. s1f4j-api-1.5.2.jar (org.slf4))

12. s1f4j-jdk14-1.5.2. jar (org.slf4))

13. h2-1.0.77. jar (com.h2database)

14. commons-collections-3.2.jar (commons-collections)

Next, you need to configure the Rule Flow Engine to save its state whenever necessary. The easiest
way to do this is to use JPAKnowledgeService to create your knowledge session, based on a
knowledge base, a knowledge session configuration (if necessary) and an environment.

The environment needs to contain a reference to your entity manager factory:

// create the entity manager factory and register it in the environment
EntityManagerFactory emf =

Persistence.createEntityManagerFactory("org.drools.persistence.jpa");
Environment env = KnowledgeBaseFactory.newEnvironment();
env.set(EnvironmentName.ENTITY_MANAGER_FACTORY, emf);

// create a new knowledge session that uses JPA to store the runtime state
StatefulKnowledgeSession ksession =

JPAKnowledgeService.newStatefulKnowledgeSession(kbase, null, env);
int sessionId = ksession.getId();

// invoke methods on your method here

ksession.startProcess("MyProcess");
ksession.dispose();

You can also use the JPAKnowledgeService to recreate a session based on a specific id:

38

Transaction Boundaries

// recreate the session from database using the sessionId
ksession = JPAKnowledgeService.loadStatefulknowledgeSession(sessionId, kbase, null, env);

By default, drools-persistence-jpa.jar contains a configuration file, called
persistence.xml, that configures JPA to use Hibernate and the H2 database. This file, found in
the META- INF directory, is shown below:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<persistence
version="1.0"
xsi:schemaLocation=
"http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence/persistence_1_0.xsd
http://java.sun.com/xml/ns/persistence/orm
http://java.sun.com/xml/ns/persistence/orm_1_0.xsd"
xmlns:orm="http://java.sun.com/xml/ns/persistence/orm"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns="http://java.sun.com/xml/ns/persistence">

<persistence-unit name="org.drools.persistence.jpa">
<provider>org.hibernate.ejb.HibernatePersistence</provider>
<jta-data-source>jdbc/processInstanceDS</jta-data-source>
<class>org.drools.persistence.session.SessionInfo</class>
<class>org.drools.persistence.processinstance.ProcessInstanceInfo</class>
<class>org.drools.persistence.processinstance.ProcessInstanceEventInfo</class>
<class>org.drools.persistence.processinstance.WorkItemInfo</class>

<properties>
<property name="hibernate.dialect" value="org.hibernate.dialect.H2Dialect"/>
<property name="hibernate.max_fetch_depth" value="3"/>
<property name="hibernate.hbm2ddl.auto" value="update"/>
<property name="hibernate.show_sql" value="true"/>
<property name="hibernate.transaction.manager_lookup_class"

value="org.hibernate.transaction.BTMTransactionManagerLookup"/>
</properties>
</persistence-unit>
</persistence>

You will need to override these defaults if you want to change them, by adding your own
persistence.xml file to your class-path, preceding the default one in drools-persistence-

jpa.jar.

This configuration file refers to a data source called jdbc/processInstanceDS. Use the following
Java fragment to configure this source if you are using the H2 database:

PoolingDataSource ds = new PoolingDataSource();
ds.setUniqueName("jdbc/processInstanceDS");
ds.setClassName("org.h2.jdbcx.JdbcDataSource");

ds.setMaxPoolSize(3);

ds.setAllowLocalTransactions(true);

ds.getDriverProperties().put("user", "sa");

ds.getDriverProperties().put("password", "sasa");

ds.getDriverProperties().put("URL", "jdbc:h2:file:/NotBackedUp/data/process-instance-db");
ds.init();

5.1.4. Transaction Boundaries

Whenever you do not provide transaction boundaries inside your application, the engine will
automatically execute each method invocation as a separate transaction. If this behaviour is

39

Chapter 5. Persistence

acceptable to you, you do not need to do anything else. You can, however, also specify custom
transaction boundaries. This allows you, for example, to combine multiple commands into one
transaction.

You need to register a transaction manager before using user-defined transactions. (The following
sample code uses the Bitronix transaction manager.)

Next, use the Java Transaction API to specify the boundaries:

// create the entity manager factory and register it in the environment
EntityManagerFactory emf =
Persistence.createEntityManagerFactory("org.drools.persistence.jpa");
Environment env = KnowledgeBaseFactory.newEnvironment();
env.set(EnvironmentName.ENTITY_MANAGER_FACTORY, emf);
env.set(EnvironmentName.TRANSACTION_MANAGER,
TransactionManagerServices.getTransactionManager());

// create a new knowledge session that uses JPA to store the runtime state
StatefulKnowledgeSession ksession =
JPAKnowledgeService.newStatefulKnowledgeSession(kbase, null, env);

// start the transaction
UserTransaction ut =

(UserTransaction) new InitialContext().lookup("java:comp/UserTransaction");
ut.begin();

// perform multiple commands inside one transaction
ksession.insert(new Person("John Doe"));
ksession.startProcess("MyProcess");
ksession.fireAllRules();

// commit the transaction
ut.commit();

5.2. Process Definitions

Process definition files are written in an XML format. Stored them on a file system during development.
However, whenever you want to make your knowledge accessible to one or more Rule Flow Engines
in production, Red Hat recommends using a knowledge repository that (logically) centralises your
knowledge.

The BRMS provides exactly that. It consists of a repository for storing different kinds of knowledge
(including rules and object models). It allows you to retrieve this knowledge via WebDAV or by through
a knowledge agent. and provides a web application that allows your corporate users to view and
possibly update the information in the knowledge repository.

5.3. History Log

You may find it convenient to store information about rule flow instance executions, so that you can
later verify that they have worked, or analyse their efficiency.

It is not a good idea to store history information in the run-time database, as this will rapidly grow, and
monitoring and analysis queries might influence the performance of your Rule Flow Engine. That is
why history information is stored in a separate location.

This history log records the events generated by the run-time engine during execution. The engine
provides a generic mechanism that is able to listen to different kinds of events. You can use filters to
ensure so that only the information in which you are interested is stored.

40

Storing Process Events in a Database

5.3.1. Storing Process Events in a Database

The drools-bam module contains an event listener that stores process-related information in a
database. The database contains two tables, one for storing process instance information and one for
node instance information.

1. Processinstancelog: this lists the process instance id., the process id., the start date and, if
applicable, the end date for every process instances.

2. Nodelnstancelog: this table contains more detailed information about which nodes were actually
executed inside each process instance. Whenever a node instance is entered via one of its
incoming connections or is exited through one of its outgoing connections, that information is
stored in this table.

To log process history information in a database like this, you need to register the logger:

StatefulKnowledgeSession ksession = ...;
WorkingMemoryDbLogger logger = new WorkingMemoryDbLogger (ksession);

// invoke methods one your session here

logger.dispose();

This logger is like any other so you can add one or more filters by calling the addFilter method
tonensure that only relevant information is stored in the database.

You should dispose the logger when it is no longer needed.
To change the database in which the information is to be stored, modify the hibernate.cfg.xml
file.

You can run various queries to analyse the history log. The ProcessInstanceDbLog (found in the
org.drools.process.audit package) provides some examples but you can create your own as
well.

41

42

Chapter 6.

Rules and Processes

Read this chapter to learn more about integrating rules and processes.

6.1. Approach

Use work flow languages to create flow charts that describe the order in which activities are to be
performed.

These charts are very good at providing overall control flow. However, processes can become
very complex if you need to use them to define complex business decisions, or to handle a lot of
exceptional situations or need them to handle external events.

On the other hand, rules are very good at describing complex decisions and can "reason over" large
amounts of data and events. It is, however, very difficult to create large flow charts using rules.

In the past, users were forced to choose between one or the other. Problems that required complex
reasoning about large amounts of data required you to use a rules engine, while users that wanted to
focus on describing the control flow of their processes were forced to use a process engine. However,
businesses nowadays can combine both processes and rules to write their business logic in the format
that best suits their needs.

A rules and process engine will determine the next step it needs to undertake by analysing the
knowledge base and the current state of the application, thereby integrating rules and processes.

6.1.1. Teaching a Rules Engine About Processes

To "teach” a rules engine about processes, information about the current state of the processes is sent
to the working memory.

6.2. Example

6.2.1. Evaluating a Set of Rules in Your Process
You can easily include a set of rules in the process. To do so, use the ruleflow-group attribute.

When you activate a RuleSet node for the group, the rules are evaluated. A rule for validiting an order
is shown below. Note the ruleflow-group attribute, which ensures that this rule is evaluated as part of
the RuleSet node:

rule "Invalid item id"

ruleflow-group "validate"

lock-on-active true
when

o: Order()

i: Order.OrderItem() from o.getOrderItems()

not (Item() from itemCatalog.getItem(i.getItemId()))
then

System.err.println("Invalid item id found!");

o.addError("Invalid item id " + i.getItemId());
end

The same ruleflow-group is shown in this figure:

43

Chapter 6. Rules and Processes

= Yalidate Order = ,%ﬁ* Correct Order

h p

Property Value

Mame Validate Crder
RuleFlowGroup

Figure 6.1. RuleSet node and one of its rules

6.2.2. Using Rules to Evaluate Constraints

You can use rules to express and evaluate complex constraints in your rule flow. For example, you
can use rules to define which the execution path to take at a Split node. Similarly, you can use rule to
define a Wait duration.

For example, you can use rules to decide the next action after validating the order. Here are the
conditions:

if the order contains errors, a sales representative should try to correct it;

orders with a value > 1000$ are more important, so a senior sales representative should attend to
these ones;

all other orders should just proceed normally.

Use decision node to select one of these alternatives, and write rules to describe the constraints for
each of them.

6.2.3. Assignment Rules

Use human tasks to describe work that needs to be executed manually by an employee. You can base
the selection of employee to do the work on the current state of the process and the history. Do so by
creating assignment rules. These assignment rules will then be applied automatically whenever a new
human task needs to be executed.

@

The rules shown below are written in a Domain Specific Language (DSL), tailored to the specific
requirements of an order-processing environment.

44

Describing Exceptional Situations Using Rules

[FFFxFFEFFX Generic assignment rules *xE*FFxxxA%/

rule "Assign 'Correct Order' to any sales representative"
salience 30
when
There is a human task
- with task name "Correct Order"
- without actor id
then
Set actor id "Sales Representative"
end

[FFxxxxREFFR Assignment rules for the RuleSetExample process *******xxx/

rule "Assign 'Follow-up Order' to a senior sales representative"
salience 40
when
Process "org.drools.examples.process.ruleset.RuleSetExample" contains a human task
- with task name "Follow-up Order"
- without actor id
then
Set actor id "Senior Sales Representative"
end

6.2.4. Describing Exceptional Situations Using Rules

You can use rules to take exceptional situations into account. If you add all of this information to the
regular process' control flow you will make things too complicated. Instead, use rules to handle each
situation separately, leaving the core process in its simple form. This also makes it much easier to
adapt existing processes to take previously unanticipated events into account.

6.2.5. Modularising Concerns Using Rules

Use rules add additional concerns to the process without making the overall control flow more
complex. For example, you can define rules to log certain information during the execution of the
process. The original process is not altered, as all logging functionality is modularised.

This greatly improves reusability as it allows you to apply the same strategy to different processes. It
also aids readability and maintainability.

6.2.6. Rules for Altering Process Behaviour Dynamically

Use rules to fine-tune your processes dynamically. Imagine that you detect a problem with one of
the processes. To troubleshoot, you can add new rules, at runtime, to log additional information or to
handle specific process states. Once the problem is solved you can easily remove these rules again.

You could also ensure that different strategies were selected dynamically, depending on the current
status. For example, based on the current load of all the services, rules that optimise the current load
could be selected.

Here is an example that shows you how to dynamically add or remove logging for the "Check Order"
task. When the Debugging output check-box in the main application window is ticked, the rule shown
below will be loaded dynamically. It instructs the engine to write log output to the console. When you
uncheck the box, the rule is removed again:

rule "Log the execution of 'Correct Order'"
salience 25

45

Chapter 6. Rules and Processes

when
workItemNodeInstance: WorkItemNodeInstance(workItemId <= O, node.name == "Correct

Order")
workItem: WorkItemImpl(state == WorkItemImpl.PENDING) from

workItemNodeInstance.getWorkItem()

then
ProcessInstance proc = workItemNodeInstance.getProcessInstance();
VariableScopeInstance variableScopeInstance =

(variableScopeInstance)proc.getContextInstance(VariableScope.VARIABLE_SCOPE);
System.out.println("LOGGING: Requesting the correction of " +
variableScopeInstance.getVariable("order"));
end

6.2.7. Integrated Tooling

Processes and rules are integrated in the JBDS. They are both treated as different types of business
logic, to be managed in an almost identical manner. For example the processes for, loading a rule flow
or a set of rules into the Engine are very similar to each other.

Also, different rule implementations, such DRL and DSL, are handled in an identical way:

private static KnowledgeBase createKnowledgeBase() throws Exception {

KnowledgeBuilder kbuilder = KnowledgeBuilderFactory.newKnowledgeBuilder();
kbuilder.add(ResourceFactory.newClassPathResource(

"RuleSetExample.rf", OrderExample.class), ResourceType.DRF);
kbuilder.add(ResourceFactory.newClassPathResource(

"workflow_rules.drl", OrderExample.class), ResourceType.DRL);
kbuilder.add(ResourceFactory.newClassPathResource(

"assignment.dsl", OrderExample.class), ResourceType.DSL);
kbuilder.add(ResourceFactory.newClassPathResource(

"assignment.dslr", OrderExample.class), ResourceType.DSLR);

KnowledgeBase kbase = KnowledgeBaseFactory.newKnowledgeBase();
kbase.addKnowledgePackages(kbuilder.getKnowledgePackages());
return kbase;

The audit log is also integrated: it shows how rules and processes influence each other.

6.2.8. Domain-Specific Rules and Processes

You do not need to define rules using the core rule language syntax. You can also use domain-
specific languages, decision tables or guided editors.

This example defines a domain-specific language that you can use to describe assignment rules,
based on the type of task, its properties and the rule flow in which it is defined:

[FEFFFEFEFXX Generic assignment rules **EFFrxxAAAy

rule "Assign 'Correct Order' to any sales representative"
salience 30
when
There is a human task
- with task name "Correct Order"
- without actor id

46

Domain-Specific Rules and Processes

then
Set actor id "Sales Representative"
end

JrrxxFxFxxx Assignment rules for the RuleSetExample process *******xxx/

rule "Assign 'Follow-up Order' to a senior sales representative"
salience 40
when
Process "org.drools.examples.process.ruleset.RuleSetExample" contains a human task
- with task name "Follow-up Order"
- without actor id
then
Set actor id "Senior Sales Representative"
end

This makes assignment rules much more understandable for non-experts.

47

48

Chapter 7.

Domain-Specific Processes

7.1. Introduction

The unified rules and processes framework allows you to extend the default programming constructs
with domain-specific extensions in order to simplify development in a particular application domain.
This tutorial teaches you the first steps towards creating domain-specific process languages.

Most process languages offer some generic action (node) construct in order to allow you to "plug
in" custom user actions. However, these actions are usually low-level and you are required to write
custom code to incorporate them in the process. The code is also closely linked to a specific target
environment, making it difficult to reuse the process in different contexts.

Domain-specific languages are aimed at one particular application domain and therefore can
offer constructs that are closely related to the problem the you are trying to solve. This makes the
processes easier to understand and "self-documenting."

The first step is to create work items. These represent atomic units of work. They possess these
characteristics:

1. domain-specific
2. declarative (what, not how)
3. high-level (no code)

4. can be customised for a particular context

7.2. Example: Notifications

Your first exercise is to build a simple work item for sending notifications.

You must give work item a unigue name. You can also provide additional parameters that can be
used to describe the work in more detail. Work items can also return information after they have been
executed, specified as results.

The sample notification work item can be defined using a work definition with four parameters and no
results:

Name: "Notification"
Parameters

From [String]

To [String]

Message [String]
Priority [String]

7.2.1. Creating the Work Definition

You must specify work definitions via one or more configuration files on the project class-path, where
all of the properties are specified as name-value pairs. Parameters and results are maps where each
parameter name is also mapped to the expected data type.

Note that this configuration file also includes some additional user interface information, like the icon
and the display name of the work item. Use MVEL to "read in" the configuration file, as it allows you to
do more advanced work):

49

Chapter 7. Domain-Specific Processes

import org.drools.process.core.datatype.impl.type.StringDataType;

[

// the Notification work item

[

"name" : "Notification",
"parameters" : [
"Message" : new StringDataType(),
"From" : new StringDataType(),
"To" : new StringDataType(),
"Priority" : new StringDataType(),

1
"displayName" : "Notification",
"icon" : "icons/notification.gif"

When you save the file, name it MyWorkDefinitions. conf.

7.2.2. Registering the Work Definition

Use the JBoss Rules Configuration API's drools.workDefinitions property to register work
definition files for your project. This property represents a list of files (separated by spaces) containing
work definitions:

drools.workDefinitions = MyWorkDefinitions.conf

7.2.3. Using Your New Work Item in Your Processes
Once you have created and registered your work definition, you can start to use it in your rule flow.

The Process Editor's palette contains a separate section where the different work items that you have
defined for your project appear.

Drag and drop a natification node onto your rule flow.

Next, go to the properties view and fill in the details. All work items also have these three properties
(in addition to any defined by the work item):

1. Parameter Mapping: use this to map the value of a rule flow variable to a work item parameter.
This allows you to customise the work item based on the current state of the actual process
instance. (For example, the priority of the notification could be dependent on some process-
specific information).

2. Result Mapping: use this to map a result (returned once a work item has been executed) to a rule
flow variable. This allows you to use results in the remainder of the rule flow.

3. Wait for completion: by default, the rule flow waits until the requested work item has been
completed before continuing. It is also possible to continue immediately after the work item has
been requested (and not waiting for the results). To do so, set Wait for completion to false.

7.2.4. Executing Work Items

The Rule Flow engine contains a sub-component called the WorkltemManager. This is responsible
for delegating the work items to WorkltemHandlers that execute them. Once they have done so, they
notify the WorkltemManager that they have completed their work.

50

Executing Work Items

In order to execute notification work items, create a NotificationwWorkItemHandler. (Use the
WorkItemHandler interface):

package com.sample;

import org.drools.process.instance.WorkItem;
import org.drools.process.instance.WorkItemHandler;
import org.drools.process.instance.WorkItemManager;

public class NotificationWorkItemHandler implements WorkItemHandler {

public void executeWorkItem(WorkItem workItem, WorkItemManager manager) {

}

// extract parameters

String from = (String) workItem.getParameter("From");

String to = (String) workItem.getParameter("To");

String message = (String) workItem.getParameter("Message");

String priority = (String) workItem.getParameter("Priority");

// send email

EmailService service = ServiceRegistry.getInstance().getEmailService();
service.sendEmail(from, to, "Notification", message);

// notify manager that work item has been completed

manager .completewWorkItem(workItem.getId(), null);

public void abortWorkItem(WorkItem workItem, WorkItemManager manager) {

}

// Do nothing, notifications cannot be aborted

This WorkltemHandler sends a notification as an e.-mail and then tells the WorkltemManager that the
work item has been completed.

Not all work items can be completed immediately. In cases where they take some time to
process, execution can continue asynchronously and the WorkltemManager can be notified later.

In these situations, it is also possible that a work item can be aborted before it has been
completed. Use the abort method to specify how you would like to do so.

To register WorkltemHandlers, use this API:

workingMemory.getWorkItemManager().registerWorkItemHandler (

"Notification", new NotificationWorkItemHandler());

51

52

Chapter 8.

Human Tasks

As mentioned earlier, an important aspect of rule flow and business process management is human
task management. While some of the work performed in a process can be executed automatically,
other tasks need to be undertaken by your firm's staff members.

The Rules Flow Engine allows you to add human tasks to processes via a special human task node.
This node allows process designers to define the type of task, the actor(s), the data associated with
the task.

There is also a task service whose role it is to manage these human tasks.

@voe

You can, however, integrate any other solution you wish, as it is fully pluggable.
To utilise this functionality, you first need to undertake the following steps:

add human task nodes to your rule flow;

integrate a task management component of your choice (such as the WS-HT implementation provided
by Red Hat out-of-the-box);

provide a user interface with which the employees undertaking the tasks can interact.

8.1. Adding Human Tasks to Rule Flows

-

(D Start | —»= 2% Human Task s—m End

, /

The properties of a human task node were described in Chapter Three. You can edit these in the
properties view.

@oe

You can either directly specify the values of the different parameters (in which case they will be
the same for each execution of this process), or make them context-specific, based on the data
inside the rule flow instance.

For example, parameters of type String can use #{expression} to embed a value. The
value will be retrieved when creating the work item and the #{ . . . } will be replaced by the
toString() value of the variable.

The expression could simply be the name of a variable (in which case it will be resolved to

the value of the variable), but more advanced MVEL expressions are possible as well, like
#{person.name.firstname}. For example, when creating an e.-mail, the body could contain
something like "Dear #{customer .name}, ...".

For other types of variables, you can map the value to a parameter using the parameter
mapping.

Chapter 8. Human Tasks

8.1.1. Swimlanes

You can use human task nodes in combination with swimlanes to assign multiple human tasks to
similar actors. Tasks in the same swimlane will be assigned to the same actor. Whenever the first
task in a swimlane is created, and you specify an actorld for that task, that actorld will be assigned to
the swimlane as well. Every subsequent tasks created in that swimlane will use that actorld, even if a
different actorld has been specified for one of them.

Whenever a human task belonging to a swimlane is completed, the actorld of that swimlane is
changed to that of the actorld that executed that human task. This allows you to assign a human task
to a group of users, and to assign all future tasks in that swimlane to the user that claimed the first
task. It also means that the tasks will be automatically reassigned if, at some point, one of the tasks is
undertaken by another employee.

To add a human task to a swimlane, simply specify the name of the swimlane as the value of that task
node's Swimlane parameter.

Your rule flow must also define all of the swimlanes that it possesses. To make this so, follow these
steps:

Open the process properties by clicking on the rule flow's background.
Next, click on the Swimlanes property.

Now, add the swimlanes.

8.2. Human Task Management Component

As far as the Rule Flow Engine is concerned, human tasks are similar to any other external service
that needs to be invoked. They are, therefore, implemented as an extension of nhormal work items.

As a result, the process itself only contains an abstract description of the human tasks that need to
be executed, and a work item handler is responsible for binding these abstract tasks to a specific
implementation.

To accomplish this, Red Hat provides an implementation based on the WS-HumanTask specification.
It manages the task life cycle (creation, claiming and completion) and stores the state of the task
persistently. It also supports features like internationalisation, calendar integration, assignation,
delegation and deadline functionality.

8.2.1. Task Life-Cycle

From the perspective of the rule flow, whenever a human task node is triggered, a human task is
created. The rule flow will then only proceed on from that point when the task has been completed or
aborted (unless you of course specify that the process does not need to wait for completion. To do so,
set the Wait for completion property to true).

However, each human task also has its own separate life-cycle, as depicted in this diagram:

54

Task Life-Cycle

Inactive

[Task created, coord context obtained]
Register task with coordinator
) 4
(activate | |
nomination performed) && Created |
single potential owner /
— {activate || nomination performed) 3&
Suspended \ (multiple potential owners || work queue)

suspend
Ready

resume

claim || delegate

‘ <

suspend

~
Reserved ‘
~ resume

start

N

Reserved I

delegate

start

suspend

- ™ oy
InProgress | InProgress I
./
resume [Completion with fault response]
/ [Completion with response] Send applicalion faull |05 recoverable error] [WS-HT exit] | [Skip && isSkippable]
Send result Send "WS-HT faull” Exittask |Send ,WS-HT skipped"
v
[Completedj [Failed j (Error j [Exited] [(}bsolete]
r
Closed

Each new task commences life in the Created state.

It then automatically switches to the Ready state, at which point the task will show up on the task list
of every employee who has the permission to take it.

Once a staff member has claimed a task, the status is changed to Reserved.

Note that if only one actor has permission to claim a task, that task will be immediately assigned
to that employee.

After claiming the task, the employee can then, at some point, decide to start working on it, at which
point the status will be changed to InProgress.

Finally, once the task has been performed, the employee must indicate that he or she has completed it
(and can input any associated result data). When they do so, the status is changed to Completed.

If the task could not be completed, the employee can also indicate this by using a fault response.
(They can also potentially input associated fault data.) When they do so, the status is changed to
Failed.

The above is the normal life-cycle. The service also allows you to specify many other custome life-
cycle methods. Here are some examples:
« task delegation, in which case it is assigned to another actor

« task revocation, in which case it is returned to all the potential actors' task lists

55

Chapter 8. Human Tasks

* task suspension and resumption
 stopping a task mid-way to completion

« skipping a task (if the task has been marked as skippable), in which case it will not be executed.

8.2.2. Linking the Task Component to the Rule Flow Engine

The task management component is integrated with the Rules Flow Engine just like any other external
service, via the registration of a work item handler that is responsible for translating the abstract work
item (in this case a human task) to a specific invocation.

Red Hat has chosen to implement this specific work handler:
org.drools.process.workitem.wsht.WSHumanTaskHandler. You can easily link to it using
code like this:

StatefulKnowledgeSession session = ...;
session.getWorkItemManager().registerWorkItemHandler ("Human Task", new
WSHumanTaskHandler());

By default, this handler will connect to the human task management component on the local machine's
port 9123. To change this, invoke the WSHumanTaskHandler's setConnection(ipAddress,
port) method.

The WSHumanTaskHandler uses Mina (http://mina.apache.org/)l to test client/server architecture
behaviour. Mina uses messaging to enable the client to communicate with the server. That is why the
WSHumanTaskHandler has a MinaTaskClient that create different messages to give the user different
actions. These actions are subsequently executed by the server.

In the Mina client, you will see these methods have been implemented to enable you to interact with
human tasks:

public void start(long taskId, String userId, TaskOperationResponseHandler responseHandler)
public void stop(long taskId, String userId, TaskOperationResponseHandler responseHandler)
public void release(long taskId, String userId, TaskOperationResponseHandler
responseHandler)
public void suspend(long taskId, String userId, TaskOperationResponseHandler
responseHandler)
public void resume(long taskId, String userId, TaskOperationResponseHandler
responseHandler)
public void skip(long taskId, String userId, TaskOperationResponseHandler responseHandler)
public void delegate(long taskId, String userId, String targetUserlId,
TaskOperationResponseHandler responseHandler)
public void complete(long taskId, String userId, ContentData outputData,
TaskOperationResponseHandler responseHandler)

Using these methods, you can create a GUI for your employees to do the tasks they have been
assigned.

If you take a look at the method signatures, you will notice that almost all of the methods can take the
following arguments:

56

Starting the Task Management Component

« taskld: this is the id. of the task on which the employee is working. You will most likely obtain this id.
from the user task list in the GUI.

« userld: this is the id of the employee who is undertaking the work. You will most likely take the user's
application log-in id.

» responseHandler: this is the handler used to catch the response. Users can input results here or just
inform the system that they have finished the task.

All of these methods create messages that are sent back to the server, and the server will execute the
logic that implements the correct action. Here is a typical message:

public void complete(long taskId,
String userlId,
ContentData outputData,
TaskOperationResponseHandler responseHandler) {
List<Object> args = new ArraylList<Object>(5);
args.add(Operation.Complete);
args.add(taskId);
args.add(userId);
args.add(null);
args.add(outputData);
Command cmd = new Command(counter.getAndIncrement(),
CommandName .OperationRequest,
args);

handler.addResponseHandler(cmd.getId(),
responseHandler);
session.write(cmd);

As you can see, a command is created. The method's arguments are inserted inside this command,
along with information about the type of operation that we are trying to execute. This command is then
sent to the server via the session.write(cmd) method.

When the server receives the command, the relevant logic is executed.

Look at the messageReceived method's TaskServerHandler class (found in taskOperation.) This
is executed using the taskServiceSession that is responsible for all of the operations that occur when
the tasks are first created and when the user is not interacting with them.

8.2.3. Starting the Task Management Component

The task management component is a completely independent service. Red Hat therefore
recommends that you start it as a separate service as well. To do so, use this code:

EntityManagerFactory emf = Persistence.createEntityManagerFactory("org.drools.task");
taskService = new TaskService(emf);

MinaTaskServer server = new MinaTaskServer(taskService);

Thread thread = new Thread(server);

thread.start();

The task management component uses the Java Persistence API to store all task information
in a persistent manner. To configure this functionality, you need to modify some settings in the
persistence.xml configuration file.

The following extract shows an example of how to use the task management component in
conjunction with Hibernate and the in-memory H2 database:

57

Chapter 8. Human Tasks

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<persistence
version="1.0"
xsi:schemalLocation=
"http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence/persistence_1_0.xsd
http://java.sun.com/xml/ns/persistence/orm
http://java.sun.com/xml/ns/persistence/orm_1_0.xsd"
xmlns:orm="http://java.sun.com/xml/ns/persistence/orm"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns="http://java.sun.com/xml/ns/persistence">

<persistence-unit name="org.drools.task">
<provider>org.hibernate.ejb.HibernatePersistence</provider>
<class>org.drools.task.Attachment</class>
<class>org.drools.task.Content</class>
<class>org.drools.task.BooleanExpression</class>
<class>org.drools.task.Comment</class>
<class>org.drools.task.Deadline</class>
<class>org.drools.task.Comment</class>
<class>org.drools.task.Deadline</class>
<class>org.drools.task.Delegation</class>
<class>org.drools.task.Escalation</class>
<class>org.drools.task.Group</class>
<class>org.drools.task.I18NText</class>
<class>org.drools.task.Notification</class>
<class>org.drools.task.EmailNotification</class>
<class>org.drools.task.EmailNotificationHeader</class>
<class>org.drools.task.PeopleAssignments</class>
<class>org.drools.task.Reassignment</class>
<class>org.drools.task.Status</class>
<class>org.drools.task.Task</class>
<class>org.drools.task.TaskData</class>
<class>org.drools.task.SubTasksStrategy</class>
<class>org.drools.task.OnParentAbortAllSubTasksEndStrategy</class>
<class>org.drools.task.0OnAllSubTasksEndParentEndStrategy</class>
<class>org.drools.task.User</class>

<properties>
<property name="hibernate.dialect" value="org.hibernate.dialect.H2Dialect"/>
<property name="hibernate.connection.driver_class" value="org.h2.Driver"/>
<property name="hibernate.connection.url" value="jdbc:h2:mem:mydb" />
<property name="hibernate.connection.username" value="sa"/>
<property name="hibernate.connection.password" value="sasa'"/>
<property name="hibernate.connection.autocommit" value="false" />
<property name="hibernate.max_fetch_depth" value="3"/>
<property name="hibernate.hbm2ddl.auto" value="create" />
<property name="hibernate.show_sql" value="true" />

</properties>

</persistence-unit>
</persistence>

The first time you start the task management component, make sure that you add all the necessary
users and groups to the database. They must all be predefined before you try to assign a task to that
user or group.

To add the users and group to the database, use the taskSession.addUser (user) and
taskSession.addGroup(group) methods.

58

Interacting With the Task Management Component

M

You need at least one "Administrator" account as all administrative tasks are automatically
igned to this user .

Inthe src/test/java source directory, you will find the drools-process-task module.
This module contains the org.drools. task.RunTaskService class, which you can use to
start a task server. It automatically adds the users and groups defined in LoadUsers.mvel and
LoadGroups.mvel configuration files.

8.2.4. Interacting With the Task Management Component

The task management component exposes various methods that you can use to manage the life-cycle
of the tasks through a Java API.

Ensure that end users do not interact with this low-level API directly. Rather, they should use one
of the task-list clients. (These clients interact with the task management component through this
APl.)

This chart explains the interation between the client and the API:

59

Chapter 8. Human Tasks

MinaTaskClient MinaTaskServer
w1y Connect / Create sessions
———————————————————————— =
. w2} session.wrte [Sends
K'\\.
e T
I.I'T'l.. s 1
! - | Runs
1 - F=5Y 1
1«8} Dones _
1 MSG 3 w3} Recives ll'lll'll
| ST
= | S =]
TaskClientHandler TaskServerHandler | «Cels | ooy oo ice Sassion
“E:_-__h_h_ =]
«7) Racivex MEG = .
«f) session.write / Sends '-,Iil,-'ﬁ"'::'ixr
Ewvent =

TaskEventListener

Database

Look at MinaTaskClient and MinaTaskServer in the diagram above. They communicate with each
other in order to query and manipulate human tasks. This is how they interact:

« Imagine a client needs to complete a task. The user creates an instance of MinaTaskClient and
connects it to the MinaTaskServer so that they can communicate. (This is Step One of the diagram.)

» The client calls the MinaTaskClient's complete() method, and supplies any corresponding
arguments. This will generate a new message (or command) that will be inserted in the session that
the client opens when it connects to the server.

The message must specify a type that the server recognises so that it knows what to do when it
receives it. (This is the second step in the diagram.)

» The TaskServerHandler now detects that there is a new message in the session so it analyses it. In
this case, the message is of the type Operation.Complete, because the client has finished the
task successfully.

To complete the task that the user has indicated is finished, use the
TaskServiceSessionmethod. This will run a specific type of event that is processed by one of
the TaskEventListener's sub-classes. (This process is represented by Steps Three and Four in the
image.)

* When the event is received by TaskEventListener, the latter will know how to modify the task's
status. This is because the EntityManager has retrieved and modified the status of a specific task
via the database.

60

Human Task Management Interface

In this case, because you are finishing a task, the status will be updated to Completed. (This is the
fifth step depicted in the image.)

* Now, that the changes have been made, you must notify the client that the task has been completed
succesfuly. To achieve this, create a response message that TaskClientHandler will receive and
use to inform the MinaTaskClient of what has happened. (This process is represented by Steps Six,
Seven and Eight in the image.)

8.3. Human Task Management Interface

8.3.1. JBDS Integration

The JBoss Rules IDE comes with the org.drools.eclipse. task plug-in. Use it to test and debug
rule flows that include human tasks.

The JBDS is equipped with a Human Task View. Use it to connect to a running task management
component and request those tasks relevant to a particular user (that is the tasks for whom the user is
either a potential or actual owner).

You can then run through the life-cycles of these tasks, by claiming or releasing, starting or stopping or
completing them.

You can choose which of JBoss Rules' task management components you wish to connect to via the
JBoss Rules Task Preference Page. To access this, follow these instructions:

click Window,
click Preferences,
select JBoss Rules Task,

specify the URL and port to which you wish to connect. (The default is 127.0.0.1:9123).

61

62

Chapter 9.

Debugging Processes

Read this chapter to learn how to debug processes. You can inspect the current state of your running
processes. The tools also aid you to visualised how they will look during execution.

@

You cannot put break-points directly in a rule flow's nodes. You can, however, put them inside
rules and on any Java code you might have (such as your application code). Using these break-
points, you can inspect the internal state of each of your processes.

The following example illustrates the software's debugging capabilities.

9.1. A Simple Example

Our example contains two rule flows and some rules (used inside the ruleflow-groups):

1. the main rule flow contains some of the most commonly-used nodes: a start and end node
(obviously), two ruleflow-groups, an action (that simply prints a string to the default output), a
milestone (this is a wait state that is triggered when a specific Event is inserted in the working
memory) and a sub-process:

Goodbye j—» End

) start 4{ Hello

l'iiIHHHHHHHH'
= SubProcess

2. the sub-process contains another milestone that also waits for (another) specific Event in the
working memory.

3. there are only two rules (one for each ruleflow-group).They simply print out a hello world and
goodbye world message to the default output.

To simulate an execution of this rule flow, start the process, fire every rule (that is, the hello rule), then
add the specific milestone events for each of the and finally fire all of the rules again (resulting in the
executing of the goodbye rule). The console output will look like this:

Hello Wworld
Executing action
Goodbye World

63

Chapter 9. Debugging Processes

9.2. Debugging the Process

Now you are going to add four break-points to the rule-flow. These are, in the order in which they will
be encountered:

1. atthe start of the hello rule's consequence;

2. just prior to the triggering event for the milestone in the main process
3. just after the triggering event for the milestone in the sub-process

4. atthe start of the goodbye rule's consequence

When debugging the application, you can use the following debug views to track the rule flow's
progress:

1. the working memory view. This shows all of the data in the working memory.
2. the agenda view. This shows all of the activations in the agenda.
3. the global data view. This displays all of the globals.

4. the default Java Debug views. These display the current line and the value of the known
variables, and this for both normal Java code and for rules.

5. the process instances view. This displays all running rule-flows and their states.

6. the audit view. This shows the audit log.

9.2.1. The Process Instances View

The process instances view shows the currently-running rule flow instances. When you double-click
on a process instance, the viewer will display its progress.

This is what you will see at each of the break-points in turn:

1. atthe start of the hello rule's consequence, only the hello ruleflow-group is active. It is awaiting the

execution of the hello rule:
Action

Goodbye j—» (W End

D start 4{ Hello

(7) Milestone

=2 SubProcess

64

The Process Instances View

once that rule has executed, the action, the milestone and the sub-process are all triggered.
The action is executed immediately, triggering the join (which will simply wait until all incoming

connections are triggered). The sub-process waits at the milestone.

Before the triggering event for the milestone is inserted in the main process, there are now two

process instances. They look like this:

) start 4»[Hello

Goodbye j—»

(W End

(7) Milestone

== SubProcess

(7) Milestone

{2 Start

(W End

when you activate the event for the milestone in the main process, you also trigger the join (which

will simply wait until every incoming connections has been activated).

At that point (which is before you insert the triggering event for the milestone in the sub-process),

the rule flow will look like this:

) Start a[Hello

Goodbye j—»

[End

(7) Milestone

e SubProcess

(7) Milestone

3 Start

[End

65

Chapter 9. Debugging Processes

4. when you trigger the event for the milestone in the sub-process, the rule flow instance will be
completed and this will also activate the join, which will then continue and trigger the goodbye
ruleflow-group (as all its incoming connections have been triggered.)

If you run all of the rules, you will trigger the breakpoint in the goodbye rule:

) start 4{ Hello

Goodbye)—» End

== SubProcess

5. after you execute the goodbye rule, the main rule flow will also be completed and the execution
will have reached its conclusion.

9.2.2. The Audit View

You can look at the result in the audit view.

@voe

The object insertion events may seem a little out of place. This is caused by the fact that they are
only logged after (and never before) they are inserted, making it difficult to pinpoint their exact
locations.

66

Chapter 10.

JBoss Rules IDE Features

The JBDS' JBoss Rules plug-in provides a few additional features that some business developers may
find interesting. Read this chapter to learn about them.

10.1. JBoss Rules Run-times

A JBoss Rules run-time is a collection of JAR files that represent one specific release of the JBoss
Rules project JARs. To create a run-time, you must point the IDE to the release of your choice.

@

You can create a new run-time based on the latest JBoss Rules project JARs which come
i ded with the plug-in itself.

You are required to specify a default JIBoss Rules run-time for your workspace, but each
individual project can override the default and select the run-time most appropriate for it.

10.1.1. Defining a JBoss Rules Run-time
Follow these instructions to define one or more JBoss Rules run-times:

go to the Window menu
selecting the Preferences menu item
a Preferences dialogue box, containing all of your settings, appears

on the left-hand side of this dialogue box, under the JBoss Rules category, select Installed JBoss
Rules run-times. The panel on the right will then update to display all of your currently-defined run-
times.

to define a new run-time, click on the add button. A dialogue box will appear.
input the name of your runtime and the path to its location on your file system.
In general, you have two options:

1. if you simply want to use the default JAR files as included with the JBoss Rules plug-in, just click
the Create a new JBoss Rules 5 run-time... button.

A file browser will appear, asking you to select the directory in which you want this run-time to be
created. The plug-in will then automatically copy every required dependency into this directory.

2. if you want to use one specific release of the JBoss Rules project, you should create a directory
on your file system that contains all of the required libraries and dependencies. Instead of creating
a new JBoss Rules run-time as explained above, give your run-time a name and then select the
directory that you just created, containing all of the required JARSs.

after clicking the OK button, your newly-created run-time will appear in the right-hand panel alongside
all the others.

67

Chapter 10. JBoss Rules IDE Features

click on check box in front of the newly-created run-time to make it the default . It will now be used as
the run-time for all of your future JBoss Rules project (unless you select a project-specific one.)

?u can add as many JBoss Rules run-times as you need.

You will need to restart the IDE if you changed the default run-time. This will ensure that all of
your projects will use it. Their class-paths will update automatically.

101 2 Selectinag.- o Run-time for Your_ JRo<cc Riullee nroiect
FASAE ST T RS AY] AVa S A9)| I” A TN\NAIL LI 1vi 1 VIl VIV JII TNV Jd PI v’\'vt

Whenever you create a JBoss Rules project (by using the New JBoss Rules Project wizard or by
converting an existing Java project into a JBoss Rules project using the Convert to JBoss Rules
Project command), the plug-in will automatically add all of the JARs it needs to your project's class-
path.

The default run-time will be used unless you specify otherwise when you are creating it. However, you
can change the run-time at any time. To do so, follow these steps:

open the project's properties,
select the JBoss Rules category,
tick the Enable project specific settings check box

select the run-time you desire from the drop-down list.

@

If you click the Configure workspace settings... link, the preferences will display, showing you
rrently installed JBoss Rules run-times. You can add new run-times from this screen.

If you de-select the Enable project specific settings check box, the default run-time will be
used.

10 92 Dvracoccoe
AU T TULVCOO

Use process skins t

o
o
Q

ontrol the appearance of a rule flow's nodes.

You can also change the appearance of the various node types by implementing your own
SkinProvider.

Process Skins

BPMN is a popular language used employed by corporate developers to model business processes.
Red Hat has created a BPMN skin that maps Rule Flow concepts to the equivalent BPMN
visualisation.

You can change the process skin via the JBoss Rules Preferences dialogue box.

After reopening the editor, the rule flow will reappear, displaying the new BPMN skin.

69

70

Chapter 11.

Business Activity Monitoring

Monitor the performance of your rule flows diligently so that you can detect and react to anomalies
early. Red Hat supplies real-time analysis tools that allow you to intervene directly, and sometimes
even automatically, when problems arise.

You can create reports based on process engine-generated events.

11.1. Reporting

If you add a history logger to the process engine, it will record every relevant event in a database.
You can then use this information to analyse the performance of your rule flows. Use JBDS' Business
Intelligence Reporting Tool (BIRT) to create reports based on key performance indicators. To create
custom reports, use the predefined data sets (as these contain all rule flow history information), and
any other data sources you may wish to add.

The BIRT allows you to define include charts in your reports, preview the output, and export it as a
web page.

A simple report might consist of the number of requests per hour and the average completion time for
these requests. You can use this information to check for an unexpected drop or rise in the number of
requests or an increase in the average processing time.

11.2. Direct Intervention

Most of the time, you will need to manually intervene if you spot a problem. However, in certain
circumstances you can define automatic responses.

To monitor the Rule Flow Engine, add a listener that forward all related process events, (such as
the start and completion of a process instance or the triggering of a specific node), to a session
responsible for processing these events. This could be the same session as the one executing the
processes, or an independent one.

You can then use complex event processing (CEP) rules to specify how to process these events. For
example, you might write rules that generate higher-level business events based on a specific pattern
in the low-level events. The rules can also specify how to respond to specific situations.

Below is a sample rule that accumulates all start process events over the last hour, for one specific
order rule flow. It uses the Fusion CEP Engine’s sliding window functionality to achieve this. This rule
prints out an error message if more than 1000 process instances were started in the last hour (the aim
being to detect potential overloading of the server).

In real life, it would be better to send out an e.-mail or other form of notification to the person
responsible instead of simply producing an error message.

declare ProcessStartedEvent
@role(event)
end

dialect "mvel"

71

Chapter 11. Business Activity Monitoring

rule "Number of process instances above threshold"
when
Number (nbProcesses : intValue > 1000)
from accumulate(
e: ProcessStartedEvent(processInstance.processId == "com.sample.order.OrderProcess")
over window:size(1h),
count(e))

then
System.err.println("WARNING: Number of order processes in the last hour above 1000: " +
nbProcesses);
end

You can use the rules to alter the behaviour of a rule-flow automatically at run-time. In other words,
whenever a specific situation is detected, additional rules could be added to the knowledge base that
will modify the rule flow.

For example, whenever a large amount of user requests made within a specific time frame are
detected, an additional validation could be added to the process, enforcing some sort of flow control to
reduce the frequency of incoming requests.

There is also the possibility of deploying additional logging rules as the consequence of detecting
problems. As soon as the situation reverts to normal, such rules would be removed again.

72

Chapter 12.

Business Process Model and Notation
(BPMN 2.0)

The Business Process Model and Notation (BPMN) 2.0 specification was adopted by Red Hat for
modeling in the Rule Flow Engine. BPMN 2.0 not only defines a standard for how to graphically
represent a business process also includes execution semantics for the defined elements, and an
XML format that dictates how to store (and share) rule flow definitions.

The Rule Flow Engine allows you to execute processes defined using the BPMN 2.0 XML format, just
as it allows you to execute processes using the custom RuleFlow format. This means that you can use
the same API, engine and components to execute and manage your BPMN 2.0 processes.

Red Hat has not yet implemented all node types and attributes as defined in the BPMN 2.0
specification, but does support a very significant subset, which includes all common node types. Here
is a list of the various elements that can already be executed using the BPMN 2.0 XML format:

* Flow objects

Events
 Start Event (None, Conditional, Signal, Message, Timer)

* End Event (None, Terminate, Error, Escalation, Signal, Message, Compensation)
 Intermediate Catch Event (Signal, Timer, Conditional, Message)

 Intermediate Throw Event (None, Signal, Escalation, Message, Compensation)

» Non-interrupting Boundary Event (Escalation, Timer)

* Interrupting Boundary Event (Escalation, Error, Timer, Compensation)

Activities
» Script Task (Java or MVEL expression language)

* Task

» Service Task

» User Task

* Business Rule Task

+ Manual Task

* Send Task

* Receive Task

* Reusable Sub-Process (Call Activity)
* Embedded Sub-Process

» Ad-Hoc Sub-Process

» Data-Object

73

Chapter 12. Business Process Model and Notation (BPMN 2.0)

Gateways
 Diverging

Exclusive (Java, MVEL or XPath expression language)

* Inclusive (Java, MVEL or XPath expression language)

Parallel
+ Event-Based

Converging
» Exclusive

« Parallel
e Lanes

Data
« Java type language

 Process properties
« Embedded Sub-Process properties
* Activity properties

Connecting Objects
« Sequence flow

Here is an example involving a corporate human resource department's process for evaluating
employee performance. Whenever an evaluation rule flow for a specific employee is launched, that
employee must first perform a self-evaluation, after which the project manager and human resource
manager must also fill in their evaluation forms, as shown in the figure below:

O —»{ %% Self Evaluation ‘—- <|-> <l'> — @

An executable version of this process expressed coded in the BPMN 2.0 XML format will look
something like this:

%9PrmectManagerEvaMaﬂon

% HR Manager Evaluation

<?xml version="1.0" encoding="UTF-8"?>

<definitions id="Definition"
targetNamespace="http://www.jboss.org/drools"
typeLanguage="http://www.java.com/javaTypes"
expressionLanguage="http://www.mvel.org/2.0"
xmlns="http://www.omg.org/spec/BPMN/20100524/MODEL"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema-instance"
xs:schemaLocation="http://www.omg.org/spec/BPMN/20100524/MODEL BPMN20.xsd"
xmlns:g="http://www.jboss.org/drools/flow/gpd"
xmlns:tns="http://www.jboss.org/drools">

<process processType="Private" isExecutable="true" id="com.sample.evaluation"
name="Evaluation Process" >

74

<property id="employee" itemSubjectRef="_employeeItem"/>

<startEvent id="_1" name="StartProcess" g:x="16" g:y="56" g:width="48" g:height="48" />
<userTask id="_2" name="Self Evaluation" g:x="96" g:y="56" g:width="143" g:height="48" >
<ioSpecification>
<dataInput id="_2_CommentInput" name="Comment" />
<dataInput id="_2_SkippableInput" name="Skippable" />
<dataInput id="_2_TaskNameInput" name="TaskName" />
<dataInput id="_2_ContentInput" name="Content" />
<dataInput id="_2_PriorityInput" name="Priority" />
<inputSet>
<dataInputRefs>_2_ CommentInput</dataInputRefs>
<dataInputRefs>_2_SkippableInput</dataInputRefs>
<dataInputRefs>_2 TaskNameInput</dataInputRefs>
<dataInputRefs>_2_ ContentInput</dataInputRefs>
<dataInputRefs>_2_ PriorityInput</dataInputRefs>
</inputSet>
<outputSet>
</outputSet>
</ioSpecification>
<dataInputAssociation>
<targetRef>_2_CommentInput</targetRef>
<assignment>
<from xs:type="tFormalExpression">You need to perform a self-evaluation</from>
<to xs:type="tFormalExpression">_2_CommentInput</to>
</assignment>
</dataInputAssociation>
<dataInputAssociation>
<targetRef>_2 SkippableInput</targetRef>
<assignment>
<from xs:type="tFormalExpression">false</from>
<to xs:type="tFormalExpression">_2_ SkippableInput</to>
</assignment>
</dataInputAssociation>
<dataInputAssociation>
<targetRef>_2_TaskNameInput</targetRef>
<assignment>
<from xs:type="tFormalExpression">Performance Evaluation</from>
<to xs:type="tFormalExpression">_2_TaskNameInput</to>
</assignment>
</dataInputAssociation>
<dataInputAssociation>
<targetRef>_2_ContentInput</targetRef>
<assignment>
<from xs:type="tFormalExpression"></from>
<to xs:type="tFormalExpression">_2_ContentInput</to>
</assignment>
</dataInputAssociation>
<dataInputAssociation>
<targetRef>_2 PriorityInput</targetRef>
<assignment>
<from xs:type="tFormalExpression">1</from>
<to xs:type="tFormalExpression">_2 PriorityInput</to>
</assignment>
</dataInputAssociation>
<potentialOwner>
<resourceAssignmentExpression>
<formalExpression>#{employee}</formalExpression>
</resourceAssignmentExpression>
</potentialOwner>
</userTask>
<parallelGateway id="_3" name="Diverge" g:x="271" g:y="56" g:width="49" g:height="49"
gatewayDirection="Diverging" />
<userTask id="_4" name="HR Manager Evaluation" g:x="352" g:y="96" g:width="225"
g:height="48" >

75

Chapter 12. Business Process Model and Notation (BPMN 2.0)

<ioSpecification>
<dataInput id="_4_CommentInput" name="Comment" />
<dataInput id="_4_SkippableInput" name="Skippable" />
<dataInput id="_4_TaskNameInput" name="TaskName" />
<dataInput id="_4_ContentInput" name="Content" />
<dataInput id="_4_PriorityInput" name="Priority" />
<inputSet>
<dataInputRefs>_4_CommentInput</dataInputRefs>
<dataInputRefs>_4_SkippableInput</dataInputRefs>
<dataInputRefs>_4_ TaskNameInput</dataInputRefs>
<dataInputRefs>_4_ContentInput</dataInputRefs>
<dataInputRefs>_4_PriorityInput</dataInputRefs>
</inputSet>
<outputSet>
</outputSet>
</ioSpecification>
<dataInputAssociation>
<targetRef>_4_CommentInput</targetRef>

<assignment>
<from xs:type="tFormalExpression">You need to perform an evaluation for
#{employee}</from>
<to xs:type="tFormalExpression">_4_CommentInput</to>
</assignment>

</dataInputAssociation>
<dataInputAssociation>
<targetRef>_4_ SkippableInput</targetRef>
<assignment>
<from xs:type="tFormalExpression">false</from>
<to xs:type="tFormalExpression">_4_SkippableInput</to>
</assignment>
</dataInputAssociation>
<dataInputAssociation>
<targetRef>_4_TaskNamelInput</targetRef>
<assignment>
<from xs:type="tFormalExpression">Performance Evaluation</from>
<to xs:type="tFormalExpression">_4_TaskNameInput</to>
</assignment>
</dataInputAssociation>
<dataInputAssociation>
<targetRef>_4 ContentInput</targetRef>
<assignment>
<from xs:type="tFormalExpression"></from>
<to xs:type="tFormalExpression">_4_ContentInput</to>
</assignment>
</dataInputAssociation>
<dataInputAssociation>
<targetRef>_4 PriorityInput</targetRef>
<assignment>
<from xs:type="tFormalExpression">1</from>
<to xs:type="tFormalExpression">_4_PriorityInput</to>
</assignment>
</dataInputAssociation>
<potentialOwner>
<resourceAssignmentExpression>
<formalExpression>mary</formalExpression>
</resourceAssignmentExpression>
</potentialOwner>
</userTask>
<userTask id="_5" name="Project Manager Evaluation" g:x="352" g:y="16" g:width="225"
g:height="48" >
<ioSpecification>
<dataInput id="_5_CommentInput" name="Comment" />
<dataInput id="_5_SkippableInput" name="Skippable" />
<dataInput id="_5_TaskNameInput" name="TaskName" />
<dataInput id="_5_ContentInput" name="Content" />
<dataInput id="_5_PriorityInput" name="Priority" />
<inputSet>

76

<dataInputRefs>_5_ CommentInput</dataInputRefs>
<dataInputRefs>_5_SkippableInput</dataInputRefs>
<dataInputRefs>_5_TaskNameInput</dataInputRefs>
<dataInputRefs>_5 ContentInput</dataInputRefs>
<dataInputRefs>_5 PriorityInput</dataInputRefs>
</inputSet>
<outputSet>
</outputSet>
</ioSpecification>
<dataInputAssociation>
<targetRef>_5_CommentInput</targetRef>

<assignment>
<from xs:type="tFormalExpression">You need to perform an evaluation for
#{employee}</from>
<to xs:type="tFormalExpression">_5_CommentInput</to>
</assignment>

</dataInputAssociation>
<dataInputAssociation>
<targetRef>_5_SkippableInput</targetRef>
<assignment>
<from xs:type="tFormalExpression'">false</from>
<to xs:type="tFormalExpression">_5_SkippableInput</to>
</assignment>
</dataInputAssociation>
<dataInputAssociation>
<targetRef>_5_TaskNameInput</targetRef>
<assignment>
<from xs:type="tFormalExpression">Performance Evaluation</from>
<to xs:type="tFormalExpression">_5_TaskNameInput</to>
</assignment>
</dataInputAssociation>
<dataInputAssociation>
<targetRef>_5_ContentInput</targetRef>
<assignment>
<from xs:type="tFormalExpression"></from>
<to xs:type="tFormalExpression">_5_ContentInput</to>
</assignment>
</dataInputAssociation>
<dataInputAssociation>
<targetRef>_5_PriorityInput</targetRef>
<assignment>
<from xs:type="tFormalExpression">1</from>
<to xs:type="tFormalExpression">_5 PriorityInput</to>
</assignment>
</dataInputAssociation>
<potentialOwner>
<resourceAssignmentExpression>
<formalExpression>john</formalExpression>
</resourceAssignmentExpression>
</potentialOwner>
</userTask>
<parallelGateway id="_6" name="Converge" g:x="603" g:y="55" g:width="49" g:height="49"
gatewayDirection="Converging" />
<endEvent id="_7" name="EndProcess" g:x="690" g:y="56"
<terminateEventDefinition/>

g:width="48" g:height="48" >

</endEvent>

<sequenceFlow id="_1-_2" sourceRef="_1" targetRef="_2" />

<sequenceFlow id="_2-_3" sourceRef="_2" targetRef="_3" />

<sequenceFlow id="_3-_4" sourceRef="_3" targetRef="_4" g:bendpoints="[295,120]" />
<sequenceFlow id="_3-_5" sourceRef="_3" targetRef="_5" g:bendpoints="[295,39]" />
<sequenceFlow id="_5-_6" sourceRef="_5" targetRef="_6" g:bendpoints="[627,40]" />
<sequenceFlow id="_4-_6" sourceRef="_4" targetRef="_6" g:bendpoints="[627,121]" />
<sequenceFlow id="_6-_7" sourceRef="_6" targetRef="_7" />

</process>

77

Chapter 12. Business Process Model and Notation (BPMN 2.0)

</definitions>

@

The process will need to contain all the details to make it executable, including all of the
parameters for each of the tasks present, hence the length of the rule flow definition.
To create your own process using BPMN 2.0 format, choose one of these alternatives:

« make a new Flow file using the JBDS' JBoss Rules plug-in wizard. Then, on the last page of the
wizard, make sure you select JBoss Rules 5.1 code compatibility. This will create a new process
using the BPMN XML format instead of the old Rule Flow format.

M

This, however, is not a real BPMN 2.0 editor, as it still uses different attributes. Fortunately,
though, it does however save the rule flow using valid BPMN 2.0 syntax.

Also note that the editor does not yet support all of the node types and attributes that are
supported by the execution engine.

« Oryx is an open-source web-based editor that supports the BPMN 2.0 format. Red Hat has
embedded it into the JBoss Rules engine in order to supply BPMN 2.0 rule flow visualisation and
editing functionality. You can use the Oryx editor (as either a standalone or integrated tool) to create
and edit BPMN 2.0 processes.

Once you have done so, export them to BPMN 2.0 format so they can be executed.

Be aware, however, that Oryx is still using the BPMN 2.0 beta 1 format and that their
implementation is currently incomplete (especially the import/export functionality).

< you can manually create BPMN 2.0 process files by hand-coding the XML.
Use this code to load a BPMN process into your knowledge base:
private static KnowledgeBase readkKnowledgeBase() throws Exception {
KnowledgeBuilder kbuilder = KnowledgeBuilderFactory.newKnowledgeBuilder();

kbuilder.add(ResourceFactory.newClassPathResource("sample.bpmn"), ResourceType.BPMN2);
return kbuilder.newkKnowledgeBase();

}

Use this code to execute the rule flow:

KnowledgeBase kbase = readknowledgeBase();

78

Current Limitations

StatefulKnowledgeSession ksession = kbase.newStatefulKnowledgeSession();

KnowledgeRuntimeLogger logger = KnowledgeRuntimelLoggerFactory.newFilelLogger (ksession,
"teSt");

ksession.getWorkItemManager().registerWorkItemHandler ("Human Task", new
WSHumanTaskHandler());

// start a new process instance

Map<String, Object> params = new HashMap<String, Object>();

params.put("employee", "krisv");

ksession.startProcess("com.sample.evaluation", params);

12.1. Current Limitations

Since the BPMN 2.0 specification is still being finalised, BPMN 2.0 execution is still an
experimental feature.

It is possible that the XSD that defines the format might still change slightly as the specification
matures, so keep this in mind if you decide to start using the format.

BPMN uses the same execution engine and constructs as the Rule Flow format however (as it is just
another XML serialisation format). Therefore, all features and components that are available using the
RuleFlow format also work for BPMN 2.0 processes. You simply have to use the right ResourceType
when adding BPMN 2.0 processes to your knowledge base.

The use of a specification should give you many advantages, as it allows you to share your processes
across tools and possibly even engines as it defines the exact format (and even execution semantics)
for each of the elements.

7

At this point in time, however, it is likely that different tools are using different intermediate
versions of the specification. Red Hat believes that this issue will resolve itself naturally over time
once the specification is finalised and everyone is using the same version, but until then, you can
encounter compatibility issues related to this problem.

Finally, the BPMN 2.0 specification defines a lot of node types and attributes, but nevertheless it is not
possible to express everything using the constructs offered by the BPMN 2.0 specification only. To
resolve this, the specification is allows for additional node types, attributes and so forth. Red Hat tries
to limit the use of custom extensions to a minimum but sometimes has to define additional attributes to
express features that it belieces is important but cannot be expressed via the core BPMN 2.0 syntax.

The following table gives an overview of which features of the RuleFlow language have already
been ported to the BPMN 2.0 XML format. A green check mark means that the functionality can be
expressed using the features defined in the BPMN 2.0 specification.

An orange check mark means that the functionality is available via a custom extension that Red Hat
has implemented.

79

Chapter 12. Business Process Model and Notation (BPMN 2.0)

@e

Red Hat has decided to delay implementation of those features that cannot be expressed in
BPMN 2.0 by default like, for example, the on-entry and on-exit actions and the state node.

When and how these will be supported is a decision for a later date.
Table 12.1. Keywords

Feature JBoss Rules BPMN JBoss Rules Flow
A. Process-level

Imports vy
Function Imports o
Variable o o
- primitive Java types o o
- Java object types o o
- default value o
Swimlanes o o
Exception handlers o
- fault name ey
- bind to variable o
- action o
B. Nodes

1. Start Node o o
- rule trigger o o
- signal trigger o o
- parameter mapping o W
2. End Node o o
- terminate o o
3. Action Node o o
- Java dialect o o

Current Limitations

Feature

* access to variables, global,
context

JBoss Rules BPMN

"

JBoss Rules Flow

"

- MVEL dialect

* access to variables, global,
context

4. RuleSet Node

%S |S

- timers

5. Split Node

- AND

- XOR

-OR

- Java code constraints

- MVEL code constraints

- rule constraints

- constraint names

SIS]SS)8 888

- constraint priorities

6. Join Node

%

AND

%

XOR

Discriminator

n-of-m

7. State Node

- timers

- on entry actions

- on exit actions

- automatic transition
constraints

- manual transition signal

SIS SIS IS8 S SIS 88 88188 888 1814)88 88

81

Chapter 12. Business Process Model and Notation (BPMN 2.0)

Feature

8. SubProcess Node

JBoss Rules BPMN

U

JBoss Rules Flow

"

- timers

- on entry actions

- on exit actions

- wait for completion

- independant

- parameter mapping (in/out)

- dynamic process id

9. Workltem Node

- parameters

- parameter mapping (in/out)

SIS]R)8 8% 8%

- timers

- on entry actions

- on exit actions

- wait for completion

10. Timer Node

- delay

&

- period

11. Human Task Node (also
see Workltem Node)

- swimlane

12. Composite Node

&

- timers

- on entry actions

- on exit actions

- variables

SISIS|ISIS S SIS SIS)8)84) 81888 1888)8 %) 8%

82

Current Limitations

Feature

- exception handlers

JBoss Rules BPMN

JBoss Rules Flow

"

- multiple entry points

- multiple exit points

13. ForEach Node

%

- bind to variable

- wait for completion

- multiple entry points

- multiple exit points

14. Event Node

- bind to variable

%

- internal / external

- event filters

15. Fault Node

- fault name

- fault data

Graphical information (x, v,
width, height)

%888

SIS IS8 S)8)%)88)88 18)88 S

C. Connections

From, To

%

From type

To type

Graphical information
(bendpoints)

%88)%

83

84

Chapter 13.

Console

You can manage your rule flows through a web console that comes supplied with the product.

The JBoss Rules build system generates two WAR archive files for you. Deploy them to your
application server to run.

13.1. Running the Process Management Console

To access the console, launch a web browser and go to the following address: http://localhost:8080/
gwt-consolel

@e

If you have changed your application server's default settings, the address or port number may
be different.
A log in screen will appear. Input your user name and password.

The Process Management Workbench screen will now open. On the right-hand side, you will
see several tabs. These are for process instance management, human task lists and reporting
respectively.

13.1.1. Managing Rule Flow Instances

Use the Processes screen to inspect those rule flow definitions that are currently part of the installed
knowledge base. Here you can also start new instances and manage the ones.

13.1.1.1. Inspecting Rule Flow Definitions

When you open the Process Definition List, every rule flow stored in the JBoss Rules' default
package is shown. You can either start a new rule flow instance or inspect those belonging to a
specific process.

13.1.1.2. Starting New Rule Flow Instances
To start a new instance for one specific rule flow definition, follow these steps:

select the definition from the process definition list;
click on the select the process instances tab;

click on the Start button.

@

When a form is associated with this particular process, it will be displayed. After you complete this
form, the rule flow will launch and make use of the information you have provided.

85

Chapter 13. Console

13.1.1.3. Managing Rule Flow Instances

The process instances tab also contains a table that shows you all of running instances of that
specific rule flow definition. Select an instance to see its details.

13.1.1.4. Inspecting a Rule Flow Instance State

To inspect specific rule flow instance's top-level variables, click on the Instance Data button. This will
show you how each variable to a corresponding value.

13.1.1.5. Inspecting Rule Flow Instance Variables
To inspect the state of a specific rule flow instance, follow these steps:

click on the Diagram button;

you will then see a flow chart. On this chart, red triangles represent nodes that are currently active.

@

Multiple instances of one node may be executing simultaneously. They will still be depicted by
only one red triangle.

13.1.2. Human Task Lists

Employees can go to the task management section to see their current task lists.

The group task list shows a pool of every task that has not yet been claimed by one specific user.
The personal task list shows every tasks that is assigned to the user who is currently logged in.
To execute a task, follow these steps:

select it from your personal task list;

click on View.

If a form is associated with the selected task, it will be shown. After you complete the form, the task
will also be completed.

13.1.3. Reporting

The reporting section allows you to view rule flow execution reports. This includes an overall report
showing an overview of all processes, as shown below.

A report regarding one specific process instance can also be generated.

Rule Flow comes with some sample reports that may help you to visualise generic execution
characteristics (like the number of active process instances per process.)

To create customised reports, replace the report template files in the report directory with your own
versions.

13.2. Adding New Task Forms

You can use forms to start new rule flows or complete human tasks.

86

Adding New Task Forms

To create a form for a specific rule flow definition, you need to make a Freemarker template. Save it
with a filename of this format: {processId}.ftl.

Use HTML code to model the template. Here is a sample form that starts the employee evaluation
process mentioned above:

<html>

<body>

<h2>Start Performance Evaluation</h2>

<hr>

<form action="complete" method="POST" enctype="multipart/form-data">
Please fill in your username: <input type="text" name="employee" /></BR>
<input type="submit" value="Complete">

</form>

</body>

</html>

You will find this template comes with this product as com.sample.evaluation.ftl.
To link task forms to human tasks, you similarly creating a Freemarker template and give it a name in
this format: {taskName}.ft1.

The form has access to a task parameter that represents the current human task, thus allowing you
to dynamically adjust the form based on the input.

The task parameter is a Task model object as defined in the drools-process-task module.
This allows you to customise the task form based on, for instance, the description or input data related
to that task. The evaluation form shown earlier uses the task parameter to access the description of
the task. That description is then displayed when the task appears on screen:

<html>

<body>

<h2>Employee evaluation</h2>

<hr>

${task.descriptions[0].text}

Please fill in the following evaluation form:

<form action="complete" method="POST" enctype="multipart/form-data'">

Rate the overall performance: <select name="performance">

<option value="outstanding">Outstanding</option>

<option value="exceeding'">Exceeding expectations</option>

<option value="acceptable">Acceptable</option>

<option value="below">Below average</option>

</select>

Check any that apply:

<input type="checkbox" name="initiative" value="initiative'">Displaying initiative

<input type="checkbox" name="change" value="change">Thriving on change

<input type="checkbox" name="communication" value="communication">Good communication
skills

Chapter 13. Console

<input type="submit" value="Complete">
</form>

</body>

</html>

The employee adds data to the form by filling it in. This data is stored in parameters, completing the
task.

For instance, in the example above, when you complete the task, the Map of outcome parameters will
include result variables called performance, initiative, change and communication. To access these
result parameters from the related rule flow, map them to to the process variables.

88

Appendix A. © 2011

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in
compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/
LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the
License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
KIND, either express or implied. See the License for the specific language governing permissions and
limitations under the License.

89

90

Appendix B. Revision History

Revision 1.0-0 Fri Jul 8 2011 David Le Sage dlesage@redhat.com
Initial conversion of community documentation.

91

mailto:dlesage@redhat.com

92

Index

F

feedback
contact information for this manual, viii

H

help
getting help, vii

93

94

	Rule Flow Component Guide
	Table of Contents
	Preface
	1. Document Conventions
	1.1. Typographic Conventions
	1.2. Pull-quote Conventions
	1.3. Notes and Warnings

	2. Getting Help and Giving Feedback
	2.1. Do You Need Help?
	2.2. Give us Feedback

	Chapter 1. Introduction
	Chapter 2. Using Rule Flow for the First Time
	2.1. Creating Your First Process
	2.2. Executing Your First Process

	Chapter 3. Rule Flows
	3.1. Creating a Rule Flow Process
	3.1.1. Using the Graphical Rule Flow Editor
	3.1.2. Defining Processes Using XML
	3.1.3. Defining Processes Using the Process API
	3.1.3.1. Example One
	3.1.3.2. Example Two
	3.1.3.3. Example Three

	3.2. Using a Process in Your Application
	3.3. Detailed Explanation of the Different Node Types
	3.4. Data
	3.5. Constraints
	3.6. Actions
	3.7. Events
	3.8. Exceptions
	3.9. Timers
	3.10. Updating Rule Flows
	3.10.1. Rule Flow Instance Migration

	3.11. Assigning Rules to a Rule Flow Group
	3.12. Example Rule Flows

	Chapter 4. The API
	4.1. Knowledge Base
	4.2. Session
	4.3. Events

	Chapter 5. Persistence
	5.1. Run-Time State
	5.1.1. Binary Persistence
	5.1.2. Safe Points
	5.1.3. Configuring Persistence
	5.1.4. Transaction Boundaries

	5.2. Process Definitions
	5.3. History Log
	5.3.1. Storing Process Events in a Database

	Chapter 6. Rules and Processes
	6.1. Approach
	6.1.1. Teaching a Rules Engine About Processes

	6.2. Example
	6.2.1. Evaluating a Set of Rules in Your Process
	6.2.2. Using Rules to Evaluate Constraints
	6.2.3. Assignment Rules
	6.2.4. Describing Exceptional Situations Using Rules
	6.2.5. Modularising Concerns Using Rules
	6.2.6. Rules for Altering Process Behaviour Dynamically
	6.2.7. Integrated Tooling
	6.2.8. Domain-Specific Rules and Processes

	Chapter 7. Domain-Specific Processes
	7.1. Introduction
	7.2. Example: Notifications
	7.2.1. Creating the Work Definition
	7.2.2. Registering the Work Definition
	7.2.3. Using Your New Work Item in Your Processes
	7.2.4. Executing Work Items

	Chapter 8. Human Tasks
	8.1. Adding Human Tasks to Rule Flows
	8.1.1. Swimlanes

	8.2. Human Task Management Component
	8.2.1. Task Life-Cycle
	8.2.2. Linking the Task Component to the Rule Flow Engine
	8.2.3. Starting the Task Management Component
	8.2.4. Interacting With the Task Management Component

	8.3. Human Task Management Interface
	8.3.1. JBDS Integration

	Chapter 9. Debugging Processes
	9.1. A Simple Example
	9.2. Debugging the Process
	9.2.1. The Process Instances View
	9.2.2. The Audit View

	Chapter 10. JBoss Rules IDE Features
	10.1. JBoss Rules Run-times
	10.1.1. Defining a JBoss Rules Run-time
	10.1.2. Selecting a Run-time for Your JBoss Rules project

	10.2. Process Skins

	Chapter 11. Business Activity Monitoring
	11.1. Reporting
	11.2. Direct Intervention

	Chapter 12. Business Process Model and Notation (BPMN 2.0)
	12.1. Current Limitations

	Chapter 13. Console
	13.1. Running the Process Management Console
	13.1.1. Managing Rule Flow Instances
	13.1.1.1. Inspecting Rule Flow Definitions
	13.1.1.2. Starting New Rule Flow Instances
	13.1.1.3. Managing Rule Flow Instances
	13.1.1.4. Inspecting a Rule Flow Instance State
	13.1.1.5. Inspecting Rule Flow Instance Variables

	13.1.2. Human Task Lists
	13.1.3. Reporting

	13.2. Adding New Task Forms

	Appendix A. © 2011
	Appendix B. Revision History
	Index

