
JBoss Enterprise
SOA Platform 4.3

Administration Guide
Your guide to administering the JBoss

Enterprise SOA Platform 4.3 CP05

Administration Guide

JBoss Enterprise SOA Platform 4.3 Administration Guide
Your guide to administering the JBoss Enterprise SOA Platform
4.3 CP05
Edition 4.3.5

Copyright © 2011 Red Hat, Inc..

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is available
at http://creativecommons.org/licenses/by-sa/3.0/. In accordance with CC-BY-SA, if you distribute this
document or an adaptation of it, you must provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, MetaMatrix, Fedora, the Infinity
Logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other countries.

Linux® is the registered trademark of Linus Torvalds in the United States and other countries.

Java® is a registered trademark of Oracle and/or its affiliates.

XFS® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL® is a registered trademark of MySQL AB in the United States, the European Union and other
countries.

All other trademarks are the property of their respective owners.

The Administration Guide contains guidance on how to configure and manage installations of JBoss
SOA Platform.

http://creativecommons.org/licenses/by-sa/3.0/

iii

Preface v
1. Document Conventions ... v

1.1. Typographic Conventions .. v
1.2. Pull-quote Conventions .. vi
1.3. Notes and Warnings ... vii

2. We Need Feedback! .. vii

1. Configuration 1
1.1. Introduction to Basic Concepts .. 1
1.2. Stand-Alone Server ... 1
1.3. Clustered ESB Service .. 2
1.4. Java Message Service Providers ... 3

1.4.1. Maximum Sessions per Connection ... 5
1.4.2. JBoss Messaging ... 5
1.4.3. Apache ActiveMQ .. 6
1.4.4. IBM Websphere MQ Series 6.0 ... 6
1.4.5. Oracle Advanced Queuing .. 9
1.4.6. Tibco Enterprise Message Service ... 10
1.4.7. Extension Properties ... 11

1.5. Database Configuration .. 11
1.5.1. Switching Databases Manually ... 12

1.6. Using a JSR-170 Message Store ... 13
1.7. Message Tracing .. 14
1.8. Clustering and Fail-Over Support ... 14
1.9. Using OpenSSO ... 15

1.9.1. Installing and Configuring the OpenSSO in Tomcat ... 15
1.9.2. Configuring OpenSSO for the JBoss SOA Platform .. 17

2. The Registry 19

3. Configuring Web Service Integration 21

4. Default "ReplyTo" End-Point References 23

5. The ServiceBinding Manager 25

6. Monitoring and Management 27
6.1. JMX MBeans .. 27
6.2. The Monitoring and Management Console .. 27

6.2.1. Installing the Enterprise Service Bus Console ... 28
6.2.2. Using an Alternative Database .. 29
6.2.3. Collection Periods .. 29
6.2.4. Services ... 29
6.2.5. Message Counter ... 30
6.2.6. Smooks Transformations .. 31
6.2.7. Dead Letter Service .. 31

6.3. Message Alerts ... 31
6.4. JON for SOA .. 32

6.4.1. Adding a JBoss SOA Platform Server to the JON Inventory 33
6.4.2. JBoss SOA-P Enterprise Service Bus Statistics .. 33
6.4.3. Managing Deployed Enterprise Service Bus Archives .. 36
6.4.4. Automatic Service Discovery ... 36

7. Hot Deployment 39
7.1. Server Mode ... 39
7.2. Stand-Alone ("Bootstrap") Mode ... 40

8. Contract Publishing 41

Administration Guide

iv

8.1. The Contract Application ... 41
8.2. Publishing a Contract from an Action ... 42

9. JBoss Business Process Manager 43
9.1. jBPM Console ... 43
9.2. jBPM Message and Scheduler Services ... 43

10. Performance Tuning 45
10.1. Overview .. 45
10.2. InVM Transport ... 45
10.3. Transport Threads ... 46
10.4. Message Filters ... 46
10.5. "Passing By Reference" ... 46
10.6. HTTP Router .. 46
10.7. HTTP Connector ... 47
10.8. Logging .. 47

10.8.1. HTTP Connector .. 47

A. Revision History 49

v

Preface

1. Document Conventions
This manual uses several conventions to highlight certain words and phrases and draw attention to
specific pieces of information.

In PDF and paper editions, this manual uses typefaces drawn from the Liberation Fonts1 set. The
Liberation Fonts set is also used in HTML editions if the set is installed on your system. If not,
alternative but equivalent typefaces are displayed. Note: Red Hat Enterprise Linux 5 and later includes
the Liberation Fonts set by default.

1.1. Typographic Conventions
Four typographic conventions are used to call attention to specific words and phrases. These
conventions, and the circumstances they apply to, are as follows.

Mono-spaced Bold

Used to highlight system input, including shell commands, file names and paths. Also used to highlight
keycaps and key combinations. For example:

To see the contents of the file my_next_bestselling_novel in your current
working directory, enter the cat my_next_bestselling_novel command at the
shell prompt and press Enter to execute the command.

The above includes a file name, a shell command and a keycap, all presented in mono-spaced bold
and all distinguishable thanks to context.

Key combinations can be distinguished from keycaps by the hyphen connecting each part of a key
combination. For example:

Press Enter to execute the command.

Press Ctrl+Alt+F2 to switch to the first virtual terminal. Press Ctrl+Alt+F1 to
return to your X-Windows session.

The first paragraph highlights the particular keycap to press. The second highlights two key
combinations (each a set of three keycaps with each set pressed simultaneously).

If source code is discussed, class names, methods, functions, variable names and returned values
mentioned within a paragraph will be presented as above, in mono-spaced bold. For example:

File-related classes include filesystem for file systems, file for files, and dir for
directories. Each class has its own associated set of permissions.

Proportional Bold

This denotes words or phrases encountered on a system, including application names; dialog box text;
labeled buttons; check-box and radio button labels; menu titles and sub-menu titles. For example:

Choose System → Preferences → Mouse from the main menu bar to launch Mouse
Preferences. In the Buttons tab, click the Left-handed mouse check box and click

1 https://fedorahosted.org/liberation-fonts/

https://fedorahosted.org/liberation-fonts/
https://fedorahosted.org/liberation-fonts/

Preface

vi

Close to switch the primary mouse button from the left to the right (making the mouse
suitable for use in the left hand).

To insert a special character into a gedit file, choose Applications → Accessories
→ Character Map from the main menu bar. Next, choose Search → Find… from
the Character Map menu bar, type the name of the character in the Search field
and click Next. The character you sought will be highlighted in the Character Table.
Double-click this highlighted character to place it in the Text to copy field and then

click the Copy button. Now switch back to your document and choose Edit → Paste
from the gedit menu bar.

The above text includes application names; system-wide menu names and items; application-specific
menu names; and buttons and text found within a GUI interface, all presented in proportional bold and
all distinguishable by context.

Mono-spaced Bold Italic or Proportional Bold Italic

Whether mono-spaced bold or proportional bold, the addition of italics indicates replaceable or
variable text. Italics denotes text you do not input literally or displayed text that changes depending on
circumstance. For example:

To connect to a remote machine using ssh, type ssh username@domain.name at
a shell prompt. If the remote machine is example.com and your username on that
machine is john, type ssh john@example.com.

The mount -o remount file-system command remounts the named file
system. For example, to remount the /home file system, the command is mount -o
remount /home.

To see the version of a currently installed package, use the rpm -q package
command. It will return a result as follows: package-version-release.

Note the words in bold italics above — username, domain.name, file-system, package, version and
release. Each word is a placeholder, either for text you enter when issuing a command or for text
displayed by the system.

Aside from standard usage for presenting the title of a work, italics denotes the first use of a new and
important term. For example:

Publican is a DocBook publishing system.

1.2. Pull-quote Conventions
Terminal output and source code listings are set off visually from the surrounding text.

Output sent to a terminal is set in mono-spaced roman and presented thus:

books Desktop documentation drafts mss photos stuff svn
books_tests Desktop1 downloads images notes scripts svgs

Source-code listings are also set in mono-spaced roman but add syntax highlighting as follows:

package org.jboss.book.jca.ex1;

import javax.naming.InitialContext;

Notes and Warnings

vii

public class ExClient
{
 public static void main(String args[])
 throws Exception
 {
 InitialContext iniCtx = new InitialContext();
 Object ref = iniCtx.lookup("EchoBean");
 EchoHome home = (EchoHome) ref;
 Echo echo = home.create();

 System.out.println("Created Echo");

 System.out.println("Echo.echo('Hello') = " + echo.echo("Hello"));
 }
}

1.3. Notes and Warnings
Finally, we use three visual styles to draw attention to information that might otherwise be overlooked.

Note

Notes are tips, shortcuts or alternative approaches to the task at hand. Ignoring a note should
have no negative consequences, but you might miss out on a trick that makes your life easier.

Important

Important boxes detail things that are easily missed: configuration changes that only apply to
the current session, or services that need restarting before an update will apply. Ignoring a box
labeled 'Important' will not cause data loss but may cause irritation and frustration.

Warning

Warnings should not be ignored. Ignoring warnings will most likely cause data loss.

2. We Need Feedback!
If you find a typographical error in this manual, or if you have thought of a way to make this manual
better, we would love to hear from you! Please submit a report in Bugzilla: http://bugzilla.redhat.com/
bugzilla/ against the product JBoss Enterprise SOA Platform.

When submitting a bug report, be sure to mention the manual's identifier:
SOA_ESB_Administration_Guide

If you have a suggestion for improving the documentation, try to be as specific as possible when
describing it. If you have found an error, please include the section number and some of the
surrounding text so we can find it easily.

http://bugzilla.redhat.com/bugzilla/
http://bugzilla.redhat.com/bugzilla/

viii

Chapter 1.

1

Configuration
This book teaches system administrators how to configure the JBoss SOA Platform Enterprise
Service Bus for use in financial institutions, banks, telecommunications companies and other large
corporations. This chapter explains how to configure the software after the reader has followed the
initial installation steps in the Getting Started Guide.

1.1. Introduction to Basic Concepts
A Service Oriented Architecture (SOA) is not a single program or technology. Rather, one should
think of it as a software architectural or design paradigm. A hardware bus is a physical connector that
ties together multiple systems and subsystems. Instead of having a large number of point-to-point
connectors between pairs of systems, one can simply connect each system to the bus just once. An
enterprise service bus (ESB) does the same thing in software.

Instead of passing data over the bus via the connections (known as end points), the ESB sits,
logically, in the architectural layer above a messaging system. This messaging system allows
asynchronous communications to occur between services over the ESB. In fact, when one is using an
ESB, everything is, conceptually, either a service (which in this context is one's application software)
or a message being sent between services.

It is important to note that a “service” may not necessarily be a web service. Other types of application,
using various transports such as File Transfer Protocol and Java Message Service, can also be
"services."

Note

At this point, one may be wondering if an Enterprise Service Bus is the same thing as a Service
Oriented Architecture. The answer is, "Not exactly." This is because an ESB does not actually
form a Service Oriented Architecture of itself. Rather, it provides many of the tools than can
be used to build one. In particular, it facilitates the loose-coupling and asynchronous message
passing needed by a SOA. Always think of SOA as being more than just software: it is a series of
principles, patterns and best practices.

The JBoss Enterprise Service Bus is an open source ESB, provided by Red Hat. It supports:

• multiple transports and protocols

• a listener-action model (used to loosely-couple services)

• content-based routing (through JBoss Rules)

• integration with the JBoss Business Process Manager (to facilitate service orchestration.)

1.2. Stand-Alone Server
To learn how to run the JBoss Enterprise SOA Platform server on the same machine as another
JBoss Application Server, study the information on this website: http://www.jboss.org/community/wiki/
ConfiguringMultipleJBossInstancesOnOnemachine.

http://www.jboss.org/community/wiki/ConfiguringMultipleJBossInstancesOnOnemachine
http://www.jboss.org/community/wiki/ConfiguringMultipleJBossInstancesOnOnemachine

Chapter 1. Configuration

2

1.3. Clustered ESB Service
To set up a clustered Enterprise Service Bus environment, configure the nodes in one of the following
two ways:

Figure 1.1. Clustering Scenario One

 Java Message Service Providers

3

Figure 1.2. Clustering Scenario Two

The difference between these methods is that the Enterprise Service Bus-aware gateways are
clustered in the first case and duplicated in the other.

Two other points to bear in mind are that:

• every clustered queue must be deployed on each and every cluster node at all times.

• the client must list all of the nodes in the jndi.properties file. This example code shows how:

java.naming.provider.url=jnp://jawa01:1099
java.naming.provider.url=jnp://jawa02:1099

1.4. Java Message Service Providers
The JBoss Enterprise SOA Platform currently supports the following Java Message Service (JMS)
providers:

• JBoss Messaging

• IBM Websphere MQ Series 6.0

• Tibco EMS

Chapter 1. Configuration

4

Important

Red Hat recommends using JBoss Messaging, which is included with the default configuration.

Any JSR-914 (http://jcp.org/en/jsr/detail?id=914)-compliant Java Message Service
implementation (such as Apache ActiveMQ or OracleAQ) should also work. However, they
have not been fully tested and, hence, are not supported at this time. If intending to try another
vendor's product, please consult their documentation.

Warning

This section is not intended to be a replacement for the configuration documentation that comes
with the supported Java Message Service implementations. Consult that documentation to learn
about advanced capabilities, such as clustering and management.

How Are They Configured?
Configure JMS Listeners and JMS Gateways to listen to Queues and Topics by specifying the
following parameters in their configuration files (namely jbossesb-listener.xml and jbossesb-
gateway.xml):

• jndi-URL

• jndi-context-factory

• jndi-pkg-prefix

• connection-factory

• destination-type

• destination-name

Important

Ensure that the client JAR files for the chosen JMS provider are included in the classpath.

Important

In the following sections it is assumed that:

• the JMS provider is running on 'localhost'

• the connection-factory is 'ConnectionFactory'

• the destination-type is that of 'queue'

• the destination-name is that of 'queue/A'

Please bear these in mind when reading through the rest of this material.

http://jcp.org/en/jsr/detail?id=914

 Maximum Sessions per Connection

5

Note

Every JMSListener and JMSGateway can be configured to use its own JMS provider. Hence,
one can use multiple providers within a single deployment.

The SOA Platform utilizes a connection pool to improve performance when the Java
Message Service is used. The default size of this pool is 20. To change this value, set the
org.jboss.soa.esb.jms.connectionPool property in the transports section of the ESB configuration
file.

The service will keep re-trying for up to thirty seconds if an initial session cannot be obtained. (This
time-out period can be configured by using the org.jboss.soa.esb.jms.sessionSleep property.)

1.4.1. Maximum Sessions per Connection
As its name implies, the JmsConnectionPool pools the JMS Sessions that are to be used by all
Java Message Service components including JMS Listeners, Couriers and Routers.

Be aware that some JMS providers limit the number of sessions per connection. In this case, for
each JmsConnectionPool instance, specify the maximum number of sessions created by each
JMS Connection. Do this by specifying one or both of the following properties in the applicable JMS
component's JNDI configuration file:

org.jboss.esb.jms.max.sessions.per.connection
This is the maximum total number of Sessions allowed per connection (including both XA and
non-XA Session instances.) The default is the maximum number of JMS Sessions allowed for a
JmsConnectionPool, normally 20 (as configured in the jbossesb-properties.xml file.)

org.jboss.esb.jms.max.xa.sessions.per.connection
This is the maximum number of XA Sessions allowed per connection. This value defaults to that of
org.jboss.esb.jms.max.sessions.per.connection.

If neither of the parameters above are configured, the JmsConnectionPool will create a single JMS
Connection and use it to create all of the JMS Sessions.

Make these configuration changes via the generic properties on the JMS Provider configuration, as
per the following example:

<jms-provider ...>
 <property
 name="org.jboss.esb.jms.max.sessions.per.connection" value="5" />
 <property
 name="org.jboss.esb.jms.max.xa.sessions.per.connection" value="1" />
 <!-- And add providers.... -->
</jms-provider>

1.4.2. JBoss Messaging
JBoss Messaging is the default JMS provider for the JBoss SOA Platform.

Set its parameters so that they reflect the following configuration:

jndi-URL="localhost”
jndi-context-factory="org.jnp.interfaces.NamingContextFactory"
connection-factory="ConnectionFactory"

Chapter 1. Configuration

6

destination-type="queue"
destination-name="queue/A"

Always include the jboss-messaging-client.jar file in the class path.

Note

Configuring JBoss Messaging for use in a clustered environment gives one load balancing and
fail-over facilities for JMS. Since this capability has changed between different versions of JBoss
Messaging and may continue to do so, always consult the documentation for the version to be
used.

1.4.3. Apache ActiveMQ

Warning

Apache ActiveMQ has not been fully tested and is, therefore, not a supported Java Message
Service implementation.

To use, set the parameters to the following:

jndi-URL="tcp://localhost:61616”
jndi-context-factory="org.apache.activemq.jndi.ActiveMQInitialContextFactory"
connection-factory="ConnectionFactory"
destination-type="queue"
destination-name="queue/A"

Next, ensure that the class-path contains:

• activemq-core-4.x

• backport-util-concurrent-2.1.jar

Both of these files are located in the lib/ext/jms/activemq sub-directory.

1.4.4. IBM Websphere MQ Series 6.0
Use the following JNDI parameters to configure the IBM Websphere MQ series (WMQ) on any of the
ESB's Java Message Service components:

jndi-URL="localhost:1414/SYSTEM.DEF.SVRCONN”
jndi-context-factory="com.ibm.mq.jms.context.WMQInitialContextFactory"
connection-factory="WMQQueueManager"
destination-type="queue"
destination-name="QUEUEA"

Extra WMQ JAR files
Note that the connection-factory setting should reference the name of the WMQ Queue Manager.
(This must be on the WMQ Server on which the Java Message Service destination is configured.)

In order to connect to a WMQ Provider from the JBoss Enterprise Service Bus, add some additional
JAR files to the $SOA_ROOT/server/$PROFILE/lib/ directory:

 IBM Websphere MQ Series 6.0

7

The following should be on the class-path:

• com.ibm.mq.pcf.jar

• mqcontext.jar

• com.ibm.mq.jar (client JAR)

• com.ibm.mqjms.jar (client JAR)

Note

These JAR files are to be found in the WMQ installation's Java/lib directory. (The client JAR
files differ between MQ 5.3 and MQ 6.0 but the 6.0 JARs should be backward compatible.) Note
that these JARs are not open source and are not provided by Red Hat. You will have to obtain
them from your Websphere and MQ installations.

1.4.4.1. XA Connections
To manage any XA connection resources on the JBoss Enterprise Service Bus using Websphere
MQ, install the WMQ Extended Client JAR file in the $SOA_ROOT/server/$PROFILE/lib/
directory. This JAR file is normally named com.ibm.mqetclient.jar and must be acquired from
one's IBM partner or agent.

Once this library is installed, Websphere MQ will restrict the number of Java Message Service
Sessions per JMS Connection to one. This restriction applies to both XA and non-XA connections.

Next, configure the JmsConnectionPool's appropriate
org.jboss.esb.jms.max.sessions.per.connection property. Simply set the value of this property to 1.
(See the "Max Sessions Per Connection" section of this document for more information.)

Note

The implication of setting this property is that the JmsConnectionPool will consume more Java
Message Service connections on the WMQ Provider.

Note that this setting does not need to be adjusted for any Websphere MQ-based J2EE
Connector Architecture (JCA) provider configuration.

1.4.4.2. JCA Adapter

Note

The default installation of IBM Websphere MQ does not include the JCA Adapter.

Procedure 1.1. Steps to Configure the JCA Adapter
1. Update IBM Websphere MQ

Firstly, update the IBM Websphere MQ version to at least Version 6.0.2.1 in order to obtain the
J2EE Connector Architecture Adapter.

Chapter 1. Configuration

8

2. Deploy the Adapter on the JBoss Enterprise SOA Platform Server
The WMQ JCA Adapter, wmq.jmsra.rar, is found in the WebSphereMQ installation's
Java/lib/jca/ directory. To deploy the adapter, copy this file to the SOA Platform server's
${SOA_ROOT}/server/${CONFIG}/deploy/ directory.

3. Create a JCA Connection Factory Configuration
Configure the SOA Platform Server to use the WMQ JCA Adapter by creating a JCA
Connection Factory configuration file. (The filename does not matter but should be
descriptive.) Copy this file into the SOA Platform Server's ${SOA_ROOT}/server/{CONFIG}/
deploy/ directory.

Example 1.1. JCA Connection Factory Configuration

<?xml version="1.0" encoding="UTF-8"?>
<connection-factories>

<mbean code="org.jboss.jms.jndi.JMSProviderLoader"
 name=":service=JMSProviderLoader,name=WSMQJmsProvider">
 <attribute name="ProviderName">WSMQProvider</attribute>
 <attribute name="ProviderAdapterClass">
 org.jboss.jms.jndi.JNDIProviderAdapter
 </attribute>
 <attribute name="QueueFactoryRef">ConnectionFactory</attribute>
 <attribute name="TopicFactoryRef">ConnectionFactory</attribute>
 <attribute name="FactoryRef">ConnectionFactory</attribute>
 <attribute name="Properties">
java.naming.factory.initial=com.ibm.mq.jms.context.WMQInitialContextFactory
java.naming.provider.url=mqserver.domain.com:1414/SYSTEM.DEF.SVRCONN
 </attribute>
</mbean>

<tx-connection-factory>
 <jndi-name>WSMQJmsXA</jndi-name>
 <xa-transaction/>
 <rar-name>jms-ra.rar</rar-name>
 <connection-definition>
 org.jboss.resource.adapter.jms.JmsConnectionFactory
 </connection-definition>
 <config-property name="SessionDefaultType" type="java.lang.String">
 javax.jms.Queue
 </config-property>
 <config-property name="JmsProviderAdapterJNDI" type="java.lang.String">
 java:/WSMQProvider
 </config-property>
 <max-pool-size>20</max-pool-size>
 <security-domain-and-application>
 JmsXARealm
 </security-domain-and-application>
</tx-connection-factory>

</connection-factories>

The J2EE Connector Architecture Adapter is now available. Access it via the configured
connection factory.

The connection factory is now ready for use. Do so through the JCA Provider configuration to provide
transactional context. (The following example does this in ${SOA_ROOT}/server/${CONFIG}/
deploy/jbpm.esb/META-INF/jboss-esb.xml.)

<?xml version="1.0" encoding="UTF-8"?>

 Oracle Advanced Queuing

9

<jbossesb xmlns="http://anonsvn.labs.jboss.com/labs/jbossesb/trunk/product/
etc/schemas/xml/jbossesb-1.0.1.xsd" parameterReloadSecs="5">

<providers>
 <jms-jca-provider connection-factory="ConnectionFactory"
 jndi-URL="mqserver.domain.com:1414/SYSTEM.DEF.SVRCONN"
 jndi-context-factory="com.ibm.mq.jms.context.WMQInitialContextFactory"
 name="CallbackQueue-JMS-Provider"
 providerAdapterJNDI="java:/WSMQProvider">
 <jms-bus busid="jBPMCallbackBus">
 <jms-message-filter dest-name="queue/CallbackQueue"
 dest-type="QUEUE"/>
 </jms-bus>
 </jms-jca-provider>
</providers>

<services>
 <service category="JBossESB-Internal"
 description="Service which makes Callbacks into jBPM"
 name="JBpmCallbackService">
 <listeners>
 <jms-listener busidref="jBPMCallbackBus" maxThreads="1"
 name="JMS-DCQListener"/>
 </listeners>
 <actions mep="OneWay">
 <action
 class="org.jboss.soa.esb.services.jbpm.actions.JBpmCallback"
 name="action"/>
 </actions>
 </service>
</services>

</jbossesb>

1.4.4.3. Authentication

Warning

The following exception message may appear if Websphere MQ is being used. Fix the problem
by adding the name of the user who runs the JBoss Enterprise SOA Platform to the mqm group.

Message: Unable to get a MQ series Queue Manager or Queue Connection. Reason: failed to
create connection -javax.jms.JMSSecurityException: MQJMS2013: invalid security
authentication supplied for MQQueueManager

The user accessing the MQ must be a member of the mqm group.

1.4.5. Oracle Advanced Queuing

Warning

Oracle Advanced Queuing has not been fully tested and is not a supported Java Message
Service implementation.

To use Oracle Advanced Queuing, set the parameters to:

Chapter 1. Configuration

10

connection-factory=”QueueConnectionFactory”

Use these properties:

<property name="java.naming.factory.initial"
 value="org.jboss.soa.esb.oracle.aq.AQInitialContextFactory"/>
<property name="java.naming.oracle.aq.user" value="<user>"/>
<property name="java.naming.oracle.aq.password" value="<pw>"/>
<property name="java.naming.oracle.aq.server" value="<server>"/>
<property name="java.naming.oracle.aq.instance" value="<instance>"/>
<property name="java.naming.oracle.aq.schema" value="<schema>"/>
<property name="java.naming.oracle.aq.port" value="1521"/>
<property name="java.naming.oracle.aq.driver" value="thin"/>

Note

One may have noticed the reference to the InitialContext factory. This is only needed if
one wishes to avoid having Oracle Advanced Queuing registering with an Lightweight Directory
Access Protocol (LDAP) server.

The AqinitialContextFactory refers to code in the
org.jboss.soa.esb.oracle.aq-4.2.jar file, which is located in the plugins/
org.jboss.soa.esb.oracle.aq directory. To use it, deploy it to the jbossesb.sar/lib
directory.

When creating a queue, always select a payload of the type SYS AQ$_JMS_MESSAGE.

Note

An example jboss-esb.xml configuration file can be found in the ${SOA_ROOT}/samples/
quickstarts/helloworld_action/oracle-aq/ directory.

1.4.6. Tibco Enterprise Message Service
To use Tibco Enterprise Message Service, set the following parameters:

jndi-URL="tcp://localhost:7222”
jndi-context-factory=”com.tibco.tibjms.naming.TibjmsInitialContextFactory"
connection-factory="QueueConnectionFactory"
destination-type="queue"
destination-name="<queue-name>"

Next, check that the client JARs that ship with the Tibco Enterprise Message Service can be found
in the class-path. (These files are located in the tibco/ems/clients/java directory.)

• jaxp.jar

• jndi.jar

• tibcrypt.jar

• tibjmsapps.jar

 Extension Properties

11

• tibrvjms.jar

• jms.jar

• jta-spec1_0_1.jar

• tibjmsadmin.jar

• tibjms.jar

Note

TibcoEMS versions 4.4.1 and 5.0 have been tested with JBoss Enterprise SOA Platform.

1.4.7. Extension Properties
By default, the JNDI configuration (used to retrieve the Java Message Service resources) is set to
inherit all of those properties whose names are prefixed with "java.naming".

Note

Some Java Message Service providers specify different naming prefixes. In order to support
these different schemes, Red Hat provides functionality that allows one to specify individual
property prefixes for each provider.

To use this functionality, define the "jndi-prefixes" property for the relevant jms-provider element
by adding a comma-separated list of the additional prefixes. (The property for extensions is also
configured in this same location.)

<jms-provider name="JMS" connection-factory="ConnectionFactory">
 <property name="jndi-prefixes" value="test.prefix."/>
 <property name="test.prefix.extension1" value="extension1"/>
 <property name="test.prefix.extension2" value="extension2"/>
</jms-provider>

1.5. Database Configuration
The JBoss Enterprise SOA Platform uses a database to persist the ESB service registry and
message store.

Database configuration is handled using the Database Configuration Script. Refer to the SOA
Getting Started Guide for more information. The Database Configuration Script is the supported
mechanism for database configuration. The remaining content in this section is for reference only.

Note

The SQL scripts used for message store database configuration can be found in the PROFILE/
deploy/jbossesb.esb/message-store-sql directory. The service registry , jUDDI v3,
uses Hibernate to persist its data and so there are no SQL scripts for jUDDI v3.

Chapter 1. Configuration

12

1.5.1. Switching Databases Manually
This section explains how to migrate from the default database (Hypersonic) to PostgreSQL. These
steps will be almost identical for any other database.

Warning

This section is for illustrative purposes only. The database configuration should not be done
manually. These instructions have been included in this book to show how the the Database
Configuration Script works and should only be used as a reference. Manual configuration may
prevent the Database Configuration Script from working later. Contact Red Hat Support for
assistance if manually configuring the database.

1. Remove the deploy/hsqldb-ds.xml file and add the following code to a new file named
deploy/postgres-ds.xml:

<?xml version="1.0" encoding="UTF-8"?>
<datasources>
 <local-tx-datasource>
 <jndi-name>DefaultDS</jndi-name>
 <connection-url>jdbc:postgresql://host:port/database</connection-url>
 <driver-class>org.postgresql.Driver</driver-class>
 <user-name>username</user-name>
 <password>password</password>
 <metadata>
 <type-mapping>PostgreSQL 8.3</type-mapping>
 </metadata>
 <check-valid-connection-sql>select count(*) from jbm_user</check-valid-connection-
sql>
 </local-tx-datasource>
</datasources>

This can be modified to suit one's needs with respect to connection parameters and the like.
However, the name of the DS must always be DefaultDS.

2. Replace the contents of deploy/jbossesb-registry.sar/juddi-ds.xml with the same
configuration as that created in the previous step (change the database name if need be.) Ensure
that jndi-name (juddiDB) is kept. �

3. Replace the contents of deploy/jbossesb.esb/message-store-ds.xml with the same
configuration that was created in step one (change the database name if need be.) Again, ensure
that jndi-name (JBossESBDS) is kept. �

4. Replace the database name in the deploy/jbossesb.esb/jbossesb-service.xml file's
message-store-sql element with the following:

<?xml version="1.0" encoding="UTF-8"?>

<server>
 <mbean code="org.jboss.internal.soa.esb.dependencies.DatabaseInitializer"
 name="jboss.esb:service=MessageStoreDatabaseInitializer">
 <attribute name="Datasource">java:/JBossESBDS</attribute>
 <attribute name="ExistsSql">select * from message</attribute>
 <attribute name="SqlFiles">
 message-store-sql/postgresql/create_database.sql
 </attribute>
 <depends>jboss.jca:service=DataSourceBinding,name=JBossESBDS</depends>
 </mbean>

 Using a JSR-170 Message Store

13

</server>

5. Edit the jbossesb-registry.sar/META-INF/persistence.xml file. The hibernate.dialect
property must be set to the type of database that is going to be used as the data source. (It may,
for example, be org.hibernate.dialect.PostgreSQLDialect.)

6. Replace deploy/jboss-messaging/hsqldb-persistence-service.xml with the correct
postgres-persistence-service.xml file for the version of JBM being used.

Note that this needs to match the version. It will not work if there is a mismatch. (These files are
found in the the JBM distribution's src/etc/server/default/deploy directory.)

7. Copy the database driver to the server's lib directory.

8. Start the server.

1.6. Using a JSR-170 Message Store
Multiple message stores can be implemented via the JBoss SOA Platform's plug-in architecture. One
option is to replace the default database with a JSR-170 compliant Java content repository (JCR). The
implementation included is known as Apache Jackrabbit

To enable it, add the following property to the "core" section of ${SOA_ROOT}/server/${CONFIG}/
deploy/jbossesb.sar/jbossesb-properties.xml:

<property name="org.jboss.soa.esb.persistence.base.plugin.jcr" value=
"org.jboss.internal.soa.esb.persistence.format.jcr.JCRMessageStorePlugin"
/>

This adds the JCR plug-in to the list of available message stores. The JCR message store can use an
existing repository via JNDI or can create a standalone instance locally on the application server. The
following list of properties should be added to the "dbstore" section of jbossesb-properties.xml
to configure repository access:

<property name="org.jboss.soa.esb.persistence.jcr.jndi.path" value="jcr"/>
<property name="org.jboss.soa.esb.persistence.jcr.username"
 value="username"/>
<property name="org.jboss.soa.esb.persistence.jcr.password"
 value="password"/>
<property name="org.jboss.soa.esb.persistence.jcr.root.node.path"
 value="JBossESB/MessageStore"/>

• jcr.jndi.path - optional path in JNDI where the repository is found. If this property is not specified,
a new repository will be created based on ${SOA_ROOT}/server/${CONFIG}/deploy/
jbossesb.esb/repository.xml , and the repository data will be stored in ${SOA_ROOT}/
server/${CONFIG}/data/repository/

• jcr.username - username for getting a repository session

• jcr.password - password for getting a repository session

• jcr.root.node.path - the path relative to the root of the repository where messages will be stored.

To test that the JCR Message Store has been configured properly, add the
org.jboss.soa.esb.actions.persistence.StoreJCRMessage action to an existing service.
The action will attempt to store the current message in the JCR store.

Chapter 1. Configuration

14

1.7. Message Tracing
It is possible to trace any and all Messages sent through the JBoss SOA Platform. This is useful for
a number of reasons, including auditing and debugging. To trace messages, they must each have a
unique number in their MessageID field, located in the header. (This is referred to in the Programmers'
Guide.)

All interactions between JBoss SOA components and messages are logged. The log reports contain
the messages' header information, enabling them to be correlated across multiple SOA Platform
instances. Identify them by looking for the following amongst the output:

header: [To: EPR: PortReference < <wsa:Address ftp://foo.bar/> >,
From: null, ReplyTo: EPR: PortReference < <wsa:Address http://bar.
foo/> >, FaultTo: null, Action: urn:dowork, MessageID: urn:foo/bar
/1234, RelatesTo: null]

One can also enable a meta-data log filter, the role of which iss to issue log reports
whenever a message is either input to, or output from, a SOA Platform component. This filter,
org.jboss.internal.soa.esb.message.filter.TraceFilter, can be added to the Filter
section of the JBossESB configuration file, in conjunction with any other filters, as it has no effect
on the input or output messages.

Whenever a message passes through this filter, one will see the following log report at the
Information Level:

TraceFilter.onOutput (header: [To: EPR: PortReference < <wsa:Add
ress ftp://foo.bar/> >, From: null, ReplyTo: EPR: PortReference <
<wsa:Address http://bar.foo/> >, FaultTo: null, Action: urn:dowork
, MessageID: urn:foo/bar/1234, RelatesTo: null])

TraceFilter.onInput (header: [To: EPR: PortReference < <wsa:Addr
ess ftp://foo.bar/> >, From: null, ReplyTo: EPR: PortReference < <
wsa:Address http://bar.foo/> >, FaultTo: null, Action: urn:dowork,
MessageID: urn:foo/bar/1234, RelatesTo: null])

TraceFilter will only log messages if the org.jboss.soa.esb.messagetrace property is set to on/
ON. The default setting is off/OFF. If enabled it will log every message that passes through it.
However, there are facilities for more finely-tuned control over this functionality. To undertake
such configuration work, make sure that the property is set to on/ON. Those Messages for which
org.jboss.soa.esb.message.unloggable is set to yes/YES will now be ignored by the filter.

1.8. Clustering and Fail-Over Support
The JBoss Service-Oriented Architecture Platform supports the fail-over of stateless services.
Consult the Programmers' Guide for detailed information on this topic but the main points to note are
these:

• the ServiceInvoker hides much of the fail-over complexity from users but it only works with
native ESB Messages and, furthermore, not all gateways have been modified to use take advantage
of it. Non-ESB Aware Messages sent to those gateway implementations may not be able to take
advantage of service fail-over.

• when the ServiceInvoker tries to deliver a message to a service it may potentially be given
a choice of multiple end-point references. In order to help it determine which one to select, one
can configure a policy. To do so, set the org.jboss.soa.esb.loadbalancer.policy property in the
jbossesb-properties.xml file. Three policies are provided but custom ones can also be
created. The three pre-packaged ones are:

 Using OpenSSO

15

1. first available: if a healthy service binding is found it will be used until it dies. The next end-
point reference in the list will then be used.

There is no load balancing between the two service instances with this policy.

2. round robin: a typical load balancing policy whereby each end-point reference is "hit" in list
order.

3. random robin: this is like the round robin, but the selection is randomized.

• The end-point reference list used by the the policy may become smaller over time as
"dead" EPRs are removed. When the list is exhausted or the time-to-live of the list cache
is exceeded, the ServiceInvoker will obtain a fresh list of EPRs from the Registry. The
org.jboss.soa.esb.registry.cache.life property defaults to 60000 milliseconds but can be set in the
jbossesb-properties file.

• If none of the end-point references work then use the Message Re-delivery Service.

• To run the same service on more than one node in a cluster, wait until the service registry
cache re-validates first. (Configure the cache re-validation time-out in the ${SOA_ROOT}/
server/${CONFIG}/deploy/jbossesb.sar/jbossesb-properties.xml file.)

<properties name="core">
 <!-- 60 seconds is the default -->
 <property name="org.jboss.soa.esb.registry.cache.life" value="60000"/>
</properties>

• Setting the org.jboss.soa.esb.failure.detect.removeDeadEPR property to true, means that
whenever the Service Invoker suspects an end-point reference has failed, it will remove it
from the registry. (The default setting is false because this should be used with extreme care. A
service that is simply overloaded and slow to respond could, potentially, have its end-point reference
removed from the registry by mistake.) These "orphaned" services will not be subject to any further
interactions and may have to be restarted.

1.9. Using OpenSSO
The JBoss Service-Orientated Architecture Platform includes the Open Web Single Sign-On
service software (OpenSSO.) Use this to simplify the implementation of a transparent service.

Note

To learn more about OpenSSO, please visit the project's website at http://opensso.dev.java.net.

1.9.1. Installing and Configuring the OpenSSO in Tomcat
There is an known issue with deploying OpenSSO on the JBoss Enterprise SOA Platform but it can be
deployed to other web-containers for use with the SOA Platform.

Note

Details of the deployment issue can be found at https://jira.jboss.org/jira/browse/SOA-731.

http://opensso.dev.java.net
https://jira.jboss.org/jira/browse/SOA-731

Chapter 1. Configuration

16

The following instructions teach the reader how to deploy the OpenSSO onto Tomcat. Information
about using the OpenSSO with other web-containers can be found at https://opensso.dev.java.net/
public/use/docs/fampdf/index.html.

Procedure 1.2. Deploying OpenSSO to Tomcat
1. Download the Tomcat software from the Apache Project's website at: http://tomcat.apache.org.

Note

Red Hat customers can obtain and install Tomcat from the software repository, without
needing to download it from the Apache Project's website.

2. Extract the archived files into a directory. (The following examples assume that this directory is
called /opt/tomcat.)

3. Edit /opt/tomcat/bin/catalina.sh (catalina.bat for Windows deployments) and add -
Xmx1G to the JAVA_OPTS property. This specifies the maximum heap size of the JVM instance
as one gigabyte.

Example 1.2. Adding max size to JAVA_OPTS

JAVA_OPTS="$JAVA_OPTS -Xmx1G -
Djava.util.logging.manager=org.apache.juli.ClassLoaderLogManager"

4. Now download opensso.zip (build 4.5) from the OpenSSO website: https://
opensso.dev.java.net/public/use/index.html.

5. Extract the contents of opensso.zip and copy opensso.war from deployable-war/ to /
opt/tomcat/webapps/.

6. To deploy JBoss Enterprise Service-Oriented Architecture Platform and Tomcat on the same
machine, alter the Tomcat port specified in the $tomcat/server.xml as per this example:

Example 1.3. Updating Tomcat port

<Connector port="8090" protocol="HTTP/1.1">
<Connector port="8099" protocol="AJP/1.3" redirectPort="8443"/>

7. Start Tomcat by running the /opt/tomcat/bin/startup.sh shell script (or the
startup.bat batch file, if one is using a Microsoft Windows deployment.)

8. Open http://localhost:8090/opensso in a web browser client.

9. Click on Create Default Configuration. This causes OpenSSO to configure itself with its default
values.

10. Enter passwords for the default user and agent accounts. The two accounts cannot have the
same password.

11. Now you can login to http://localhost:8090/opensso with the credentials you supplied in the
previous step.

https://opensso.dev.java.net/public/use/docs/fampdf/index.html
https://opensso.dev.java.net/public/use/docs/fampdf/index.html
http://tomcat.apache.org
https://opensso.dev.java.net/public/use/index.html
https://opensso.dev.java.net/public/use/index.html
http://localhost:8090/opensso
http://localhost:8090/opensso

Configuring OpenSSO for the JBoss SOA Platform

17

1.9.2. Configuring OpenSSO for the JBoss SOA Platform
The AuthContext class found in openssoclientsdk.jar performs the authentication. The
following steps describe the configuration required to enable this integration.

Procedure 1.3. Configuring OpenSSO integration
1. Edit ${SOA_ROOT}/server/${CONFIG}/conf/login-config.xml

You need to have the following configuration in login-config.xml to integrate with OpenSSO.
The orgName and the moduleName properties must be the same values as are configured in the
OpenSSO system. The last property shows where the AMConfig.properties file is located.

Example 1.4. Editing login-config.xml for OpenSSO

<application-policy name="OpenSSOLogin">
 <authentication>
 <login-module
 code="org.jboss.soa.security.opensso.OpenSSOLoginModule"
 flag="required">
 <module-option name="orgName">opensso</module-option>
 <module-option name="moduleName">DataStore</module-option>
 <module-option name="amPropertiesFile">
 props/AMConfig.properties
 </module-option>
 </login-module>
 </authentication>
</application-policy>

2. Configure ${SOA_ROOT}/server/${CONFIG}/conf/props/AMConfig.properties

By default this file contains configuration information for the hostname of localhost,
port 8080 and the context path of opensso. You can edit the configuration by hand, but
we recommended using the supplied setup script, setup.sh (setup.bat for Windows
deployments).

The setup script is found in the directory ${SOA_ROOT}/samples/quickstarts/opensso/
opensso-sdk/scripts . You must run this script from the opensso-sdk directory to ensure
that the classpath will be correct.

[opensso-sdk]$./scripts/setup.sh
Debug directory (make sure this directory exists): /var/tmp
Password of the server application: password
Protocol of the server: http
Host name of the server: gatekeeper.company.com
Port of the server: 8080
Server's deployment URI: opensso
Naming URL (hit enter to accept default value, http://gatekeeper.company.com:8080/
opensso/namingservice):
[opensso-sdk]$

The script will prompt you for the values it needs and create your new AMConfig.properties
file in the resources directory. You then need to copy this new file to ${SOA_ROOT}/
server/${CONFIG}/conf/props/ and overwrite the existing one.

Having successfully undertaken the two steps above, one is now able to use the OpenSSOLogin
module as a JAAS plug-in provider.

It can also be used as an identity provider, allowing one to secure the Service-Oriented Architecture
Platform:

Chapter 1. Configuration

18

Example 1.5. Using the OpenSSOLogin module as a identity provider

<service category="OpenSSO"
 name="SimpleListenerSecured" description="Hello World">
 <security moduleName="OpenSSOLogin" runAs="adminRole"/>
 <listeners>
 <jms-listener name="JMS-Gateway" busidref="quickstartGwChannel"
 maxThreads="1" is-gateway="true"/>
 </listeners>

 <actions mep="OneWay">
 <action name="debug" class="org.jboss.soa.esb.actions.SystemPrintln">
 <property name="printfull" value="false"/>
 <property name="message" value="In Service1"/>
 </action>
 </actions>
</service>

Having studied this chapter, you should now be confident to configure the SOA Platform company's
needs. The rest of the book explains day-to-day administration.

Chapter 2.

19

The Registry
At the heart of all JBoss Service-Oriented Architecture Platform deployments lies a Registry.
This is fully described in the JBoss SOA Platform Services Guide (in which ways in which it can be
configured are also discussed.) However, it is worth briefly making note of the following:

• When services run, they usually place the end-point reference (through which they can be
contacted) into the registry. If services have been correctly developed, they should automatically
remove these end-point references from the registry when they terminate. However, in certain
circumstance, entries will be left in the registry. Some causes of these situations include machine
crashes and incorrect programming. These "stale" entries prevent the correct execution of
subsequent deployments. If this occurs, these entries can be removed manually but always ensure
that the system is in an inactive state before doing so.

• There is an optional feature that makes the Enterprise Service Bus remove all existing service
entries from the Registry prior to adding a new instance. To use it, simply set the end-point
reference's remove-old-service tag name to true.

Warning

Note that this option should be used with care, because the entire service will be removed,
including all end-point references.

20

Chapter 3.

21

Configuring Web Service Integration
The JBoss Service-Oriented Architecture Platform exposes web service end points through the
SOAPProcessor action. This action integrates the JBoss Webservices container with the Enterprise
Service Bus, allowing one to invoke JBossWS end points over any channel supported by the SOA
Platform.

Important

JBossWS 2.0.1.SP2 (native) or higher must be installed on one's JBoss Service-Oriented
Architecture Platform server in order to be able to use the SOAPProcessor action.

Note

Refer to the Programmers' Guide for more information.

22

Chapter 4.

23

Default "ReplyTo" End-Point
References
The JBoss Enterprise SOA Platform employs end-point references to address messages going to
and from services. As described in the Programmers' Guide, messages have headers that contain
recipient addresses and sequential numbers (the latter being used for the purpose of correlation.)
Message headers may also contain further optional addresses for replies, faults and so forth. Because
the recommended interaction pattern within the JBoss Service-Oriented Architecture Platform
is based on a one-way message exchange, messages may not necessarily receive responses
automatically: it is dependent on the individual application as to whether or not a sender expects a
response.

A reply address is an optional part of the header's routing information, which an application can set
if necessary. When a response is required and the ReplyTo end-point reference has not been set,
the JBoss Enterprise SOA Platform will use a default value, specific to each type of transport. Note
that some of these ReplyTo defaults will only work correctly if the system administrator performs
additional configuration work:

• if the Java Messaging Service is being used, the software assumes it to be in the form of a queue
with the same name as that which was used to deliver the original request, (which was prefixed with
'_reply.')

• if it is the JDBC that is being employed, the software assumes that it is using a table in the same
database with the same name as that which was used to deliver the original request, (which was
prefixed with '_reply_table.') Also, please bear in mind that the new table needs the same columns
as the request table.

• if local and remote files are being used, then no administrative changes are required. Responses
are written into the same directory as the request, albeit with a unique suffix in order to ensure that
only the original sender will collect the response.

24

Chapter 5.

25

The ServiceBinding Manager
In order to run multiple JBoss Enterprise SOA Platform servers on the same machine, use the the
ServiceBinding Manager to centralize the port configuration for all of the instances. (The Platform
includes a sample "bindings" file, docs/examples/binding-manager/sample-bindings.xml.)

Note

The JBoss Enterprise Application Platform Server documentation contains detailed instructions,
that teaches one how to configure the ServiceBinding Manager.

Note

If jboss-messaging is being used as a Java Messaging Service provider, ensure that the
ServiceBinding Manager configuration for it matches with the contents of the remoting-
service.xml file.

26

Chapter 6.

27

Monitoring and Management
The JBoss Enterprise SOA Platform provides several ways to monitor and manage the server. Read
this chapter to learn about them.

6.1. JMX MBeans
In the jboss.esb domain, one will see the following types of M-Bean:

deployment=<ESB package name>
The Deployments M-Bean shows the statuses of all deployed ESB packages. It also provides
information about their XML configurations.

listener-name=<Listener name>
This M-Bean displays all of the deployed listeners. It shows information about their XML
configurations, start times, maxThreads and states. The system administrator has the option of
initializing, starting, stopping or destroying each listener.

category=MessageCounter
The message counters display all of the services deployed for a listener, each service's
separate actions and counts of how many messages were processed, as well as the time taken to
process each message.

service-name=<Service name>
This M-Bean displays a variety of statistics for each service, including message counts, state,
average size and processing time. The message counts may be reset and services may be started
and stopped.

Note

In addition to the M-Beans listed above, the Java Message Service domain provide some that
show statistics for message queues. This information can be useful when debugging or analysing
performance.

6.2. The Monitoring and Management Console
The JBoss Enterprise SOA Platform includes a Monitoring and Management Console. It requests
and displays M-Bean information from each node within the Enterprise Service Bus registry. To
access the console, load the following address in a web browser: http://localhost:8080/jbossesb.

The Monitoring and Management Console gathers information on the performance of different
deployed ESB services. It records a history of these.

The Monitoring and Management Console lets system administrators see message counts by
service, action and node. It also displays other information such as processing times, numbers of
failed messages, bytes transferred and time-stamps for the last successfully-processed and failed
messages.

http://localhost:8080/jbossesb

Chapter 6. Monitoring and Management

28

Figure 6.1. JBoss Enterprise Service Bus Monitoring and Management Console

The Monitoring and Management Console is installed by default in the All and Production
server configurations. It is also easy to install in other configurations if required.

6.2.1. Installing the Enterprise Service Bus Console
Install the ESB Console running the command ant deploy in the ${SOA_ROOT}/tools/
console/management-esb/ directory. The script will determine automatically whether to deploy to
the production or default configuration by checking for the existence of jbossesb.sar in each
of them. (Preference is given to the production configuration. If neither is found then deployment
will stop with an error message.

To deploy to a different server configuration, the build.xml must first be edited.

Procedure 6.1. Manually Installing the Console
1. To override the default choice of server configuration, edit the file ${SOA_ROOT}/tools/

console/management-esb/build.xml by adding the following line:

<property name="org.jboss.esb.server.config" value="my_config"/>

In the above, value is the name of the server configuration to which you wish to deploy, it being
my_config in this example. Add this line to the beginning of the file with the other property
settings.

2. If Hypersonic is not being used as the console's back-end database, one will need to edit the
${SOA_ROOT}/tools/console/management-esb/db.properties file to define the correct
database settings. (Read Section 6.2.2, “ Using an Alternative Database ” to learn more about
this.)

3. Go to the ${SOA_ROOT}/tools/console/management-esb directory and run ant deploy

Example 6.1. Deploying the Enterprise Service Bus Console on Linux/Unix

$ cd tools/console/management-esb
$ ant deploy

 Using an Alternative Database

29

6.2.2. Using an Alternative Database
The Hypersonic Database is the default "back-end" for the Management and Monitoring
Console. However, Red Hat neither recommends nor supports the use of Hypersonic in production
environments. When deploying to live, always change the database to a supported configuration. The
process to do so is described in this section.

The ${SOA_ROOT}/tools/console/management-esb/db.properties file defines the
database settings for the console. By default this file contains the following line: db=hsqldb. This line
sets Hypersonic as the database to use. To change the database, simply edit this line. The following
values are allowed:

• hsqldb - Hypersonic

• mysql - MySQL

• oracle9i - Oracle 9i

• oracle10g - Oracle 10g

Once the file has been edited, deploy the console as described in Section 6.2.1, “ Installing the
Enterprise Service Bus Console ”.

Next, add the JDBC driver JAR file into the server's ${SOA_ROOT}/server/${CONFIG}/lib
directory. (JBoss ships with hsqldb.jar in this directory by default.)

For MySQL users, there is an addition step: it may also be necessary to create the database statistics
before deploying. Please look over the management-ds.xml file to see if the database has been
listed in the management-esb/src/main/resources/${DB}/ directory.

6.2.3. Collection Periods
The default period of time between data collections, (known as the polling period), is ten minutes. This
is specified at build time. The property is pollMinuteFrequency and is found in the management-esb/
db.properties file.

The current polling period can be changed at run-time. To do so, use either the Monitoring and
Management Console or the jmx-console to edit the pollMinuteFrequency property, found in the
jboss.esb:service=DataFilerScheduler M-Bean.

Note

The Collect Statistics button at the top of the Console's page allows the system administrator to
force an immediate collection of statistics.

6.2.4. Services
The following information is displayed for each ESB service:

• the processing time per action

• processed count per action

• failed count per action

• overall message count per service

Chapter 6. Monitoring and Management

30

Click on any one of these statistics to be presented with a page charts its history.

By default, the last ten records will be shown. To display more, change the value in the Display
Records text box or alter the charting period. The available chart periods are:

• the last five minutes

• hour

• day

• week

• month

• all records

Figure 6.2. Monitoring and Management Console Statistical Charting Feature

6.2.5. Message Counter
The Monitoring and Management Console also provides an overall count of the messages that
pass through the Enterprise Service Bus. The Message Counter keeps track of the number of both
successful and failed messages, along with their processed bytes and the dates.

 Smooks Transformations

31

Figure 6.3. Monitoring and Management Console Message Counter

6.2.6. Smooks Transformations
There is an M-Bean that keeps track of the count of "processed" Smooks Transformations and the
time taken to process each. It also keeps track of the overall count of the Transformation Chain.

Figure 6.4. Monitoring and Management Console Transformations Functionality

6.2.7. Dead Letter Service
As has been mentioned in the Programmers' Guide, the DeadLetterService (DLQ) can be used to
store those messages that cannot be delivered. This is a JBoss ESB service and can, therefore,
be both monitored and inspected. Note, however, that the DeadLetterService is not used if the
underlying transport has native support, as, for example, is the case with the Java Messaging Service.
In that case, one must inspect the Dead Letter Service and any transport-specific equivalent.

6.3. Message Alerts
The JBoss Web Console is a utility that is available from within both the JBoss Application Server
and the JBoss ESB Server. It is capable of monitoring and sending alerts based on JMX M-Bean
properties. Use this functionality to receive alerts for Enterprise Service Bus-related events, such as
when the Dead Letter Service Counter has reached a certain threshold.

These are the steps one needs to undertake to configure it:

1. Add your SMTP settings to ./deploy/mail-service.xml.

2. Open ./deploy/monitoring-service.xml and "un-comment" the EmailAlertListener section
and add appropriate header-related information.

3. Create a ./deploy file to serve as the Monitor M-Bean.

<?xml version="1.0" encoding="UTF-8"?>
<server>
 <mbean code="org.jboss.monitor.ThresholdMonitor"
 name="jboss.monitor:service=ESBDLQMonitor">
 <attribute name="MonitorName">
 ESB DeadLetterQueue Monitor
 </attribute>

 <attribute name="ObservedObject">

Chapter 6. Monitoring and Management

32

 jboss.esb:category=MessageCounter,
deployment=jbossesb.esb,service-name=DeadLetterService
 </attribute>

 <attribute name="ObservedAttribute">
 overall service message count
 </attribute>
 <attribute name="Threshold">4</attribute>
 <attribute name="CompareTo">-1</attribute>
 <attribute name="Period">1000</attribute>
 <attribute name="Enabled">true</attribute>
 <depends-list optional-attribute-name="AlertListeners">
 <depends-list-element>
 jboss.alerts:service=ConsoleAlertListener
 </depends-list-element>
 <depends-list-element>
 jboss.alerts:service=EmailAlertListener
 </depends-list-element>
 </depends-list>
 <depends>jboss.esb:deployment=jbossesb.esb</depends>
 </mbean>
</server>

This M-Bean will serve as a monitor and, once the DeadLetterService counter reaches 5, it will
send an e. mail to the address(es) specified in the monitoring-service.xml file. Note that the
alert is only sent once, this being when the threshold has been reached. To be alerted again once
the counter has been reset, edit the alerted flag on the Monitoring Service M-Bean (in this case,
jboss.monitor:service=ESBDLQMonitor.)

Note

To learn more about how to use the JBoss Web Console Monitoring functionality, please study
http://www.jboss.org/community/docs/DOC-12659.

6.4. JON for SOA
The JBoss Operations Network (JON) program is an additional tool that system administrators can
use to monitor and administer the JBoss SOA Platform servers.

This software allows one to undertake inventorying, administration, monitoring, deployment and
updating tasks. It performs these jobs by applying a centrally-managed model equipped with a
customizable web-portal interface.

Note

To learn more about the JBoss Operations Network project, visit its official website at http://
www.jboss.com/products/jbosson.

JON for SOA is a stand-alone release of the JBoss Operations Network software. It includes
additional functionality specifically designed for the JBoss SOA Platform. This section provides an
overview of that functionality and assumes that the readership already has a basic knowledge of the
JBoss Operations Network product.

http://www.jboss.org/community/docs/DOC-12659
http://www.jboss.com/products/jbosson
http://www.jboss.com/products/jbosson

 Adding a JBoss SOA Platform Server to the JON Inventory

33

Important

In contrast to the various embedded JBoss SOA Platform consoles, access to the JON Console
is not restricted to the local server. This grants the user with greater flexibility, but also means
that the inherent restrictions of the latter cannot be relied upon to ensure the security of the JON
Console.

6.4.1. Adding a JBoss SOA Platform Server to the JON Inventory
The JBoss SOA Platform Server will appear in JON as a resource of the type JBossAS Server. The
description against it will be "JBoss Enterprise SOA Platform".

Important

An error message will be seen when JON is used to access the SOA Platform Server for the first
time. This is simple because it has not yet been provided with the authentication details for a valid
SOA Platform user that it needs.

Configure the SOA user information by changing the settings in the ${SOA_ROOT}/
server/${CONFIG}/conf/props/soa-users.properties file. This information is
entered as the Principal and Credentials (user-name and password) in the server's Connection
Properties. (These details are accessed by selecting the server and then the INVENTORY tab.
The error message described above also contains a shortcut link to the connection properties
page.)

6.4.2. JBoss SOA-P Enterprise Service Bus Statistics
Having correctly configured the server to use the JBoss Operations Network tool, one should now
find the item JBoss ESB Statistics available above the Resources menu entry.

Click on the JBoss ESB Statistics link to display an overview of the Enterprise Service Bus instance.
To view all deployed ESB packages, click on the JBoss ESB Deployment link.

After that, one can drill-down into each ESB package to view detailed statistics about the components
of which the packages consist. The metrics collected and displayed will vary depending on the
component being viewed.

JBoss ESB Statistics
Message Counts (Failed) Last Failed Message Date
Last Successful Message Date Processed Bytes
Message Count (Successful) Message Count (Total)

ESB Deployment
Deployment Type

Service
Overall Bytes Failed Overall Bytes Processed
Overall Bytes Message Count
Message Count (avg) Message Count (avg) per Minute

Listener Configuration
Start Date Maximum Number of Threads

Chapter 6. Monitoring and Management

34

MEP Service Category
Service Description Service Name

Actions
Messages Successfully Processed (avg) Message Count (avg)
Messages Failed Messages Failed (avg)
Processing Time Overall Bytes Processed
Message Count Messages Successfully Processed
Overall Bytes Overall Bytes Failed
Message Count (avg) per Minute Messages Failed (avg) per Minute
Messages Successfully Processed (avg) per
Minute

Note

All of the metrics listed above are self-explanatory with two exceptions:

1. MEP is a string that indicates the Message Exchange Protocol being used, an example being
"OneWay."

2. Deployment Type is a string that indicates the the deployed ESB's class, an example being
"JBoss4ESBDeployment."

Important

The values displayed in the Enterprise Console's user interface for message count trend upwards
over time, irregardless of the data collection interval. For example, if, at 12:00 the user starts
the JON server and agent, deploys an ESB archive and, before 13:00, sends 1000 messages
through the a service deployed in the ESB archive, then later specifies a data "Metric Collection
Schedule" of from 14:00 to 15:00, (and no messages are processed during this time period), the
message count metric displayed will still be 1000.

The only way in which the user can make the message counter display a zero value is to reset it.

All of the standard JBoss Operations Network functionality such as alerts can be configured for any
of an Enterprise Service Bus deployment, service or action, by being based on these statistics.

 JBoss SOA-P Enterprise Service Bus Statistics

35

Figure 6.5. Displayed Metrics

Figure 6.6. Service Metrics Disabled by Default

Chapter 6. Monitoring and Management

36

Figure 6.7. Action Metrics Disabled by Default

Important

Any values displayed in red are disabled by default.

6.4.3. Managing Deployed Enterprise Service Bus Archives
The JON for SOA software also allows one to deploy or delete Enterprise Service Bus archives. To
access this functionality, go to the JBoss ESB Statistics screen, and click on the INVENTORY tab. It
will then be visible under Child Resources.

A new Enterprise Service Bus archive can be deployed by selecting JBoss ESB Deployment from
the Create New menu. Then, from the Create New Resource page, specify which archive to deploy
and to where it should be sent (which, under normal circumstance, would be one's deploy directory.)
Only compressed files can be uploaded; the Deploy Zipped option tells whether it should be deployed
as a compressed or an exploded archive.

Existing archives can be deleted. To do so, simply go to the Child Resources list, tick their entries
and then click DELETE.

Note

Historical deploy and delete requests can be viewed in this section as well.

6.4.4. Automatic Service Discovery
The JBoss Operations Network Agent will automatically detect Enterprise Service Bus archives that
have been deployed or deleted independently of the JON interface. Newly-deployed ESB archives are
added to the server inventory automatically but deleted archives are not removed in the same way.

 Automatic Service Discovery

37

The default agent is configured to only perform this "service discovery" once every twenty-four hours.
There are two ways in which to change this time period:

1. by editing the conf/agent-configuration.xml file. (Restart the agent for the change to take
effect.)

<entry key="rhq.agent.plugins.service-discovery.period-secs" value="86400"/>

Figure 6.8. Service discovery period setting in conf/agent-configuration.xml

2. by using the JBoss Operations Network Console to edit the configuration.

JBoss Operations Network Agents can be added to the inventory of server resources. Once
added, their configurations can be edited like those of any other inventoried resource. Do so by
changing the Service Discovery Period value under the CONFIGURE tab of the applicable
resource. (There is no need to restart the Agent in order for the change to take effect.)

In contrast to the SOA Platform's embedded consoles, there is no way to force the JBoss Operations
Network Console to perform an immediate collection of new data. Buttons such as Get Current
Values in the Metric Data tab only update the display to reflect the most recently collected data. To
obtain an immediate update, one can, however, set the collection period to a very low value such as
thirty seconds (and then set the interval back to the previous figure afterwards.)

Important

For performance reasons, Red Hat does not recommend lowering the collection period by a
significant amount.

38

Chapter 7.

39

Hot Deployment

7.1. Server Mode
The JBoss Service-Oriented Architecture Platform supports hot deployment. It achieves this by
regularly checking the deploy directory for new files. In addition, it also checks those files that have
already been deployed for specific changes. When these changes are detected, the files are removed
from deployment by the server and the new files are substituted in their place. This latter case os
referred to as hot re-deployment.

The specific changes monitored vary by package type.

1. SAR files

The jbossesb.sar is hot deploy-able. It will re-deploy when:

• the archive's time-stamp changes, (if the SAR file is compressed.)

• the timestamp of the META-INF/jboss-service.xml file changes, (if the SAR file is in
exploded form.)

2. ESB files

Any *.esb archive will re-deploy when

• the time-stamp of the archive changes, (if the ESB file is compressed.)

• The time-stamp of the META-INF/jboss-esb.xml changes, (if the ESB is in exploded form.)

The actions have life-cycle support. This means that, upon hot re-deployment, they terminate
"gracefully," by finishing active requests. They will not accept any more incoming messages
until they have re-started. (All of this occurs automatically.) In order to update just one action,
use Groovy scripting to modify an action at run-time (see the Groovy Quick Start at http://
wiki.jboss.org/wiki/Wiki.jsp?page=JBossESBQuickStart.)

3. Rule Files

There are two ways in which to refresh rule files (DRL or DSL files):

• by re-deploying the jbrules.esb archive.

• by turning on the ruleReload feature in the Action Configuration (see
JBossESBContentBasedRouting at http://wiki.jboss.org/wiki/Wiki.jsp?
page=JBossESBContentBasedRouting.)

After doing so, if a change to a rule file is detected, it will be re-loaded.

4. Transformation Files

There are also two ways of refreshing transformation files:

• by re-deploying the ESB archive in which the transformation file resides.

• by sending out a notification message over the Java Message Service (topic) using the
Enterprise Service Bus Console. The Smooks processors will receive this event and be
prompted to re-load.

http://wiki.jboss.org/wiki/Wiki.jsp?page=JBossESBQuickStart
http://wiki.jboss.org/wiki/Wiki.jsp?page=JBossESBQuickStart
http://wiki.jboss.org/wiki/Wiki.jsp?page=JBossESBContentBasedRouting
http://wiki.jboss.org/wiki/Wiki.jsp?page=JBossESBContentBasedRouting

Chapter 7. Hot Deployment

40

5. Business Process Definitions

New versions of the JBoss Business Process Management Tool's Business Process
Definitions can be deployed to the jBPM database via the Eclipse plug-in. Be aware that a new
version will only be used by fresh process instances. Existing processes will finish their life-cycles
still using the previous definition. For more details, please refer to the jBPM User Guide.

7.2. Stand-Alone ("Bootstrap") Mode
When the Boot-Strapper mode is run, Enterprise Service Bus archives will not be deployed. There
can be only one jboss-esb.xml configuration file per node. The node monitors the time-stamp on
this file and re-reads its contents if a change occurs. In order to updates rules, use the ruleReload
functionality.

Finally, to update Business Process Definitions, use the same process that is outlined above.

Chapter 8.

41

Contract Publishing
If trying to integrate an end-point, one might sometimes be required to provide information about both
it and the operations it supports. This commonly occurs when those web service end-points exposed
by the SOAPProcessor action are utilized (this is described in the Programmers' Guide.)

8.1. The Contract Application
The Contract Application is supplied for this reason. Access it via http://127.0.0.1:8080/contract/.

Important

This application is only offered as a Technical Preview. Note that it will be superseded in a later
release.

Note

The Contract Application is also bundled inside the JBoss SOA Console. If the console is to be
deployed, first remove the contract.war file from the SOA Platform server's deploy directory.

Figure 8.1. JBoss ESB "Contract" Application

http://127.0.0.1:8080/contract/

Chapter 8. Contract Publishing

42

As can be seen, it groups the end-points according to the services with which they are associated.
This is known as servicing.

Another thing to notice is how some of them have an active "Contract" hyperlink. Those visible here
are for webservice end-points exposed via the SOAPProcessor. These hyperlinks point to the WSDL.

8.2. Publishing a Contract from an Action
The JBoss Enterprise SOA Platform "discovers" end-point contracts by using the action
pipeline that has been configured on the service. Initially, it looks for the first action in the pipeline
that publishes contract information. If none of the actions do so, then the Contract Application will
display the words

Unavailable on Contract

.

In order to publish contract information, an action receives the
org.jboss.internal.soa.esb.publish.Publish annotation as follows. (This example uses
the SOAPProcessor for demonstrative purposes):

@Publish(JBossWSWebserviceContractPublisher.class)
public class SOAPProcessor extends AbstractActionPipelineProcessor {
 //TODO: implement
}

Note

Some example SOAPProcessor source code can be found here: http://anonsvn.jboss.org/repos/
labs/labs/jbossesb/trunk/product/services/soap/src/main/java/org/jboss/soa/esb/actions/soap/
SOAPProcessor.java.

Next, implement org.jboss.soa.esb.actions.soap.ContractPublisher. (One only needs to
implement a single method):

public ContractInfo getContractInfo(EPR epr);

Note

An example, depicting JBossWSWebserviceContractPublisher code can be viewed here:
http://anonsvn.jboss.org/repos/labs/labs/jbossesb/trunk/product/services/soap/src/main/java/org/
jboss/soa/esb/actions/soap/JBossWSWebserviceContractPublisher.java.

http://anonsvn.jboss.org/repos/labs/labs/jbossesb/trunk/product/services/soap/src/main/java/org/jboss/soa/esb/actions/soap/SOAPProcessor.java
http://anonsvn.jboss.org/repos/labs/labs/jbossesb/trunk/product/services/soap/src/main/java/org/jboss/soa/esb/actions/soap/SOAPProcessor.java
http://anonsvn.jboss.org/repos/labs/labs/jbossesb/trunk/product/services/soap/src/main/java/org/jboss/soa/esb/actions/soap/SOAPProcessor.java
http://anonsvn.jboss.org/repos/labs/labs/jbossesb/trunk/product/services/soap/src/main/java/org/jboss/soa/esb/actions/soap/JBossWSWebserviceContractPublisher.java
http://anonsvn.jboss.org/repos/labs/labs/jbossesb/trunk/product/services/soap/src/main/java/org/jboss/soa/esb/actions/soap/JBossWSWebserviceContractPublisher.java

Chapter 9.

43

JBoss Business Process Manager

9.1. jBPM Console
The jBPM Web Console is deployed by default as part of the jbpm.esb file. View it by loading this
address in a web browser: http://localhost:8080/jbpm-console/. Please refer to the jBPM User Guide
for detailed instructions on its use.

9.2. jBPM Message and Scheduler Services
The Business Process Manager's default configuration uses its own JobExecutor and the database
implementations of the message and scheduler services.

<service name="message"
 factory="org.jbpm.msg.db.DbMessageServiceFactory" />
<service name="scheduler"
 factory="org.jbpm.scheduler.db.DbSchedulerServiceFactory" />
<bean name="jbpm.job.executor" class="org.jbpm.job.executor.JobExecutor">
 ...
</bean>

The JBoss Enterprise SOA Platform also allows one to use ITS message and scheduler services
for the jBPM in place of those supplied natively by the latter. These additional services are included:

• a JMS-based Message Service that uses JCA in-flow

• a Scheduling Service based on JBoss Messaging.

To use the JMS-based Message Service and the JBoss Messaging-based Scheduler Service, simply
replace the default jBPM configuration files found in ${SOA_ROOT}/server/production/deploy/
jbpm.esb/ with those located in ${SOA_ROOT}/server/production/deploy/jbpm.esb/
config/jmsscheduler/.

Example 9.1. Replacing the jBPM configuration Using a BASH Terminal on Linux

$ cd ${SOA_ROOT}/server/production/deploy/jbpm.esb/
$ cp -fb config/jmsscheduler/jbpm.cfg.xml.config jbpm.cfg.xml
$ cp -fb config/jmsscheduler/jbpm-service.xml.config jbpm-service.xml
$ cp -fb config/jmsscheduler/jbm-queue-service.xml.config jbm-queue-service.xml

Important

Note that the names of the replacement configuration files have .config appended to them and,
therefore, must be renamed.

http://localhost:8080/jbpm-console/

44

Chapter 10.

45

Performance Tuning

10.1. Overview
Read this chapter to learn how to optimize the performance of the JBoss Enterprise Service Bus for
one's specific environment. Before doing any work however, realize that, as with any system, there
will be a compromise between performance and reliability. (The default configuration is designed
for maximum reliability and stability, which may have an adverse affect on performance in certain
circumstances.)

10.2. InVM Transport
An InVM Transport (In Virtual Machine) invokes a service by using the ServiceInvoker from within
the same virtual machine. It has a minimal impact upon resources because it does not incur any
networking or message serialisation overhead.

Important

Due to the volatility of the InVM queue, one may not be able to achieve all of the ACID semantics,
particularly when this functionality is used in conjuction with other transactional resources, such
as databases.

For additional information about this topic, please refer to the "InVM Transport" section of the
Programmers' Guide.

This code demonstrates how to configure a service using the InVM Transport functionality:

<service category="HelloWorld" name="Service1"
 description="Service 1" invmScope="GLOBAL">
 <listeners>
 <!-- So we just need to define a Gateway to the service... -->
 <jms-listener name="JMS-Gateway" busidref="quickstartGwChannel"
 is-gateway="true"/>
 </listeners>

 <actions>
 <action name="println"
 class="org.jboss.soa.esb.actions.SystemPrintln">
 <property name="message" value=" - > Service 1"/>
 </action>
 <!-- Route to the "Service 2" -->
 <action name="routeAction"
 class="org.jboss.soa.esb.actions.StaticRouter">
 <property name="destinations">
 <route-to service-category="HelloWorld"
 service-name="Service2"/>
 </property>
 </action>
 </actions>

</service>

Chapter 10. Performance Tuning

46

10.3. Transport Threads
Almost every transport has the ability to configure the number of threads that serve requests.
Increasing the number of threads can bring about significant performance gains.

Here are settings for the InVM transport's maxThreads property:

<service category="ServiceCategory" name="ServiceName"
description="..." invmScope="GLOBAL">
 <property name="maxThreads" value="100" />
 ...
</service>

Here are settings for the JMS Listener's maxThreads property:

<jms-listener name="GW" busidref="gwBus" maxThreads="100" is-gateway="true"/>

10.4. Message Filters
Message filters are used to dynamically augment messages. For instance, they can be used to add
transaction or security information to a message when it flows through the Enterprise Service Bus.
Using these filters may impact upon system performance. (This is dependent upon the particular
message filters that have been configured in the Enterprise Service Bus.) For further information on
this topic, please refer to the "Meta-Data and Filters" section in the Programmers' Guide.

Note

For more information about this overall subject, please refer to the "InVM Transport" section in
the Programmers' Guide.

10.5. "Passing By Reference"
When using the InVM Transport, one can pass messages by value or by reference. Passing by
reference is the faster of the two ways. However, it might not be suitable in all cases. Consider the
circumstances in which it is to be used before implementing it.

<service category="ServiceCategory" name="ServiceName"
description="..." invmScope="GLOBAL">
 <property name="inVMPassByValue" value="false" />
 ...
</service>

10.6. HTTP Router
The HTTP Router can retain multiple connections. Set the following configuration options in the
jboss-esb.xml file, (which is found in the HttpRouter action):

<http-client-property name="max-total-connections" value="100" />
<http-client-property name="max-connections-per-host" value="50" />

HTTP Connector

47

Note

Similar configuration settings apply to other actions that use the HTTP Router internally, an
example being SOAPProxy.

10.7. HTTP Connector
The HTTP Server is based on Apache Tomcat and it has a similar configuration which can be found
in the files located in the server/*/deploy/jbossweb.sar/server.xml sub-directory. Red Hat
recommends configuring more threads for a connector:

<Connector protocol="HTTP/1.1" port="8080" address="${jboss.bind.address}"
connectionTimeout="20000" redirectPort="8443" maxThreads="200" />

Note

See the Apache Tomcat documentation for more information about configuring connectors.

10.8. Logging

10.8.1. HTTP Connector
Be aware that the log4j INFO log records have an influence on the measurement of performance.
This section describes the ways in which logging can be reduced for this reason.

Logging from org.milyn.util.ClassUtil produces the following:

 ${date/time} INFO [ClassUtil] Loaded ${number} classes from ${number} URLs through
 class list file
 ${file name}. Process took ${number}ms. Turn on debug logging for more info.

Reduce this level of logging by adding a category limit to the ${jboss-as-home}/server/
${configuration}/conf/jboss-log4j.xml file:

<category name="org.milyn.util.ClassUtil">
 <priority value="WARN" />
</category>

Logging from org.milyn.delivery.ContentDeliveryConfigBuilder produces the
following:

 ${date/time} INFO [ContentDeliveryConfigBuilder] All configured XML
 Element Content Handler resource configurations can be applied using the
 SAX or DOM Stream Filter. Defaulting to DOM Filter.
 Set 'global-parameters:stream.filter.type'. Turn on debug logging for more info.

Reduce this level of logging by adding a category limit to the ${jboss-as-home}/server/
${configuration}/conf/jboss-log4j.xml file:

Chapter 10. Performance Tuning

48

<category name="org.milyn.delivery.ContentDeliveryConfigBuilder">
 <priority value="WARN" />
</category>

Logging from org.jboss.soa.esb.client.ServiceInvoker produces the following:

 ${date/time} INFO [ServiceInvoker] Badly formed EPR
 [EPR: PortReference wsa:Address ${address}] for Service
 [${service category}:${service name}] and Message [
 ${date/time} INFO [ServiceInvoker] Invalid EPR for service
 (probably ESB-unaware): ignoring for message: header: []

Reduce this level of logging by adding a category limit to the ${jboss-as-home}/server/
${configuration}/conf/jboss-log4j.xml file:

<category name="org.jboss.soa.esb.client.ServiceInvoker">
 <priority value="WARN"/>
</category>

49

Appendix A. Revision History
Revision 1.5 Mon Mar 21 2011 David Le Sage dlesage@redhat.com

Updated for 4.3.CP05 Release

Revision 1.4 Tue Apr 27 2010 David Le Sage dlesage@redhat.com
Updated for SOA 4.3.CP04
SOA-1943 - JON Message Counter Behaviour. Section 6.4

Revision 1.3 Tue Apr 20 2010 David Le Sage dlesage@redhat.com
Updated for SOA 4.3.CP03

Revision 1.2 Wed Sep 1 2009 Darrin Mison dmison@redhat.com
Updated for SOA 4.3.CP02
SOA-1279 - Updated database details to refer to Schema Tool. Section 1.4
SOA-1310 - Added Performance Tuning Chapter. Chapter 10
SOA-1032 - Updated jBPM Chapter with alternative configuration details. Section 9.1
SOA-1261 - Updated IBM WebSphere MQ JCA Adapter details. Section 1.3.4.2

Revision 1.1 Tue Feb 24 2009 Darrin Mison dmison@redhat.com
Updated for SOA 4.3.CP01
Added Clustered ESB Service Configuration
Updated Database Schema Tool instructions
Updated OpenSSO installation
Updated ESB Console installation instructions

Revision 1.0 Fri Sep 5 2008 Darrin Mison dmison@redhat.com
Initial Creation

mailto:dlesage@redhat.com
mailto:dlesage@redhat.com
mailto:dlesage@redhat.com
mailto:dmison@redhat.com
mailto:dmison@redhat.com
mailto:dmison@redhat.com

50

	Administration Guide
	Table of Contents
	Preface
	1. Document Conventions
	1.1. Typographic Conventions
	1.2. Pull-quote Conventions
	1.3. Notes and Warnings

	2. We Need Feedback!

	Chapter 1. Configuration
	1.1. Introduction to Basic Concepts
	1.2. Stand-Alone Server
	1.3. Clustered ESB Service
	1.4. Java Message Service Providers
	1.4.1. Maximum Sessions per Connection
	1.4.2. JBoss Messaging
	1.4.3. Apache ActiveMQ
	1.4.4. IBM Websphere MQ Series 6.0
	1.4.4.1. XA Connections
	1.4.4.2. JCA Adapter
	1.4.4.3. Authentication

	1.4.5. Oracle Advanced Queuing
	1.4.6. Tibco Enterprise Message Service
	1.4.7. Extension Properties

	1.5. Database Configuration
	1.5.1. Switching Databases Manually

	1.6. Using a JSR-170 Message Store
	1.7. Message Tracing
	1.8. Clustering and Fail-Over Support
	1.9. Using OpenSSO
	1.9.1. Installing and Configuring the OpenSSO in Tomcat
	1.9.2. Configuring OpenSSO for the JBoss SOA Platform

	Chapter 2. The Registry
	Chapter 3. Configuring Web Service Integration
	Chapter 4. Default "ReplyTo" End-Point References
	Chapter 5. The ServiceBinding Manager
	Chapter 6. Monitoring and Management
	6.1. JMX MBeans
	6.2. The Monitoring and Management Console
	6.2.1. Installing the Enterprise Service Bus Console
	6.2.2. Using an Alternative Database
	6.2.3. Collection Periods
	6.2.4. Services
	6.2.5. Message Counter
	6.2.6. Smooks Transformations
	6.2.7. Dead Letter Service

	6.3. Message Alerts
	6.4. JON for SOA
	6.4.1. Adding a JBoss SOA Platform Server to the JON Inventory
	6.4.2. JBoss SOA-P Enterprise Service Bus Statistics
	6.4.3. Managing Deployed Enterprise Service Bus Archives
	6.4.4. Automatic Service Discovery

	Chapter 7. Hot Deployment
	7.1. Server Mode
	7.2. Stand-Alone ("Bootstrap") Mode

	Chapter 8. Contract Publishing
	8.1. The Contract Application
	8.2. Publishing a Contract from an Action

	Chapter 9. JBoss Business Process Manager
	9.1. jBPM Console
	9.2. jBPM Message and Scheduler Services

	Chapter 10. Performance Tuning
	10.1. Overview
	10.2. InVM Transport
	10.3. Transport Threads
	10.4. Message Filters
	10.5. "Passing By Reference"
	10.6. HTTP Router
	10.7. HTTP Connector
	10.8. Logging
	10.8.1. HTTP Connector

	Appendix A. Revision History

