JBoss Enterprise
SOA Platform 4.3

Services Guide

Your guide to services available on the
JBoss Enterprise SOA Platform 4.3 CP05

o °
® ®
* JBoss
®
“ by Red Hat

Services Guide

JBoss Enterprise SOA Platform 4.3 Services Guide

Your guide to services available on the JBoss Enterprise SOA
Platform 4.3 CP05

Edition 4.3.5

Copyright © 2011 Red Hat, Inc..

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution—Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is available
at http://creativecommons.org/licenses/by-sa/3.0/. In accordance with CC-BY-SA, if you distribute this
document or an adaptation of it, you must provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, MetaMatrix, Fedora, the Infinity
Logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other countries.

Linux® is the registered trademark of Linus Torvalds in the United States and other countries.
Java® is a registered trademark of Oracle and/or its affiliates.

XFS® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL® is a registered trademark of MySQL AB in the United States, the European Union and other
countries.

All other trademarks are the property of their respective owners.

This book contains details of the services available with the JBoss SOA Platform.

http://creativecommons.org/licenses/by-sa/3.0/

Preface v

1. DOCUMENT CONVENTIONSeiiiitiieeiiii e eeets e ettt e e e eat e e e ett e e e eatn e e e eat e e e eaan e e e eetn e e eesnnaeeennns %

1.1. TypographiC CONVENLIONSciuuniiii it eeei eanaes %

1.2. PUll-QUOLE CONVENTIONS ...\ttt e e e e e et e e eeees Vi

1.3, NOtES ANA WAIMNINGS ...vuiieiiiiieeiii ettt ettt e e e e e ebe e vii

2. We Need Feedback! ... vii

1. What is the Registry? 1
1.1. Why D0ES ONe NEEA I1? ..ootiiiiiiii ettt ettt e e et e e e et e e e ena e eeens 1

1.2. HOW D0OES ONE USE 172 ettt e e e e e e e e e e ees 1

1.3. ReQIStry VErsuUS REPOSITOIY ...uuveuiiiiiiiei et ee et e e e et e e e e e e e a e e e e e e enn s 1
1@ AN o] 1 1] Lo =] £ 2

S T I 7= T 6 15] PSP 2

1.6. The Registry and the JBoss Service-Oriented Architecture Platformccoooeiiiinnin. 3

2. Configuring the Registry 5
2.1. The RegiStry COMPONENTS uiiiiiiii ettt e e e e e e et e et e et e e e e eennas 6

2.2. The Registry Implementation CIasScc.uiiiiiiiiiii e 6

2.3, USING JAXR it e e e et e e e e a e e aaan 7
2.4.UsiNg ScoUt and JUDDIiiiiiiiiieiii e 7

3. Registry Configuration Examples 9
K 700 I 1o o o 11 od 1T o I 9

3.2. EMDEAAEd JUDDIiiiiiee e 9

3.3. Remote Method Invocation Using jbossesb.sarccoooiiiiiiiiiici i, 10

3.4. Remote Method Invocation Using JNDI Registration of the RMI Service 10

R TS 7Y = S 13

4. UDDI Browser 15
7o I 1 (o To 1§ o 1 o] o R PP P TP PPT 15

N U S I 7= (U o 15

5. Registry Troubleshooting 17
5.1. Scout and JUDDI PitfallScouuiiiie e 17

5.2. MOre INFOMMALION ...ttt e e e e et e e e e eaa e eees 17

6. What is a Rule Service? 19
(S0 I [11 o o [Fod 1 o] o KPP SP PR 19

7. Rule Services Using JBoss Rules 21
4% T [11 o o [F o3 1 o] o R PP 21

7.2. RUIE St CrEatiON iiiei ittt et e et e et ettt e e e e e et e e et e e aaeeanns 21

7.3. RUIE SEIVICE CONSUMIEIS ..ouiiiiiieiii ettt e e et e et e et e e et e e et e et e e aa e e et e eanaaeannns 22

A o] 01T U] =1 1T] o PP PPRTR 23

7.5, ODJECE Paths oo 25

7.6. Deploying and Packagingcooviiiiiiiiiiiii e 26

8. What is Content-Based Routing? 29
S I [o To [F T o] H TSP 29
8.1.1. SOME QUESHIONS ..uuiiiiieiii et ee e e et e e e e e e e e e e e e et e e et e e et eeaneeeen 29

8.1.2. Introducing Content-Based ROULINGooouuiiiiiiiiiiiiii e 29

8.2, SIMPIE EXAMPIE ..o e et e 29

9. Content Based Routing Using JBoss Rules 31
LS I8 [11 o o [F o3 1 o] o KNP UP PP 31

9.2. Three Different Routing ACtioN CIASSESccuuiiiiiiiiiii i 31

9.3, RUIE St CrEatiONuiiiiiieii e e e e e e et e et e e et e e et e e et e e eanns 32

9.4. XPath Domain SPecific LANQUAGEccouuniiiiiiiieiiii et 33

Services Guide

9.4.1. XPath and NamMeE-SPACEScccuuiiiiiiiiieeiii e
LS IR T O] 01T 8= 1o) o
9.6. "StAtEfUl" RUIES ...
9.7. The RuleAgent and the Business Rules Management Systemcccoooiivviiiieeinneennnn.
9.8. EXecuting BUSINESS RUIES ...t e
9.9. Changing Rule Service ImMplementationscco.uiioiiiiiiiiiiii e
9.10. Deployment and PaCKagiNgoeeeuuuiiiiiiiiieiei et

10. Content-Based Routing Using Smooks

11. Message Transformation

T Y 1 1Yo
O € I I = £ 153 0] 1 ¢ =1 0] o [P
11.3. ActionProcessor Data TranSfOrMationoveieiieieiiiiee et ee e ean e

12. jBPM Integration

12.1. Integration ConfigUIatioNco.iiiiiiiiii e e e e e e e e e e
12.2. Configuring the JBPM ..o
12.3. Creating and Deploying a Process Definitionccoiiiiiiiiiiiin e,
12.4. From the Enterprise Service Bus t0 the [BPMcciiiiiiiiiiiiii e
12.4.1. ESB to BPM Exception Handlingcccoiiiiiiiiiiiiiiie e
12.5. [BPM-AO-ESB ooiiiiiiiiiii ittt a e
12.5.0, ESBNOUIEI oieeiiiiii ettt
12.5.2. ESBACtIionHANAIErccccooiiiiiiiiiiiiiii e
12.5.3. BPM-t0-ESB Exception Handlingcocooiiiiiiiiiii e
12.5.4. Scenerio ONe: TIME-OULuiiiiiiiieiiiii ettt ettt e e e e eeeas
12.5.5. Scenerio Two: EXCeption TranSitioncooeuuiieiiiiinieiiiii et
12.5.6. Scenerio Three: EXception DECISIONoviiiiiiiiiiiiiiiieeciii e

13. Service Orchestration

R0 101 (0o (8 Tt i o o TP T O PPTPTTTTR
13.2. Orchestrating Web SErviCeSc.. i e
13.3. Orchestration DIAgIAMccouuuuieiiiiie ettt ettt e et e e e e e e eenans
13.4. Process Deployment and INStantiationc.uoiiiiiiiiiiiiiii e
G TR T ©o] (o] 11 11T o I PSP

14. The Message Store

14.1. Message Store INEIfAaCEciiiiiiiii e e e e e e
14.2. Configuring the MESSAJE STOMEiiiiiiiii i e e e

15. Security

15.1. Security Service ConfIQUIatioNoooiiiiiiiiiiiiie e
15.1.1. Configuring SECUNLY 0N SEIVICESuuuiiiiiiiiieiiiii ettt e
15.2. AUTNENEICALION ...t
15.2.1. AUthentiCatioNREQUESTccouuiiiiiieiiie e e e e e e e e e e et eeaaaeee
15.3. JBOSSESB SECUIMIYCONTEXLEuieuiiitiieiiie ettt e et e et et e et e et e e ea e eanaas
15.4. Security Context Propagationooeeeieiiioiiiiee et
15.5. CUSIOMIZING SECUILY ...iiietiieeiit ettt ettt et e e ettt e e ettt e et et e e e eaba e e e enta e aeens
15.6. Provided Login MOGUIES ...
15.6.1. CertificateLoginMOUIEcoiuuiiiiie e e e
ST ST = o] (=Y =1 o] o1 o [
15.7. SECUFNIEYSEIVICE ..ooooiiiiiiiii it e e e ean s

A. Revision History

Preface

1. Document Conventions

This manual uses several conventions to highlight certain words and phrases and draw attention to
specific pieces of information.

In PDF and paper editions, this manual uses typefaces drawn from the Liberation Fonts" set. The
Liberation Fonts set is also used in HTML editions if the set is installed on your system. If not,
alternative but equivalent typefaces are displayed. Note: Red Hat Enterprise Linux 5 and later includes
the Liberation Fonts set by default.

1.1. Typographic Conventions

Four typographic conventions are used to call attention to specific words and phrases. These
conventions, and the circumstances they apply to, are as follows.

Mono-spaced Bold

Used to highlight system input, including shell commands, file names and paths. Also used to highlight
keycaps and key combinations. For example:

To see the contents of the file my_next_bestselling_novel in your current
working directory, enter the cat my_next_bestselling_novel command at the
shell prompt and press Enter to execute the command.

The above includes a file name, a shell command and a keycap, all presented in mono-spaced bold
and all distinguishable thanks to context.

Key combinations can be distinguished from keycaps by the hyphen connecting each part of a key
combination. For example:

Press Enter to execute the command.

Press Ctrl1+Alt+F2 to switch to the first virtual terminal. Press Ctr1+Alt+F1 to
return to your X-Windows session.

The first paragraph highlights the particular keycap to press. The second highlights two key
combinations (each a set of three keycaps with each set pressed simultaneously).

If source code is discussed, class names, methods, functions, variable names and returned values
mentioned within a paragraph will be presented as above, in mono-spaced bold. For example:

File-related classes include filesystenm for file systems, file for files, and dir for
directories. Each class has its own associated set of permissions.

Proportional Bold

This denotes words or phrases encountered on a system, including application names; dialog box text;
labeled buttons; check-box and radio button labels; menu titles and sub-menu titles. For example:

Choose System - Preferences - Mouse from the main menu bar to launch Mouse
Preferences. In the Buttons tab, click the Left-handed mouse check box and click

! https://fedorahosted.org/liberation-fonts/

https://fedorahosted.org/liberation-fonts/
https://fedorahosted.org/liberation-fonts/

Preface

Close to switch the primary mouse button from the left to the right (making the mouse
suitable for use in the left hand).

To insert a special character into a gedit file, choose Applications —. Accessories

- Character Map from the main menu bar. Next, choose Search - Find... from
the Character Map menu bar, type the name of the character in the Search field
and click Next. The character you sought will be highlighted in the Character Table.
Double-click this highlighted character to place it in the Text to copy field and then

click the Copy button. Now switch back to your document and choose Edit - Paste
from the gedit menu bar.

The above text includes application names; system-wide menu names and items; application-specific
menu names; and buttons and text found within a GUI interface, all presented in proportional bold and
all distinguishable by context.

Mono-spaced Bold Italic or Proportional Bold Italic

Whether mono-spaced bold or proportional bold, the addition of italics indicates replaceable or
variable text. Italics denotes text you do not input literally or displayed text that changes depending on
circumstance. For example:

To connect to a remote machine using ssh, type ssh username@domain. name at
a shell prompt. If the remote machine is example . com and your username on that
machine is john, type ssh john@example.com.

The mount -o remount file-system command remounts the named file
system. For example, to remount the /home file system, the command is mount -o
remount /home.

To see the version of a currently installed package, use the rpm -q package
command. It will return a result as follows: package-version-release.

Note the words in bold italics above — username, domain.name, file-system, package, version and
release. Each word is a placeholder, either for text you enter when issuing a command or for text
displayed by the system.

Aside from standard usage for presenting the title of a work, italics denotes the first use of a new and
important term. For example:

Publican is a DocBook publishing system.

1.2. Pull-quote Conventions
Terminal output and source code listings are set off visually from the surrounding text.

Output sent to a terminal is set in mono-spaced roman and presented thus:

books Desktop documentation drafts mss photos stuff svn
books_tests Desktopl downloads images notes scripts svgs

Source-code listings are also set in mono-spaced roman but add syntax highlighting as follows:

package org.jboss.book.jca.ex1;

import javax.naming.InitialContext;

Vi

Notes and Warnings

public class ExClient

{
public static void main(String args[])
throws Exception
{
InitialContext iniCtx = new InitialContext();
Object ref = iniCtx.lookup("EchoBean");
EchoHome home = (EchoHome) ref;
Echo echo = home.create();
System.out.println("Created Echo");
System.out.println("Echo.echo('Hello') = " + echo.echo("Hello"));
}
}

1.3. Notes and Warnings
Finally, we use three visual styles to draw attention to information that might otherwise be overlooked.

@e

Notes are tips, shortcuts or alternative approaches to the task at hand. Ignoring a note should
have no negative consequences, but you might miss out on a trick that makes your life easier.

M

Important boxes detail things that are easily missed: configuration changes that only apply to
the current session, or services that need restarting before an update will apply. Ignoring a box
labeled 'Important’ will not cause data loss but may cause irritation and frustration.

Warnings should not be ignored. Ignoring warnings will most likely cause data loss.

2. We Need Feedback!

If you find a typographical error in this manual, or if you have thought of a way to make this manual
better, we would love to hear from you! Please submit a report in Bugzilla: http://bugzilla.redhat.com/
bugzilla/ against the product JBoss Enterprise SOA Platform.

When submitting a bug report, be sure to mention the manual's identifier: SOA_ESB_Services_Guide

If you have a suggestion for improving the documentation, try to be as specific as possible when
describing it. If you have found an error, please include the section number and some of the
surrounding text so we can find it easily.

Vii

http://bugzilla.redhat.com/bugzilla/
http://bugzilla.redhat.com/bugzilla/

viii

Chapter 1.

What is the Registry?

Read this section to learn both some general theory about SOA Platform registries and also some
specific information about JBoss' implementation.

In the context of a Service Oriented Architecture, a registry provides applications and businesses with
a central point within which information about services can be stored. A registry is expected to provide
both the same level of information and the same breadth of services as a conventional "marketplace."
Ideally, a registry should also facilitate the automatic discovery and execution of electronic commerce
to take place by providing a dynamic environment for business transactions. Therefore, a registry

is more than a mere “e. business directory”. It is a fundamental component of a Service Oriented
Architecture's infrastructure.

1.1. Why Does One Need It?

It is easy to discover and manage business partners and interface with them on a small scale using
either manual or ad hoc techniques. However, this approach does not scale well when the number

of services and frequency of interactions increase and the physical distribution of the environment
expands. A registry provides a solution based upon agreed standards by providing a common,
ubiquitous way to discover and "publish" services. It offers a central place in which one can query
whether or not a partner has a service that is compatible with in-house technologies. It also allows one
to find a list of companies that, for instance, support shipping services on the other side of the globe.

Hence, service registries are central to service-oriented architectures. At the time of execution, they
act as contact points at which service requests can be correlated with actual behaviors. A service
registry will hold meta-data entries for all of the artifacts within the Service Oriented Architecture that
are used at both run-time and design time.

The Registry may be replicated or federated to improve performance and reliability. It need not
be a single point of failure.

1.2. How Does One Use It?

From a business analyst’s perspective, it is similar to an internet search engine, albeit one for
business processes. From a developer's perspective, it is a registry used to publish services and query
the registry to discover services matching various criteria.

1.3. Registry Versus Repository

A registry allows for the registration of services, discovery of metadata and classification of entities
into predefined categories. Unlike a respository, it does not have the ability to store business process
definitions or WSDL or any other documents that are required for trading agreements. A registry is
essentially a catalogue of items, whereas a repository contains those items.

Chapter 1. What is the Registry?

1.4. SOA Components

"A SOA is a specific type of distributed system in which the agents are 'services'."".

The key components of a Service Oriented Architecture are the messages that are exchanged, agents
that act as service requesters and providers, and the shared transport mechanisms that allow the flow
of messages. A description of a service that exists within an SOA is essentially just a description of
the messages exchanged between itself and its users. Within an SOA there are three critical roles:
requester, provider, and broker.

Service Provider
A Provider allows access to services, creates a description of a service and publishes it to the
service broker.

Service Broker
A Broker hosts a registry of service descriptions. It is responsible for linking a requestor to a
service provider.

Service Requester
A Requester is responsible for discovering a service by searching through the service descriptions
given by the service broker. A requestor is also responsible for binding to services provided by the
service provider.

Service

Eroker

Service
Provider

Service
Requestor

Y~

1.5. The UDDI

The Universal Description, Discovery and Integration (UDDI) Registry is a directory service for
Web Services. It facilitates service discovery through queries to the UDDI registry at design time
or at run time. It also allows providers to publish descriptions of their services to the registry. The

! Refer to the W3C Working Draft on Web Services Architecture [http:/ivww.w3.0rg/TR/2003/WD-ws-arch-20030808/
#id2617708] for a more detailed definition.

http://www.w3.org/TR/2003/WD-ws-arch-20030808/#id2617708
http://www.w3.org/TR/2003/WD-ws-arch-20030808/#id2617708
http://www.w3.org/TR/2003/WD-ws-arch-20030808/#id2617708

The Registry and the JBoss Service-Oriented Architecture Platform

registry typically contains a URL that locates the WSDL document for the web services and contact
information for the service provider. Within UDDI information is classified into the following categories.

» White Pages contain general information, such as the name, address and other contact details for
the company providing the service.

» Yellow Pages are used to categorize businesses based upon the industries to which they belong.

» Green Pages provide information that will enable a client to bind to the service that is being
provided.

1.6. The Registry and the JBoss Service-Oriented
Architecture Platform

The registry plays a central role within the JBoss Enterprise Service-Oriented Architecture
Platform. It is used to store the End Point References (EPRSs) for the services that have been
deployed. It may either be updated dynamically (when services first start) or statically (by an external
administrator.)

The registry cannot determine the status of those entities represented by the data it contains. Hence,
an end-point reference might be in the Registry but there can be no guarantee that it is valid (as it may
be malformed or it may represent a service that is no longer active.)

The JBoss Enterprise SOA Platform does not currently perform life-cycle monitoring of deployed
services. The administrator must explicitly update or remove end-point references associated with
services that have been moved elsewhere or have failed, otherwise they will simply remain in the
Registry.

Upon receipt of any warning or error messages from the Registry related to end-point references, one
should inform those responsible for the services with which they are associated.

M

ESB services create their own end-point references automatically. These end-points are internal
implementations and, hence, modification of them is not supported.

Chapter 2.

Configuring the Registry
Read this section to learn how to configure the JBoss Enterprise SOA Platform Registry.

The JBoss SOA Platform Registry architecture allows for a great deal of flexibility when it comes
to the configuration of either a Registry or Repository. By default the SOA Platform uses a JAXR
implementation (Scout) and a UDDI (JUDDI), both of which are embedded.

In the ${SOA_ROOT}/server/${CONFIG}/deploy/jbossesh.sar/jbossesb-
properties.xml file there is section called registry which, as its name suggests, is used to
configure the registry:

<properties name="registry">

<property name="org.jboss.soa.esb.registry.implementationClass"
value="org.jboss.internal.soa.esb.services.registry.JAXRRegistryImpl"/>

<property name="org.jboss.soa.esb.registry.factoryClass"
value="org.apache.ws.scout.registry.ConnectionFactoryImpl"/>

<property name="org.jboss.soa.esb.registry.queryManagerURI"
value="org.apache.juddi.registry.local.InquiryService#inquire"/>

<property name="org.jboss.soa.esb.registry.lifeCycleManagerURI"
value="org.apache.juddi.registry.local.PublishService#publish"/>

<property name="org.jboss.soa.esb.registry.interceptors" value=
"org.jboss.internal.soa.esb.services.registry.InVMRegistryInterceptor"/>

<property name="org.jboss.soa.esb.registry.user" value="jbossesb"/>
<property name="org.jboss.soa.esb.registry.password" value="password"/>

<property name="org.jboss.soa.esb.scout.proxy.transportClass"
value="org.apache.ws.scout.transport.LocalTransport"/>

</properties>

JBoss SOA Registry Properties

org.jboss.soa.esb.registry.implementationClass
This is a class that implements the jbossesb registry interface. One implementation (the
JAXRRegistry interface) has been provided by Red Hat.

org.jboss.soa.esbh.registry.factoryClass
This is the class name of the JAXR ConnectionFactory implementation.

org.jboss.soa.esb.registry.queryManagerURI
This is the uniform resource indicator used by JAXR for querying.

org.jboss.soa.esbh.registry.lifeCycleManagerURI
This is the uniform resource indicator used by JAXR for editing.

org.jboss.soa.esb.registry.user
This is the user-name used for editing.

org.jboss.soa.esb.registry.password
This is the password for the specified user.

org.jboss.soa.esb.scout.proxy.transportClass
This is the name of the class used by Scout to transport things to the UDDI.

Chapter 2. Configuring the Registry

2.1. The Registry Components

The Registry can be configured in many different ways. Figure 2.1, “Blueprint of the Registry
Component Architecture” presents a blueprint of all of its components. From the top down one can see
that the JBoss SOA Platform "funnels" all interaction with the Registry through the appropriately-
named Registry Interface. It then calls a JAXR implementation of this interface, which by default
is Scout. Scout then calls the jUDDI registry. However, although this is the default, there are many
other configuration options.

JBossESB

Registry Interface

JAXR
Other Java API

JAXR Implementation

Other XML
Registry

Figure 2.1. Blueprint of the Registry Component Architecture
2.2. The Registry Implementation Class

org.jboss.soa.esb.registry.implementationClass

By default, this class uses the JAXR application programming interface. This APl is convenient since
it allows one to connect any kind of XML-based registry or repository. However, if one wishes to use
an alternative API, do so by writing a new SystinetRegistryImplemtation class and provide a
reference to it within this property.

Using JAXR

2.3. Using JAXR

org.jboss.soa.esh.registry.factoryClass

Firstly, choose a specific JAXR implementation. Then use this property to configure
the class. The JBoss Enterprise SOA Platform uses Scout by default and, hence,
as one would expect this property is set to the Scout factory class, namely
org.apache.ws.scout.registry.ConnectionFactoryImpl.

Next, configure the JAXR implementation by providing the location of the registry thatis to be used
for querying and updating. Achieve this by editing the org.jboss.soa.esb.registry.queryManagerURI,
org.jboss.soa.esb.registry.lifeCycleManagerURI and org.jboss.soa.esb.registry.securityManagerURI
properties.

The user name and password for the UDDI Registry are set by editing the
org.jboss.soa.esb.registry.user and org.jboss.soa.esb.registry.password properties respectively.

2.4. Using Scout and juDDI

org.jpboss.soa.esh.scout.proxy.transportClass

There is an additional, optional parameter that can be used with Scout and jUDDI. This is the
transport class. There are two included implementations of this class, based upon Remote Method
Invocation and Local (embedded) Java, respectively.

@

Scout does have a transport class for SOAP, (which uses Apache Axis and is not currently
supported in the JBoss Enterprise SOA Platform.) Additional information about this can be found
on the Apache Axis website at http://ws.apache.org/axis/.

The transportClass settings for the different transports are listed below.

M

When these are changed, the query and life-cycle uniform resource indicators also have to be
updated..

Example 2.1. Using Remote Method Invocation

<property name="org.jboss.soa.esb.registry.queryManagerURI"
value="jnp://localhost:1099/InquiryService?
org.apache.juddi.registry.rmi.Inquiry#inquire"/>

<property name="org.jboss.soa.esb.registry.lifeCycleManagerURI"
value="jnp://localhost:1099/PublishService?
org.apache.juddi.registry.rmi.Publish#publish"/>

<property name="org.jboss.soa.esb.scout.proxy.transportClass"
value="org.apache.ws.scout.transport.RMITransport"/>

http://ws.apache.org/axis/

Chapter 2. Configuring the Registry

Example 2.2. Using Local

<property name="org.jboss.soa.esb.registry.queryManagerURI"
value="org.apache.juddi.registry.local.InquiryService#inquire"/>

<property name="org.jboss.soa.esb.registry.lifeCycleManagerURI"
value="org.apache.juddi.registry.local.PublishService#publish"/>

<property name="org.jboss.soa.esb.scout.proxy.transportClass"
value="org.apache.ws.scout.transport.LocalTransport"/>

To use jUDDI, two requirements must be fulfilled:

1. the database where its data will be stored must be accessible. In it, one must create the
appropriate schema.

2. juDDI must be configured in the ${SOA_ROOT}/server/${CONFIG}/deploy/
jbossesh.sar/esh. juddi.xml file.

The JBoss Enterprise SOA Platform includes a tool that performs automates jUDDI configuration.
This tool is found in the ${S0A_R0O0OT}/tools/schema/ sub-directory. Directions for using it can be
found in the "Switching Databases" section of the Administration Guide.

Chapter 3.

Registry Configuration Examples

3.1. Introduction

The JBoss SOA Platform uses the Scout implementation of the JAXR application programming
interface by default. It also uses jUDDI to provide a registry. The following examples teach how to
deploy these components.

3.2. Embedded jUDDI

Any server components with a relationship to the registry can share the latter between themselves. In
other words, multiple instances of the JBoss Enterprise SOA Platform can use the same registry via
a shared database.

Java Application 1

Java Application 2

Local

jupDI

Figure 3.1. Embedded jUDDI

Local

Example 3.1. Properties for Embedded jUDDI

<properties name="registry">

<property name="org.jboss.soa.esb.registry.implementationClass"
value="org.jboss.internal.soa.esb.services.registry.JAXRRegistryImpl"/>

<property name="org.jboss.soa.esb.registry.factoryClass"
value="org.apache.ws.scout.registry.ConnectionFactoryImpl"/>

<property name="org.jboss.soa.esb.registry.queryManagerURI"
value="org.apache.juddi.registry.local.InquiryService#inquire"/>

<property name="org.jboss.soa.esb.registry.lifeCycleManagerURI"
value="org.apache.juddi.registry.local.PublishService#publish"/>

<property name="org.jboss.soa.esb.registry.interceptors" value=
"org.jboss.internal.soa.esb.services.registry.InVMRegistryInterceptor"/>

<property name="org.jboss.soa.esb.registry.user" value="jbossesb"/>

Chapter 3. Registry Configuration Examples

<property name="org.jboss.soa.esb.registry.password" value="password"/>

<property name="org.jboss.soa.esb.scout.proxy.transportClass"
value="org.apache.ws.scout.transport.LocalTransport"/>

</properties>

3.3. Remote Method Invocation Using jbossesb. sar

The jbossesb. sar registers a RMI service for jUDDI.

Example 3.2. jbossesb.sar/jbossesb-properties.xml Settings for RMI

<properties name="registry">

<property name="org.jboss.soa.esb.registry.implementationClass"
value="org.jboss.internal.soa.esb.services.registry.JAXRRegistryImpl"/>
<property name="org.jboss.soa.esb.registry.factoryClass"
value="org.apache.ws.scout.registry.ConnectionFactoryImpl"/>

<property name="org.jboss.soa.esb.registry.queryManagerURI"
value="jnp://localhost:1099/InquiryService?

org.apache.juddi.registry.rmi.Inquiry#inquire"/>

<property name="org.jboss.soa.esb.registry.lifeCycleManagerURI"
value="jnp://localhost:1099/PublishService?

org.apache.juddi.registry.rmi.Publish#publish"/>

<property name="org.jboss.soa.esb.registry.user" value="jbossesb"/>
<property name="org.jboss.soa.esb.registry.password" value="password"/>
<property name="org.jboss.soa.esb.scout.proxy.transportClass"
value="org.apache.ws.scout.transport.RMITransport"/>

</properties>

Add the following JNDI settings to the juddi.properties file:

JINDI settings (used by RMITransport)
java.naming.factory.initial=org.jnp.interfaces.NamingContextFactory
java.naming.provider.url=jnp://localhost:1099
java.naming.factory.url.pkgs=org.jboss.naming

The RMI clients need to have scout-client. jar in their class-paths.

3.4. Remote Method Invocation Using JNDI Registration of
the RMI Service

It is possible to configure another JBoss SOA Platform component in the same Java Virtual Machine
as juDDI. Do this to register the Remote Method Invocation service.

10

Remote Method Invocation Using JNDI Registration of the RMI Service

JNDI-Registration

Java Application 1 Java Application 2

RMI-Service

juDDI

Figure 3.2. Remote Method Invocation Using a Custom JNDI Registration

In this example, Applicationl will need to be configured with the Local settings, whilst
Application2 will require the Remote Method Invocation settings.

Example 3.3. Local Settings Used for Applicationl

<properties name="registry">
<property name="org.jboss.soa.esb.registry.implementationClass"
value="org.jboss.internal.soa.esb.services.registry.JAXRRegistryImpl"/>

<property name="org.jboss.soa.esb.registry.factoryClass"
value="org.apache.ws.scout.registry.ConnectionFactoryImpl"/>

<property name="org.jboss.soa.esb.registry.queryManagerURI"
value="org.apache.juddi.registry.local.InquiryService#inquire"/>

<property name="org.jboss.soa.esb.registry.lifeCycleManagerURI"
value="org.apache.juddi.registry.local.PublishService#publish"/>

<property name="org.jboss.soa.esb.registry.user" value="jbossesbh"/>
<property name="org.jboss.soa.esb.registry.password" value="password"/>
<property name="org.jboss.soa.esb.scout.proxy.transportClass"

value="org.apache.ws.scout.transport.LocalTransport"/>
</properties>

Example 3.4. RMI Settings Used for Application2

<properties name="registry">

11

Chapter 3. Registry Configuration Examples

<property name="org.jboss.soa.esb.registry.implementationClass"
value="org.jboss.internal.soa.esb.services.registry.JAXRRegistryImpl"/>

<property name="org.jboss.soa.esb.registry.factoryClass"
value="org.apache.ws.scout.registry.ConnectionFactoryImpl"/>

<property name="org.jboss.soa.esb.registry.queryManagerURI"
value="jnp://localhost:1099/InquiryService?
org.apache.juddi.registry.rmi.Inquiry#inquire"/>

<property name="org.jboss.soa.esb.registry.lifeCycleManagerURI"
value="jnp://localhost:1099/PublishService?
org.apache.juddi.registry.rmi.Publish#publish"/>

<property name="org.jboss.soa.esb.registry.user" value="jbossesbh"/>
<property name="org.jboss.soa.esb.registry.password" value="password"/>

<property name="org.jboss.soa.esb.scout.proxy.transportClass"
value="org.apache.ws.scout.transport.RMITransport"/>
</properties>

Fo

r Application2 (using Remote Method Invocation), the host-name of the queryManagerURI

and lifeCycleManagerURI properties need to be set to that of the host on which the jUDDI service is
running.

Applicationil needs to have access to a haming service.

Example 3.5. INDI Registration Process for Applicationl

//Getting the JNDI setting from the config

Properties env = new Properties();

env.setProperty(RegistryEngine.PROPNAME_JAVA_NAMING_FACTORY_INITIAL,
factoryInitial);

env.setProperty(RegistryEngine.PROPNAME_JAVA_NAMING_PROVIDER_URL,
providerURL);

env.setProperty(RegistryEngine.PROPNAME_JAVA NAMING_FACTORY_URL_PKGS,
factoryURLPkgs);

log.info("Creating Initial Context using: \n"

RegistryEngine.PROPNAME_JAVA_NAMING_FACTORY_URL_PKGS + "="
factoryURLPkgs + "\n");

+ RegistryEngine.PROPNAME_JAVA_NAMING_FACTORY_INITIAL+"="+factoryInitial
+ Il\nll

+ RegistryEngine.PROPNAME_JAVA NAMING_PROVIDER_URL + "=" + providerURL

S Il\nll

+

+

InitialContext context = new InitialContext(env);

Inquiry inquiry = new InquiryService();

log.info("Setting "+INQUIRY_SERVICE+", "+inquiry.getClass().getName());
mInquery = inquiry;

context.bind(INQUIRY_SERVICE, inquiry);

Publish publish = new PublishService();

log.info("Setting "+PUBLISH_SERVICE+", "+publish.getClass().getName());
mPublish = publish;

context.bind(PUBLISH_SERVICE, publish);

12

SOAP

3.5. SOAP

Scout can be configured to use SOAP to communicate with jUDDI via Apache Axis. Note that this is
not currently supported in the JBoss SOA Platform although future versions may add SOAP support.

Additional information about this can be found on the Apache Axis website at http./
ws.apache.org/axis/.

M

JBoss Application Server Version 4.2 ships with older versions of Scout and jUDDI. Red Hat
recommends removing the juddi. sar file to prevent versioning issues if one intends to deploy

this older version.

13

http://ws.apache.org/axis/
http://ws.apache.org/axis/

14

Chapter 4.

UDDI Browser

4.1. Introduction
The JBoss SOA Platform does not ship with an included UDDI browser.

The UDDI browser ub can be downloaded from http.//www.uddibrowser.org. Before configuring ub
make sure the juddi.war is deployed. This is required to enable webservice communication to
juDDI.

4.2. UB Setup

ub is a standalone Java application. Start ub and select Edit > UDDI Registries, and add an entry
called jUDDI

UDDI Registries
@ jubDDi

Add Edit Delete Connect Close

Figure 4.1. Add a connection

Click on connect and select View > Find More > Find All Businesses

File Edit | View | Tools Help
Advanced Find... — : ol "
hily IO alue I...
E v Find More * Find All Businesses
Search
Query Manager... Find All Services
Refresh MyUDDI Find All tModels
Refresh Search Results :
Refresh 4ll
e W Clear... T T
@ 2007.11.75 13710558 Detault locale for JYM is en_US

Ready

Figure 4.2. View All Businesses

In the left pane, one will see the Red Hat/JBossESB organization. Navigate into the individual
services and their ServiceBindings.

http://www.uddibrowser.org

Chapter 4. UDDI Browser

File Edit VYiew Tools Help

€ X 4 & ¢ © S, Oueries

M

oearch Results -|q Marme Walue Wisc

¢ Ll RedHatlBossESE " ey 337FFTT0-92E5-11DC-B770-B =
& JBossESE B TOBEY3I0EEMIC

[# lrvokerSepyce AccessPoint | =%aml version="1.0" =

o= & OperationsCollectorSerice ; SE:;%‘”QEUTFE"?; |

o ¥ DataCollectorService ¥minsawsa="httplischemasxmil

o 4 DeadlLetterService = soap.arghws200408/ ddressin

% =7l version="1.0" encoding="UTF- o=
category (JBossESE-Internal) A —_— st
= N = §

> & DataFilerSenice eueiDeadhizssageQUELE<hS

o= # DperationsFilerService Faddresss

o # ImvokerFilerService =wsa ReferenceProperies= N
A] =jhogseshdestination-type -
s S R R T s T e A T R T e T e T e T T S S T R T s S T e T R T T e R T R i R R T R R R i R R R R R R R R R A R

8 2007.11.15 13:14:10: Starting business guery

@ 2007.11.15 13:10:58; Default locale for JYM is en_US

& 2007.11.15 13:14:11: Query completed with 1 results

Feady
Figure 4.3. View Services and ServiceBindings

The AccessPoint for each ServiceBinding contains an end-point reference.

Some of ub's features may not work but it should provide enough functionality to maintain the jUDDI.
The JBoss Enterprise Service Bus community project is currently looking for a good web-based

console through which to control the jUDDI.

16

Chapter 5.

Registry Troubleshooting

5.1. Scout and jUDDI Pitfalls

If Remote Method Invocation is being used, add the juddi-client-2.0rc5. jar jUDDI client file,
found at ${SOA_ROOT}/server/production/deploy/jbossesb.sar/1lib/.

Make sure that the jbossesb-properties.xml file is in the classpath and that it is readable or
the registry will try to instantiate classes named null.

Make sure there is a juddi.properties file on the class-path so that the jUDDI can
configure itself. (The JBoss SOA Platform uses esb. juddi.xml but generates the
esb.juddi.properties file for JuDDI to read.)

The JBoss Enterprise SOA Platform includes a database configuration tool which performs these
configuration steps for jUDDI. This application can be found in the ${SOA_ROOT}/tools/
schema/ directory. Directions for using it are found in the "Switching Databases" section of the
Administration Guide.

If a service fails or does not shut down cleanly, old entries may persist within a registry. Remove
these manually.

5.2. More Information

Further community resources on this topic can be found at:

The JBoss jUDDI wiki http.//www.jboss.org/community/docs/DOC-11217

* JBosSsSESB user forum: http.//www.jboss.com/index.html?module=bb&op=viewforumé&f=246.

17

http://www.jboss.org/community/docs/DOC-11217
http://www.jboss.com/index.html?module=bb&op=viewforum&f=246

18

Chapter 6.

What is a Rule Service?

6.1. Introduction

Study this section to learn about Rule Services and ways in which to utilize them. An understanding of
the JBoss Business Rules Management System (BRMS) will aid the reader in understanding these
types of services.

The JBoss Enterprise SOA Platform's Rule Service allows one to deploy rules that have been
created in JBoss Rules as services. This has two major benefits: firstly, the amount of client code
required to integrate the rules into one's application environment is dramatically reduced; secondly,
rules can be accessed either as part of an action chain or within an orchestrated business process.

The JBoss Business Rules Management System is supported but one can also use other
rules engines if required to do so.

Rule Services are supported by the BusinessRuleProcessor and the DroolsRuleService
action classes, the latter of which implements the RuleService interface.

The BusinessRuleProcessor supports rules loaded from the classpath. These rules are defined in
.drl and .dsl files, and also in decision tables (which use .x1s files.) However, there is no way to
specify multiple rule files for a single BusinessRuleProcessor action. (One can, in general, have
multiple rule files, though.) These file-based rules exist primarily for the purpose of testing prototypes
and very simple rule services. More complex rule services need to use the JBoss Rules RuleAgent.

The RuleService uses the RuleAgent to access rule packages from either the Business Rules
Management System or the local file system. These rule packages can contain thousands of rules,
originating in different ways. For instance, rules might be sourced from the BRMS Business Rules
Editor, imported DRL files, Domain Specific Language files and Decision Tables.

Stateless Rule Services

Most rule services will be "stateless." In the stateless model, a message is sent to the Rule Service.
All the facts that are to be inserted into the rules engine are included in the message body. The rules
execute and update either the message or the facts.

Stateful Rule Services

"Stateful" execution takes place over time, with several messages being sent to the rule service.
The rules are executed each time and they update either the message or the facts until a final
message is received by the service that tells it to dispose of the stateful session. This configuration
model is currently limited, in the sense that there can only be a single stateful rule service inthe
message flow.

19

20

Chapter 7.

Rule Services Using JBoss Rules

7.1. Introduction

JBoss Rules is the engine that provides the SOA Platform with rule service support. JBoss Rules is
integrated through the following:

» the BusinessRulesProcessor action class

* rules written in DRL, DSL, a decision table, or the business rules editor.

« ESB messages

» The objects in the ESB message's content, this being the data going into the rules engine.

When a message is sent to the BusinessRulesProcessor a rule set executes over the objects in the
message and updates either of those objects or the message.

7.2. Rule Set Creation

Create a rule set by using the JBoss Developer Studio. Since the message is set as a global, one
must add the jbossesbh-rosetta. jar file to the JBoss Rules project.

@e

For more information about rule creation and the JBoss Rules language itself, please refer to the
JBoss Rules Reference Guide.

There are only three requirements when writing rules for deployment on the JBoss SOA Platform as a
service:

1. they must all define the ESB message as a global.

Most rule services will want to update the message as a way of communicating results to other
services in the flow, so the BusinessRulesProcessor and the DroolsRuleService will
always set the message as a global.

Example 7.1. Defining an ESB message as a Global

#declare any global variables here
global org.jboss.soa.esb.message.Message;

2. If other globals are required in addition to the ESB message, they must be set in a higher salience
rule.

Neither the BusinessRulesProcessor nor the DroolsRuleService provide a means to set
globals in jboss-esb.xml. This might be added in the future.

Example 7.2. Declaring a Global in a Rule with Higher Salience

rule "Set a global"
salience 100

21

Chapter 7. Rule Services Using JBoss Rules

when

then

drools.setGlobal("foo", new Foo());
end

3. The ESBRuleService does not provide a means to start a RuleFlow from the service itself.
This feature might be added in the future.

7.3. Rule Service Consumers

A rule service consumer has little about which to be concerned. There is no need for the consumer to
create rule-bases orworking memories or to deal with rule executions. Instead, it just adds facts
and, sometimes, properties to the message.

In some cases the client is JBoss SOA aware and will add the objects directly to the message.
Example 7.3. Adding Objects Directly to a Message

MessageFactory factory = MessageFactory.getInstance();
message = factory.getMessage(MessageType.JAVA SERIALIZED);
order = new Order();

order.setOrderId(0);

order.setQuantity(20);

order.setUnitPrice(new Float("20.0"));
message.getBody().add("Order", order);

In other cases the data may be in an XML message. If so, a transformation service will be added to
the message flow to transform the XML to Plain Old Java Objects (POJOs) before the rule service is
invoked.

Stateful Rule Execution
Stateful rule execution requires a few properties to be added the messages.

For the first message:

message.getProperties().setProperty("dispose", false);
message.getProperties().setProperty("continue", false); // this is the default

For all the subsequest messages but the final message:

message.getProperties().setProperty("dispose", false);
message.getProperties().setProperty("continue", true);

For the final message:

message.getProperties().setProperty("dispose", true); // this is the default
message.getProperties().setProperty("continue", true);

22

Configuration

These can be added directly by an JBoss SOA aware client but a client that is not JBoss SOA
aware will have to communicate the position of the message (first, ongoing, last) in the data. You
will also need to add an action class to the pipeline to add the properties to the ESB message.

quickstarts/business_ruleservice_stateful is an example of this type of service.

7.4. Configuration

A rule service is configured in the jboss-esb action element for the service.

The action class and name is required. The name is user defined.

<action class="org.jboss.soa.esb.actions.BusinessRulesProcessor"
name="0rderDiscountRuleService">

One of the following is also required:

A drl file

<property name="ruleSet" value="drl/OrderDiscount.drl" />

dsl and dslr (domain specific language) files

<property name="ruleSet" value="dsl/approval.dslr" />
<property name="rulelLanguage" value="dsl/acme.dsl" />

» adecisionTable on the classpath

<property name="decisionTable" value="PolicyPricing.x1ls" />

» A properties file on the classpath that tells the rule agent how to find the rule package. This could
specify a url or a local file.

<property name="ruleAgentProperties"
value="brmsdeployedrules.properties" />

Several example configurations follow:

Example 7.4. Rules are in a drl, execution is stateless

<action class="org.jboss.soa.esb.actions.BusinessRulesProcessor"
name="0rderDiscountRuleService">
<property name="ruleSet" value="drl/OrderDiscount.drl" />
<property name="ruleReload" value="true" />
<property name="object-paths">
<object-path esb="body.Order" />
</property>
</action>

23

Chapter 7. Rule Services Using JBoss Rules

Example 7.5. Rules are in a drl, execution is stateful

<action class="org.jboss.soa.esb.actions.BusinessRulesProcessor"
name="0rderDiscountMultipleRuleServiceStateful">
<property name="ruleSet
value="drl/0rderDiscountOnMultipleOrders.drl" />
<property name="ruleReload" value="false" />
<property name="stateful" value="true" >
<property name="object-paths">
<object-path esb="body.Customer" />
<object-path esb="body.Order" />
</property>
</action>

In this scenario the client may send multiple messages over time to the rule service. For example,
the first message may contain a customer object, and the next several messages contain orders for
that customer. Each time a message is received, the rules will be fired. On the final message, the
client can add a property to the message to tell the rule service to dispose of the working memory.

Example 7.6. Rules in a Domain Specific Language, stateless execution

<action class="org.jboss.soa.esb.actions.BusinessRulesProcessor"
name="PolicyApprovalRuleService">
<property name="ruleSet" value="dsl/approval.dslr" />
<property name="rulelLanguage" value="dsl/acme.dsl" />
<property name="ruleReload" value="true" />
<property name="object-paths">
<object-path esb="body.Driver" />
<object-path esb="body.Policy" />
</property>
</action>

Example 7.7. Rules in a DecisionTable, stateless execution

<action class="org.jboss.soa.esb.actions.BusinessRulesProcessor"
name="PolicyPricingRuleService">
<property name="decisionTable"
value="decisionTable/PolicyPricing.x1ls" />
<property name="ruleReload" value="true" />
<property name="object-paths">
<object-path esb="body.Driver" />
<object-path esb="body.Policy" />
</property>
</action>

Example 7.8. Rules in the BRMS, stateless execution

<action class="org.jboss.soa.esb.actions.BusinessRulesProcessor"
name="RuleAgentPolicyService">
<property name="ruleAgentProperties"
value="ruleAgent/brmsdeployedrules.properties" />
<property name="object-paths">
<object-path esb="body.Driver" />
<object-path esb="body.Policy" />
</property>
</action>

24

Object Paths

The Action Configuration Attributes to the action tag specify which action is to be used and which
name this action is to be given.

The Action Configuration Attributes specify the set of rules (ruleSet) to be used in this action.

BusinessRulesProcessor Action Configuration Attributes

Attribute Description
Class Action class
Name Custom action name

BusinessRulesProcessor Action Configuration Properties
Property Description

ruleSet This is an optional reference to a file containing the ruleSet,
which is the set of rules used to evaluate the content. Only one
ruleSet can be given for each rule service instance.

ruleLanguage This is an optional reference to a file containing the definition
of a Domain Specific Language. This definition can be used for
evaluating the rule set. If it is used, ensure that the file in the
ruleSetisadslr.

ruleReload Set this optional property to true in order to enable the hot
redeployment of rule sets. (However, enabling this feature
will increase the overhead on the rules processing.) Note that
rules will also reload if the . esb archive in which they live is
redeployed.

decisionTable This is an optional reference to a file containing the definition of a
rule-specification spreadsheet.

ruleAgentProperties This is an optional reference to a properties file containing
the location (either a URL or file path) of the compiled rule
packages. Note there is no need to specify ruleReload with a
ruleAgent, as it is controlled through the properties file.

stateful Set this optional property to true to specify that the rule
service will be receiving multiple messages over time. (The
new facts will be added to the rule engine's working
memory and the rules will be re-executed each time.)

object-paths Use this optional property to pass message objects into JBoss
Rules' working memory.

7.5. Object Paths

Note that JBoss Rules treats objects as if they were "shallow" in order to achieve highly-optimized
performance. Use the optional object-paths property to evaluate an object residing in a location that is
deeper than the object tree. (Setting this property results in those objects with an ESB Message
Object Path being extracted.)

The MVFLEX Expression Language (MVEL) is used to extract the object. The path to be used must
abide by the following syntax:

location.objectname. [beanname].[beanname]...

Understand that, in the above sample:

location
is one of either the message body, header, properties or attachment;

25

Chapter 7. Rule Services Using JBoss Rules

objectname
is the name of the object. (Attachments can be either named or numbered, so a number is a
perfectly valid value to insert here);

beannames
are optional. Use them in order to "traverse" a bean graph.

Example MVEL Expressions

Expression Result
properties.Order Use this to obtain the property object named Order
attachment.1 gets the first attachment Object

attachment.AttachmentOne obtains the attachment named AttachmentOne
attachment.1.0rder obtains getOrder () return object on the attached object.

body.Order1.lineitem obtains the object named Order1 from the body of the message.
Next, it will call getLineitem() on this object. More elements
can be added to the query in order to traverse the bean graph.

M

Remember to add the java import statements to any objects that one imports into one's rule
set.

The Object Mapper cannot "flatten out" entire collections. If one has a requirement to do that, run a
"transformation” on the message first. (This will "unroll” the collection.)

7.6. Deploying and Packaging

Red Hat recommends that one packages one's code into "units of functionality." Use .esb packages
to do so. Conceptually, the aim is to package routing rules alongside the rule services that use
the rule sets. The figure below shows the layout of the business_rules_service Quick Start
and, in doing so, depicts a "typical" package.

26

Deploying and Packaging

= [META-INF
| | deplaymentxmi
D jposs-esb xmi
[7] MANIFESTMF

vEﬂlnrg

= Eﬂ' samples
= [J quickstart

- Ej businessrules

= [] dvdstore

L

Customer.class

JI

QrderHeader.class

_4 Orderltem.class
- [test
_a ReviewMessage.class
: SendMsMessage.class
| UpdateCustornerStatus class
D jom-queue-service xmil
D Mmap_order_components.groovy
B MyBusinessRules,drl
D MyBusinessRulesDiscount.drl
D MyRoutingRules.drl
E] smooks-res.xmi

Figure 7.1. Typical .esb archive which uses JBoss Rules.

Finally make sure to deploy and reference the jbrules.esb in your deployment . xml.

<jbossesb-deployment>
<depends>jboss.esb:deployment=jbrules.esb</depends>
</jbossesb-deployment>

27

28

Chapter 8.

What is Content-Based Routing?

8.1. Introduction

8.1.1. Some Questions

In normal situations, information within the Enterprise Service Bus is conveniently packaged,
transferred and stored all in the form of a message. Messages are addressed to End Point References
(which are either services or clients.) An EPR's role is to identify the machine or process or object

that will ultimately deal with the content of the message. However, what happen will if the specified
address is no longer valid? Situations that may lead to this scenario include those in which the service
has failed or been removed. It is also possible that the service no longer deals with messages of that
particular type, in which case presumably some other service will still deal with the original function,
but that still leaves the question of "How should the message be handled?" What if other services
besides that which is the intended recipient are interested in the message's contents? What if no
destination is specified?

8.1.2. Introducing Content-Based Routing

One possible answer to all of these problems is Content-Based Routing (CBR). Content-Based
Routing seeks to route messages, not by a specified destination, but by the actual content of the
message itself. In a typical application, a message is routed by being opened and then having a set of
rules applied to its content. These rules are used to ascertain which parties are interested in it.

The Enterprise Service Bus can determine the destination of a given message based upon its content.
This relieves the sending application of the onus of needing to know where the message should go.

Content-based routing and filtering networks are both extremely flexible and very powerful. When built
upon established technologies such as MOM (Message Oriented Middleware), IMS (Java Message
Services), and XML (Extensible Markup Language), they are also reasonably easy to implement.

8.2. Simple Example

Content-based routing systems are typically built around two types of entities: routers (of which there
may be only one) and services (of which there is usually more than one). Services are the ultimate
consumers of messages. How services publish their interest in specific types of messages with the
routers is implementation dependent, but some mapping must exist between message type (or some
aspect of the message content) and services in order for the router to direct the flow of incoming
messages.

Routers, as their name suggests, "route” messages. They examine the content of messages as they
receive them, apply rules to that content and then forward the messages as the rules dictate.

In addition to routers and services, some systems may also include harvesters. These tools specialise
in finding interesting information, packaging it up in the guise of a formatted message and then
sending it to a router. Harvesters "mine" many sources of information, including mail transfer agent
message stores, news servers, databases and other legacy systems.

The diagram below illustrates a very basic example of the content-based routing architecture. The
client sends a message to Service A.Service A forwards the message to Router which, based
on the content of the message, forwards the message to either Service B or Service C.

29

Chapter 8. What is Content-Based Routing?

JBoss ESB

Client

Figure 8.1. A basic content-based routing scenerio

30

Chapter 9.

Content Based Routing Using JBoss
Rules

9.1. Introduction

The content-based router used in the JBoss Enterprise Service Bus utilises JBoss Rules as its
default rule provider "engine." The Enterprise Service Bus integrates with JBoss Rules through three
different routing action classes. These are:

» arouting rule set, written in JBoss Rules' DRL (or, optionally, the DSL) language;

« the Enterprise Service Bus message content, which is the data that goes into the rules engine (it
takes the form of either XML or objects within the message);

« the destination, (which is derived from the resultant information coming out of the rules engine.)

e

There is no native support for Freemarker inside the Enterprise Service Bus and, hence, any use
of this templating system must be from within the context of Smooks.

When a message is sent to the content-based router, a certain rule set will evaluate its
content and return a set of service destinations. This chapter will teach how a rule set can be targeted,
how the message content is evaluated and what can be achieved with the resulting destinations.

9.2. Three Different Routing Action Classes

The JBoss Enterprise Service Bus ships with three slightly different routing action classes. Each
of these implements an Enterprise Integration Pattern (EIP). (The JBossESB Wiki contains more
information about this subject.) These are the three supported action classes:

org.jpboss.soa.esb.actions.ContentBasedRouter

This action class implements the content-based routing pattern. It routes a message to one or more
destination services, based on the message content and the rule set against which it is evaluating
that content. The content-based router throws an exception when no destinations are matched for a
given rule set or message combination. This action will terminate any further pipeline processing, so it
should be positioned last in one's pipeline.

org.jboss.soa.esb.actions.ContentBasedWireTap

This implements the WireTap pattern. The WireTap is an Enterprise Integration Pattern through which
a copy of the message is send to a control channel. The WireTap is identical in functionality to the
standard content-based router, however it does not terminate the pipeline. It is this latter characteristic
which makes it suitable to be used as a wire-tap.

org.jpboss.soa.esh.actions.MessageFilter

This implements the message filter pattern. The message filter pattern represents that case in
which messages can simply be dropped if certain content requirements are not met. It is identical in

31

Chapter 9. Content Based Routing Using JBoss Rules

functionality to the Content-Based Router but it does not throw an exception if the rule set does not
match any destinations. If none are met, the message is simply filtered out.

9.3. Rule Set Creation

A rule set can be created using either the JBoss Developer Studio which includes a plug-in for
JBoss Rules. Figure 9.1, “Create a New Rule Set using the JBoss Developer Studio” shows a screen-
shot of this plug-in. For a detailed analysis of the subjects of rule creation and the JBoss Rules
language itself, please see the JBoss Rules documentation.

To turn a regular rule-set into one that can be used for content-based routing, one must evaluate
an ESB message and ensure that the rule match results in a list of strings containing the service
destination names. Bear two things in mind whilst doing this:

« firstly, ensure the rule set imports the ESB message
import org.jboss.soa.esh.message.Message

» secondly, ensure that the rule set defines the following global variable which will create the list of
destinations available to the Enterprise Service Bus:

global java.util.List destinations;

J| ConmtentBasedigute. . J] ContentBased®iret. .. " JBossESBRUes. O X

o e s S i

PFackage com.Jjboas.soa.edl. DoUWTIng. cor

-] g - R T-T]

import org.jboss.=spa.esh.messags . Messags;
import org.jboss.sce.esh.message.format MessageTyper

global java.util.List descinaciona;

rule "Routing Rule Zerialized based message®
whan
Message | cype == MeasageType.JAVA SERIALIZED)
then
System.out.println (*Serialized®):

destinatliond.add("serialized-destination®} 2

and

rule "Routing Rule - XML based message®

Figure 9.1. Create a New Rule Set using the JBoss Developer Studio

The message will now be added to the working memory of the rules engine. The figure shows an
example in which the MessageType is used to determine to which destination the Message will be
sent. This particular rule-set is shipped in the JBosseESBRules . dr1 file. The rule also checks if the
format type is of the XML or of the serializable kind.

32

XPath Domain Specific Language

9.4. XPath Domain Specific Language

For XML-based messages, it is convenient to undertake XPath-based evaluation. In order to support
this, Red Hat ship a Domain Specific Language implementation which allows you to use XPath
expressions in the rule file. These expressions are defined in the XPathLanguage . dsl file. To use,
reference it in the rule-set with: expander XPathLanguage.dsl.

Currently, the XPath Language makes sure the message is of the type JBOSS_XML and that it defines
the following items:

1. xpathMatch <element>:yields true if an element by this name is matched.

2. xpathEquals <element>, <value>:yields true if the element is found and its value equals
the value.

3. xpathGreaterThan <element>, <value>:yields true if the element is found and its value is
greater than the value.

4. xpathLessThan <element>, <value>:yields true if the element is found and its value is lower
then the value.

The XPath Language is defined in a file called XPathLanguage.ds1 and can be customized if need
be. Alternatively, one can define an entirely different DSL altogether. The quick start called fun_cbr
demonstrates this use of XPath.

9.4.1. XPath and Name-Spaces

To use name-spaces with XPath, one needs to specify which name-space prefixes are to be used
in the XPath expression. The names-pace prefixes are specified in a comma-separated list in the
following format: "prefix=uri, prefix=uri". This same can done for all of the different kinds of
XPath expressions that were mentioned above.

1. xpathMatch expr "<expression>" use namespaces "<namepaces>"
2. xpathEquals expr "<expression>", "<value>" use namespaces "<namspaces>"
3. xpathGreaterThan "<expression>", "<value>" use namespaces "<namspaces>"

4. xpathLowerThan expr "<expression>", "<value>" use namespaces
"<namespaces>"

The name-space aware statements differ in that they all need the extra expr keyword in front of the
XPath expression. This avoids collisions with the non-XPath aware statements in the DSL file. The
prefixes do not have to match those used in the XML to be evaluated: it only matters that the uniform
resource identifier is the same.

The XPathLanguage.dsl is defined in the XPathLanguage.ds1 file. This can be customized if
needed. Users can even define their own DSL. (The quick start called fun_cbr demonstrates this use
of XPath.)

9.5. Configuration

These individual pieces are all connected via configuration, which is undertaken in the jboss-
esb.xml file. The service configuration below shows a service configuration fragment. In this
fragment the service is listening to a Java Message Service queue.

Each ESB message is passed to the ContentBasedRouter action class, which is loaded with a
certain rule-set. It moves the ESB message into working memory, "fires" the rules, obtains the list of

33

Chapter 9. Content Based Routing Using JBoss Rules

destinations and routes copies of the ESB message to the services. It uses the JbossESBRules.drl
rule-set, which matches two destinations, namely xml-destination and serialized-
destination. These names are mapped to those of real services in the route-to section.

Example 9.1. Example Content Based Routing Service Configuration

<service category="MessageRouting"
name="YourServiceName" description="CBR Service">

<listeners>

<jms-listener name="CBR-Listener" busidref="QueueA" maxThreads="1">
</jms-listener>
</listeners>

<actions>
<action class="org.jboss.soa.esbh.actions.ContentBasedRouter"
name="YourActionName'">
<property name="ruleSet" value="JBossESBRules.drl"/>
<property name="ruleReload" value="true"/>
<property name="destinations">
<route-to destination-name="xml-destination"
service-category="categoryo1"
service-name="jbossesbtest1" />
<route-to destination-name="serialized-destination"
service-category="category02"
service-name="jbossesbtest2" />
</property>
<property name="object-paths">
<object-path esb="body.test1" />
<object-path esb="body.test2" />
</property>
</action>

</actions>

</service>

The attributes of the action tag are shown in the following table. These attributes specify which
action is to be used and what name it is to be given.

Table 9.1. Content-Based Routing Action Configuration Attributes

Attribute Description

Class Action class, one of :
org.jboss.soa.esb.actions.ContentBasedRouter
org.jboss.soa.esbh.actions.ContentBasedWireTap or
org.jboss.soa.esb.actions.MessageFilter

Name Custom action name

The action properties are shown in the following table. The properties specify the set of rules
(ruleSet) to be used in this action.

Table 9.2. CBR Action Configuration Properties

Property Description

ruleSet Name of the filename containing the JBoss Rules ruleSet, which is the set
of rules used to evaluate content. Only one ruleSet can be given for each
CBR instance.

ruleLanguage This is an optional reference to a file containing the definition of a Domain
Specific Language to be used for evaluating the rule set.

"Stateful" Rules

Property Description

ruleAgentProperties This property points to a "rule agent properties” file located on the class-path.
The file can contain a property that points to pre-compiled rules packages on
the file system, in a directory or identified by an uniform resource locator for
integration with the Business Rule Management System. See the “RuleAgent”
section below for more information.

ruleReload This is an optional property which can be set to true in order to enable "hot"
redeployment of rule sets. Note that this feature will cause some overhead on
the rules processing. Note also that the rules will reload if the . esb archive in
which they reside is redeployed.

stateful This is an optional property which tells the RuleService to use a stateful session
where facts will be remembered between invocations. See the “Stateful Rules”
section for more information about this topic.

destinations This is a set of route-to properties, each of which contains the logical name of
the destination, along with the Service category and name as referenced in the
registry. The logical name is the name which should be used in the rule set.

object-paths This is an optional property to pass message objects into working memory.

9.6. "Stateful" Rules

Using stateful sessions means that facts will be remembered across invocations. When stateful is set
to true, the working memory will not be cleared.

Tell stateful rule services when to continue with a current stateful session and when to dispose of it

via message properties . To signal that the existing stateful session is to be continued, set these two
message properties:

message.getProperties().setProperty(“dispose”, false);
message.getProperties().setProperty(“continue”, true);

When invoking the rules for the last time, set dispose to true so that the working memory is cleared:

message.getProperties().setProperty(“dispose”, true);
message.getProperties().setProperty(“continue”, true);

To learn more about the RuleService, please refer to Chapter 7, Rule Services Using JBoss
Rules .

For an example showing how to use stateful rules, please refer to the
business_ruleservice_stateful quick start.

Chapter 9. Content Based Routing Using JBoss Rules

9.7. The RuleAgent and the Business Rules Management
System

By using the RuleAgent, one can effectively integrate one's service with a Business Rules
Management System (BRMS.) This is accomplished by specifying a URL in the rule agent
properties file. For information about the how to configure the URL and the other properties, please
refer to the JBoss Rules documentation.

@voe

For information about the how to install and configure the Business Rules Management System,
please refer to the JBoss Rules manual.

9.8. Executing Business Rules

There is a close relationship between rule execution for modifying data in the message
according to business processes and rule execution for routing. An example quick start
called business_rule_service demonstrates this use case. This quick start uses the
org.jboss.soa.esb.actions.BusinessRulesProcessor action class.

The functionality of the Business Rule Processor (BRP) is similar to that of a content-based router.
However, it is not a router. It returns the modified ESB message for further action pipeline
processing. One can mix business and routing rules in a single rule set if one so wishes. However,
routing will only occur if one of those three routing action classes mentioned previously is used.

9.9. Changing Rule Service Implementations

To use a different rule service than that which is shipped with the JBoss Enterprise Service Bus,
specify the preferred class in the action configuration:

<property name="ruleServiceImplClass" value="org.com.YourRuleService" />

The rule service is required to implement the
org.jboss.soa.esb.services.rules.RuleService interface.

9.10. Deployment and Packaging

Package code by grouping it into units of functionality, using . ESB packages. The idea of this is to
collate the routing rules alongside the services that use those rule sets. Figure 9.2, “Typical .ESB
Archive Employing JBoss Rules.” below shows the layout of the simple_cbr quick start in order to
depict a typical package:

36

Deployment and Packaging

= Ej simple_cbhresb
w | _J META-INF
D deployment.xml
D jposs-esh.xml

D MANIFEST.MF

- Ejnrg

w | _J quickstart
= Ej simplechr
= Ej test
D Receive|M5Message.class
D send|MsMessage.class
j My|MSListenerAction.class
j Return|MsMessage.class

j RouteExpressionshipping.class

j RouteMormalShipping.class
D jbm-guele-service Xmi
| | simpleCBRRules.drl.xmi

D SimpleCBRRules-XPath.drl

Figure 9.2. Typical .ESB Archive Employing JBoss Rules.

Finally, make sure to both deploy and reference the jbrules.esbh in the deployment . xml file, as
per this example:

<jbossesb-deployment>

37

Chapter 9. Content Based Routing Using JBoss Rules

<depends>jboss.esb:deployment=jbrules.esb</depends>
</jbossesb-deployment>

38

Chapter 10.

Content-Based Routing Using Smooks

The SmooksAction can be used for splitting messages into fragments and performing content-based
routing on those fragments.

M

Red Hat is offering this functionality as a Technical Preview only. What this example does not
show is how to perform the content-based routing using <condition> elements on the resources.
It also doesn't demonstrate how to route fragments to message-aware end-points. A future
version will include a quick start dedicated to demonstrating these features of the Enterprise
Service Bus.

An order message with many order items per message is one example example of a situation in which
message splitting could be used. If different services are used to process different types of items then
one would need to split the message into one fragment per order item. Each of these new messages
could then be routed to their respective destinations based on their content.

Original Message —— Message Fragments — - Stored as Files

Fi<order id='231"> [J<orderitem id='1" order='231'> L) orders

o <header> § <custamer> #order-231-1.xml
coustomer numbers="123123" »Joe< ‘customers <name=Joe /name>) order-231-2.xml
£ </header> | <number>123123< /numbers

2 order-231-3.xml

B <ovder-itens: £ </customers -

B corder-item id='1's 0 cdetails> %Ugepgii-xm:
<product>111< product:: ; <productTds111< jproduct Id: f.ﬂ E1=2I 1= XTI
<quantity> 1 quantity> = cquantity> 1< /quantity> Zlorder-231-6.xml

; <price>1. 00</price> <price>1¢/prices #]order-231-7.xmi

4] < /order -iten: B </details:

B corder-item id='2'> Ci< forderitens

! <product=222< /product :
<ymantity>2< /quantity>

cprices?. 00 — lilmrmritﬂl id="2" order="231">

& < forder -iten 0 O
i corder-item ide'3's <mane>Joe< /mane’
' <product>333< jproduct b e ‘;:E:Hiﬁmchmw
| :::::;:I: :Zm:tp "' <details>
|;| < /order -iten: sproductId-222< productId-
i <uantity=2< guantity>
| cpricer2</price>
b </details:
Fi</orderiten:

[</order-items>
i< forders

Figure 10.1. Message Splitting

Figure 10.1, “Message Splitting” shows how to perform the by-order-item splitting operation and

how to route the split messages to files. The split messages contain a full XML document with data
merged from the order header and the order item in question. It is not just a dumb split, but an actual
de-normalization of the message data. You could route all the message fragments to files, a Java
Message Service service or a database in any number of different formats (EDI, populated Java
Objects and so forth.)

The Smooks configurations for the examples above look like this:

39

Chapter 10. Content-Based Routing Using Smooks

Example 10.1. Resource Configuration One

<jb:bindings beanId="order" class="java.util.HashMap"
createOnElement="order">
<jb:value property="orderId" decoder="Integer" data="order/@id"/>
<jb:value property="customerNumber"
decoder="Long" data="header/customer/@number"/>
<jb:value property="customerName" data="header/customer"/>
<jb:wiring property="orderItem" beanIdRef="orderItem"/>
</jb:bindings>

Example 10.2. Resource Configuration Two

<jb:bindings beanId="orderItem" class="java.util.HashMap"
createOnElement="order-item">
<jb:value property="itemId" decoder="Integer" data="order-item/@id"/>
<jb:value property="productId" decoder="Long"
data="order-item/product"/>
<jb:value property="quantity" decoder="Integer"
data="order-item/quantity"/>
<jb:value property="price" decoder="Double" data="order-item/price"/>
</jb:bindings>

Example 10.3. Resource Configuration Three

<file:outputStream openOnElement="order-item"
resourceName="orderItemSplitStream">

<file:fileNamePattern>
order-${order.orderId}-${order.orderItem.itemId}.xml
</file:fileNamePattern>

<file:destinationDirectoryPattern>
target/orders
</file:destinationDirectoryPattern>

<file:listFileNamePattern>
order-${order.orderId}.1lst
</file:listFileNamePattern>

<file:highwaterMark mark="3"/>

</file:outputStream>

Example 10.4. Resource Configuration Four

<ftl:freemarker applyOnElement="order-item">
<ftl:template>target/classes/orderitem-split.ftl</ftl:template>
<ftl:use>
<ftl:outputTo outputStreamResource="orderItemSplitStream"/>
</ftl:use>
</ftl:freemarker>

Resource Configurations One and Two configure the bind data from the source message into Java
Objects in the Smooks bean context. In this example, we're just binding the data into HashMaps. The

40

Map being populated in configuration Two is recreated and repopulated for every order item as the
message is being filtered.

The populated Java Objects are used to populate the FreeMarker template defined in Resource
Four. This template gets applied on every order item and the output is sent to a FileOutputStream
(defined in Resource Three) which manages the file output for the split messages.

@roe

This example does not show how to perform content-based routing by using <condition>
elements on the resources. It also does not demonstrate how to route fragments to message-
aware end-points.

41

42

Chapter 11.

Message Transformation

The JBoss Enterprise Service Bus supports message data transformation functionality through
several mechanisms.

11.1. Smooks

Smooks is, amongst other things, a Fragment-Based Data Transformation and Analysis Tool. It can
"understand" a wide range of source and target data formats, including XML, EID, CSV and Java.

It features a wide range of data processing and manipulation functionality. Many transformation
technologies are supported, all within this single framework.

Samples and Tutorials

There are a number of quick start examples demonstrating transformations included with the JBoss
Enterprise SOA Platform. These can be found in the samples/quickstarts directory. (The name
of each transformation Quick Start sub-directory is prefixed with the word transform_.)

The JBoss SOA Platform Programmers' Guide contains further detailed information about this topic. It
also provides links to additional resources that can be found on the Smooks website.

@e

Some of the quick starts use the old SmooksTransformer action class instead of its
successor, SmooksAction. Please bear in mind that the SmooksTransformer will be
deprecated in a future release.

11.2. XSL Transformations

The Enterprise Service Bus supports message transformation through the standard XSLT usage
model, as well as through Smooks. (Native XSLT may be added in a future release.) Create support
for XSLT by adding a custom org. jboss.soa.esb.actions.ActionProcessor implementation.

11.3. ActionProcessor Data Transformation

If Smooks cannot handle a specific transformation usecase, implement a custom transformation
solution by using the org.jboss.soa.esb.actions.ActionProcessor interface.

43

44

Chapter 12.

JBPM Integration

This section of the book examines the JBoss Business Process Manager. Read on to learn about
the features of this powerful tool. (This document assumes that the readership is familiar with the
basics of jBPM. If you are not, read the jJBPM Reference Guide included with this software first.)

The JBoss Business Process Manager is a powerful workflow and business process management
(BPM) engine. Use it to create business processes when there is a need to co-ordinate people,
applications and services. The jBPM uses a modular architecture which combines easy development
of work-flow applications with a process engine that is both flexible and scalable.

Use the accompanying jBPM Process Designer to represent the steps in a business procedure
graphically. This can form a strong link between the business analyst and the technical developer.

The JBoss Enterprise Service Bus integrates with the jBPM for two reasons, these being:
1. Service Orchestration

ESB services can be "orchestrated" using the Business Process Manager. To do so, create a
process definition which calls upon them.

2. Human Task Management

The Business Process Manager allows one to integrate machine-based services with the
management of tasks undertaken by people.

12.1. Integration Configuration

The full jBPM run-time and console are included with the jbpm. esb deployment that ships with the
JBoss Enterprise Service Bus. The runtime and the console share a common database. To create
the database, start the Enterprise Service Bus DatabaseInitializer M-Bean. (The configuration
settings for this M-Bean are found in the jbpm.esb/jbpm-service.xml file.)

<classpath codebase="deploy" archives="jbpm.esb"/>
<classpath codebase="deploy/jbossesb.sar/1ib"
archives="jbossesb-rosetta.jar"/>

<mbean code="org.jboss.internal.soa.esb.dependencies.DatabaseInitializer"

name="jboss.esb:service=JBPMDatabaseInitializer">

<attribute name="Datasource'">java:/JbpmDS</attribute>

<attribute name="ExistsSqgl'">select * from JBPM_ID_USER</attribute>

<attribute name="SqglFiles">

jbpm-sgl/jbpm.jpdl.hsqldb.sql, jbpm-sql/import.sql

</attribute>

<depends>jboss.jca:service=DataSourceBinding, name=JbpmDS</depends>
</mbean>

<mbean code="org.jboss.soa.esb.services.jbpm.configuration.JbpmService"

name="jboss.esb:service=JbpmService">
</mbean>

Figure 12.1. ESB Databaselnitializer mbean configuration

The first M-Bean configuration element contains the settings for the DatabaseInitializer.

Table 12.1. ESB Databaselnitializer mbean default values
Property description

Datasource | This is the data-source for the BPM database java:/JbpmDS

45

Chapter 12. jBPM Integration

Property description Default

ExistsSql Use this SQL command to confirm the existence | Select * from JBPM_ID_USER
of the database.

SqlFiles These files contain the SQL commands to create | jopm-sql/jbpm.jpdl.hsqldb.sql,
the jBPM database if it is not found. jbpm-sqgl/import.sql

The DatabaseInitializer MBean is configured (via the jbpm-service.xml file) to wait for the
JbpmDS to be deployed, before it then deploys itself. The second MBean, JbpmService, ties the
lifecycle of the Business Process Manager's job executor to that of the jbpm. esb. It does so by
launching a job executor instance on start-up. (It, of course, stops it on shutdown.)

The JbpmDS data source is defined in the jbpm-ds.xml file. By default, it uses a Hypersonic
database. (Always change this to a production-quality database in a live environment.) Note that
all jbpm. esb deployments should share the same database instance. This is so that the various
Enterprise Service Bus nodes have access to the same processes definitions.

The jBPM Console is a web application accessible at http://localhost:8080/jbpm-console when the
server is started.

Please refer to the jBPM Reference Guide in order to learn how to change this application's security
settings. The process involves modifying the configuration found in the conf/login-config.xml
file. Use the Console to deploy and monitor both jBPM processes and human task management
procedures. (A customised task-list will be shown for each user of the software, allowing them to work
on their own tasks) The quick start entitled bpm_orchestration4 demonstrates this feature.)

The deployment . xml file specifies the resources upon which this ESB archive depends, namely the
jbossesbh.esh and the JbpmDS data-source. This information is used to determine the deployment
order.

<jbossesb-deployment>
<depends>jboss.esb:deployment=jbossesb.esb</depends>
<depends>jboss.jca:service=DataSourceBinding, name=JbpmDS</depends>
</jbossesb-deployment>

Figure 12.2. deployment.xml dependancy declarations

The jboss-esh.xml file deploys an internal service called the JBpmCallbackService.

<services>
<service category="JBossESB-Internal" name="JBpmCallbackService"
description="Service which makes Callbacks into jBPM">
<listeners>
<jms-listener name="JMS-DCQListener"
busidref="jBPMCallbackBus" maxThreads="1" />
</listeners>
<actions mep="Oneway">
<action name="action"
class="org.jboss.soa.esb.services.jbpm.actions.JBpmCallback"/>
</actions>
</service>
</services>

Figure 12.3. JBpmCallbackService

This service listens to the jBPMCallbackBus, which is a Java Message Service queue that uses the
JBossMessaging (jbm-queue-service.xml) messaging provider. To use a different one, simple
modify the provider section of the jboss-esb.xml file.

46

http://localhost:8080/jbpm-console

Configuring the jBPM

<providers>
<jms-provider name="CallbackQueue-JMS-Provider"
connection-factory="ConnectionFactory">
<jms-bus busid="jBPMCallbackBus">
<jms-message-filter dest-type="QUEUE"
dest-name="queue/CallbackQueue" />
</jms-bus>
</jms-provider>
</providers>

Figure 12.4. Modifying the Provider Section in the jboss-esb.xml for Another IMS

Section 12.5, “]BPM-to-ESB " contains more information about the JbpmCallbackService.

12.2. Configuring the jBPM

The configuration of Business Process Manager itself is managed by three files, namely
jbpm.cfg.xml, hibernate.cfg.xml and jbpm.mail. templates.xml.

The jbpm.cfg.xml file is programmed, to use the JTA Transaction Manager by default.

<service name="persistence">
<factory>
<bean class="org.jbpm.persistence.jta.JtaDbPersistenceServiceFactory">
<field name="isTransactionEnabled"><false/></field>
<field name="isCurrentSessionEnabled"><true/></field>
<!--field name="sessionFactoryJndiName">
<string value="java:/myHibSessFactJndiName" />
</field-->
</bean>
</factory>
</service>

Figure 12.5. The Default Values in the jbpm.cfg.xml File

Other settings are left as the jBPM defaults.

The hibernate.cfg.xml file is also modified to use the JTA Transaction Manager.

<!-- JTA transaction properties (begin) ===
==== JTA transaction properties (end) -->
<property name="hibernate.transaction.factory_class">
org.hibernate.transaction.JTATransactionFactory</property>

<property name="hibernate.transaction.manager_lookup_class">
org.hibernate.transaction.JBossTransactionManagerLookup</property>

Figure 12.6. Default Values in the hibernate.cfg.xml File

Hibernate is not used to create the database schema. Rather, the DatabaseInitializer M-Bean
referred to in Section 12.1, “ Integration Configuration ” is utilised.

The jbpm.mail. templates.xml file is empty by default.

47

Chapter 12. jBPM Integration

For more details on each of these configuration files, please see the jJBPM Guide.

M

The configuration files that formerly shipped with the jbpm-console.war have been removed.
This was done to centralized all of the configuration files in the root of the jbpm. esb archive.

12.3. Creating and Deploying a Process Definition

Red Hat recommends using the Eclipse-based jBPM Process Designer Plug-in (KA-JBPM-GPD)
to create process definitions. Either download and install it in Eclipse manually or use the JBoss
Developer Studio to do so.

[P| processDefinition £
[[:3 Select
L4 Marquee

i3 Start

oo State

==35lan State==
U start

End . :cll‘lu'n-_-jg:-:;:. =<Task Node»>

of"® Fork Intake Order | % Review Order
ol Jain

C7) Decision A"
L Node ‘ 1 ==Node=> ‘ ¥ ==Task Node==

EE‘I Tazk Node Calculate Discount ~Review Discount
22 Mail Node
i Process A
State =<fode>>=

ik

b Super i
e Slhlp It

—p Transition -
& <<Fnd States=
end

Diagram | Deployment | Design | Source

Figure 12.7. JBoss Developer Studio - jBPM Graphical Editor

48

Creating and Deploying a Process Definition

The server must be configured to accept jBPM process deployments. Details of this are found in
the JBoss Enterprise SOA Platform Administration Guide.

The Graphical Designer allows one to create a process definition visually. Nodes, and transitions
between nodes, can be added, modified or removed. The process definition is saved to the file system
as an XML document which can be deployed to a jBPM instance (database). Each time a process
instance is deployed, the jBPM will version it and will keep the older copies. This allows processes that
are in use to complete the process instance on which they were started. New process instances will
use the latest version of the process definition.

To deploy a process definition, start the server and go to the Deployment tab in the Graphical
Designer to deploy a process archive (PAR) file.

) processDefiton 5 2=
Deployment
Files and Folders Java Claszes and Resources
select the files and foldzrs to includs in the sefect the Java classes and resources to
process ardhive, indude in the procass archive.
[#] ¥ opd. test.xml @ [arc
“[#]uiz Review_Order.xhtml
[¥] forms.ml

.E gpd.xmi
[#] %] processdefirition.xml
. |ﬂ processimage.jog

Reset Defaults Reset Defaulis
Local Save Settings Deployment Server Settings
Choose if and whare you wish o save the Spedfy the settings of the sarver yvou wish o
process archive locally, deploy 1o,
[[]save Process Archive Localy Server Mames: locabast |
Location: | Seardh, Server Paort: &03a0 |
Save Without Degloving... Server Deployer: . fibpm-console fupload |

lTEtCunnedaun...]

[l:hzr.'dn:n).I Procsss Archive. .,]

Ciagram Deployment | Design Souros

Figure 12.8. JBoss Developer Studio - jBPM Deployment View

Sometimes it is sufficient to just deploy the processdefinition.xml file but, in most cases, one
will be deploying other kinds of artifacts as well, such as task forms.

49

Chapter 12. jBPM Integration

It is also possible to deploy Java classes into a process archive. This means that they will
end up in the database, where they will be stored and versioned. Red Hat does not recommend
doing this in the Enterprise Service Bus environment, the reason being that it can lead to class-
loading issues. The recommended practice is to instead deploys the classes into the server's 1ib
directory.

Use one of the following three mechanisms to deploy a process definition:

1. through JBoss Developer Studio, by clicking on the Deploy Process Archive button (having
first configured the upload servlet used by the deployer.) This is visible in the Deployment view;

2. by saving the deployment to a local . par file from the Deployment view and then using the jBPM
Console to activate the archive. (In order to do this, one needs to be able to log in to the console
with the privileges of an administrator.)

3. by using the DeployProcessToServer jBPM ant task.

Deploy New Process Definition

File to upload: Browse...

Deploy

Figure 12.9. jBPM Console - Uploading a New Process Definition

12.4. From the Enterprise Service Bus to the jBPM

The JBoss Enterprise Service Bus can make calls into the Business Process Manager by using the
BpmProcessor action. This action utilises the jBPM Command API. The following jBPM commands
have been implemented at this stage:

NewProcessInstanceCommand
This command starts a new ProcessInstance, the associated process definition of which has
already been deployed to the jBPM. The NewProcessInstanceCommand leaves the process
instance in the start state. This is needed in the case of a task being associated with the Start
node, an example being when there is one on an actor's task-list.

StartProcessInstanceCommand
This is identical to the NewProcessInstanceCommand except that the new process instance is
automatically moved from the start position to the first node.

GetProcessInstanceVariablesCommand
This command takes the root node variables for a process instance, by using the process instance
identifier.

CancelProcessInstanceCommand
This command cancels a ProcessInstance. Use it in situations such as that which occurs
when an event is received that should result in the cancellation of the entire ProcessInstance.
(This action requires some jBPM context variables to be set on the message, most notably the
ProcessInstance identifier.)

50

From the Enterprise Service Bus to the BPM

<action name='"create_new_process_instance"
class="org.jboss.soa.esb.services.jbpm.actions.BpmProcessor">

<property name="command" value="StartProcessInstanceCommand" />

<property name="process-definition-name" value="processDefinition2"/>
<property name="actor" value="FrankSinatra'"/>

<property name="esbToBpmvars'">

<!-- esb-name maps to getBody().get("evarli") -->
<mapping esb="eVarl" bpm="counter" default="45" />
<mapping esb="BODY_CONTENT" bpm="theBody" />

</property>

</action>

Figure 12.10. BpmProcessor Action Configuration in the jboss-esb.xml File

Two action attributes are required:

1. name

Any value can be used for the name attribute, as long as it is unique in the action pipeline.
2. class

Always set this attribute to org. jboss.soa.esb.services.jbpm.actions.BpmProcessor.

The following configuration properties can also be set:

1. command

This is a required property. It needs to be one of NewProcessInstanceCommand,
StartProcessInstanceCommand, GetProcessInstanceVariablesCommand or
CancelProcessInstanceCommand.

2. processdefinition

This property is required for the NewProcessInstanceCommands and
StartProcessInstanceCommands if the process-definition-id property is not used.
The value of this property should reference the already deployed process definition that
you want to create a new instance of. This property does not apply to the Signal- and
CancelProcessInstanceCommands.

3. process-definition-id

This is a required property for the NewProcessInstanceCommands and
StartProcessInstanceCommands if the processdefinition property is not used. The
value of this property should refer to the already-deployed process definition of which
one wants to create a new instance. This property does not apply to the Signal- and
CancelProcessInstanceCommands.

4. actor

Use this optional property to specify the BPM actor identifier. (It applies only to
NewProcessInstanceCommand and StartProcessInstanceCommand.)

5. key

51

Chapter 12. jBPM Integration

This is a optional property to specify the value of the jBPM key. The key is a string based
business key property on the process instance. The combination of business key and process
definition must be unique if a business key is supplied. The key value can hold an MVEL
expression to extract the desired value from the EsbMessage. For example, if one were to
have a named parameter called businessKey in the body of a message, body.businessKey
would be used. (This property only applies to NewProcessInstanceCommand and
StartProcessInstanceCommands.)

transition-name

This is a optional property. It only applies to StartProcessInstanceCommand and Signal. It
is used if there is more then one transition out of the current node. If this property is not specified
then the default transition out of the node is taken. The default transition is the first transition in the
list of transitions defined for that node in the jBPM processdefinition.xml.

esbToBpmVars

This is a optional property for the New- and StartProcessInstanceCommands. This property
defines a list of variables that need to be extracted from the ESB message and added to the jBPM
context for the particular process instance. The list consists of mapping elements. Each mapping
element can have the following attributes:

* esb

This is a required attribute. Place an MVEL expression in it and use it to extract a value from
anywhere in the ESB message.

* bpm

This is a optional attribute containing the name to use on the jBPM side. (If it is omitted, the
Enterprise Service Bus name is used instead.)

» default

This is a optional attribute which can hold a default value if the ESB's MVEL expression does
not find a value set in the ESB message.

e bpmToEsbVars

This is structurally identical to the esbToBpmVars property above. Use it in conjuction with the
GetProcessInstanceVariablesCommand to map jBPM process instance variables
(root token variables) to the ESB message.

* reply-to-originator

This is an optional property for the New- and StartProcessInstanceCommands. Specify
a value of true, to make the process instance store the ReplyTo/FaultTo values of the
invoking message's end-point references ' within the process instance. These values can
then be used within subsequent EsbNotifier/EsbActionHandler invocations to deliver a
message to the ReplyTo/FaultTo addresses.

jbpmProcessinstld

This is a required ESB message body parameter that applies to the
GetProcessInstanceVariablesCommand and the CancelProcessInstanceCommand
commands. This value must be set as a named parameter on the ESB message's body.

52

ESB to jBPM Exception Handling

12.4.1. ESB to jBPM Exception Handling

A JbpmException can be thrown from the jJBPM Command APl when ESB calls are made. This
exception is not handled by the integration. Instead, it is passed through to the action pipeline's
code. The action pipeline will log the error, send the message to the DeadLetterService, and send
an error message to the faultTo end-point reference, if this has been set.

12.5. jBPM-to-ESB

JBPM-to-JBossESB communication provides one with the capability to use jBPM for service
orchestration. (Service orchestration itself is discussed in more detail in the next chapter. Firstly,
though, one must learn about the details of this integration.)

The integration implements two jBPM action handler classes, namelyEsbActionHandler and
EsbNotifier. The EsbActionHandler is a request-reply type action, which sends a message
to a service and then awaits a response. The EsbNotifier, by contrast, does not wait for such a
response. The interaction with the Enterprise Service Bus is asynchronous in nature and, therefore,
does not block the process instance whilst the service executes.

The EsbNotifier will be examined first, as it implements a subset of the configuration of the
EsbActionHandler.

12.5.1. ESBNotifier

The EsbNotifier action should be attached to an outgoing transition. This is so that the jBPM
processing can continue whilst the request to the ESB service is processed in the background. One
needs to attach the EsbNotifier to the outgoing transition in the j[BPM processdefinition.xml
file.

<node name="ShipIt">
<transition name="ProcessingComplete" to="end">
<action name="ShipItAction"
class="org.jboss.soa.esb.services.jbpm.actionhandlers.EsbNotifier">
<esbCategoryName>BPM_Orchestration4</esbCategoryName>
<esbhServiceName>ShippingService</esbServiceName>
<bpmToEsbVars>
<mapping bpm="entireCustomerAsObject" esb="customer" />
<mapping bpm="entireOrderAsObject" esb="orderHeader" />
<mapping bpm="entireOrderAsXML" esb="entireOrderAsXxML" />
</bpmToEsbVvars>
</action>
</transition>
</node>

Figure 12.11. Ship It Node with EsbNotifier Attached
The following attributes can be specified:
* name
This is a required attribute. It is the user-specified hame of the action.
+ class

This is a required attribute. Set it to
org.jboss.soa.esh.services.jbpm.actionhandlers.EsbNotifier.

The following sub-elements can be specified.

» esbhCategoryName

53

Chapter 12. jBPM Integration

The category name of the ESB service. This is required if you are not using the reply-to-originator
functionality.

* eshServiceName

The name of the ESB service. This is required if you are not using the reply-to-originator
functionality.

* replyToOriginator
Specify the reply or fault originator address previously stored in the process instance on creation.
 globalProcessScope

This element is optional. This boolean valued parameter sets the default scope in which the
bpmToEsbVars are looked up. If the globalProcessScope is set to true the variables are looked for
up the token hierarchy (process-instance scope). If set to false it retrieves the variables in the scope
of the token. If the token does not have a variable for the given name, the variable is searched for
up the token hierarchy. If omitted the globalProcessScope is set to false for retrieving variables.

e bpmToEsbVars

This element is optional. This element takes a list of mapping sub-elements to map a jBPM context
variable to a location in the EsbMessage. Each mapping element can have the following attributes.

* bpm

This is a required attribute. The name of the variable in jBPM context. The hame can be MVEL
type expression so you can extract a specific field from a larger object. The MVEL root is set to
the jBPM Contextinstance.

Example 12.1. Mapping jBPM context variable to a location in the EsbMessage

<mapping bpm="token.name" esb="TokenName" />

<mapping bpm="node.name" esb="NodeName" />

<mapping bpm="node.id" esb="esbNodeId" />

<mapping bpm="node.leavingTransitions[0].name" esb="transName" />
<mapping bpm="processInstance.id" esb="piId" />

<mapping bpm="processInstance.version" esb="piVersion" />

You can also reference jBPM context variable names directly.
* esb

This attribute is optional. The name of the variable on the EsbMessage. The name can be a
MVEL type expression. By default the variable is set as a named parameter on the body of the
EsbMessage. If you decide to omit the esb attribute, the value of the bpm attribute is used.

» default

This attribute is optional. If the variable is not found within the jBPM context, the value of this field
is taken instead.

* process-scope

54

ESBActionHandler

This attribute is optional. It can contain a Boolean value used to override the setting of the
globalProcessScope for this mapping.

Red Hat recommends activating the debug-level logging when working on the variable mapping
configuration.

12.5.2. ESBActionHandler

The EsbActionHandler is designed to work as a reply-response type call into the Enterprise
Service Bus. Attach it to the node. (This is so that the action is called when the node is entered.) The
EsbActionHandler executes, leaving the node waiting for a transition signal, (which can come from
any other thread of execution but will normally be sent by the JBossESB callback service.)

Example 12.2. Configuration for the EsbActionHandler

<action name="create_new_process_instance"
class="org.jboss.soa.esb.services.jbpm.actions.BpmProcessor">

<property name="command" value="StartProcessInstanceCommand" />
<property name="process-definition-name" value="processDefinition2"/>
<property name="actor" value="FrankSinatra"/>

<property name="esbToBpmvars'">

<!-- esb-name maps to getBody().get("evari") -->
<mapping esb="eVarl" bpm="counter" default="45" />
<mapping esb="BODY_CONTENT" bpm="theBody" />

</property>

</action>

The configuration for the EsbActionHandler action extends that for the EsbNotifier. The
extensions are the as follows:

» esbToBpmvars

This sub-element is optional. It is identical to the esbToBpmVars property (mentioned in

Section 12.4, “ From the Enterprise Service Bus to the j[BPM) for the BpmProcessor
configuration. The sub-element defines a list of variables that need to be extracted from the ESB
message and set in the Business Process Manager context for that particular process instance. If
left unspecified, the globalProcessScope value defaults to true when the variables are set.

The list consists of mapping elements, each of which can have the following attributes:

*« esh

This is a required attribute which can contain an MVEL expression. Use it to extract a value and
put it into the ESB Message from anywhere.

e bpm

This is an optional attribute containing the name which is to be used by the jBPM. If it is not
supplied, then the name in esb is used instead.

55

Chapter 12. jBPM Integration

o default

Use this is an optional attribute to hold a default value if the esb MVEL expression cannot find
one that is set in the Enterprise Service Bus message.

+ process-scope

This is an optional parameter consisting of a Boolean value. Use it to override the setting of this
mapping's e globalProcessScope.

e exceptionTransition

This is an optional element. It is the name of the transition to utilize if an exception occurs whilst the
service is being processed. This element requires the current node to have more than one outgoing
transition and for one of those transitions to handle exception processing.

A time-out value can be specified for this action (it is optional.) To do so, use a jBPM-native timer on
the node. Example 12.3, “Specifying a Time-Out Value for an Action” demonstrates how to add a time-
out value so that, if no signal is received within ten seconds of entering this node, a transition called
time-out is triggered.

Example 12.3. Specifying a Time-Out Value for an Action

<timer name='timeout' duedate='10 seconds' transition='time-out'/>

12.5.3. jBPM-to-ESB Exception Handling

There are two scenarios in which exceptions can arise:

1. A MessageDeliveryException will be thrown by the ServiceInvoker when delivery of the
message to the Enterprise Service Bus fails. This happens when the user has mis-spells the name
of the service that he or she is trying to reach. This type of exception can be thrown from both the
EsbNotifier and the EsbActionHandler. It is possible to add an ExceptionHandler (TB-
JBPM-USER) to the jBPM node that will deal with this situation.

2. The second type of exception occurs when the service receives a request successfully only
for something to go wrong during subsequent processing. Only if the call was made from the
EsbActionHandler does it makes sense to report the exception back to Business Process
Manager. This is due to the fact that, if the call was made from the EsbNotifier, then jBPM
processing has already moved on, and it would, therefore, be of little value to notify the process
instance of the problem.

Figure 12.12, “Three exception handling scenarios: time-out, exception-transition and exception-
decision.” illustrates several error handling scenerios that will be discussed in detail below.

56

Scenerio One: Time-out

==3far Stale== z=Mode==
ok
ﬁ start @ Senvicel

time-out-fransition

ak
{C} ==fode== exception = =<=End State==
Service? ~ ExceptionHandling
ok exceptionCondition
{C} ==Mode== ok t;'}} ==ecision==
Service3 “ exceptionDecision

ok

==End State==
end

Figure 12.12. Three exception handling scenarios: time-out, exception-transition and exception-
decision.

12.5.4. Scenerio One: Time-out

If one is using the EsbActionHandler action and the node is awaiting a callback, then it may be
advantageous to limit the waiting period. To do so, add a timer to the node. That is how Servicel
is configured in the diagram. The timer can be set for a certain period, which, in this case, is ten
seconds:

<node name="Servicel">

<action class=
"org.jboss.soa.esb.services.jbpm.actionhandlers.EsbActionHandler">
<eshCategoryName>MockCategory</esbCategoryName>
<esbhServiceName>MockService</esbServiceName>
</action>

<timer name='timeout' duedate='10 seconds'
transition="'time-out-transition'/>

<transition name="ok" to="Service2"></transition>

<transition name="time-out-transition" to="ExceptionHandling"/>

</node>

57

Chapter 12. jBPM Integration

Servicel has two outgoing transitions. The first of these is called ok whilst the second one is named
time-out-transition. Under normal processing conditions, the call-back would signal the default
transition, which is the ok, since it is defined as the first. However, if the processing of the service
takes more then ten seconds, the timer will execute. The transition attribute of the timer is set to
time-out-transition, meaning that this transition will be taken on time-out. Look at the diagram
and observe that the processing ends up in the ExceptionHandling node. From here, one can
perform compensatory work.

12.5.5. Scenerio Two: Exception Transition

One can define an exceptionTransition to handle any exceptions that may occur whilst the
service is being processed. Doing so results in the faultTo end point reference being set on the
message, meaning that the Enterprise Service Bus will make a call-back to this node. It is this call-
back that signals the exceptionTransition. Service2 has two outgoing transitions: Transition ok
will be taken under normal processing, whilst the exception transition will be taken when the service
has, as its name inidcates, thrown an exception during processing.

Example 12.4. Definition of Service Two

<node name="Service2">
<action class=
"org.jboss.soa.esb.services.jbpm.actionhandlers.EsbActionHandler">
<esbCategoryName>MockCategory</esbCategoryName>
<esbServiceName>MockService</esbServiceName>
<exceptionTransition>exception</exceptionTransition>
</action>
<transition name="ok" to="Service3d"></transition>
<transition name="exception" to="ExceptionHandling"/>
</node>

In the preceding definition of Service2, the action's exceptionTransition is set to “exception.” Note
that, in this scenario the process also ends up in the ExceptionHandling node.

12.5.6. Scenerio Three: Exception Decision

In order to understand this final scenario, study the configuration of Service3 and the
exceptionDecision node that follows it. As can be seen Service3 processes and completes
normally and the default transition out of its node occurs as one would expect. However, at some point
during the service execution, an errorCode was set, and the exceptionDecision node checks if a
variable of the same name has been called here:

Example 12.5. Definition of Service Three

<node name="Service3">
<action class=
"org.jboss.soa.esb.services.jbpm.actionhandlers.EsbActionHandler">
<esbCategoryName>MockCategory</esbCategoryName>
<esbServiceName>MockService</esbServiceName>

<esbToBpmvars>
<mapping esb="SomeExceptionCode" bpm="errorCode"/>
</esbToBpmVvars>
</action>
<transition name="ok" to="exceptionDecision"></transition>
</node>

<decision name="exceptionDecision">
<transition name="ok" to="end"></transition>

58

Scenerio Three: Exception Decision

<transition name="exceptionCondition" to="ExceptionHandling">
<condition>#{ errorCode!=void }</condition>
</transition>
</decision>

In the above example, the esbToBpmVars mapping element extracts the errorcCode called
SomeExceptionCode from the Enterprise Service Bus message body and sets in the jBPM

context. (This is provided that the SomeExceptionCode is set.) In the next node, named
exceptionDecision, the ok transition is taken if processing is normal, but if a variable called
errorcCode is found in the jBPM context, the exceptionCondition transition is taken instead. This

is achieved by using the jBPM's decision node feature, by means of which transitions can nest within a
condition.

For more information about conditional transitions please refer to the jBPM Reference Guide.

59

60

Chapter 13.

Service Orchestration

13.1. Introduction

Read this chapter to gain an understanding of how to use the integration functionality discussed earlier
to perform Service Orchestration with the jBPM.

The term Service Orchestration refers to the arrangement of business processes. Traditionally, the
Business Process Execution Language (BPEL) has been used to execute SOAP-based web services.
Red Hat recommends using jBPM to orchestrate processes, regardless of their end-point type, within
the JBoss Enterprise SOA Platform.

13.2. Orchestrating Web Services

JBossESB provides WS-BPEL support via its Web Service components. For details on these
components and how to configure and use them, refer to the Web Services Chapter of the SOA
Platform Programmers Guide L

JBoss and JBossESB also have a special support agreement with ActiveEndpoints % for their award
wining ActiveBPEL WS-BPEL Engine. JBoss ESB includes with the webservice_bpel QuickStart
which demonstrates how the JBoss ESB and ActiveBPEL can collaborate effectively to provide a WS-
BPEL based orchestration layer on top of a set of Services that don't expose Webservice Interfaces.
JBossESB provides the Webservice Integration and ActiveBPEL provides the Process Orchestration.
A number of flash based walk-thrus of this Quickstart are also available online 3,

@e

ActiveEndpoints WS-BPEL engine does not run on versions of JBossAS since 4.0.5. However, it
can be deployed and run successfully on Tomcat as our examples illustrate.

13.3. Orchestration Diagram

A key component of Service Orchestration is to use a flow-chart like design tool to design and deploy
processes. The jBPM IDE can be used for just this. Figure 13.1, “Orchestration diagram for the
bpm_orchestration4 QuickStart ” shows an example of such a flow-chart, which represents a
simplified order process. This example is taken from the bpm_orchestration4 QuickStart which
ships with JBossESB.

! The JBoss Enterprise SOA Programmers Guide is provided as the file Programmers_Guide . pdf or can be viewed online at
http://www.redhat.com/docs/en-US/JBoss_SOA _Platform/

2 http://www.active-endpoints.com/

8 http://labs.jboss.com/jbossesb/resources/tutorials/bpel-demos/bpel-demos.html

61

http://www.active-endpoints.com/
http://labs.jboss.com/jbossesb/resources/tutorials/bpel-demos/bpel-demos.html
http://www.redhat.com/docs/en-US/JBoss_SOA_Platform/
http://www.active-endpoints.com/
http://labs.jboss.com/jbossesb/resources/tutorials/bpel-demos/bpel-demos.html

Chapter 13. Service Orchestration

== Start Slate=> ==M\ode== ==Task Node==>
® e
G start * Intake Order Review Order
==f\odg== W S Task Node==
Calculate Discount ~' Review Discount
==Node== i ==E£nd State==
Ship It end

Figure 13.1. Orchestration diagram for the bpm_orchestration4 QuickStart

In Figure 13.1, “Orchestration diagram for the bpm_orchestration4 QuickStart " three of the nodes
are JBossESB Services, the Intake Order, Calculate Discount and the Ship It nodes. For these nodes
the regular Node type was used, which is why these are labeled with <<Node>>. Each of these nodes
have the EsbActionHandler attached to the node itself. This means that the jBPM node will send

a request to the Service and then it will remain in a wait state, waiting for the ESB to call back into

the node with the response of the Service. The response of the service can then be used within jBPM
context.

For example when the Service of the Intake Order responds, the response is then used to populate
the Review Order form. The Review Order node is a Task Node. Task Nodes are designed for
human interaction. In this case someone is required to review the order before the Order Process can
process.

To create the diagram in Figure 13.1, “Orchestration diagram for the bpm_orchestration4
QuickStart ”, select File > New > Other, and from the Selection wizard select JBoss jBPM Process
Definition. The wizard will direct you to save the process definition. From an organizational point

of view it is recommended use one directory per process definition, as you will typically end up with
multiple files per process design.

After creating a new process definition. You can drag and drop any item from jBPM IDE menu palette
into the process design view. You can switch between the design and source modes if needed to
check the XML elements that are being added, or to add XML fragments that are needed for the
integration. Recently a new type of node was added called ESB Service.

Before building the Order Process diagram of Figure 13.1, “Orchestration diagram for the
bpm_orchestration4 QuickStart ” you need to create and test the three Services. These services
are ordinary ESB services and are defined in the jboss-esh.xml. Check the jbhoss-esb.xml of
the bpm_orchestration4 QuickStart if you want details on them, but they only thing of importance
to the Service Orchestration are the Services names and categories as shown in the following jboss-
esh.xml fragment:

<services>
<service category="BPM_orchestration4_Starter_Service"
name="Starter_Service"
description="BPM Orchestration Sample 4: Use this service to start a
process instance">
<l-- ,... -->
</service>
<service category="BPM_Orchestration4" name="IntakeService"
description="IntakeService: transforms, massages, calculates priority">
<l-- ,,.. -->
</service>
<service category="BPM_Orchestration4" name="DiscountService"

62

Orchestration Diagram

description="DiscountService">
</service>
<service category="BPM_Orchestration4" name="ShippingService"
description="ShippingService">
<l-- ... -->
</service>
</services>

These Service can be referenced using the EsbActionHandler or EsbNotifier Action
Handlers.The EsbActionHandler is used when jBPM expects a response, while the EsbNotifier
can be used if no response back to jBPM is needed.

Now that the ESB services are known we drag the Start state node into the design view. A new
process instance will start a process at this node. Next we drag in a Node (or ESB Service if
available). Name this Node Intake Order. We can connect the Start and the Intake Order Node by
selecting Transition from the menu and by subsequently clicking on the Start and Intake Order Node.
You should now see an arrow connecting these two nodes, pointing to the Intake Order Node.

Next we need to add the Service and Category names to the Intake Node. Select the Source view.
The Intake Order Node should look like:

<node name="Intake Order">
<transition name="" to="Review Order"></transition>
</node>

Then we add the EsbHandlerAction class reference and the subelement configuration for the Service
Category and Name, BPM_Orchestration4 and IntakeService respectively.

<node name="Intake Order">
<action name="esbAction" class=
"org.jboss.soa.esb.services.jbpm.actionhandlers.EsbActionHandler">
<eshCategoryName>BPM_Orchestration4</esbCategoryName>
<esbhServiceName>IntakeService</esbServiceName>

<!-- async call of IntakeService -->
</action>
<transition name="" to="Review Order"></transition>
</node>

Next we want to send the some jBPM context variables along with the Service call. In this example
we have a variable named entireOrderAsXML which we want to set in the default position on the
EsbMessage body. For this to happen we add:

<bpmToEsbVvars>
<mapping bpm="entireOrderAsXML" esb="BODY_CONTENT" />
</bpmToEsbVvars>

which will cause the XML content of the variable “entireOrderAsXML"” to end up in the body of the
EsbMessage, so the IntakeService will have access to it, and the Service can work on it, by letting

it flow through each action in the Action Pipeline. When the last action is reached it the replyTo is
checked and the EsbMessage is send to the JBpmCallBack Service, which will make a call back
into jBPM signaling the “Intake Order” node to transition to the next node (“Review Order”). This time
we will want to send some variables from the EsbMessage to jBPM. Note that you can send entire
objects as long both contexts can load the object's class. For the mapping back to jBPM we add an
“esbToEsbVars” element. Putting it all together we end up with:

<node name="Intake Order">

63

Chapter 13. Service Orchestration

<action name="esbAction" class=

"org.jboss.soa.esb.services. jbpm.actionhandlers.EsbActionHandler">
<esbCategoryName>BPM_Orchestration4</esbCategoryName>
<esbServiceName>IntakeService</esbServiceName>
<bpmToEsbVars>
<mapping bpm="entireOrderAsXML" esb="BODY_CONTENT" />
</bpmToEsbVvars>
<esbToBpmVars>
<mapping esb="body.entireOrderAsXML" bpm="entireOrderAsXxML"/>
<mapping esb="body.orderHeader" bpm="entireOrderAsObject" />
<mapping esb="body.customer" bpm="entireCustomerAsObject" />
<mapping esb="body.order_orderId" bpm="order_orderid" />
<mapping esb="body.order_totalAmount" bpm="order_totalamount" />
<mapping esb="body.order_orderPriority" bpm="order_priority" />
<mapping esb="body.customer_firstName" bpm="customer_firstName" />
<mapping esb="body.customer_lastName" bpm="customer_lastName" />
<mapping esb="body.customer_status" bpm="customer_status" />
</esbToBpmVars>
</action>
<transition name="" to="Review Order"></transition>
</node>

So after this Service returns we have the following variables in the jBPM context for this process:
entireOrderAsXML, entireOrderAsObject, entireCustomerAsObject, and for demo purposes

we also added some flattened variables: order_orderid, order_totalAmount, order_priority,
customer_firstName, customer_lastName and customer_status.

==5tart Stale==
ﬂ start

<<hpd2s= = <=Tasn Nodz==

Intake Order = Review Order

@ ==fode== . =T Mode==
Calculate Discount "= Revizw Discount

'EI' {{,i.,':.:njg}:-
ShipH

= <<End Stale=>
end

Figure 13.2. The Order process reached the “Review Order” node

In our Order process we require a human to review the order. We therefore add a “Task Node” and
add the task “Order Review”, which needs to be performed by someone with actor_id “user”. The
XML-fragment looks like:

64

Orchestration Diagram

<task-node name="Review Order">

<task name="Order Review">

<assignment actor-id="user'"></assignment>

<controller>

<variable name="customer_firstName"

access="read,write, required"></variable>

<variable name="customer_lastName" access="read,write,required">
<variable name="customer_status" access="read"></variable>
<variable name="order_totalamount" access="read"></variable>
<variable name="order_priority" access="read"></variable>
<variable name="order_orderid" access="read"></variable>
<variable name="order_discount" access="read'"></variable>
<variable name="entireOrderAsXML" access="read"></variable>
</controller>

</task>

<transition name="" to="Calculate Discount"></transition>
</task-node>

In order to display these variables in a form in the jbpm-console we need to create an xhtml dataform
(see the Review_Order.xhtml file in the bpm_orchestration4 quick start [JBESB-QS] and tie this for this
TaskNode using the forms.xml file;

<forms>

<form task="Order Review" form="Review_Order.xhtml"/>
<form task="Discount Review" form="Review_Order.xhtml"/>
</forms>

Note that in this case the same form is used in two task nodes. The variables are referenced in the
Review Order form like this, which references the variables set in the jBPM context:

<jbpm:datacell>

<f:facet name="header">

<h:outputText value="customer_firstName"/>
</f:facet>

<h:inputText value="#{var['customer_firstName']}" />
</jbpm:datacell>

When the process reaches the “Review Node”, as shown in Figure 13.2, “The Order process reached
the “Review Order” node”. When the 'user' user logs into the jbpm-console the user can click on
"Tasks” to see a list of tasks, as shown in Figure 13.3, “The task list for user 'user”. The user can
‘examine' the task by clicking on it and the user will be presented with a form as shown in Figure 13.4,
“The "Order Review" form”. The user can update some of the values and click “Save and Close” to let
the process move to the next Node.

Macage: Processes | Tasks

First Prow - Page 1 of 1 - Moxt Lost

Foolcd : Start End S
I Mamc Actors Assigned To Status Date Date Actions
H |E| m E o D[enphy —ilte- Llear —1lke-
1 Orcer Revew user Mot Started Cxamire Suspend|3:art

Figure 13.3. The task list for user 'user'

65

Chapter 13. Service Orchestration

Order Review

cuslomer TlirslHame JIEE

customer_lastMame JEANENE:

rustnmer_status Bl

order_totolamount JUENA

order_priority 3

order arderid 2

order_discount

entireorder <Orcer nelArwoenl-"53 .57

Actions | Save || Cancel || Savs and Clase |

Figure 13.4. The "Order Review" form

The next node is the “Calculate Discount” node. This is an ESB Service node again and the
configuration looks like:

<node name="Calculate Discount">

<action name="esbAction" class="
org.jboss.soa.esb.services.jbpm.actionhandlers.EsbActionHandler">
<esbhCategoryName>BPM_Orchestration4</esbCategoryName>
<esbServiceName>DiscountService</esbServiceName>

<bpmToEsbVars>

<mapping bpm="entireCustomerAsObject" esb="customer" />

<mapping bpm="entireOrderAsObject" esb="orderHeader" />

<mapping bpm="entireOrderAsXML" esb="BODY_CONTENT" />
</bpmToEsbVvars>

<esbhToBpmVars>

<mapping esb="order"

bpm="entireOrderAsObject" />

<mapping esb="body.order_orderDiscount" bpm="order_discount" />
</esbToBpmVars>

</action>

<transition name="" to="Review Discount"></transition>

</node>

The Service receives the customer and orderHeader objects as well as the entireOrderAsXML, and
computes a discount. The response maps the body.order_orderDiscount value onto a jBPM context
variable called “order_-discount”, and the process is signaled to move to the “Review Discount” task
node.

66

Process Deployment and Instantiation

Discount Review

customer_firstName QR

customer_lastName JUVEE

customer_status 60

order_totalamount JEEEERN

order_priority 3

order_orderid 2

order_discount 8.5

entireOrder <Order netAmount="59_97

Actions Save || Cancel || Save and Close

Figure 13.5. The "Discount Review" form

The user is asked to review the discount, which is set to 8.5. On “Save and Close” the process moves
to the “Ship It” node, which again is an ESB Service. If you don't want the Order process to wait for the
Ship It Service to be finished you can use the EsbNotifier action handler and attach it to the outgoing
transition:

<node name="ShipIt">

<transition name="ProcessingComplete" to="end">

<action name="ShipItAction" class=
"org.jboss.soa.esb.services.jbpm.actionhandlers.EsbNotifier">
<eshCategoryName>BPM_Orchestration4</esbCategoryName>
<esbServiceName>ShippingService</esbServiceName>
<bpmToEsbVars>
<mapping bpm="entireCustomerAsObject" esb="customer" />
<mapping bpm="entireOrderAsObject" esb="orderHeader" />
<mapping bpm="entireOrderAsXML" esb="entireOrderAsXML" />
</bpmToEsbVars>

</action>
</transition>
</node>

After notifying the ShippingService the Order process moves to the 'end' state and terminates. The
ShippingService itself may still be finishing up. In bpm_orchestration4 it uses drools to determine
whether this order should be shipped 'normal’ or 'express'.

13.4. Process Deployment and Instantiation

In the previous paragraph we create the process definition and we quietly assumed

we had an instance of it to explain the process flow. But now that we have created the
processdefinition.xml, we can deploy it to jBPM using the IDE, ant or the jbpm-console
as explained in Chapter 12, jBPM Integration . In this example we use the IDE and deployed the
files: Review_Order.xhtml, forms.xml, gpd.xml, processdefinition.xml and the processimage.jpg.
On deployment the IDE creates a par achive and deploys this to the jBPM database. We do not

67

Chapter 13. Service Orchestration

recommend deploying Java code in par archives as it may cause class loading issues. Instead we
recommend deploying classes in jar or esb archives.

When the process definition is deployed a new process instance can be created. It is interesting
to note that we can use the 'StartProcessinstanceCommand” which allows us to create a process
instance with some initial values already set. Take a look at:

<service category="BPM_orchestration4_Starter_Service"

name="Starter_Service"

description="BPM Orchestration Sample 4: Use this service to start a process instance">
<listeners>

</listeners>

<actions>

<action name="setup_key" class=
"org.jboss.soa.esbh.actions.scripting.GroovyActionProcessor">
<property name="script"
value="/scripts/setup_key.groovy" />

</action>

<action name="start_a_new_order_process" class=
"org.jboss.soa.esb.services.jbpm.actions.BpmProcessor">
<property name="command"
value="StartProcessInstanceCommand" />

<property name="process-definition-name"
value="bpm4_ESBOrderProcess" />

<property name="key" value="body.businessKey" />
<property name="esbToBpmVars">

<mapping esb="BODY_CONTENT" bpm="entireOrderAsXML" />
</property>

</action>

</actions>

</service>

where new process instance is invoked and using some groovy script, and the jBPM key is set to

the value of 'Orderld' from an incoming order XML, and the same XML is subsequently put in jBPM
context using the esbToBpmVars mapping. In the bpm_orchestration4 QuickStart the XML came
from the Seam DVD Store and the SampleOrder .xml looks like:

<Order orderId="2" orderDate="Wed Nov 15 13:45:28 EST 2006" statusCode="0" netAmount="59.97"
totalAmount="64.92" tax="4.95">

<Customer userName="user1l" firstName="Rex" lastName="Myers" state="SD"/>

<OrderLines>

<OrderLine position="1" quantity="1">

<Product productId="364" title="Gandhi"

price="29.98"/>

</0OrderLine>

<OrderLine position="2" quantity="1">

<Product productId="299" title="Lost Horizon" price="29.99"/>

</OrderLine>

</0OrderLines>

</Order>

Note that both ESB as well as jBPM deployments are hot. An extra feature of jBPM is that process
deployments are versioned. Newly created process instances will use the latest version while existing
process instances will finish using the process deployment on which they where started.

13.5. Conclusion

We have demonstrated how jBPM can be used to orchestrate Services as well as do Human Task
Management. Note that you are free to use any jBPM feature. For instance look at the QuickStart
bpm_orchestration2 how to use the jBPM fork and join concepts.

68

Chapter 14.

The Message Store

The Enterprise Service Bus' MessageStore mechanism has been designed for the purpose of audit-
tracking. As with other ESB services, it is pluggable, which means that the developer can plug in

his or her own persistence mechanism should there be the need to do so. (A database persistence
mechanism is supplied.) For instance, to create a file persistence mechanism, simply code a service to
create it, then over-ride the default behavior with a configuration change.

Note that this MessageStore is a base implementation only. Red Hat will be working with the
community and partners to improve the functionality of this software to the point where, at a future
point in time, it will support advanced auditing and management requirements. At present, this
program is solely intended as a starting point.

The MessageStore is also used for holding messages that need to be re-delivered in the event
of a failure. Additional information on this topic si found in the Programmers' Guide.

14.1. Message Store Interface

The MessageStore is responsible for reading and writing messages upon request. Each message
must be uniquely identified within the context of the store. (Each MessageStore implementation
uses a uniform resource identifier to accomplish this. The URI acts as the “key” for messages in the
database.)

public interface MessageStore
{
public MessageURIGenerator getMessageURIGenerator();
public URI addMessage (Message message, String classification)
throws MessageStoreException;
public Message getMessage (URI uid) throws MessageStoreException;
public void setUndelivered(URI uid) throws MessageStoreException;
public void setDelivered(URI uid) throws MessageStoreException;
public Map<URI, Message> getUndeliveredMessages(String classification)
throws MessageStoreException;
public Map<URI, Message> getAllMessages(String classification)
throws MessageStoreException;
public Message getMessage (URI uid, String classification)
throws MessageStoreException;
public int removeMessage (URI uid, String classification)
throws MessageStoreException;

}

Figure 14.1. The org. jboss.soa.esbh.services.persistence.MessageStore interface

Each MessageStore implementation uses a different format for uniform resource identifiers.

69

Chapter 14. The Message Store

Messages can be stored using a classification derived from addMessage. If the classification is not
defined, then it is up to the individual implementation of the MessageStore to determine for itself how
it will store the message. Furthermore, the classification is only a guide: one's implementation can
ignore this field if necessary.

It is dependent on the implementation as to whether or not the MessageStore imposes any kind of
concurrency control on individual messages. Therefore, use the removeMessage operation with care.

Do not use the setUndelivered/setDelivered commands or other associated operations unless
they are applicable. This is because the current MessageStore interface is designed to support both
audit trail and re-delivery functionality.

The org.jboss.internal.soa.esb.persistence.format.db.DBMessageStoreImpl
class provides the default implementation of the MessageStore. . The methods in this
implementation make the required database connections via a pooled database manager, called
DBConnectionManager.

Use the MessageActionGuide and the MessagePersister actions to override the
MessageStore implementation.

The MessageStore interface does not currently support transactions. Any use of the
MessageStore within the scope of a global transaction will, therefore, be unco-ordinated. The
implication of this is that each MessageStore update or read will be undertaken separately and
independently. However, future versions of the software shall provide control over whether or not
specific interactions are to be conducted within the scope of an "enclosing" transactional context.

14.2. Configuring the Message Store

To configure the MessageStore, firstly over-ride the default service implementation. Do this by
editing the settings found in the jbossesb-properties.xml file:

<properties name="dbstore">
<!-- connection manager type -->
<property name="org.jboss.soa.esb.persistence.db.conn.manager" value=
"org.jboss.internal.soa.esb.persistence.manager.StandaloneConnectionManager"/>

<!-- this property is only used for the j2ee connection manager -->

<property name="org.jboss.soa.esb.persistence.db.datasource.name"
value="java:/JBossesbDS"/>

<!-- standalone connection pooling settings -->

<!-- mysql

<property name="org.jboss.soa.esb.persistence.db.connection.url"
value="jdbc:mysql://localhost/jbossesb"/>

<property name="org.jboss.soa.esb.persistence.db.jdbc.driver"
value="com.mysql.jdbc.Driver"/>

<property name="org.jboss.soa.esb.persistence.db.user"
value="kstam"/> -->

<!-- postgres

<property name="org.jboss.soa.esb.persistence.db.connection.url"
value="jdbc:postgresql://localhost/jbossesb"/>

<property name="org.jboss.soa.esb.persistence.db.jdbc.driver"
value="org.postgresql.Driver"/>

<property name="org.jboss.soa.esb.persistence.db.user"
value="postgres"/>

<property name="org.jboss.soa.esb.persistence.db.pwd"
value="postgres"/> -->

<!-- hsgldb -->

70

Configuring the Message Store

<property name="org.jboss.soa.esb.persistence.db.connection.url"
value="jdbc:hsqldb:hsql://localhost:9001/jbossesb"/>

<property name="org.jboss.soa.esb.persistence.db.jdbc.driver"
value="org.hsqldb.jdbcDriver"/>

<property name="org.jboss.soa.esb.persistence.db.user" value="sa'"/>

<property name="org.jboss.soa.esb.persistence.db.pwd" value=""/>

<property name="org.jboss.soa.esb.persistence.db.pool.initial.size"
value="2"/>

<property name="org.jboss.soa.esb.persistence.db.pool.min.size"
value="2"/>

<property name="org.jboss.soa.esb.persistence.db.pool.max.size"
value="5"/>

<!--table managed by pool to test for valid connections

created by pool automatically -->

<property name="org.jboss.soa.esb.persistence.db.pool.test.table"
value="pooltest"/>

<property name="org.jboss.soa.esb.persistence.db.pool.timeout.millis"
value="5000"/>

</properties>

The section in the property file called “dbstore” has all the settings required by the database
implementation of the message store. The standard settings, like URL, db user, password, pool sizes
can all be modified here.

The scripts for the required database schema are very simple. They can be found under 1ib/
jbossesb.esb/message-store-sql/<db_type>/create_database.sql of your JBoss ESB
installation.

The structure of the table can be seen from the sample SQL.

Example 14.1. Sample SQL for message store table creation

CREATE TABLE message

(
uuid varchar(128) NOT NULL,

type varchar(128) NOT NULL,
message text(4000) NOT NULL,
delivered varchar(10) NOT NULL,
classification varchar(10),
PRIMARY KEY (“uuid’)

)

the uuid column is used to store a unique key for this message, in the format of a standard URI. A key
for a message would look like:

urn:jboss:esb:message:UID: + UUID.randomUUID()

This logic uses the UUID random number generator and the type will be the type of the stored
message. JBossESB ships with JIBOSS XML and JAVA_SERIALIZED currently.

The “message” column will contain the actual message content.

The supplied database message store implementation works by invoking a connection manager to
your configured database. Supplied with Jboss ESB is a standalone connection manager, and another
for using a JNDI datasource.

To configure the database connection manager, you need to provide the connection manager
implementation in the jbossesb-properties.xml file. The properties that you would need to
change are:

71

Chapter 14. The Message Store

<!l-- connection manager type -->

<property name="org.jboss.soa.esb.persistence.db.conn.manager"
value="org.jboss.internal.soa.esb.persistence.format.db.Standalone

ConnectionManager"/>

<!-- property name="org.jboss.soa.esb.persistence.db.conn.manager"
value="org.jboss.soa.esb.persistence.manager.J2eeConnectionManager"/ -->
<!l-- this property is only used for the j2ee connection manager -->

<property name="org.jboss.soa.esb.persistence.db.datasource.name"
value="java:/JBossesbDS"/>

The two supplied connection managers for managing the database pool are:
org.jboss.soa.esb.persistence.manager.J2eeConnectionManager and
org.jboss.soa.esbh.persistence.manager.StandaloneConnectionManager.

The Stand-Alone Manager uses C3PO to manage the connection pooling logic whilst the
J2eeConnectionManager, by contrast, employs a data-source. Use this when deploying Enterprise
Service Bus end points inside a container such as the JBoss Application Server or Tomcat.

Another option is to "plug in" a custom connection pool manager. Firstly, implement this interface:
org.jboss.internal.soa.esh.persistence.manager.ConnectionManager. Next, update
the Properties file with the name of the new class. Having done so, the Connection Manager
Factory will now be able to utilize the new implementation.

Once you have implemented this interface, you update the properties file with your new class, and the
connection manager factory will now use your implementation.

72

Chapter 15.

Security

Services in JBossESB can be configured to be secure which means that the service will only be
executed if authentication succeeds and if the caller is authorized to execute the service.

A service can be invoked in one of two ways: 1.) Through a gateway or 2.) Directly via the Enterprise
Service Bus by using the Servicelnvoker. When one uses the first option, the gateway is responsible
for obtaining the security information needed to authenticate the caller. It does this by extracting the
information from the transport that it handles. Once it has obtained this, it creates an authentication
request that is encrypted and then passed to the Enterprise Service Bus.

If one uses the ServiceInvoker instead, the gateway will not be utilised. Rather, it becomes the
responsibility of the client to create the authentication request prior to invoking the service. Both of
these options will be the objects of study in the following sections.

The default security implementation is based on the Java Authentication and Authorization Service
(JAAS) but it is highly configurable, so it can be altered if one wishes to use an alternative system. The
following sections describe the JAAS security components and how they can be configured.

15.1. Security Service Configuration

The Security Service, along with all the other settings, can be configured by editing the jbossesb-
properties.xml file.

<properties name="security">
<property name="org.jboss.soa.esb.services.security.implementationClass"
value="org.jboss.internal.soa.esb.services.security.JaasSecurityService"/>

<property name="org.jboss.soa.esb.services.security.callbackHandler"
value=
"org.jboss.internal.soa.esb.services.security.UserPassCallbackHandler"/>

<property name="org.jboss.soa.esbh.services.security.sealAlgorithm"
value="TripleDES"/>

<property name="org.jboss.soa.esbh.services.security.sealKeySize"
value="168"/>

<property name="org.jboss.soa.esb.services.security.contextTimeout"
value="30000"/>

<property name=
"org.jboss.soa.esb.services.security.contextPropagatorImplemtationClass"
value=
"org.jboss.internal.soa.esb.services.security.JBossASContextPropagator"/>

<property name="org.jboss.soa.esb.services.security.publicKeystore"
value="/publicKeyStore"/>

<property name=
"org.jboss.soa.esb.services.security.publicKeystorePassword"
value="testKeystorePassword"/>

<property name="org.jboss.soa.esb.services.security.publicKeyAlias"
value="testAlias"/>

<property name="org.jboss.soa.esb.services.security.publicKeyPassword"
value="testPassword"/>

<property
name="org.jboss.soa.esb.services.security.publicKeyTransformation"

73

Chapter 15. Security

value="RSA/ECB/PKCS1Padding"/>

</properties>

jbossesbh-properties.xml security settings
org.jboss.soa.esb.services.security.implementationClass
This is the "concrete" SecurityService implementation that should be used. Required. The default
setting is JaasSecurityService.

org.jboss.soa.esb.services.security.callbackHandler
This is optional. It is a default CallbackHandler implementation, utilised when a JAAS-based
SecurityService is employed. See “Customizing Security” for more information about the
CallbackHandler property.

org.jboss.soa.esb.services.security.sealAlgorithm
This is the algorithm to use when "sealing" the SecurityContext.

org.jboss.soa.esb.services.security.sealKeySize
This is the size of the secret/symmetric key used to encrypt/decrypt the SecurityContext.

org.jboss.soa.esb.services.security.contextTimeout
This is the amount of time (in milliseconds) for which a security context is valid. A global setting,
this may be over-ridden on a per-service basis by specifying the property of the same name that
exists on the security element in the jboss-esb.xml file.

org.jboss.soa.esb.services.security.contextPropagatorImplementationClass
This is an optional property that is used to configure a global SecurityContextPropagator.
(For more details on the SecurityContextPropagator, please refer to the section on “Security
Context Propagation.”

org.jboss.soa.esb.services.security.publicKeystore
This is the path to the "Keystore" which holds the keys used to encrypt and decrypt that
data which is external to the Enterprise Service Bus. The Keystore is used to encrypt the
AuthenticationRequest.

org.jboss.soa.esb.services.security.publicKeystorePassword
This is the password for the public keystore.

org.jboss.soa.esb.services.security.publicKeyAlias
This is the alias to use.

org.jboss.soa.esb.services.security.publicKeyPassword
This is the password for the alias if one was specified upon creation.

org.jboss.soa.esb.services.security.publicKeyPassword
This is an optional cipher transformation. It is in the format, “algorithm/mode/padding.” If this
is not specified, the "keys" algorithm will be used by default.

The JAAS log-in modules are configured using the login-config.xml file located in the
$SOA_ROOT/server/$PROFILE/conf/ directory of one's JBoss Application Server. One can either
use those that came pre-configured or add one's own.

The JBoss Enterprise Service Bus ships with an example keystore. This should not be used in a
production environment. It is only provided as a sample to help users achieve a working security
configuration “out-of-the-box.” The sample keystore can be updated with custom-generated pairs of
keys.

74

Configuring Security on Services

15.1.1. Configuring Security on Services

Security is configured for each service. A service in JBossESB can be declared as being secured and

that it requires authentication.

Services are configured by adding a “security” element to the service in jbossesb.xml.:

<security moduleName="messaging" runAs="adminRole"
rolesAllowed="adminRole, normalUsers" callbackHandler=
"org.jboss.internal.soa.esb.services.security.User PassCallbackHandler">

<property name="propertyl" value="valuel"/>

<property name="property2" value="value2"/>

</security>

Security properties description
moduleName
This is a named module that exists in the conf/login-config.xml file.

runAs
This is an optional runAs role.

rolesAllowed
This is an optional, comma-separated list of those roles that have been granted the ability
to execute the service. This is used as a check that is performed after a caller has been
authenticated, in order to verify that they are indeed belonging to one of the roles specified.
The roles will have been assigned after a successful authentication by the underlying security
mechanism.

callbackHandler
An optional CallbackHandler that will override the one defined in jbossesb-
properties.xml.

property
Optional properties can be defined which will be made available to the CallbackHandler
implementation.

Security properties overrides:
org.jboss.soa.esb.services.security.contextTimeout

Optional property that lets the service override the global security context timeout (ms) specified in

jbossesbh-properties.xml.

org.jboss.soa.esb.services.security.contextPropagatorImplementationClass
Optional property that lets the service override the global security context propagator class
implementation specified in jbossesb-properties.xml.

Example 15.1. Overriding global configuration settings

<security moduleName="messaging"
runAs="adminRole" rolesAllowed="adminRole">

<property
name="org.jboss.soa.esb.services.security.contextTimeout"
value="50000"/>

<property name=
"org.jboss.soa.esh.services.security.contextPropagatorImplementationClass"
value="org.xyz.CustomSecurityContextPropagator" />

75

Chapter 15. Security

</security>

15.2. Authentication

Security information needs to be provided in order to authenticate a caller. If the call to the service is
coming through a gateway, then that gateway will extract the required information from the transport
with which it works. For a web service call, this would entail extracting either the UsernameToken or
the BinarySecurityToken from the security element in the SOAP header.

An authentication process will be performed if one service requiring authentication needs to call

upon another. Therefore, having a chain of services that are all configured for authentication will
cause multiple authentications to be performed. In order to minimize the overhead, the Enterprise
Service Bus will store an encrypted SecurityContext. This SecurityContext will be passed

on to the ESB Message object between services. If the ESB detects that a Message has a
SecurityContext, it will check that it is still valid and, if so, re-authentication is not performed. Note
that the SecurityContext is only valid for a single Enterprise Service Bus node. If the message is
routed to a different ESB node, a re-authentication will be required.

15.2.1. AuthenticationRequest

An AuthenticationRequest is intended to carry security information needed for authentication between
a gateway and a service, or between two services.

An instance of this class should be set on the message object before calling the service configured for
authentication:

byte[] encrypted =
PublicCryptoUtil.INSTANCE.encrypt((Serializable) authRequest);

message.getContext.setContext(SecurityService.AUTH_REQUEST, encrypted);

The authentication context is encrypted and then set in the message context. This will be decrypted by
the ESB to perform authentication. See Section 15.1, “ Security Service Configuration ” for information
on how to configure the public keystore for this purpose.

The security_basic QuickStart shows an example of using a external client and how to prepare
the Message before using the ServiceInvoker, see the SendEsbMessage class for more
information. This quickstart also shows how you can configure jbossesb-properties.xml for
client usage.

15.3. JBossESB SecurityContext

A SecurityContext in JBossESB is an object that is local to a specific ESB node, or really to the JVM of
the node. The SecurityContext is created after a successful authentication has be performed and it will
be used locally in the ESB where it was created to save having to re-authenticate with every call.

A timeout is specified for the context which is the time in milliseconds that the context is valid for.
This value can be specified globally in jbossesb-properties.xml and can be overridden by
specifying the value in the jboss-eshb.xml of the specific service. Additional details can be found in
Section 15.1.1, “Configuring Security on Services” and Section 15.1, “ Security Service Configuration

”

76

Security Context Propagation

15.4. Security Context Propagation

In this case, the term "propagation" refers to the process of propagating security context information in
a way specific to an external system. For example, one might want to use the same credentials to call
both the Enterprise Service Bus and an Enterprise Java Beans (EJB) method. One can accomplish
this by specifying a SecurityContextPropagator, which, as its name suggests, will perform the
security-context propagation specific to the destination environment.

A SecurityContextPropagator can be configured either globally (by specifying the
org.jboss.soa.esb.services.security.contextPropagatorImplementationClass
class in the jbossesh-properties.xml file) or, on a per-service basis (by specifying that same
property in the jboss-esh.xml file.) Section 15.1.1, “Configuring Security on Services” and
Section 15.1, “ Security Service Configuration ” contain more examples of this.

Implementations of SecurityContextPropagator
Package: org.jboss.internal.soa.esbh.services.security Class:
JBossASContextPropagator
This will pass on the security credentials to a JBoss Application Server. If one has the
need to create one's own implementation, a class must be written that implements
org.jboss.internal.soa.esh.services.security.SecurityContextPropagator.
After that, the new implementation must be specified in either the jbossesb-properties.xml
or the jboss-esb.xml file, as was noted above.

15.5. Customizing security

The default security implementation in JBosseESB is based on JAAS and named JaasSecurityService.
Custom login modules can be added in conf/login-config.xml of an JBoss Application Server.

Since different login modules will require different information, the callback handler to be used can
be specified in the security configuration for that Service. This can be accomplished by specifying the
callbackHandler attribute belonging to the security element defined on the service.

The callbackHandler should specify a fully qualified class name of a class that implements the
EsbCallbackHandler interface:

public interface EsbCallbackHandler extends CallbackHandler
{

void setAuthenticationRequest(final AuthenticationRequest authRequest);
void setSecurityConfig(final SecurityConfig config);

}

The AuthenticationRequest will contain the principal and credentials needed authenticate a
caller.

The SecurityConfig will give access to the security configuration in jboss-esb.xml.

Both of these are made available to the CallbackHandler which it can use to populate the
Callback instances required by the login module.

15.6. Provided Login Modules

This section lists the login modules provided with JBossESB. Please note that all login modules
available with JBoss AS are available as well and custom login modules should be easy to add.

77

Chapter 15. Security

15.6.1. CertificateLoginModule

This login module performs authentication by verifiying that a certificate passed with the call to the
ESB, can be verified against a certificate in a local keystore.

Upon successful authentication the certificates Common Name(CN) will be used to create a principal.
If role mapping is in use then it is the CN that will be used in the role mapping. Refer to Section 15.6.2,
“Role Mapping” for details on the role mapping functionality.

Example 15.2. CertificateLoginModule configuration

<security moduleName="CertLogin" rolesAllowed="worker”
callbackHandler="org.jboss.soa.esb.services.security.auth.loginUserPass
CallbackHandler">
<property name="alias" value="certtest"/>
</security>

CertificateLogin Module Properties

moduleName
Identifies the JAAS Login module to use. This module will be specified in JBossAS login-
config.xml.

rolesAllowed
Comma separated lite of roles that are allowed to execute this service.

alias
The alias to look up in the local keystore which will be used to verify the callers certificate.

Here is an example of a fragment from the login-config.xml file:

<application-policy name="CertLogin">
<authentication>
<login-module
code="org.jboss.soa.esh.services.security.auth.login.CertificatelLoginModule"
flag = "required" >
<module-option name="keyStoreURL">
file://pathToKeyStore
</module-option>
<module-option name="keyStorePassword">storepassword</module-option>
<module-option name="rolesPropertiesFile">
file://pathToRolesFile
</module-option>
</login-module>
</authentication>
</application-policy>

Properties
keyStoreURL

This is the path to that keystore which is used to verify the certificates. This keystore can take the
form of a file on either the local file system or on the classpath.

keyStorePassword
This is the password for the above keystore.

rolesPropertiesFile
This is optional. It is the path to a file containing role mappings. Refer to Section 15.6.2, “Role
Mapping” for additional details.

78

Role Mapping

15.6.2. Role Mapping

This file is can be optionally specified in login-config.xml by using rolesPropertiesFile. This can
point to a file on the local file system or to a file on the classpath. This file contains a mapping of users
to roles:

user=rolel,role2, ...
guest=guest
esbuser=esbrole

The current implementation will use the Common Name(CN) specified
for the certificate as the user name.

The unicode escape is needed only if your CN contains a space
Austin\u@020Powers=esbrole, worker

For an example please look at the security_cert QuickStart.

15.7. SecurityService

The SecurityService interface is the central component in Enterprise Service Bus security. It is
shown below:

public interface SecurityService

{

void configure() throws ConfigurationException;

void authenticate(
final SecurityConfig securityConfig,
final SecurityContext securityContext,
final AuthenticationRequest authRequest)
throws SecurityServiceException;

boolean checkRolesAllowed (
final List<String> rolesAllowed,
final SecurityContext securityContext);

boolean isCallerInRole(
final Subject subject,
final Principal role);

void logout(final SecurityConfig securityConfig);

void refreshSecurityConfig();

The default implementation is based on JAAS but it can be customised if one implements the above
interface and configures the jbossesb-properties.xml file to use a custom SecurityService. For
more information relating to the SecurityService interface, please refer to the Java documentation.

79

80

Appendix A. Revision History

Revision 1.5 Mon Mar 21 2011 David Le Sage dlesage@redhat.com
Updated for 4.3.CP05 Release

Revision 1.4 Tue Apr 23 2010 David Le Sage dlesage@redhat.com
Updated for 4.3.CP04

Revision 1.3 Tue Apr 20 2010 David Le Sage dlesage@redhat.com
Updated for SOA 4.3.CP03

Revision 1.1 Fri 18 Sep 2009 Darrin Mison dmison@redhat.com
Updated for 4.3.CP02
SOA-1107 - Clarified RMI JUDDI content. Section 3.3
SOA-1127 - Clarified EPR registration comments. Section 1.6
SOA-1337 - Updated troubleshooting details. Section 5.1

SOA-1352 - Updated SOAP content to reflect current support status of the feature. Section 3.5

SOA-1426 - Added XPath and Namespaces content. Section 9.4.1

Revision 1.0 Tue 9 Sep 2008 Darrin Mison dmison@redhat . com
Updated for 4.3.CPO1

Revision 1.0 Tue 9 Sep 2008 Darrin Mison dmison@redhat.com
Created

81

mailto:dlesage@redhat.com
mailto:dlesage@redhat.com
mailto:dlesage@redhat.com
mailto:dmison@redhat.com
mailto:dmison@redhat.com
mailto:dmison@redhat.com

82

	Services Guide
	Table of Contents
	Preface
	1. Document Conventions
	1.1. Typographic Conventions
	1.2. Pull-quote Conventions
	1.3. Notes and Warnings

	2. We Need Feedback!

	Chapter 1. What is the Registry?
	1.1. Why Does One Need It?
	1.2. How Does One Use It?
	1.3. Registry Versus Repository
	1.4. SOA Components
	1.5. The UDDI
	1.6. The Registry and the JBoss Service-Oriented Architecture Platform

	Chapter 2. Configuring the Registry
	2.1. The Registry Components
	2.2. The Registry Implementation Class
	2.3. Using JAXR
	2.4. Using Scout and jUDDI

	Chapter 3. Registry Configuration Examples
	3.1. Introduction
	3.2. Embedded jUDDI
	3.3. Remote Method Invocation Using jbossesb.sar
	3.4. Remote Method Invocation Using JNDI Registration of the RMI Service
	3.5. SOAP

	Chapter 4. UDDI Browser
	4.1. Introduction
	4.2. UB Setup

	Chapter 5. Registry Troubleshooting
	5.1. Scout and jUDDI Pitfalls
	5.2. More Information

	Chapter 6. What is a Rule Service?
	6.1. Introduction

	Chapter 7. Rule Services Using JBoss Rules
	7.1. Introduction
	7.2. Rule Set Creation
	7.3. Rule Service Consumers
	7.4. Configuration
	7.5. Object Paths
	7.6. Deploying and Packaging

	Chapter 8. What is Content-Based Routing?
	8.1. Introduction
	8.1.1. Some Questions
	8.1.2. Introducing Content-Based Routing

	8.2. Simple Example

	Chapter 9. Content Based Routing Using JBoss Rules
	9.1. Introduction
	9.2. Three Different Routing Action Classes
	9.3. Rule Set Creation
	9.4. XPath Domain Specific Language
	9.4.1. XPath and Name-Spaces

	9.5. Configuration
	9.6. "Stateful" Rules
	9.7. The RuleAgent and the Business Rules Management System
	9.8. Executing Business Rules
	9.9. Changing Rule Service Implementations
	9.10. Deployment and Packaging

	Chapter 10. Content-Based Routing Using Smooks
	Chapter 11. Message Transformation
	11.1. Smooks
	11.2. XSL Transformations
	11.3. ActionProcessor Data Transformation

	Chapter 12. jBPM Integration
	12.1. Integration Configuration
	12.2. Configuring the jBPM
	12.3. Creating and Deploying a Process Definition
	12.4. From the Enterprise Service Bus to the jBPM
	12.4.1. ESB to jBPM Exception Handling

	12.5. jBPM-to-ESB
	12.5.1. ESBNotifier
	12.5.2. ESBActionHandler
	12.5.3. jBPM-to-ESB Exception Handling
	12.5.4. Scenerio One: Time-out
	12.5.5. Scenerio Two: Exception Transition
	12.5.6. Scenerio Three: Exception Decision

	Chapter 13. Service Orchestration
	13.1. Introduction
	13.2. Orchestrating Web Services
	13.3. Orchestration Diagram
	13.4. Process Deployment and Instantiation
	13.5. Conclusion

	Chapter 14. The Message Store
	14.1. Message Store Interface
	14.2. Configuring the Message Store

	Chapter 15. Security
	15.1. Security Service Configuration
	15.1.1. Configuring Security on Services

	15.2. Authentication
	15.2.1. AuthenticationRequest

	15.3. JBossESB SecurityContext
	15.4. Security Context Propagation
	15.5. Customizing security
	15.6. Provided Login Modules
	15.6.1. CertificateLoginModule
	15.6.2. Role Mapping

	15.7. SecurityService

	Appendix A. Revision History

