
JBoss Enterprise
SOA Platform 5

ESB Services Guide
Your guide to services available on
the JBoss Enterprise SOA Platform

ESB Services Guide

JBoss Enterprise SOA Platform 5 ESB Services Guide
Your guide to services available on the JBoss Enterprise SOA
Platform
Edition 1.3

Copyright © 2010 Red Hat, Inc.. This material may only be distributed subject to the terms and
conditions set forth in the Open Publication License, V1.0, (the latest version is presently available at
http://www.opencontent.org/openpub/).

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, MetaMatrix, Fedora, the Infinity
Logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other countries.

Linux® is the registered trademark of Linus Torvalds in the United States and other countries.

All other trademarks are the property of their respective owners.

 1801 Varsity Drive
 Raleigh, NC 27606-2072 USA
 Phone: +1 919 754 3700
 Phone: 888 733 4281
 Fax: +1 919 754 3701
 PO Box 13588 Research Triangle Park, NC 27709 USA

This book contains details of the services available within the JBoss SOA Platform.

http://www.opencontent.org/openpub/

iii

Preface v
1. Document Conventions ... v

1.1. Typographic Conventions .. v
1.2. Pull-quote Conventions .. vi
1.3. Notes and Warnings .. vii

2. We Need Feedback! .. vii

1. The Registry 1
1.1. What is the Registry? .. 1

1.1.1. Introduction .. 1
1.1.2. Why Does One Need It? .. 1
1.1.3. How Does One Use It? .. 1
1.1.4. Registries versus Repositories ... 2
1.1.5. Service-Oriented Architecture Components .. 2
1.1.6. Universal Description, Discovery and Integration Registry 3
1.1.7. The Registry and the JBoss Service-Oriented Architecture Platform 3

1.2. Configuring the Registry ... 4
1.2.1. new section The Components Involved .. 6
1.2.2. The Registry Implementation Class .. 7
1.2.3. updated Using JAXR .. 7
1.2.4. Using jUDDI Transports .. 8
1.2.5. new Using Scout and jUDDI ... 9

1.3. Registry Configuration Examples .. 10
1.3.1. Embedding Components ... 10
1.3.2. Remote Method Invocation Using the jbossesb.sar File 11
1.3.3. Remote Method Invocation Using One's Own JNDI Registration of the RMI
Service .. 13
1.3.4. SOAP .. 16

1.4. Updated Registry Troubleshooting .. 17
1.4.1. More Information .. 17

2. Rule Services 19
2.1. Updated What is a Rule Service? .. 19

2.1.1. Introduction .. 19
2.2. Updated Rule Services Using JBoss Rules ... 20

2.2.1. Introduction .. 20
2.2.2. Rule-Set Creation ... 20
2.2.3. Rule Service Consumers .. 21
2.2.4. Configuration .. 22
2.2.5. Object Paths .. 25
2.2.6. Deploying and Packaging ... 26

3. Content-based Routing 29
3.1. What is Content-Based Routing? ... 29

3.1.1. Introduction .. 29
3.1.2. Simple Example ... 29
3.1.3. Content-Based Routing using XPath .. 30
3.1.4. Content-Based Routing using Regex ... 32

3.2. Content-Based Routing Using JBoss Rules .. 33
3.2.1. Introduction .. 33
3.2.2. Three Different Routing Action Classes .. 34
3.2.3. Rule-Set Creation ... 34
3.2.4. XPath Domain Specific Language ... 35

ESB Services Guide

iv

4. updated jBPM Integration 43
4.1. Integration Configuration .. 43
4.2. Configuring the jBPM .. 45
4.3. Creating and Deploying a Process Definition .. 46
4.4. From the Enterprise Service Bus to the jBPM ... 49

4.4.1. ESB to jBPM Exception Handling .. 52
4.5. jBPM-to-JBoss ESB .. 52

4.5.1. ESBNotifier .. 52
4.5.2. ESB Action Handler .. 54
4.5.3. jBPM-to-ESB Exception Handling .. 56
4.5.4. Scenerio One: Time-out .. 57
4.5.5. Scenerio Two: Exception Transition ... 58
4.5.6. Scenerio Three: Exception Decision .. 58

5. Service Orchestration 61
5.1. Orchestrating Web Services ... 61
5.2. Orchestration Diagram ... 61
5.3. Process Deployment and "Instantiation" .. 68
5.4. Conclusion .. 70

6. Message Transformation 71
6.1. Smooks .. 71
6.2. XSL Transformations ... 71

7. The Message Store 73
7.1. Message Store Interface .. 73
7.2. Configuring the Message Store .. 74

8. updated Security 77
8.1. Security Service Configuration ... 77

8.1.1. Configuring Security on Services .. 80
8.2. Authentication ... 81

8.2.1. Authentication Request ... 81
8.3. The JBoss Enterprise Service Bus Security Context .. 82
8.4. Security Context Propagation ... 82
8.5. Customising Security ... 82
8.6. Provided Log-in Modules ... 83

8.6.1. Certificate Log-in Module .. 83
8.6.2. Role Mapping ... 84

8.7. Password Encryption ... 84
8.7.1. Creating an Encrypted Password File .. 84
8.7.2. Security Service ... 85

A. Revision History 87

v

Preface

1. Document Conventions
This manual uses several conventions to highlight certain words and phrases and draw attention to
specific pieces of information.

In PDF and paper editions, this manual uses typefaces drawn from the Liberation Fonts1 set. The
Liberation Fonts set is also used in HTML editions if the set is installed on your system. If not,
alternative but equivalent typefaces are displayed. Note: Red Hat Enterprise Linux 5 and later includes
the Liberation Fonts set by default.

1.1. Typographic Conventions
Four typographic conventions are used to call attention to specific words and phrases. These
conventions, and the circumstances they apply to, are as follows.

Mono-spaced Bold

Used to highlight system input, including shell commands, file names and paths. Also used to highlight
keycaps and key combinations. For example:

To see the contents of the file my_next_bestselling_novel in your current
working directory, enter the cat my_next_bestselling_novel command at the
shell prompt and press Enter to execute the command.

The above includes a file name, a shell command and a keycap, all presented in mono-spaced bold
and all distinguishable thanks to context.

Key combinations can be distinguished from keycaps by the hyphen connecting each part of a key
combination. For example:

Press Enter to execute the command.

Press Ctrl+Alt+F1 to switch to the first virtual terminal. Press Ctrl+Alt+F7 to
return to your X-Windows session.

The first paragraph highlights the particular keycap to press. The second highlights two key
combinations (each a set of three keycaps with each set pressed simultaneously).

If source code is discussed, class names, methods, functions, variable names and returned values
mentioned within a paragraph will be presented as above, in mono-spaced bold. For example:

File-related classes include filesystem for file systems, file for files, and dir for
directories. Each class has its own associated set of permissions.

Proportional Bold

This denotes words or phrases encountered on a system, including application names; dialog box text;
labeled buttons; check-box and radio button labels; menu titles and sub-menu titles. For example:

Choose System → Preferences → Mouse from the main menu bar to launch Mouse
Preferences. In the Buttons tab, click the Left-handed mouse check box and click

1 https://fedorahosted.org/liberation-fonts/

https://fedorahosted.org/liberation-fonts/
https://fedorahosted.org/liberation-fonts/

Preface

vi

Close to switch the primary mouse button from the left to the right (making the mouse
suitable for use in the left hand).

To insert a special character into a gedit file, choose Applications → Accessories
→ Character Map from the main menu bar. Next, choose Search → Find… from the
Character Map menu bar, type the name of the character in the Search field and click
Next. The character you sought will be highlighted in the Character Table. Double-
click this highlighted character to place it in the Text to copy field and then click the

Copy button. Now switch back to your document and choose Edit → Paste from the
gedit menu bar.

The above text includes application names; system-wide menu names and items; application-specific
menu names; and buttons and text found within a GUI interface, all presented in proportional bold and
all distinguishable by context.

Mono-spaced Bold Italic or Proportional Bold Italic

Whether mono-spaced bold or proportional bold, the addition of italics indicates replaceable or
variable text. Italics denotes text you do not input literally or displayed text that changes depending on
circumstance. For example:

To connect to a remote machine using ssh, type ssh username@domain.name at
a shell prompt. If the remote machine is example.com and your username on that
machine is john, type ssh john@example.com.

The mount -o remount file-system command remounts the named file
system. For example, to remount the /home file system, the command is mount -o
remount /home.

To see the version of a currently installed package, use the rpm -q package
command. It will return a result as follows: package-version-release.

Note the words in bold italics above — username, domain.name, file-system, package, version and
release. Each word is a placeholder, either for text you enter when issuing a command or for text
displayed by the system.

Aside from standard usage for presenting the title of a work, italics denotes the first use of a new and
important term. For example:

Publican is a DocBook publishing system.

1.2. Pull-quote Conventions
Terminal output and source code listings are set off visually from the surrounding text.

Output sent to a terminal is set in mono-spaced roman and presented thus:

books Desktop documentation drafts mss photos stuff svn
books_tests Desktop1 downloads images notes scripts svgs

Source-code listings are also set in mono-spaced roman but add syntax highlighting as follows:

package org.jboss.book.jca.ex1;

Notes and Warnings

vii

import javax.naming.InitialContext;

public class ExClient
{
 public static void main(String args[])
 throws Exception
 {
 InitialContext iniCtx = new InitialContext();
 Object ref = iniCtx.lookup("EchoBean");
 EchoHome home = (EchoHome) ref;
 Echo echo = home.create();

 System.out.println("Created Echo");

 System.out.println("Echo.echo('Hello') = " + echo.echo("Hello"));
 }
}

1.3. Notes and Warnings
Finally, we use three visual styles to draw attention to information that might otherwise be overlooked.

Note
Notes are tips, shortcuts or alternative approaches to the task at hand. Ignoring a
note should have no negative consequences, but you might miss out on a trick that
makes your life easier.

Important
Important boxes detail things that are easily missed: configuration changes that
only apply to the current session, or services that need restarting before an update
will apply. Ignoring a box labeled 'Important' won't cause data loss but may cause
irritation and frustration.

Warning
Warnings should not be ignored. Ignoring warnings will most likely cause data loss.

2. We Need Feedback!
If you find a typographical error in this manual, or if you have thought of a way to make this manual
better, we would love to hear from you! Please submit a report in Bugzilla: http://bugzilla.redhat.com/
bugzilla/ against the product JBoss Enterprise SOA Platform.

When submitting a bug report, be sure to mention the manual's identifier: ESB_Services_Guide

If you have a suggestion for improving the documentation, try to be as specific as possible when
describing it. If you have found an error, please include the section number and some of the
surrounding text so we can find it easily.

http://bugzilla.redhat.com/bugzilla/
http://bugzilla.redhat.com/bugzilla/

viii

Chapter 1.

1

The Registry

1.1. What is the Registry?

1.1.1. Introduction
Read this section to learn both some general theory about SOA Platform registries and also some
specific information about JBoss' implementation.

In the context of a Service Oriented Architecture, a registry provides applications and businesses with
a central point within which information about services can be stored. A registry is expected to provide
both the same level of information and the same breadth of services as a conventional "marketplace."
Ideally, a registry should also facilitate the automatic discovery and execution of electronic commerce
to take place by providing a dynamic environment for business transactions. Therefore, a registry
is more than a mere “e. business directory”. It is a fundamental component of a Service Oriented
Architecture's infrastructure.

1.1.2. Why Does One Need It?
It is easy to discover and manage business partners and interface with them on a small scale using
either manual or ad hoc techniques. However, this approach does not scale well when the number
of services and frequency of interactions increase and the physical distribution of the environment
expands. A registry provides a solution based upon agreed standards by providing a common,
ubiquitous way to discover and "publish" services. It offers a central place in which one can query
whether or not a partner has a service that is compatible with in-house technologies. It also allows one
to find a list of companies that, for instance, support shipping services on the other side of the globe.

Hence, service registries are central to service-oriented architectures. At the time of execution, they
act as contact points at which service requests can be correlated with actual behaviors. A service
registry will hold meta-data entries for all of the artifacts within the Service Oriented Architecture that
are used at both run-time and design time.

Items held within a service registry may include service description artifacts such as Service Policy
descriptions, various Extensible Mark-Up Language (XML) schema used by services, artifacts
representing different versions of services, governance and security artifacts (such as certificates
and audit trail data) and so forth. During the design phase, business process architects may use the
Registry to link calls to several different services together. In doing so, they create a work-flow or
business process.

Note
Tip: replicate or federate the registry in order to improve performance and reliability.
This will prevent it from being a single point of failure.

1.1.3. How Does One Use It?
From a business analyst’s perspective, the registry is similar to an Internet search engine, albeit one
designed to find business processes. From a developer's perspective, the registry is used to discover
and publish services that match various criteria.

Chapter 1. The Registry

2

1.1.4. Registries versus Repositories
The purpose of the registry to record services, discover meta-data and classify entities into pre-defined
categories. Unlike a repository, it does not have the ability to store business process definitions,
WSDLs or any other documents required for trade agreements. A registry is essentially a catalogue of
items, whereas a repository is the storage area that actually contains those items.

1.1.5. Service-Oriented Architecture Components
"A Service Oriented Architecture is a specific type of distributed system in which the agents are
'services'."1.

The key components of a Service-Oriented Architecture are:

1. the exchanged messages

2. the agents that act as service requesters and providers

3. the shared transport mechanisms that allow the messages to flow.

A "service" is essentially the messages exchanged between the system and its users. Within an
Service Oriented Architecture, there are three critical roles: the service provider, the broker and the
requester. Each shall now be defined in turn.

Service Provider
A service provider facilitates access to services, creates descriptions of them and publishes them
to the service broker.

Service Broker
A service broker hosts a registry of service descriptions. It is responsible for linking a service
requester to a service provider.

Service Requester
A service requester is responsible for discovering a service. It does so by searching through the
service descriptions given by the service broker. A requester is also responsible for binding to
services obtained from the service provider.

Refer to the W3C Working Draft on http://www.w3.org/TR/2003/WD-ws-arch-20030808/#id2617708 for a more detailed
definition.

http://www.w3.org/TR/2003/WD-ws-arch-20030808/#id2617708

 Universal Description, Discovery and Integration Registry

3

1.1.6. Universal Description, Discovery and Integration Registry
The Universal Description, Discovery and Integration (UDDI) Registry is a directory for web services.
Use it to discover services through queries at design- or run-time. It also allows providers to publish
descriptions of their services. The typical UDDI Registry will contain a uniform resource locator (URL)
that points to both the WSDL document for the web services and the contact information for the
service provider. Within the UDDI Registry, information is categorised in the following ways:

• White Pages contain general information, such as the name, address and other contact details for
the company providing the service.

• Yellow Pages are used to categorize businesses based upon the industries to which they belong.

• Green Pages provide information that will enable a client to bind to the service that is being
provided.

1.1.7. The Registry and the JBoss Service-Oriented Architecture
Platform
The registry plays a central role within the JBoss Enterprise Service-Oriented Architecture
Platform. It is used to store the End Point References (EPRs) for the services that have been
deployed. It may either be updated dynamically (when services first start) or statically (by an external
administrator.)

The registry cannot determine the status of those entities represented by the data it contains. Hence,
an end-point reference might be in the Registry but there can be no guarantee that it is valid (as it may
be malformed or it may represent a service that is no longer active.)

The JBoss Enterprise SOA Platform does not currently perform life-cycle monitoring of deployed
services. The administrator must explicitly update or remove end-point references associated with

Chapter 1. The Registry

4

services that have been moved elsewhere or have failed, otherwise they will simply remain in the
Registry.

Upon receipt of any warning or error messages from the Registry related to end-point references, one
should inform those responsible for the services with which they are associated.

Important
ESB services create their own end-point references automatically. These end-points
are internal implementations and, hence, modification of them is not supported.

1.2. Configuring the Registry
Read this section to learn how to configure the JBoss Enterprise SOA Platform Registry.

The default configuration uses Apache jUDDI v3 as its UDDI registry and Apache Scout (a JAXR
implementation). Figure 1.1, “Blueprint of the Registry Component Architecture” shows an overview of
all the components.

The registry is highly configurable. The JBoss Enterprise Service Bus directs all interaction with
the registry through the Registry Interface. The default configuration of the Registry Interface uses the
Apache Scout (a JAXR implementation) to communicate with the jUDDI registry.

Edit the registry section of the file $SOA_ROOT/server/$PROFILE/deployers/esb.deployer/
jbossesb-properties.xml to configure the registry's properties.

<properties name="registry">
 <property name="org.jboss.soa.esb.registry.implementationClass"
 value="org.jboss.internal.soa.esb.services.registry.JAXRRegistryImpl"/>

 <property name="org.jboss.soa.esb.registry.factoryClass"
 value="org.apache.ws.scout.registry.ConnectionFactoryImpl"/>

 <property name="org.jboss.soa.esb.registry.queryManagerURI"
 value="org.apache.juddi.v3.client.transport.wrapper.UDDIInquiryService#inquire"/>

 <property name="org.jboss.soa.esb.registry.lifeCycleManagerURI"
 value="org.apache.juddi.v3.client.transport.wrapper.UDDIPublicationService#publish"/>
 <property name="org.jboss.soa.esb.registry.securityManagerURI"
 value="org.apache.juddi.v3.client.transport.wrapper.UDDISecurityService#secure"/>

 <property name="org.jboss.soa.esb.registry.user" value="root"/>
 <property name="org.jboss.soa.esb.registry.password" value="root"/>

 <property name="org.jboss.soa.esb.scout.proxy.uddiVersion" value="3.0"/>
 <property name="org.jboss.soa.esb.scout.proxy.uddiNameSpace" value="urn:uddi-
org:api_v3"/>

 <property name="org.jboss.soa.esb.scout.proxy.transportClass"
 value="org.apache.ws.scout.transport.LocalTransport"/>
 <!-- specify the interceptors, in order -->
 <property name="org.jboss.soa.esb.registry.interceptors"
 value="org.jboss.internal.soa.esb.services.registry.InVMRegistryInterceptor,
 org.jboss.internal.soa.esb.services.registry.CachingRegistryInterceptor"/>
 <!-- The following properties modify the cache interceptor behaviour -->
 <property name="org.jboss.soa.esb.registry.cache.maxSize" value="100"/>
 <property name="org.jboss.soa.esb.registry.cache.validityPeriod" value="600000"/>

Configuring the Registry

5

 <!-- Organization Category to be used by this deployment. -->
 <property name="org.jboss.soa.esb.registry.orgCategory"
 value="org.jboss.soa.esb.:category"/>
</properties>

These are the properties that can be configured:

Property Description

org.jboss.soa.esb.registry.implementationClass A class that implements
the JBoss ESB Registry
interface. One implementation,
JAXRRegistryImpl, that uses
the JAXRRegistry interface is
included.

org.jboss.soa.esb.registry.factoryClass The class name of the
JAXR ConnectionFactory
implementation.

org.jboss.soa.esb.registry.queryManagerURI The URI that JAXR uses to query
services.

org.jboss.soa.esb.registry.lifeCycleManagerURI The URI that JAXR uses for
editing.

org.jboss.soa.esb.registry.user The user-name utilised for editing.

org.jboss.soa.esb.registry.password The password for the specified
user.

org.jboss.soa.esb.scout.proxy.transportClass The class used by Apache Scout
to transport from itself to the UDDI
Registry.

org.jboss.soa.esb.registry.interceptors The list of interceptors that
are applied to the configured
registry. The ESB provides two
interceptors, one for handling
InVM registrations and one that
is used to apply a cache to the
registry.

The default interceptor list only
contains one entry, the InVM
interceptor.

org.jboss.soa.esb.registry.cache.maxSize The maximum number of server
entries allowed in the cache. If
this value is exceeded, entries will
be removed on a "Least Recently
Used" basis. The default value is
100.

org.jboss.soa.esb.registry.cache.validityPeriod The period of validity for the
caching interceptor. This is
specified in milliseconds and
defaults to 600000 (ten minutes).

Chapter 1. The Registry

6

Property Description
Set this value to 0 to have no
cache expiry.

org.jboss.soa.esb.registry.orgCategory This is the ESB instance's
organizational category
name. The default setting is
org.jboss.soa.esb.:category.

Table 1.1. Registry Properties

1.2.1. new section The Components Involved
The registry can be configured in many ways. The image below is a blue-print of all of the
registry's components. From the top down, one can see that:

1. The JBoss Enterprise Service Bus funnels all interaction with the registry through the
registry interface

2. It then calls into a JAXR implementation of this interface.

3. The JAXR API needs an implementation which, by default, is Scout.

4. The Scout JAXR implementation, in turn, calls into a jUDDI registry.

Note
Remember that these are just the defaults. There are many other configuration
options.

The Registry Implementation Class

7

Figure 1.1. Blueprint of the Registry Component Architecture

1.2.2. The Registry Implementation Class
org.jboss.soa.esb.registry.implementationClass

By default, this class uses the JAXR application programming interface. This API is convenient since
it allows one to connect any kind of XML-based registry or repository. However, if one wishes to use
an alternative API, do so by writing a new SystinetRegistryImplemtation class and provide a
reference to it within this property.

1.2.3. updated Using JAXR
org.jboss.soa.esb.registry.factoryClass

1. Firstly, choose a specific JAXR implementation. Then use this property to configure
the class. The JBoss Enterprise SOA Platform uses Scout by default and, hence,
as one would expect this property is set to the Scout factory class, namely
org.apache.ws.scout.registry.ConnectionFactoryImpl.

Chapter 1. The Registry

8

2. Next, configure JAXR implementation with location of the registry
that is to be used for querying and updating. This is done by editing
the org.jboss.soa.esb.registry.queryManagerURI,
org.jboss.soa.esb.registry.lifeCycleManagerURI and
org.jboss.soa.esb.registry.securityManagerURI.

3. Set the user-name and password for the UDDI Registry by editing the
org.jboss.soa.esb.registry.user and org.jboss.soa.esb.registry.password
respectively.

1.2.4. Using jUDDI Transports
org.jboss.soa.esb.scout.proxy.transportClass

When using Scout with a UDDI implementation, one can set an additional parameter: the transport
class that is to be used for communicating between Scout and the UDDI registry.

If one is using Scout to communicate with jUDDI v. 3 leave the transport class as LocalTransport
and configure the esb.juddi.client.xml file to make use jUDDI's transports (InVM, RMI and
WS). (esb.juddi.client.xml resides in the server/config/deploy/jbossesb.sar/META-
INF directory.) This file defines the concept of a node, which is simply a jUDDI registry location. Use
the node settings to select which transport to use:

<node>
 <!-- required 'default' node -->
 <name>default</name>
 <description>Main jUDDI node</description>
 <properties>
 <property name="serverName" value="localhost" />
 <property name="serverPort" value="8880" />
 </properties>
 <!-- JAX-WS Transport
 <proxyTransport>org.apache.juddi.v3.client.transport.JAXWSTransport</proxyTransport>
 <custodyTransferUrl>http://${serverName}:${serverPort}/juddiv3/services/custody-transfer?
wsdl</custodyTransferUrl>
 <inquiryUrl>http://${serverName}:${serverPort}/juddiv3/services/inquiry?wsdl</inquiryUrl>
 <publishUrl>http://${serverName}:${serverPort}/juddiv3/services/publish?wsdl</publishUrl>
 <securityUrl>http://${serverName}:${serverPort}/juddiv3/services/security?wsdl</
securityUrl>
 <subscriptionUrl>http://${serverName}:${serverPort}/juddiv3/services/subscription?wsdl</
subscriptionUrl>
 <subscriptionListenerUrl>http://${serverName}:${serverPort}/juddiv3/services/subscription-
listener?wsdl</subscriptionListenerUrl>
 <juddiApiUrl>http://${serverName}:${serverPort}/juddiv3/services/juddi-api?wsdl</
juddiApiUrl>
 -->
 <!-- In VM Transport Settings
 <proxyTransport>org.jboss.internal.soa.esb.registry.client.JuddiInVMTransport</
proxyTransport>
 <custodyTransferUrl>org.apache.juddi.api.impl.UDDICustodyTransferImpl</custodyTransferUrl>
 <inquiryUrl>org.apache.juddi.api.impl.UDDIInquiryImpl</inquiryUrl>
 <publishUrl>org.apache.juddi.api.impl.UDDIPublicationImpl</publishUrl>
 <securityUrl>org.apache.juddi.api.impl.UDDISecurityImpl</securityUrl>
 <subscriptionUrl>org.apache.juddi.api.impl.UDDISubscriptionImpl</subscriptionUrl>
 <subscriptionListenerUrl>org.apache.juddi.api.impl.UDDISubscriptionListenerImpl</
subscriptionListenerUrl>
 <juddiApiUrl>org.apache.juddi.api.impl.JUDDIApiImpl</juddiApiUrl>
 -->
 <!-- RMI Transport Settings -->

new Using Scout and jUDDI

9

<proxyTransport>org.apache.juddi.v3.client.transport.RMITransport</proxyTransport>
 <custodyTransferUrl>/juddiv3/UDDICustodyTransferService</custodyTransferUrl>
 <inquiryUrl>/juddiv3/UDDIInquiryService</inquiryUrl>
 <publishUrl>/juddiv3/UDDIPublicationService</publishUrl>
<securityUrl>/juddiv3/UDDISecurityService</securityUrl>
<subscriptionUrl>/juddiv3/UDDISubscriptionService</subscriptionUrl>
<subscriptionListenerUrl>/juddiv3/UDDISubscriptionListenerService</subscriptionListenerUrl>
<juddiApiUrl>/juddiv3/JUDDIApiService</juddiApiUrl>
<javaNamingFactoryInitial>org.jnp.interfaces.NamingContextFactory</javaNamingFactoryInitial>
 <javaNamingFactoryUrlPkgs>org.jboss.naming</javaNamingFactoryUrlPkgs>
 <javaNamingProviderUrl>jnp://localhost:1099</javaNamingProviderUrl>
 </node>

A transport should specify:

• a proxyTransport

• a URL for all of the supported UDDI application programming interfaces (inquiry, publish,
security, subscription, subscription-listener and custodytransfer)

• a jUDDI application programming interface URL.

• the RMI transport also includes JNDI settings

By default, the RMI settings are enabled. To switch transports, simply comment those ones out and
enable whichever of the other transports is to be used.

1.2.5. new Using Scout and jUDDI
org.jboss.soa.esb.scout.proxy.transportClass

As noted above, when using Scout with jUDDI, once can set an additional parameter, this being the
transport class that is to be used to communicate between the two pieces of software. Thus far, there
are four implementations of this class, these being based upon SOAP, SAAJ, RMI and Embedded
Java (Local) respectively. When communicating withjUDDI, leave the transportClass set to
LocalTransport and use the uddi.xml file to utilise jUDDI's transports (these being InVM, RMI and
WS, respectively.)

However, when communicating with another UDDI registry, use Scout's JAXR transports. There are
four implementations of this class, these also being based on SOAP, SAAJ, RMI and Embedded Java
(Local).

When changing the transport, always change the query and lifecycle URIs as well. Here is an example
that shows how to do so:

SOAP
queryManagerURI http://localhost:8080/juddi/inquiry
lifeCycleManagerURI http://localhost:8080/juddi/publish
transportClass org.apache.ws.scout.transport.AxisTransport

RMI
queryManagerURI jnp://localhost:1099/InquiryService?
org.apache.juddi.registry.rmi.Inquiry#inquire
lifeCycleManagerURI jnp://localhost:1099/PublishService?
org.apache.juddi.registry.rmi.Publish#publish
transportClass org.apache.ws.scout.transport.RMITransport

Chapter 1. The Registry

10

Local
queryManagerURI org.apache.juddi.registry.local.InquiryService#inquire
lifeCycleManagerURI org.apache.juddi.registry.local.PublishService#publish
transportClass org.apache.ws.scout.transport.LocalTransport

Two requirements must be fulfiled for jUDDI:

1. one must be able to access the jUDDI database. To achieve this, create a schema in the database
and add the jbossesb publisher. (The product/install/jUDDI-registry directory
contains database-create scripts for most common databases.)

2. esb.juddi.xml and esb.juddi.client.xml must exist. These contain the jUDDI
configuration itself.

Note
The database can be generated automatically if the user account has been granted
the right to create tables. jUDDI can create a database of any type for which there is
an associated Hibernate dialect.

!-- <entry key="juddi.tablePrefix">JUDDI_</entry> -->
 <entry key="juddi.isCreateDatabase">true</entry>
 <entry key="juddi.databaseExistsSql">select * from ${prefix}BUSINESS_ENTITY
 </entry>
 <entry key="juddi.sqlFiles">
 juddi-sql/mysql/create_database.sql,
 juddi sql/mysql/insert_publishers.sql
 </entry>

Example 1.1. Configuring jUDDI to Generate a Database Automatically

The JBoss Enterprise SOA Platform includes a tool that automates jUDDI configuration. This tool is
found in the ${SOA_ROOT}/tools/schema/ sub-directory. Directions for using it can be found in the
"Switching Databases" section of the Administration Guide.

1.3. Registry Configuration Examples
Study the examples in this section to learn about different registry configuration options.

1.3.1. Embedding Components
All of those server components, (including the Enterprise Service Bus and Web Service) that have
a relationship of any kind with the registry can share the latter between themselves. Indeed,
multiple instances of the JBoss Enterprise SOA Platform can use the same registry via a shared
database.

 Remote Method Invocation Using the jbossesb.sar File

11

Figure 1.2. Embedded jUDDI

<properties name="registry">

 <property name="org.jboss.soa.esb.registry.implementationClass"
 value="org.jboss.internal.soa.esb.services.registry.JAXRRegistryImpl"/>

 <property name="org.jboss.soa.esb.registry.factoryClass"
 value="org.apache.ws.scout.registry.ConnectionFactoryImpl"/>

 <property name="org.jboss.soa.esb.registry.queryManagerURI"
 value="org.apache.juddi.registry.local.InquiryService#inquire"/>

 <property name="org.jboss.soa.esb.registry.lifeCycleManagerURI"
 value="org.apache.juddi.registry.local.PublishService#publish"/

 <property name="org.jboss.soa.esb.registry.securityManagerURI"
 value="org.apache.juddi.registry.local.SecurityService#secure"/>

 <property name="org.jboss.soa.esb.registry.user" value="jbossesb"/>
 <property name="org.jboss.soa.esb.registry.password" value="password"/>

 <property name="org.jboss.soa.esb.scout.proxy.transportClass"

 value="org.apache.ws.scout.transport.LocalTransport"/>

</properties>

Example 1.2. Properties for Embedded jUDDI

1.3.2. Remote Method Invocation Using the jbossesb.sar File
This is a straightfoward process. Simply deploy a version of the jUDDI Registry that brings up a
Remote Method Invocation service. (The JBoss Enterprise Service Bus deploys the Remote Method
Invocation service by default: it starts the registry within the jbossesb.sar archive. This same
archive also registers an RMI service.)

Chapter 1. The Registry

12

Figure 1.3. Remote Method Invocation

Here are the properties:

<properties name="registry">
 <property name="org.jboss.soa.esb.registry.implementationClass"
 value="org.jboss.internal.soa.esb.services.registry.JAXRRegistryImpl"/>

 <property name="org.jboss.soa.esb.registry.factoryClass"
 value="org.apache.ws.scout.registry.ConnectionFactoryImpl"/>

 <property name="org.jboss.soa.esb.registry.queryManagerURI"
value="jnp://localhost:1099/InquiryService?org.apache.juddi.registry.rmi.Inquiry#inquire"/>

 <property name="org.jboss.soa.esb.registry.lifeCycleManagerURI"
value="jnp://localhost:1099/PublishService?org.apache.juddi.registry.rmi.Publish#publish"/>

 <property name="org.jboss.soa.esb.registry.securityManagerURI"
value="jnp://localhost:1099/PublishService?org.apache.juddi.registry.rmi.Publish#publish"/>
>

 Remote Method Invocation Using One's Own JNDI Registration of the RMI Service

13

 <property name="org.jboss.soa.esb.registry.user" value="jbossesb"/>
 <property name="org.jboss.soa.esb.registry.password" value="password"/>

 <property name="org.jboss.soa.esb.scout.proxy.transportClass"
 value="org.apache.ws.scout.transport.RMITransport"/>
</properties>

The juddi.war is configured to bring up a RMI Service, this being triggered by the following setting
in the web.xml file:

<!-- uncomment if you want to enable making calls in juddi with rmi -->
 <servlet>
 <servlet-name>RegisterServicesWithJNDI</servlet-name>
 <servlet-class>org.apache.juddi.registry.rmi.RegistrationService</servlet-class>
 <load-on-startup>1</load-on-startup>
 </servlet>

Include the following JNDI settings in juddi.properties:

JNDI settings (used by RMITransport)
java.naming.factory.initial=org.jnp.interfaces.NamingContextFactory
java.naming.provider.url=jnp://localhost:1099
java.naming.factory.url.pkgs=org.jboss.naming

Important
Remember to include scout-client.jar in the RMI client's class-path.

1.3.3. Remote Method Invocation Using One's Own JNDI
Registration of the RMI Service
If, for some reason, one does not to deploy the juddi.war, simply configure one of the Enterprise
Service components running in the same Java Virtual Machine as jUDDI to register the RMI service:

Chapter 1. The Registry

14

Figure 1.4. RMI Using One's Own JNDI Registration

For Application One, local settings are needed:

<properties name="registry">
 <property name="org.jboss.soa.esb.registry.implementationClass"
value="org.jboss.internal.soa.esb.services.registry.JAXRRegistryImpl"/>

 <property name="org.jboss.soa.esb.registry.factoryClass"
value="org.apache.ws.scout.registry.ConnectionFactoryImpl"/>

 <property name="org.jboss.soa.esb.registry.queryManagerURI"
value="org.apache.juddi.registry.local.InquiryService#inquire"/>

 <property name="org.jboss.soa.esb.registry.lifeCycleManagerURI"
value="org.apache.juddi.registry.local.PublishService#publish"/>

 <property name="org.jboss.soa.esb.registry.securityManagerURI"
value="org.apache.juddi.registry.local.SecurityService#secure"/>

 <property name="org.jboss.soa.esb.registry.user" value="jbossesb"/>
 <property name="org.jboss.soa.esb.registry.password" value="password"/>

 <property name="org.jboss.soa.esb.scout.proxy.transportClass"
value="org.apache.ws.scout.transport.LocalTransport"/>
</properties>

Example 1.3. Properties One

Application Two requires the Remote Method Invocation settings:

 Remote Method Invocation Using One's Own JNDI Registration of the RMI Service

15

<properties name="registry">
 <property name="org.jboss.soa.esb.registry.implementationClass"
value="org.jboss.internal.soa.esb.services.registry.JAXRRegistryImpl"/>

 <property name="org.jboss.soa.esb.registry.factoryClass"
value="org.apache.ws.scout.registry.ConnectionFactoryImpl"/>

 <property name="org.jboss.soa.esb.registry.queryManagerURI"
value="jnp://localhost:1099/InquiryService?org.apache.juddi.registry.rmi.Inquiry#inquire"/>

 <property name="org.jboss.soa.esb.registry.lifeCycleManagerURI"
value="jnp://localhost:1099/PublishService?org.apache.juddi.registry.rmi.Publish#publish"/>

 <property name="org.jboss.soa.esb.registry.user" value="jbossesb"/>
 <property name="org.jboss.soa.esb.registry.password" value="password"/>

 <property name="org.jboss.soa.esb.scout.proxy.transportClass"
value="org.apache.ws.scout.transport.RMITransport"/>
</properties>

Example 1.4. Properties Two

Point the hostnames of the queryManagerURI and lifeCycleManagerURI classes to the host
on which jUDDI is running (this is also where Application One is running.) Obviously, Application One
needs to have access to a naming service. To register it, undertake the following process:

//Getting the JNDI setting from the config
Properties env = new Properties();
env.setProperty(RegistryEngine.PROPNAME_JAVA_NAMING_FACTORY_INITIAL,factoryInitial);
env.setProperty(RegistryEngine.PROPNAME_JAVA_NAMING_PROVIDER_URL, providerURL);
env.setProperty(RegistryEngine.PROPNAME_JAVA_NAMING_FACTORY_URL_PKGS, factoryURLPkgs);

InitialContext context = new InitialContext(env);
Inquiry inquiry = new InquiryService();
log.info("Setting " + INQUIRY_SERVICE + ", " + inquiry.getClass().getName());
mInquery = inquiry;
context.bind(INQUIRY_SERVICE, inquiry);
Publish publish = new PublishService();
log.info("Setting " + PUBLISH_SERVICE + ", " + publish.getClass().getName());
mPublish = publish;
context.bind(PUBLISH_SERVICE, publish);

Example 1.5. Registration Process

For example, make sure to include the following JNDI settings in the file jbossesb-registry.sar/
esb.juddi.xml:

JNDI settings (used by RMITransport)
java.naming.factory.initial=org.jnp.interfaces.NamingContextFactory
java.naming.provider.url=jnp://localhost:1099
java.naming.factory.url.pkgs=org.jboss.naming

Example 1.6. JNDI Settings for jbossesb-registry.sar/esb.juddi.xml

Important
Always include the scout-client.jar file in the classpath of the RMI clients.

Chapter 1. The Registry

16

1.3.4. SOAP
Read this section to learn how to configure Apache Scout to use SOAP to communicate with jUDDI.

Firstly, deploy the juddi.war and configure the data-source.

Important
It is best to also shut down the RMI service by "commenting out" web.xml's
RegisterServicesWithJNDI servlet.

Figure 1.5. SOAP-based Communications

<properties name="registry">
 <property name="org.jboss.soa.esb.registry.implementationClass"
 value="org.jboss.internal.soa.esb.services.registry.JAXRRegistryImpl"/>

 <property name="org.jboss.soa.esb.registry.factoryClass"
 value="org.apache.ws.scout.registry.ConnectionFactoryImpl"/>

Updated Registry Troubleshooting

17

 <property name="org.jboss.soa.esb.registry.queryManagerURI"
 value="http://localhost:8080/juddi/inquiry"/>

 <property name="org.jboss.soa.esb.registry.lifeCycleManagerURI"
 value="http://localhost:8080/juddi/publish"/>

 <property name="org.jboss.soa.esb.registry.user" value="jbossesb"/>
 <property name="org.jboss.soa.esb.registry.password" value="password"/>

 <property name="org.jboss.soa.esb.scout.proxy.transportClass"
 value="org.apache.ws.scout.transport.AxisTransport"/>
</properties>

Example 1.7. Sample Properties

1.4. Updated Registry Troubleshooting
• If using RMI, be sure to obtain the juddi-client.jar, (found in the jUDDI distribution.)

• Ensure that the jbossesb-properties.xml file is on the class-path and being read correctly. If
not, the registry will try to instantiate classes using "null" as the name.

• Make sure that META-INF/esb.juddi.client.xml specifies a valid transport.

• Make sure that the persistence.xml file's settings are valid and that the chosen Hibernate
dialect matches that for the database in use.

• Ensure that the esb.juddi.xml file is on the class-path. The jUDDI registry requires this so that it
can configure itself.

• In the event that a service fails or otherwise fails to shut down cleanly, old entries may possibly
"persist" in the registry. Remove these manually.

1.4.1. More Information
Learn more about troubleshooting the registry at these locations:

• The JBoss jUDDI Wiki: http://www.jboss.org/community/docs/DOC-11217

• The JBoss ESB User Forum: http://www.jboss.com/index.html?module=bb&op=viewforum&f=246.

http://www.jboss.org/community/docs/DOC-11217
http://www.jboss.com/index.html?module=bb&op=viewforum&f=246

18

Chapter 2.

19

Rule Services

2.1. Updated What is a Rule Service?
Study this section to learn about rule services and ways in which to utilize them. An understanding of
the JBoss Business Rules Management System (BRMS) will aid the reader in understanding these
types of services.

2.1.1. Introduction
As its name implies, the JBoss Enterprise SOA Platform's rule service allows one to deploy rules
that have been created in JBoss Rules as services on the ESB. This has two major benefits:

1. The amount of client code required to integrate the rules into one's application environment is
dramatically reduced.

2. Rules can be accessed either as part of an action chain or from within an orchestrated business
process.

Note
The JBoss Business Rules Management System is supported but one can also
use a rule engine if need be.

Rule Services are supported by the BusinessRuleProcessor and the DroolsRuleService
action classes, the latter of which implements the RuleService interface.

The BusinessRuleProcessor supports rules loaded from the class-path. These rules are defined
in .drl and .dsl files, and also in decision tables (which use .xls files.) However, there is no way
to specify multiple rule files for a single BusinessRuleProcessor action. (One can, in general, have
multiple rule files, though.) These file-based rules exist primarily for the purpose of testing prototypes
and very simple rule services. More complex rule services need to use the JBoss Rules RuleAgent,
because there is no way to specify multiple rule files in jboss-esb.xml.

The RuleService uses the RuleAgent to access rule packages from either the Business Rules
Management System or the local file system. These rule packages can contain thousands of rules,
originating in different ways. These files can originate from the following sources:

• the BRMS

• imported DRL files

• domain-specific language files

• decision tables

Important
Red Hat recommends using the JBoss Rules RuleAgent approach on production
systems.

Chapter 2. Rule Services

20

The BusinessRuleProcessor action supports both of JBoss Rules' execution models, namely the
stateless and stateful models.

Most rule services will be "stateless." In the stateless model, a message is sent to the rule
service. Every fact to be inserted into the rule engine is included in the body of the message.
The rules execute and update either the message or the facts.

"Stateful" execution takes place over time. In this case, several messages are sent to the rule
service. Each time the rules are executed, either the message or the facts are updated. This
continues until the service receives a final message that tells it to dispose of the stateful session.

Note
This configuration model is currently limited, in the sense that there can only be a
single stateful rule service in the message flow.

2.2. Updated Rule Services Using JBoss Rules

2.2.1. Introduction
JBoss Rules is the name of the engine that provides the SOA Platform with rule service support.
Read this section to learn more about it.

JBoss Rules is integrated through the following components:

• the BusinessRulesProcessor action class

• rules written in any one of JBoss Rules, DRL, DSL, decision tables or the Business Rule Editor.

• the Enterprise Service Bus Message. (This is inserted into the Rules Engine's working memory.)

When a message is sent to the BusinessRulesProcessor, a rule set executes over the objects
contained therein. The rule set will update either one of those objects or the message itself.

2.2.2. Rule-Set Creation
Create a rule-set by using JBoss Developer Studio. Since the message is added as a global, there is
a needs to add the jbossesb-rosetta.jar file to the JBoss Rules project.

Note
For a detailed study of rule creation and the JBoss Rules language itself, please refer
to the included JBoss Rules Reference Guide.

One must adhere to three requirements when writing rules for deployment as services on the JBoss
Enterprise SOA Platform:

1. all rules deployed as rule services must define the ESB Message as a global.

(Most rule services will want to communicate results to other services in the flow. They do so by
way of updating the message, so the BusinessRulesProcessor or DroolsRuleService will
always set the ESB Message as a global.)

Rule Service Consumers

21

#declare any global variables here
global org.jboss.soa.esb.message.Message;

Example 2.1. Defining an ESB Message as a Global

2. Set any other globals that are required in a rule with a higher salience than that for the Enterprise
Service Bus Message.

Note that the BusinessRulesProcessor and DroolsRuleService do not currently provide
any means to set globals in the jboss-esb.xml file. However, this functionality may be added in
the future.

rule "Set a global"
 salience 100
 when
 then
 drools.setGlobal("foo", new Foo());
end

Example 2.2. Declaring a Global in a Rule with Higher Salience

3. The DroolsRuleService does not provide a means by which to start a RuleFlow from the rule
service itself. (This functionality may be added in the future.) For now, this can be achieved in a
rule with higher salience, as per this sample code:

rule "Start a ruleflow"
 salience 100
 when
 then
 drools.startProcess("processId");
end

Example 2.3. Declaring a Global in a Higher Salience Rule

2.2.3. Rule Service Consumers
A rule service consumer has little to do. There is no need for it to create rule-bases or working
memories, to insert facts or to execute the rules. It only has to add facts and, on occassions,
properties, to the message.

In some cases, the client is ESB-aware meaning that it can add objects directly to the message, as per
this example:

MessageFactory factory = MessageFactory.getInstance();
message = factory.getMessage(MessageType.JAVA_SERIALIZED);
order = new Order();
order.setOrderId(0);
order.setQuantity(20);
order.setUnitPrice(new Float("20.0"));
message.getBody().add("Order", order);

Example 2.4. Adding Objects to a Directly to a Message

In other cases, the data may be in an Extensible Mark-Up Language (XML) message. If so, a
transformation service will be added to the message flow. As its name implies, its purpose is to

Chapter 2. Rule Services

22

transform the XML into Plain Old Java Object (POJO) files prior to the invocation of the rule
service.

Stateful Rule Execution
One must add a few properties to the message so that stateful rule execution can occur.

For the first message:

message.getProperties().setProperty("dispose", false);
message.getProperties().setProperty("continue", false);

For all the subsequent messages bar the final one:

message.getProperties().setProperty("dispose", false);
message.getProperties().setProperty("continue", true);

For the final message:

message.getProperties().setProperty("dispose", true);
message.getProperties().setProperty("continue", true);

Important
An ESB-aware client can add these directly. However a client that is not ESB-aware
will have to communicate the position of the message (whether it is first, ongoing or
last) within the data. Also, an action class must be added to the pipeline so that the
properties of the Enterprise Service Bus message are included.

Note that the quickstarts/business_ruleservice_stateful file is an
example of this type of service.

Note
In the releases up to, and including, Enterprise Service Bus 4.6, the continue
functionality for the stateful rule execution did not dispose of the working memory if
the value of the property was either false or completely absent. This has now been
fixed through the work for JBESB-2900.

If there is a need to re-enable the previous behaviour, do so by changing the value
of the configuration property called org.jboss.soa.esb.services.rules.continueState to
true. This property is found in the jbossesb-properties.xml file.

2.2.4. Configuration
Configure a rule service via its jboss-esb action element.

To do this, the name and action class are both required. The name is user-defined:

<action class="org.jboss.soa.esb.actions.BusinessRulesProcessor"

 Configuration

23

 name="OrderDiscountRuleService">

One of the following is also required:

• a DRL file

<property name="ruleSet" value="drl/OrderDiscount.drl" />

• DSL and DSLR (Domain Specific Language) files

<property name="ruleSet" value="dsl/approval.dslr" />
<property name="ruleLanguage" value="dsl/acme.dsl" />

• a decisionTable on the classpath

<property name="decisionTable" value="PolicyPricing.xls" />

• a "properties" file on the classpath, the purpose of which is to tell the rule agent how to find the
rules package. It can do so by specifying either an URL or a local file.

<property name="ruleAgentProperties"
 value="brmsdeployedrules.properties" />

Several example configurations follow:

<action class="org.jboss.soa.esb.actions.BusinessRulesProcessor"
 name="OrderDiscountRuleService">
 <property name="ruleSet" value="drl/OrderDiscount.drl" />
 <property name="ruleReload" value="true" />
 <property name="object-paths">
 <object-path esb="body.Order" />
 </property>
</action>

Example 2.5. Rules are in a DRL and Execution is Stateless

<action class="org.jboss.soa.esb.actions.BusinessRulesProcessor"
 name="OrderDiscountMultipleRuleServiceStateful">
 <property name="ruleSet
 value="drl/OrderDiscountOnMultipleOrders.drl" />
 <property name="ruleReload" value="false" />
 <property name="stateful" value="true" >
 <property name="object-paths">
 <object-path esb="body.Customer" />
 <object-path esb="body.Order" />
 </property>
</action>

Example 2.6. >Rules are in a DRL and Execution is Stateful

In this scenario, the client can, over time, send multiple messages to the rule service. The first
message might contain a customer object, with the subsequent ones each containing orders for that
customer. Every time a message is received, the rules will be "fired." The client can add a property to
the final message that tells the rule service to dispose of the contents of the working memory.

Chapter 2. Rule Services

24

 action class="org.jboss.soa.esb.actions.BusinessRulesProcessor"
 name="PolicyApprovalRuleService">
 <property name="ruleSet" value="dsl/approval.dslr" />
 <property name="ruleLanguage" value="dsl/acme.dsl" />
 <property name="ruleReload" value="true" />
 <property name="object-paths">
 <object-path esb="body.Driver" />
 <object-path esb="body.Policy" />
 </property>
</action>

Example 2.7. Rules in a Domain Specific Language with Stateless Execution

<action class="org.jboss.soa.esb.actions.BusinessRulesProcessor"
 name="PolicyPricingRuleService">
 <property name="decisionTable"
 value="decisionTable/PolicyPricing.xls" />
 <property name="ruleReload" value="true" />
 <property name="object-paths">
 <object-path esb="body.Driver" />
 <object-path esb="body.Policy" />
 </property>
</action>

Example 2.8. Rules in a Decision Table with Stateless Execution

<action class="org.jboss.soa.esb.actions.BusinessRulesProcessor"
 name="RuleAgentPolicyService">
 <property name="ruleAgentProperties"
 value="ruleAgent/brmsdeployedrules.properties" />
 <property name="object-paths">
 <object-path esb="body.Driver" />
 <object-path esb="body.Policy" />
 </property>
</action>

Example 2.9. Rules in the BRMS with Stateless Execution

The action configuration attributes are found on the action tag. They specify the action to use and
the name it is to be given.

Also use the action configuration attributes also specify the set of rules (the ruleSet) to
employ in conjunction with this action.

BusinessRulesProcessor Action Configuration Attributes
Attribute Description
Class Action class

Name Custom action name

BusinessRulesProcessor Action Configuration Properties
Property Description
ruleSet This is an optional reference to a file containing the ruleSet,

which is the set of rules used to evaluate the content. Only one
ruleSet can be given for each rule service instance.

 Object Paths

25

Property Description
ruleLanguage This is an optional reference to a file containing the definition

of a Domain Specific Language. This definition can be used for
evaluating the rule set. If it is used, ensure that the file in the
ruleSet is a dslr.

ruleReload Set this optional property to true in order to enable the hot
redeployment of rule sets. (However, enabling this feature
will increase the overhead on the rules processing.) Note that
rules will also reload if the .esb archive in which they live is
redeployed.

decisionTable This is an optional reference to a file containing the definition of a
rule-specification spreadsheet.

ruleAgentProperties This is an optional reference to a properties file containing
the location (either a URL or file path) of the compiled rule
packages. Note there is no need to specify ruleReload with a
ruleAgent, as it is controlled through the properties file.

stateful Set this optional property to true to specify that the rule
service will be receiving multiple messages over time. (The
new facts will be added to the rule engine's working
memory and the rules will be re-executed each time.)

object-paths Use this optional property to pass message objects into JBoss
Rules' working memory.

2.2.5. Object Paths
Note that JBoss Rules treats objects as though they are shallow. This is in order to achieve highly-
optimized performance. Use the optional object-paths property to evaluate an object residing in a
location that is "deeper" down than the object tree. (Set this property to extract those objects with
an ESB Message Object Path.)

The MVFLEX Expression Language (MVEL) is used to extract the object. The path to be used must
abide by the following syntax:

location.objectname.[beanname].[beanname]...

Understand that, in the above sample:

location
is one of either the message body, header, properties or attachment;

objectname
is the name of the object. (Attachments can be either named or numbered, so a number is a
perfectly valid value to insert here);

beannames
are optional. Use them in order to "traverse" a bean graph.

Example MVEL Expressions
Expression Result
properties.Order Use this to obtain the property object named Order

Chapter 2. Rule Services

26

Expression Result
attachment.1 obtains the first attachment object

attachment.AttachmentOne obtains the attachment named AttachmentOne

attachment.1.Order obtains getOrder() return object on the attached object.

body.Order1.lineitem obtains the object named Order1 from the body of the message.
Next, it will call getLineitem() on this object. More elements
can be added to the query in order to traverse the bean graph.

Important
Remember to add the java import statements to any objects that one imports into
one's rule set.

The Object Mapper cannot "flatten out" entire collections. If one has a requirement to do that, run a
"transformation" on the message first. (This will "unroll" the collection.)

2.2.6. Deploying and Packaging
Red Hat recommends that one packages one's code into "units of functionality." Use .esb packages
to do so. Conceptually, the aim is to package routing rules alongside the rule services that use
the rule sets. The figure below shows the layout of the business_rules_service Quick Start
and, in doing so, depicts a "typical" package.

 Deploying and Packaging

27
Figure 2.1. Typical .esb Archive which Uses JBoss Rules.

Chapter 2. Rule Services

28

Finally, deploy and reference the jbrules.esb archive in the deployment.xml file. Here is an
example of how to do this:

<jbossesb-deployment>
 <depends>jboss.esb:deployment=jbrules.esb</depends>
</jbossesb-deployment>

Chapter 3.

29

Content-based Routing

3.1. What is Content-Based Routing?

3.1.1. Introduction

3.1.1.1. Some Questions
In normal situations, information within the Enterprise Service Bus is conveniently packaged,
transferred and stored all in the form of a message. Messages are addressed to End Point References
(which are either services or clients.) An EPR's role is to identify the machine or process or object
that will ultimately deal with the content of the message. However, what happen will if the specified
address is no longer valid? Situations that may lead to this scenario include those in which the service
has failed or been removed. It is also possible that the service no longer deals with messages of that
particular type, in which case presumably some other service will still deal with the original function,
but that still leaves the question of "How should the message be handled?" What if other services
besides that which is the intended recipient are interested in the message's contents? What if no
destination is specified?

3.1.1.2. Introducing Content-Based Routing
One possible answer to all of these problems is Content-Based Routing (CBR). Content-Based
Routing seeks to route messages, not by a specified destination, but by the actual content of the
message itself. In a typical application, a message is routed by being opened and then having a set of
rules applied to its content. These rules are used to ascertain which parties are interested in it.

The Enterprise Service Bus can determine the destination of a given message based upon its content.
This relieves the sending application of the onus of needing to know where the message should go.

Content-based routing and filtering networks are both extremely flexible and very powerful. When built
upon established technologies such as MOM (Message Oriented Middleware), JMS (Java Message
Services), and XML (Extensible Markup Language), they are also reasonably easy to implement.

3.1.2. Simple Example
Content-based routing systems are typically built around two types of entities: routers (of which there
may be only one) and services (of which there is usually more than one). Services are the ultimate
consumers of messages. How services publish their interest in specific types of messages with the
routers is implementation dependent, but some mapping must exist between message type (or some
aspect of the message content) and services in order for the router to direct the flow of incoming
messages.

Routers, as their name suggests, "route" messages. They examine the content of messages as they
receive them, apply rules to that content and then forward the messages as the rules dictate.

In addition to routers and services, some systems may also include harvesters. These tools specialise
in finding interesting information, packaging it up in the guise of a formatted message and then
sending it to a router. Harvesters "mine" many sources of information, including mail transfer agent
message stores, news servers, databases and other legacy systems.

Chapter 3. Content-based Routing

30

The diagram below depicts a typical Content-Based Routing architecture that is using an Enterprise
Service Bus. At the heart of the system, represented by the cloud, is the ESB. Messages are sent
into it from the client, and it then directs them onwards to the router. The router is then responsible for
sending the messages to their ultimate destination(s).

3.1.3. Content-Based Routing using XPath
An easy way of performing content based routing in the JBoss Enterprise Service Bus is via the XPath
Rules Provider on the ContentBasedRouter action. This provider is very easy to use and supports
both "inline" and external rule definitions.

3.1.3.1. Inline Rule Definitions
It is very simple to define inline routing rules using XPath. One merely needs to set the cbrAlias
property to XPath and then define the routing rules in the route-to configurations that are found in
the container destinations property.

<action class="org.jboss.soa.esb.actions.ContentBasedRouter" name="ContentBasedRouter">
 <property name="cbrAlias" value="XPath"/>
 <property name="destinations">

Content-Based Routing using XPath

31

 <route-to service-category="BlueTeam" service-name="GoBlue" expression="/
Order[@statusCode='0']" />
 <route-to service-category="RedTeam" service-name="GoRed" expression="/
Order[@statusCode='1']" />
 <route-to service-category="GreenTeam" service-name="GoGreen" expression="/
Order[@statusCode='2']" />
 </property>
</action>

Example 3.1. Inline Rule Definition Example

3.1.3.2. External Rule Definitions
It is also very straightforward to define external XPath routing rules. Again, one must set the cbrAlias
property to XPath and then:

• define the routing expressions in a .properties file, in which the property keys are equal to the
destination names and the property values are the XPath expressions for routing to the destination
in question.

• define the routing rules in the route-to configurations via the container destinations property,
whereby the destination-name attribute will refer to the XPath rule key as defined in the
external .properties file.

<action class="org.jboss.soa.esb.actions.ContentBasedRouter" name="ContentBasedRouter">
 <property name="cbrAlias" value="XPath"/>
 <property name="ruleSet" value="/rules/xpath-rules.properties"/>
 <property name="ruleReload" value="true"/>
 <property name="destinations">
 <route-to destination-name="blue" service-category="BlueTeam" service-name="GoBlue" /
>
 <route-to destination-name="red" service-category="RedTeam" service-name="GoRed" />
 <route-to destination-name="green" service-category="GreenTeam" service-
name="GoGreen" />
 </property>
</action>

Example 3.2. External Rule Definition Example

The XPath rules are in a .properties file. They are represented in this simple format:

blue=/Order[@statusCode='0']
red=/Order[@statusCode='1']
green=/Order[@statusCode='2']

Example 3.3. XPath Rules File

3.1.3.3. Namespaces
XML name-space prefix-to-URI mappings are defined in the namespace elements. These are
contained within the namespaces container property. Name-space prefix-to-URI mappings are
defined in exactly the same way for both inline and external rule definitions.

Here is an example, from a quick start, of how to define a name-space:

$ pwd

Chapter 3. Content-based Routing

32

 /opt/local/50_ER7_Jan14/jboss-soa-p.5.0.0/jboss-as/samples/quickstarts

$ grep -ir "use namespaces" *

 fun_cbr/FunCBRRules-XPath.drl: xpathEquals expr "/order:Order/@statusCode", "0" use
 namespaces "order=http://org.jboss.soa.esb/Order"
 fun_cbr/FunCBRRules-XPath.drl: xpathEquals expr "/order:Order/@statusCode", "1" use
 namespaces "order=http://org.jboss.soa.esb/Order"
 fun_cbr/FunCBRRules-XPath.drl: xpathEquals expr "/order:Order/@statusCode", "2" use
 namespaces "order=http://org.jboss.soa.esb/Order"

<!-- ESB XPath CBR Service -->
 <service category="Fun_CBRServices_ESB"
 name="XPath_FunCBRService_ESB" description="ESB
 Listener - for the native clients" invmScope="GLOBAL">
 <listeners>
 <!-- Gateway -->
 <jms-listener name="TheGateway"
 busidref="xpathQuickstartGwChannel"
 is-gateway="true" />
 </listeners>
 <actions mep="OneWay">
 <action class="org.jboss.soa.esb.actions.ContentBasedRouter"
 name="ContentBasedRouter">
 <property name="cbrAlias" value="XPath"/>
 <property name="destinations">
 <namespace prefix="ord" uri="http://org.jboss.soa.esb/Order" />
 <route-to service-category="BlueTeam"
 service-name="GoBlue"
 expression="/ord:Order[@statusCode='0']" />
 <route-to service-category="RedTeam"
 service-name="GoRed"
 expression="/ord:Order[@statusCode='1']" />
 <route-to service-category="GreenTeam"
 service-name="GoGreen"
 expression="/ord:Order[@statusCode='2']" />
 </property>
 </action>
 </actions>
 </service>

Example 3.4. Name-Space Example

3.1.4. Content-Based Routing using Regex
An easy way to perform content-based routing in JBoss Enterprise Service Bus is via the Regex rules
provider on the ContentBasedRouter action. One will find this provider very easy to use and it
supports both inline and external rule definitions.

3.1.4.1. Inline Rule Definitions
Defining inline Regex routing rules is very straightforward. One merely needs to set the cbrAlias
property to Regex and then define the routing rules in the route-to configurations, found in the
container destinations property.

<action class="org.jboss.soa.esb.actions.ContentBasedRouter" name="ContentBasedRouter">

Content-Based Routing Using JBoss Rules

33

 <property name="cbrAlias" value="Regex"/>
 <property name="destinations">
 <route-to service-category="BlueTeam" service-name="GoBlue" expression="#*111#*" />
 <route-to service-category="RedTeam" service-name="GoRed" expression="#*222#*" />
 <route-to service-category="GreenTeam" service-name="GoGreen" expression="#*333#*" />
 </property>
</action>

Example 3.5. Regex Example

3.1.4.2. External Rule Definitions
Defining external XPath routing rules is also quite simple. Again, one merely needs to set the cbrAlias
property to Regex and then:

• define the routing expressions in a .properties file, where the property keys are the destination
names and the property values are the Regex expressions for routing to the destination in question.

• define the routing rules in the route-to configurations in the container destinations property,
with the destination-name attribute set to refer to the Regex rule key as defined in the external
.properties file.

<action class="org.jboss.soa.esb.actions.ContentBasedRouter" name="ContentBasedRouter">
 <property name="cbrAlias" value="XPath"/>
 <property name="ruleSet" value="/rules/regex-rules.properties"/>
 <property name="ruleReload" value="true"/>
 <property name="destinations">
 <route-to destination-name="blue" service-category="BlueTeam" service-name="GoBlue" /
>
 <route-to destination-name="red" service-category="RedTeam" service-name="GoRed" />
 <route-to destination-name="green" service-category="GreenTeam" service-
name="GoGreen" />
 </property>
</action>

Example 3.6. External Rules

The XPath rules are in a .properties file. They are represented in this simple format:

blue=#*111#*
red=#*222#*
green=#*333#*

Example 3.7. XPath Rules File

3.2. Content-Based Routing Using JBoss Rules

3.2.1. Introduction
The content-based router used in the JBoss Enterprise Service Bus utilises JBoss Rules as its default
rule provider "engine." The Enterprise Service Bus integrates with JBoss Rules through three different
routing action classes. These are:

• a routing rule set, written in JBoss Rules' DRL (or, optionally, the DSL) language;

Chapter 3. Content-based Routing

34

• the Enterprise Service Bus message content, which is the data that goes into the rule engine (it
takes the form of either XML or objects within the message);

• the destination, (which is derived from the resultant information coming out of the rules engine.)

Important
There is no native support for Freemarker inside the Enterprise Service Bus and,
hence, any use of this templating system must come from within the context of
Smooks.

When a message is sent to the content-based router, a certain rule set will evaluate its
content and return a set of service destinations. This chapter will teach how a rule set can be targeted,
how the message content is evaluated and what can be achieved with the resulting destinations.

3.2.2. Three Different Routing Action Classes
The JBoss Enterprise Service Bus ships with three slightly different routing action classes. Each
of these implements an Enterprise Integration Pattern (EIP). (The JBossESB Wiki contains more
information about this subject.) These are the three supported action classes:

1. org.jboss.soa.esb.actions.ContentBasedRouter

This action class implements the content-based routing pattern. It routes a message to one or
more destination services, based on the message content and the rule set against which it is
evaluating that content. The content-based router throws an exception when no destinations
are matched for a given rule set or message combination. This action will terminate any further
pipeline processing, so it should be positioned last in one's pipeline.

2. org.jboss.soa.esb.actions.ContentBasedWireTap

This implements the WireTap pattern. The WireTap is an Enterprise Integration Pattern
through which a copy of the message is send to a control channel. The WireTap is identical in
functionality to the standard content-based router, however it does not terminate the pipeline. It is
this latter characteristic which makes it suitable to be used as a wire-tap.

3. org.jboss.soa.esb.actions.MessageFilter

This implements the message filter pattern. The message filter pattern represents that case in
which messages can simply be dropped if certain content requirements are not met. It is identical
in functionality to the Content-Based Router but it does not throw an exception if the rule set does
not match any destinations. If none are met, the message is simply filtered out.

3.2.3. Rule-Set Creation
Crate a rule-set by using the JBoss Developer Studio which includes a plug-in for JBoss Rules.
Figure 3.1, “Create a New Rule Set using the JBoss Developer Studio” shows a screen-shot of this
plug-in. For a detailed analysis of the subjects of rule creation and the JBoss Rules language itself,
please see the JBoss Rules documentation.

To turn a regular rule-set into one that can be used for content-based routing, one must evaluate
an ESB message and ensure that the rule match results in a list of strings containing the service
destination names. Bear two things in mind whilst doing this:

 XPath Domain Specific Language

35

• firstly, ensure the rule set imports the ESB message

import org.jboss.soa.esb.message.Message

• secondly, ensure that the rule set defines the following global variable which will create the list of
destinations available to the Enterprise Service Bus:

global java.util.List destinations;

Figure 3.1. Create a New Rule Set using the JBoss Developer Studio

The message will now be added to the rule engine's working memory. The figure shows an
example in which the MessageType is used to determine to which destination the Message will be
sent. This particular rule-set is shipped in the JBossESBRules.drl file. The rule also checks if the
format type is XML or of the serialized.

3.2.4. XPath Domain Specific Language
It is convenient to undertake an XPath-based evaluation of XML-based messages. Red Hat supports
this by shipping a domain-specific language implementation. Use this implementation to utilise XPath
expressions in the rule file.

These expressions are defined in the XPathLanguage.dsl file. To use, simply reference it in the
rule-set with:

expander XPathLanguage.dsl

Currently, the XPath Language makes sure the message is of the type JBOSS_XML and that it defines
the following items:

Chapter 3. Content-based Routing

36

1. xpathMatch <element>: yields true if an element by this name is matched.

2. xpathEquals <element>, <value>: yields true if the element is found and its value equals
the value.

3. xpathGreaterThan <element>, <value>: yields true if the element is found and its value is
greater than the value.

4. xpathLessThan <element>, <value>: yields true if the element is found and its value is
lower then the value.

The XPath Language is defined in a file called XPathLanguage.dsl. One can customise it if the
need arises. Alternatively, one can define an entirely different domain-specific language.

Note
The quick-start called fun_cbr demonstrates this use of XPath.

3.2.4.1. XPath and Name-Spaces
To use name-spaces with XPath, specify which name-space prefixes are to be used in the XPath
expression. The name-space prefixes are specified in a comma-separated list of the following format:
"prefix=uri,prefix=uri". This same can done for all of the different kinds of XPath expressions
that were mentioned above.

1. xpathMatch expr "<expression>" use namespaces "<namepaces>"

2. xpathEquals expr "<expression>", "<value>" use namespaces "<namspaces>"

3. xpathGreaterThan "<expression>", "<value>" use namespaces "<namspaces>"

4. xpathLowerThan expr "<expression>", "<value>" use namespaces
"<namespaces>"

The name-space-aware statements differ in that they all need the extra expr keyword in front of the
XPath expression. This avoids collisions with the non-XPath aware statements in the DSL file. The
prefixes do not have to match those used in the XML to be evaluated: it only matters that the uniform
resource identifier is the same.

3.2.4.2. Configuration
These individual pieces are all connected via configuration, which is undertaken in the jboss-
esb.xml file. The service configuration below shows a service configuration fragment. In this
fragment the service is listening to a Java Message Service queue.

Each ESB message is passed to the ContentBasedRouter action class, which is loaded with a
certain rule-set. It moves the ESB message into working memory, "fires" the rules, obtains the list of
destinations and routes copies of the ESB message to the services. It uses the JbossESBRules.drl
rule-set, which matches two destinations, namely xml-destination and serialized-
destination. These names are mapped to those of real services in the route-to section.

 XPath Domain Specific Language

37

 <service category="MessageRouting"
 name="YourServiceName" description="CBR Service">

 <listeners>
 <jms-listener name="CBR-Listener" busidref="QueueA" maxThreads="1">
 </jms-listener>
 </listeners>

 <actions>
 <action class="org.jboss.soa.esb.actions.ContentBasedRouter"
 name="YourActionName">
 <property name="ruleSet" value="JBossESBRules.drl"/>
 <property name="ruleReload" value="true"/>
 <property name="destinations">
 <route-to destination-name="xml-destination"
 service-category="category01"
 service-name="jbossesbtest1" />
 <route-to destination-name="serialized-destination"
 service-category="category02"
 service-name="jbossesbtest2" />
 </property>
 <property name="object-paths">
 <object-path esb="body.test1" />
 <object-path esb="body.test2" />
 </property>
 </action>

 </actions>

</service>

Figure 3.2. Example of Content-Based Routing Service Configuration

This table shows action tag's attributes. These attributes specify which action is to be used and
which name it is to be given:

Attribute Description

Class Action class, this being one of :
org.jboss.soa.esb.actions.ContentBasedRouter,
org.jboss.soa.esb.actions.ContentBasedWireTap or
org.jboss.soa.esb.actions.MessageFilter

Name Custom action name

Table 3.1. CBR Action Configuration Attributes

This table depicts the action properties. The properties specify which set of rules (ruleSet) is to be
used within the action:

Property Description

ruleSet Name of the filename containing the JBoss Rules ruleSet, which is the set
of rules used to evaluate content. Only one ruleSet can be given for each
CBR instance.

ruleLanguage This is an optional reference to a file containing the definition of a Domain
Specific Language to be used for evaluating the rule set.

ruleAgentProperties This property points to a "rule agent properties" file located on the class-path.
The file can contain a property that points to pre-compiled rules packages on
the file system, in a directory or identified by an uniform resource locator for

Chapter 3. Content-based Routing

38

Property Description
integration with the Business Rule Management System. See the “RuleAgent”
section below for more information.

ruleReload This is an optional property which can be set to true in order to enable "hot"
redeployment of rule sets. Note that this feature will cause some overhead on
the rules processing. Note also that the rules will reload if the .esb archive in
which they reside is redeployed.

stateful This is an optional property which tells the RuleService to use a stateful session
where facts will be remembered between invocations. See the “Stateful Rules”
section for more information about this topic.

destinations This is a set of route-to properties, each of which contains the logical name of
the destination, along with the Service category and name as referenced in the
registry. The logical name is the name which should be used in the rule set.

object-paths This is an optional property to pass message objects into working memory.

Table 3.2. CBR Action Configuration Properties

3.2.4.3. Object Paths
Note that JBoss Rules treats objects as though they were "shallow" in order to achieve highly-
optimised performance. To evaluate an object that resides in a location deeper than the "object tree,"
use the optional object-paths property to extract objects from the message, via an “ESB Message
Object Path”. MVEL is used to extract the object and the path used should therefore use the following
syntax:

 location.objectname.[beanname].[beanname]...

where,

location
is one of {body, header, properties, attachment};

objectname
is the name of the object. Attachments may be either named or numbered, so, in their case, this
can be a number; too.

beannames
is an optional you can specify to traverse a bean graph.

Here are some examples:

• properties.Order - obtains the property object named Order

• attachment.1 - obtains the first attachment Object

• attachment.FirstAttachment - obtains the attachment named FirstAttachment

• attachment.1.Order - obtains getOrder() return object on the attached Object.

• body.Order1.lineitem - obtains the object named Order1 from the body of the message. Next
it will call getLineitem() on this object. More elements can be added to the query in order to
traverse the bean graph.

 XPath Domain Specific Language

39

It is important to remember that you have to add java import statements onto the objects you
import into your rule-set.

Finally, the Object Mapper cannot flatten out entire collections, so if you have need to do that you
firstly have to undertake a (Smooks-) transformation of the message. This is in order to unroll the
collection.

3.2.4.4. Stateful Rules
Using stateful sessions means that facts will be remembered across invocations. When stateful is set
to true, the working memory will not be cleared.

Tell stateful rule services when to continue with a current stateful session and when to dispose of it
via message properties . To signal that the existing stateful session is to be continued, set these two
message properties:

message.getProperties().setProperty(“dispose”, false);
message.getProperties().setProperty(“continue”, true);

When one invokes the rules for the last time, one must set “dispose” to "true" so that the working
memory is disposed:

message.getProperties().setProperty(“dispose”, true);
message.getProperties().setProperty(“continue”, true);

For more details about the RuleService please see Section 2.2, “ Updated Rule Services Using JBoss
Rules ”.

For an example showing how to use stateful rules, please refer to the
business_ruleservice_stateful Quick Start.

3.2.4.5. RuleAgent
By using the RuleAgent property, one can utilise pre-compiled rules packages. These packages can
be located on the local file system, in a local directory or pointing to an URL. For information about the
configuration options that exist for the properties file, please refer to section 9.4.4.1. The Rule Agent1

of the Drools manual.

For more details about the RuleService, please see Section 2.2, “ Updated Rule Services Using JBoss
Rules ”.

For an example of using a rule agent, please read the business_ruleservice_ruleAgent Quick Start.

3.2.4.6. RuleAgent and Business Rule Management System
By using the rule agent property, one can effectively integrate one's service with a Business Rule
Management System (BRMS.) This can be accomplished by specifying a URL in the rule agent
properties file. For information about the how to configure the URL and the other properties, please
refer to section 9.4.4.1. The Rule Agent2 of the JBoss Rules documentation.

1 http://downloads.jboss.com/drools/docs/4.0.7.19894.GA/html/ch09s04.html#d0e5889
2 http://downloads.jboss.com/drools/docs/4.0.7.19894.GA/html/ch09s04.html#d0e5889

http://downloads.jboss.com/drools/docs/4.0.7.19894.GA/html/ch09s04.html#d0e5889
http://downloads.jboss.com/drools/docs/4.0.7.19894.GA/html/ch09s04.html#d0e5889
http://downloads.jboss.com/drools/docs/4.0.7.19894.GA/html/ch09s04.html#d0e5889
http://downloads.jboss.com/drools/docs/4.0.7.19894.GA/html/ch09s04.html#d0e5889

Chapter 3. Content-based Routing

40

Note
For information about the how to install and configure the Business Rules
Management System, please refer to the JBoss Rules manual.

3.2.4.7. Executing Business Rules
There is a close relationship between rule execution for modifying data in the message
according to business processes and rule execution for routing. An example quick start
called business_rule_service demonstrates this use case. This quick start uses the
org.jboss.soa.esb.actions.BusinessRulesProcessor action class.

The functionality of the Business Rule Processor (BRP) is similar to that of a content-based router.
However, it is not a router. It returns the modified ESB message for further action pipeline
processing. One can mix business and routing rules in a single rule set if one so wishes. However,
routing will only occur if one of those three routing action classes mentioned previously is used.

3.2.4.8. Changing Rule Service Implementations
To use a different rule service than that which is shipped with the JBoss Enterprise Service Bus,
specify the preferred class in the action configuration:

<property name="ruleServiceImplClass" value="org.com.YourRuleService" />

The rule service is required to implement the
org.jboss.soa.esb.services.rules.RuleService interface.

3.2.4.9. Deployment and Packaging
Note that one should package one's code by grouping it into units of functionality, using .esb
packages. The idea of this is to collate the routing rules alongside the services that use those rule
sets. Figure 3.3, “Typical JBoss Rules .ESB Archive” below shows the layout of the simple_cbr
Quick Start in order to depict that which is typical of a package:

 XPath Domain Specific Language

41

Figure 3.3. Typical JBoss Rules .ESB Archive

Finally, deploy and reference the jbrules.esb in the deployment.xml file, as per this example:

Chapter 3. Content-based Routing

42

<jbossesb-deployment>
 <depends>jboss.esb:deployment=jbrules.esb</depends>
</jbossesb-deployment>

Chapter 4.

43

updated jBPM Integration
This section of the book examines the JBoss Business Process Manager. Read on to learn about
the features of this powerful tool. (This document assumes that the readership is familiar with the
basics of jBPM. If this is not the case, read the jBPM Reference Guide included with this software
first.)

The JBoss Business Process Manager is a powerful workflow and business process management
(BPM) engine. Use it to create business processes when there is a need to co-ordinate people,
applications and services. The jBPM uses a modular architecture which combines easy development
of work-flow applications with a process engine that is both flexible and scalable.

To represent the steps in a business procedure graphically, use the accompanying jBPM Process
Designer. This can facilitate the formation of a strong working relationship between the business
analyst and the technical developer.

The JBoss Enterprise Service Bus integrates with the jBPM for two reasons, these being:

1. Service Orchestration

ESB services can be "orchestrated" using the Business Process Manager. To do so, create a
process definition which calls upon them.

2. Human Task Management

The Business Process Manager allows one to integrate machine-based services with the
management of tasks undertaken by people.

4.1. Integration Configuration
The full jBPM run-time and console are included with the jbpm.esb deployment that ships with the
JBoss Enterprise Service Bus. The runtime and the console share a common database. To create
the database, start the Enterprise Service Bus DatabaseInitializer M-Bean. (The configuration
settings for this M-Bean are found in the jbpm.esb/jbpm-service.xml file.)

<classpath codebase="deploy" archives="jbpm.esb"/>
<classpath codebase="deploy/jbossesb.sar/lib"
 archives="jbossesb-rosetta.jar"/>

<mbean code="org.jboss.internal.soa.esb.dependencies.DatabaseInitializer"
 name="jboss.esb:service=JBPMDatabaseInitializer">
 <attribute name="Datasource">java:/JbpmDS</attribute>
 <attribute name="ExistsSql">select * from JBPM_ID_USER</attribute>
 <attribute name="SqlFiles">
 jbpm-sql/jbpm.jpdl.hsqldb.sql,jbpm-sql/import.sql
 </attribute>
 <depends>jboss.jca:service=DataSourceBinding,name=JbpmDS</depends>
</mbean>

<mbean code="org.jboss.soa.esb.services.jbpm.configuration.JbpmService"
 name="jboss.esb:service=JbpmService">
</mbean>

Example 4.1. ESB DatabaseInitializer MBean Configuration

The first MBean configuration element contains the settings for the DatabaseInitializer.

Chapter 4. updated jBPM Integration

44

Property Description Default

Data Source The data source for the jBPM database java:/JbpmDS

ExistsSql Use this SQL command to confirm the existence
of the database.

Select * from JBPM_ID_USER

SqlFiles These files contain the SQL commands to create
the jBPM database if it is not found.

jbpm-sql/jbpm.jpdl.hsqldb.sql,
jbpm-sql/import.sql

Table 4.1. ESB DatabaseInitializer Mbean Default Values

The DatabaseInitializer MBean is configured (via the jbpm-service.xml file) to wait for the
JbpmDS to be deployed, before it then deploys itself. The second MBean, JbpmService, ties the
lifecycle of the Business Process Manager's job executor to that of the jbpm.esb. It does so by
launching a job executor instance on start-up. (It, of course, stops it on shutdown.)

The JbpmDS data source is defined in the jbpm-ds.xml file. By default, it uses a Hypersonic
database. (Always change this to a production-quality database in a live environment.) Note that
all jbpm.esb deployments should share the same database instance. This is so that the various
Enterprise Service Bus nodes have access to the same processes definitions.

The jBPM Console is a web application. Access it from this address: http://localhost:8080/jbpm-
console, after the server has been started.

Figure 4.1. jBPM Console Log In

Please refer to the jBPM Reference Guide in order to learn how to change the security settings for this
application. The process involves changing some settings in the conf/login-config.xml file. Use
the console to deploy and monitor both jBPM processes and human task management procedures.
(A customised tasklist will be shown for each user of the software, allowing them to work on their own
tasks) The Quick Start entitled bpm_orchestration4 demonstrates this feature.)

The jbpm.esb/META-INF directory contains the deployment.xml and jboss-esb.xml files.

The deployment.xml file specifies the two resources upon which the ESB archive will depend.
(They are the jbossesb.esb and the JbpmDS data source files. The information in these files is used
to determine the order of deployment.)

<jbossesb-deployment>

http://localhost:8080/jbpm-console
http://localhost:8080/jbpm-console

 Configuring the jBPM

45

 <depends>jboss.esb:deployment=jbossesb.esb</depends>
 <depends>jboss.jca:service=DataSourceBinding,name=JbpmDS</depends>
</jbossesb-deployment>

Example 4.2. deployment.xml Dependancy Declarations

The jboss-esb.xml file deploys one internal service, called JBpmCallbackService:

<services>
 <service category="JBossESB-Internal" name="JBpmCallbackService"
 description="Service which makes Callbacks into jBPM">
 <listeners>
 <jms-listener name="JMS-DCQListener"
 busidref="jBPMCallbackBus" maxThreads="1" />
 </listeners>
 <actions mep="OneWay">
 <action name="action"
 class="org.jboss.soa.esb.services.jbpm.actions.JBpmCallback"/>
 </actions>
 </service>
</services>

Example 4.3. JBpmCallbackService

This internal service listens to the jBPMCallbackBus, which, by default, is set as either a JBossMQ
(the jbmq-queue-service.xml file) or a JBossMessaging (the jbm-queue-service.xml file.)
It is a messaging provider for the Java Message Service Queue. Ensure that only one of these files is
deployed in the jbpm.esb archive. If one wants to use one's own messaging provider, simply modify
the corresponding section in the jboss-esb.xml file to refer to it, in the way shown in this example:

<providers>
 <jms-provider name="CallbackQueue-JMS-Provider"
 connection-factory="ConnectionFactory">
 <jms-bus busid="jBPMCallbackBus">
 <jms-message-filter dest-type="QUEUE"
 dest-name="queue/CallbackQueue" />
 </jms-bus>
 </jms-provider>
</providers>

Example 4.4. Modifying the Provider Section in the jboss-esb.xml for One's Own Java Message
Service

Note
Section 4.5, “ jBPM-to-JBoss ESB ” contains more information about the
JbpmCallbackService.

4.2. Configuring the jBPM
The configuration of Business Process Manager itself is managed by three files, namely
jbpm.cfg.xml, hibernate.cfg.xml and jbpm.mail.templates.xml.

The jbpm.cfg.xml file is programmed, to use the JTA Transaction Manager by default.

Chapter 4. updated jBPM Integration

46

<service name="persistence">
 <factory>
 <bean class="org.jbpm.persistence.jta.JtaDbPersistenceServiceFactory">
 <field name="isTransactionEnabled"><false/></field>
 <field name="isCurrentSessionEnabled"><true/></field>
 <!--field name="sessionFactoryJndiName">
 <string value="java:/myHibSessFactJndiName" />
 </field-->
 </bean>
 </factory>
</service>

Figure 4.2. The Default Values in the jbpm.cfg.xml File

Other settings are left as the jBPM defaults.

The hibernate.cfg.xml file is also modified to use the JTA Transaction Manager.

<!-- JTA transaction properties (begin) ===
 ==== JTA transaction properties (end) -->
<property name="hibernate.transaction.factory_class">
 org.hibernate.transaction.JTATransactionFactory</property>

<property name="hibernate.transaction.manager_lookup_class">
 org.hibernate.transaction.JBossTransactionManagerLookup</property>

Figure 4.3. Default Values in the hibernate.cfg.xml File

Hibernate is not used to create the database schema. Rather, the DatabaseInitializer M-Bean
referred to in Section 4.1, “ Integration Configuration ” is utilised.

The jbpm.mail.templates.xml file is empty by default.

Note
For more details on each of these configuration files, please see the jBPM Guide.

Important
The configuration files that formerly shipped with the jbpm-console.war have been
removed. This was done to centralized all of the configuration files in the root of the
jbpm.esb archive.

4.3. Creating and Deploying a Process Definition
Red Hat recommends using the Eclipse-based jBPM Process Designer Plug-in (KA-JBPM-GPD)
to create process definitions. Either download and install it in Eclipse manually or use the JBoss
Developer Studio to do so.

 Creating and Deploying a Process Definition

47

Figure 4.4. JBoss Developer Studio - jBPM Graphical Editor

Use the jBPM Graphical Editor to create a process definition visually. Nodes, (and transitions
between nodes), can be added, modified and removed. Each process definition is saved in XML
format. The saved file can then be stored in a directory and deployed to a jBPM instance (that is, a
database.) Each time one deploys the process instance, the jBPM will "version" it and retain the older
copies. This allows processes that are already underway to complete on the instance upon which they
were started. New instances will use the latest version of the process definition.

In order to deploy a process definition, first check that the server is running. Next, activate a Process
Archive (PAR) by going to the Deployment tab in the Graphical Editor:

Chapter 4. updated jBPM Integration

48

Figure 4.5. JBoss Developer Studio - jBPM Deployment View

Sometimes it is sufficient to just deploy the processdefinition.xml file but, in most cases, one
will be deploying other kinds of artifacts as well, such as task forms.

Warning
It is also possible to deploy Java classes into a process archive. This means
that they will end up in the database, where they will be stored and versioned. Red
Hat does not recommend doing this in the Enterprise Service Bus environment, the
reason being that it can lead to class-loading issues. The recommended practice is to
instead deploys the classes into the server's lib directory.

Use one of the following three mechanisms to deploy a process definition:

1. through JBoss Developer Studio, by clicking on the Deploy Process Archive button (having
first configured the upload servlet used by the deployer.) This is visible in the Deployment view;

 From the Enterprise Service Bus to the jBPM

49

2. by saving the deployment to a local .par file from the Deployment view and then using the jBPM
Console to activate the archive. (In order to do this, one needs to be able to log in to the console
with the privileges of an administrator.)

3. by using the DeployProcessToServer jBPM ant task.

Figure 4.6. jBPM Console - Uploading a New Process Definition

4.4. From the Enterprise Service Bus to the jBPM
The JBoss Enterprise Service Bus can make calls into the Business Process Manager by using the
BpmProcessor action. This action utilises the jBPM Command API. The following jBPM commands
have been implemented at this stage:

Command Description

NewProcessInstanceCommand This command starts a new ProcessInstance,
the associated process definition of which
has already been deployed to the jBPM. The
NewProcessInstanceCommand leaves the
process instance in the start state. This is
needed in the case of a task being associated
with the Start node, an example being when
there is one on an actor's task-list.

StartProcessInstanceCommand This is identical to the
NewProcessInstanceCommand except that
the new process instance is automatically moved
from the start position to the first node.

GetProcessInstanceVariablesCommand This command takes the root node variables
for a process instance, by using the process
instance identifier.

CancelProcessInstanceCommand This command cancels a ProcessInstance.
Use it in situations such as that which
occurs when an event is received that
should result in the cancellation of the entire
ProcessInstance. (This action requires
some jBPM context variables to be set on the
message, most notably the ProcessInstance
identifier.)

Table 4.2. jBPM commands

<action name="create_new_process_instance"
 class="org.jboss.soa.esb.services.jbpm.actions.BpmProcessor">

Chapter 4. updated jBPM Integration

50

 <property name="command" value="StartProcessInstanceCommand" />
 <property name="process-definition-name" value="processDefinition2"/>
 <property name="actor" value="FrankSinatra"/>

 <property name="esbToBpmVars">
 <!-- esb-name maps to getBody().get("eVar1") -->
 <mapping esb="eVar1" bpm="counter" default="45" />
 <mapping esb="BODY_CONTENT" bpm="theBody" />
 </property>

</action>

Example 4.5. BpmProcessor Action Configuration in jboss-esb.xml

Two action attributes are required:

1. name

Use any value for this name attribute, as long as it is unique in the action pipeline.

2. class

Always set this attribute to org.jboss.soa.esb.services.jbpm.actions.BpmProcessor.

One can also set these configuration properties:

Property Description Required?

command This must be one of:
NewProcessInstanceCommand,
StartProcessInstanceCommand,
GetProcessInstanceVariablesCommand or
CancelProcessInstanceCommand.

Yes

process-definition-name This property is required for the
NewProcessInstanceCommands and
StartProcessInstanceCommands if the process-
definition-id property is not used. The value of this
property should reference the already-deployed
process definition for which one wishes to create a
new instance. (This property does not apply to the
CancelProcessInstanceCommand.)

Sometimes

process-definition-id This is a required property for the
NewProcessInstanceCommands and
StartProcessInstanceCommands if the process-
definition-name property is not used. The value of
this property should refer to the already-deployed
process definition for which a new instance is to
be created. (This property does not apply to the
CancelProcessInstanceCommand.)

Sometimes

actor Use this property to specify the jBPM actor identifier.
(It only applies to the NewProcessInstanceCommand
and the StartProcessInstanceCommand.)

No

key Use this property to specify the value of the jBPM
key. The key is a string based business key

No

 From the Enterprise Service Bus to the jBPM

51

Property Description Required?
property on the process instance. The combination
of business key and process definition must be
unique if a business key is supplied. The key
value can hold an MVEL expression to extract
the desired value from the EsbMessage. For
example, if one were to have a named parameter
called businessKey in the body of a message,
body.businessKey would be used. (This property only
applies to NewProcessInstanceCommand and
StartProcessInstanceCommands.)

transition-name This only applies to
StartProcessInstanceCommand. Use it only if
there is more than one transition out of the current
node. If this property is not specified, then the
default transition out of the node is taken. The
default transition is the first transition in the list
of transitions defined for that node in the jBPM
processdefinition.xml.

No

esbToBpmVars This is a optional property for the New- and
StartProcessInstanceCommands. It defines
a list of variables which need to be extracted from
the ESB Message and set into the jBPM context for
that particular process instance. The list consists
of mapping elements, each of which can have the
following attributes:

• esb

This is a required attribute. Place an MVEL
expression in it and use it to extract a value from
anywhere in the ESB message.

• bpm

This is a optional attribute containing the name to
use on the jBPM side. (If it is omitted, the Enterprise
Service Bus name is used instead.)

• default

This is a optional attribute which can hold a default
value if the ESB's MVEL expression does not find a
value set in the ESB message.

• bpmToEsbVars

This is structurally identical to the esbToBpmVars
property above. Use it in conjuction with the
GetProcessInstanceVariablesCommand to
map jBPM process instance variables (root
token variables) to the ESB message.

No

Chapter 4. updated jBPM Integration

52

Property Description Required?
• reply-to-originator

This is an optional property for the New- and
StartProcessInstanceCommands. Specify
a value of true, to make the process instance
store the ReplyTo/FaultTo values of the invoking
message's end-point references ' within the process
instance. These values can then be used within
subsequent EsbNotifier/EsbActionHandler
invocations to deliver a message to the
ReplyTo/FaultTo addresses.

jbpmProcessInstId This is a required ESB message
body parameter that applies to the
GetProcessInstanceVariablesCommand and the
CancelProcessInstanceCommand commands. This
value must be set as a named parameter on the ESB
message's body.

Yes

Table 4.3. Configuration Properties

4.4.1. ESB to jBPM Exception Handling
A JbpmException can be thrown from the jBPM Command API when ESB calls are made. This
exception is not handled by the integration. Instead, it is passed through to the action pipeline's
code. The action pipeline will log the error, send the message to the DeadLetterService, and send
an error message to the faultTo end-point reference, if this has been set.

4.5. jBPM-to-JBoss ESB
jBPM-to-JBossESB communication provides one with the capability to use jBPM for service
orchestration. (Service Orchestration itself is discussed in more detail in the next chapter. Firstly,
though, one must learn about the details of this integration.)

The integration implements two jBPM action handler classes, namelyEsbActionHandler and
EsbNotifier. The EsbActionHandler is a request-reply type action, which sends a message
to a service and then awaits a response. The EsbNotifier, by contrast, does not wait for such a
response. The interaction with the Enterprise Service Bus is asynchronous in nature and, therefore,
does not block the process instance whilst the service executes.

The EsbNotifier will be examined first, as it implements a subset of the configuration of the
EsbActionHandler.

4.5.1. ESBNotifier
The EsbNotifier action should be attached to an outgoing transition. This is so that the jBPM
processing can continue whilst the request to the ESB service is processed in the background. One
needs to attach the EsbNotifier to the outgoing transition in the jBPM processdefinition.xml
file.

<node name="ShipIt">
 <transition name="ProcessingComplete" to="end">
 <action name="ShipItAction"

 ESBNotifier

53

 class="org.jboss.soa.esb.services.jbpm.actionhandlers.EsbNotifier">
 <esbCategoryName>BPM_Orchestration4</esbCategoryName>
 <esbServiceName>ShippingService</esbServiceName>
 <bpmToEsbVars>
 <mapping bpm="entireCustomerAsObject" esb="customer" />
 <mapping bpm="entireOrderAsObject" esb="orderHeader" />
 <mapping bpm="entireOrderAsXML" esb="entireOrderAsXML" />
 </bpmToEsbVars>
 </action>
 </transition>
</node>

Example 4.6. Ship It Node with EsbNotifier Attached

The following attributes can be specified:

• name

This is a required attribute. It is the user-specified name of the action.

• class

This is a required attribute. Set it to
org.jboss.soa.esb.services.jbpm.actionhandlers.EsbNotifier.

The following sub-elements can be specified.

• esbCategoryName

The category name of the ESB service. This is required if the reply-to-originator functionality
is not in use.

• esbServiceName

This is the name of the ESB service. It is required if the reply-to-originator functionality is not
in use.

• replyToOriginator

This specifies the reply or fault originator address. Upon its creation, this address was stored in the
process instance.

• globalProcessScope

This element is an optional Boolean-valued parameter. Use it to set the default scope within which
the bpmToEsbVars variables are to be found. If the globalProcessScope is set to true, it
searches for the variables within the token hierarchy (that is, the process-instance scope.) If, by
contrast, it is set to false, it retrieves the variables in the scope of the token. If the token itself does
not possess a variable for a given name, then the token hierarchy is used to search for that variable.
If the element is omitted altogether, the globalProcessScope defaults to false.

• bpmToEsbVars

This element is optional. It takes a list of sub-elements and uses them to map a jBPM context
variable to an ESB Message location. Each of these mapping sub-elements can have the following
attributes:

• bpm

Chapter 4. updated jBPM Integration

54

This is a required attribute. It is the name of the variable within the jBPM context. This name can
be an MVEL-type expression and, therefore, can be used to extract a specific field from a larger
object. The MVEL root is set to the value of the jBPM ContextInstance:

<mapping bpm="token.name" esb="TokenName" />
<mapping bpm="node.name" esb="NodeName" />
<mapping bpm="node.id" esb="esbNodeId" />
<mapping bpm="node.leavingTransitions[0].name" esb="transName" />
<mapping bpm="processInstance.id" esb="piId" />
<mapping bpm="processInstance.version" esb="piVersion" />

Example 4.7. Mapping jBPM Context Variable to a Location in the ESB Message

The jBPM context-variable names can also be referenced directly.

• esb

This attribute is optional. It is the name of the variable in the Enterprise Service Bus Message. It
can be an MVEL-type expression. (In other words, the attribute value TokenName in the example
above is equal to body.TokenName. A special value called BODY_CONTENT "addresses" the
body directly.) By default, the variable is set as a named parameter on the body of the ESB
Message. In order to omit the esb attribute, replace it with the value of the bpm attribute.

• default

This attribute is optional. If the variable is not found within the jBPM context, the value of this field
is taken instead.

• process-scope

This attribute is optional. It is a parameter that can contain a Boolean value used to override the
setting of the globalProcessScope for this mapping.

Important
Always activate debug-level logging when working on the variable mapping
configuration.

4.5.2. ESB Action Handler
The EsbActionHandler is designed to work as a reply-response type call into the Enterprise
Service Bus. Attach it to the node. This is so that the action is called when the node is entered. The
EsbActionHandler executes, leaving the node waiting for a transition signal, (which can come from
any other thread of execution but will normally be sent by the JBossESB callback service.)

<action name="create_new_process_instance"
 class="org.jboss.soa.esb.services.jbpm.actions.BpmProcessor">

 <property name="command" value="StartProcessInstanceCommand" />
 <property name="process-definition-name" value="processDefinition2"/>
 <property name="actor" value="FrankSinatra"/>

 <property name="esbToBpmVars">

 ESB Action Handler

55

 <!-- esb-name maps to getBody().get("eVar1") -->
 <mapping esb="eVar1" bpm="counter" default="45" />
 <mapping esb="BODY_CONTENT" bpm="theBody" />
 </property>

</action>

Example 4.8. Configuration for the EsbActionHandler

The EsbActionHandler action's configuration extends to the settings for the EsbNotifier. The
extensions consist of the following sub-elements:

Property Description Required?

esbToBpmVars This identical to the esbToBpmVars property
(mentioned in Section 4.4, “ From the Enterprise
Service Bus to the jBPM ”) for the BpmProcessor
configuration. The sub-element defines a list of
variables that need to be extracted from the ESB
message and set in the Business Process Manager
context for that particular process instance. If left
unspecified, the globalProcessScope value
defaults to true when the variables are set.

The list consists of mapping elements, each of
which can have the following attributes:

• esb

This is a required attribute which can contain an
MVEL expression. Use it to extract a value and
put it into the ESB Message from anywhere.

• bpm

This is an optional attribute containing the name
which is to be used by the jBPM. If it is not
supplied, then the name in esb is used instead.

• default

Use this is an optional attribute to hold a default
value if the esb MVEL expression cannot find one
that is set in the Enterprise Service Bus message.

• process-scope

This is an optional parameter consisting of a
Boolean value. Use it to override the setting of
this mapping's e globalProcessScope.

No

exceptionTransition This the name of the transition to utilize if an
exception occurs whilst the service is being
processed. This element requires the current node
to have more than one outgoing transition and

No

Chapter 4. updated jBPM Integration

56

Property Description Required?
for one of those transitions to handle exception
processing.

Table 4.4. Sub-Elements

A time-out value can be specified for this action (it is optional.) To do so, use a jBPM-native timer on
the node. Example 4.9, “Specifying a Time-Out Value for an Action” demonstrates how to add a time-
out value so that, if no signal is received within ten seconds of entering this node, a transition called
time-out is triggered:

<timer name='timeout' duedate='10 seconds' transition='time-out'/>

Example 4.9. Specifying a Time-Out Value for an Action

4.5.3. jBPM-to-ESB Exception Handling
There are two scenarios in which exceptions can arise:

1. The ServiceInvoker will throw a MessageDeliveryException when delivery of the
message to the Enterprise Service Bus fails. This happens when the user has mis-spells
the name of the service that he or she is trying to reach. This type of exception can be
thrown from both the EsbNotifier and the EsbActionHandler. It is possible to add an
ExceptionHandler (TB-JBPM-USER) that can deal with this situation to the jBPM node. (See
http://docs.jboss.com/jbpm/v3/userguide/processmodelling.html for more information.)

2. The second type of exception occurs when the service receives a request successfully only
for something to go wrong during subsequent processing. Only if the call was made from the
EsbActionHandler does it makes sense to report the exception back to Business Process
Manager. This is due to the fact that, if the call was made from the EsbNotifier, then jBPM
processing has already moved on, and it would, therefore, be of little value to notify the process
instance of the problem.

The following scenarios illustrate the kind of error handling that it is now possible to achieve using
standard jBPM features: Figure 4.7, “Three Exception Handling Scenarios: Time-Out, Exception-
Transition and Exception-Decision.”.

http://docs.jboss.com/jbpm/v3/userguide/processmodelling.html

 Scenerio One: Time-out

57

Figure 4.7. Three Exception Handling Scenarios: Time-Out, Exception-Transition and Exception-
Decision.

4.5.4. Scenerio One: Time-out
If one is using the EsbActionHandler action and the node is awaiting a callback, then it may be
advantageous to limit the waiting period. To do so, add a timer to the node. That is how Service1
is configured in the diagram. The timer can be set for a certain period, which, in this case, is ten
seconds:

<node name="Service1">

 <action class=
 "org.jboss.soa.esb.services.jbpm.actionhandlers.EsbActionHandler">
 <esbCategoryName>MockCategory</esbCategoryName>
 <esbServiceName>MockService</esbServiceName>
 </action>

 <timer name='timeout' duedate='10 seconds'
 transition='time-out-transition'/>
 <transition name="ok" to="Service2"></transition>
 <transition name="time-out-transition" to="ExceptionHandling"/>

Chapter 4. updated jBPM Integration

58

</node>

Service1 has two outgoing transitions. The first of these is called ok whilst the second one is named
time-out-transition. Under normal processing conditions, the call-back would signal the default
transition, which is the ok, since it is defined as the first. However, if the processing of the service
takes more then ten seconds, the timer will execute. The transition attribute of the timer is set to
time-out-transition, meaning that this transition will be taken on time-out. Look at the diagram
and observe that the processing ends up in the ExceptionHandling node. From here, one can
perform compensatory work.

4.5.5. Scenerio Two: Exception Transition
One can define an exceptionTransition to handle any exceptions that may occur whilst the
service is being processed. Doing so results in the faultTo end point reference being set on the
message, meaning that the Enterprise Service Bus will make a call-back to this node. It is this call-
back that signals the exceptionTransition. Service2 has two outgoing transitions: Transition ok
will be taken under normal processing, whilst the exception transition will be taken when the service
has, as its name inidcates, thrown an exception during processing.

<node name="Service2">
 <action class=
 "org.jboss.soa.esb.services.jbpm.actionhandlers.EsbActionHandler">
 <esbCategoryName>MockCategory</esbCategoryName>
 <esbServiceName>MockService</esbServiceName>
 <exceptionTransition>exception</exceptionTransition>
 </action>
 <transition name="ok" to="Service3"></transition>
 <transition name="exception" to="ExceptionHandling"/>
</node>

Example 4.10. Definition of Service Two

In the preceding definition of Service2, the action's exceptionTransition is set to “exception.” Note
that, in this scenario the process also ends up in the ExceptionHandling node.

4.5.6. Scenerio Three: Exception Decision
In order to understand this final scenario, study the configuration of Service3 and the
exceptionDecision node that follows it. As can be seen Service3 processes and completes
normally and the default transition out of its node occurs as one would expect. However, at some point
during the service execution, an errorCode was set, and the exceptionDecision node checks if a
variable of the same name has been called here:

<node name="Service3">
 <action class=
 "org.jboss.soa.esb.services.jbpm.actionhandlers.EsbActionHandler">
 <esbCategoryName>MockCategory</esbCategoryName>
 <esbServiceName>MockService</esbServiceName>
 <esbToBpmVars>
 <mapping esb="SomeExceptionCode" bpm="errorCode"/>
 </esbToBpmVars>
 </action>
 <transition name="ok" to="exceptionDecision"></transition>
</node>

<decision name="exceptionDecision">

 Scenerio Three: Exception Decision

59

 <transition name="ok" to="end"></transition>
 <transition name="exceptionCondition" to="ExceptionHandling">
 <condition>#{ errorCode!=void }</condition>
 </transition>
</decision>

Example 4.11. Definition of Service Three

In the above example, the esbToBpmVars mapping element extracts the errorCode called
SomeExceptionCode from the Enterprise Service Bus message body and sets in the jBPM
context. (This is provided that the SomeExceptionCode is set.) In the next node, named
exceptionDecision, the ok transition is taken if processing is normal, but if a variable called
errorCode is found in the jBPM context, the exceptionCondition transition is taken instead. This
is achieved by using the jBPM's decision node feature, by means of which transitions can nest within a
condition.

To learn more about conditional transitions, please refer to the jBPM Reference Guide.

60

Chapter 5.

61

Service Orchestration
Read this chapter to gain an understanding of how to use the integration functionality discussed earlier
to perform Service Orchestration with the Business Process Manager.

The term, service orchestration, refers to the arrangement of business processes. Traditionally, the
Business Process Execution Language (BPEL) has been used to execute SOAP-based web services.
Red Hat recommends using jBPM to orchestrate processes, regardless of their end-point type, within
the JBoss Enterprise SOA Platform.

5.1. Orchestrating Web Services
Read the Message Action Guide to gain an understanding of how the JBoss Enterprise Service Bus
provides Web Service-BPEL (WS-BPEL) support. This Guide also provides information about how to
configure the main components of this.

Note
JBoss and the JBoss Enterprise Service Bus team also have a special support
agreement with ActiveEndpoints 1 who built the award-winning ActiveBPEL WS-
BPEL Engine.

The JBoss Enterprise Service Bus software includes ActiveBPEL 2 which can be used
to collaborate effectively to provide a WS-BPEL-based orchestration layer on top of
a set of services that do not expose Webservice Interfaces. The JBoss Enterprise
Service Bus provides the web service integration and ActiveBPEL provides the
Process Orchestration. A number of Flash- based "walk-throughs" of this Quick Start
are also available online here: http://labs.jboss.com/jbossesb/resources/tutorials/bpel-
demos/bpel-demos.html.

Note
The ActiveEndpoints WS-BPEL Engine has been incompatible with the JBoss
Application Server since Release 4.0.5. However, it can be deployed and run
successfully on Tomcat, as demonstrated in the examples below.

5.2. Orchestration Diagram
A flow chart-like design tool must be used to plan and deploy Service Orchestration processes. The
jBPM Integrated Development Environment (IDE) can be utilised for this purpose. The following
shows an example of just such a flow-chart, representing a simplified ordering process. (This example
is taken from the bpm_orchestration4 Quick Start which ships with the JBoss Enterprise Service
Bus.)

http://www.active-endpoints.com/
http://www.active-endpoints.com/
http://labs.jboss.com/jbossesb/resources/tutorials/bpel-demos/bpel-demos.html
http://labs.jboss.com/jbossesb/resources/tutorials/bpel-demos/bpel-demos.html

Chapter 5. Service Orchestration

62

Figure 5.1. Orchestration diagram for the bpm_orchestration4 QuickStart

The classnames of the Figure 5.1, “Orchestration diagram for the bpm_orchestration4 QuickStart
” nodes are JBoss ESB Services. They are called Intake Order, Calculate Discount and
Ship It. The regular type of Node was used for them, which is why they are labeled with <<Node>>.
Each of these nodes has the EsbActionHandler attached to itself. This means that the Business
Process Manager node will send a request to the service and then it will remain in a "wait" state, until
the Enterprise Service Bus calls back with the response from the service. This response can then be
used within a Business Process Manager context.

For example, when the Intake Order Service responds, that response is used to populate the
Review Order form. The Review Order node is a task node, which means that it was designed
for human interaction. (In this case, someone is required to review the order before the Order Process
can occur.)

To create the diagram in Figure 5.1, “Orchestration diagram for the bpm_orchestration4
QuickStart ”, select File > New > Other and, from the Selection wizard, choose JBoss jBPM
Process Definition. The wizard will direct one to save the process definition. Red Hat recommends
that a single directory be used for each process definition, as this makes the most sense from an
organisational point of view. This is because one will usually end up with multiple files associated with
each process design.

Figure 5.2. Select the New JBoss jBPM Process Definition

After creating a new process definition, start to "drag-and-drop" items from the jBPM Integrated
Development Environment's menu palette into the Process Design view. One can switch between

 Orchestration Diagram

63

the design and source modes if need be, in order to check the XML elements being added, or in order
to add those XML fragments that are needed for the integration. (Recently, a new type of node called
ESB Service was added.)

Before building the order process diagram depicted in Figure 5.1, “Orchestration diagram for the
bpm_orchestration4 QuickStart ”, create and test the three services. These are ordinary ESB
services and they are defined in the jboss-esb.xml file. Study the jboss-esb.xml file in the
bpm_orchestration4 Quick Start to learn more about them but the only essential things to know in
relation to Service Orchestration are the names and categories of the services themselves. These are
as shown in the following sample jboss-esb.xml file fragment:

 <services>
 <service category="BPM_orchestration4_Starter_Service"
 name="Starter_Service"
 description="BPM Orchestration Sample 4: Use this service to start a
process instance">
 <!-- -->
 </service>
 <service category="BPM_Orchestration4" name="IntakeService"
 description="IntakeService: transforms, massages, calculates priority">
 <!-- -->
 </service>
 <service category="BPM_Orchestration4" name="DiscountService"
 description="DiscountService">
 </service>
 <service category="BPM_Orchestration4" name="ShippingService"
 description="ShippingService">
 <!-- -->
 </service>
</services>

Reference these services by using the EsbActionHandler or EsbNotifier action handlers. (The
EsbActionHandler should be used when the Business Process Manager expects a response,
whilst the EsbNotifier is to be utilised when none is needed.)

Now that the ESB services are known, drag the Start state node into the design view. A new process
instance will begin at this node. Next, drag in a node (or ESB Service, if one is available.) Name this
node Intake Order. It is possible to connect the Start and the Intake Order nodes by selecting
Transition from the menu and then clicking on them both. (An arrow connecting them should appear.
It will be pointing towards the first Intake Order.)

Now add the Service and Category names to the Intake Node. Select the Source view. The source
code of the Intake Order node should look like this:

<node name="Intake Order">
 <transition name="" to="Review Order"></transition>
</node>

Next, add the EsbHandlerAction class reference, then the sub-element configurations for the
Service Category and Name, the BPM_Orchestration4 and the IntakeService, as per this
example code:

<node name="Intake Order">
 <action name="esbAction" class=

Chapter 5. Service Orchestration

64

 "org.jboss.soa.esb.services.jbpm.actionhandlers.EsbActionHandler">
 <esbCategoryName>BPM_Orchestration4</esbCategoryName>
 <esbServiceName>IntakeService</esbServiceName>
 <!-- async call of IntakeService -->
 </action>
 <transition name="" to="Review Order"></transition>
</node>

Having done that, send some Business Process Manager context variables along with the service
call. In this example, there is a variable named entireOrderAsXML, which is to be set in the default
position on the body of the Enterprise Service Bus message. To do this, simply add the following code:

<bpmToEsbVars>
 <mapping bpm="entireOrderAsXML" esb="BODY_CONTENT" />
</bpmToEsbVars>

This will cause the XML-based contents of the entireOrderAsXML variable to end up in the body of
the Enterprise Service Bus message. This, in turn, means that the IntakeService can now access
the message and can process it, by letting it flow through each action in the Pipeline. When the
last action is reached, the replyTo property is checked and the Enterprise Service Bus message
is sent to the JBpmCallBack service. The latter makes a call back into the Business Process
Manager, signaling the transition from the Intake Order node to the next one (Review Order.)
This time, one will want to send some variables from the Enterprise Service Bus message to the
Business Process Manager. Note that entire objects can be sent, as long both contexts can load the
object's class. In order to retain the ability to "map back" to the Business Process Manager, add an
esbToEsbVars element.

Putting all of these components together will result in the following code:

<node name="Intake Order">
<action name="esbAction" class=
 "org.jboss.soa.esb.services.jbpm.actionhandlers.EsbActionHandler">
<esbCategoryName>BPM_Orchestration4</esbCategoryName>
<esbServiceName>IntakeService</esbServiceName>
<bpmToEsbVars>
<mapping bpm="entireOrderAsXML" esb="BODY_CONTENT" />
</bpmToEsbVars>
<esbToBpmVars>
<mapping esb="body.entireOrderAsXML" bpm="entireOrderAsXML"/>
<mapping esb="body.orderHeader" bpm="entireOrderAsObject" />
<mapping esb="body.customer" bpm="entireCustomerAsObject" />
<mapping esb="body.order_orderId" bpm="order_orderid" />
<mapping esb="body.order_totalAmount" bpm="order_totalamount" />
<mapping esb="body.order_orderPriority" bpm="order_priority" />
<mapping esb="body.customer_firstName" bpm="customer_firstName" />
<mapping esb="body.customer_lastName" bpm="customer_lastName" />
<mapping esb="body.customer_status" bpm="customer_status" />
</esbToBpmVars>
</action>
<transition name="" to="Review Order"></transition>
</node>

When this service returns, the following variables will be stored in the Business Process Manager
context:

• entireOrderAsXML,

• entireOrderAsObject and

 Orchestration Diagram

65

• entireCustomerAsObject.

In addition, for demonstration purposes, there are also some flattened variables:

• order_orderid,

• order_totalAmount,

• order_priority,

• customer_firstName,

• customer_lastName and

• customer_status.

Figure 5.3. The Order Process Has Reached the “Review Order” Node

A human will be required to review the order process. Therefore, add a Task Node and the task
Order Review. These need to be performed by someone with the actor_id user. The XML fragment
should look like this:

<task-node name="Review Order">
<task name="Order Review">
<assignment actor-id="user"></assignment>
 <controller>
<variable name="customer_firstName"
access="read,write,required"></variable>

Chapter 5. Service Orchestration

66

<variable name="customer_lastName" access="read,write,required">
<variable name="customer_status" access="read"></variable>
<variable name="order_totalamount" access="read"></variable>
<variable name="order_priority" access="read"></variable>
<variable name="order_orderid" access="read"></variable>
<variable name="order_discount" access="read"></variable>
<variable name="entireOrderAsXML" access="read"></variable>
</controller>
</task>
<transition name="" to="Calculate Discount"></transition>
</task-node>

Create an XHTML data-form. Do this so that these variables can display in a form in the jbpm-
console (see the Review_Order.xhtml file in the bpm_orchestration4 Quick Start [JBESB-QS] for
more information about this.) "Tie" this data-form to the TaskNode via the forms.xml file:

<forms>
<form task="Order Review" form="Review_Order.xhtml"/>
<form task="Discount Review" form="Review_Order.xhtml"/>
</forms>

Note that, in this case, the same form is applied to two task nodes. The variables are referenced in the
Review Order form as shown in the following sample code. (This, in turn, references the variables that
are set in the Business Process Manager context.)

<jbpm:datacell>
<f:facet name="header">
<h:outputText value="customer_firstName"/>
</f:facet>
<h:inputText value="#{var['customer_firstName']}" />
</jbpm:datacell>

When the process reaches the Review Node, (depicted in Figure 5.3, “The Order Process Has
Reached the “Review Order” Node”), the user can log into the jbpm-console and click on "Tasks” to
see a list of items, (as shown in Figure 5.4, “The Task List for User 'User'”.) He or she can examine
the task by clicking on it. A form will appear, (as seen in Figure 5.5, “The 'Order Review' form”.) He or
she can then update some of the values and conclude by clicking Save and Close, at which point the
process will move on to the next node.

Figure 5.4. The Task List for User 'User'

 Orchestration Diagram

67

Figure 5.5. The 'Order Review' form

The next one is the Calculate Discount node. This is, once again, an ESB service node, the
configuration file for which looks like this:

<node name="Calculate Discount">
<action name="esbAction" class="
org.jboss.soa.esb.services.jbpm.actionhandlers.EsbActionHandler">
<esbCategoryName>BPM_Orchestration4</esbCategoryName>
<esbServiceName>DiscountService</esbServiceName>
<bpmToEsbVars>
<mapping bpm="entireCustomerAsObject" esb="customer" />
<mapping bpm="entireOrderAsObject" esb="orderHeader" />
<mapping bpm="entireOrderAsXML" esb="BODY_CONTENT" />
</bpmToEsbVars>
<esbToBpmVars>
<mapping esb="order"
bpm="entireOrderAsObject" />
<mapping esb="body.order_orderDiscount" bpm="order_discount" />
</esbToBpmVars>
</action>
<transition name="" to="Review Discount"></transition>
</node>

The service receives both the customer and the orderHeader objects, as well as
the entireOrderAsXML data. It then computes a discount. The response maps the
body.order_orderDiscount value onto a Business Process Manager context variable called
order_-discount. The process is then signaled, which tells it to move to the Review Discount node:

Chapter 5. Service Orchestration

68

Figure 5.6. The "Discount Review" Form

Here, the user is asked to review the discount, which is set to a value of 8.5 (see Figure 5.6, “The
"Discount Review" Form”.) When he or she clicks Save and Close, the process moves to the Ship
It node, which is, once again, an ESB service. To circumvent the Order process before the Ship It
service completes, use the EsbNotifier action handler by attaching it to the outgoing transition:

<node name="ShipIt">
<transition name="ProcessingComplete" to="end">
<action name="ShipItAction" class=
"org.jboss.soa.esb.services.jbpm.actionhandlers.EsbNotifier">
<esbCategoryName>BPM_Orchestration4</esbCategoryName>
<esbServiceName>ShippingService</esbServiceName>
 <bpmToEsbVars>
<mapping bpm="entireCustomerAsObject" esb="customer" />
 <mapping bpm="entireOrderAsObject" esb="orderHeader" />
 <mapping bpm="entireOrderAsXML" esb="entireOrderAsXML" />
 </bpmToEsbVars>
 </action>
</transition>
</node>

After notifying the ShippingService, the order process moves to the "end" state and
terminates. (The ShippingService itself may still be finishing.) JBoss Rules is used in the
bpm_orchestration4 file to determine whether this order should be shipped via the "normal" or
"express" method.

5.3. Process Deployment and "Instantiation"
In the previous section, an assumption was made that an instance of the process definition
was running. This was in order to explain the process flow. However, now that the

 Process Deployment and "Instantiation"

69

processdefinition.xml file has been created, it can be deployed to the Business Process
Manager, by using any one of the following: the integrated development environment, ant or the
jbpm-console. (The integrated development environment will be used in the following example.)

The following files will be deployed:

• Review_Order.xhtml,

• forms.xml,

• gpd.xml,

• processdefinition.xml and

• processimage.jpg.

The integrated development environment creates a PAR archive and deploys it to the Business
Process Manager's database.

Warning
Red Hat recommends against deploying Java code in PAR archives as it may cause
class-loading issues. Instead, use either JAR or ESB archives to deploy classes.

Create a new process instance once the process definition is deployed. (Note that
StartProcessInstanceCommand can be used. The allows one to create a process instance with
some pre-set initial values.) Study this code sample:

<service category="BPM_orchestration4_Starter_Service"
name="Starter_Service"
description="BPM Orchestration Sample 4: Use this service to start a
 process instance">
<listeners>
</listeners>
<actions>
<action name="setup_key" class=
"org.jboss.soa.esb.actions.scripting.GroovyActionProcessor">
<property name="script"
value="/scripts/setup_key.groovy" />
</action>
<action name="start_a_new_order_process" class=
"org.jboss.soa.esb.services.jbpm.actions.BpmProcessor">
<property name="command"
value="StartProcessInstanceCommand" />
<property name="process-definition-name"
value="bpm4_ESBOrderProcess" />
<property name="key" value="body.businessKey" />
<property name="esbToBpmVars">
 <mapping esb="BODY_CONTENT" bpm="entireOrderAsXML" />
</property>
</action>
</actions>
</service>

The new process instance is now invoked and using a script. The jBPM key is set to the
value of OrderId from an incoming order XML file. This same XML is subsequently put into
a Business Process Manager context, through use of the the esbToBpmVars mapping. In

Chapter 5. Service Orchestration

70

the bpm_orchestration4 Quick Start, the XML came from the Seam DVD Store and the
SampleOrder.xml looks like this:

<Order orderId="2" orderDate="Wed Nov 15 13:45:28 EST 2006" statusCode="0"
 netAmount="59.97" totalAmount="64.92" tax="4.95">
<Customer userName="user1" firstName="Rex" lastName="Myers" state="SD"/>
<OrderLines>
<OrderLine position="1" quantity="1">
<Product productId="364" title="Gandhi"
price="29.98"/>
</OrderLine>
<OrderLine position="2" quantity="1">
<Product productId="299" title="Lost Horizon" price="29.99"/>
</OrderLine>
</OrderLines>
</Order>

Note that both the Enterprise Service Bus and the Business Process Manager deployments are
"hot." The jBPM has a special feature that results in process deployments being "versioned": newly
created process instances will use the latest version, whilst existing ones will finish using the process
deployment on which they were started.

5.4. Conclusion
From studying the examples in this chapter, you have learned how the Business Process
Manager can be used to orchestrate services and, in addition, perform "Human Task Management."
Note that you are free to use any jBPM feature. For instance, look at the Quick Start entitled
bpm_orchestration2, in order to learn how to use the Business Process Manager's fork and
join functionality.

Chapter 6.

71

Message Transformation
The JBoss Enterprise Service Bus supports message data transformation functionality through
several mechanisms.

6.1. Smooks
Smooks is, amongst other things, a Fragment-Based Data Transformation and Analysis Tool. It can
"understand" a wide range of source and target data formats, including XML, EID, CSV and Java.
It features a wide range of data processing and manipulation functionality. Many transformation
technologies are supported, all within this single framework.

The SmooksAction component supports message transformation on the JBoss Enterprise
Service Bus. Use this ESB Action component to "plug" the Smooks Data Transformation/Processing
Framework into an ESB Action Processing Pipeline.

Samples and Tutorials
There are a number of quick start examples demonstrating transformations included with the JBoss
Enterprise SOA Platform. These can be found in the samples/quickstarts directory. (The name
of each transformation Quick Start sub-directory is prefixed with the word transform_.)

The JBoss SOA Platform Programmers' Guide contains further detailed information about this topic. It
also provides links to additional resources that can be found on the Smooks website.

Note
Some of the quick starts use the old SmooksTransformer action class instead
of its successor, SmooksAction. Please bear in mind that SmooksTransformer
will be deprecated in a future release.

6.2. XSL Transformations
The XstlAction class supports XSLT transformations. Read the section entitled “XSLTAction” in the
Programmers' Guide to learn more about this.

72

Chapter 7.

73

The Message Store
The Enterprise Service Bus' MessageStore mechanism has been designed for the purpose of audit-
tracking. As with other ESB services, it is pluggable, which means that the developer can plug in
his or her own persistence mechanism should there be the need to do so. (A database persistence
mechanism is supplied.) For instance, to create a file persistence mechanism, simply code a service to
create it, then over-ride the default behavior with a configuration change.

Note
Note that this MessageStore is a base implementation only. Red Hat will be working
with the community and partners to improve the functionality of this software to
the point where, at a future point in time, it will support advanced auditing and
management requirements. At present, this program is solely intended as a starting
point.

Important
The MessageStore is also used for holding messages that need to be re-
delivered in the event of a failure. Additional information on this topic si found in the
Programmers' Guide.

7.1. Message Store Interface
The MessageStore is responsible for reading and writing messages upon request. Each message
must be uniquely identified within the context of the store. (Each MessageStore implementation
uses a uniform resource identifier to accomplish this. The URI acts as the “key” for messages in the
database.)

public interface MessageStore
{
 public MessageURIGenerator getMessageURIGenerator();
 public URI addMessage (Message message, String classification)
 throws MessageStoreException;
 public Message getMessage (URI uid) throws MessageStoreException;
 public void setUndelivered(URI uid) throws MessageStoreException;
 public void setDelivered(URI uid) throws MessageStoreException;
 public Map<URI, Message> getUndeliveredMessages(String classification)
 throws MessageStoreException;
 public Map<URI, Message> getAllMessages(String classification)
 throws MessageStoreException;
public Message getMessage (URI uid, String classification)
 throws MessageStoreException;
public int removeMessage (URI uid, String classification)
 throws MessageStoreException;
}

Figure 7.1. The org.jboss.soa.esb.services.persistence.MessageStore Interface

Chapter 7. The Message Store

74

Important
Each MessageStore implementation uses a different format for uniform resource
identifiers.

Messages can be stored using a classification derived from addMessage. If the classification is not
defined, then it is up to the individual implementation of the MessageStore to determine for itself how
it will store the message. Furthermore, the classification is only a guide: one's implementation can
ignore this field if necessary.

It is dependent on the implementation as to whether or not the MessageStore imposes any kind of
concurrency control on individual messages. Therefore, use the removeMessage operation with care.

Do not use the setUndelivered/setDelivered commands or other associated operations unless
they are applicable. This is because the current MessageStore interface is designed to support both
audit trail and re-delivery functionality.

The org.jboss.internal.soa.esb.persistence.format.db.DBMessageStoreImpl
class provides the default implementation of the MessageStore. . The methods in this
implementation make the required database connections via a pooled database manager, called
DBConnectionManager.

Use the MessageActionGuide and the MessagePersister actions to override the
MessageStore implementation.

Note
The MessageStore interface does not currently support transactions. Any use of
the MessageStore within the scope of a global transaction will, therefore, be unco-
ordinated. The implication of this is that each MessageStore update or read will be
undertaken separately and independently. However, future versions of the software
shall provide control over whether or not specific interactions are to be conducted
within the scope of an "enclosing" transactional context.

7.2. Configuring the Message Store
To configure the MessageStore, firstly over-ride the default service implementation. Do this by
editing the settings found in the jbossesb-properties.xml file:

<properties name="dbstore">
 <!-- connection manager type -->
 <property name="org.jboss.soa.esb.persistence.db.conn.manager" value=
"org.jboss.internal.soa.esb.persistence.manager.StandaloneConnectionManager"/>
 <!-- this property is only used for the j2ee connection manager -->
 <property name="org.jboss.soa.esb.persistence.db.datasource.name"
 value="java:/JBossesbDS"/>
 <!-- standalone connection pooling settings -->
 <!-- mysql
 <property name="org.jboss.soa.esb.persistence.db.connection.url"
 value="jdbc:mysql://localhost/jbossesb"/>
 <property name="org.jboss.soa.esb.persistence.db.jdbc.driver"
 value="com.mysql.jdbc.Driver"/>
 <property name="org.jboss.soa.esb.persistence.db.user"
 value="kstam"/> -->

 Configuring the Message Store

75

 <!-- postgres
 <property name="org.jboss.soa.esb.persistence.db.connection.url"
 value="jdbc:postgresql://localhost/jbossesb"/>
 <property name="org.jboss.soa.esb.persistence.db.jdbc.driver"
 value="org.postgresql.Driver"/>
 <property name="org.jboss.soa.esb.persistence.db.user"
 value="postgres"/>
 <property name="org.jboss.soa.esb.persistence.db.pwd"
 value="postgres"/> -->
 <!-- hsqldb -->
 <property name="org.jboss.soa.esb.persistence.db.connection.url"
 value="jdbc:hsqldb:hsql://localhost:9001/jbossesb"/>
 <property name="org.jboss.soa.esb.persistence.db.jdbc.driver"
 value="org.hsqldb.jdbcDriver"/>
 <property name="org.jboss.soa.esb.persistence.db.user" value="sa"/>
 <property name="org.jboss.soa.esb.persistence.db.pwd" value=""/>
 <property name="org.jboss.soa.esb.persistence.db.pool.initial.size"
 value="2"/>
 <property name="org.jboss.soa.esb.persistence.db.pool.min.size"
 value="2"/>
 <property name="org.jboss.soa.esb.persistence.db.pool.max.size"
 value="5"/>
 <!--table managed by pool to test for valid connections
 created by pool automatically -->
 <property name="org.jboss.soa.esb.persistence.db.pool.test.table"
 value="pooltest"/>
 <property name="org.jboss.soa.esb.persistence.db.pool.timeout.millis"
 value="5000"/>
</properties>

In this file, there is a section entitled “dbstore.” It is here that all of the settings required by the
Message Store's database implementation are located. Modify the standard settings, like URL, db
user, password, pool size and so forth here.

The scripts for the "required database" schema are found in the lib/jbossesb.esb/message-
store-sql/<db_type>/create_database.sql file in the JBoss Enterprise Service Bus
installation.

The SQL code in the following sample shows the structure of this file:

CREATE TABLE message
(
 uuid varchar(128) NOT NULL,
 type varchar(128) NOT NULL,
 message text(4000) NOT NULL,
 delivered varchar(10) NOT NULL,
 classification varchar(10),
 PRIMARY KEY (`uuid`)
);

Example 7.1. Sample SQL for Message Store Table Creation

The UUID column is used to store a unique key for the message. It takes the form of a standard
uniform resource identifier. Message keys look like this:

urn:jboss:esb:message:UID: + UUID.randomUUID()_

This logic exploits the UUID's random number generator. The type will be equal to that of the stored
message. The JBoss Enterprise Service Bus currently ships with two different type, these being
JBOSS_XML and JAVA_SERIALIZED, respectively.

Chapter 7. The Message Store

76

The message column contains the contents of the actual message itself.

The database message store implementation supplied with the Enterprise Service Bus works by
invoking a connection to one's already-configured database. Both a stand-alone connection manager,
and another for using a JNDI data-source, are also supplied with the ESB.

To configure the database connection manager, add its implementation details to the jbossesb-
properties.xml file. The properties to change are as follows:

<!-- connection manager type -->
<property name="org.jboss.soa.esb.persistence.db.conn.manager"
 value="org.jboss.internal.soa.esb.persistence.format.db.Standalone
ConnectionManager"/>
<!-- property name="org.jboss.soa.esb.persistence.db.conn.manager"
value="org.jboss.soa.esb.persistence.manager.J2eeConnectionManager"/ -->
<!-- this property is only used for the j2ee connection manager -->
<property name="org.jboss.soa.esb.persistence.db.datasource.name"
 value="java:/JBossesbDS"/>

The two pre-supplied connection managers for the database pool are:
org.jboss.soa.esb.persistence.manager.J2eeConnectionManager and
org.jboss.soa.esb.persistence.manager.StandaloneConnectionManager.

The Stand-Alone Manager uses C3PO to manage the connection pooling logic whilst the
J2eeConnectionManager, by contrast, employs a data-source. Use this when deploying Enterprise
Service Bus end points inside a container such as the JBoss Application Server or Tomcat.

Another option is to "plug in" a custom connection pool manager. Firstly, implement this interface:
org.jboss.internal.soa.esb.persistence.manager.ConnectionManager. Next, update
the Properties file with the name of the new class. Having done so, the Connection Manager
Factory will now be able to utilize the new implementation.

Chapter 8.

77

updated Security
JBoss ESB services can be made secure, in the sense that one can configure the platform so that
they will only be executed if authentication succeeds and the caller also has the suitable level of
authority.

There are two ways in which to invoke a service:

1. through a gateway

2. directly via the Enterprise Service Bus via the ServiceInvoker.

When one uses the first option, the gateway is responsible for obtaining the security information
needed to authenticate the caller. It does this by extracting the information from the transport that it
handles. Once it has obtained this information, it creates an authentication request that is encrypted
and then passed to the Enterprise Service Bus.

If one uses the ServiceInvoker instead, the gateway is not utilised. Instead, it becomes the client's
responsibility to create the authentication request prior to invoking the service.

Both of these options will be discussed in more detail the following sections.

The default security implementation is based on the Java Authentication and Authorization Service
(JAAS). (It can be reconfigured if one wishes to use an alternative system.) The following sections
describe how to set the JAAS security components.

8.1. Security Service Configuration
To configure the security service, edit the jbossesb-properties.xml file.

<properties name="security">
<property name="org.jboss.soa.esb.services.security.implementationClass"
value="org.jboss.internal.soa.esb.services.security.JaasSecurityService"/>

<property name="org.jboss.soa.esb.services.security.callbackHandler"
value=
"org.jboss.internal.soa.esb.services.security.UserPassCallbackHandler"/>

<property name="org.jboss.soa.esb.services.security.sealAlgorithm"
value="TripleDES"/>

<property name="org.jboss.soa.esb.services.security.sealKeySize"
value="168"/>

<property name="org.jboss.soa.esb.services.security.contextTimeout"
value="30000"/>

<property name=
"org.jboss.soa.esb.services.security.contextPropagatorImplemtationClass"
value=
"org.jboss.internal.soa.esb.services.security.JBossASContextPropagator"/>

<property name="org.jboss.soa.esb.services.security.publicKeystore"
value="/publicKeyStore"/>

<property name="org.jboss.soa.esb.services.security.publicKeystorePassword"

Chapter 8. updated Security

78

value="testKeystorePassword"/>

<property name="org.jboss.soa.esb.services.security.publicKeyAlias"
value="testAlias"/>

<property name="org.jboss.soa.esb.services.security.publicKeyPassword"
value="testPassword"/>

<property name="org.jboss.soa.esb.services.security.publicKeyTransformation"
value="RSA/ECB/PKCS1Padding"/>

</properties>

Property Description Required?

org.jboss.soa.esb.services.security.implementationClassThis is the "concrete"
SecurityService
implementation that
should be used. The
default setting is
JaasSecurityService.

Yes

org.jboss.soa.esb.services.security.callbackHandlerThis is a default
CallbackHandler
implementation, utilised
when a JAAS-based
SecurityService
is employed. See
“Customizing
Security” for more
information about the
CallbackHandler
property.

No

org.jboss.soa.esb.services.security.sealAlgorithmThis is the algorithm to
use when "sealing" the
SecurityContext.

No

org.jboss.soa.esb.services.security.sealKeySize This is the size
of the secret/
symmetric key used
to encrypt/decrypt the
SecurityContext.

No

org.jboss.soa.esb.services.security.contextTimeoutThis is the amount of
time (in milliseconds) for
which a security context
is valid. A global setting,
this may be over-ridden
on a per-service basis.
To do so, specify the
property of the same
name that exists on the
security element in the
jboss-esb.xml file.

No

 Security Service Configuration

79

Property Description Required?

org.jboss.soa.esb.services.security.contextPropagatorImplementationClassUse this to
configure a global
SecurityContextPropagator.
(For more details on the
SecurityContextPropagator,
please refer to the
section on “Security
Context Propagation.”

No

org.jboss.soa.esb.services.security.publicKeystoreThis is the path to the
Keystore which holds
the keys used to encrypt
and decrypt that data
which is external to
the Enterprise Service
Bus. The Keystore is
used to encrypt the
AuthenticationRequest.

No

org.jboss.soa.esb.services.security.publicKeystorePasswordThis is the password for
the public keystore.

No

org.jboss.soa.esb.services.security.publicKeyAliasThis is the alias to use. No

org.jboss.soa.esb.services.security.publicKeyPasswordThis is the password
for the alias if one was
specified upon creation.

No

org.jboss.soa.esb.services.security.publicKeyPasswordThis is a cipher
transformation. It
is in this format:
algorithm/mode/
padding. If this is not
specified, the "keys"
algorithm will be used
by default.

No

Table 8.1. jbossesb-properties.xml Security Settings

Configure the JAAS log-in modules via the $SOA_ROOT/server/$PROFILE/conf/login-
config.xml file. Use either a pre-configured one or create a custom solution.

Warning
The JBoss Enterprise Service Bus ships with an example key-store. Do not be use
this in a production environment. It is only provided as a sample to help users achieve
a working security configuration “out-of-the-box.”

Note
One can update the sample key-store with a custom-generated pairs of keys.

Chapter 8. updated Security

80

8.1.1. Configuring Security on Services
Security is configured on a per-service basis. An ESB service can be declared secure and requiring
authentication.

To configure a service, find it in the jbossesb.xml file and add a security element there. This code
sample demonstrates this:

<service category="Security" name="SimpleListenerSecured">
 <security moduleName="messaging" runAs="adminRole" rolesAllowed=”adminRole, normalUsers”

 callbackHandler="org.jboss.internal.soa.esb.services.security.UserPassCallbackHandler">
 <property name="property1" value="value1"/>
 <property name="property2" value="value2"/>
 </security>
 ...
</service>

Property Description Required?

moduleName This is a named module that exists in the conf/
login-config.xml file.

No

runAs This is the runAs role. No

rolesAllowed This is an comma-separated list of those roles that
have been granted the ability to execute the service.
This is used as a check that is performed after a
caller has been authenticated, in order to verify
that they are indeed belonging to one of the roles
specified. The roles will have been assigned after a
successful authentication by the underlying security
mechanism.

No

callbackHandler This is the CallbackHandler that will override
that which was defined in the jbossesb-
properties.xml file.

No

property These are optional properties that, once defined,
will be made available to the CallbackHandler
implementation.

No

Table 8.2. Security Properties

Property Description Required?

org.jboss.soa.esb.services.security.contextTimeout This property lets the service over-
ride the global security context time-
out (milliseconds) that is specified in
the jbossesb-properties.xml
file.

No

org.jboss.soa.esb.services.security.contextPropagatorImplementationClassThis property lets the service to
override the "global security context
propagator" class implementation,
that is specified in the jbossesb-
properties.xml file.

No

Table 8.3. Security Property Over-rides:

 Authentication

81

This example demonstrates how to override global configuration settings:

<security moduleName="messaging"
 runAs="adminRole" rolesAllowed="adminRole">

<property
 name="org.jboss.soa.esb.services.security.contextTimeout"
 value="50000"/>

<property name=
"org.jboss.soa.esb.services.security.contextPropagatorImplementationClass"
 value="org.xyz.CustomSecurityContextPropagator" />

</security>

8.2. Authentication
Security information needs to be provided in order to authenticate a caller. If the call to the service is
coming through a gateway, then that gateway will extract the required information from the transport
with which it works. For a web service call, this would entail extracting either the UsernameToken or
the BinarySecurityToken from the security element in the SOAP header.

An authentication process will run if one service requiring authentication needs to call upon another.
Therefore, having a chain of services that are all configured for authentication will cause multiple
authentications to be performed. In order to minimize the overhead, the Enterprise Service Bus will
store an encrypted SecurityContext. This SecurityContext will be passed on to the ESB
message object between services. If the ESB detects that a Message has a SecurityContext,
it will check that it is still valid and, if so, re-authentication is not performed. Note that the
SecurityContext is only valid for a single Enterprise Service Bus node. If the message is routed to
a different ESB node, a re-authentication will be required.

8.2.1. Authentication Request
An AuthenticationRequest is designed to carry the security information needed for authentication
between either a gateway and a service or between two services.

An instance of this class should be set on the message object prior to that service which has been
configured for authentication being called:

byte[] encrypted = PublicCryptoUtil.INSTANCE.encrypt((Serializable)
 authRequest);
message.getContext.setContext(SecurityService.AUTH_REQUEST, encrypted);

Note that the authentication context is encrypted and then set within the message context. It will later
be de-crypted by the Enterprise Service Bus in order to perform the authentication. See Section 8.1,
“ Security Service Configuration ” for information on how to configure the public keystore for this
purpose.

The security_basic Quick Start shows an example of an external client in use. The Quick
Start explains shows how to prepare the message before using the ServiceInvoker. (See the
SendEsbMessage class for more information.) It also demonstrates how one can configure the
jbossesb-properties.xml file for client usage.

Chapter 8. updated Security

82

8.3. The JBoss Enterprise Service Bus Security Context
In the JBoss Enterprise Service Bus, a SecurityContext is an object that is local to a specific
ESB node or to the Java Virtual Machine of that node. The SecurityContext is created after a
successful authentication has be performed. It will be used locally in the Enterprise Service Bus in
which it was created. This is in order to avoid having to re-authenticate with every call.

A time-out (in milliseconds) is specified for the context in which it is valid. This time value can be either
specified globally (by editing the jbossesb-properties.xml file) or it can be over-ridden on a per-
service basis. This latter is achieved by specifying it in the jboss-esb.xml file. Additional information
about this topic can be found in Section 8.1.1, “Configuring Security on Services” and Section 8.1, “
Security Service Configuration ”.

8.4. Security Context Propagation
In this case, the term "propagation" refers to the process of propagating security context information in
a way specific to an external system. For example, one might want to use the same credentials to call
both the Enterprise Service Bus and an Enterprise Java Beans (EJB) method. One can accomplish
this by specifying a SecurityContextPropagator, which, as its name suggests, will perform the
security-context propagation specific to the destination environment.

A SecurityContextPropagator can be configured either globally (by specifying the
org.jboss.soa.esb.services.security.contextPropagatorImplementationClass
class in the jbossesb-properties.xml file) or, on a per-service basis (by specifying that
same property in the jboss-esb.xml file.) Section 8.1.1, “Configuring Security on Services” and
Section 8.1, “ Security Service Configuration ” contain more examples of this.

Implementations of SecurityContextPropagator
Package: org.jboss.internal.soa.esb.services.security Class:
JBossASContextPropagator

This will pass on the security credentials to a JBoss Application Server. If one has the
need to create one's own implementation, a class must be written that implements
org.jboss.internal.soa.esb.services.security.SecurityContextPropagator.
After that, the new implementation must be specified in either the jbossesb-properties.xml
or the jboss-esb.xml file, as was noted above.

8.5. Customising Security
The default security implementation in the JBoss Enterprise Service Bus is based on JAAS. It is
named JaasSecurityService. Custom log-in modules can be added to the conf/login-
config.xml file of a JBoss Application Server.

Since different log-in modules will require different information, the callback handler to be used can
be specified in the security configuration for that service. This can be accomplished by specifying the
callbackHandler attribute belonging to the security element defined on the service.

The callbackHandler should specify a "fully qualified" classname for that class which implements
the EsbCallbackHandler interface:

public interface EsbCallbackHandler extends CallbackHandler
{
 void setAuthenticationRequest(final AuthenticationRequest authRequest);
 void setSecurityConfig(final SecurityConfig config);

 Provided Log-in Modules

83

}

The AuthenticationRequest class will contain both the principal and the credentials needed to
authenticate a caller.

The SecurityConfig class will grant access to the security configuration specified in the jboss-
esb.xml file.

Both of these are made available to the CallbackHandler. It can use them to populate the callback
instances that are required by the log-in module.

8.6. Provided Log-in Modules
This section lists the log-in modules provided with JBoss Enterprise Service Bus. Please note that all
of the log-in modules available with JBoss Application Server are also available here. Custom log-in
modules should also be easy to add.

8.6.1. Certificate Log-in Module
This log-in module performs authentication by verifying the certificate that is passed with the call to the
Enterprise Service Bus against a certificate held in a local keystore.

Upon successful authentication, the certificate's Common Name (CN) creates a principal. If role-
mapping is in use, then it is the Common Name that will be used for this. Please refer to Section 8.6.2,
“ Role Mapping ” for details about the role-mapping functionality.

<security moduleName="CertLogin" rolesAllowed=”worker”
 callbackHandler="org.jboss.soa.esb.services.security.auth.loginUserPass
CallbackHandler">
 <property name="alias" value="certtest"/>
</security>

CertificateLogin Module Properties
moduleName

This identifies the specific JAAS log-in module to use. This module will be specified in the JBoss
Application Server's login-config.xml file.

rolesAllowed
This comma-separated list contains those roles that have permission to execute the service.

alias
This is the alias for which to search in the local keystore. It is used to verify the caller's certificate.

Here is a portion of the login-config.xml file:

<application-policy name="CertLogin">
<authentication>
 <login-module
code="org.jboss.soa.esb.services.security.auth.login.CertificateLoginModule"
flag = "required" >
 <module-option name="keyStoreURL">
 file://pathToKeyStore
 </module-option>
 <module-option name="keyStorePassword">storepassword</module-option>
 <module-option name="rolesPropertiesFile">

Chapter 8. updated Security

84

 file://pathToRolesFile
 </module-option>
 </login-module>
</authentication>
</application-policy>

Properties
keyStoreURL

This is the path to that keystore which is used to verify the certificates. This keystore can take the
form of a file on either the local file system or on the classpath.

keyStorePassword
This is the password for the above keystore.

rolesPropertiesFile
This is optional. It is the path to a file containing role mappings. Refer to Section 8.6.2, “ Role
Mapping ” for additional details.

8.6.2. Role Mapping
This file is optional. It can be specified in login-config.xml by using the rolesPropertiesFile
property. This property can point to a file located either on the local file system or on the classpath.
The file contains a mapping of users to roles, as shown in the following example:

user=role1,role2,...
guest=guest
esbuser=esbrole
The current implementation will use the Common Name(CN) specified
for the certificate as the user name.
The unicode escape is needed only if your CN contains a space
Austin\u0020Powers=esbrole,worker

For an example, please look at the security_cert Quick Start.

8.7. Password Encryption
JBoss Enterprise Service Bus configuration files sometimes require passwords. In the past, these
had been stored in clear text in the configuration files themselves. This was obviously a security risk.
There is now the option to specify a path to a file that contains an encrypted password that can be
read whenever it is required.

8.7.1. Creating an Encrypted Password File
Follow these steps to create an encrypted password file:

1. Go to the JBoss Server instance's default/conf directory.

2. java -cp ../lib/jbosssx.jar org.jboss.security.plugins.FilePassword
welcometojboss 13 testpass esb.password

Option Description

Salt The "salt" used to encrypt. (In the example above, this is the
welcometojboss string .)

 Security Service

85

Option Description

Iteration The number of iterations. (In the example above, this is the number
13.)

Clear Text Password The password one wishes to encrypt. (In the example above, this is
the string testpass.)

Password File Name The name of the file in which the encrypted password will be saved. (In
the example above, this is the esb.password string.)

Table 8.4. Encrypted Password Options

8.7.1.1. Configuring Encrypted Password Files
To configure encrypted passwords files, simply replace the existing clear-text password with the path
to the other file containing the encrypted password.

8.7.2. Security Service
The SecurityService interface is the Enterprise Service Bus central security component. Here it is:

public interface SecurityService
{
 void configure() throws ConfigurationException;

 void authenticate(
 final SecurityConfig securityConfig,
 final SecurityContext securityContext,
 final AuthenticationRequest authRequest)
 throws SecurityServiceException;

 boolean checkRolesAllowed(
 final List<String> rolesAllowed,
 final SecurityContext securityContext);

 boolean isCallerInRole(
 final Subject subject,
 final Principal role);

 void logout(final SecurityConfig securityConfig);

 void refreshSecurityConfig();
}

The default implementation is based on JAAS but it can be customised if one implements the above
interface and configures the jbossesb-properties.xml file to use a custom SecurityService.
For more information relating to the SecurityService interface, please refer to the Java
documentation.

86

87

Appendix A. Revision History
Revision 1.3 Wed Jul 14 2010 David Le Sage dlesage@redhat.com

Updated for SOA 5.1

Revision 1.2 Wed May 26 2010 David Le Sage dlesage@redhat.com
Updated for SOA 5.0.2

Revision 1.1 Tue Apr 20 2010 David Le Sage dlesage@redhat.com
Updated for SOA 5.0.1

Revision 1.0 Fri Jan 22 2010 David Le Sage dlesage@redhat.com
Created

mailto:dlesage@redhat.com
mailto:dlesage@redhat.com
mailto:dlesage@redhat.com
mailto:dlesage@redhat.com

88

	ESB Services Guide
	Table of Contents
	Preface
	1. Document Conventions
	1.1. Typographic Conventions
	1.2. Pull-quote Conventions
	1.3. Notes and Warnings

	2. We Need Feedback!

	Chapter 1. The Registry
	1.1. What is the Registry?
	1.1.1. Introduction
	1.1.2. Why Does One Need It?
	1.1.3. How Does One Use It?
	1.1.4. Registries versus Repositories
	1.1.5. Service-Oriented Architecture Components
	1.1.6. Universal Description, Discovery and Integration Registry
	1.1.7. The Registry and the JBoss Service-Oriented Architecture Platform

	1.2. Configuring the Registry
	1.2.1. new section The Components Involved
	1.2.2. The Registry Implementation Class
	1.2.3. updated Using JAXR
	1.2.4. Using jUDDI Transports
	1.2.5. new Using Scout and jUDDI

	1.3. Registry Configuration Examples
	1.3.1. Embedding Components
	1.3.2. Remote Method Invocation Using the jbossesb.sar File
	1.3.3. Remote Method Invocation Using One's Own JNDI Registration of the RMI Service
	1.3.4. SOAP

	1.4. Updated Registry Troubleshooting
	1.4.1. More Information

	Chapter 2. Rule Services
	2.1. Updated What is a Rule Service?
	2.1.1. Introduction

	2.2. Updated Rule Services Using JBoss Rules
	2.2.1. Introduction
	2.2.2. Rule-Set Creation
	2.2.3. Rule Service Consumers
	2.2.4. Configuration
	2.2.5. Object Paths
	2.2.6. Deploying and Packaging

	Chapter 3. Content-based Routing
	3.1. What is Content-Based Routing?
	3.1.1. Introduction
	3.1.1.1. Some Questions
	3.1.1.2. Introducing Content-Based Routing

	3.1.2. Simple Example
	3.1.3. Content-Based Routing using XPath
	3.1.3.1. Inline Rule Definitions
	3.1.3.2. External Rule Definitions
	3.1.3.3. Namespaces

	3.1.4. Content-Based Routing using Regex
	3.1.4.1. Inline Rule Definitions
	3.1.4.2. External Rule Definitions

	3.2. Content-Based Routing Using JBoss Rules
	3.2.1. Introduction
	3.2.2. Three Different Routing Action Classes
	3.2.3. Rule-Set Creation
	3.2.4. XPath Domain Specific Language
	3.2.4.1. XPath and Name-Spaces
	3.2.4.2. Configuration
	3.2.4.3. Object Paths
	3.2.4.4. Stateful Rules
	3.2.4.5. RuleAgent
	3.2.4.6. RuleAgent and Business Rule Management System
	3.2.4.7. Executing Business Rules
	3.2.4.8. Changing Rule Service Implementations
	3.2.4.9. Deployment and Packaging

	Chapter 4. updated jBPM Integration
	4.1. Integration Configuration
	4.2. Configuring the jBPM
	4.3. Creating and Deploying a Process Definition
	4.4. From the Enterprise Service Bus to the jBPM
	4.4.1. ESB to jBPM Exception Handling

	4.5. jBPM-to-JBoss ESB
	4.5.1. ESBNotifier
	4.5.2. ESB Action Handler
	4.5.3. jBPM-to-ESB Exception Handling
	4.5.4. Scenerio One: Time-out
	4.5.5. Scenerio Two: Exception Transition
	4.5.6. Scenerio Three: Exception Decision

	Chapter 5. Service Orchestration
	5.1. Orchestrating Web Services
	5.2. Orchestration Diagram
	5.3. Process Deployment and "Instantiation"
	5.4. Conclusion

	Chapter 6. Message Transformation
	6.1. Smooks
	6.2. XSL Transformations

	Chapter 7. The Message Store
	7.1. Message Store Interface
	7.2. Configuring the Message Store

	Chapter 8. updated Security
	8.1. Security Service Configuration
	8.1.1. Configuring Security on Services

	8.2. Authentication
	8.2.1. Authentication Request

	8.3. The JBoss Enterprise Service Bus Security Context
	8.4. Security Context Propagation
	8.5. Customising Security
	8.6. Provided Log-in Modules
	8.6.1. Certificate Log-in Module
	8.6.2. Role Mapping

	8.7. Password Encryption
	8.7.1. Creating an Encrypted Password File
	8.7.1.1. Configuring Encrypted Password Files

	8.7.2. Security Service

	Appendix A. Revision History

