
JBoss Enterprise
SOA Platform 5.0

JBPM Reference Guide
Your guide to using JBoss jBPM with the
JBoss Enterprise SOA Platform 5.0 GA

JBPM Reference Guide

JBoss Enterprise SOA Platform 5.0 JBPM Reference Guide
Your guide to using JBoss jBPM with the JBoss Enterprise SOA
Platform 5.0 GA
Edition 1.0

Editor Darrin Mison dmison@redhat.com
Translator Shigeaki Wakizaka
Translator Takayoshi Osawa
Translator Toshiya Kobayashi

Copyright © 2008 Red Hat, Inc. This material may only be distributed subject to the terms and
conditions set forth in the Open Publication License, V1.0, (the latest version is presently available at
http://www.opencontent.org/openpub/).

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, MetaMatrix, Fedora, the Infinity
Logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other countries.

Linux® is the registered trademark of Linus Torvalds in the United States and other countries.

All other trademarks are the property of their respective owners.

 1801 Varsity Drive
 Raleigh, NC 27606-2072 USA
 Phone: +1 919 754 3700
 Phone: 888 733 4281
 Fax: +1 919 754 3701
 PO Box 13588 Research Triangle Park, NC 27709 USA

The JBPM jPDL 3.2 user guide for use with the JBoss Enterprise SOA Platform 5.0 GA

mailto:dmison@redhat.com
http://www.opencontent.org/openpub/

iii

Preface vii
1. Document Conventions .. vii

1.1. Typographic Conventions .. vii
1.2. Pull-quote Conventions ... viii
1.3. Notes and Warnings .. ix

2. We Need Feedback! ... x

1. Introduction 1
1.1. Overview ... 1
1.2. The jPDL suite ... 1
1.3. The jPDL graphical process designer .. 2
1.4. The jBPM console web application .. 2
1.5. The jBPM core library .. 3
1.6. The JBoss jBPM identity component ... 3
1.7. The JBoss jBPM Job Executor .. 3

2. Tutorial 5
2.1. Hello World example .. 5
2.2. Database example ... 6
2.3. Context example: process variables .. 10
2.4. Task assignment example ... 11
2.5. Custom action example .. 13

3. Configuration 17
3.1. Customizing factories ... 20
3.2. Configuration properties .. 20
3.3. Other configuration files .. 20
3.4. Logging of optimistic concurrency exceptions ... 21
3.5. Object factory ... 22

4. Persistence 25
4.1. The Persistence API ... 25

4.1.1. Relation to the configuration framework .. 25
4.1.2. Convenience methods on JbpmContext .. 26
4.1.3. Managed transactions .. 29
4.1.4. Injecting the Hibernate session ... 29
4.1.5. Injecting resources programmatically .. 30
4.1.6. Advanced API usage ... 30

4.2. Configuring the persistence service ... 30
4.2.1. The DbPersistenceServiceFactory .. 30
4.2.2. Hibernate transactions ... 32
4.2.3. JTA transactions .. 33
4.2.4. Customizing queries .. 34
4.2.5. Database compatibility ... 34
4.2.6. Combining your Hibernate classes .. 35
4.2.7. Customizing the jBPM Hibernate mapping files .. 35
4.2.8. Second level cache ... 35

5. Java EE Application Server Facilities 37
5.1. Enterprise Beans .. 37
5.2. jBPM Enterprise Configuration .. 39
5.3. Hibernate Enterprise Configuration .. 40
5.4. Client Components ... 41

JBPM Reference Guide

iv

6. Process Modeling 45
6.1. Overview .. 45
6.2. Process graph .. 45
6.3. Nodes .. 47

6.3.1. Node responsibilities .. 47
6.3.2. Nodetype task-node ... 48
6.3.3. Nodetype state .. 48
6.3.4. Nodetype decision ... 48
6.3.5. Nodetype fork .. 49
6.3.6. Nodetype join .. 49
6.3.7. Nodetype node .. 49

6.4. Transitions ... 49
6.5. Actions ... 49

6.5.1. Action configuration ... 51
6.5.2. Action references ... 51
6.5.3. Events ... 51
6.5.4. Event propagation .. 51
6.5.5. Script .. 51
6.5.6. Custom events .. 52

6.6. Superstates .. 52
6.6.1. Superstate transitions .. 53
6.6.2. Superstate events .. 53
6.6.3. Hierarchical names .. 53

6.7. Exception handling ... 54
6.8. Process composition ... 54
6.9. Custom node behavior .. 55
6.10. Graph execution ... 56
6.11. Transaction Demarcation ... 57

7. Context 59
7.1. Accessing variables .. 59
7.2. Variable lifetime .. 59
7.3. Variable persistence ... 60
7.4. Variables scopes .. 60

7.4.1. Variables overloading ... 60
7.4.2. Variables overriding ... 60
7.4.3. Task instance variable scope .. 60

7.5. Transient variables ... 60
7.6. Customizing variable persistence .. 61

8. Task Management 63
8.1. Tasks ... 63
8.2. Task instances ... 63

8.2.1. Task instance life-cycle .. 63
8.2.2. Task instances and graph execution ... 64

8.3. Assignment .. 65
8.3.1. Assignment interfaces .. 65
8.3.2. The assignment data model ... 66
8.3.3. The personal task list ... 66
8.3.4. The group task list ... 66

8.4. Task instance variables ... 67
8.5. Task controllers .. 67

v

8.6. Swimlanes ... 69
8.7. Swimlane in start task .. 70
8.8. Task events .. 70
8.9. Task timers .. 70
8.10. Customizing task instances ... 71
8.11. The identity component ... 71

8.11.1. The identity model ... 72
8.11.2. Assignment expressions ... 72
8.11.3. Removing the identity component ... 73

9. Scheduler 75
9.1. Timers ... 75
9.2. Scheduler deployment .. 75

10. Asynchronous continuations 77
10.1. The concept ... 77
10.2. An example .. 77
10.3. The job executor .. 80
10.4. jBPM's built-in asynchronous messaging .. 81

11. Business calendar 83
11.1. Duedate ... 83

11.1.1. Duration ... 83
11.1.2. Base Date ... 83
11.1.3. Duedate Examples ... 83

11.2. Calendar configuration .. 84

12. Email support 85
12.1. Mail in jPDL ... 85

12.1.1. Mail action ... 85
12.1.2. Mail node .. 86
12.1.3. Task assign mails .. 86
12.1.4. Task reminder mails ... 86

12.2. Expressions in mails ... 86
12.3. Specifying mail recipients .. 87

12.3.1. Multiple recipients .. 87
12.3.2. Sending Mails to a BCC target ... 87
12.3.3. Address resolving .. 87

12.4. Mail templates .. 88
12.5. Mail server configuration ... 89
12.6. From address configuration ... 89
12.7. Customizing mail support .. 89

13. Logging 91
13.1. Creation of logs .. 91
13.2. Log configurations .. 92
13.3. Log retrieval ... 93
13.4. Database warehousing ... 93

14. jBPM Process Definition Language (JPDL) 95
14.1. The process archive ... 95

14.1.1. Deploying a process archive ... 95
14.1.2. Process versioning ... 96
14.1.3. Changing deployed process definitions .. 96

JBPM Reference Guide

vi

14.1.4. Migrating process instances ... 96
14.2. Delegation .. 97

14.2.1. The jBPM class loader ... 97
14.2.2. The process class loader ... 97
14.2.3. Configuration of delegations ... 97

14.3. Expressions .. 99
14.4. jPDL XML Schema ... 100

14.4.1. Validation ... 100
14.4.2. process-definition ... 100
14.4.3. node .. 101
14.4.4. common node elements ... 101
14.4.5. start-state .. 101
14.4.6. end-state ... 102
14.4.7. state .. 102
14.4.8. task-node .. 102
14.4.9. process-state ... 103
14.4.10. super-state ... 103
14.4.11. fork .. 103
14.4.12. join .. 104
14.4.13. decision ... 104
14.4.14. event ... 104
14.4.15. transition .. 105
14.4.16. action .. 105
14.4.17. script ... 106
14.4.18. expression ... 106
14.4.19. variable .. 107
14.4.20. handler .. 107
14.4.21. timer .. 108
14.4.22. create-timer .. 108
14.4.23. cancel-timer ... 109
14.4.24. task ... 109
14.4.25. swimlane ... 110
14.4.26. assignment .. 110
14.4.27. controller .. 111
14.4.28. sub-process ... 112
14.4.29. condition .. 112
14.4.30. exception-handler ... 112

15. Security 115
15.1. Authentication ... 115
15.2. Authorization .. 115

16. Test Driven Development for Workflow 117
16.1. Introducing TDD for workflow .. 117
16.2. XML Sources .. 118

16.2.1. Parsing a process archive .. 118
16.2.2. Parsing an XML file ... 119
16.2.3. Parsing an XML String ... 119

17. Pluggable architecture 121

A. Revision History 123

vii

Preface

1. Document Conventions
This manual uses several conventions to highlight certain words and phrases and draw attention to
specific pieces of information.

In PDF and paper editions, this manual uses typefaces drawn from the Liberation Fonts1 set. The
Liberation Fonts set is also used in HTML editions if the set is installed on your system. If not,
alternative but equivalent typefaces are displayed. Note: Red Hat Enterprise Linux 5 and later includes
the Liberation Fonts set by default.

1.1. Typographic Conventions
Four typographic conventions are used to call attention to specific words and phrases. These
conventions, and the circumstances they apply to, are as follows.

Mono-spaced Bold

Used to highlight system input, including shell commands, file names and paths. Also used to highlight
key caps and key-combinations. For example:

To see the contents of the file my_next_bestselling_novel in your current
working directory, enter the cat my_next_bestselling_novel command at the
shell prompt and press Enter to execute the command.

The above includes a file name, a shell command and a key cap, all presented in Mono-spaced Bold
and all distinguishable thanks to context.

Key-combinations can be distinguished from key caps by the hyphen connecting each part of a key-
combination. For example:

Press Enter to execute the command.

Press Ctrl-Alt-F1 to switch to the first virtual terminal. Press Ctrl-Alt-F7 to return
to your X-Windows session.

The first sentence highlights the particular key cap to press. The second highlights two sets of three
key caps, each set pressed simultaneously.

If source code is discussed, class names, methods, functions, variable names and returned values
mentioned within a paragraph will be presented as above, in Mono-spaced Bold. For example:

File-related classes include filesystem for file systems, file for files, and dir for
directories. Each class has its own associated set of permissions.

Proportional Bold

This denotes words or phrases encountered on a system, including application names; dialogue
box text; labelled buttons; check-box and radio button labels; menu titles and sub-menu titles. For
example:

1 https://fedorahosted.org/liberation-fonts/

https://fedorahosted.org/liberation-fonts/
https://fedorahosted.org/liberation-fonts/

Preface

viii

Choose System > Preferences > Mouse from the main menu bar to launch Mouse
Preferences. In the Buttons tab, click the Left-handed mouse check box and click
Close to switch the primary mouse button from the left to the right (making the mouse
suitable for use in the left hand).

To insert a special character into a gedit file, choose Applications > Accessories
> Character Map from the main menu bar. Next, choose Search > Find… from the
Character Map menu bar, type the name of the character in the Search field and click
Next. The character you sought will be highlighted in the Character Table. Double-
click this highlighted character to place it in the Text to copy field and then click the
Copy button. Now switch back to your document and choose Edit > Paste from the
gedit menu bar.

The above text includes application names; system-wide menu names and items; application-specific
menu names; and buttons and text found within a GUI interface, all presented in Proportional Bold and
all distinguishable by context.

Note the > shorthand used to indicate traversal through a menu and its sub-menus. This is to avoid
the difficult-to-follow 'Select Mouse from the Preferences sub-menu in the System menu of the main
menu bar' approach.

Mono-spaced Bold Italic or Proportional Bold Italic

Whether Mono-spaced Bold or Proportional Bold, the addition of Italics indicates replaceable or
variable text. Italics denotes text you do not input literally or displayed text that changes depending on
circumstance. For example:

To connect to a remote machine using ssh, type ssh username@domain.name at
a shell prompt. If the remote machine is example.com and your username on that
machine is john, type ssh john@example.com.

The mount -o remount file-system command remounts the named file
system. For example, to remount the /home file system, the command is mount -o
remount /home.

To see the version of a currently installed package, use the rpm -q package
command. It will return a result as follows: package-version-release.

Note the words in bold italics above — username, domain.name, file-system, package, version and
release. Each word is a placeholder, either for text you enter when issuing a command or for text
displayed by the system.

Aside from standard usage for presenting the title of a work, italics denotes the first use of a new and
important term. For example:

When the Apache HTTP Server accepts requests, it dispatches child processes
or threads to handle them. This group of child processes or threads is known as
a server-pool. Under Apache HTTP Server 2.0, the responsibility for creating and
maintaining these server-pools has been abstracted to a group of modules called
Multi-Processing Modules (MPMs). Unlike other modules, only one module from the
MPM group can be loaded by the Apache HTTP Server.

1.2. Pull-quote Conventions
Two, commonly multi-line, data types are set off visually from the surrounding text.

Notes and Warnings

ix

Output sent to a terminal is set in Mono-spaced Roman and presented thus:

books Desktop documentation drafts mss photos stuff svn
books_tests Desktop1 downloads images notes scripts svgs

Source-code listings are also set in Mono-spaced Roman but are presented and highlighted as
follows:

package org.jboss.book.jca.ex1;

import javax.naming.InitialContext;

public class ExClient
{
 public static void main(String args[])
 throws Exception
 {
 InitialContext iniCtx = new InitialContext();
 Object ref = iniCtx.lookup("EchoBean");
 EchoHome home = (EchoHome) ref;
 Echo echo = home.create();

 System.out.println("Created Echo");

 System.out.println("Echo.echo('Hello') = " + echo.echo("Hello"));
 }

}

1.3. Notes and Warnings
Finally, we use three visual styles to draw attention to information that might otherwise be overlooked.

Note
A Note is a tip or shortcut or alternative approach to the task at hand. Ignoring a note
should have no negative consequences, but you might miss out on a trick that makes your
life easier.

Important
Important boxes detail things that are easily missed: configuration changes that only
apply to the current session, or services that need restarting before an update will apply.
Ignoring Important boxes won't cause data loss but may cause irritation and frustration.

Preface

x

Warning
A Warning should not be ignored. Ignoring warnings will most likely cause data loss.

2. We Need Feedback!
If you find a typographical error in this manual, or if you have thought of a way to make this manual
better, we would love to hear from you! Please submit a report in Bugzilla: http://bugzilla.redhat.com/
bugzilla/ against the product JBoss Enterprise SOA Platform.

When submitting a bug report, be sure to mention the manual's identifier:
SOA_JBPM_Reference_Manual

If you have a suggestion for improving the documentation, try to be as specific as possible when
describing it. If you have found an error, please include the section number and some of the
surrounding text so we can find it easily.

http://bugzilla.redhat.com/bugzilla/
http://bugzilla.redhat.com/bugzilla/

Chapter 1.

1

Introduction
JBoss jBPM is a flexible, extensible framework for process languages. jPDL is one process language
that is built on top of that common framework. It is an intuitive process language to express business
processes graphically in terms of tasks, wait states for asynchronous communication, timers,
automated actions,... To bind these operations together, jPDL has the most powerful and extensible
control flow mechanism.

jPDL has minimal dependencies and can be used as easy as using a Java library. But it can also
be used in environments where extreme throughput is crucial by deploying it on a J2EE clustered
application server.

jPDL can be configured with any database and it can be deployed on any application server.

1.1. Overview
The core workflow and BPM functionality is packaged as a simple Java library. This library includes a
service to manage and execute processes in the jPDL database.

Figure 1.1. Overview of the jPDL components

1.2. The jPDL suite
The suite is a download that contains all the jBPM components. It includes the following directories.

config/
Configuration files for a standard Java environment.

db/
The SQL scripts for DB creation and compatibility information.

Chapter 1. Introduction

2

designer/
The Eclipse plugin to author jPDL processes and installation scripts. This is detailed in
Section 1.3, “The jPDL graphical process designer”.

doc/
Documentation, including JavaDoc.

examples/
Example code.

lib/
The libraries on which jBPM depends.

server/
A pre-configured JBoss Application Server that contains jBPM inside the console web application.

src/
The jBPM and identity component Java source code.

The pre-configured JBoss application server has the following components installed.

The jBPM web console
The jBPM web console is packaged as a web archive. This console can be used by process
participants as well as jBPM administrators.

The Job Executor
The Job Executor is for the execution of timers and messages. The job executor is a part of the
console web application. There is a servlet that launches the Job Executor. The Job Executor
spawns a thread pool for monitoring and executing timers and asynchronous messages.

The jBPM tables
The default Hypersonic database that contains the jBPM tables and already contains a process.

One example process
One example process is already deployed into the jBPM database.

Identity component
The identity component libraries are part of the console web application. The tables of the identity
component are available in the database and are prefixed with JBPM_ID_.

1.3. The jPDL graphical process designer
jPDL also includes a graphical designer tool. The designer is a graphical tool for authoring business
processes. It's an eclipse plugin and is included with the JBoss Developer Studio product.

The most important feature of the graphical designer tool is that it includes support for both the
business analyst as well as the technical developer. This enables a smooth transition from business
process modeling to the practical implementation.

1.4. The jBPM console web application
The jBPM console web application serves two purposes. First, it serves as a central user interface for
interacting with runtime tasks generated by the process executions. Secondly, it is an administration

The jBPM core library

3

and monitoring console that allows to inspect and manipulate runtime instances. The third functionality
is Business Activity Monitoring. These are statistics about process executions. This is useful
information for managers to find bottlenecks or other kinds of optimizations.

1.5. The jBPM core library
The JBoss jBPM core component is the plain Java (J2SE) library for managing process definitions and
the runtime environment for execution of process instances.

JBoss jBPM is a Java library. As a consequence, it can be used in any Java environment such
as a web application, a swing application, an EJB, or a web service. The jBPM library can also
be packaged and exposed as a stateless session EJB. This allows clustered deployment and
scalability for extreme high throughput. The stateless session EJB will be written against the J2EE 1.3
specifications so that it is deployable on any application server.

Depending on the functionality that you use, the library jbpm-jpdl.jar has some dependencies on
other third party libraries such as e.g. Hibernate, Dom4J and others.

For its persistence, jBPM uses Hibernate internally. Apart from traditional O/R mapping, Hibernate also
resolves the SQL dialect differences between the different databases, making jBPM portable across all
current databases.

The JBoss jBPM API can be accessed from any custom Java software in your project, like e.g. your
web application, your EJB's, your web service components, your message driven beans or any other
Java component.

1.6. The JBoss jBPM identity component
JBoss jBPM can integrate with any company directory that contains users and other organizational
information. But for projects where no organizational information component is readily available, JBoss
jBPM includes this component. The model used in the identity component is richer than the traditional
servlet, EJB and portlet models.

For more information, see Section 8.11, “The identity component”

1.7. The JBoss jBPM Job Executor
The JBoss jBPM Job Scheduler is a component for monitoring and executing jobs in a standard Java
environment. Jobs are used for timers and asynchronous messages. In an enterprise environment,
JMS and the EJB TimerService can be used for that purpose. But the Job Executor can be used in a
standard environment.

The Job Executor component is packaged in the core jbpm-jpdl library, but it must deployed in one of
the two following environments.

• You have to configure the JbpmThreadsServlet to start the Job Executor.

• You have to start up a separate JVM and run the Job Executor thread in there.

4

Chapter 2.

5

Tutorial
This tutorial will show you basic process constructs in JPDL and the usage of the API for managing
the runtime executions.

This tutorial uses a set of examples with extensive comments, each focusing on a particular topic. The
examples can be found in the jBPM download package in the directory src/java.examples.

As you work through the tutorial it is recommended that you create a project and experiment by
creating variations on the examples given.

2.1. Hello World example
A process definition is a directed graph, made up of nodes and transitions. The hello world process
has 3 nodes. To see how the pieces fit together, we're going to start with a simple process without the
use of the designer tool. The following picture shows the graphical representation of the hello world
process:

Figure 2.1. The hello world process graph

public void testHelloWorldProcess() {
 // This method shows a process definition and one execution
 // of the process definition. The process definition has
 // 3 nodes: an unnamed start-state, a state 's' and an
 // end-state named 'end'.
 // The next line parses a piece of xml text into a
 // ProcessDefinition. A ProcessDefinition is the formal
 // description of a process represented as a java object.
 ProcessDefinition processDefinition = ProcessDefinition.parseXmlString(
 "<process-definition>" +
 " <start-state>" +
 " <transition to='s' />" +
 " </start-state>" +
 " <state name='s'>" +
 " <transition to='end' />" +
 " </state>" +
 " <end-state name='end' />" +
 "</process-definition>"
);

Chapter 2. Tutorial

6

 // The next line creates one execution of the process definition.
 // After construction, the process execution has one main path
 // of execution (=the root token) that is positioned in the
 // start-state.
 ProcessInstance processInstance =
 new ProcessInstance(processDefinition);

 // After construction, the process execution has one main path
 // of execution (=the root token).
 Token token = processInstance.getRootToken();

 // Also after construction, the main path of execution is positioned
 // in the start-state of the process definition.
 assertSame(processDefinition.getStartState(), token.getNode());

 // Let's start the process execution, leaving the start-state
 // over its default transition.
 token.signal();
 // The signal method will block until the process execution
 // enters a wait state.

 // The process execution will have entered the first wait state
 // in state 's'. So the main path of execution is now
 // positioned in state 's'
 assertSame(processDefinition.getNode("s"), token.getNode());

 // Let's send another signal. This will resume execution by
 // leaving the state 's' over its default transition.
 token.signal();
 // Now the signal method returned because the process instance
 // has arrived in the end-state.

 assertSame(processDefinition.getNode("end"), token.getNode());
}

2.2. Database example
One of the basic features of jBPM is the ability to persist executions of processes in the database
when they are in a wait state. The next example will show you how to store a process instance in the
jBPM database. The example also suggests a context in which this might occur. Separate methods
are created for different pieces of user code. E.g. a piece of user code in a web application starts a
process and persists the execution in the database. Later, a message driven bean loads the process
instance from the database and resumes its execution.

More about the jBPM persistence can be found in Chapter 4, Persistence.

public class HelloWorldDbTest extends TestCase {

 static JbpmConfiguration jbpmConfiguration = null;

Database example

7

 static {
 // An example configuration file such as this can be found in
 // 'src/config.files'. Typically the configuration information
 // is in the resource file 'jbpm.cfg.xml', but here we pass in
 // the configuration information as an XML string.

 // First we create a JbpmConfiguration statically. One
 // JbpmConfiguration can be used for all threads in the system,
 // that is why we can safely make it static.

 jbpmConfiguration = JbpmConfiguration.parseXmlString(
 "<jbpm-configuration>" +

 // A jbpm-context mechanism separates the jbpm core
 // engine from the services that jbpm uses from
 // the environment.

 "<jbpm-context>"+
 "<service name='persistence' "+
 " factory='org.jbpm.persistence.db.DbPersistenceServiceFactory' />" +
 "</jbpm-context>"+

 // Also all the resource files that are used by jbpm are
 // referenced from the jbpm.cfg.xml

 "<string name='resource.hibernate.cfg.xml' " +
 " value='hibernate.cfg.xml' />" +
 "<string name='resource.business.calendar' " +
 " value='org/jbpm/calendar/jbpm.business.calendar.properties' />" +
 "<string name='resource.default.modules' " +
 " value='org/jbpm/graph/def/jbpm.default.modules.properties' />" +
 "<string name='resource.converter' " +
 " value='org/jbpm/db/hibernate/jbpm.converter.properties' />" +
 "<string name='resource.action.types' " +
 " value='org/jbpm/graph/action/action.types.xml' />" +
 "<string name='resource.node.types' " +
 " value='org/jbpm/graph/node/node.types.xml' />" +
 "<string name='resource.varmapping' " +
 " value='org/jbpm/context/exe/jbpm.varmapping.xml' />" +
 "</jbpm-configuration>"
);
 }

 public void setUp() {
 jbpmConfiguration.createSchema();
 }

 public void tearDown() {
 jbpmConfiguration.dropSchema();
 }

Chapter 2. Tutorial

8

 public void testSimplePersistence() {
 // Between the 3 method calls below, all data is passed via the
 // database. Here, in this unit test, these 3 methods are executed
 // right after each other because we want to test a complete process
 // scenario. But in reality, these methods represent different
 // requests to a server.

 // Since we start with a clean, empty in-memory database, we have to
 // deploy the process first. In reality, this is done once by the
 // process developer.
 deployProcessDefinition();

 // Suppose we want to start a process instance (=process execution)
 // when a user submits a form in a web application...
 processInstanceIsCreatedWhenUserSubmitsWebappForm();

 // Then, later, upon the arrival of an asynchronous message the
 // execution must continue.
 theProcessInstanceContinuesWhenAnAsyncMessageIsReceived();
 }

 public void deployProcessDefinition() {
 // This test shows a process definition and one execution
 // of the process definition. The process definition has
 // 3 nodes: an unnamed start-state, a state 's' and an
 // end-state named 'end'.
 ProcessDefinition processDefinition =
 ProcessDefinition.parseXmlString(
 "<process-definition name='hello world'>" +
 " <start-state name='start'>" +
 " <transition to='s' />" +
 " </start-state>" +
 " <state name='s'>" +
 " <transition to='end' />" +
 " </state>" +
 " <end-state name='end' />" +
 "</process-definition>"
);

 //Lookup the pojo persistence context-builder that is configured above
 JbpmContext jbpmContext = jbpmConfiguration.createJbpmContext();
 try {
 // Deploy the process definition in the database
 jbpmContext.deployProcessDefinition(processDefinition);

 } finally {
 // Tear down the pojo persistence context.
 // This includes flush the SQL for inserting the process definition
 // to the database.
 jbpmContext.close();
 }

Database example

9

 }

 public void processInstanceIsCreatedWhenUserSubmitsWebappForm() {
 // The code in this method could be inside a struts-action
 // or a JSF managed bean.

 //Lookup the pojo persistence context-builder that is configured above
 JbpmContext jbpmContext = jbpmConfiguration.createJbpmContext();
 try {

 GraphSession graphSession = jbpmContext.getGraphSession();

 ProcessDefinition processDefinition =
 graphSession.findLatestProcessDefinition("hello world");

 //With the processDefinition that we retrieved from the database, we
 //can create an execution of the process definition just like in the
 //hello world example (which was without persistence).
 ProcessInstance processInstance =
 new ProcessInstance(processDefinition);

 Token token = processInstance.getRootToken();
 assertEquals("start", token.getNode().getName());
 // Let's start the process execution
 token.signal();
 // Now the process is in the state 's'.
 assertEquals("s", token.getNode().getName());

 // Now the processInstance is saved in the database. So the
 // current state of the execution of the process is stored in the
 // database.
 jbpmContext.save(processInstance);
 // The method below will get the process instance back out
 // of the database and resume execution by providing another
 // external signal.

 } finally {
 // Tear down the pojo persistence context.
 jbpmContext.close();
 }
 }

 public void theProcessInstanceContinuesWhenAnAsyncMessageIsReceived() {
 //The code in this method could be the content of a message driven bean.

 // Lookup the pojo persistence context-builder that is configured above
 JbpmContext jbpmContext = jbpmConfiguration.createJbpmContext();
 try {

 GraphSession graphSession = jbpmContext.getGraphSession();
 // First, we need to get the process instance back out of the

Chapter 2. Tutorial

10

 // database. There are several options to know what process
 // instance we are dealing with here. The easiest in this simple
 // test case is just to look for the full list of process instances.
 // That should give us only one result. So let's look up the
 // process definition.

 ProcessDefinition processDefinition =
 graphSession.findLatestProcessDefinition("hello world");

 //Now search for all process instances of this process definition.
 List processInstances =
 graphSession.findProcessInstances(processDefinition.getId());

 // Because we know that in the context of this unit test, there is
 // only one execution. In real life, the processInstanceId can be
 // extracted from the content of the message that arrived or from
 // the user making a choice.
 ProcessInstance processInstance =
 (ProcessInstance) processInstances.get(0);

 // Now we can continue the execution. Note that the processInstance
 // delegates signals to the main path of execution (=the root token).
 processInstance.signal();

 // After this signal, we know the process execution should have
 // arrived in the end-state.
 assertTrue(processInstance.hasEnded());

 // Now we can update the state of the execution in the database
 jbpmContext.save(processInstance);

 } finally {
 // Tear down the pojo persistence context.
 jbpmContext.close();
 }
 }
}

2.3. Context example: process variables
The process variables contain the context information during process executions. The process
variables are similar to a java.util.Map that maps variable names to values, which are Java
objects. The process variables are persisted as a part of the process instance. To keep things simple,
in this example we only show the API to work with variables, without persistence.

More information about variables can be found in Chapter 7, Context

// This example also starts from the hello world process.
// This time even without modification.
ProcessDefinition processDefinition = ProcessDefinition.parseXmlString(
 "<process-definition>" +

Task assignment example

11

 " <start-state>" +
 " <transition to='s' />" +
 " </start-state>" +
 " <state name='s'>" +
 " <transition to='end' />" +
 " </state>" +
 " <end-state name='end' />" +
 "</process-definition>"
);

ProcessInstance processInstance =
 new ProcessInstance(processDefinition);

// Fetch the context instance from the process instance
// for working with the process variables.
ContextInstance contextInstance =
 processInstance.getContextInstance();

// Before the process has left the start-state,
// we are going to set some process variables in the
// context of the process instance.
contextInstance.setVariable("amount", new Integer(500));
contextInstance.setVariable("reason", "i met my deadline");

// From now on, these variables are associated with the
// process instance. The process variables are now accessible
// by user code via the API shown here, but also in the actions
// and node implementations. The process variables are also
// stored into the database as a part of the process instance.

processInstance.signal();

// The variables are accessible via the contextInstance.

assertEquals(new Integer(500),
 contextInstance.getVariable("amount"));
assertEquals("i met my deadline",
 contextInstance.getVariable("reason"));

2.4. Task assignment example
In the next example we'll show how you can assign a task to a user. Because of the separation
between the jBPM workflow engine and the organizational model, an expression language for
calculating actors would always be too limited. Therefore, you have to specify an implementation of
AssignmentHandler for including the calculation of actors for tasks.

public void testTaskAssignment() {
 // The process shown below is based on the hello world process.
 // The state node is replaced by a task-node. The task-node
 // is a node in JPDL that represents a wait state and generates
 // task(s) to be completed before the process can continue to

Chapter 2. Tutorial

12

 // execute.
 ProcessDefinition processDefinition = ProcessDefinition.parseXmlString(
 "<process-definition name='the baby process'>" +
 " <start-state>" +
 " <transition name='baby cries' to='t' />" +
 " </start-state>" +
 " <task-node name='t'>" +
 " <task name='change nappy'>" +
 " <assignment" +
 " class='org.jbpm.tutorial.taskmgmt.NappyAssignmentHandler' />" +
 " </task>" +
 " <transition to='end' />" +
 " </task-node>" +
 " <end-state name='end' />" +
 "</process-definition>"
);

 // Create an execution of the process definition.
 ProcessInstance processInstance =
 new ProcessInstance(processDefinition);
 Token token = processInstance.getRootToken();

 // Let's start the process execution, leaving the start-state
 // over its default transition.
 token.signal();
 // The signal method will block until the process execution
 // enters a wait state. In this case, that is the task-node.
 assertSame(processDefinition.getNode("t"), token.getNode());

 // When execution arrived in the task-node, a task 'change nappy'
 // was created and the NappyAssignmentHandler was called to determine
 // to whom the task should be assigned. The NappyAssignmentHandler
 // returned 'papa'.

 // In a real environment, the tasks would be fetched from the
 // database with the methods in the org.jbpm.db.TaskMgmtSession.
 // Since we don't want to include the persistence complexity in
 // this example, we just take the first task-instance of this
 // process instance (we know there is only one in this test
 // scenario).
 TaskInstance taskInstance = (TaskInstance)
 processInstance
 .getTaskMgmtInstance()
 .getTaskInstances()
 .iterator().next();

 // Now, we check if the taskInstance was actually assigned to 'papa'.
 assertEquals("papa", taskInstance.getActorId());

 // Now we suppose that 'papa' has done his duties and mark the task
 // as done.

Custom action example

13

 taskInstance.end();
 // Since this was the last (only) task to do, the completion of this
 // task triggered the continuation of the process instance execution.

 assertSame(processDefinition.getNode("end"), token.getNode());
}

2.5. Custom action example
Actions are a mechanism to bind your custom Java code into a jBPM process. Actions can be
associated with its own nodes (if they are relevant in the graphical representation of the process). Or
actions can be placed on events like e.g. taking a transition, leaving a node or entering a node. In that
case, the actions are not part of the graphical representation, but they are executed when execution
fires the events in a runtime process execution.

We'll start with a look at the action implementation that we are going to use in our example :
MyActionHandler. This action handler implementation does not do really spectacular things... it
just sets the boolean variable isExecuted to true. The variable isExecuted is static so it can be
accessed from within the action handler as well as from the action to verify it's value.

More information about actions can be found in Section 6.5, “Actions”

// MyActionHandler represents a class that could execute
// some user code during the execution of a jBPM process.
public class MyActionHandler implements ActionHandler {

 // Before each test (in the setUp), the isExecuted member
 // will be set to false.
 public static boolean isExecuted = false;

 // The action will set the isExecuted to true so the
 // unit test will be able to show when the action
 // is being executed.
 public void execute(ExecutionContext executionContext) {
 isExecuted = true;
 }
}

As mentioned before, before each test, we'll set the static field MyActionHandler.isExecuted to
false;

 // Each test will start with setting the static isExecuted
 // member of MyActionHandler to false.
 public void setUp() {
 MyActionHandler.isExecuted = false;
 }

We'll start with an action on a transition.

public void testTransitionAction() {

Chapter 2. Tutorial

14

 // The next process is a variant of the hello world process.
 // We have added an action on the transition from state 's'
 // to the end-state. The purpose of this test is to show
 // how easy it is to integrate Java code in a jBPM process.
 ProcessDefinition processDefinition = ProcessDefinition.parseXmlString(
 "<process-definition>" +
 " <start-state>" +
 " <transition to='s' />" +
 " </start-state>" +
 " <state name='s'>" +
 " <transition to='end'>" +
 " <action class='org.jbpm.tutorial.action.MyActionHandler' />" +
 " </transition>" +
 " </state>" +
 " <end-state name='end' />" +
 "</process-definition>"
);

 // Let's start a new execution for the process definition.
 ProcessInstance processInstance =
 new ProcessInstance(processDefinition);

 // The next signal will cause the execution to leave the start
 // state and enter the state 's'
 processInstance.signal();

 // Here we show that MyActionHandler was not yet executed.
 assertFalse(MyActionHandler.isExecuted);
 // ... and that the main path of execution is positioned in
 // the state 's'
 assertSame(processDefinition.getNode("s"),
 processInstance.getRootToken().getNode());

 // The next signal will trigger the execution of the root
 // token. The token will take the transition with the
 // action and the action will be executed during the
 // call to the signal method.
 processInstance.signal();

 // Here we can see that MyActionHandler was executed during
 // the call to the signal method.
 assertTrue(MyActionHandler.isExecuted);
 }

The next example shows the same action, but now the actions are placed on the enter-node and
leave-node events respectively. Note that a node has more than one event type in contrast to a
transition, which has only one event. Therefore actions placed on a node should be put in an event
element.

ProcessDefinition processDefinition = ProcessDefinition.parseXmlString(
 "<process-definition>" +

Custom action example

15

 " <start-state>" +
 " <transition to='s' />" +
 " </start-state>" +
 " <state name='s'>" +
 " <event type='node-enter'>" +
 " <action class='org.jbpm.tutorial.action.MyActionHandler' />" +
 " </event>" +
 " <event type='node-leave'>" +
 " <action class='org.jbpm.tutorial.action.MyActionHandler' />" +
 " </event>" +
 " <transition to='end'/>" +
 " </state>" +
 " <end-state name='end' />" +
 "</process-definition>"
);

ProcessInstance processInstance =
 new ProcessInstance(processDefinition);

assertFalse(MyActionHandler.isExecuted);
// The next signal will cause the execution to leave the start
// state and enter the state 's'. So the state 's' is entered
// and hence the action is executed.
processInstance.signal();
assertTrue(MyActionHandler.isExecuted);

// Let's reset the MyActionHandler.isExecuted
MyActionHandler.isExecuted = false;

// The next signal will trigger execution to leave the
// state 's'. So the action will be executed again.
processInstance.signal();
// Voila.
assertTrue(MyActionHandler.isExecuted);

16

Chapter 3.

17

Configuration
The simplest way to configure jBPM is by putting the jbpm.cfg.xml configuration file in the root of
the classpath. If that file is not found as a resource, the default minimal configuration will be used that
is included in the jbpm library (org/jbpm/default.jbpm.cfg.xml). If a jbpm configuration file is
provided, the values configured will be used as defaults. So you only need to specify the parts that are
different from the default configuration file.

The jBPM configuration is represented by the Java class org.jbpm.JbpmConfiguration. Most
easy way to get a hold of the JbpmConfiguration is to make use of the singleton instance method
JbpmConfiguration.getInstance().

If you want to load a configuration from another source, you can use the
JbpmConfiguration.parseXxxx methods.

static JbpmConfinguration jbpmConfiguration =
 JbpmConfinguration.parseResource("my.jbpm.cfg.xml");

The JbpmConfiguration is threadsafe and hence can be kept in a static member. All threads can use
the JbpmConfiguration as a factory for JbpmContext objects. A JbpmContext typically represents one
transaction. The JbpmContext makes services available inside of a context block. A context block
looks like this:

JbpmContext jbpmContext = jbpmConfiguration.createJbpmContext();
try {
 // This is what we call a context block.
 // Here you can perform workflow operations

} finally {
 jbpmContext.close();
}

The JbpmContext makes a set of services and the configuration available to jBPM. These services
are configured in the jbpm.cfg.xml configuration file and make it possible for jBPM to run in any
Java environment and use whatever services are available in that environment.

Here is the default configuration for the JbpmContext.

<jbpm-configuration>

<jbpm-context>
 <service name='persistence'
 factory='org.jbpm.persistence.db.DbPersistenceServiceFactory' />
 <service name='message'
 factory='org.jbpm.msg.db.DbMessageServiceFactory' />
 <service name='scheduler'
 factory='org.jbpm.scheduler.db.DbSchedulerServiceFactory' />
 <service name='logging'
 factory='org.jbpm.logging.db.DbLoggingServiceFactory' />
 <service name='authentication'
 factory=

Chapter 3. Configuration

18

'org.jbpm.security.authentication.DefaultAuthenticationServiceFactory' />
</jbpm-context>

<!-- configuration resource files pointing to default
 configuration files in jbpm-{version}.jar -->
<string name='resource.hibernate.cfg.xml' value='hibernate.cfg.xml' />

 <!-- <string name='resource.hibernate.properties'
 value='hibernate.properties' /> -->
 <string name='resource.business.calendar'
 value='org/jbpm/calendar/jbpm.business.calendar.properties' />
 <string name='resource.default.modules'
 value='org/jbpm/graph/def/jbpm.default.modules.properties' />
 <string name='resource.converter'
 value='org/jbpm/db/hibernate/jbpm.converter.properties' />
 <string name='resource.action.types'
 value='org/jbpm/graph/action/action.types.xml' />
 <string name='resource.node.types'
 value='org/jbpm/graph/node/node.types.xml' />
 <string name='resource.parsers'
 value='org/jbpm/jpdl/par/jbpm.parsers.xml' />
 <string name='resource.varmapping'
 value='org/jbpm/context/exe/jbpm.varmapping.xml' />
 <string name='resource.mail.templates'
 value='jbpm.mail.templates.xml' />

 <int name='jbpm.byte.block.size' value="1024" singleton="true" />
 <bean name='jbpm.task.instance.factory'
 class='org.jbpm.taskmgmt.impl.DefaultTaskInstanceFactoryImpl'
 singleton='true' />

 <bean name='jbpm.variable.resolver'
 class='org.jbpm.jpdl.el.impl.JbpmVariableResolver'
 singleton='true' />

 <string name='jbpm.mail.smtp.host' value='localhost' />

 <bean name='jbpm.mail.address.resolver'
 class='org.jbpm.identity.mail.IdentityAddressResolver'
 singleton='true' />
 <string name='jbpm.mail.from.address' value='jbpm@noreply' />

 <bean name='jbpm.job.executor'
 class='org.jbpm.job.executor.JobExecutor'>
 <field name='jbpmConfiguration'><ref bean='jbpmConfiguration' />
 </field>
 <field name='name'><string value='JbpmJobExecutor' /></field>
 <field name='nbrOfThreads'><int value='1' /></field>
 <field name='idleInterval'><int value='5000' /></field>
 <!-- 1 hour -->
 <field name='maxIdleInterval'><int value='3600000' /></field>

19

 <field name='historyMaxSize'><int value='20' /></field>
 <!-- 10 minutes -->
 <field name='maxLockTime'><int value='600000' /></field>
 <!-- 1 minute -->
 <field name='lockMonitorInterval'><int value='60000' /></field>
 <!-- 5 seconds -->
 <field name='lockBufferTime'><int value='5000' /></field>
 </bean>
</jbpm-configuration>

In this configuration file you can see 3 parts.

1. The first part configures the jBPM context with a set of service implementations. The possible
configuration options are covered in the chapters that cover the specific service implementations.

2. The second part are all mappings of references to configuration resources. These resource
references can be updated if you want to customize one of these configuration files. Typically, you
make a copy of the default configuration which is in the jbpm-3.x.jar and put it somewhere
on the classpath. Then you update the reference in this file and jBPM will use your customized
version of that configuration file.

3. The third part contains miscellaneous configurations used in jBPM. These configuration options
are described in the chapters that cover the specific topic.

The default configured set of services is targeted at a simple web application environment and minimal
dependencies. The persistence service will obtain a JDBC connection and all the other services will
use the same connection to perform their services. So all of your workflow operations are centralized
into 1 transaction on a JDBC connection without the need for a transaction manager.

JbpmContext contains convenience methods for most of the common process operations:

public void deployProcessDefinition(ProcessDefinition processDefinition)
public List getTaskList()
public List getTaskList(String actorId)
public List getGroupTaskList(List actorIds)
public TaskInstance loadTaskInstance(long taskInstanceId)
public TaskInstance loadTaskInstanceForUpdate(long taskInstanceId)
public Token loadToken(long tokenId)
public Token loadTokenForUpdate(long tokenId)
public ProcessInstance loadProcessInstance(long processInstanceId)
public ProcessInstance loadProcessInstanceForUpdate(long processInstanceId)
public ProcessInstance newProcessInstance(String processDefinitionName)
public void save(ProcessInstance processInstance)
public void save(Token token)
public void save(TaskInstance taskInstance)
public void setRollbackOnly()

Note that the XxxForUpdate methods will register the loaded object for auto-save so that you don't
have to call one of the save methods explicitly.

It's possible to specify multiple jbpm-contexts, but then you have to make sure that each
jbpm-context is given a unique name attribute. Named contexts can be retrieved with
JbpmConfiguration.createContext(String name);

Chapter 3. Configuration

20

A service element specifies the name of a service and the service factory
for that service. The service will only be created in case it's asked for with
JbpmContext.getServices().getService(String name).

The factories can also be specified as an element instead of an attribute. That might be necessary to
inject some configuration information in the factory objects. The component responsible for parsing the
XML, creating and wiring the objects is called the object factory.

3.1. Customizing factories
A common mistake when customizing factories is to mix the short and the long notation. Examples of
the short notation can be seen in the default configuration file.

<service name='persistence'
 factory='org.jbpm.persistence.db.DbPersistenceServiceFactory' />

If specific properties on a service need to be specified, the short notation can't be used, but instead,
the long notation has to be used.

<programlisting language="xml"><service name="persistence">
 <factory>
 <bean class="org.jbpm.persistence.db.DbPersistenceServiceFactory">
 <field name="dataSourceJndiName">
 <string value="java:/myDataSource"/>
 </field>
 <field name="isCurrentSessionEnabled"><true /></field>
 <field name="isTransactionEnabled"><false /></field>
 </bean>
 </factory>
</service>

3.2. Configuration properties
jbpm.byte.block.size

File attachments and binary variables are stored in the database. Not as blobs, but as a list of
fixed sized binary objects. This is done to improve portability amongst different databases and
allow jBPM to be more easily embedded. This parameter controls the size of the fixed length
chunks.

jbpm.task.instance.factory
To customize the way that task instances are created, specify a fully qualified class name in this
property. This might be necessary when you want to customize the TaskInstance bean and add
new properties to it. See also Section 8.10, “Customizing task instances” The specified class
should implement org.jbpm.taskmgmt.TaskInstanceFactory.

jbpm.variable.resolver
To customize the way that jBPM will look for the first term in JSF-like expressions.

3.3. Other configuration files
Here's a short description of all the configuration files that are customizable in jBPM.

Logging of optimistic concurrency exceptions

21

hibernate.cfg.xml
This file contains Hibernate configurations and references to the Hibernate mapping resource files.

A different file can be specified for this in the jbpm.hibernate.cfg.xml property in the
jbpm.properties file. In the jBPM project the default Hibernate configuration XML file is located
in directory src/config.files/hibernate.cfg.xml.

org/jbpm/db/hibernate.queries.hbm.xml
This file contains Hibernate queries that are used in the jBPM sessions
org.jbpm.db.*Session.

org/jbpm/graph/node/node.types.xml
This file contains the mapping of XML node elements to Node implementation classes.

org/jbpm/graph/action/action.types.xml
This file contains the mapping of XML action elements to Action implementation classes.

org/jbpm/calendar/jbpm.business.calendar.properties
Contains the definition of business hours and free time.

org/jbpm/context/exe/jbpm.varmapping.xml
Specifies how the values of the process variables (Java objects) are converted to variable
instances for storage in the jBPM database.

org/jbpm/db/hibernate/jbpm.converter.properties
Specifies the id-to-classname mappings. The ids are stored in the database. The
org.jbpm.db.hibernate.ConverterEnumType is used to map the ids to the singleton
objects.

org/jbpm/graph/def/jbpm.default.modules.properties
Specifies which modules are added to a new ProcessDefinition by default.

org/jbpm/jpdl/par/jbpm.parsers.xml
Specifies the phases of process archive parsing.

3.4. Logging of optimistic concurrency exceptions
When running in a cluster, jBPM synchronizes on the database. By default with optimistic locking. This
means that each operation is performed in a transaction. And if at the end a collision is detected, then
the transaction is rolled back and has to be handled. E.g. by a retry. So optimistic locking exceptions
are usually part of the normal operation. The org.hibernate.StateObjectStateException
exceptions that Hibernate throws in that case are are logged with a simple message, 'optimistic locking
failed', instead of an error and a stack trace.

Hibernate itself will log the StateObjectStateException including
a stack trace. If you want to get rid of these stack traces, put the level of
org.hibernate.event.def.AbstractFlushingEventListener to FATAL. You can configure
this in log4j with the following configuration.

log4j.logger.org.hibernate.event.def.AbstractFlushingEventListener=FATAL

If you want to enable logging of the jBPM stack traces, add the following line to your jbpm.cfg.xml.

Chapter 3. Configuration

22

<boolean name="jbpm.hide.stale.object.exceptions" value="false" />

3.5. Object factory
The object factory can create objects according to a beans-like XML configuration file. The
configuration file specifies how objects should be created, configured and wired together to form a
complete object graph. The object factory can inject the configurations and other beans into a bean.

In its simplest form, the object factory is able to create basic types and Java beans from such a
configuration:

<beans>
 <bean name="task" class="org.jbpm.taskmgmt.exe.TaskInstance"/>
 <string name="greeting">hello world</string>
 <int name="answer">42</int>
 <boolean name="javaisold">true</boolean>
 <float name="percentage">10.2</float>
 <double name="salary">100000000.32</double>
 <char name="java">j</char>
 <null name="dusttodust" />
</beans>

ObjectFactory of = ObjectFactory.parseXmlFromAbove();
assertEquals(TaskInstance.class, of.getNewObject("task").getClass());
assertEquals("hello world", of.getNewObject("greeting"));
assertEquals(new Integer(42), of.getNewObject("answer"));
assertEquals(Boolean.TRUE, of.getNewObject("javaisold"));
assertEquals(new Float(10.2), of.getNewObject("percentage"));
assertEquals(new Double(100000000.32), of.getNewObject("salary"));
assertEquals(new Character('j'), of.getNewObject("java"));
assertNull(of.getNewObject("dusttodust"));]]>

You can configure lists.

<beans>
 <list name="numbers">
 <string>one</string>
 <string>two</string>
 <string>three</string>
 </list>
</beans>

You can configure maps.

<beans>
 <map name="numbers">
 <entry>
 <key><int>1</int></key>
 <value><string>one</string></value>

Object factory

23

 </entry>
 <entry>
 <key><int>2</int></key>
 <value><string>two</string></value>
 </entry>
 <entry>
 <key><int>3</int></key>
 <value><string>three</string></value>
 </entry>
 </map>
</beans>

Beans can be configured by using direct field injection and by using property setter methods.

<beans>
 <bean name="task" class="org.jbpm.taskmgmt.exe.TaskInstance" >
 <field name="name"><string>do dishes</string></field>
 <property name="actorId"><string>theotherguy</string></property>
 </bean>
</beans>

Beans can be referenced. The referenced object doesn't have to be a bean, it can be a string, integer
or any other object.

<beans>
 <bean name="a" class="org.jbpm.A" />
 <ref name="b" bean="a" />
</beans>

Beans can be constructed with any constructor.

<beans>
 <bean name="task" class="org.jbpm.taskmgmt.exe.TaskInstance" >
 <constructor>
 <parameter class="java.lang.String">
 <string>do dishes</string>
 </parameter>
 <parameter class="java.lang.String">
 <string>theotherguy</string>
 </parameter>
 </constructor>
 </bean>
</beans>

Beans can be constructed with a factory method on a bean.

<beans>
 <bean name="taskFactory"
 class="org.jbpm.UnexistingTaskInstanceFactory"
 singleton="true"/>

Chapter 3. Configuration

24

 <bean name="task" class="org.jbpm.taskmgmt.exe.TaskInstance" >
 <constructor factory="taskFactory" method="createTask" >
 <parameter class="java.lang.String">
 <string>do dishes</string>
 </parameter>
 <parameter class="java.lang.String">
 <string>theotherguy</string>
 </parameter>
 </constructor>
 </bean>
</beans>

Beans can be constructed using a static factory method on a class.

<beans>
 <bean name="task" class="org.jbpm.taskmgmt.exe.TaskInstance" >
 <constructor
 factory-class="org.jbpm.UnexistingTaskInstanceFactory"
 method="createTask" >
 <parameter class="java.lang.String">
 <string>do dishes</string>
 </parameter>
 <parameter class="java.lang.String">
 <string>theotherguy</string>
 </parameter>
 </constructor>
 </bean>
</beans>

Each named object can be marked as singleton with the attribute singleton="true". That means
that a given object factory will always return the same object for each request. Note that singletons are
not shared between different object factories.

The singleton feature causes the differentiation between the methods getObject and
getNewObject. Typical users of the object factory will use the getNewObject. This means that
first the object factory's object cache is cleared before the new object graph is constructed. During
construction of the object graph, the non-singleton objects are stored in the object factory's object
cache to allow for shared references to one object. The singleton object cache is different from the
plain object cache. The singleton cache is never cleared, while the plain object cache is cleared at the
start of every getNewObject method.

Chapter 4.

25

Persistence
In most scenarios, jBPM is used to maintain execution of processes that span several transactions.
The main purpose of persistence is to store process executions during wait states. So think of the
process executions as state machines. In one transaction, we want to move the process execution
state machine from one state to the next.

A process definition can be represented in 3 different forms : as xml, as Java objects and as records in
the jBPM database. Execution or runtime information and logging information can be represented in 2
forms : as Java objects and as records in the jBPM database.

Figure 4.1. The transformations and different forms

For more information about the XML representation of process definitions and process archives, see
Chapter 14, jBPM Process Definition Language (JPDL).

More information on how to deploy a process archive to the database can be found in Section 14.1.1,
“Deploying a process archive”

4.1. The Persistence API

4.1.1. Relation to the configuration framework
The persistence API is integrated with the configuration framework, see Chapter 3, Configuration. This
is done by exposing some convenience persistence methods on the JbpmContext. Persistence API
operations can then be called inside a jBPM context block.

JbpmContext jbpmContext = jbpmConfiguration.createJbpmContext();
try {
 // Invoke persistence operations here
} finally {
 jbpmContext.close();
}

In what follows, we suppose that the configuration includes a persistence service similar to this one
(as in the example configuration file src/config.files/jbpm.cfg.xml):

Chapter 4. Persistence

26

<jbpm-configuration>
 <jbpm-context>
 <service name='persistence'
 factory='org.jbpm.persistence.db.DbPersistenceServiceFactory' />
 </jbpm-context>
</jbpm-configuration>

4.1.2. Convenience methods on JbpmContext
The three most common persistence operations are:
1. Deploying a process.

2. Starting a new execution of a process.

3. Continuing an execution.

First deploying a process definition. Typically, this will be done directly from the graphical process
designer or from the deployprocess ant task. But here you can see how this is done in Java code.

JbpmContext jbpmContext = jbpmConfiguration.createJbpmContext();
try {
 ProcessDefinition processDefinition = ...;
 jbpmContext.deployProcessDefinition(processDefinition);
} finally {
 jbpmContext.close();
}

For the creation of a new process execution, we need to specify of which process definition this
execution will be an instance. The most common way to specify this is to refer to the name of the
process and let jBPM find the latest version of that process in the database:

JbpmContext jbpmContext = jbpmConfiguration.createJbpmContext();
try {
 String processName = ...;
 ProcessInstance processInstance =
 jbpmContext.newProcessInstance(processName);
} finally {
 jbpmContext.close();
}

For continuing a process execution, we need to fetch the process instance, the token or the
taskInstance from the database, invoke some methods on the POJO jBPM objects and afterwards
save the updates made to the processInstance into the database again.

JbpmContext jbpmContext = jbpmConfiguration.createJbpmContext();
try {
 long processInstanceId = ...;
 ProcessInstance processInstance =
 jbpmContext.loadProcessInstance(processInstanceId);
 processInstance.signal();

Convenience methods on JbpmContext

27

 jbpmContext.save(processInstance);
} finally {
 jbpmContext.close();
}

Note that if you use the ForUpdate methods in the JbpmContext, an explicit invocation of the
jbpmContext.save is not necessary any more because it will then occur automatically during
the close of the jbpmContext. E.g. suppose we want to inform jBPM about a taskInstance that
has been completed. Note that task instance completion can trigger execution to continue so the
processInstance related to the taskInstance must be saved. The most convenient way to do this is
to use the loadTaskInstanceForUpdate method:

JbpmContext jbpmContext = jbpmConfiguration.createJbpmContext();
try {
 long taskInstanceId = ...;
 TaskInstance taskInstance =
 jbpmContext.loadTaskInstanceForUpdate(taskInstanceId);
 taskInstance.end();
 }
finally {
 jbpmContext.close();
}

Just as background information, the next part is an explanation of how jBPM manages the persistence
and uses Hibernate.

The JbpmConfiguration maintains a set of ServiceFactorys. The service factories
are configured in the jbpm.cfg.xml as shown above and instantiated lazy. The
DbPersistenceServiceFactory is only instantiated the first time when it is needed. After that,
service factories are maintained in the JbpmConfiguration. A DbPersistenceServiceFactory
manages a Hibernate SessionFactory. But also the Hibernate session factory is created lazy when
requested the first time.

Chapter 4. Persistence

28

Figure 4.2. The persistence related classes

During the invocation of jbpmConfiguration.createJbpmContext(), only the
JbpmContext is created. No further persistence related initializations are done at that time. The
JbpmContext manages a DbPersistenceService, which is instantiated upon first request. The
DbPersistenceService manages the Hibernate session. Also the Hibernate session inside the
DbPersistenceService is created lazy. As a result, a Hibernate session will only be opened when
the first operation is invoked that requires persistence and not earlier.

 Managed transactions

29

4.1.3. Managed transactions
The most common scenario for managed transactions is when using jBPM in a JEE application server
like JBoss. This is usually configured as follows.

1. Configure a DataSource in your application server

2. Configure Hibernate to use that data source for its connections

3. Use container managed transactions

4. Disable transactions in jBPM

A stateless session facade in front of jBPM is a good practice. The easiest way on how to bind the
jbpm transaction to the container transaction is to make sure that the Hibernate configuration used by
jbpm refers to an xa-datasource. So jBPM will have its own Hibernate session and there will only be
one JDBC connection and one transaction.

The transaction attribute of the jBPM session facade methods should be 'required'.

The most important configuration property to specify in the hibernate.cfg.xml that is used by
jbpm is hibernate.connection.datasource. Set this to you datasource JNDI name, e.g. java:/JbpmDS.

More information on how to configure JDBC connections in Hibernate, see http://www.hibernate.org/
hib_docs/reference/en/html/session-configuration.html#configuration-hibernatejdbc

For more information on how to configure XA datasources in JBoss, see http://docs.jboss.org/jbossas/
jboss4guide/r4/html/ch7.chapt.html#ch7.jdbc.sect

4.1.4. Injecting the Hibernate session
In some scenarios, you already have a Hibernate session and you want to combine all the persistence
work from jBPM into that Hibernate session.

Then the first thing to do is make sure that the Hibernate configuration is aware of all the jBPM
mapping files. You should make sure that all the Hibernate mapping files that are referenced in the file
src/config.files/hibernate.cfg.xml are provided in the used Hibernate configuration.

Then, you can inject a Hibernate session into the jBPM context as is shown in the following API
snippet.

JbpmContext jbpmContext = jbpmConfiguration.createJbpmContext();
try {
 jbpmContext.setSession(SessionFactory.getCurrentSession());

 // your jBPM operations on jbpmContext

}
finally {
 jbpmContext.close();
}

That will pass in the current Hibernate session used by the container to the jBPM context. No
Hibernate transaction is initiated when a session is injected in the context. So this can be used with
the default configurations.

http://www.hibernate.org/hib_docs/reference/en/html/session-configuration.html#configuration-hibernatejdbc
http://www.hibernate.org/hib_docs/reference/en/html/session-configuration.html#configuration-hibernatejdbc
http://docs.jboss.org/jbossas/jboss4guide/r4/html/ch7.chapt.html#ch7.jdbc.sect
http://docs.jboss.org/jbossas/jboss4guide/r4/html/ch7.chapt.html#ch7.jdbc.sect

Chapter 4. Persistence

30

The Hibernate session that is passed in, will not be closed in the jbpmContext.close() method.
This is in line with the overall philosophy of programmatic injection which is explained in the next
section.

4.1.5. Injecting resources programmatically
The configuration of jBPM provides the necessary information for jBPM to create a Hibernate session
factory, Hibernate session, JDBC connections, and jbpm required services. But all of these resources
can also be provided to jBPM programmatically. Just inject them in the jbpmContext. Injected
resources always are taken before creating resources from the jbpm configuration information.

The main philosophy is that the API-user remains responsible for all the things that the user injects
programmatically in the jbpmContext. On the other hand, all items that are opened by jBPM, will be
closed by jBPM. There is one exception. That is when fetching a connection that was created by
Hibernate. When calling jbpmContext.getConnection(), this transfers responsibility for closing
the connection from jBPM to the API user.

JbpmContext jbpmContext = jbpmConfiguration.createJbpmContext();
try {
 // to inject resources in the jbpmContext
 //before they are used, you can use
 jbpmContext.setConnection(connection);
 // or
 jbpmContext.setSession(session);
 // or
 jbpmContext.setSessionFactory(sessionFactory);

}
finally {
 jbpmContext.close();
}

4.1.6. Advanced API usage
The DbPersistenceService maintains a lazy initialized Hibernate session. All database access is
done through this Hibernate session. All queries and updates done by jBPM are exposed by the
XxxSession classes like e.g. GraphSession, SchedulerSession, LoggingSession. These
session classes refer to the Hibernate queries and all use the same Hibernate session underneath.

The XxxxSession classes are accessible via the JbpmContext as well.

4.2. Configuring the persistence service

4.2.1. The DbPersistenceServiceFactory
DbPersistenceServiceFactory has 3 more configuration properties: isTransactionEnabled,
sessionFactoryJndiName, and dataSourceJndiName. To specify any of these properties in
jbpm.cfg.xml, you need to specify the service factory as a bean in the factory element.

<jbpm-context>
 <service name="persistence">

The DbPersistenceServiceFactory

31

 <factory>
 <bean class="org.jbpm.persistence.db.DbPersistenceServiceFactory">
 <field name="isTransactionEnabled"><false /></field>
 <field name="sessionFactoryJndiName">
 <string value="java:/myHibSessFactJndiName" />
 </field>
 <field name="dataSourceJndiName">
 <string value="java:/myDataSourceJndiName" />
 </field>
 </bean>
 </factory>
 </service>
...
</jbpm-context>

Important
Do not mix the short and long notation for configuring the factories. See also Section 3.1,
“Customizing factories”. If the factory is just a new instance of a class, you can use the
factory attribute to refer to the factory class name. But if properties in a factory must be
configured, the long notation must be used and factory and bean must be combined as
nested elements.

isTransactionEnabled
By default, jBPM will begin a Hibernate transaction when the session is fetched the first time and
if the jbpmContext is closed, the Hibernate transaction will be ended. The transaction is then
committed or rolled back depending on whether jbpmContext.setRollbackOnly was called.
The isRollbackOnly property is maintained in the TxService. To disable transactions and prohibit
jBPM from managing transactions with Hibernate, configure the isTransactionEnabled property to
false as in the example above. This property only controls the behavior of the jbpmContext, you
can still call the DbPersistenceService.beginTransaction() directly with the API, which
ignores the isTransactionEnabled setting. For more info about transactions, see Section 4.2.2,
“Hibernate transactions”.

sessionFactoryJndiName
By default, this is null, meaning that the session factory is not fetched from JNDI. If set and a
session factory is needed to create a Hibernate session, the session factory will be fetched from
JNDI using the provided JNDI name.

dataSourceJndiName
By default, this is null and creation of JDBC connections will be delegated to Hibernate. By
specifying a datasource, jBPM will fetch a JDBC connection from the datasource and provide
that to Hibernate while opening a new session. For user provided JDBC connections, see
Section 4.1.5, “Injecting resources programmatically”.

4.2.1.1. The Hibernate session factory
By default, the DbPersistenceServiceFactory will use the resource hibernate.cfg.xml in the
root of the classpath to create the Hibernate session factory. Note that the Hibernate configuration
file resource is mapped in the property jbpm.hibernate.cfg.xml and can be customized in the
jbpm.cfg.xml. This is the default configuration.

Chapter 4. Persistence

32

<jbpm-configuration>
 <!-- configuration resource files pointing to default
 configuration files in jbpm-{version}.jar -->
 <string name='resource.hibernate.cfg.xml'
 value='hibernate.cfg.xml' />
 <!-- <string name='resource.hibernate.properties'
 value='hibernate.properties' /> -->
</jbpm-configuration>

When the property resource.hibernate.properties is specified, the properties in that resource
file will overwrite all the properties in the hibernate.cfg.xml. Instead of updating the
hibernate.cfg.xml to point to your database, the hibernate.properties can be used to handle jbpm
upgrades conveniently. The hibernate.cfg.xml can then be copied without having to reapply the
changes.

4.2.1.2. Configuring a c3po connection pool
Please refer to the Hibernate documentation: at http://www.hibernate.org/214.html

4.2.1.3. Configuring a ehcache cache provider
If you want to configure jBPM with JBossCache, have a look at http://wiki.jboss.org/wiki/Wiki.jsp?
page=JbpmConfiguration

For more information about configuring a cache provider in Hibernate, take a look at http://
www.hibernate.org/hib_docs/reference/en/html/performance.html#performance-cache.

The hibernate.cfg.xml that ships with jBPM includes the following line.

<property name="hibernate.cache.provider_class">
 org.hibernate.cache.HashtableCacheProvider
</property>

This is done to get people up and running as fast as possible without having to worry
about classpaths. Note that Hibernate contains a warning that states not to use the
HashtableCacheProvider in production.

To use ehcache instead of the HashtableCacheProvider, simply remove that line and put
ehcache.jar on the classpath. Note that you might have to search for the right ehcache
library version that is compatible with your environment. Previous incompatibilities between
a JBoss version and a particular ehcache version were the reason to change the default to
HashtableCacheProvider.

4.2.2. Hibernate transactions
By default, jBPM will delegate transactions to Hibernate and use the "session per transaction" pattern.
jBPM will begin a Hibernate transaction when a Hibernate session is opened. This will happen the first
time when a persistent operation is invoked on the jbpmContext. The transaction will be committed
right before the Hibernate session is closed. That will happen inside the jbpmContext.close().

Use jbpmContext.setRollbackOnly() to mark a transaction for rollback. In that
case, the transaction will be rolled back right before the session is closed inside of the
jbpmContext.close().

http://www.hibernate.org/214.html
http://wiki.jboss.org/wiki/Wiki.jsp?page=JbpmConfiguration
http://wiki.jboss.org/wiki/Wiki.jsp?page=JbpmConfiguration
http://www.hibernate.org/hib_docs/reference/en/html/performance.html#performance-cache
http://www.hibernate.org/hib_docs/reference/en/html/performance.html#performance-cache

JTA transactions

33

To prohibit jBPM from invoking any of the transaction methods on the Hibernate API,
set the isTransactionEnabled property to false as explained in Section 4.2.1, “The
DbPersistenceServiceFactory”.

4.2.3. JTA transactions
The most common scenario for managed transactions is when using jBPM in a JEE application server
like JBoss. The most common scenario to bind your transactions to JTA is the following:

<jbpm-context>
 <service name="persistence">
 <factory>
 <bean class="org.jbpm.persistence.db.DbPersistenceServiceFactory">
 <field name="isTransactionEnabled"><false /></field>
 <field name="isCurrentSessionEnabled"><true /></field>
 <field name="sessionFactoryJndiName">
 <string value="java:/myHibSessFactJndiName" />
 </field>
 </bean>
 </factory>
 </service>
</jbpm-context>

Then you should specify in your Hibernate session factory to use a datasource and bind Hibernate
to the transaction manager. Make sure that you bind the datasource to an XA datasource in case
you are using more than one resource. For more information about binding Hibernate to your
transaction manager, please, refer to http://www.hibernate.org/hib_docs/v3/reference/en/html_single/
#configuration-optional-transactionstrategy.

<hibernate-configuration>
 <session-factory>

 <!-- hibernate dialect -->
 <property name="hibernate.dialect">
 org.hibernate.dialect.HSQLDialect
 </property>

 <!-- DataSource properties (begin) -->
 <property name="hibernate.connection.datasource">
 java:/JbpmDS
 </property>

 <!-- JTA transaction properties (begin) -->
 <property name="hibernate.transaction.factory_class">
 org.hibernate.transaction.JTATransactionFactory
 </property>

 <property name="hibernate.transaction.manager_lookup_class">
 org.hibernate.transaction.JBossTransactionManagerLookup
 </property>

http://www.hibernate.org/hib_docs/v3/reference/en/html_single/#configuration-optional-transactionstrategy
http://www.hibernate.org/hib_docs/v3/reference/en/html_single/#configuration-optional-transactionstrategy

Chapter 4. Persistence

34

 <property name="jta.UserTransaction">
 java:comp/UserTransaction
 </property>

 </session-factory>
</hibernate-configuration>

Then make sure that you have configured Hibernate to use an XA datasource.

These configurations allow for the enterprise beans to use CMT and still allow the web console to use
BMT. That is why the property jta.UserTransaction is also specified.

4.2.4. Customizing queries
All the HQL queries that jBPM uses are centralized in one configuration file. That resource file is
referenced in the hibernate.cfg.xml configuration file.

<hibernate-configuration>
 <!-- hql queries and type defs -->
 <mapping resource="org/jbpm/db/hibernate.queries.hbm.xml" />
</hibernate-configuration>

To customize one or more of those queries, take a copy of the original file and put your
customized version somewhere on the classpath. Then update the reference org/jbpm/db/
hibernate.queries.hbm.xml in the hibernate.cfg.xml to point to your customized version.

4.2.5. Database compatibility
jBPM runs on any database that is supported by Hibernate.

The example configuration files in jBPM, src/config.files, specifies the use of the hypersonic
in-memory database. That database is ideal during development and for testing. The hypersonic in-
memory database keeps all its data in memory and doesn't store it on disk.

4.2.5.1. Isolation level of the JDBC connection
Make sure that the database isolation level that you configure for your JDBC connection is at least
READ_COMMITTED.

Almost all features run OK even with READ_UNCOMMITTED. This is isolation level 0, which is the only
isolation level supported by HSQLDB). But race conditions might occur in the job executor and when
synchronizing multiple tokens.

4.2.5.2. Changing the jBPM DB
Following is an indicative list of things to do when changing jBPM to use a different database.

• Put the JDBC driver library archive in the classpath.

• Update the Hibernate configuration used by jBPM.

• Create the schema in the new database.

 Combining your Hibernate classes

35

4.2.5.3. The jBPM DB schema
The jbpm.db sub-project contains drivers, instructions and scripts to help you getting started on your
database of choice. Refer to the readme.html in the root of the jbpm.db project for more information.

While jBPM is capable of generating DDL scripts for any database, these schemas are not always
optimized. So you might want to have your DBA review the DDL that is generated to optimize the
column types and use of indexes.

In development you might be interested in the following Hibernate configuration: If you set Hibernate
configuration property hibernate.hbm2ddl.auto to create-drop , then the schema will be
automatically created in the database the first time it is used in an application. When the application
closes down, the schema will be dropped.

The schema generation can also be invoked programmatically with
jbpmConfiguration.createSchema() and jbpmConfiguration.dropSchema().

4.2.6. Combining your Hibernate classes
In your project, you might use Hibernate for your persistence. Combining your persistent classes with
the jBPM persistent classes is optional. There are two major benefits when combining your Hibernate
persistence with jBPM's Hibernate persistence.

First, session, connection and transaction management become easier. By combining jBPM and
your persistence into one Hibernate session factory, there is one Hibernate session, one JDBC
connection that handles both your and jBPM's persistence. So automatically the jBPM updates are in
the same transaction as the updates to your own domain model. This can eliminate the need for using
a transaction manager.

Secondly, this enables you to drop your Hibernate persistent object in to the process variables without
any additional work.

The easiest way to integrate your persistent classes with the jBPM persistent classes is by creating
one central hibernate.cfg.xml. You can take the jBPM hibernate.cfg.xml as a starting point
and add references to your own Hibernate mapping files in there.

4.2.7. Customizing the jBPM Hibernate mapping files
To customize any of the jBPM Hibernate mapping files, follow these steps.

1. Copy the jBPM Hibernate mapping files you want to copy from the sources (src/jbpm-jpdl-
sources.jar).

2. Put the copy anywhere you want on the classpath, but make sure it is not the exact same location
as they were before.

3. Update the references to the customized mapping files in the hibernate.cfg.xml
configuration file

4.2.8. Second level cache
jBPM uses Hibernate's second level cache for keeping the process definitions in memory after loading
them once. The process definition classes and collections are configured in the jBPM Hibernate
mapping files with the cache element like this.

Chapter 4. Persistence

36

<cache usage="nonstrict-read-write"/>

Since process definitions (should) never change, it is acceptable to keep them in the second level
cache. See also Section 14.1.3, “Changing deployed process definitions”.

The second level cache is an important aspect of the JBoss jBPM implementation. If it weren't for
this cache, JBoss jBPM could have a serious drawback in comparison to the other techniques to
implement a BPM engine.

The default caching strategy is set to nonstrict-read-write. During runtime execution of
processes, the process definitions are static. This way, we get the maximum caching during runtime
execution of processes. In theory, caching strategy read-only would be even better for runtime
execution. But in that case, deploying new process definitions would not be possible as that operation
is not read-only.

Chapter 5.

37

Java EE Application Server Facilities
The present chapter describes the facilities offered by jBPM to leverage the Java EE infrastructure.

5.1. Enterprise Beans
CommandServiceBean is a stateless session bean that executes jBPM commands by calling it's
execute method within a separate jBPM context. The environment entries and resources available for
customization are summarized in the table below.

Name Type Description

JbpmCfgResource Environment
Entry

The classpath resource from which to read
the jBPM configuration. Optional, defaults to
jbpm.cfg.xml.

ejb/TimerEntityBean EJB Reference Link to the local entity bean that implements
the scheduler service. Required for
processes that contain timers.

jdbc/JbpmDataSource Resource
Manager
Reference

Logical name of the data source that
provides JDBC connections to the jBPM
persistence service. Must match the
hibernate.connection.datasource
property in the Hibernate configuration file.

jms/JbpmConnectionFactory Resource
Manager
Reference

Logical name of the factory that provides
JMS connections to the jBPM message
service. Required for processes that contain
asynchronous continuations.

jms/JobQueue Message
Destination
Reference

The jBPM message service sends job
messages to the queue referenced here. To
ensure this is the same queue from which
the job listener bean receives messages, the
message-destination-link points to a
common logical destination, JobQueue.

jms/CommandQueue Message
Destination
Reference

The command listener bean receives
messages from the queue referenced here.
To ensure this is the same queue to which
command messages can be sent, the
message-destination-link element
points to a common logical destination,
CommandQueue.

Table 5.1. Command service bean environment

CommandListenerBean is a message-driven bean that listens on the CommandQueue for command
messages. This bean delegates command execution to the CommandServiceBean.

The body of the message must be a Java object that implements the org.jbpm.Command interface.
The message properties, if any, are ignored. If the message does not match the expected format,
it is forwarded to the DeadLetterQueue. No further processing is done on the message. If the
destination reference is absent, the message is rejected.

Chapter 5. Java EE Application Server Facilities

38

In case the received message specifies a replyTo destination, the result of the command execution
is wrapped into an object message and sent there. The command connection factory environment
reference indicates the resource manager that supplies JMS connections.

Conversely, JobListenerBean is a message-driven bean that listens on the JbpmJobQueue for job
messages to support asynchronous continuations.

The message must have a property called jobId of type long which references a pending Job in the
database. The message body, if any, is ignored.

This bean extends the CommandListenerBean and inherits its environment entries and resource
references available for customization.

Name Type Description

ejb/LocalCommandServiceBean EJB Reference Link to the local session bean that
executes commands on a separate
jBPM context.

jms/JbpmConnectionFactory Resource
Manager
Reference

Logical name of the factory that
provides JMS connections for
producing result messages. Required
for command messages that indicate a
reply destination.

jms/DeadLetterQueue Message
Destination
Reference

Messages which do not contain a
command are sent to the queue
referenced here. Optional; if absent,
such messages are rejected, which
may cause the container to redeliver.

Table 5.2. Command/Job listener bean environment

The TimerEntityBean interacts with the EJB timer service to schedule jBPM timers. Upon
expiration, execution of the timer is actually delegated to the command service bean.

The timer entity bean requires access to the jBPM data source for reading timer data. The EJB
deployment descriptor does not provide a way to define how an entity bean maps to a database. This
is left off to the container provider. In JBoss AS, the jbosscmp-jdbc.xml descriptor defines the data
source JNDI name and the relational mapping data (table and column names, among others). Note
that the JBoss CMP descriptor uses a global JNDI name (java:JbpmDS), as opposed to a resource
manager reference (java:comp/env/jdbc/JbpmDataSource).

Earlier versions of jBPM used a stateless session bean called TimerServiceBean to interact with
the EJB timer service. The session approach had to be abandoned because there is an unavoidable
bottleneck at the cancelation methods. Because session beans have no identity, the timer service is
forced to iterate through all the timers for finding the ones it has to cancel. The bean is still around
for backwards compatibility. It works under the same environment as the TimerEntityBean, so
migration is easy.

Name Type Description

ejb/LocalCommandServiceBean EJB Reference Link to the local session bean that
executes timers on a separate jBPM
context.

Table 5.3. Timer entity/service bean environment

jBPM Enterprise Configuration

39

5.2. jBPM Enterprise Configuration
jbpm.cfg.xml includes the following configuration items:

<jbpm-context>
 <service name="persistence"
 factory="org.jbpm.persistence.jta.JtaDbPersistenceServiceFactory" />
 <service name="message"
 factory="org.jbpm.msg.jms.JmsMessageServiceFactory" />
 <service name="scheduler"
 factory="org.jbpm.scheduler.ejbtimer.EntitySchedulerServiceFactory" />
</jbpm-context>

JtaDbPersistenceServiceFactory enables jBPM to participate in JTA transactions. If an existing
transaction is underway, the JTA persistence service clings to it; otherwise it starts a new transaction.
The jBPM enterprise beans are configured to delegate transaction management to the container.
However, if you create a JbpmContext in an environment where no transaction is active (say, in
a web application), one will be started automatically. The JTA persistence service factory has the
configurable fields described below.

isCurrentSessionEnabled
When set to true, jBPM will use the "current" Hibernate session associated with the ongoing
JTA transaction. This is the default setting. See the Hibernate guide for a description of the
behavior, http://www.hibernate.org/hib_docs/v3/reference/en/html/architecture.html#architecture-
current-session . You can take advantage of the contextual session mechanism to
use the same session used by jBPM in other parts of your application through a call to
SessionFactory.getCurrentSession(). On the other hand, you might want to supply your
own Hibernate session to jBPM. To do so, set isCurrentSessionEnabled to false and inject
the session via the JbpmContext.setSession(session) method. This will also ensure that
jBPM uses the same Hibernate session as other parts of your application. Note, the Hibernate
session can be injected into a stateless session bean via a persistence context, for example.

isTransactionEnabled
When set to true jBPM will begin a transaction through Hibernate's transaction API upon
JbpmConfiguration.createJbpmContext(), commit the transaction and close the
Hibernate session upon JbpmContext.close(). This is NOT the desired behaviour when jBPM
is deployed as an EAR, hence isTransactionEnabled is set to false by default. See http://
www.hibernate.org/hib_docs/v3/reference/en/html/transactions.html#transactions-demarcation for
more details.

JmsMessageServiceFactory leverages the reliable communication infrastructure exposed through
JMS interfaces to deliver asynchronous continuation messages to the JobListenerBean. The JMS
message service factory exposes the following configurable fields.

connectionFactoryJndiName
The name of the JMS connection factory in the JNDI initial context. Defaults to java:comp/env/
jms/JbpmConnectionFactory.

destinationJndiName
The name of the JMS destination where job messages will be sent. Must match the destination
from which JobListenerBean receives messages. Defaults to java:comp/env/jms/
JobQueue.

http://www.hibernate.org/hib_docs/v3/reference/en/html/architecture.html#architecture-current-session
http://www.hibernate.org/hib_docs/v3/reference/en/html/architecture.html#architecture-current-session
http://www.hibernate.org/hib_docs/v3/reference/en/html/transactions.html#transactions-demarcation
http://www.hibernate.org/hib_docs/v3/reference/en/html/transactions.html#transactions-demarcation

Chapter 5. Java EE Application Server Facilities

40

isCommitEnabled
This specifies whether jBPM should commit the JMS session upon JbpmContext.close().
Messages produced by the JMS message service are never meant to be received before
the current transaction commits; hence the JMS sessions created by the service are always
transacted. The default value -false- is appropriate when the connection factory in use is
XA capable, as the JMS session's produced messages will be controlled by the overall JTA
transaction. This field should be set to true if the JMS connection factory is not XA capable so
that jBPM commits the JMS session's local transaction explicitly.

EntitySchedulerServiceFactory builds on the transactional notification service for timed events
provided by the EJB container to schedule business process timers. The EJB scheduler service
factory has the configurable field described below.

timerEntityHomeJndiName
The name of the TimerEntityBean's local home interface in the JNDI initial context. Defaults to
java:comp/env/ejb/TimerEntityBean.

5.3. Hibernate Enterprise Configuration
hibernate.cfg.xml includes the following configuration items that may be modified to support
other databases or application servers.

<!-- sql dialect -->
<property name="hibernate.dialect">
 org.hibernate.dialect.HSQLDialect
</property>

<property name="hibernate.cache.provider_class">
 org.hibernate.cache.HashtableCacheProvider
</property>

<!-- DataSource properties (begin) -->
<property name="hibernate.connection.datasource">
 java:comp/env/jdbc/JbpmDataSource
</property>
<!-- DataSource properties (end) -->

<!-- JTA transaction properties (begin) -->
<property name="hibernate.transaction.factory_class">
 org.hibernate.transaction.JTATransactionFactory
</property>
<property name="hibernate.transaction.manager_lookup_class">
 org.hibernate.transaction.JBossTransactionManagerLookup
</property>
<!-- JTA transaction properties (end) -->

<!-- CMT transaction properties (begin) ===
<property name="hibernate.transaction.factory_class">
 org.hibernate.transaction.CMTTransactionFactory
</property>
<property name="hibernate.transaction.manager_lookup_class">
 org.hibernate.transaction.JBossTransactionManagerLookup

Client Components

41

</property>
==== CMT transaction properties (end) -->

You may replace the hibernate.dialect with one that corresponds to your database management
system. The Hibernate reference guide enumerates the available database dialects in section http://
www.hibernate.org/hib_docs/v3/reference/en/html/session-configuration.html#configuration-optional-
dialects.

HashtableCacheProvider can be replaced with other supported cache providers. Refer to http://
www.hibernate.org/hib_docs/v3/reference/en/html/performance.html#performance-cache in the
Hibernate manual for a list of the supported cache providers.

The JBossTransactionManagerLookup may be replaced with a strategy appropriate to
applications servers other than JBoss. Refer to http://www.hibernate.org/hib_docs/v3/reference/en/
html/session-configuration.html#configuration-optional-transactionstrategy to find the lookup class that
corresponds to each application server.

Note that the JNDI name used in hibernate.connection.datasource is, in fact, a resource
manager reference, portable across application servers. Said reference is meant to be bound to an
actual data source in the target application server at deployment time. In the included jboss.xml
descriptor, the reference is bound to java:JbpmDS.

Out of the box, jBPM is configured to use the JTATransactionFactory. If an existing transaction
is underway, the JTA transaction factory uses it; otherwise it creates a new transaction. The jBPM
enterprise beans are configured to delegate transaction management to the container. However, if you
use the jBPM APIs in a context where no transaction is active (say, in a web application), one will be
started automatically.

If your own EJBs use container-managed transactions and you want to prevent unintended transaction
creations, you can switch to the CMTTransactionFactory. With that setting, Hibernate will always
look for an existing transaction and will report a problem if none is found.

5.4. Client Components
Client components written directly against the jBPM APIs that wish to leverage the enterprise services
must ensure that their deployment descriptors have the appropriate environment references in place.
The descriptor below can be regarded as typical for a client session bean.

<session>

 <ejb-name>MyClientBean</ejb-name>
 <home>org.example.RemoteClientHome</home>
 <remote>org.example.RemoteClient</remote>
 <local-home>org.example.LocalClientHome</local-home>
 <local>org.example.LocalClient</local>
 <ejb-class>org.example.ClientBean</ejb-class>
 <session-type>Stateless</session-type>
 <transaction-type>Container</transaction-type>

 <ejb-local-ref>
 <ejb-ref-name>ejb/TimerEntityBean</ejb-ref-name>
 <ejb-ref-type>Entity</ejb-ref-type>

http://www.hibernate.org/hib_docs/v3/reference/en/html/session-configuration.html#configuration-optional-dialects
http://www.hibernate.org/hib_docs/v3/reference/en/html/session-configuration.html#configuration-optional-dialects
http://www.hibernate.org/hib_docs/v3/reference/en/html/session-configuration.html#configuration-optional-dialects
http://www.hibernate.org/hib_docs/v3/reference/en/html/performance.html#performance-cache
http://www.hibernate.org/hib_docs/v3/reference/en/html/performance.html#performance-cache
http://www.hibernate.org/hib_docs/v3/reference/en/html/session-configuration.html#configuration-optional-transactionstrategy
http://www.hibernate.org/hib_docs/v3/reference/en/html/session-configuration.html#configuration-optional-transactionstrategy

Chapter 5. Java EE Application Server Facilities

42

 <local-home>org.jbpm.ejb.LocalTimerEntityHome</local-home>
 <local>org.jbpm.ejb.LocalTimerEntity</local>
 </ejb-local-ref>

 <resource-ref>
 <res-ref-name>jdbc/JbpmDataSource</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Container</res-auth>
 </resource-ref>

 <resource-ref>
 <res-ref-name>jms/JbpmConnectionFactory</res-ref-name>
 <res-type>javax.jms.ConnnectionFactory</res-type>
 <res-auth>Container</res-auth>
 </resource-ref>

 <message-destination-ref>
 <message-destination-ref-name>
 jms/JobQueue
 </message-destination-ref-name>
 <message-destination-type>javax.jms.Queue</message-destination-type>
 <message-destination-usage>Produces</message-destination-usage>
 </message-destination-ref>

</session>

Provided the target application server was JBoss, the above environment references could be bound
to resources in the target operational environment as follows. Note that the JNDI names match the
values used by the jBPM enterprise beans.

<session>

 <ejb-name>MyClientBean</ejb-name>
 <jndi-name>ejb/MyClientBean</jndi-name>
 <local-jndi-name>java:ejb/MyClientBean</local-jndi-name>

 <ejb-local-ref>
 <ejb-ref-name>ejb/TimerEntityBean</ejb-ref-name>
 <local-jndi-name>java:ejb/TimerEntityBean</local-jndi-name>
 </ejb-local-ref>

 <resource-ref>
 <res-ref-name>jdbc/JbpmDataSource</res-ref-name>
 <jndi-name>java:JbpmDS</jndi-name>
 </resource-ref>

 <resource-ref>
 <res-ref-name>jms/JbpmConnectionFactory</res-ref-name>
 <jndi-name>java:JmsXA</jndi-name>
 </resource-ref>

Client Components

43

 <message-destination-ref>
 <message-destination-ref-name>
 jms/JobQueue
 </message-destination-ref-name>
 <jndi-name>queue/JbpmJobQueue</jndi-name>
 </message-destination-ref>

</session>

In case the client component is a web application, as opposed to an enterprise bean, the deployment
descriptor would look like this:

<web-app>

 <servlet>
 <servlet-name>MyClientServlet</servlet-name>
 <servlet-class>org.example.ClientServlet</servlet-class>
 </servlet>

 <servlet-mapping>
 <servlet-name>MyClientServlet</servlet-name>
 <url-pattern>/client/servlet</url-pattern>
 </servlet-mapping>

 <ejb-local-ref>
 <ejb-ref-name>ejb/TimerEntityBean</ejb-ref-name>
 <ejb-ref-type>Entity</ejb-ref-type>
 <local-home>org.jbpm.ejb.LocalTimerEntityHome</local-home>
 <local>org.jbpm.ejb.LocalTimerEntity</local>
 <ejb-link>TimerEntityBean</ejb-link>
 </ejb-local-ref>

 <resource-ref>
 <res-ref-name>jdbc/JbpmDataSource</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Container</res-auth>
 </resource-ref>

 <resource-ref>
 <res-ref-name>jms/JbpmConnectionFactory</res-ref-name>
 <res-type>javax.jms.ConnectionFactory</res-type>
 <res-auth>Container</res-auth>
 </resource-ref>

 <message-destination-ref>
 <message-destination-ref-name>
 jms/JobQueue
 </message-destination-ref-name>
 <message-destination-type>javax.jms.Queue</message-destination-type>
 <message-destination-usage>Produces</message-destination-usage>
 <message-destination-link>JobQueue</message-destination-link>

Chapter 5. Java EE Application Server Facilities

44

 </message-destination-ref>

</web-app>

The above environment references could be bound to resources in the target operational environment
as follows, if the target application server was JBoss.

<jboss-web>

 <ejb-local-ref>
 <ejb-ref-name>ejb/TimerEntityBean</ejb-ref-name>
 <local-jndi-name>java:ejb/TimerEntityBean</local-jndi-name>
 </ejb-local-ref>

 <resource-ref>
 <res-ref-name>jdbc/JbpmDataSource</res-ref-name>
 <jndi-name>java:JbpmDS</jndi-name>
 </resource-ref>

 <resource-ref>
 <res-ref-name>jms/JbpmConnectionFactory</res-ref-name>
 <jndi-name>java:JmsXA</jndi-name>
 </resource-ref>

 <message-destination-ref>
 <message-destination-ref-name>
 jms/JobQueue
 </message-destination-ref-name>
 <jndi-name>queue/JbpmJobQueue</jndi-name>
 </message-destination-ref>

</jboss-web>

Chapter 6.

45

Process Modeling

6.1. Overview
A process definition represents a formal specification of a business process and is based on a directed
graph. The graph is composed of nodes and transitions. Every node in the graph is of a specific type.
The type of the node defines the runtime behavior. A process definition has exactly one start state.

A token is one path of execution. A token is the runtime concept that maintains a pointer to a node in
the graph.

A process instance is one execution of a process definition. When a process instance is created,
a token is created for the main path of execution. This token is called the root token of the process
instance and it is positioned in the start state of the process definition.

A signal instructs a token to continue graph execution. When receiving an unnamed signal, the token
will leave its current node over the default leaving transition. When a transition-name is specified in the
signal, the token will leave its node over the specified transition. A signal given to the process instance
is delegated to the root token.

After the token has entered a node, the node is executed. Nodes themselves are responsible for the
continuation of the graph execution. Continuation of graph execution is done by making the token
leave the node. Each node type can implement a different behavior for the continuation of the graph
execution. A node that does not propagate execution will behave as a state.

Actions are pieces of Java code that are executed upon events in the process execution. The graph
is an important instrument in the communication about software requirements. But the graph is just
one view (projection) of the software being produced. It hides many technical details. Actions are a
mechanism to add technical details outside of the graphical representation. Once the graph is put in
place, it can be decorated with actions. The main event types are entering a node, leaving a node and
taking a transition.

6.2. Process graph
The basis of a process definition is a graph that is made up of nodes and transitions. That information
is expressed in an XML file called processdefinition.xml. Each node has a type like e.g.
state, decision, fork, join,... Each node has a set of leaving transitions. A name can be given to the
transitions that leave a node in order to make them distinct. For example: The following diagram
shows a process graph of the jBAY auction process.

Chapter 6. Process Modeling

46

Figure 6.1. The auction process graph

Below is the process graph of the jBAY auction process represented as XML.

<process-definition>

 <start-state>
 <transition to="auction" />
 </start-state>

 <state name="auction">
 <transition name="auction ends" to="salefork" />
 <transition name="cancel" to="end" />
 </state>

 <fork name="salefork">
 <transition name="shipping" to="send item" />
 <transition name="billing" to="receive money" />
 </fork>

Nodes

47

 <state name="send item">
 <transition to="receive item" />
 </state>

 <state name="receive item">
 <transition to="salejoin" />
 </state>

 <state name="receive money">
 <transition to="send money" />
 </state>

 <state name="send money">
 <transition to="salejoin" />
 </state>

 <join name="salejoin">
 <transition to="end" />
 </join>

 <end-state name="end" />

</process-definition>

6.3. Nodes
A process graph is made up of nodes and transitions.

Each node has a specific type. The node type determines what will happen when an execution arrives
in the node at runtime. jBPM has a set of node types that you can use. Alternatively, you can write
custom code for implementing your own specific node behavior.

6.3.1. Node responsibilities
Each node has 2 main responsibilities: First, it can execute plain Java code. Typically the plain Java
code relates to the function of the node. E.g. creating a few task instances, sending a notification, and
updating a database. Secondly, a node is responsible for propagating the process execution.

Basically, each node has the following options for propagating the process execution.

1. It can not propagate the execution. The node behaves as a wait state.

2. It can propagate the execution over one of the leaving transitions of the node. This means that the
token that originally arrived in the node is passed over one of the leaving transitions with the API
call executionContext.leaveNode(String). The node will now act as an automatic node
in the sense it can execute some custom programming logic and then continue process execution
automatically without waiting.

3. It can create new paths of execution. A node can decide to create new tokens. Each new token
represents a new path of execution and each new token can be launched over the node's leaving
transitions. A good example of this kind of behavior is the fork node.

Chapter 6. Process Modeling

48

4. It can end the path of execution. A node can decide to end a path of execution. That means that
the token is ended and the path of execution is finished.

5. A node can also modify the whole runtime structure of the process instance. The runtime structure
is a process instance that contains a tree of tokens. Each token represents a path of execution. A
node can create and end tokens, put each token in a node of the graph and launch tokens over
transitions.

jBPM contains a set of already implemented node types that have a specific documented configuration
and behavior. However jBPM also opens up the model for developers. Developers can write their own
node behavior and use it in a process.

6.3.2. Nodetype task-node
A task node represents one or more tasks that are to be performed by humans. So when execution
arrives in a task node, task instances will be created in the task lists of the workflow participants. After
that, the node will behave as a wait state. So when the users perform their task, the task completion
will trigger the resuming of the execution. In other words, that leads to a new signal being called on the
token.

6.3.3. Nodetype state
A state is a bare-bones wait state. The difference with a task node is that no task instances will be
created in any task list. This can be useful if the process should wait for an external system, e.g.
upon entry of the node using the action on the node-enter event, and a message could be sent to
the external system. After that, the process will go into a wait state. When the external system send
a response message, this can lead to a token.signal(), which triggers resuming of the process
execution.

6.3.4. Nodetype decision
Actually there are 2 ways to model a decision, determined by who is making the decision.
1. The decision made by the process, and is therefore specified in the process definition,

2. An external entity provides the result of the decision.

When the decision is to be taken by the process, a decision node should be used. There are basically
2 ways to specify the decision criteria. Simplest is by adding condition elements on the transitions.
Conditions are EL expressions or beanshell scripts that return a Boolean value.

At runtime the decision node will first loop over its leaving transitions that have a condition specified. It
will evaluate those transitions first in the order as specified in the XML. The first transition for which the
condition resolves to true will be taken. If all transitions with a condition resolve to false, the default
transition, the first in the XML, is taken.

Another approach is to use an expression that returns the name of the transition to take. With the
expression attribute, you can specify an expression on the decision that has to resolve to one of the
leaving transitions of the decision node.

Next approach is the handler element on the decision, that element can be used to specify an
implementation of the DecisionHandler interface can be specified on the decision node. Then the
decision is calculated in a Java class and the selected leaving transition is returned by the decide-
method of the DecisionHandler implementation.

Nodetype fork

49

When the decision is taken by an external party, i.e. not by part of the process definition, you
should use multiple transitions leaving a state or wait state node. Then the leaving transition
can be provided in the external trigger that resumes execution after the wait state is finished.
E.g. Token.signal(String transitionName) and TaskInstance.end(String
transitionName).

6.3.5. Nodetype fork
A fork splits one path of execution into multiple concurrent paths of execution. The default fork
behavior is to create a child token for each transition that leaves the fork, creating a parent-child
relation between the token that arrives in the fork.

6.3.6. Nodetype join
The default join assumes that all tokens that arrive in the join are children of the same parent. This
situation is created when using the fork as mentioned above and when all tokens created by a fork
arrive in the same join. A join will end every token that enters the join. Then the join will examine the
parent-child relation of the token that enters the join. When all sibling tokens have arrived in the join,
the parent token will be propagated over the leaving transition. When there are still sibling tokens
active, the join will behave as a wait state.

6.3.7. Nodetype node
The type node serves the situation where you want to write your own code in a node. The nodetype
node expects one sub-element action. The action is executed when the execution arrives in the
node. The code you write in the actionhandler can do anything you want but it is also responsible for
propagating the execution. See Section 6.3.1, “Node responsibilities”.

This node can be used if you want to use a JavaAPI to implement some functional logic that is
important for the business analyst. By using a node, the node is visible in the graphical representation
of the process. Actions, see Section 6.5, “Actions” allow you to add code that is invisible in the
graphical representation of the process.

6.4. Transitions
Transitions have a source node and a destination node. The source node is represented with the
property from and the destination node is represented by the property to.

A transition can optionally have a name. Note that most of the jBPM features depend on the
uniqueness of the transition name. If more than one transition has the same name, the first
transition with the given name is taken. In case duplicate transition names occur in a node,
the method Map getLeavingTransitionsMap() will return less elements than List
getLeavingTransitions().

The default transition is the first transition in the list.

6.5. Actions
Actions are pieces of Java code that are executed upon events in the process execution. The graph is
an important instrument in the communication about software requirements. But the graph is just one
view of the software being produced and it hides many technical details. Actions are a mechanism to
add technical details outside of the graphical representation. Once the graph is put in place, it can be

Chapter 6. Process Modeling

50

decorated with actions. This means that Java code can be associated with the graph without changing
the structure of the graph. The main event types are entering a node, leaving a node and taking a
transition.

Note the difference between an action that is placed in an event versus an action that is placed in a
node. Actions that are put in an event are executed when the event fires. Actions on events have no
way to influence the flow of control of the process. It is similar to the observer pattern. On the other
hand, an action that is put on a node has the responsibility of propagating the execution.

Let's look at an example of an action on an event. Suppose we want to do a database update on a
given transition. The database update is technically vital but it is not important to the business analyst.

Figure 6.2. A database update action

public class RemoveEmployeeUpdate implements ActionHandler {
 public void execute(ExecutionContext ctx) throws Exception {
 // get the fired employee from the process variables.
 String firedEmployee =
 (String) ctx.getContextInstance().getVariable("fired employee");

 // by taking the same database connection as used for the jbpm
 // updates, we reuse the jbpm transaction for our database update.
 Connection connection =
 ctx.getProcessInstance().getJbpmSession().getSession().getConnection();
 Statement statement = connection.createStatement();
 statement.execute("DELETE FROM EMPLOYEE WHERE ...");
 statement.execute();
 statement.close();
 }
}

<process-definition name="yearly evaluation">
 <state name="fire employee">
 <transition to="collect badge">
 <action class="com.nomercy.hr.RemoveEmployeeUpdate" />
 </transition>

Action configuration

51

 </state>

 <state name="collect badge">

</process-definition>

6.5.1. Action configuration
For more information about adding configurations to your custom actions and how to specify the
configuration in the processdefinition.xml, see Section 14.2.3, “Configuration of delegations”

6.5.2. Action references
Actions can be given a name. Named actions can be referenced from other locations where actions
can be specified. Named actions can also be put as child elements in the process definition.

This feature is interesting if you want to limit duplication of action configurations such as when the
action has complicated configurations. Another use case is execution or scheduling of runtime actions.

6.5.3. Events
Events specify moments in the execution of the process. The jBPM engine will fire events during graph
execution. This occurs when jBPM calculates the next state, i.e. it processes a signal. An event is
always relative to an element in the process definition like e.g. the process definition, a node or a
transition. Most process elements can fire different types of events. A node for example can fire a
node-enter event and a node-leave event. Events are the hooks for actions. Each event has a list
of actions. When the jBPM engine fires an event, the list of actions is executed.

6.5.4. Event propagation
Superstates create a parent-child relation in the elements of a process definition. Nodes and
transitions contained in a superstate have that superstate as a parent. Top level elements have the
process definition as a parent. The process definition does not have a parent. When an event is fired,
the event will be propagated up the parent hierarchy. This allows e.g. to capture all transition events in
a process and associate actions with these events in a centralized location.

6.5.5. Script
A script is an action that executes a beanshell script. For more information about beanshell, see the
beanshell website1. By default, all process variables are available as script-variables and no script-
variables will be written to the process variables. Also the following script-variables will be available :

• executionContext

• token

• node

• task

• taskInstance

1 http://www.beanshell.org/

http://www.beanshell.org/
http://www.beanshell.org/
http://www.beanshell.org/

Chapter 6. Process Modeling

52

<process-definition>
 <event type="node-enter">
 <script>
 System.out.println("this script is entering node "+node);
 </script>
 </event>
 ...
</process-definition>

To customize the default behavior of loading and storing variables into the script, the variable
element can be used as a sub-element of script. In that case, the script expression also has to be put
in a sub-element of script: expression.

<process-definition>
 <event type="process-end">
 <script>
 <expression>
 a = b + c;
 </expression>
 <variable name='XXX' access='write' mapped-name='a' />
 <variable name='YYY' access='read' mapped-name='b' />
 <variable name='ZZZ' access='read' mapped-name='c' />
 </script>
 </event>
 ...
</process-definition>

Before the script starts, the process variables YYY and ZZZ will be made available to the script as
script-variables b and c respectively. After the script is finished, the value of script-variable a is stored
into the process variable XXX.

If the access attribute of variable contains 'read', the process variable will be loaded as a script-
variable before script evaluation. If the access attribute contains 'write', the script-variable will be
stored as a process variable after evaluation. The attribute mapped-name can make the process
variable available under another name in the script. This can be handy when your process variable
names contain spaces or other invalid script-literal-characters.

6.5.6. Custom events
It is possible to fire your own custom events at will during the execution of a process. Events are
uniquely defined by the combination of a graph element (nodes, transitions, process definitions
and superstates) and an event-type (java.lang.String). jBPM defines a set of events that are
fired for nodes, transitions and other graph elements. But as a user, you are free to fire your own
events. In actions, in your own custom node implementations, or even outside the execution
of a process instance, you can call the GraphElement.fireEvent(String eventType,
ExecutionContext executionContext);. The names of the event types can be chosen freely.

6.6. Superstates
A Superstate is a group of nodes. Superstates can be nested recursively. Superstates can be used to
bring some hierarchy in the process definition. For example, one application could be to group all the

Superstate transitions

53

nodes of a process in phases. Actions can be associated with superstate events. A consequence is
that a token can be in multiple nested nodes at a given time. This can be convenient to check whether
a process execution is e.g. in the start-up phase. In the jBPM model, you are free to group any set of
nodes in a superstate.

6.6.1. Superstate transitions
All transitions leaving a superstate can be taken by tokens in nodes contained within the super state.
Transitions can also arrive in superstates. In that case, the token will be redirected to the first node
in the superstate. Nodes from outside the superstate can have transitions directly to nodes inside the
superstate. Also, the other way round, nodes within superstates can have transitions to nodes outside
the superstate or to the superstate itself. Superstates also can have self references.

6.6.2. Superstate events
There are 2 events unique to superstates: superstate-enter and superstate-leave. These
events will be fired no matter over which transitions the node is entered or left respectively. As long as
a token takes transitions within the superstate, these events are not fired.

Note that we have created separate event types for states and superstates. This is to make it easy
to distinguish between superstate events and node events that are propagated from within the
superstate.

6.6.3. Hierarchical names
Node names have to be unique in their scope. The scope of the node is its node-collection. Both the
process definition and the superstate are node collections. To refer to nodes in superstates, you have
to specify the relative, slash (/) separated name. The slash separates the node names. Use '..' to refer
to an upper level. The next example shows how to reference a node in a superstate.

<process-definition>
 <state name="preparation">
 <transition to="phase one/invite murphy"/>
 </state>
 <super-state name="phase one">
 <state name="invite murphy"/>
 </super-state>
</process-definition>

The next example shows how to go up the superstate hierarchy.

<process-definition>
 <super-state name="phase one">
 <state name="preparation">
 <transition to="../phase two/invite murphy"/>
 </state>
 </super-state>
 <super-state name="phase two">
 <state name="invite murphy"/>
 </super-state>
</process-definition>

Chapter 6. Process Modeling

54

6.7. Exception handling
The exception handling mechanism of jBPM only applies to Java exceptions. Graph execution on itself
cannot result in problems. It is only the execution of delegation classes that can lead to exceptions.

On process-definitions, nodes and transitions, a list of exception-handlers can be
specified. Each exception-handler has a list of actions. When an exception occurs in a delegation
class, the process element parent hierarchy is searched for an appropriate exception-handler.
When it is found, the actions of the exception-handler are executed.

Note that the exception handling mechanism of jBPM is not completely similar to the Java exception
handling. In Java, a caught exception can have an influence on the control flow. In the case of
jBPM, control flow cannot be changed by the jBPM exception handling mechanism. The exception
is either caught or uncaught. Uncaught exceptions are thrown to the client (e.g. the client that called
the token.signal()) or the exception is caught by a jBPM exception-handler. For caught
exceptions, the graph execution continues as if no exception has occurred.

Note that in an action that handles an exception, it is possible to put the token in an arbitrary node in
the graph with Token.setNode(Node node).

6.8. Process composition
Process composition is supported in jBPM by means of the process-state. The process state
is a state that is associated with another process definition. When graph execution arrives in the
process state, a new process instance of the sub-process is created and it is associated with the path
of execution that arrived in the process state. The path of execution of the super process will wait until
the sub process instance has ended. When the sub process instance ends, the path of execution of
the super process will leave the process state and continue graph execution in the super process.

<process-definition name="hire">
 <start-state>
 <transition to="initial interview" />
 </start-state>
 <process-state name="initial interview">
 <sub-process name="interview" />
 <variable name="a" access="read,write" mapped-
name="aa" />
 <variable name="b" access="read" mapped-
name="bb" />
 <transition to="..." />
 </process-state>
 ...
</process-definition>

This 'hire' process contains a process-state that spawns an 'interview' process. When execution
arrives in the 'first interview', a new execution (=process instance) of the 'interview' process is created.
If no explicit version is specified, the latest version of the sub process as known when deploying the
'hire' process is used. To make jBPM instantiate a specific version the optional version attribute can
be specified. To postpone binding the specified or latest version until actually creating the sub process,
the optional binding attribute should be set to late. Then variable 'a' from the hire process is copied
into variable 'aa' from the interview process. The same way, hire variable 'b' is copied into interview

Custom node behavior

55

variable 'bb'. When the interview process finishes, only variable 'aa' from the interview process is
copied back into the 'a' variable of the hire process.

In general, When a sub-process is started, all variables with read access are read from the super
process and fed into the newly created sub process before the signal is given to leave the start state.
When the sub process instances is finished, all the variables with write access will be copied from
the sub process to the super process. The mapped-name attribute of the variable element allows
you to specify the variable name that should be used in the sub process.

6.9. Custom node behavior
In jBPM, it's quite easy to write your own custom nodes. For creating custom nodes, an
implementation of the ActionHandler has to be written. The implementation can execute any business
logic, but also has the responsibility to propagate the graph execution. Let's look at an example
that will update an ERP-system. We'll read an amount from the ERP-system, add an amount that is
stored in the process variables and store the result back in the ERP-system. Based on the size of the
amount, we have to leave the node via the 'small amounts' or the 'large amounts' transition.

Figure 6.3. The update erp example process snippet

public class AmountUpdate implements ActionHandler {
 public void execute(ExecutionContext ctx) throws Exception {
 // business logic
 Float erpAmount = ...get amount from erp-system...;
 Float processAmount = (Float)
 ctx.getContextInstance().getVariable("amount");
 float result = erpAmount.floatValue() + processAmount.floatValue();
 ...update erp-system with the result...;

 // graph execution propagation
 if (result > 5000) {
 ctx.leaveNode(ctx, "big amounts");
 } else {
 ctx.leaveNode(ctx, "small amounts");
 }
 }
}

It is also possible to create and join tokens in custom node implementations. For an example on how
to do this, check out the Fork and Join node implementation in the jBPM source code.

Chapter 6. Process Modeling

56

6.10. Graph execution
The graph execution model of jBPM is based on interpretation of the process definition and the chain
of command pattern.

Interpretation of the process definition means that the process definition data is stored in the
database. At runtime the process definition information is used during process execution. Note for
the concerned : we use Hibernate's second level cache to avoid loading of definition information at
runtime. Since the process definitions don't change (see process versioning) hibernate can cache the
process definitions in memory.

The chain of command pattern means that each node in the graph is responsible for propagating the
process execution. If a node does not propagate execution, it behaves as a wait state.

The idea is to start execution on process instances and that the execution continues until it enters a
wait state.

A token represents a path of execution. A token has a pointer to a node in the process graph. During
wait states, the tokens can be persisted in the database. Now we are going to look at the algorithm for
calculating the execution of a token. Execution starts when a signal is sent to a token. The execution is
then passed over the transitions and nodes via the chain of command pattern. These are the relevant
methods in a class diagram.

Figure 6.4. The graph execution related methods

When a token is in a node, signals can be sent to the token. Sending a signal is an instruction
to start execution. A signal must therefore specify a leaving transition of the token's current
node. The first transition is the default. In a signal to a token, the token takes its current node
and calls the Node.leave(ExecutionContext,Transition) method. Think of the
ExecutionContext as a Token because the main object in an ExecutionContext is a Token. The
Node.leave(ExecutionContext,Transition) method will fire the node-leave event and call
the Transition.take(ExecutionContext). That method will fire the transition event and
call the Node.enter(ExecutionContext) on the destination node of the transition. That method
will fire the node-enter event and call the Node.execute(ExecutionContext). Each type of
node has its own behaviour that is implemented in the execute method. Each node is responsible
for propagating graph execution by calling the Node.leave(ExecutionContext,Transition)
again. In summary:

• Token.signal(Transition)

• --> Node.leave(ExecutionContext,Transition)

• --> Transition.take(ExecutionContext)

• --> Node.enter(ExecutionContext)

Transaction Demarcation

57

• --> Node.execute(ExecutionContext)

Note that the complete calculation of the next state, including the invocation of the actions is done
in the thread of the client. A common misconception is that all calculations *must* be done in the
thread of the client. As with any asynchronous invocation, you can use asynchronous messaging
(JMS) for that. When the message is sent in the same transaction as the process instance update,
all synchronization issues are taken care of. Some workflow systems use asynchronous messaging
between all nodes in the graph. But in high throughput environments, this algorithm gives much more
control and flexibility for tweaking performance of a business process.

6.11. Transaction Demarcation
As explained in Section 6.10, “Graph execution”, jBPM runs the process in the thread of the client and
is by nature synchronous. Meaning that the token.signal() or taskInstance.end() will only
return when the process has entered a new wait state.

The jPDL feature that we describe here from a modelling perspective is Chapter 10, Asynchronous
continuations.

In most situations this is the most straightforward approach because the process execution can easily
be bound to server side transactions: the process moves from one state to the next in one transaction.

In some scenarios where in-process calculations take a lot of time, this behavior might be undesirable.
To cope with this, jBPM includes an asynchronous messaging system that allows to continue a
process in an asynchronous manner. Of course, in a Java enterprise environment, jBPM can be
configured to use a JMS message broker instead of the built in messaging system.

In any node, jPDL supports the attribute async="true". Asynchronous nodes will not be executed in
the thread of the client. Instead, a message is sent over the asynchronous messaging system and the
thread is returned to the client (meaning that the token.signal() or taskInstance.end() will
return).

Note that the jbpm client code can now commit the transaction. The sending of the message
should be done in the same transaction as the process updates. So the net result of the
transaction is that the token has moved to the next node (which has not yet been executed) and
a org.jbpm.command.ExecuteNodeCommand-message has been sent on the asynchronous
messaging system to the jBPM Command Executor.

The jBPM Command Executor reads commands from the queue and executes them. In the case of
the org.jbpm.command.ExecuteNodeCommand, the process will be continued with executing the
node. Each command is executed in a separate transaction.

So in order for asynchronous processes to continue, a jBPM Command Executor needs to be running.
The simplest way to do that is to configure the CommandExecutionServlet in your web application.
Alternatively, you should make sure that the CommandExecutor thread is up and running in any other
way.

As a process modeler, you should not really be concerned with all this asynchronous messaging. The
main point to remember is transaction demarcation: By default jBPM will operate in the transaction of
the client, doing the whole calculation until the process enters a wait state. Use async="true" to
demarcate a transaction in the process.

Let's look at an example.

Chapter 6. Process Modeling

58

<start-state>
 <transition to="one" />
</start-state>
<node async="true" name="one">
 <action class="com...MyAutomaticAction" />
 <transition to="two" />
</node>
<node async="true" name="two">
 <action class="com...MyAutomaticAction" />
 <transition to="three" />
</node>
<node async="true" name="three">
 <action class="com...MyAutomaticAction" />
 <transition to="end" />
</node>
<end-state name="end" />
...

Client code to interact with process executions (starting and resuming) is exactly the same as with
normal synchronous processes.

//start a transaction
JbpmContext jbpmContext = jbpmConfiguration.createContext();
try {
 ProcessInstance processInstance =
 jbpmContext.newProcessInstance("my async process");
 processInstance.signal();
 jbpmContext.save(processInstance);
} finally {
 jbpmContext.close();
}

After this first transaction, the root token of the process instance will point to node one and a
ExecuteNodeCommandmessage will have been sent to the command executor.

In a subsequent transaction, the command executor will read the message from the queue and
execute node one. The action can decide to propagate the execution or enter a wait state. If the action
decides to propagate the execution, the transaction will be ended when the execution arrives at node
two.

Chapter 7.

59

Context
Context is about process variables. Process variables are key-value pairs that maintain information
related to the process instance. Since the context must be able to be stored in a database, some
minor limitations apply.

7.1. Accessing variables
org.jbpm.context.exe.ContextInstance serves as the central interface to work with process variables.
You can obtain the ContextInstance from a ProcessInstance like this :

ProcessInstance processInstance = ...;
ContextInstance contextInstance =
 (ContextInstance) processInstance.getInstance(ContextInstance.class);

The most basic operations are below.

void ContextInstance.setVariable(String variableName, Object value);
void ContextInstance.setVariable(
 String variableName, Object value, Token token);

Object ContextInstance.getVariable(String variableName);
Object ContextInstance.getVariable(String variableName, Token token);

The variable names are java.lang.String. By default, jBPM supports the following value types, as
well as any class that can be persisted with Hibernate.

java.lang.String java.lang.Boolean
java.lang.Character java.lang.Float
java.lang.Double java.lang.Long
java.lang.Byte java.lang.Integer
java.util.Date byte[]
java.io.Serializable

Also an untyped null value can be stored persistently.

All other types can be stored in the process variables without any problem. But it will cause an
exception when you try to save the process instance.

To configure jBPM for storing Hibernate persistent objects in the variables, see Storing Hibernate
persistent objects.

7.2. Variable lifetime
Variables do not have to be declared in the process archive. At runtime, you can just put any Java
object in the variables. If that variable was not present, it will be created. Just the same as with a plain
java.util.Map.

Variables can also be deleted.

ContextInstance.deleteVariable(String variableName);

Chapter 7. Context

60

ContextInstance.deleteVariable(String variableName, Token token);

Automatic changing of types is now supported. This means that it is allowed to overwrite a variable
with a value of a different type. Of course, you should try to limit the number of type changes since this
creates a more database communication than a plain update of a column.

7.3. Variable persistence
The variables are a part of the process instance. Saving the process instance in the database, brings
the database in sync with the process instance. The variables are created, updated and deleted
from the database as a result of saving (=updating) the process instance in the database. For more
information, see Chapter 4, Persistence.

7.4. Variables scopes
Each path of execution (or token) has its own set of process variables. Requesting a variable is
always done on a token. Process instances have a tree of tokens. When requesting a variable without
specifying a token, the default token is the root token.

The variable lookup is done recursively over the parents of the given token. The behavior is similar to
the scoping of variables in programming languages.

When a non-existing variable is set on a token, the variable is created on the root-token. This means
that each variable has by default process scope. To make a variable token-local, you have to create it
explicitly.

ContextInstance.createVariable(String name, Object value, Token token);

7.4.1. Variables overloading
Variable overloading means that each path of execution can have its own copy of a variable with the
same name. They are treated independently and can be of different types. Variable overloading can be
interesting if you launch multiple concurrent paths of execution over the same transition. Then the only
thing that distinguishes those paths of executions are their respective set of variables.

7.4.2. Variables overriding
Variable overriding means that variables of nested paths of execution override variables in more global
paths of execution. Generally, nested paths of execution relate to concurrency : the paths of execution
between a fork and a join are children (nested) of the path of execution that arrived in the fork. For
example, if you have a variable 'contact' in the process instance scope, you can override this variable
in the nested paths of execution 'shipping' and 'billing'.

7.4.3. Task instance variable scope
For more info on task instance variables, see Section 8.4, “Task instance variables”.

7.5. Transient variables
When a process instance is persisted in the database, normal variables are also persisted as part of
the process instance. In some situations you might want to use a variable in a delegation class, but

Customizing variable persistence

61

you don't want to store it in the database. An example could be a database connection that you want
to pass from outside of jBPM to a delegation class. This can be done with transient variables.

The lifetime of transient variables is the same as the ProcessInstance Java object.

Because of their nature, transient variables are not related to a token. So there is only one map of
transient variables for a process instance object.

The transient variables are accessible with their own set of methods in the context instance, and don't
need to be declared in the processdefinition.xml

Object ContextInstance.getTransientVariable(String name);
void ContextInstance.setTransientVariable(String name, Object value);

7.6. Customizing variable persistence
Variables are stored in the database in a 2-step approach :

user-java-object <---> converter <---> variable instance

Variables are stored in VariableInstances. The members of VariableInstances are mapped to
fields in the database with Hibernate. In the default configuration of jBPM, 6 types of VariableInstances
are used.

• DateInstance (with one java.lang.Date field that is mapped to a Types.TIMESTAMP in the
database)

• DoubleInstance (with one java.lang.Double field that is mapped to a Types.DOUBLE in the
database)

• StringInstance (with one java.lang.String field that is mapped to a Types.VARCHAR in the
database)

• LongInstance (with one java.lang.Long field that is mapped to a Types.BIGINT in the database)

• HibernateLongInstance (this is used for types with a long id field that can be persisted
with Hibernate. One java.lang.Object field is mapped as a reference to a Hibernate entity in the
database).

• HibernateStringInstance (this is used for types with a string id field that can be persisted
with Hibernate. One java.lang.Object field is mapped as a reference to a Hibernate entity in the
database).

Converters convert between java-user-objects and the Java objects that can be
stored by the VariableInstances. So when a process variable is set with e.g.
ContextInstance.setVariable(String variableName, Object value), the value
will optionally be converted with a converter. Then the converted object will be stored in a
VariableInstance. Converters are implementations of the following interface:

public interface Converter extends Serializable {
 boolean supports(Object value);
 Object convert(Object o);

Chapter 7. Context

62

 Object revert(Object o);
}

Converters are optional and must be available to the jBPM classloader. Refer to Section 14.2.1, “The
jBPM class loader” for more details.

The way that user-java-objects are converted and stored in variable instances is configured in the
file org/jbpm/context/exe/jbpm.varmapping.properties. To customize this property file,
put a modified version in the root of the classpath, as explained in Section 3.3, “Other configuration
files” Each line of the properties file specifies 2 or 3 class-names separated by spaces : the class
name of the user-java-object, optionally the class name of the converter and the class name of the
variable instance. When you refer your custom converters, make sure they are in the jBPM class path
(see Section 14.2.1, “The jBPM class loader”). When you refer to your custom variable instances,
they also have to be in the the jBPM class path and the Hibernate mapping file for org/jbpm/
context/exe/VariableInstance.hbm.xml has to be updated to include the custom subclass of
VariableInstance.

For example, take a look at the following XML snippet in the file org/jbpm/context/exe/
jbpm.varmapping.xml.

<jbpm-type>
 <matcher>
 <bean class="org.jbpm.context.exe.matcher.ClassNameMatcher">
 <field name="className">
 <string value="java.lang.Boolean" />
 </field>
 </bean>
 </matcher>
 <converter
 class="org.jbpm.context.exe.converter.BooleanToStringConverter" />
 <variable-instance
 class="org.jbpm.context.exe.variableinstance.StringInstance" />
</jbpm-type>

This snippet specifies that all objects of type java.lang.Boolean have to be converted with the
converter BooleanToStringConverter and that the resulting object (a String) will be stored in a
variable instance object of type StringInstance.

If no converter is specified the Long objects that are put in the variables are just stored in a variable
instance of type LongInstance without being converted.

<jbpm-type>
 <matcher>
 <bean class="org.jbpm.context.exe.matcher.ClassNameMatcher">
 <field name="className"><string value="java.lang.Long" /></field>
 </bean>
 </matcher>
 <variable-instance
 class="org.jbpm.context.exe.variableinstance.LongInstance" />
</jbpm-type>

Chapter 8.

63

Task Management
The core business of jBPM is the ability to persist the execution of a process. A situation in which
this feature is extremely useful is the management of tasks and task-lists for people. jBPM allows to
specify a piece of software describing an overall process which can have wait states for human tasks.

8.1. Tasks
Tasks are part of the process definition and they define how task instances must be created and
assigned during process executions.

Tasks can be defined in task-nodes and in the process-definition. The most common way
is to define one or more tasks in a task-node. In that case the task-node represents a task to
be done by the user and the process execution should wait until the actor completes the task. When
the actor completes the task, process execution should continue. When more tasks are specified in a
task-node, the default behavior is to wait for all the tasks to complete.

Tasks can also be specified on the process-definition. Tasks specified on the process definition
can be looked up by name and referenced from within task-nodes or used from inside actions. In
fact, all tasks (also in task-nodes) that are given a name can be looked up by name in the process-
definition.

Task names must be unique in the whole process definition. Tasks can be given a priority.
This priority will be used as the initial priority for each task instance that is created for this task.
TaskInstances can change this initial priority afterward.

8.2. Task instances
A task instance can be assigned to an actorId (java.lang.String). All task instances are stored in one
table of the database (JBPM_TASKINSTANCE). By querying this table for all task instances for a
given actorId, you get the task list for that particular user.

The jBPM task list mechanism can combine jBPM tasks with other tasks, even when those tasks are
unrelated to a process execution. That way jBPM developers can easily combine jBPM-process-tasks
with tasks of other applications in one centralized task-list-repository.

8.2.1. Task instance life-cycle
The task instance life-cycle is straightforward: After creation, task instances can optionally be started.
Then, task instances can be ended, which means that the task instance is marked as completed.

Note that for flexibility, assignment is not part of the life cycle. So task instances can be assigned or
not assigned. Task instance assignment does not have an influence on the task instance life cycle.

Task instances are typically created by the process execution entering a task-
node (with the method TaskMgmtInstance.createTaskInstance(...)).
Then, a user interface component will query the database for the task lists using the
TaskMgmtSession.findTaskInstancesByActorId(...). Then, after collecting input from the
user, the UI component calls TaskInstance.assign(String), TaskInstance.start() or
TaskInstance.end(...).

A task instance maintains its state by means of date-properties : create, start and end. Those
properties can be accessed by their respective getters on the TaskInstance.

Chapter 8. Task Management

64

Currently, completed task instances are marked with an end date so that they are not fetched with
subsequent queries for tasks lists. But they remain in the JBPM_TASKINSTANCE table.

8.2.2. Task instances and graph execution
Task instances are the items in an actor's task list. Task instances can be signalling. A signalling
task instance is a task instance that, when completed, can send a signal to its token to continue
the process execution. Task instances can be blocking, meaning that the related token (=path of
execution) is not allowed to leave the task-node before the task instance is completed. By default task
instances are signalling and non-blocking.

In case more than one task instance is associated with a task-node, the process developer can specify
how completion of the task instances affects continuation of the process. Following is the list of values
that can be given to the signal-property of a task-node.

last
This is the default. Proceeds execution when the last task instance is completed. When no tasks
are created on entrance of this node, execution is continued.

last-wait
Proceeds execution when the last task instance is completed. When no tasks are created on
entrance of this node, execution waits in the task node until tasks are created.

first
Proceeds execution when the first task instance is completed. When no tasks are created on
entrance of this node, execution is continued.

first-wait
Proceeds execution when the first task instance is completed. When no tasks are created on
entrance of this node, execution waits in the task node until tasks are created.

unsynchronized
Execution always continues, regardless whether tasks are created or still unfinished.

never
Execution never continues, regardless whether tasks are created or still unfinished.

Task instance creation might be based upon a runtime calculation. In that case, add an
ActionHandler on the node-enter event of the task-node and set the attribute create-
tasks="false". Here is an example of such an action handler implementation:

public class CreateTasks implements ActionHandler {
 public void execute(ExecutionContext executionContext) throws Exception {
 Token token = executionContext.getToken();
 TaskMgmtInstance tmi = executionContext.getTaskMgmtInstance();

 TaskNode taskNode = (TaskNode) executionContext.getNode();
 Task changeNappy = taskNode.getTask("change nappy");

 // now, 2 task instances are created for the same task.
 tmi.createTaskInstance(changeNappy, token);
 tmi.createTaskInstance(changeNappy, token);
 }

Assignment

65

}

As shown in the example the tasks to be created can be specified in the task-node. They could
also be specified in the process-definition and fetched from the TaskMgmtDefinition.
TaskMgmtDefinition extends the ProcessDefinition with task management information.

The API method for marking task instances as completed is TaskInstance.end(). Optionally,
you can specify a transition in the end method. In case the completion of this task instance triggers
continuation of the execution, the task-node is left over the specified transition.

8.3. Assignment
A process definition contains task nodes. A task-node contains zero or more tasks. Tasks are
a static description as part of the process definition. At runtime, tasks result in the creation of task
instances. A task instance corresponds to one entry in a person's task list.

With jBPM, the push(personal task list) and pull(group task list) models of task assignment can be
applied in combination. The process can determine those responsible for a task and push it to their
task list. A task can also be assigned to a pool of actors, in which case each of the actors in the pool
can pull the task and put it in the actor's personal task list. Refer to Section 8.3.3, “The personal task
list” and Section 8.3.4, “The group task list” for more details.

8.3.1. Assignment interfaces
Assigning task instances is done via the interface AssignmentHandler:

public interface AssignmentHandler extends Serializable {
 void assign(Assignable assignable, ExecutionContext executionContext);
}

An assignment handler implementation is called when a task instance is created. At that time, the
task instance can be assigned to one or more actors. The AssignmentHandler implementation
should call the Assignable methods (setActorId or setPooledActors) to assign a task. The
Assignable is either a TaskInstance or a SwimlaneInstance (=process role).

public interface Assignable {
 public void setActorId(String actorId);
 public void setPooledActors(String[] pooledActors);
}

Both TaskInstances and SwimlaneInstances can be assigned to a specific user or to a
pool of actors. To assign a TaskInstance to a user, call Assignable.setActorId(String
actorId). To assign a TaskInstance to a pool of candidate actors, call
Assignable.setPooledActors(String[] actorIds).

Each task in the process definition can be associated with an assignment handler implementation to
perform the assignment at runtime.

When more than one task in a process should be assigned to the same person or group of actors,
consider the usage of a swimlane, see Section 8.6, “Swimlanes”.

Chapter 8. Task Management

66

To allow for the creation of reusable AssignmentHandlers, each usage of an
AssignmentHandler can be configured in the processdefinition.xml. See Section 14.2,
“Delegation” for more information on how to add configuration to assignment handlers.

8.3.2. The assignment data model
The data model for managing assignments of task instances and swimlane instances to actors is the
following. Each TaskInstance has an actorId and a set of pooled actors.

Figure 8.1. The assignment model class diagram

The actorId is the responsible for the task, while the set of pooled actors represents a collection of
candidates that can become responsible if they would take the task. Both actorId and pooledActors
are optional and can also be combined.

8.3.3. The personal task list
The personal task list denotes all the task instances that are assigned to a specific individual. This is
indicated with the property actorId on a TaskInstance. So to put a TaskInstance in someone's
personal task list, you just use one of the following ways:

• Specify an expression in the attribute actor-id of the task element in the process

• Use TaskInstance.setActorId(String) from anywhere in your code

• Use assignable.setActorId(String) in an AssignmentHandler

To fetch the personal task list for a given user, use
TaskMgmtSession.findTaskInstances(String actorId).

8.3.4. The group task list
The pooled actors denote the candidates for the task instance. This means that the task is offered
to many users and one candidate has to step up and take the task. Users can not start working on

Task instance variables

67

tasks in their group task list immediately. That would result in a potential conflict that many people start
working on the same task. To prevent this, users can only take task instances of their group task list
and move them into their personal task list. Users are only allowed to start working on tasks that are in
their personal task list.

To put a taskInstance in someone's group task list, you must put the user's actorId or one of the user's
groupIds in the pooledActorIds. To specify the pooled actors, use one of the following.

• Specify an expression in the attribute pooled-actor-ids of the task element in the process

• Use TaskInstance.setPooledActorIds(String[]) from anywhere in your code

• Use assignable.setPooledActorIds(String[]) in an AssignmentHandler

To fetch the group task list for a given user, proceed as follows: Make a collection
that includes the user's actorId and all the ids of groups that the user belongs to.
With TaskMgmtSession.findPooledTaskInstances(String actorId) or
TaskMgmtSession.findPooledTaskInstances(List actorIds) you can search for task
instances that are not in a personal task list (actorId==null) and for which there is a match in the
pooled actorIds.

The motivation behind this is that we want to separate the identity component from jBPM task
assignment. jBPM only stores Strings as actorIds and doesn't know the relation between the users,
groups and other identity information.

The actorId will always override the pooled actors. So a taskInstance that has an actorId and a list of
pooledActorIds, will only show up in the actor's personal task list. Keeping the pooledActorIds around
allows a user to put a task instance back into the group by just setting the actorId property of the
taskInstance to null.

8.4. Task instance variables
A task instance can have its own set of variables and a task instance can also 'see' the process
variables. Task instances are usually created in an execution path (=token). This creates a parent-
child relation between the token and the task instance similar to the parent-child relation between the
tokens themselves. The normal scoping rules apply between the variables of a task instance and the
process variables of the related token. More info about scoping can be found in Section 7.4, “Variables
scopes”.

This means that a task instance can 'see' its own variables plus all the variables of its related token.

The controller can be used to create, populate and submit variables between the task instance scope
and the process scoped variables.

8.5. Task controllers
At creation of a task instance, the task controllers can populate the task instance variables and when
the task instance is finished, the task controller can submit the data of the task instance into the
process variables.

Note that you are not forced to use task controllers. Task instances also are able to 'see' the process
variables related to its token. Use task controllers when you want to:

Chapter 8. Task Management

68

• create copies of variables in the task instances so that intermediate updates to the task instance
variables don't affect the process variables until the process is finished and the copies are submitted
back into the process variables.

• the task instance variables do not relate one-on-one with the process variables. E.g. suppose the
process has variables 'sales in January' 'sales in February' and 'sales in march'. Then the form for
the task instance might need to show the average sales in the 3 months.

Tasks are intended to collect input from users. But there are many user interfaces which could be used
to present the tasks to the users. E.g. a web application, a swing application, an instant messenger,
an email form,... So the task controllers make the bridge between the process variables (=process
context) and the user interface application. The task controllers provide a view of process variables to
the user interface application.

The task controller makes the translation (if any) from the process variables to the task variables.
When a task instance is created, the task controller is responsible for extracting information from the
process variables and creating the task variables. The task variables serve as the input for the user
interface form. And the user input can be stored in the task variables. When the user ends the task,
the task controller is responsible for updating the process variables based on the task instance data.

Figure 8.2. The task controllers

In a simple scenario, there is a one-on-one mapping between process variables and the form
parameters. Task controllers are specified in a task element. In this case, the default JBPM task
controller can be used and it takes a list of variable elements inside. The variable elements express
how the process variables are copied in the task variables.

The next example shows how you can create separate task instance variable copies based on the
process variables:

<task name="clean ceiling">
 <controller>
 <variable name="a" access="read" mapped-
name="x" />

 <variable name="b" access="read,write,required" mapped-
name="y" />
 <variable name="c" access="read,write" />
 </controller>

Swimlanes

69

</task>

The name attribute refers to the name of the process variable. The mapped-name is optional and
refers to the name of the task instance variable. If the mapped-name attribute is omitted, mapped-
name defaults to the name. Note that the mapped-name also is used as the label for the fields in the
task instance form of the web application.

The access attribute specifies if the variable is copied at task instance creation, will be written back to
the process variables at task end and whether it is required. This information can be used by the user
interface to generate the proper form controls. The access attribute is optional and the default access
is 'read,write'.

A task-node can have many tasks and a start-state can have one task.

If the simple one-to-one mapping between process variables and form parameters is too limiting, you
can also write your own TaskControllerHandler implementation. Here's the TaskControllerHandler
interface.

public interface TaskControllerHandler extends Serializable {
 void initializeTaskVariables(TaskInstance taskInstance, ContextInstance
 contextInstance, Token token);
 void submitTaskVariables(TaskInstance taskInstance, ContextInstance
 contextInstance, Token token);
}

And here's how to configure your custom task controller implementation in a task:

<task name="clean ceiling">
 <controller class="com.yourcom.CleanCeilingTaskControllerHandler">
 -- here goes your task controller handler configuration --
 </controller>
</task>

8.6. Swimlanes
A swimlane is a process role. It is a mechanism to specify that multiple tasks in the process should
be done by the same actor. So after the first task instance is created for a given swimlane, the actor
should be remembered in the process for all subsequent tasks that are in the same swimlane. A
swimlane therefore has one assignment. See Section 8.3, “Assignment” for more details.

When the first task in a given swimlane is created, the AssignmentHandler of the
swimlane is called. The Assignable that is passed to the AssignmentHandler will be the
SwimlaneInstance. Important to know is that all assignments that are done on the task instances
in a given swimlane will propagate to the swimlane instance. This behavior is implemented as the
default because the person that takes a task to fulfilling a certain process role will have the knowledge
of that particular process. So all subsequent assignments of task instances to that swimlane are done
automatically to that user.

Swimlane is a terminology borrowed from UML activity diagrams.

Chapter 8. Task Management

70

8.7. Swimlane in start task
A swimlane can be associated with the start task to capture the process initiator.

A task can be specified in a start-state. That task be associated with a swimlane. When a new
task instance is created for such a task, the current authenticated actor will be captured with
Authentication.getAuthenticatedActorId(). and that actor will be stored in the swimlane of
the start task. See Section 15.1, “Authentication” for more details.

<process-definition>
 <swimlane name='initiator' />
 <start-state>
 <task swimlane='initiator' />
 <transition to='...' />
 </start-state>
 ...
</process-definition>

Also variables can be added to the start task as with any other task to define the form associated with
the task. See Section 8.5, “Task controllers”

8.8. Task events
Tasks can have actions associated with them. There are 4 standard event types defined for tasks:
task-create, task-assign, task-start and task-end.

task-create is fired when a task instance is created.

task-assign is fired when a task instance is being assigned. Note that in
actions that are executed on this event, you can access the previous actor with
executionContext.getTaskInstance().getPreviousActorId();

task-start is fired when TaskInstance.start() is called. This can be used to indicate that the
user is actually starting to work on this task instance. Starting a task is optional.

task-end is fired when TaskInstance.end(...) is called. This marks the completion of the
task. If the task is related to a process execution, this call might trigger the resuming of the process
execution.

Since tasks can have events and actions associated with them, also exception handlers can be
specified on a task. For more information about exception handling, see Section 6.7, “Exception
handling”.

8.9. Task timers
As on nodes, timers can be specified on tasks. See Section 9.1, “Timers”.

The special thing about timers for tasks is that the cancel-event for task timers can be customized.
By default, a timer on a task will be canceled when the task is ended (=completed). But with the
cancel-event attribute on the timer, process developers can customize that to e.g. task-assign
or task-start. The cancel-event supports multiple events. The cancel-event types can be
combined by specifying them in a comma separated list in the attribute.

Customizing task instances

71

8.10. Customizing task instances
Task instances can be customized. The easiest way to do this is to create a subclass of
TaskInstance. Then create a org.jbpm.taskmgmt.TaskInstanceFactory implementation
and configure it by setting the configuration property jbpm.task.instance.factory
to the fully qualified class name in the jbpm.cfg.xml. If you use a subclass of
TaskInstance, also create a Hibernate mapping file for the subclass (using the Hibernate
extends="org.jbpm.taskmgmt.exe.TaskInstance"). Then add that mapping file to the list of
mapping files in the hibernate.cfg.xml

8.11. The identity component
Management of users, groups and permissions is commonly known as identity management. jBPM
includes an optional identity component that can be easily replaced by a company's own identity data
store.

The jBPM identity management component includes knowledge of the organizational model.
Task assignment is typically done with organizational knowledge. So this implies knowledge of
an organizational model, describing the users, groups, systems and the relations between them.
Optionally, permissions and roles can be included too in an organizational model. Various academic
research attempts failed, proving that no generic organizational model can be created that fits every
organization.

The way jBPM handles this is by defining an actor as an actual participant in a process. An actor
is identified by its ID called an actorId. jBPM has only knowledge about actorIds and they are
represented as java.lang.Strings for maximum flexibility. So any knowledge about the
organizational model and the structure of that data is outside the scope of the jBPM core engine.

As an extension to jBPM we will provide (in the future) a component to manage that simple user-roles
model. This many to many relation between users and roles is the same model as is defined in the
J2EE and the servlet specs and it could serve as a starting point in new developments.

Note that the user-roles model as it is used in the servlet, ejb and portlet specifications, is not
sufficiently powerful for handling task assignments. That model is a many-to-many relation between
users and roles. This doesn't include information about the teams and the organizational structure of
users involved in a process.

Chapter 8. Task Management

72

8.11.1. The identity model

Figure 8.3. The identity model class diagram

The classes in yellow are the relevant classes for the expression assignment handler that is discussed
next.

A User represents a user or a service. A Group is any kind of group of users. Groups can be nested
to model the relation between a team, a business unit and the whole company. Groups have a type to
differentiate between the hierarchical groups and e.g. hair color groups. Memberships represent the
many-to-many relation between users and groups. A membership can be used to represent a position
in a company. The name of the membership can be used to indicate the role that the user fulfills in the
group.

8.11.2. Assignment expressions
The identity component comes with one implementation that evaluates an expression for the
calculation of actors during assignment of tasks. Here's an example of using the assignment
expression in a process definition:

<process-definition>
 <task-node name='a'>
 <task name='laundry'>
 <assignment expression='previous --> group(hierarchy) -->
 member(boss)' />
 </task>
 <transition to='b' />
 </task-node>

 <para>Syntax of the assignment expression is like this:</para>
 first-term --> next-term --> next-term --> ... --> next-term

where

Removing the identity component

73

first-term ::= previous |
 swimlane(swimlane-name) |
 variable(variable-name) |
 user(user-name) |
 group(group-name)

and

next-term ::= group(group-type) |
 member(role-name)
</programlisting>

8.11.2.1. First terms
An expression is resolved from left to right. The first-term specifies a User or Group in the identity
model. Subsequent terms calculate the next term from the intermediate user or group.

previous means the task is assigned to the current authenticated actor. This means the actor that
performed the previous step in the process.

swimlane(swimlane-name) means the user or group is taken from the specified swimlane
instance.

variable(variable-name) means the user or group is taken from the specified variable instance.
The variable instance can contain a java.lang.String, in which case that user or group is fetched
from the identity component. Or the variable instance contains a User or Group object.

user(user-name) means the given user is taken from the identity component.

group(group-name) means the given group is taken from the identity component.

8.11.2.2. Next terms
group(group-type) gets the group for a user. Meaning that previous terms must have resulted in a
User. It searches for the the group with the given group-type in all the memberships for the user.

member(role-name) gets the user that performs a given role for a group. The previous terms must
have resulted in a Group. This term searches for the user with a membership to the group for which
the name of the membership matches the given role-name.

8.11.3. Removing the identity component
When you want to use your own datasource for organizational information such as your company's
user database or LDAP system, you can remove the jBPM identity component. The only thing you
need to do is make sure that you delete the following line from the hibernate.cfg.xml.

<mapping resource="org/jbpm/identity/User.hbm.xml"/>
<mapping resource="org/jbpm/identity/Group.hbm.xml"/>
<mapping resource="org/jbpm/identity/Membership.hbm.xml"/>

The ExpressionAssignmentHandler is dependent on the identity component so you will not be
able to use it as is. In case you want to reuse the ExpressionAssignmentHandler and bind it to

Chapter 8. Task Management

74

your user data store, you can extend from the ExpressionAssignmentHandler and override the
method getExpressionSession.

protected ExpressionSession getExpressionSession(AssignmentContext
 assignmentContext);

Chapter 9.

75

Scheduler
This chapter describes how to work with timers in jBPM.

Upon events in the process, timers can be created. When a timer expires, an action can be executed
or a transition can be taken.

9.1. Timers
The easiest way to specify a timer is by adding a timer element to the node.

<state name='catch crooks'>
 <timer name='reminder'
 duedate='3 business hours'
 repeat='10 business minutes'
 transition='time-out-transition' >
 <action class='the-remainder-action-class-name' />
 </timer>
 <transition name='time-out-transition' to='...' />
</state>

A timer that is specified on a node is not executed after the node is left. Both the transition and the
action are optional. When a timer is executed, the following events occur in sequence.

1. An event is fired of type timer.

2. If an action is specified, the action is executed.

3. If a transition is specified, a signal will be sent to resume execution over the given transition.

Every timer must have a unique name. If no name is specified in the timer element, the name of the
node is taken as the name of the timer.

The timer action can be any supported action element like e.g. action or script.

Timers are created and canceled by actions. The 2 action-elements are create-timer and
cancel-timer. Actually, the timer element shown above is just a short notation for a create-timer
action on node-enter and a cancel-timer action on node-leave.

9.2. Scheduler deployment
Process executions create and cancel timers. The timers are stored in a timer store. A separate timer
runner must check the timer store and execute the timers when they are due.

Chapter 9. Scheduler

76

Figure 9.1. Scheduler components overview

Chapter 10.

77

Asynchronous continuations

10.1. The concept
jBPM is based on Graph Oriented Programming (GOP). Basically, GOP specifies a simple state
machine that can handle concurrent paths of execution. But in the execution algorithm specified
in GOP, all state transitions are done in a single operation in the thread of the client. By default,
performing state transitions in the thread of the client is a good approach because it fits naturally with
server side transactions. The process execution moves from one wait state to another wait state in
one transaction.

But in some situations, a developer might want to fine-tune the transaction demarcation in the process
definition. In jPDL, it is possible to specify that the process execution should continue asynchronously
with the attribute async="true". async="true" is supported only when it is triggered in an event
but can be specified on all node types and all action types.

10.2. An example
Normally, a node is always executed after a token has entered the node. So the node is executed in
the thread of the client. We will explore asynchronous continuations by looking at two examples. The
first example is part of a process with three nodes. Node 'a' is a wait state, node 'b' is an automated
step and node 'c' is again a wait state. This process does not contain any asynchronous behavior and
it is represented in the picture below.

The first frame shows the starting situation. The token points to node 'a', meaning that the path of
execution is waiting for an external trigger. That trigger must be given by sending a signal to the token.
When the signal arrives, the token will be passed from node 'a' over the transition to node 'b'. After the
token arrived in node 'b', node 'b' is executed. Recall that node 'b' is an automated step that does not
behave as a wait state (e.g. sending an email). So the second frame is a snapshot taken when node
'b' is being executed. Since node 'b' is an automated step in the process, the execute of node 'b' will
include the propagation of the token over the transition to node 'c'. Node 'c' is a wait state so the third
frame shows the final situation after the signal method returns.

Chapter 10. Asynchronous continuations

78

Figure 10.1. Example 1: Process without asynchronous continuation

While persistence is not mandatory in jBPM, the most common scenario is that a signal is called
within a transaction. Let's have a look at the updates of that transaction. First of all, the token
is updated to point to node 'c'. These updates are generated by Hibernate as a result of the
GraphSession.saveProcessInstance on a JDBC connection. Second, in case the automated
action would access and update some transactional resources, those transactional updates should be
combined or part of the same transaction.

The second example is a variant of the first and introduces an asynchronous continuation in node 'b'.
Nodes 'a' and 'c' behave the same as in the first example, namely they behave as wait states. In jPDL
a node is marked as asynchronous by setting the attribute async="true".

The result of adding async="true" to node 'b' is that the process execution will be split up into 2
parts. The first part will execute the process up to the point where node 'b' is to be executed. The
second part will execute node 'b' and that execution will stop in wait state 'c'.

An example

79

The transaction will hence be split into two separate transactions, one for each part. While it requires
an external trigger (the invocation of the Token.signal method) to leave node 'a' in the first
transaction, jBPM will automatically trigger and perform the second transaction.

Figure 10.2. A process with asynchronous continuations

For actions, the principle is similar. Actions that are marked with the attribute async="true" are
executed outside of the thread that executes the process. If persistence is configured (it is by default),
the actions will be executed in a separate transaction.

In jBPM, asynchronous continuations are realized by using an asynchronous messaging system.
When the process execution arrives at a point that should be executed asynchronously, jBPM will
suspend the execution, produces a command message and send it to the command executor.
The command executor is a separate component that, upon receipt of a message, will resume the
execution of the process where it got suspended.

Chapter 10. Asynchronous continuations

80

jBPM can be configured to use a JMS provider or its built-in asynchronous messaging system. The
built-in messaging system is quite limited in functionality, but allows this feature to be supported on
environments where JMS is unavailable.

10.3. The job executor
The job executor is the component that resumes process executions asynchronously. It waits for
job messages to arrive over an asynchronous messaging system and executes them. The two job
messages used for asynchronous continuations are ExecuteNodeJob and ExecuteActionJob.

These job messages are produced by the process execution. During process execution, for each
node or action that has to be executed asynchronously, a Job (POJO) will be dispatched to the
MessageService. The message service is associated with the JbpmContext and it just collects all
the messages that have to be sent.

The messages will be sent as part of JbpmContext.close(). That method cascades the close()
invocation to all of the associated services. The actual services can be configured in jbpm.cfg.xml.
One of the services, DbMessageService, is configured by default and will notify the job executor that
new job messages are available.

The graph execution mechanism uses the interfaces MessageServiceFactory and
MessageService to send messages. This is to make the asynchronous messaging service
configurable (also in jbpm.cfg.xml). In Java EE environments, the DbMessageService can be
replaced with the JmsMessageService to leverage the application server's capabilities.

Here's a quick summary of how the job executor works.

Jobs are records in the database. Jobs are objects and can be executed. Both timers and
asynchronous messages are jobs. For asynchronous messages, the dueDate is simply set to the
current time when they are inserted. The job executor must execute the jobs. This is done in 2 phases.
• A job executor thread must acquire a job

• The thread that acquired the job must execute it

Acquiring a job and executing the job are done in 2 separate transactions. A thread acquires a job by
putting its name into the owner field of the job. Each thread has a unique name based on IP address
and sequence number. Hibernate's optimistic locking is enabled on Job-objects. So if 2 threads try
to acquire a job concurrently, one of them will get a StaleObjectException and rollback. Only the first
one will succeed. The thread that succeeds in acquiring a job is now responsible for executing it in a
separate transaction.

A thread could die between acquisition and execution of a job. To clean-up after those situations, there
is one lock-monitor thread per job executor that checks the lock times. The lock monitor thread will
unlock any jobs that have been locked for more than 30 minutes, so that they can be executed by
another job executor thread.

The isolation level must be set to REPEATABLE_READ for Hibernate's optimistic locking to work
correctly. REPEATABLE_READ guarantees that this query will only update one row in exactly one of the
competing transactions.

update JBPM_JOB job
set job.version = 2

jBPM's built-in asynchronous messaging

81

 job.lockOwner = '192.168.1.3:2'
where
 job.version = 1

Non-Repeatable Reads can lead to the following anomaly. A transaction re-reads data it has
previously read and finds that data has been modified by another transaction, one that has been
committed since the transaction's previous read.

Non-Repeatable reads are a problem for optimistic locking and therefore, isolation level
READ_COMMITTED is not enough because it allows for Non-Repeatable reads to occur. So
REPEATABLE_READ is required if you configure more than one job executor thread.

10.4. jBPM's built-in asynchronous messaging
When using jBPM's built-in asynchronous messaging, job messages will be sent by persisting them to
the database. This message persisting can be done in the same transaction or JDBC connection as
the jBPM process updates.

The job messages will be stored in the JBPM_JOB table.

The POJO command executor (org.jbpm.msg.command.CommandExecutor) will read the
messages from the database table and execute them. The typical transaction of the POJO command
executor looks like this:
1. Read next command message

2. Execute command message

3. Delete command message

If execution of a command message fails, the transaction will be rolled back. After that, a new
transaction will be started that adds the error message to the message in the database. The command
executor filters out all messages that contain an exception.

Chapter 10. Asynchronous continuations

82

Figure 10.3. POJO command executor transactions

If the transaction that adds the exception to the command message fails, it is rolled back. The
message will remain in the queue without an exception and will be retried later.

Important
jBPM's built-in asynchronous messaging system does not support multi-node locking. You
cannot deploy the POJO command executor multiple times and have them configured to
use the same database.

Chapter 11.

83

Business calendar
This chapter describes the business calendar of jBPM. The business calendar knows about business
hours and is used in calculation of due dates for tasks and timers.

The business calendar is able to calculate a due date by adding a duration to or subtracting it from a
base date. If the base date is omitted, the 'current' date is used.

11.1. Duedate
The due date is composed of a duration and a base date. If this base date is omitted, the duration
is relative to the date and time at the moment of calculation. The format is: duedate ::=
[<basedate> +/-] <duration>

11.1.1. Duration
A duration is specified in absolute or in business hours.

duration ::= <quantity> [business] <unit>

Where <quantity> is a piece of text that is parsable with Double.parseDouble(quantity).
<unit> is one of {second, seconds, minute, minutes, hour, hours, day, days, week, weeks, month,
months, year, years}. And adding the optional indication business means that only business hours
should be taken into account for this duration. Without the indication business, the duration will be
interpreted as an absolute time period.

11.1.2. Base Date
A duration is specified in absolute or in business hours.

basedate ::= <EL>

<EL> is any JAVA Expression Language expression that resolves to a Java Date or Calendar object.
Referencing variables of other object types,even a String in a date format like "2036-02-12", will
throw a JbpmException.

This base date is supported on the duedate attributes of a plain timer, on the reminder of a task and
the timer within a task. It is not supported on the repeat attributes of these elements.

11.1.3. Duedate Examples
The following are all valid usages.

<timer name="daysBeforeHoliday" duedate="5 business days">...</timer>

<timer name="pensionDate" duedate="#{dateOfBirth} + 65 years" >...</timer>

<timer name="pensionReminder" duedate="#{dateOfPension} - 1 year" >...</
timer>

Chapter 11. Business calendar

84

<timer name="fireWorks" duedate="#{chineseNewYear} repeat="1 year" >...</
timer>

<reminder name="hitBoss" duedate="#{payRaiseDay} + 3 days" repeat="1
 week" />

11.2. Calendar configuration
The file org/jbpm/calendar/jbpm.business.calendar.properties specifies what business
hours are. The configuration file can be customized and a modified copy can be placed in the root of
the classpath.

This is the example business hour specification that is shipped by default in
jbpm.business.calendar.properties.

hour.format=HH:mm
#weekday ::= [<daypart> [& <daypart>]*]
#daypart ::= <start-hour>-<to-hour>
#start-hour and to-hour must be in the hour.format
#dayparts have to be ordered
weekday.monday= 9:00-12:00 & 12:30-17:00
weekday.tuesday= 9:00-12:00 & 12:30-17:00
weekday.wednesday= 9:00-12:00 & 12:30-17:00
weekday.thursday= 9:00-12:00 & 12:30-17:00
weekday.friday= 9:00-12:00 & 12:30-17:00
weekday.saturday=
weekday.sunday=

day.format=dd/MM/yyyy
holiday syntax: <holiday>
holiday period syntax: <start-day>-<end-day>
below are the belgian official holidays
holiday.1= 01/01/2005 # nieuwjaar
holiday.2= 27/3/2005 # pasen
holiday.3= 28/3/2005 # paasmaandag
holiday.4= 1/5/2005 # feest van de arbeid
holiday.5= 5/5/2005 # hemelvaart
holiday.6= 15/5/2005 # pinksteren
holiday.7= 16/5/2005 # pinkstermaandag
holiday.8= 21/7/2005 # my birthday
holiday.9= 15/8/2005 # moederkesdag
holiday.10= 1/11/2005 # allerheiligen
holiday.11= 11/11/2005 # wapenstilstand
holiday.12= 25/12/2005 # kerstmis

business.day.expressed.in.hours= 8
business.week.expressed.in.hours= 40
business.month.expressed.in.business.days= 21
business.year.expressed.in.business.days= 220

Chapter 12.

85

Email support
This chapter describes the out-of-the-box email support in jBPM jPDL.

12.1. Mail in jPDL
There are four ways of specifying when emails should be sent from a process.

12.1.1. Mail action
A mail action can be used when you don't want the sending of this email to be shown as a node in the
process graph.

A mail action can be added to the process wherever an action can be added.

<mail actors="#{president}" subject="readmylips" text="nomoretaxes" />

The subject and text attributes can also be specified as an element like this:

<mail actors="#{president}" >
 <subject>readmylips</subject>
 <text>nomoretaxes</text>
</mail>

Each of the fields can contain JSF like expressions.

<mail
 to='#{initiator}'
 subject='websale'
 text='your websale of #{quantity} #{item} was approved' />

For more information about expressions, see Section 14.3, “Expressions”.

There are two attribute to specify recipients: actors and to. The to attribute should resolve to a
semicolon separated list of email addresses. The actors attribute should resolve to a semicolon
separated list of actorIds. Those actorIds will be resolved to email addresses by means of Address
Resolving. Refer to Section 12.3.3, “Address resolving” for more details.

<mail
 to='admin@mycompany.com'
 subject='urgent'
 text='the mailserver is down :-)' />

For more about how to specify recipients, see Section 12.3, “Specifying mail recipients”

Mails can be defined in templates and in the process you can overwrite properties of the templates like
this:

<mail template='sillystatement' actors="#{president}" />

Chapter 12. Email support

86

More about templates can be found in Section 12.4, “Mail templates”

12.1.2. Mail node
Just the same as with mail actions, sending of an email can also be modeled as a node. In that case,
the runtime behavior is just the same, but the email will show up as a node in the process graph.

The attributes and elements supported by mail nodes are exactly the same as with the Mail Action.
See Section 12.1.1, “Mail action” for additional details.

<mail-node name="send email"
 to="#{president}"
 subject="readmylips"
 text="nomoretaxes">
 <transition to="the next node" />
</mail-node>

Mail nodes should have exactly one leaving transition.

12.1.3. Task assign mails
A notification email can be sent when a task gets assigned to an actor. Just use the notify="yes"
attribute on a task like this:

<task-node name='a'>
 <task name='laundry' swimlane="grandma" notify='yes' />
 <transition to='b' />
</task-node>

Setting notify to yes, true or on will cause jBPM to send an email to the actor that will be assigned to
this task. The email is based on a template (see Section 12.4, “Mail templates”) and contains a link to
the task page of the web application.

12.1.4. Task reminder mails
Similarly as with assignments, emails can be sent as a task reminder. The reminder element in jPDL
is based upon the timer. The most common attributes will be the duedate and the repeat. The only
difference is that no action has to be specified.

<task-node name='a'>
 <task name='laundry' swimlane="grandma" notify='yes'>
 <reminder duedate="2 business days" repeat="2 business hours"/>
 </task>
 <transition to='b' />
</task-node>

12.2. Expressions in mails
The fields to, recipients, subject and text can contain JSF-like expressions. For more
information about expressions, see Section 14.3, “Expressions”.

Specifying mail recipients

87

The variables in the expressions can be : swimlanes, process variables, transient variables beans
configured in the jbpm.cfg.xml.

These expressions can be combined with the address resolving. Refer to Section 12.3.3, “Address
resolving”. for more detail. For example, suppose that you have a swimlane called president in your
process, then look at the following mail specification:

<mail actors="#{president}"
 subject="readmylips"
 text="nomoretaxes" />

That will send an email to to the person that acts as the president for that particular process execution.

12.3. Specifying mail recipients

12.3.1. Multiple recipients
In the actors and to fields, multiple recipients can be separated with a semi colon (;) or a colon (:).

12.3.2. Sending Mails to a BCC target
Sometimes you want to send emails to a BCC target in addition to the normal receipient. Currently,
there are two supported ways of doing that: First you can specify an bccActors or bcc attribute
(according to actors and to) in the process definition.

<mail to='#{initiator}'
 bcc='bcc@mycompany.com'
 subject='websale'
 text='your websale of #{quantity} #{item} was approved' />

The second way is to always send an BCC Mail to some location you can configure in the central
configuration (jbpm.cfg.xml) in a property:

<jbpm-configuration>
 ...
 <string name="jbpm.mail.bcc.address" value="bcc@mycompany.com" />
</jbpm-configuration>

12.3.3. Address resolving
In all of jBPM, actors are referenced by actorIds. This is a string that serves as the identifier of the
process participant. An address resolver translates actorIds into email addresses.

Use the attribute actors in case you want to apply address resolving and use the attribute to in case
you are specifying email addresses directly and don't want to apply address resolving.

An address resolver should implement the following interface:

public interface AddressResolver extends Serializable {
 Object resolveAddress(String actorId);

Chapter 12. Email support

88

}

An address resolver should return 1 of 3 types: a String, a Collection of Strings or an array of Strings.
All strings should represent email addresses for the given actorId.

The address resolver implementation should be a bean configured in the jbpm.cfg.xml with name
jbpm.mail.address.resolver like this:

<jbpm-configuration>
 <bean name='jbpm.mail.address.resolver'
 class='org.jbpm.identity.mail.IdentityAddressResolver'
 singleton='true' />
</jbpm-configuration>

The identity component of jBPM includes an address resolver. That address resolver will look for the
User of the given actorId. If the user exists, the user's email is returned, otherwise null. More on the
identity component can be found in Section 8.11, “The identity component”.

12.4. Mail templates
Instead of specifying mails in the processdefinition.xml, mails can be specified in a template file. When
a template is used, each of the fields can still be overwritten in the processdefinition.xml. The mail
templates should be specified in an XML file like this:

<mail-templates>
 <variable name="BaseTaskListURL"
 value="http://localhost:8080/jbpm/task?id=" />

 <mail-template name='task-assign'>
 <actors>#{taskInstance.actorId}</actors>
 <subject>Task '#{taskInstance.name}'</subject>
 <text><![CDATA[Hi,
Task '#{taskInstance.name}' has been assigned to you.
Go for it: #{BaseTaskListURL}#{taskInstance.id}
Thanks.
---powered by JBoss jBPM---]]></text>
 </mail-template>

 <mail-template name='task-reminder'>
 <actors>#{taskInstance.actorId}</actors>
 <subject>Task '#{taskInstance.name}' !</subject>
 <text><![CDATA[Hey,
Don't forget about #{BaseTaskListURL}#{taskInstance.id}
Get going !
---powered by JBoss jBPM---]]></text>
 </mail-template>

</mail-templates>

As you can see in this example (BaseTaskListURL), extra variables can be defined in the mail
templates that will be available in the expressions.

Mail server configuration

89

The resource that contains the templates should be configured in the jbpm.cfg.xml like this:

<jbpm-configuration>
 <string name="resource.mail.templates" value="jbpm.mail.templates.xml" />
</jbpm-configuration>

12.5. Mail server configuration
The simplest way to configure the mail server is with the configuration property
jbpm.mail.smtp.host in the jbpm.cfg.xml like this:

<jbpm-configuration>
 <string name="jbpm.mail.smtp.host" value="localhost" />
</jbpm-configuration>

Alternatively, when more properties need to be specified, a resource reference to a properties file can
be given with the key '' like this:

<jbpm-configuration>
 <string name='resource.mail.properties' value='jbpm.mail.properties' />
</jbpm-configuration>

12.6. From address configuration
The default value for the From address used in jPDL mails is jbpm@noreply. The from
address of mails can be configured in the jBPM configuration file jbpm.xfg.xml with key
'jbpm.mail.from.address' like this:

<jbpm-configuration>
 <string name='jbpm.mail.from.address' value='jbpm@yourcompany.com' />
</jbpm-configuration>

12.7. Customizing mail support
All the mail support in jBPM is centralized in one class: org.jbpm.mail.Mail This is an
ActionHandler implementation. Whenever an mail is specified in the process xml, this will result
in a delegation to the mail class. It is possible to inherit from the Mail class and customize certain
behavior for your particular needs. To configure your class to be used for mail delegations, specify a
'jbpm.mail.class.name' configuration string in the jbpm.cfg.xml like this:

<jbpm-configuration>
 <string name='jbpm.mail.class.name'
 value='com.your.specific.CustomMail' />
</jbpm-configuration>

The customized mail class will be read during parsing and actions will be configured in the process
that reference the configured (or the default) mail classname. So if you change the property, all the
processes that were already deployed will still refer to the old mail class name. But they can be easily
updated with one simple update statement to the jBPM database.

90

Chapter 13.

91

Logging
The purpose of logging is to keep track of the history of a process execution. As the runtime data of
each process execution changes, the changes are stored in the logs.

Process logging, which is covered in this chapter, is not to be confused with software logging.
Software logging traces the execution of a software program (usually for debugging purposes).
Process logging traces the execution of process instances.

There are various use cases for process logging information. Most obvious is the consulting of the
process history by participants of a process execution.

Another use case is Business Activity Monitoring (BAM). BAM will query or analyze the logs of process
executions to find useful statistical information about the business process. E.g. how much time
is spent on average in each step of the process and where the bottlenecks in the process are etc.
This information is key to implement real business process management in an organization. Real
business process management is about how an organization manages their processes, how these are
supported by information technology and how these two improve the other in an iterative process.

Next use case is the undo functionality. Process logs can be used to implement the undo. Since the
logs contain a record of all runtime information changes, the logs can be played in reverse order to
bring a process back into a previous state.

13.1. Creation of logs
Logs are produced by jBPM modules while they are running process executions.
But also users can insert process logs. A log entry is a Java object that inherits from
org.jbpm.logging.log.ProcessLog. Process log entries are added to the LoggingInstance.
The LoggingInstance is an optional extension of the ProcessInstance.

Various kinds of logs are generated by jBPM : graph execution logs, context logs and task
management logs. For more information about the specific data contained in those logs, we refer to
the javadocs. A good starting point is the class org.jbpm.logging.log.ProcessLog since from
that class you can navigate down the inheritance tree.

The LoggingInstance will collect all the log entries. When the ProcessInstance is saved,
all the logs in the LoggingInstance will be flushed to the database. The logs-field of a
ProcessInstance is not mapped with Hibernate to avoid that logs are retrieved from the database
in each transactions. Each ProcessLog is made in the context of a path of execution (Token) and
hence, the ProcessLog refers to that token. The Token also serves as an index-sequence generator
for the index of the ProcessLog in the Token. This will be important for log retrieval. That way, logs
that are produced in subsequent transactions will have sequential sequence numbers.

The API method for adding process logs is the following.

public class LoggingInstance extends ModuleInstance {
 ...
 public void addLog(ProcessLog processLog) {...}
 ...
}

The UML diagram for logging information looks like this:

Chapter 13. Logging

92

Figure 13.1. The jBPM logging information class diagram

A CompositeLog is a special kind of log entry. It serves as a parent log for a number of child logs,
thereby creating the means for a hierarchical structure in the logs. The API for inserting a log is the
following.

public class LoggingInstance extends ModuleInstance {
 ...
 public void startCompositeLog(CompositeLog compositeLog) {...}
 public void endCompositeLog() {...}
 ...
}

The CompositeLogs should always be called in a try-finally-block to make sure that the
hierarchical structure of logs is consistent. For example:

startCompositeLog(new MyCompositeLog());
try {
 ...
} finally {
 endCompositeLog();
}

13.2. Log configurations
For deployments where logs are not important, it suffices to remove the logging line in the jbpm-
context section of the jbpm.cfg.xml configuration file.

<service name='logging'
 factory='org.jbpm.logging.db.DbLoggingServiceFactory' />

In case you want to filter the logs, you need to write a custom implementation of the LoggingService
that is a subclass of DbLoggingService. Also you need to create a custom logging ServiceFactory and
specify that one in the factory attribute.

Log retrieval

93

13.3. Log retrieval
As said before, logs cannot be retrieved from the database by navigating the LoggingInstance
to its logs. Instead, logs of a process instance should always be queried from the database. The
LoggingSession has 2 methods that serve this purpose.

The first method retrieves all the logs for a process instance. These logs will be grouped by token in a
Map. The map will associate a List of ProcessLogs with every Token in the process instance. The list
will contain the ProcessLogs in the same order as they were created.

public class LoggingSession {
 ...
 public Map findLogsByProcessInstance(long processInstanceId) {...}
 ...
}

The second method retrieves the logs for a specific Token. The returned list will contain the
ProcessLogs in the same ordered as they were created.

public class LoggingSession {
 public List findLogsByToken(long tokenId) {...}
 ...
}

13.4. Database warehousing
Sometimes you may want to apply data warehousing techniques to the jbpm process logs. Data
warehousing means that you create a separate database containing the process logs to be used for
various purposes.

There may be many reasons why you want to create a data warehouse with the process log
information. You may be trying to lessen the process load of the certain queries from your production
database. Or you may be performing specific data analysis tasks that cannot or should not be
performed on your production database. Data warehousing even might be done on a modified
database schema which is optimized for its purpose.

In this section, we only want to propose the technique of warehousing in the context of jBPM. The
purposes are too diverse, preventing a generic solution to be included in jBPM that could cover all
those requirements.

94

Chapter 14.

95

jBPM Process Definition Language
(JPDL)
JPDL specifies an xml schema and the mechanism to package all the process definition related files
into a process archive.

14.1. The process archive
A process archive is a zip file. The central file in the process archive is processdefinition.xml.
The main information in that file is the process graph. The processdefinition.xml also contains
information about actions and tasks. A process archive can also contain other process related files
such as classes or UI forms for tasks.

14.1.1. Deploying a process archive
Deploying process archives can be done in 3 ways: with the process designer tool, with an ant task or
programatically.

Deploying a process archive with the designer tool is supported in the starter's kit. Right click on the
process archive folder to find the "Deploy process archive" option. The starter's kit server contains
the jBPM application, which has a servlet to upload process archives called ProcessUploadServlet.
This servlet is capable of uploading process archives and deploying them to the default jBPM instance
configured.

Deploying a process archive with an ant task can be done as follows:

<target name="deploy.par">
 <taskdef name="deploypar" classname="org.jbpm.ant.DeployProcessTask">
 <classpath --make sure the jbpm-[version].jar is in this classpath--/>
 </taskdef>
 <deploypar par="build/myprocess.par" />
</target>

To deploy more process archives at once, use the nested fileset elements. The file attribute itself is
optional. Other attributes of the ant task are listed below.

jbpmcfg
Optional. The default value is jbpm.cfg.xml. The JBPM configuration file can specify the
location of the Hibernate configuration file (default value is hibernate.cfg.xml) that contains
the JDBC connection properties for the database and the mapping files.

properties
Optional. Overwrites all Hibernate properties as found in the hibernate.cfg.xml

createschema
When set to true, the jBPM database schema is created before processes get deployed.

Process archives can also be deployed programmatically with the class
org.jbpm.jpdl.par.ProcessArchiveDeployer

Chapter 14. jBPM Process Definition Language (JPDL)

96

14.1.2. Process versioning
What happens when we have a process definition deployed, many executions are not yet finished and
we have a new version of the process definition that we want to deploy ?

Process instances always execute to the process definition that they are started in. But jBPM allows
for multiple process definitions of the same name to coexist in the database. So typically, a process
instance is started in the latest version available at that time and it will keep on executing in that same
process definition for its complete lifetime. When a newer version is deployed, newly created instances
will be started in the newest version, while older process instances keep on executing in the older
process definitions.

If the process includes references to Java classes, the Java classes can be made available to
the jBPM runtime environment in 2 ways : by making sure these classes are visible to the jBPM
classloader. This usually means that you can put your delegation classes in a .jar file next to the
jbpm-[version].jar. In that case, all the process definitions will see that same class file. The
Java classes can also be included in the process archive. When you include your delegation classes
in the process archive (and they are not visible to the jbpm classloader), jBPM will also version these
classes inside the process definition. More information about process classloading can be found in
Section 14.2, “Delegation”

When a process archive gets deployed, it creates a process definition in the jBPM database. Process
definitions can be versioned on the basis of the process definition name. When a named process
archive gets deployed, the deployer will assign a version number. To assign this number, the deployer
will look up the highest version number for process definitions with the same name and adds 1.
Unnamed process definitions will always have version number -1.

14.1.3. Changing deployed process definitions
Changing process definitions after they are deployed into the jBPM database has many potential
pitfalls. Therefor, this is highly discouraged.

Actually, there is a whole variety of possible changes that can be made to a process definition. Some
of those process definitions are harmless, but some other changes have implications far beyond the
expected and desirable. Migrating process instances to a new definition is the preferred solution. See
Section 14.1.4, “Migrating process instances”.

In case you would consider it, these are the points to take into consideration:

Use Hibernate's update: You can just load a process definition, change it and save it
with the Hibernate session. The Hibernate session can be accessed with the method
JbpmContext.getSession().

The second level cache: A process definition would need to be removed from the second level cache
after you've updated an existing process definition. See also Section 4.2.8, “ Second level cache”.

14.1.4. Migrating process instances
An alternative approach to changing process definitions might be to convert the executions to a
new process definition. Please take into account that this is not trivial due to the long-lived nature of
business processes. Currently, this is an experimental area so for which there are not yet much out-of-
the-box support.

As you know there is a clear distinction between process definition data, process instance data (the
runtime data) and the logging data. With this approach, you create a separate new process definition

Delegation

97

in the jBPM database (by e.g. deploying a new version of the same process). Then the runtime
information is converted to the new process definition. This might involve a translation because tokens
in the old process might be pointing to nodes that have been removed in the new version. So only new
data is created in the database. But one execution of a process is spread over two process instance
objects. This might become a bit tricky for the tools and statistics calculations. When resources permit
us, we are going to add support for this in the future. E.g. a pointer could be added from one process
instance to it's predecessor.

14.2. Delegation
Delegation is the mechanism used to include the users' custom code in the execution of processes.

14.2.1. The jBPM class loader
The jBPM class loader is the class loader that loads the jBPM classes. Meaning, the classloader that
has the library jbpm-3.x.jar in its classpath. To make classes visible to the jBPM classloader, put
them in a jar file and put the jar file besides the jbpm-3.x.jar. E.g. in the WEB-INF/lib folder in the
case of webapplications.

14.2.2. The process class loader
Delegation classes are loaded with the process class loader of their respective process definition.
The process class loader is a class loader that has the jBPM classloader as a parent. The process
class loader adds all the classes of one particular process definition. You can add classes to a process
definition by putting them in the /classes folder in the process archive. Note that this is only useful
when you want to version the classes that you add to the process definition. If versioning is not
necessary, it is much more efficient to make the classes available to the jBPM class loader.

If the resource name doesn't start with a slash, resources are also loaded from the /classes
directory in the process archive. If you want to load resources outside of the classes directory, start
with a double slash (//). For example to load resource data.xml which is located next to the
processdefinition.xml on the root of the process archive file, you can do class.getResource("//
data.xml") or classLoader.getResourceAsStream("//data.xml") or any of those
variants.

14.2.3. Configuration of delegations
Delegation classes contain user code that is called from within the execution of a process. The
most common example is an action. In the case of action, an implementation of the interface
ActionHandler can be called on an event in the process. Delegations are specified in the
processdefinition.xml. 3 pieces of data can be supplied when specifying a delegation :

1. the class name (required) : the fully qualified class name of the delegation class.

2. configuration type (optional) : specifies the way to instantiate and configure the delegation object.
By default the default constructor is used and the configuration information is ignored.

3. configuration (optional) : the configuration of the delegation object in the format as required by the
configuration type.

Next is a description of all the configuration types:

Chapter 14. jBPM Process Definition Language (JPDL)

98

14.2.3.1. config-type field
This is the default configuration type. The config-type field will first instantiate an object of the
delegation class and then set values in the fields of the object as specified in the configuration. The
configuration is XML, where the elementnames have to correspond with the field names of the class.
The content text of the element is put in the corresponding field. If necessary and possible, the content
text of the element is converted to the field type.

Supported type conversions:

• String doesn't need converting, of course. But it is trimmed.

• primitive types such as int, long, float, double, ...

• and the basic wrapper classes for the primitive types.

• lists, sets and collections. In that case each element of the xml-content is considered as an element
of the collection and is parsed, recursively applying the conversions. If the type of the elements
is different from java.lang.String this can be indicated by specifying a type attribute with the
fully qualified type name. For example, following snippet will inject an ArrayList of Strings into field
'numbers':

<numbers>
 <element>one</element>
 <element>two</element>
 <element>three</element>
</numbers>

The text in the elements can be converted to any object that has a String constructor. To use
another type than String, specify the element-type in the field element ('numbers' in this case).

Here's another example of a map:

<numbers>
 <entry><key>one</key><value>1</value></entry>
 <entry><key>two</key><value>2</value></entry>
 <entry><key>three</key><value>3</value></entry>
</numbers>

• maps. In this case, each element of the field-element is expected to have one sub-element key and
one element value. The key and element are both parsed using the conversion rules recursively.
Just the same as with collections, a conversion to java.lang.String is assumed if no type
attribute is specified.

• org.dom4j.Element

• for any other type, the string constructor is used.

For example in the following class...

public class MyAction implements ActionHandler {
 // access specifiers can be private, default, protected or public
 private String city;

Expressions

99

 Integer rounds;
 ...
}

...this is a valid configuration:

...
<action class="org.test.MyAction">
 <city>Atlanta</city>
 <rounds>5</rounds>
</action>
...

14.2.3.2. config-type bean
Same as config-type field but then the properties are set via setter methods, rather than directly
on the fields. The same conversions are applied.

14.2.3.3. config-type constructor
This method takes the complete contents of the delegation XML element and passes this as text in the
delegation class constructor.

14.2.3.4. config-type configuration-property
First, the default constructor is used, then this method will take the complete contents of the delegation
XML element, and pass it as text in method void configure(String);. (as in jBPM 2)

14.3. Expressions
For some of the delegations, there is support for a JSP/JSF EL like expression language.
In actions, assignments and decision conditions, you can write an expression like e.g.
expression="#{myVar.handler[assignments].assign}"

The basics of this expression language can be found in the J2EE tutorial at http://java.sun.com/
j2ee/1.4/docs/tutorial/doc/JSPIntro7.html.

The jPDL expression language is similar to the JSF expression language. Meaning that jPDL EL is
based on JSP EL, but it uses #{...} notation and that it includes support for method binding.

Depending on the context, the process variables or task instance variables can be used as starting
variables along with the following implicit objects:

• taskInstance (org.jbpm.taskmgmt.exe.TaskInstance)

• processInstance (org.jbpm.graph.exe.ProcessInstance)

• processDefinition (org.jbpm.graph.def.ProcessDefinition)

• token (org.jbpm.graph.exe.Token)

• taskMgmtInstance (org.jbpm.taskmgmt.exe.TaskMgmtInstance)

http://java.sun.com/j2ee/1.4/docs/tutorial/doc/JSPIntro7.html
http://java.sun.com/j2ee/1.4/docs/tutorial/doc/JSPIntro7.html

Chapter 14. jBPM Process Definition Language (JPDL)

100

• contextInstance (org.jbpm.context.exe.ContextInstance)

This feature becomes really powerful in a JBoss SEAM environment. Because of the integration
between jBPM and JBoss SEAM1, all of your backed beans, EJB's and other one-kind-of-stuff
becomes available right inside of your process definition.

14.4. jPDL XML Schema
The jPDL schema is the schema used in the file processdefinition.xml in the process archive.

14.4.1. Validation
When parsing a jPDL XML document, jBPM will validate your document against the jPDL schema
when two conditions are met.

1. The schema has to be referenced in the XML document.

<process-definition xmlns="urn:jbpm.org:jpdl-3.2">
 ...
</process-definition>

2. The Xerces parser has to be on the classpath.

The jPDL schema can be found in ${jbpm.home}/src/java.jbpm/org/jbpm/jpdl/xml/
jpdl-3.2.xsd or at http://jbpm.org/jpdl-3.2.xsd.

14.4.2. process-definition

Name Type Multiplicity Description

name attribute optional the name of the process

swimlane element [0..*] the swimlanes used in this process. The
swimlanes represent process roles and they are
used for task assignments.

start-state element [0..1] the start state of the process. Note that a process
without a start-state is valid, but cannot be
executed.

{end-state|state|node|
task-node|process-
state|super-state|fork|
join|decision}

element [0..*] the nodes of the process definition. Note that a
process without nodes is valid, but cannot be
executed.

event element [0..*] the process events that serve as a container for
actions

{action|script|create-
timer|cancel-timer}

element [0..*] global defined actions that can be referenced from
events and transitions. Note that these actions
must specify a name in order to be referenced.

task element [0..*] global defined tasks that can be used in e.g.
actions.

1 http://www.jboss.com/products/seam

http://www.jboss.com/products/seam
http://jbpm.org/jpdl-3.2.xsd
http://www.jboss.com/products/seam

node

101

Name Type Multiplicity Description

exception-handler element [0..*] a list of exception handlers that applies to all
exceptions thrown by delegation classes thrown in
this process definition.

Table 14.1. Process Definition Schema

14.4.3. node

Name Type Multiplicity Description

{action|script|create-
timer|cancel-timer}

element 1 a custom action that represents the behavior for
this node

common node
elements

Section 14.4.4, “common node elements”

Table 14.2. Node Schema

14.4.4. common node elements

Name Type Multiplicity Description

name attribute required the name of the node

async attribute { true |
false },
false
is the
default

If set to true, this node will be executed
asynchronously. See also Chapter 10,
Asynchronous continuations

transition element [0..*] the leaving transitions. Each transition leaving a
node *must* have a distinct name. A maximum of
one of the leaving transitions is allowed to have
no name. The first transition that is specifed is
called the default transition. The default transition
is taken when the node is left without specifying a
transition.

event element [0..*] supported event types: {node-enter|node-leave}

exception-handler element [0..*] a list of exception handlers that applies to all
exceptions thrown by delegation classes thrown in
this process node.

timer element [0..*] specifies a timer that monitors the duration of an
execution in this node.

Table 14.3. Common Node Schema

14.4.5. start-state

Name Type Multiplicity Description

name attribute optional the name of the node

Chapter 14. jBPM Process Definition Language (JPDL)

102

Name Type Multiplicity Description

task element [0..1] The task to start a new instance for this
process or to capture the process initiator. See
Section 8.7, “Swimlane in start task”

event element [0..*] supported event types: {node-leave}

transition element [0..*] the leaving transitions. Each transition leaving a
node *must* have a distinct name.

exception-handler element [0..*] a list of exception handlers that applies to all
exceptions thrown by delegation classes thrown in
this process node.

Table 14.4. Start State Schema

14.4.6. end-state

Name Type Multiplicity Description

name attribute required the name of the end-state

end-complete-process attribute optional By default end-complete-process is false which
means that only the token ending this end-state is
ended. If this token was the last child to end, the
parent token is ended recursively. If you set this
property to true, then the full process instance is
ended.

event element [0..*] supported event types: {node-enter}

exception-handler element [0..*] a list of exception handlers that applies to all
exceptions thrown by delegation classes thrown in
this process node.

Table 14.5. End State Schema

14.4.7. state

Name Type Multiplicity Description

common node
elements

See Section 14.4.4, “common node elements”

Table 14.6. State Schema

14.4.8. task-node

Name Type Multiplicity Description

signal attribute optional {unsynchronized|never|first|first-wait|last|last-wait},
default is last. signal specifies the effect of task
completion on the process execution continuation.

create-tasks attribute optional {yes|no|true|false}, default is true. can be set to
false when a runtime calculation has to determine
which of the tasks have to be created. in that

process-state

103

Name Type Multiplicity Description
case, add an action on node-enter, create the
tasks in the action and set create-tasks to
false.

end-tasks attribute optional {yes|no|true|false}, default is false. In case
remove-tasks is set to true, on node-leave, all
the tasks that are still open are ended.

task element [0..*] the tasks that should be created when execution
arrives in this task node.

common node
elements

See Section 14.4.4, “common node elements”

Table 14.7. Task Node Schema

14.4.9. process-state

Name Type Multiplicity Description

binding attribute optional Defines the moment a subprocess is resolved.
{late|*} defaults to resolving deploytime

sub-process element 1 the sub process that is associated with this node

variable element [0..*] specifies how data should be copied from the
super process to the sub process at the start and
from the sub process to the super process upon
completion of the sub process.

common node
elements

See Section 14.4.4, “common node elements”

Table 14.8. Process State Schema

14.4.10. super-state

Name Type Multiplicity Description

{end-state|state|node|
task-node|process-
state|super-state|fork|
join|decision}

element [0..*] the nodes of the superstate. superstates can be
nested.

common node
elements

See Section 14.4.4, “common node elements”

Table 14.9. Super State Schema

14.4.11. fork

Name Type Multiplicity Description

common node
elements

See Section 14.4.4, “common node elements”

Table 14.10. Fork Schema

Chapter 14. jBPM Process Definition Language (JPDL)

104

14.4.12. join

Name Type Multiplicity Description

common node
elements

See Section 14.4.4, “common node elements”

Table 14.11. Join Schema

14.4.13. decision

Name Type Multiplicity Description

handler element either a
'handler'
element
or
conditions
on the
transitions
should be
specified

the name of a
org.jbpm.jpdl.Def.DecisionHandler
implementation

transition conditions attribute
or
element
text
on the
transitions
leaving a
decision

the leaving transitions. Each leaving transitions
of a node can have a condition. The decision will
use these conditions to look for the first transition
for which the condition evaluates to true. The first
transition represents the otherwise branch. So
first, all transitions with a condition are evaluated.
If one of those evaluate to true, that transition is
taken. If no transition with a condition resolves to
true, the default transition (=the first one) is taken.
See Section 14.4.29, “condition”

common node
elements

See Section 14.4.4, “common node elements”

Table 14.12. Decision Schema

14.4.14. event

Name Type Multiplicity Description

type attribute required the event type that is expressed relative to the
element on which the event is placed

{action|script|create-
timer|cancel-timer}

element [0..*] the list of actions that should be executed on this
event

Table 14.13. Event Schema

transition

105

14.4.15. transition

Name Type Multiplicity Description

name attribute optional the name of the transition. Note that each
transition leaving a node *must* have a distinct
name.

to attribute required the hierarchical name of the destination node. For
more information about hierarchical names, see
Section 6.6.3, “Hierarchical names”

condition attribute
or
element
text

optional a guard condition expression. These condition
attributes (or child elements) can be used in
decision nodes, or to calculate the available
transitions on a token at runtime.

{action|script|create-
timer|cancel-timer}

element [0..*] the actions to be executed upon taking this
transition. Note that the actions of a transition do
not need to be put in an event (because there is
only one)

exception-handler element [0..*] a list of exception handlers that applies to all
exceptions thrown by delegation classes thrown in
this process node.

Table 14.14. Transition Schema

14.4.16. action

Name Type Multiplicity Description

name attribute optional the name of the action. When actions are given
names, they can be looked up from the process
definition. This can be useful for runtime actions
and declaring actions only once.

class attibute either, a
ref-name
or an
expression

the fully qualified class name of
the class that implements the
org.jbpm.graph.def.ActionHandler
interface.

ref-name attibute either this
or class

the name of the referenced action. The content of
this action is not processed further if a referenced
action is specified.

expression attibute either this,
a class
or a ref-
name

A jPDL expression that resolves to a method. See
also Section 14.3, “Expressions”

accept-propagated-
events

attribute optional {yes|no|true|false}. Default is yes|true. If set
to false, the action will only be executed on
events that were fired on this action's element.
for more information, see Section 6.5.4, “Event
propagation”

config-type attribute optional {field|bean|constructor|configuration-property}.
Specifies how the action-object should be

Chapter 14. jBPM Process Definition Language (JPDL)

106

Name Type Multiplicity Description
constructed and how the content of this element
should be used as configuration information for
that action-object.

async attibute {true|
false}

Default is false, which means that the action is
executed in the thread of the execution. If set
to true, a message will be sent to the command
executor and that component will execute the
action asynchonously in a separate transaction.

{content} optional the content of the action can be used as
configuration information for your custom action
implementations. This allows the creation of
reusable delegation classes. For more about
delegation configuration, see Section 14.2.3,
“Configuration of delegations”.

Table 14.15. Action Schema

14.4.17. script

Name Type Multiplicity Description

name attribute optional the name of the script-action. When actions are
given names, they can be looked up from the
process definition. This can be useful for runtime
actions and declaring actions only once.

accept-propagated-
events

attribute optional
[0..*]

{yes|no|true|false}. Default is yes|true. If set
to false, the action will only be executed on
events that were fired on this action's element.
for more information, see Section 6.5.4, “Event
propagation”

expression element [0..1] the beanshell script. If you don't specify variable
elements, you can write the expression as
the content of the script element (omitting the
expression element tag).

variable element [0..*] in variable for the script. If no in variables are
specified, all the variables of the current token
will be loaded into the script evaluation. Use the
in variables if you want to limit the number of
variables loaded into the script evaluation.

Table 14.16. Script Schema

14.4.18. expression

Name Type Multiplicity Description

{content} a bean shell script.

Table 14.17. Expression Schema

variable

107

14.4.19. variable

Name Type Multiplicity Description

name attribute required the process variable name

access attribute optional default is read,write. It is a comma separated
list of access specifiers. The only access
specifiers used so far are read, write and
required.

mapped-name attribute optional this defaults to the variable name. it specifies a
name to which the variable name is mapped. the
meaning of the mapped-name is dependent on
the context in which this element is used. for a
script, this will be the script-variable-name. for
a task controller, this will be the label of the task
form parameter and for a process-state, this will
be the variable name used in the sub-process.

Table 14.18. Variable Schema

14.4.20. handler

Name Type Multiplicity Description

expression attibute either this
or a class

A jPDL expression. The returned result is
transformed to a string with the toString() method.
The resulting string should match one of the
leaving transitions. See also Section 14.3,
“Expressions”.

class attibute either this
or ref-
name

the fully qualified class name of
the class that implements the
org.jbpm.graph.node.DecisionHandler
interface.

config-type attribute optional {field|bean|constructor|configuration-property}.
Specifies how the action-object should be
constructed and how the content of this element
should be used as configuration information for
that action-object.

{content} optional the content of the handler can be used as
configuration information for your custom handler
implementations. This allows the creation of
reusable delegation classes. For more about
delegation configuration, see Section 14.2.3,
“Configuration of delegations”.

Table 14.19. Handler Schema

Chapter 14. jBPM Process Definition Language (JPDL)

108

14.4.21. timer

Name Type Multiplicity Description

name attribute optional the name of the timer. If no name is specified, the
name of the enclosing node is taken. Note that
every timer should have a unique name.

duedate attribute required the duration (optionally expressed in business
hours) that specifies the time period between
the creation of the timer and the execution of
the timer. See Section 11.1.1, “Duration” for the
syntax.

repeat attribute optional {duration | 'yes' | 'true'}after a timer has been
executed on the duedate, 'repeat' optionally
specifies duration between repeating timer
executions until the node is left. If yes or true
is specified, the same duration as for the due
date is taken for the repeat. See Section 11.1.1,
“Duration” for the syntax.

transition attribute optional a transition-name to be taken when the timer
executes, after firing the timer event and
executing the action (if any).

cancel-event attribute optional this attribute is only to be used in timers of tasks.
it specifies the event on which the timer should
be cancelled. by default, this is the task-end
event, but it can be set to e.g. task-assign or
task-start. The cancel-event types can
be combined by specifying them in a comma
separated list in the attribute.

{action|script|create-
timer|cancel-timer}

element [0..1] an action that should be executed when this timer
fires

Table 14.20. Timer Schema

14.4.22. create-timer

Name Type Multiplicity Description

name attribute optional the name of the timer. The name can be used for
cancelling the timer with a cancel-timer action.

duedate attribute required the duration (optionally expressed in business
hours) that specifies the the time period between
the creation of the timer and the execution of
the timer. See Section 11.1.1, “Duration” for the
syntax.

repeat attribute optional {duration | 'yes' | 'true'}after a timer has been
executed on the duedate, 'repeat' optionally
specifies duration between repeating timer
executions until the node is left. If yes of true

cancel-timer

109

Name Type Multiplicity Description
is specified, the same duration as for the due
date is taken for the repeat. See Section 11.1.1,
“Duration” for the syntax.

transition attribute optional a transition-name to be taken when the timer
executes, after firing the the timer event and
executing the action (if any).

Table 14.21. Create Timer Schema

14.4.23. cancel-timer

Name Type Multiplicity Description

name attribute optional the name of the timer to be cancelled.

Table 14.22. Cancel Timer Schema

14.4.24. task

Name Type Multiplicity Description

name attribute optional the name of the task. Named tasks can
be referenced and looked up via the
TaskMgmtDefinition

blocking attribute optional {yes|no|true|false}, default is false. If blocking is
set to true, the node cannot be left when the task
is not finished. If set to false (default) a signal
on the token is allowed to continue execution
and leave the node. The default is set to false,
because blocking is normally forced by the user
interface.

signalling attribute optional {yes|no|true|false}, default is true. If signalling is
set to false, this task will never have the capability
of trigering the continuation of the token.

duedate attribute optional is a duration expressed in absolute or business
hours as explained in Chapter 11, Business
calendar

swimlane attribute optional reference to a swimlane. If a swimlane is specified
on a task, the assignment is ignored.

priority attribute optional one of {highest, high, normal, low, lowest}.
alternatively, any integer number can be specified
for the priority. FYI: (highest=1, lowest=5)

assignment element optional describes a delegation that will assign the task to
an actor when the task is created.

event element [0..*] supported event types: {task-create|task-start|
task-assign|task-end}. Especially for the task-
assign we have added a non-persisted property
previousActorId to the TaskInstance

Chapter 14. jBPM Process Definition Language (JPDL)

110

Name Type Multiplicity Description

exception-handler element [0..*] a list of exception handlers that applies to all
exceptions thrown by delegation classes thrown in
this process node.

timer element [0..*] specifies a timer that monitors the duration of
an execution in this task. special for task timers,
the cancel-event can be specified. by default
the cancel-event is task-end, but it can
be customized to e.g. task-assign or task-
start.

controller element [0..1] specifies how the process variables are
transformed into task form parameters. the task
form paramaters are used by the user interface to
render a task form to the user.

Table 14.23. Task Schema

14.4.25. swimlane

Name Type Multiplicity Description

name attribute required the name of the swimlane. Swimlanes
can be referenced and looked up via the
TaskMgmtDefinition

assignment element [1..1] specifies a the assignment of this swimlane. the
assignment will be performed when the first task
instance is created in this swimlane.

Table 14.24. Swimlane Schema

14.4.26. assignment

Name Type Multiplicity Description

expression attribute optional For historical reasons, this attribute expression
does not refer to the jPDL expression, but instead,
it is an assignment expression for the jBPM
identity component. For more information on how
to write jBPM identity component expressions,
see Section 8.11.2, “Assignment expressions”.
Note that this implementation has a dependency
on the jbpm identity component.

actor-id attribute optional An actorId. Can be used in conjunction with
pooled-actors. The actor-id is resolved as an
expression. So you can refer to a fixed actorId
like this actor-id="bobthebuilder". Or you
can refer to a property or method that returns a
String like this: actor-id="myVar.actorId",
which will invoke the getActorId method on the
task instance variable "myVar".

controller

111

Name Type Multiplicity Description

pooled-actors attribute optional A comma separated list of actorIds. Can be
used in conjunction with actor-id. A fixed
set of pooled actors can be specified like
this: pooled-actors="chicagobulls,
pointersisters". The pooled-actors will be
resolved as an expression. So you can also refer
to a property or method that has to return, a
String[], a Collection or a comma separated list of
pooled actors.

class attribute optional the fully qualified classname
of an implementation of
org.jbpm.taskmgmt.def.AssignmentHandler

config-type attribute optional {field|bean|constructor|configuration-property}.
Specifies how the assignment-handler-object
should be constructed and how the content of
this element should be used as configuration
information for that assignment-handler-object.

{content} optional the content of the assignment-element can
be used as configuration information for your
AssignmentHandler implementations. This allows
the creation of reusable delegation classes.
for more about delegation configuration, see
Section 14.2.3, “Configuration of delegations”.

Table 14.25. Assignment Schema

14.4.27. controller

Name Type Multiplicity Description

class attribute optional the fully qualified classname
of an implementation of
org.jbpm.taskmgmt.def.TaskControllerHandler

config-type attribute optional {field|bean|constructor|configuration-property}.
Specifies how the assignment-handler-object
should be constructed and how the content of
this element should be used as configuration
information for that assignment-handler-object.

{content} either the content of the controller is the
configuration of the specified task controller
handler (if the class attribute is specified. if no
task controller handler is specified, the content
must be a list of variable elements.

variable element [0..*] in case no task controller handler is specified by
the class attribute, the content of the controller
element must be a list of variables.

Table 14.26. Controller Schema

Chapter 14. jBPM Process Definition Language (JPDL)

112

14.4.28. sub-process

Name Type Multiplicity Description

name attribute required the name of the sub process. Can be an EL
expression, as long as it resolves to a String.
Powerful especially with late binding in the
process-state.

version attribute optional the version of the sub process. If no version is
specified, the latest version of the given process
as known while deploying the parent process-
state will be taken.

binding attribute optional indicates if the version of the sub process should
be determined when deploying the parent
process-state (default behavior), or when actually
invoking the sub process (binding="late").
When both version and binding="late"
are given then jBPM will use the version as
requested, but will not yet try to find the sub
process when the parent process-state is
deployed.

Table 14.27. Sub Process Schema

14.4.29. condition

Name Type Multiplicity Description

{content}
For
backwards
compatibility,
the
condition
can
also be
entered
with the
'expression'
attribute,
but that
attribute is
deprecated
since 3.2

required The contents of the condition element is a jPDL
expression that should evaluate to a boolean.
A decision takes the first transition (as ordered
in the processdefinition.xml) for which the
expression resolves to true. If none of the
conditions resolve to true, the default leaving
transition (== the first one) will be taken.

Table 14.28. Condition Schema

14.4.30. exception-handler

Name Type Multiplicity Description

exception-class attribute optional specifies the fully qualified name of the java
throwable class that should match this exception

exception-handler

113

Name Type Multiplicity Description
handler. If this attribute is not specified, it matches
all exceptions (java.lang.Throwable).

action element [1..*] a list of actions to be executed when an exception
is being handled by this exception handler.

Table 14.29. Exception Handler Schema

114

Chapter 15.

115

Security
This chapter documents the pluggable authentication and authorization.

On the framework part, we still need to define a set of permissions that are verified by the jbpm engine
while a process is being executed. Currently you can check your own permissions, but there is not yet
a jbpm default set of permissions.

Only one default authentication implementation is finished. Other authentication implementations
are envisioned, but not yet implemented. Authorization is optional, and there is no authorization
implementation yet. Also for authorization, there are a number of authorization implementations
envisioned, but they are not yet worked out.

But for both authentication and authorization, the framework is there to plug in your own authentication
and authorization mechanism.

15.1. Authentication
Authentication is the process of knowing on who's behalf the code is running. In case of jBPM
this information should be made available from the environment to jBPM. Cause jBPM is always
executed in a specific environment like a web application, an EJB, a swing application or some other
environment, it is always the surrounding environment that should perform authentication.

In a few situations, jBPM needs to know who is running the code. E.g. to add authentication
information in the process logs to know who did what and when. Another example is calculation of an
actor based on the current authenticated actor.

In each situation where jBPM needs to know who is running the code, the central method
org.jbpm.security.Authentication.getAuthenticatedActorId() is called. That method
will delegate to an implementation of org.jbpm.security.authenticator.Authenticator. By
specifying an implementation of the authenticator, you can configure how jBPM retrieves the currently
authenticated actor from the environment.

The default authenticator is
org.jbpm.security.authenticator.JbpmDefaultAuthenticator. That implementation
will maintain a ThreadLocal stack of authenticated actorId's. Authenticated blocks can be marked
with the methods JbpmDefaultAuthenticator.pushAuthenticatedActorId(String) and
JbpmDefaultAuthenticator.popAuthenticatedActorId(). Be sure to always put these
demarcations in a try-finally block. For the push and pop methods of this authenticator implementation,
there are convenience methods supplied on the base Authentication class. The reason that the
JbpmDefaultAuthenticator maintains a stack of actorIds instead of just one actorId is simple: it allows
the jBPM code to distinct between code that is executed on behalf of the user and code that is
executed on behalf of the jbpm engine.

See the javadocs for more information.

15.2. Authorization
Authorization is validating if an authenticated user is allowed to perform a secured operation.

The jBPM engine and user code can verify if a user is allowed to perform a given operation with the
API method org.jbpm.security.Authorization.checkPermission(Permission).

Chapter 15. Security

116

The Authorization class will also delegate that call to a configurable implementation. The interface for
plugging in different authorization strategies is org.jbpm.security.authorizer.Authorizer.

In the package org.jbpm.security.authorizer there are several examples. Most of them are
not fully implemented and none of them are tested.

Planned for a future release is the definition of a set of jBPM permissions and the verification of
those permissions by the jBPM engine. An example could be verifying that the current authenticated
user has sufficient privileges to end a task by calling Authorization.checkPermission(new
TaskPermission("end", Long.toString(id))) in the TaskInstance.end() method.

Chapter 16.

117

Test Driven Development for Workflow

16.1. Introducing TDD for workflow
Since developing process-oriented software is no different from developing any other software, we
believe that process definitions should be easily testable. This chapter shows how you can use plain
JUnit without any extensions to unit test the process definitions that you author.

The development cycle should be kept as short as possible. Changes made to the sources of software
should be immediately verifiable. Preferably, without any intermediate build steps. The examples given
below will show you how to develop and test jBPM processes without intermediate steps.

Mostly the unit tests of process definitions are execution scenarios. Each scenario is executed in one
JUnit test method and will feed in the external triggers (read: signals) into a process execution and
verifies after each signal if the process is in the expected state.

Let's look at an example of such a test. We take a simplified version of the auction process with the
following graphical representation:

Figure 16.1. The auction test process

Now, let's write a test that executes the main scenario:

public class AuctionTest extends TestCase {

 // parse the process definition
 static ProcessDefinition auctionProcess =
 ProcessDefinition.parseParResource("org/jbpm/tdd/auction.par");

 // get the nodes for easy asserting
 static StartState start = auctionProcess.getStartState();
 static State auction = (State) auctionProcess.getNode("auction");
 static EndState end = (EndState) auctionProcess.getNode("end");

 // the process instance
 ProcessInstance processInstance;

Chapter 16. Test Driven Development for Workflow

118

 // the main path of execution
 Token token;

 public void setUp() {
 // create a new process instance for the given process definition
 processInstance = new ProcessInstance(auctionProcess);

 // the main path of execution is the root token
 token = processInstance.getRootToken();
 }

 public void testMainScenario() {
 // after process instance creation, the main path of
 // execution is positioned in the start state.
 assertSame(start, token.getNode());

 token.signal();

 // after the signal, the main path of execution has
 // moved to the auction state
 assertSame(auction, token.getNode());

 token.signal();

 // after the signal, the main path of execution has
 // moved to the end state and the process has ended
 assertSame(end, token.getNode());
 assertTrue(processInstance.hasEnded());
 }
}

16.2. XML Sources
Before you can start writing execution scenario's, you need a ProcessDefinition. The easiest
way to get a ProcessDefinition object is by parsing XML. If you have code completion, type
ProcessDefinition.parse and activate code completion. Then you get the various parsing
methods. There are basically three ways to write XML that can be parsed to a ProcessDefinition
object:

16.2.1. Parsing a process archive
A process archive is a zip file that contains the process XML as the file processdefinition.xml.
The jBPM process designer reads and writes process archives.

static ProcessDefinition auctionProcess =
 ProcessDefinition.parseParResource("org/jbpm/tdd/auction.par");

Parsing an XML file

119

16.2.2. Parsing an XML file
In other situations, you might want to write the processdefinition.xml file by hand and later
package the zip file with an Ant script. In that case, you can use the JpdlXmlReader

static ProcessDefinition auctionProcess =
 ProcessDefinition.parseXmlResource("org/jbpm/tdd/auction.xml");

16.2.3. Parsing an XML String
The simplest option is to parse the XML in the unit test inline from a plain String.

static ProcessDefinition auctionProcess =
 ProcessDefinition.parseXmlString(
 "<process-definition>" +
 " <start-state name='start'>" +
 " <transition to='auction'/>" +
 " </start-state>" +
 " <state name='auction'>" +
 " <transition to='end'/>" +
 " </state>" +
 " <end-state name='end'/>" +
 "</process-definition>");

120

Chapter 17.

121

Pluggable architecture
The functionality of jBPM is split into modules. Each module has a definition and an execution (or
runtime) part. The central module is the graph module, made up of the ProcessDefinition and
the ProcessInstance. The process definition contains a graph and the process instance represents
one execution of the graph. All other functions of jBPM are grouped into optional modules. Optional
modules can extend the graph module with extra features like context (process variables), task
management, timers, ...

Figure 17.1. The pluggable architecture

The pluggable architecture in jBPM is also a unique mechanism to add custom capabilities to the
jBPM engine. Custom process definition information can be added by adding a ModuleDefinition
implementation to the process definition. When the ProcessInstance is created, it will create an
instance for every ModuleDefinition in the ProcessDefinition. The ModuleDefinition is
used as a factory for ModuleInstances.

The most integrated way to extend the process definition information is by adding the information to
the process archive and implementing a ProcessArchiveParser. The ProcessArchiveParser
can parse the information added to the process archive, create your custom ModuleDefinition and
add it to the ProcessDefinition.

public interface ProcessArchiveParser {

 void writeToArchive(
 ProcessDefinition processDefinition, ProcessArchive archive);

Chapter 17. Pluggable architecture

122

 ProcessDefinition readFromArchive(
 ProcessArchive archive, ProcessDefinition processDefinition);

}

To do its work, the custom ModuleInstance must be notified of relevant events during process
execution. The custom ModuleDefinition might add ActionHandler implementations upon
events in the process that serve as callback handlers for these process events.

Alternatively, a custom module might use Aspect Orientated Programming (AOP) to bind the custom
instance into the process execution. JBoss AOP is very well suited for this job since it is mature, easy
to learn and also part of the JBoss stack.

123

Appendix A. Revision History
Revision 1.0 Tue Aug 18 2008 Darrin Mison dmison@redhat.com

Created

mailto:dmison@redhat.com

124

	JBPM Reference Guide
	Table of Contents
	Preface
	1. Document Conventions
	1.1. Typographic Conventions
	1.2. Pull-quote Conventions
	1.3. Notes and Warnings

	2. We Need Feedback!

	Chapter 1. Introduction
	1.1. Overview
	1.2. The jPDL suite
	1.3. The jPDL graphical process designer
	1.4. The jBPM console web application
	1.5. The jBPM core library
	1.6. The JBoss jBPM identity component
	1.7. The JBoss jBPM Job Executor

	Chapter 2. Tutorial
	2.1. Hello World example
	2.2. Database example
	2.3. Context example: process variables
	2.4. Task assignment example
	2.5. Custom action example

	Chapter 3. Configuration
	3.1. Customizing factories
	3.2. Configuration properties
	3.3. Other configuration files
	3.4. Logging of optimistic concurrency exceptions
	3.5. Object factory

	Chapter 4. Persistence
	4.1. The Persistence API
	4.1.1. Relation to the configuration framework
	4.1.2. Convenience methods on JbpmContext
	4.1.3. Managed transactions
	4.1.4. Injecting the Hibernate session
	4.1.5. Injecting resources programmatically
	4.1.6. Advanced API usage

	4.2. Configuring the persistence service
	4.2.1. The DbPersistenceServiceFactory
	4.2.1.1. The Hibernate session factory
	4.2.1.2. Configuring a c3po connection pool
	4.2.1.3. Configuring a ehcache cache provider

	4.2.2. Hibernate transactions
	4.2.3. JTA transactions
	4.2.4. Customizing queries
	4.2.5. Database compatibility
	4.2.5.1. Isolation level of the JDBC connection
	4.2.5.2. Changing the jBPM DB
	4.2.5.3. The jBPM DB schema

	4.2.6. Combining your Hibernate classes
	4.2.7. Customizing the jBPM Hibernate mapping files
	4.2.8. Second level cache

	Chapter 5. Java EE Application Server Facilities
	5.1. Enterprise Beans
	5.2. jBPM Enterprise Configuration
	5.3. Hibernate Enterprise Configuration
	5.4. Client Components

	Chapter 6. Process Modeling
	6.1. Overview
	6.2. Process graph
	6.3. Nodes
	6.3.1. Node responsibilities
	6.3.2. Nodetype task-node
	6.3.3. Nodetype state
	6.3.4. Nodetype decision
	6.3.5. Nodetype fork
	6.3.6. Nodetype join
	6.3.7. Nodetype node

	6.4. Transitions
	6.5. Actions
	6.5.1. Action configuration
	6.5.2. Action references
	6.5.3. Events
	6.5.4. Event propagation
	6.5.5. Script
	6.5.6. Custom events

	6.6. Superstates
	6.6.1. Superstate transitions
	6.6.2. Superstate events
	6.6.3. Hierarchical names

	6.7. Exception handling
	6.8. Process composition
	6.9. Custom node behavior
	6.10. Graph execution
	6.11. Transaction Demarcation

	Chapter 7. Context
	7.1. Accessing variables
	7.2. Variable lifetime
	7.3. Variable persistence
	7.4. Variables scopes
	7.4.1. Variables overloading
	7.4.2. Variables overriding
	7.4.3. Task instance variable scope

	7.5. Transient variables
	7.6. Customizing variable persistence

	Chapter 8. Task Management
	8.1. Tasks
	8.2. Task instances
	8.2.1. Task instance life-cycle
	8.2.2. Task instances and graph execution

	8.3. Assignment
	8.3.1. Assignment interfaces
	8.3.2. The assignment data model
	8.3.3. The personal task list
	8.3.4. The group task list

	8.4. Task instance variables
	8.5. Task controllers
	8.6. Swimlanes
	8.7. Swimlane in start task
	8.8. Task events
	8.9. Task timers
	8.10. Customizing task instances
	8.11. The identity component
	8.11.1. The identity model
	8.11.2. Assignment expressions
	8.11.2.1. First terms
	8.11.2.2. Next terms

	8.11.3. Removing the identity component

	Chapter 9. Scheduler
	9.1. Timers
	9.2. Scheduler deployment

	Chapter 10. Asynchronous continuations
	10.1. The concept
	10.2. An example
	10.3. The job executor
	10.4. jBPM's built-in asynchronous messaging

	Chapter 11. Business calendar
	11.1. Duedate
	11.1.1. Duration
	11.1.2. Base Date
	11.1.3. Duedate Examples

	11.2. Calendar configuration

	Chapter 12. Email support
	12.1. Mail in jPDL
	12.1.1. Mail action
	12.1.2. Mail node
	12.1.3. Task assign mails
	12.1.4. Task reminder mails

	12.2. Expressions in mails
	12.3. Specifying mail recipients
	12.3.1. Multiple recipients
	12.3.2. Sending Mails to a BCC target
	12.3.3. Address resolving

	12.4. Mail templates
	12.5. Mail server configuration
	12.6. From address configuration
	12.7. Customizing mail support

	Chapter 13. Logging
	13.1. Creation of logs
	13.2. Log configurations
	13.3. Log retrieval
	13.4. Database warehousing

	Chapter 14. jBPM Process Definition Language (JPDL)
	14.1. The process archive
	14.1.1. Deploying a process archive
	14.1.2. Process versioning
	14.1.3. Changing deployed process definitions
	14.1.4. Migrating process instances

	14.2. Delegation
	14.2.1. The jBPM class loader
	14.2.2. The process class loader
	14.2.3. Configuration of delegations
	14.2.3.1. config-type field
	14.2.3.2. config-type bean
	14.2.3.3. config-type constructor
	14.2.3.4. config-type configuration-property

	14.3. Expressions
	14.4. jPDL XML Schema
	14.4.1. Validation
	14.4.2. process-definition
	14.4.3. node
	14.4.4. common node elements
	14.4.5. start-state
	14.4.6. end-state
	14.4.7. state
	14.4.8. task-node
	14.4.9. process-state
	14.4.10. super-state
	14.4.11. fork
	14.4.12. join
	14.4.13. decision
	14.4.14. event
	14.4.15. transition
	14.4.16. action
	14.4.17. script
	14.4.18. expression
	14.4.19. variable
	14.4.20. handler
	14.4.21. timer
	14.4.22. create-timer
	14.4.23. cancel-timer
	14.4.24. task
	14.4.25. swimlane
	14.4.26. assignment
	14.4.27. controller
	14.4.28. sub-process
	14.4.29. condition
	14.4.30. exception-handler

	Chapter 15. Security
	15.1. Authentication
	15.2. Authorization

	Chapter 16. Test Driven Development for Workflow
	16.1. Introducing TDD for workflow
	16.2. XML Sources
	16.2.1. Parsing a process archive
	16.2.2. Parsing an XML file
	16.2.3. Parsing an XML String

	Chapter 17. Pluggable architecture
	Appendix A. Revision History

