
JBoss Enterprise
SOA Platform 5.0

JBoss Rules 5
Reference Guide

Your complete guide to using JBoss Rules
5 with the JBoss Enterprise SOA Platform.

Mark Proctor

Michael Neale

Edson Tirelli

JBoss Rules 5 Reference Guide

JBoss Enterprise SOA Platform 5.0 JBoss Rules 5 Reference
Guide
Your complete guide to using JBoss Rules 5 with the JBoss
Enterprise SOA Platform.
Edition 1.0

Author Mark Proctor
Author Michael Neale
Author Edson Tirelli
Editor Darrin Mison dmison@redhat.com

Copyright © 2009 Red Hat, Inc.. This material may only be distributed subject to the terms and
conditions set forth in the Open Publication License, V1.0, (the latest version is presently available at
http://www.opencontent.org/openpub/).

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, MetaMatrix, Fedora, the Infinity
Logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other countries.

Linux® is the registered trademark of Linus Torvalds in the United States and other countries.

All other trademarks are the property of their respective owners.

 1801 Varsity Drive
 Raleigh, NC 27606-2072 USA
 Phone: +1 919 754 3700
 Phone: 888 733 4281
 Fax: +1 919 754 3701
 PO Box 13588 Research Triangle Park, NC 27709 USA

This guide contains a complete overview and detailed reference for JBoss Rules 5 for use with the
JBoss Enterprise SOA Platform.

mailto:dmison@redhat.com
http://www.opencontent.org/openpub/

iii

Preface vii
1. Document Conventions .. vii

1.1. Typographic Conventions .. vii
1.2. Pull-quote Conventions ... viii
1.3. Notes and Warnings .. ix

2. We Need Feedback! ... x

1. Introduction 1
1.1. What is a Rule Engine? ... 1
1.2. Why use a Rule Engine? .. 4

1.2.1. Advantages of a Rule Engine ... 5
1.2.2. When should you use a Rule Engine? .. 6
1.2.3. When not to use a Rule Engine ... 7
1.2.4. Strong and Loose Coupling .. 7

2. Quick Start 9
2.1. The Basics ... 9

2.1.1. State-less Knowledge Session .. 9
2.1.2. State-ful Knowledge Session ... 12

2.2. A Little Theory .. 16
2.2.1. Methods versus Rules .. 16
2.2.2. Cross Products .. 17
2.2.3. Activations, Agenda and Conflict Sets .. 18

2.3. More on Building and Deploying .. 22
2.3.1. Using "Change Sets" to Add Rules .. 22
2.3.2. Knowledge Agent .. 23

3. User Guide 25
3.1. Building .. 25

3.1.1. Building with Code ... 26
3.1.2. Building via Configurations and the Change Set XML 29

3.2. Deploying ... 32
3.2.1. KnowledgePackage and Knowledge Definitions ... 32
3.2.2. Knowledge Bases ... 34
3.2.3. In-Process Building and Deployment ... 35
3.2.4. Building and Deployment as Separate Processes ... 36
3.2.5. State-ful Knowledge Sessions and Knowledge Base Modifications 37
3.2.6. KnowledgeAgent .. 37

3.3. Running ... 40
3.3.1. KnowledgeBase ... 40
3.3.2. StatefulKnowledgeSession ... 41
3.3.3. KnowledgeRuntime .. 41
3.3.4. Agenda ... 48
3.3.5. Event Model .. 51
3.3.6. KnowledgeRuntimeLogger .. 53
3.3.7. StatelessKnowledgeSession ... 54
3.3.8. Pipeline ... 57
3.3.9. Commands and the CommandExecutor .. 64
3.3.10. Marshalling .. 74
3.3.11. Persistence and Transactions ... 76

4. The Rule Language 79
4.1. Overview .. 79

JBoss Rules 5 Reference Guide

iv

4.1.1. A rule file .. 79
4.1.2. What makes a rule .. 79

4.2. Keywords ... 80
4.3. Comments ... 81

4.3.1. Single line comment .. 81
4.3.2. Multi-line comment ... 81

4.4. Error Messages .. 82
4.4.1. Message format ... 82
4.4.2. Error Messages Description ... 83

4.5. Package .. 86
4.5.1. import ... 87
4.5.2. global .. 88

4.6. Function ... 89
4.7. Type Declaration .. 90

4.7.1. Declaring New Types ... 91
4.7.2. Declaring Metadata .. 92
4.7.3. Declaring Metadata for Existing Types .. 93
4.7.4. Accessing Declared Types from the Application Code .. 94

4.8. Rule ... 96
4.8.1. Rule Attributes ... 97
4.8.2. Left Hand Side (when) Conditional Elements ... 100
4.8.3. The Right Hand Side (then) .. 128
4.8.4. A Note on Auto-boxing and Primitive Types ... 130

4.9. Query ... 130
4.10. Domain Specific Languages .. 131

4.10.1. When to use a DSL ... 131
4.10.2. Editing and managing a DSL .. 132
4.10.3. Using a DSL in your rules .. 134
4.10.4. Adding constraints to facts ... 134
4.10.5. How it works .. 136
4.10.6. Creating a DSL from scratch .. 136
4.10.7. Scope and keywords .. 137
4.10.8. DSLs in the BRMS and IDE ... 137

4.11. XML Rule Language ... 137
4.11.1. When to use XML .. 137
4.11.2. The XML format ... 137
4.11.3. Automatic transforming between formats (XML and DRL) 142

5. Authoring 143
5.1. Decision tables in spreadsheets .. 143

5.1.1. When to use Decision tables .. 143
5.1.2. Overview ... 143
5.1.3. How decision tables work ... 145
5.1.4. Keywords and syntax ... 148
5.1.5. Creating and integrating Spreadsheet based Decision Tables 154
5.1.6. Managing business rules in decision tables. .. 155

6. The Java Rule Engine API 157
6.1. Introduction ... 157
6.2. How To Use .. 157

6.2.1. Building and Registering RuleExecutionSets ... 157
6.2.2. Using State-ful and Stateless RuleSessions ... 159

v

6.3. References ... 161

7. The JBoss Rules IDE 163
7.1. Outline of Features ... 163
7.2. Creating a Rule Project ... 164
7.3. Creating a New Rule and Wizards ... 166
7.4. Textual Rule Editor .. 169
7.5. The Guided Editor .. 170
7.6. JBoss Rules Views ... 172

7.6.1. The Working Memory View ... 172
7.6.2. The Agenda View ... 173
7.6.3. The Global Data View ... 173
7.6.4. The Audit View .. 174

7.7. Domain-Specific Languages ... 175
7.7.1. Editing languages ... 176

7.8. The Rete View .. 177
7.9. Large .drl Files .. 178
7.10. Debugging Rules .. 179

7.10.1. Creating Break-Points .. 179
7.10.2. Debugging Rules .. 179

8. Examples 183
8.1. Hello World ... 183
8.2. State Example .. 189

8.2.1. Understanding the State Example .. 189
8.3. Fibonacci Example .. 196
8.4. Banking Tutorial .. 200
8.5. Pricing Rule Decision Table Example .. 214

8.5.1. Executing the Example ... 214
8.5.2. The Decision Table ... 215

8.6. Pet Store Example .. 217
8.7. Sudoku Example ... 229

8.7.1. Overview of Sudoku ... 229
8.7.2. Running the Example ... 229
8.7.3. Java Source and Rules Overview ... 233
8.7.4. Sudoku Validator Rules (validatorSudoku.drl) .. 234
8.7.5. Sudoku Solving Rules (solverSudoku.drl) .. 234
8.7.6. Suggestions for Future Developments .. 235

8.8. Miss Manners and Benchmarking .. 236
8.8.1. Introduction .. 237
8.8.2. In-Depth Analysis ... 239
8.8.3. Output Summary .. 245

A. Revision History 249

vi

vii

Preface

1. Document Conventions
This manual uses several conventions to highlight certain words and phrases and draw attention to
specific pieces of information.

In PDF and paper editions, this manual uses typefaces drawn from the Liberation Fonts1 set. The
Liberation Fonts set is also used in HTML editions if the set is installed on your system. If not,
alternative but equivalent typefaces are displayed. Note: Red Hat Enterprise Linux 5 and later includes
the Liberation Fonts set by default.

1.1. Typographic Conventions
Four typographic conventions are used to call attention to specific words and phrases. These
conventions, and the circumstances they apply to, are as follows.

Mono-spaced Bold

Used to highlight system input, including shell commands, file names and paths. Also used to highlight
key caps and key-combinations. For example:

To see the contents of the file my_next_bestselling_novel in your current
working directory, enter the cat my_next_bestselling_novel command at the
shell prompt and press Enter to execute the command.

The above includes a file name, a shell command and a key cap, all presented in Mono-spaced Bold
and all distinguishable thanks to context.

Key-combinations can be distinguished from key caps by the hyphen connecting each part of a key-
combination. For example:

Press Enter to execute the command.

Press Ctrl-Alt-F1 to switch to the first virtual terminal. Press Ctrl-Alt-F7 to return
to your X-Windows session.

The first sentence highlights the particular key cap to press. The second highlights two sets of three
key caps, each set pressed simultaneously.

If source code is discussed, class names, methods, functions, variable names and returned values
mentioned within a paragraph will be presented as above, in Mono-spaced Bold. For example:

File-related classes include filesystem for file systems, file for files, and dir for
directories. Each class has its own associated set of permissions.

Proportional Bold

This denotes words or phrases encountered on a system, including application names; dialogue
box text; labelled buttons; check-box and radio button labels; menu titles and sub-menu titles. For
example:

1 https://fedorahosted.org/liberation-fonts/

https://fedorahosted.org/liberation-fonts/
https://fedorahosted.org/liberation-fonts/

Preface

viii

Choose System > Preferences > Mouse from the main menu bar to launch Mouse
Preferences. In the Buttons tab, click the Left-handed mouse check box and click
Close to switch the primary mouse button from the left to the right (making the mouse
suitable for use in the left hand).

To insert a special character into a gedit file, choose Applications > Accessories
> Character Map from the main menu bar. Next, choose Search > Find… from the
Character Map menu bar, type the name of the character in the Search field and click
Next. The character you sought will be highlighted in the Character Table. Double-
click this highlighted character to place it in the Text to copy field and then click the
Copy button. Now switch back to your document and choose Edit > Paste from the
gedit menu bar.

The above text includes application names; system-wide menu names and items; application-specific
menu names; and buttons and text found within a GUI interface, all presented in Proportional Bold and
all distinguishable by context.

Note the > shorthand used to indicate traversal through a menu and its sub-menus. This is to avoid
the difficult-to-follow 'Select Mouse from the Preferences sub-menu in the System menu of the main
menu bar' approach.

Mono-spaced Bold Italic or Proportional Bold Italic

Whether Mono-spaced Bold or Proportional Bold, the addition of Italics indicates replaceable or
variable text. Italics denotes text you do not input literally or displayed text that changes depending on
circumstance. For example:

To connect to a remote machine using ssh, type ssh username@domain.name at
a shell prompt. If the remote machine is example.com and your username on that
machine is john, type ssh john@example.com.

The mount -o remount file-system command remounts the named file
system. For example, to remount the /home file system, the command is mount -o
remount /home.

To see the version of a currently installed package, use the rpm -q package
command. It will return a result as follows: package-version-release.

Note the words in bold italics above — username, domain.name, file-system, package, version and
release. Each word is a placeholder, either for text you enter when issuing a command or for text
displayed by the system.

Aside from standard usage for presenting the title of a work, italics denotes the first use of a new and
important term. For example:

When the Apache HTTP Server accepts requests, it dispatches child processes
or threads to handle them. This group of child processes or threads is known as
a server-pool. Under Apache HTTP Server 2.0, the responsibility for creating and
maintaining these server-pools has been abstracted to a group of modules called
Multi-Processing Modules (MPMs). Unlike other modules, only one module from the
MPM group can be loaded by the Apache HTTP Server.

1.2. Pull-quote Conventions
Two, commonly multi-line, data types are set off visually from the surrounding text.

Notes and Warnings

ix

Output sent to a terminal is set in Mono-spaced Roman and presented thus:

books Desktop documentation drafts mss photos stuff svn
books_tests Desktop1 downloads images notes scripts svgs

Source-code listings are also set in Mono-spaced Roman but are presented and highlighted as
follows:

package org.jboss.book.jca.ex1;

import javax.naming.InitialContext;

public class ExClient
{
 public static void main(String args[])
 throws Exception
 {
 InitialContext iniCtx = new InitialContext();
 Object ref = iniCtx.lookup("EchoBean");
 EchoHome home = (EchoHome) ref;
 Echo echo = home.create();

 System.out.println("Created Echo");

 System.out.println("Echo.echo('Hello') = " + echo.echo("Hello"));
 }

}

1.3. Notes and Warnings
Finally, we use three visual styles to draw attention to information that might otherwise be overlooked.

Note
A Note is a tip or shortcut or alternative approach to the task at hand. Ignoring a note
should have no negative consequences, but you might miss out on a trick that makes your
life easier.

Important
Important boxes detail things that are easily missed: configuration changes that only
apply to the current session, or services that need restarting before an update will apply.
Ignoring Important boxes won't cause data loss but may cause irritation and frustration.

Preface

x

Warning
A Warning should not be ignored. Ignoring warnings will most likely cause data loss.

2. We Need Feedback!
If you find a typographical error in this manual, or if you have thought of a way to make this manual
better, we would love to hear from you! Please submit a report in Bugzilla: http://bugzilla.redhat.com/
bugzilla/ against the product Documentation.

When submitting a bug report, be sure to mention the manual's identifier:
JBoss_Rules_5_Reference_Guide

If you have a suggestion for improving the documentation, try to be as specific as possible when
describing it. If you have found an error, please include the section number and some of the
surrounding text so we can find it easily.

http://bugzilla.redhat.com/bugzilla/
http://bugzilla.redhat.com/bugzilla/

Chapter 1.

1

Introduction

1.1. What is a Rule Engine?
Artificial Intelligence (A.I.) is a very broad research area that focuses on "Making computers think
like people" and includes disciplines such as Neural Networks, Genetic Algorithms, Decision Trees,
Frame Systems and Expert Systems. Knowledge representation is the area of A.I. concerned with
how knowledge is represented and manipulated. Expert Systems use Knowledge representation
to facilitate the codification of knowledge into a knowledge base which can be used for reasoning,
i.e. we can process data with this knowledge base to infer conclusions. Expert Systems are also
known as Knowledge-based Systems and Knowledge-based Expert Systems and are considered to
be "applied artificial intelligence". The process of developing with an Expert System is Knowledge
Engineering. EMYCIN was one of the first "shells" for an Expert System, which was created from the
MYCIN medical diagnosis Expert System. Whereas early Expert Systems had their logic hard-coded,
"shells" separated the logic from the system, providing an easy to use environment for user input.
JBoss Rules is a Rule Engine that uses the rule-based approach to implement an Expert System and
is more correctly classified as a Production Rule System.

The term "Production Rule" originates from formal grammars where it is described as "an abstract
structure that describes a formal language precisely, i.e., a set of rules that mathematically delineates
a (usually infinite) set of finite-length strings over a (usually finite) alphabet" (http://en.wikipedia.org/
wiki/Formal_grammar).

Business Rule Management Systems build additional value on top of a general purpose Rule
Engine by providing business user focused systems for rule creation, management, deployment,
collaboration, analysis and end user tools. Further adding to this value is the fast evolving and popular
methodology "Business Rules Approach", which is a helping to formalize the role of Rule Engines in
the enterprise.

The term Rule Engine is quite ambiguous in that it can be any system that uses rules, in any form, that
can be applied to data to produce outcomes. This includes simple systems like form validation and
dynamic expression engines. The book "How to Build a Business Rules Engine (2004)" by Malcolm
Chisholm exemplifies this ambiguity. The book is actually about how to build and alter a database
schema to hold validation rules. The book then shows how to generate VB code from those validation
rules to validate data entry. While a very valid and useful topic for some, this caused quite a surprise
to this author, unaware at the time in the subtleties of Rules Engines' differences, who was hoping to
find some hidden secrets to help improve the JBoss Rules engine. JBoss jBPM uses expressions and
delegates in its Decision nodes which control the transitions in a Workflow. At each node it evaluates,
there is a rule set that dictates the transition to undertake, and so this is also a Rule Engine. While
a Production Rule System is a kind of Rule Engine and also an Expert System, the validation and
expression evaluation Rule Engines mentioned previously are not Expert Systems.

A Production Rule System is Turing complete, with a focus on knowledge representation to express
propositional and first order logic in a concise, non-ambiguous and declarative manner. The brain
of a Production Rules System is an Inference Engine that is able to scale to a large number of rules
and facts. The Inference Engine matches facts and data against Production Rules - also called
Productions or Rules - to infer conclusions which result in actions. A Production Rule is a two-part
structure using First Order Logic for reasoning over knowledge representation.

when

http://en.wikipedia.org/wiki/Formal_grammar
http://en.wikipedia.org/wiki/Formal_grammar

Chapter 1. Introduction

2

 <conditions>
then
 <actions>

The process of matching the new or existing facts against Production Rules is called Pattern Matching,
which is performed by the Inference Engine. The most commonly used algorithms used for Pattern
Matching are Linear, Rete, Treat, and Leaps.

JBoss Rules implements and extends the Rete algorithm. The Rete implementation used by JBoss
Rules is called ReteOO, an enhanced and optimized implementation of the Rete algorithm for
Object Oriented systems. The most common enhancements to Rete based systems are covered in
"Production Matching for Large Learning Systems (Rete/UL)"(1995) by Robert B. Doorenbos.

The Rules are stored in the Production Memory and the facts that the Inference Engine matches
against the Working Memory. Facts are asserted into the Working Memory where they may then
be modified or retracted. A system with a large number of rules and facts may result in many rules
being true for the same fact assertion, these rules are said to be in conflict. The Agenda manages the
execution order of these conflicting rules using a Conflict Resolution strategy.

Figure 1.1. High-level View of a Rule Engine

There are two methods of execution for a Production Rule Systems, Forward Chaining and Backward
Chaining. Systems that implement both methods are called Hybrid Production Rule Systems.
Understanding these two modes of operation are key to understanding the differences between
Production Rule Systems and how to optimize them.

Forward Chaining
Forward chaining is 'data-driven', it reacts to data presented to it. Facts are inserted into the working
memory which results in one or more rules being true and scheduled for execution by the Agenda.

JBoss Rules is a Forward Chaining engine.

What is a Rule Engine?

3

Figure 1.2. Forward Chaining

Backward Chaining
Backward chaining is 'goal-driven'. The system starts with a conclusion which the engine tries to
satisfy. If this conclusion cannot be satisfied the engine searches for sub goals, conclusions that will
help satisfy a part of the current goal. It continues this process until either the initial conclusion is
satisfied or there are no more unsatisfied sub goals. Prolog is an example of a Backward Chaining
engine.

Chapter 1. Introduction

4

Figure 1.3. Backward Chaining

Support for Backward Chaining is planned for a future release of JBoss Rules.

1.2. Why use a Rule Engine?
The most frequently asked questions regarding Rules Engines are:

Advantages of a Rule Engine

5

1. When should you use a rule engine?

2. What advantage does a rule engine have over hand coded "if...then" approaches?

3. Why should you use a rule engine instead of a scripting framework, like BeanShell?

We will attempt to address these questions below.

1.2.1. Advantages of a Rule Engine
• Declarative Programming

Rule engines allow you to say "What to do", not "How to do it".

Using rules can make it very easy to express solutions to difficult problems and consequently have
those solutions verified. Declarative rules are much easier to read then imperative code.

Rule systems are not only capable of solving very hard problems but also providing an explanation
of how the solution was arrived at and why each decision along the way was made. This is not easy
with other AI systems like neural networks.

• Logic and Data Separation

Your data is in your domain objects, the logic is in the rules. This is a fundamental break from
the object-orientated coupling of data and logic, which can be an advantage or a disadvantage
depending on your point of view. The advantage is that the logic can be much easier to maintain
when there are changes in the future, because it is all laid out in rules. This can be especially true
if the logic is cross-domain or multi-domain logic. Instead of the logic being spread across many
domain objects or controllers, it can all be organized in one or more very distinct rules files.

• Speed and Scalability

The Rete algorithm,the Leaps algorithm, and their descendants such as JBoss Rules' ReteOO,
provide very efficient ways of matching rule patterns to your domain object data. These are
especially efficient when you have data sets that only change very slightly each time as the rule
engine can remember past matches. These algorithms are battle proven.

• Centralization of Knowledge

By using rules, you create a repository of knowledge (a knowledge base) which is executable. This
means it's a single point of truth, for business policy for instance. Ideally rules are so readable that
they can also serve as documentation.

• Tool Integration

Tools such as Eclipse and Web based user interfaces such as the JBoss Enterprise BRMS Platform
provide ways to edit and manage rules and get immediate feedback, validation and content
assistance. Auditing and debugging tools are also available.

• Explanation Facility

Rule systems can provide an "explanation facility" by logging the decisions made by the rule engine
along with why the decisions were made.

• Understandable Rules

Chapter 1. Introduction

6

By creating object models and Domain Specific Languages that model your problem domain
effectively you can write rules that look very close to natural language. These rules can be very
understandable to non-technical domain experts.

1.2.2. When should you use a Rule Engine?
The shortest answer to this is "when there is no satisfactory traditional programming approach to solve
the problem.". Given that short answer, some more explanation is required. The reason why there is
no "traditional" approach is possibly one of the following:
• The problem is just too complex for traditional code.

The problem may not be complex, but you can't see a robust way of building it.

• There are no obvious traditional solutions or the problem isn't fully understood.

• The logic changes often

The logic itself may be simple but the rules change quite often. In many organizations software
releases are rare and rules can help provide the "agility" that is needed and expected in a
reasonably safe way.

• Domain experts and business analysts are readily available, but are nontechnical.

Domain experts possess a wealth of knowledge about business rules and processes. They typically
are nontechnical, but can be very logical. Rules can allow them to express the logic in their own
terms. Of course, they still have to think critically and be capable of logical thinking. Many people in
nontechnical positions do not have training in formal logic, so be careful and work with them, as by
codifying business knowledge in rules, you will often expose problems with how the business rules
and processes are currently understood.

If rules are a new technology for your project teams, the overhead in getting going must be factored in.
It is not a trivial technology, but this document tries to make it easier to understand.

Typically you would use a rule engine to separate key parts of your business logic from your
application. This is in opposition to the object-orientated (OO) concept of encapsulating all the logic
inside your objects. This does not mean that you throw out OO practices away as business logic is
only one part of your application. However you should consider a rule engine if your application code
is becoming increasing complicated by conditionals (if, else, switch), excessive strategy patterns or
other business logic that requires frequent change. If you are faced with tough problems of which there
are no algorithms or patterns for, consider using rules.

Rules could be used embedded in your application or perhaps as a service. Often a rule engine works
best as "stateful" component, being an integral part of an application. However, there have been
successful cases of creating reusable rule services which are stateless.

For your organization it is important to decide about the process you will use for updating rules in
systems that are in production. The options are many, but different organizations have different
requirements. Often, rules maintenance is out of the control of the application vendors or project
developers.

When not to use a Rule Engine

7

1.2.3. When not to use a Rule Engine
Rules engines are not designed to handle workflow or process executions. In the excitement of
working with rules engines, that people sometimes forget that a rules engine is only one piece of a
complex application or solution.

In some organizations rule engines are seen as a way of being able to update an application's
behavior without the complications of having to formally re-deploy the application within their
enterprise. In such circumstances it should be considered that rule engines work most effectively
when the rules can be written in a declarative manner. If this cannot be done then you should consider
alternative solutions such as data-driven designs, scripting engines or process engines.

Data-driven systems store meta-data that changes your applications behavior. These can work well
when the control can remain relatively limited. However they often either grow to complex to maintain
if extended too much or cause the application to stagnate as they are too inflexible.

Scripting engines separate your imperative business logic from your application. Your business logic
is usually written in a simpler scripting language that does not need to be compiled. They are easy
to implement and are a familiar environment for many imperative programmers. The downside of
scripting engines is that you have created a tight coupling of your application to the scripts and such
imperative scripts can easily grow in complexity and become difficult to maintain. When evaluating rule
engines you may notice that some rule engines are really scripting engines.

Process and Workflow Engines such as jBPM allow you to graphically or programmatically describe
steps in a process. Those steps can also involve decision points which can be considered simple
rules. Process and rule engines complement each other very well, so they are not mutually exclusive.

1.2.4. Strong and Loose Coupling
No doubt you have heard terms like "tight coupling" and "loose coupling" in systems design. Generally
people assert that "loose" or "weak" coupling is preferable in design terms, due to the added flexibility
it affords. Similarly, you can have "strongly coupled" and "weakly coupled" rules. Strongly coupled
in this sense means that one rule "firing" will clearly result in another rule firing, and so on; in other
words, there is a clear (probably obvious) chain of logic. If your rules are all strongly coupled, the
chances are that the will turn out to be inflexible, and, more significantly, that a rule engine is an
overkill. A clear chain can be hard coded, or implemented using a Decision Tree. This is not to say that
strong coupling is inherently bad, but it is a point to keep in mind when considering a rule engine and
the way you capture the rules. "Loosely" coupled rules should result in a system that allows rules to be
changed, removed and added without requiring changes to other, unrelated rules.

8

Chapter 2.

9

Quick Start

2.1. The Basics
For beginners, JBoss Rules™ can be overwhelming because there is so much functionality provided
and the software can deal with many different use cases. The purpose of this chapter is to introduce
the basics of this functionality with some very simple examples.

2.1.1. State-less Knowledge Session
A state-less (without inference) session, is the simplest use-case. A stateless session can be called
like a function, passing it some data and then receiving some results back. Some common use cases
for state-less sessions are, (but not limited to), the following:

• Validation: for example, "Is this person eligible for a mortgage?"

• Calculation: for example, "Compute a mortgage premium for me."

• Routing and filtering: for example "Filtering my incoming messages, such as e.-mails, into folders or
sendg incoming messages to a destination."

You will start with a simple example, involving a driving license application. First of all you need your
data, this being the fact that will be passed to your rule.

package com.company.license;

public class Applicant
{
 private String name;
 private int age;
 private boolean valid;

 public Applicant (String name, int age, boolean valid)
 {
 this.name = name;
 this.age = age;
 this.valid = valid;
 }

 //add getters & setters here

}

Now that you possess your data model, you can write your first rule. This rule will perform a simple
validation to disqualify any applicant younger than eighteen years of age.

package com.company.license;

rule "Is of valid age"
when
 $a : Applicant(age < 18)

Chapter 2. Quick Start

10

then
 $a.setValid(false);
end

When the Applicant object is inserted into the rule engine, it is evaluated against the constraints
of each rule to see which, if any, it matches. There is always an implied constraint of "object type"
and, then, there can be any number of explicit field constraints. These constraints are referred to as a
pattern and this process is often referred to as pattern matching. When an inserted object satisfies all
the constraints of a rule it is said to be matched.

In the "Is of valid age" rule there are two constraints:
1. the fact being matched against must be of type Applicant, and

2. the value of age must be less than 18

The $a is a binding variable which allows the matched object to be referenced in the rule's
consequence (where its properties can be updated.) The dollar character ('$') is optional but it helps to
differentiate variable names from field names.

For the moment, one will assume that the rules are in the same folder as the classes. This is so that
one can use the "classpath resource loader" to build your first Knowledge Base. "Knowledge Base" is
the name given to a collection of rules, which have been compiled by the KnowledgeBuilder.

KnowledgeBuilder kbuilder = KnowledgeBuilderFactory.newKnowledgeBuilder();
kbuilder.add(ResourceFactory.newClassPathResource(
 "licenseApplication.drl", getClass()), ResourceType.DRL);
if (kbuilder.hasErrors()) {
 System.err.println(kbuilder.getErrors().toString());
}

The piece of code quoted above searches the classpath for the licenseApplication.drl
file, by using the method entitled newClassPathResource(). The ResourceType is written in
the JBoss Rules Rule Language (DRL). Once the .drl file has been added, one can check the
KnowledgeBuilder for any errors. If there are no errors, we are now ready to build our session and
execute against some data.

One can then execute the data against the rules. Since the applicant is under the age of eighteen, the
application is marked as "invalid."

KnowledgeBase kbase = KnowledgeBaseFactory.newKnowledgeBase();
kbase.addKnowledgePackages(kbuilder.getKnowledgePackages());
StatelessKnowledgeSession ksession = kbase.newStatelessKnowledgeSession();
Applicant applicant = new Applicant("Mr John Smith", 16, true);

assertTrue(applicant.isValid());
ksession.execute(applicant);
assertFalse(applicant.isValid());

So far the data has consisted of but a single object, yet what if one wanted to use more than this? You
can execute against any object-implementing Iterable, such as a collection. In this next case, you
will add another class called Application. This contains the application's date. You will also move
the Boolean field entitled valid to the Application class, updating the constructors as appropriate.

 State-less Knowledge Session

11

public class Applicant {
 private String name;
 private int age;

 public Applicant (String name, int age)
 {
 this.name = name;
 this.age = age;
 }
 // getter and setter methods here
}

public class Application {
 private Date dateApplied;
 private boolean valid;

 public Application (boolean valid)
 {
 this.valid = valid;
 }
 // getter and setter methods here

}

One can also add another rule to validate that the application was made within a legitimate period of
time.

package com.company.license

rule "Is of valid age"
when
 Applicant(age < 18)
 $a : Application()
then
 $a.setValid(false);
end

rule "Application was made this year"
when
 $a : Application(dateApplied > "01-jan-2009")
then
 $a.setValid(false);
end

Unfortunately, a Java array does not implement the Iterable interface, so one must use the JDK
converter method, which commences with the line, Arrays.asList(...). The code shown below
executes against an iterable list, whereby all collection elements are inserted before any matched
rules are fired.

StatelessKnowledgeSession ksession = kbase.newStatelessKnowledgeSession();

Chapter 2. Quick Start

12

kbase.addKnowledgePackages(kbuilder.getKnowledgePackages());
Applicant applicant = new Applicant("Mr John Smith", 16);
Application application = new Application(true);
assertTrue(application.isValid());
ksession.execute(Arrays.asList(new Object[] {application, applicant}));
assertFalse(application.isValid());

The methods entitled execute(Object object) and execute(Iterable objects) are
actually wrappers for a further method called execute(Command command) which is from the
interface BatchExecutor.

A CommandFactory is used to create instructions, so that the following is equivalent to
execute(Iterable it):

ksession.execute(
 CommandFactory.newInsertElements(Arrays.asList(new Object[]
 {application,applicant}))
);

The BatchExecutor and CommandFactory are particularly useful when working with multiple
commands and result output identifiers.

List<Command> cmds = new ArrayList<Command>();
cmds.add(
 CommandFactory.newInsertObject(new Person("Mr John Smith"), "mrSmith"));
cmds.add(
 CommandFactory.newInsertObject(new Person("Mr John Doe"), "mrDoe"));

ExecutionResults results =
 ksession.execute(CommandFactory.newBatchExecution(cmds));

assertEquals(new Person("Mr John Smith"), results.getValue("mrSmith"));

CommandFactory supports many other Commands that can be used in the BatchExecutor like
StartProcess, Query, and SetGlobal.

2.1.2. State-ful Knowledge Session
State-ful sessions are live longer and allow iterative changes to be made to facts over time. Just some
of the many common use-cases for state-ful sessions are as follows:

• Monitoring. An example would be stock market monitoring and analysis for semi-automatic buying.

• Diagnostics. Some examples would be fault-finding and medical diagnostics

• Logistic. Some examples would be parcel tracking and delivery provisioning

• Compliance. An example would be validation of legality for market trades.

In contrast to a state-less session, in this case the dispose() method must be called afterwards
to ensure there are no memory leaks. This is due to the fact that the Knowledge Base contains
references to state-ful knowledge sessions when they are created. StatefulKnowledgeSession

 State-ful Knowledge Session

13

also supports the BatchExecutor interface, like StatelessKnowledgeSession, the only
difference being that the FireAllRules command is not automatically called at the end in this case.

We will illustrate the monitoring use case with an example of raising a fire alarm. Our model
represents rooms in a house, each of which has one sprinkler. A fire can start in any of the rooms.

public class Room
{
 private String name
 // getter and setter methods here
}

public classs Sprinkler
{
 private Room room;
 private boolean on;
 // getter and setter methods here
}

public class Fire
{
 private Room room;
 // getter and setter methods here
}

public class Alarm
{
}

In the previous section on state-less sessions, you were introduced to the concepts of inserting and
matching against data. Those examples used a single object and literal constraints. Now that you
have more than one piece of data, the rules must express the relationships between those objects,
(such as a sprinkler being in a certain room.) One can achieve this by using a binding variable as a
constraint in a pattern. This results in what are called cross products, which are discussed more fully in
Section 2.2.2, “ Cross Products ”.

An instance of the Fire class is created for that room when a conflagration occurs. The instance
is then inserted into the session. The rule uses a binding on the room field of the Fire object to
constrain matching to the currently-switched off Sprinkler for that room. When this rule fires and the
consequence is executed, the sprinkler is turned on.

rule "When there is a fire turn on the sprinkler"
when
 Fire($room : room)
 $sprinkler : Sprinkler(room == $room, on == false)
then
 modify($sprinkler) { setOn(true) };
 System.out.println("Turn on the sprinkler for room "+$room.getName());
end

Whereas the state-less session employs standard Java syntax to modify a field, in the above rule
one uses the modify statement. (It acts much like a "with" statement.) It may contain a series of

Chapter 2. Quick Start

14

comma-separated Java expressions, which are, to all intents and purposes, calls to object setters
that have been selected by the modify statement's control expression. They modify the data and
make the engine aware of the changes so that it can "reason" over them once more. This process is
termed inference and it is key to a state-ful session's operation. (By contrast, state-less sessions do
not use inference, so the engine does not need to be aware of changes to data.) Inference can also be
explicitly turned off via the sequential mode.

So far, you have seen rules that tell you when matching data exists but what happens when it does not
exist? How does one determine that a fire has been extinguished, (or, to put it in programming terms,
that there is not a Fire object any more?) Previously, the constraints have been sentences according
to "Propositional Logic," whereby the engine is constraining against individual instances. JBoss Rules
also has support for "First Order Logic," which allows you to look at sets of data. A pattern under the
keyword "not" matches only when something does not exist.

The example rule given below turns the sprinkler off when the fire in which it resides room has been
extinguished:

rule "When the fire is gone turn off the sprinkler"
when
 $room : Room()
 $sprinkler : Sprinkler(room == $room, on == true)
 not Fire(room == $room)
then
 modify($sprinkler) { setOn(false) };
 System.out.println("Turn off the sprinkler for room "+$room.getName());
end

In this example, whilst there is one sprinkler for each room, there is just a single alarm for the entire
building. An Alarm object is created when a fire occurs, but only one Alarm is needed for the entire
building, no matter how many fires there may be. Previously "not" was introduced to match the
absence of a fact; now one can use its complement, "exists" which matches one or more instances
of some category.

rule "Raise the alarm when we have one or more fires"
when
 exists Fire()
then
 insert(new Alarm());
 System.out.println("Raise the alarm");
end

Likewise, when there are no fires you will want to remove the alarm, so the "not" keyword can be
used again for this purpose.

rule "Cancel the alarm when all the fires have gone"
when
 not Fire()
 $alarm : Alarm()
then
 retract($alarm);

 State-ful Knowledge Session

15

 System.out.println("Cancel the alarm");
end

Finally, a general health status message is printed both when the application first starts and also after
the alarm is removed and all sprinklers have been turned off.

rule "Status output when things are ok"
when
 not Alarm()
 not Sprinkler(on == true)
then
 System.out.println("Everything is ok");
end

The above rules should be stored in a file called fireAlarm.drl. Save this file in a subdirectory on
the classpath, as you did in the "state-less session" example. You can then build a Knowledge Base,
as you did before, using the new name fireAlarm.drl.

KnowledgeBuilder kbuilder = KnowledgeBuilderFactory.newKnowledgeBuilder();
kbuilder.add(ResourceFactory.newClassPathResource("fireAlarm.drl",
 getClass()), ResourceType.DRL);

if (kbuilder.hasErrors())
 System.err.println(kbuilder.getErrors().toString());

StatefulKnowledgeSession ksession = kbase.newStatefulKnowledgeSession();

Once the session has been created, one can work with it on an iteratve basis. In this example,
four Room objects are created and inserted, along with one Sprinkler object for each room.
At this point, the engine has concluded matching but no rules have yet been fired. Calling
ksession.fireAllRules() allows the matched rules to execute but, without a fire, they will
merely produce the health message.

String[] names = new String[]{"kitchen","bedroom","office","livingroom"};
Map<String,Room> name2room = new HashMap<String,Room>();

for(String name: names)
{
 Room room = new Room(name);
 name2room.put(name, room);
 ksession.insert(room);
 Sprinkler sprinkler = new Sprinkler(room);
 ksession.insert(sprinkler);
}

ksession.fireAllRules();

> Everything is Okay

Chapter 2. Quick Start

16

One can now create and insert two fires; this time a reference is kept for the returned FactHandle.
(A Fact Handle is an internal engine reference to the inserted instance. It allows instances
to be retracted or modified at a later point in time.) With the fires now in the engine, once
fireAllRules() is called the alarm is raised and the respective sprinklers are turned on.

Fire kitchenFire = new Fire(name2room.get("kitchen"));
Fire officeFire = new Fire(name2room.get("office"));

FactHandle kitchenFireHandle = ksession.insert(kitchenFire);
FactHandle officeFireHandle = ksession.insert(officeFire);

ksession.fireAllRules();

> Raise the alarm
> Turn on the sprinkler for room kitchen
> Turn on the sprinkler for room office

After a while, the fires will be extinguishged and the fire objects are, therefore, retracted. As a result
of this, the sprinklers are turned off, the alarm is cancelled and he health message is printed once
more.

ksession.retract(kitchenFireHandle);
ksession.retract(officeFireHandle);

ksession.fireAllRules();

> Turn off the sprinkler for room office
> Turn off the sprinkler for room kitchen
> Cancel the alarm
> Everything is ok

> Turn off the sprinkler for room office
> Turn off the sprinkler for room kitchen
> Cancel the alarm
> Everything is ok

In conclusion, this simple example has demonstrated some of the functionality and power of the
declarative rule system.

2.2. A Little Theory

2.2.1. Methods versus Rules
New users often confuse methods and rules, and ask the question, "How do I call a rule?" The
previous section should have clarified the matter but the differences are summarised again here:

 Cross Products

17

public void helloWorld(Person person)
{
 if (person.getName().equals("Chuck"))
 {
 System.out.println("Hello Chuck");
 }
}

• Methods are called directly.

• Specific instances are passed.

• A single call results in a single execution.

rule "Hello World"
when
 Person(name == "Chuck")
then
 System.out.println("Hello Chuck");
end

• Rules execute by matching against any data that has been inserted into the engine.

• Rules can never be called directly.

• Specific instances cannot be passed to a rule.

• Depending on the matches, a rule may fire once, several times or not at all.

2.2.2. Cross Products
A "cross product" is the result of combining two or more sets of data. Consider the following rule for
the fire alarm example:

rule "show sprinklers in rooms"
when
 $room : Room()
 $sprinkler : Sprinkler()
then
 System.out.println("room:" + $room.getName() +
 " sprinkler:" + $sprinkler.getRoom().getName());
end

This is analogous with the Structured Query Language command to select * from Room,
Sprinkler, in which case every row in the Room table would be joined with every row in the
Sprinkler table, thereby resulting in the following output:

room:office sprinker:office
room:office sprinkler:kitchen
room:office sprinkler:livingroom
room:office sprinkler:bedroom

Chapter 2. Quick Start

18

room:kitchen sprinkler:office
room:kitchen sprinkler:kitchen
room:kitchen sprinkler:livingroom
room:kitchen sprinkler:bedroom
room:livingroom sprinkler:office
room:livingroom sprinkler:kitchen
room:livingroom sprinkler:livingroom
room:livingroom sprinkler:bedroom
room:bedroom sprinkler:office
room:bedroom sprinkler:kitchen
room:bedroom sprinkler:livingroom
room:bedroom sprinkler:bedroom

Cross Products can become huge and, therefore, potentially cause performance problems. To prevent
this, you can use variable constraints to eliminate nonsensical results:

rule "show sprinklers in rooms"
when
 $room : Room()
 $sprinkler : Sprinkler(room == $room)
then
 System.out.println("room:" + $room.getName() +
 " sprinkler:" + $sprinkler.getRoom().getName());
end

This results in just four rows of data, with the correct Sprinkler assigned to each Room. In SQL (or
HQL) the corresponding query would be select * from Room, Sprinkler where Room ==
Sprinkler.room

room:office sprinkler:office
room:kitchen sprinkler:kitchen
room:livingroom sprinkler:livingroom
room:bedroom sprinkler:bedroom

2.2.3. Activations, Agenda and Conflict Sets
So far, the data and the matching process have been simple and small. However, once you have
many rules and facts being inserted over time, the rule engine needs a way to manage the execution
of outcomes. JBoss Rules™ achieves this using Activations, Agendas, and a conflict resolution
strategy.

This next example explores the handling of cashflow calculations over date periods. It is more complex
than the previous examples. It is assumed that you are comfortable with the Java code for creating
Knowledge Bases and populating a StatefulKnowledgeSession with facts, so that code will not
be repeated here. Diagrams are used to illustrate the state of the rule engine at key stages.

Three classes, Cashflow, Account and AccountPeriod, are used as the data model.

public class Cashflow

 Activations, Agenda and Conflict Sets

19

{
 private Date date;
 private double amount;
 private int type;
 long accountNo;
 // getter and setter methods here
}

public class Account
{
 private long accountNo;
 private double balance;
 // getter and setter methods here
}

public AccountPeriod
{
 private Date start;
 private Date end;
 // getter and setter methods here
}

By now, you already know how to create Knowledge Bases and how to instantiate facts to populate
the StatefulKnowledgeSession. Therefore, tables will be used to show the state of the inserted
data, as this makes things clearer for illustrative purposes. The tables below show that a single fact
was inserted for the Account. A series of debits and credits extending over two quarters were also
inserted into the account as CashFlow objects.

Figure 2.1, “Cash Flows and the Account” shows that a single Account fact was inserted along with
four CashFlow facts.

Figure 2.1. Cash Flows and the Account

The two rules which follow are used to, firstly, determine the debit and credit totals for the specified
period and, secondly, update the account balance. (Notice the && operator that is used to avoid the
need to repeat the field name.)

rule "increase balance for credits"
when
 ap : AccountPeriod()

Chapter 2. Quick Start

20

 acc : Account($accountNo : accountNo)
 CashFlow(type == CREDIT,
 accountNo == $accountNo,
 date >= ap.start && <= ap.end,
 $amount : amount)
then
 acc.setBalance(acc.getBalance() + $amount);
end

rule "decrease balance for debits"
when
 ap : AccountPeriod()
 acc : Account($accountNo : accountNo)
 CashFlow(type == DEBIT,
 accountNo == $accountNo,
 date >= ap.start && <= ap.end,
 $amount : amount)
then
 acc.setBalance(acc.getBalance() - $amount);
end

As shown in Figure 2.2, “Cash Flows and the Account”, the account period starting date is set to
the 1st of January and the end is set to the 31st of March. This constrains the data to two CashFlow
objects for credit and one for debit, respectively.

Figure 2.2. Cash Flows and the Account

The data is matched during the insertion stage but, because this is a stateful session, the rules'
consequences do not execute immediately. The matched rules and the corresponding data are
referred to as Activations. Each Activation is added to a list called the Agenda. Each Activation on the
Agenda is executed when fireAllRules() is called. Unless specified otherwise, the Activations are
executed one after another in an arbitrary order.

 Activations, Agenda and Conflict Sets

21

Figure 2.3. Cash Flows and the Account

After all of the above activations are fired, the Account has a balance of minus twenty-five.

Figure 2.4. Cash Flows and the Account

If the Account Period is updated to the second quarter, you will have just a single matched row of data
and, thus, a mere single Activation on the Agenda.

Figure 2.5. Cash Flows and the Account

The firing of that Activation results in a balance of twenty-five.

Figure 2.6. Cash Flows and the Account

When there are one or more Activations on the agenda, they are said to be "in conflict", and a conflict
resolution strategy is used to determine the order of execution. At the simplest level, the default
strategy uses salience to determine rule priority. Each rule has a default salience value of zero and the
higher the value, the higher the priority shall be. The salience can also be a negative value. This lets
you order the execution of rules relative to each other. The execution of rules with the same salience
value is still arbitrary.

To illustrate this, we add a rule to print the Account balance. This rule is to be executed after all the
debits and credits have been applied for all accounts. It has a negative salience value so it will execute
after the rules with the default salience value of zero.

rule "Print balance for AccountPeriod"
 salience -50
when
 ap : AccountPeriod()
 acc : Account()
then

Chapter 2. Quick Start

22

 System.out.println(acc.getAccountNo() + " : " + acc.getBalance());
end

The table below depicts the resulting Agenda. The three debit and credit rules are shown to be in
arbitrary order, while the print rule is ranked last, to execute afterwards.

Important
JBoss Rules includes "ruleflow-group" attributes. These allow you to declare work-
flow diagrams in order to specify when rules can be fired. The screen shot below is taken
from JBoss Developer Studio. It has two ruleflow-group nodes. These ensure that the
calculation rules are executed before the reporting rules.

Figure 2.7. CashFlows and Account

2.3. More on Building and Deploying

2.3.1. Using "Change Sets" to Add Rules
The examples so far have used the JBoss™ Rules API to build each Knowledge Base. They do so by
manually adding each rule. JBoss™ Rules also provide a means to declare the resources to be added
to a Knowledge Base in XML. This feature is called a Change Set.

The Change Set >XML file contains a list of rule resources that can be added to a Knowledge Base.
This file may also point to another. At the current moment in time, Change Sets only support the
<add> element. Future versions will add support for <remove> and <modify>.

<change-set xmlns='http://drools.org/drools-5.0/change-set'
 xmlns:xs='http://www.w3.org/2001/XMLSchema-instance'
 xs:schemaLocation='http://drools.org/drools-5.0/change-set
 drools-change-set-5.0.xsd' >

 <add>
 <resource source='http://hostname/myrules.drl' type='DRL' />
 </add>

</change-set>

The source of each resource is specified by a URL. All the protocols provided by java.net.URL are
supported. In addition, a protocol called "classpath" can be used. It refers to the "current processes"
classpath for the resource. The "type" attribute must always be specified for a resource but it is not
inferred from the file name extension.

Knowledge Agent

23

Note
When use the above XML, note that the code is almost identical as before, with the
exception that the ResourceType has been altered to CHANGE_SET.

KnowledgeBuilder kbuilder = KnowledgeBuilderFactory.newKnowledgeBuilder();
kbuilder.add(ResourceFactory.newClasspathResource("myChangeSet.xml",
 getClass()), ResourceType.CHANGE_SET);

if (kbuilder.hasErrors()) {
 System.err.println(kbuilder.getErrors().toString());
}

Change Sets can include any number of resources. They also support additional configuration
information for decision tables. The example below loads rules from an HTTP uniform resource locator
and an Excel™ decision table by using the classpath protocol.

<change-set xmlns='http://drools.org/drools-5.0/change-set'
 xmlns:xs='http://www.w3.org/2001/XMLSchema-instance'
 xs:schemaLocation='http://drools.org/drools-5.0/change-set.xsd' >
 <add>
 <resource source='http://hostname/myrules.drl' type='DRL' />
 <resource source='classpath:data/IntegrationTest.xls' type="DTABLE">
 <decisiontable-conf input-type="XLS" worksheet-name="Tables_2" />
 </resource>
 </add>
</change-set>

If a directory name is specified for the resource source, all the files contained within it will be added.
(Note that all the files must be of the specified type.)

<change-set xmlns='http://drools.org/drools-5.0/change-set'
 xmlns:xs='http://www.w3.org/2001/XMLSchema-instance'
 xs:schemaLocation='http://drools.org/drools-5.0/change-set.xsd' >
 <add>
 <resource source='file://rules/' type='DRL' />
 </add>
</change-set>

2.3.2. Knowledge Agent
The KnowledgeAgent provides automatic loading, re-loading and caching of rule resources. It
is configured via a "properties" file. The KnowledgeAgent can update or rebuild a Knowledge
Base when the resources it uses have changed. The strategy for this updating is determined by the
configuration applied to the KnowledgeAgentFactory.

KnowledgeAgent kagent = KnowledgeAgentFactory.newKnowledgeAgent("MyAgent");
kagent.applyChangeSet(ResourceFactory.newUrlResource(url));

Chapter 2. Quick Start

24

KnowledgeBase kbase = kagent.getKnowledgeBase();

The KnowledgeAgent will scan all the added resources, at a default polling interval of sixty seconds.
If the last-modified date of the resource is changed, KnowledgeAgent will rebuild the Knowledge
Base using the new resources. (If a directory is specified as one of the resources, then the entire
contents of that directory will be scanned for changes.)

Note
The previous Knowledge Base reference will still exist after change, so you will have to
call getKnowledgeBase() to access the newly built version.

Chapter 3.

25

User Guide

3.1. Building

Figure 3.1. org.drools.builder

Chapter 3. User Guide

26

3.1.1. Building with Code
The Knowledge Builder is responsible for taking source data, (such as a .drl or Microsoft
Excel™ file), and turning it into a Knowledge Package, that will contain rule and process definitions
which a Knowledge Base can then consume. The object class ResourceType indicates, as its
name implies, the type of resource being built.

The ResourceFactory provides the capability to load a resource from a number of sources,
including a Reader, ClassPath, uniform resource locator, file or ByteArray.

Note
When one deals with binaries, such as decision tables (including Excel™ .xls files), one
should not use a Reader-based resource handler, as they are only suitable for use with
plain text.

Figure 3.2. KnowledgeBuilder

The Knowledge Builder is created by the KnowledgeBuilderFactory.

 Building with Code

27

Figure 3.3. KnowledgeBuilderFactory

A Knowledge Builder can be created by using the default configuration.

KnowledgeBuilder kbuilder = KnowledgeBuilderFactory.newKnowledgeBuilder();

Example 3.1. Creating a new Knowledge Builder

One can create a configuration by using the KnowledgeBuilderFactory. This allows one to modify
the behaviour of the Knowledge Builder. The most common usage is to provide a custom class
loader, which performs the function of allowing the KnowledgeBuilder object to resolve classes
that are not in the default path. The first parameter is for "properties" and it is optional and can,
therefore, be left null, in which case the default options will be used. The "options" parameter can be
used for such tasks as changing the dialect and registering new "accumulator" functions.

KnowledgeBuilderConfiguration kbuilderConf =
 KnowledgeBuilderFactory.newKnowledgeBuilderConfiguration(
 null, classLoader);

KnowledgeBuilder kbuilder =
 KnowledgeBuilderFactory.newKnowledgeBuilder(kbuilderConf);

Example 3.2. Creating a new Knowledge Builder with a custom Class Loader

Resources of any type can be added on an iterative basis. In the example below, a .drl file is added.
The Knowledge Builder can now handle multiple name spaces, which was not the case with JBoss
Rules 4.0 Package Builder. Therefore, you can just keep adding resources, regardless of name space.

kbuilder.add(ResourceFactory.newFileResource("/project/myrules.drl"),
 ResourceType.DRL);

Example 3.3. Adding DRL Resources

Chapter 3. User Guide

28

Note
It is best practice to always check the hasErrors() method after you make an addition.
You should not add more resources or retrieve the KnowledgePackages if there are
errors. (You will find that getKnowledgePackages() returns an empty list if there are
errors.)

if(kbuilder.hasErrors())
{
 System.out.println(kbuilder.getErrors());
 return;
}

Example 3.4. Validating

When all the resources have been added and there are no longer any errors, the collection of
Knowledge Packages can be retrieved. It is termed a "Collection" because there is one
Knowledge Package per package name space. These Knowledge Packages are serializable and
are often used as a unit of deployment.

Collection<KnowledgePackage> kpkgs = kbuilder.getKnowledgePackages();

Example 3.5. Obtaining the Knowledge Packages

The final example combines all of these elements:

KnowledgeBuilder kbuilder = KnowledgeBuilderFactory.newKnowledgeBuilder();
if(kbuilder.hasErrors()) {
 System.out.println(kbuilder.getErrors());
 return;
}

KnowledgeBuilder kbuilder = KnowledgeBuilderFactory.newKnowledgeBuilder();
kbuilder.add(ResourceFactory.newFileResource("/project/myrules1.drl"),
 ResourceType.DRL);
kbuilder.add(ResourceFactory.newFileResource("/project/myrules2.drl"),
 ResourceType.DRL);

if(kbuilder.hasErrors())
{
 System.out.println(kbuilder.getErrors());
 return;
}

Collection<KnowledgePackage> kpkgs = kbuilder.getKnowledgePackages();

Example 3.6. Combining All Elements

 Building via Configurations and the Change Set XML

29

3.1.2. Building via Configurations and the Change Set XML
It is possible to create definitions via configurations, rather than programming them by adding
resources. You do so via the Change Set XML. The simple XML file supports three elements:
add, remove, and modify, each of which has a sequence of resource sub-elements that define a
configuration entity. The following XML schema is not normative: it is intended for illustrative purposes
only.

Chapter 3. User Guide

30

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns="http://drools.org/drools-5.0/change-set"
 targetNamespace="http://drools.org/drools-5.0/change-set">

 <xs:element name="change-set" type="ChangeSet"/>

 <xs:complexType name="ChangeSet">
 <xs:choice maxOccurs="unbounded">
 <xs:element name="add" type="Operation"/>
 <xs:element name="remove" type="Operation"/>
 <xs:element name="modify" type="Operation"/>
 </xs:choice>
 </xs:complexType>

 <xs:complexType name="Operation">
 <xs:sequence>
 <xs:element name="resource" type="Resource"
 maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>

 <xs:complexType name="Resource">
 <xs:sequence>
 <!-- To be used with <resource type="DTABLE"...>> -->
 <xs:element name="decisiontable-conf" type="DecTabConf"
 minOccurs="0"/>
 </xs:sequence>
 <!-- java.net.URL, plus "classpath" protocol -->
 <xs:attribute name="source" type="xs:string"/>
 <xs:attribute name="type" type="ResourceType"/>
 </xs:complexType>

 <xs:complexType name="DecTabConf">
 <xs:attribute name="input-type" type="DecTabInpType"/>
 <xs:attribute name="worksheet-name" type="xs:string"
 use="optional"/>
 </xs:complexType>

 <!-- according to org.drools.builder.ResourceType -->
 <xs:simpleType name="ResourceType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="DRL"/>
 <xs:enumeration value="XDRL"/>
 <xs:enumeration value="DSL"/>
 <xs:enumeration value="DSLR"/>
 <xs:enumeration value="DRF"/>
 <xs:enumeration value="DTABLE"/>
 <xs:enumeration value="PKG"/>
 <xs:enumeration value="BRL"/>
 <xs:enumeration value="CHANGE_SET"/>
 </xs:restriction>
 </xs:simpleType>

 <!-- according to org.drools.builder.DecisionTableInputType -->
 <xs:simpleType name="DecTabInpType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="XLS"/>
 <xs:enumeration value="CSV"/>
 </xs:restriction>
 </xs:simpleType>

</xs:schema>

Example 3.7. Schema for Change Set XML (Not "Normative")

 Building via Configurations and the Change Set XML

31

Currently only the "add" element is supported. The others will soon be implemented to support
iterative changes. The following example loads a single .drl file.

<change-set xmlns='http://drools.org/drools-5.0/change-set'
 xmlns:xs='http://www.w3.org/2001/XMLSchema-instance'
 xs:schemaLocation='http://drools.org/drools-5.0/change-set.xsd'
 >
 <add>
 <resource source='file:/project/myrules.drl' type='DRL' />
 </add>
</change-set>

Example 3.8. Simple Change Set XML

Take note of the file: prefix, which signifies the protocol for the resource. The Change Set
supports all the protocols provided by java.net.URL, such as "file" and "http", as well as an
additional "classpath." Currently, the "type" attribute must always be specified for a resource,
because it is not inferred from the filename extension.

Using the ClassPath resource loader in Java allows one to specify the Class Loader to be used
to locate the resource; this is not possible from XML. Instead, the Class Loader to be used will, by
default, be that which is employed by the Knowledge Builder unless the Change Set XML is loaded
by the ClassPath resource. In the latter case, the Class Loader specified for that resource will be
used instead.

Currently you still need to use the JBoss™ Rules API to load the change set. Support for containers
such as Spring is planned for a future release. When this occurs, the process of creating a
Knowledge Base shall be completely achievable solely by configuring the XML. Loading resources
using an XML file is simple, as it is treatd as just another resource type.

kbuilder.add(ResourceFactory.newUrlResource(url),ResourceType.CHANGE_SET);

Example 3.9. Loading the Change Set XML

Any number of resources can be included in a change set. They even potentially support additional
configuration information (this use is currently restricted to decision tables only.) Example 3.10,
“Change Set XML with Resource Configuration” loads rules from both an HTTP uniform resource
location and an Excel™ decision table found on the classpath.

Chapter 3. User Guide

32

<change-set xmlns='http://drools.org/drools-5.0/change-set'
 xmlns:xs='http://www.w3.org/2001/XMLSchema-instance'
 xs:schemaLocation='http://drools.org/drools-5.0/change-set.xsd' >
 <add>
 <resource source='http:org/domain/myrules.drl' type='DRL' />
 <resource source='classpath:data/IntegrationExampleTest.xls'
 type="DTABLE">
 <decisiontable-conf input-type="XLS" worksheet-name="Tables_2" />
 </resource>
 </add>
</change-set>

Example 3.10. Change Set XML with Resource Configuration

One might find the Change Set is especially useful when working with a Knowledge Agent, as it
facilitates "change notification" and automatic rebuilding of the Knowledge Base. These features are
covered in more detail under the sub-heading "Deploying" in the section on the Knowledge Agent.

One can also specify a directory. This would be done to add all the resources found within it. Currently,
the software expects that all of the resources in that folder will be of the same type. If one uses the
Knowledge Agent, it will continuously scanning for added, modified or removed resources. It will also
rebuild the cached Knowledge Base.

Note
Change Sets can also be used in conjunction with the KnowledgeAgent. Refer to
Section 3.2.6, “ KnowledgeAgent ” for more information.

<change-set xmlns='http://drools.org/drools-5.0/change-set'
 xmlns:xs='http://www.w3.org/2001/XMLSchema-instance'
 xs:schemaLocation='http://drools.org/drools-5.0/change-set.xsd' >
 <add>
 <resource source='file:/projects/myproject/myrules' type='DRL' />
 </add>
</change-set>

Example 3.11. Change Set XML Which Adds a Directory's Content.

3.2. Deploying

3.2.1. KnowledgePackage and Knowledge Definitions
A KnowledgePackage is a collection of Knowledge Definitions, which is simply another term for rules
and processes. A KnowledgePackage is created by the KnowledgeBuilder, as described in
Section 3.1, “ Building ”. KnowledgePackages are self-contained and serializable. They form the
current basic deployment unit.

KnowledgePackage and Knowledge Definitions

33

Figure 3.4. KnowledgePackage

Note
KnowledgePackages are added to the Knowledge Base. However, it is important to
know that a KnowledgePackage instance cannot be re-used once this has occurred.
If you need to add it to another Knowledge Base, try "serializing" it first and using the
"cloned" result. This limitation will be removed in a future version of JBoss Rules™ .

Chapter 3. User Guide

34

3.2.2. Knowledge Bases

Figure 3.5. A Knowledge Base

A Knowledge Base is a repository of all the application's knowledge definitions. It may contain rules,
processes, functions and type models. The Knowledge Base itself does not contain "instance" data,
(known as facts.) Instead, sessions are created from the Knowledge Base into which facts can be
inserted and from which process instances can be commenced. Creation of a Knowledge Base is
a rather intensive process, whereas session creation is not. Therefore, Red Hat™ recommend that
Knowledge Bases be cached where possible to allow for repeated session creation.

A Knowledge Base object is also serializable and one may prefer to build and then store it. In this
way, one can treat it, instead of the Knowledge Packages, as a unit of deployment.

A Knowledge Base is created by using the KnowledgeBaseFactory:

 In-Process Building and Deployment

35

Figure 3.6. KnowledgeBaseFactory

A Knowledge Base can be created by employing the default configuration:

KnowledgeBase kbase = KnowledgeBaseFactory.newKnowledgeBase();

Example 3.12. Creating a New Knowledge Base

If one used a customised class loader in conjunction with the Knowledge Builder to resolve
types that were not in the default loader, then it must also be set on the Knowledge Base. The
technique for this is the same as that which applies to the KnowledgeBuilder.

KnowledgeBaseConfiguration kbaseConf =
 KnowledgeBaseFactory.newKnowledgeBaseConfiguration(null, cl);
KnowledgeBase kbase = KnowledgeBaseFactory.newKnowledgeBase(kbaseConf);

Example 3.13. Creating a New Knowledge Base with a Custom Class Loader

3.2.3. In-Process Building and Deployment
In-Process Building is the simplest form of deployment. It compiles the knowledge definitions and adds
them to the Knowledge Base that resides in the same Java Virtual Machine. This approach requires
the drools-core.jar and drools-compiler.jar files to be on the classpath.

Collection<KnowledgePackage> kpkgs = kbuilder.getKnowledgePackages();
KnowledgeBase kbase = KnowledgeBaseFactory.newKnowledgeBase();
kbase.addKnowledgePackages(kpkgs);

Example 3.14. Add KnowledgePackages to a Knowledge Base

Chapter 3. User Guide

36

Note
Understand that the addKnowledgePackages(kpkgs) method can be called on an
iterative basis, in order to add additional knowledge.

3.2.4. Building and Deployment as Separate Processes
Both the Knowledge Base and the KnowledgePackage are units of deployment. They can,
therefore, be serialized. This means you can assign one machine to undertake any necessary building
that requires drools-compiler.jar, and have another machine reserved to deploy and execute
everything, needing only drools-core.jar to do so.

Although "serialization" is standard Java, below is an example of how one machine might write
out the deployment unit and how another machine might read in and use it.

ObjectOutputStream out =
 new ObjectOutputStream(new FileOutputStream(fileName));
out.writeObject(kpkgs);
out.close();

Example 3.15. Writing the KnowledgePackage to an OutputStream

ObjectInputStream in = new ObjectInputStream(new
 FileInputStream(fileName));
// The input stream might contain an individual
// package or a collection.
@SuppressWarnings("unchecked")
Collection<KnowledgePackage> kpkgs =
 ()in.readObject(Collection<KnowledgePackage>);
in.close();

KnowledgeBase kbase = KnowledgeBaseFactory.newKnowledgeBase();
kbase.addKnowledgePackages(kpkgs);

Example 3.16. Reading the KnowledgePackage from an InputStream

The actual Knowledge Base is also serializable, so one may prefer to build and then store it itself,
instead of the KnowledgePackages.

Note
Red Hat™ 's server-side management system, Drools Guvnor™ , uses this deployment
approach. After Guvnor™ has compiled and published serialized Knowledge Packages to
a uniform resource locator, it has the capability to use the URL resource type to load them.

 State-ful Knowledge Sessions and Knowledge Base Modifications

37

3.2.5. State-ful Knowledge Sessions and Knowledge Base
Modifications
State-ful Knowledge Sessions are discussed in more detail in Section 3.3.2,
“StatefulKnowledgeSession”. The Knowledge Base creates and returns State-ful Knowledge
Sessions and it may, optionally, keep references to them. When Knowledge Base modifications
occur, they are applied to the data in the sessions. This is a weak, optional reference, controlled by a
Boolean flag.

3.2.6. KnowledgeAgent
The KnowledgeAgent is a class that provides automatic loading, caching and re-loading of resources.
It is configured via a properties files. The KnowledgeAgent can update or rebuild the Knowledge
Base, as the resources it uses are changed. The configuration given to the factory determines the
strategy to be utilised, but it will typically be pull-based and use regular polling. (The capacity for
push-based updates and rebuilds will be added in a future version.) The KnowledgeAgent will
continuously scan all the added resources, using a default polling interval of sixty seconds. If the
date of the last modification is updated, the cached Knowledge Base will be rebuilt using the new
resources.

Figure 3.7. KnowledgeAgent

A KnowledgeBuilderFactory object is used to create the Knowledge Builder. The agent must
specify a name because it is needed by the log files. This is so that the log entries can be associated
against the correct agents.

KnowledgeAgent kagent =
 KnowledgeAgentFactory.newKnowledgeAgent("MyAgent");

Example 3.17. Creating the KnowledgeAgent

Chapter 3. User Guide

38

Figure 3.8. KnowledgeAgentFactory

The following example constructs an agent that will build a new Knowledge Base from the specified
change set. Refer to Section 3.1.2, “ Building via Configurations and the Change Set XML” for
additional details on change sets. Note that the method can be called on an iterative basis so that
you can add new resources over time.

The KnowledgeAgent polls the resources added from the change set every sixty seconds, (the
default interval), to see if they are updated. Whenever changes are found, it will construct a new
Knowledge Base. In addition, if the change set specifies a resource that is a directory, its contents
will be scanned for changes.

KnowledgeAgent kagent =
 KnowledgeAgentFactory.newKnowledgeAgent("MyAgent");
kagent.applyChangeSet(ResourceFactory.newUrlResource(url));
KnowledgeBase kbase = kagent.getKnowledgeBase();

Example 3.18. Writing the KnowledgePackage to an OutputStream

Resource scanning is switched off by default. It is a service, so it must be specifically started. The
same thing is also true for notifications. Both of these can be activated via the ResourceFactory.

ResourceFactory.getResourceChangeNotifierService().start();
ResourceFactory.getResourceChangeScannerService().start();

Example 3.19. Starting the Scanning and Notification Services

The default resource scanning period may be changed via the ResourceChangeScannerService
class. An updated ResourceChangeScannerConfiguration object is passed to the service's
configure() method, thereby allowing for the service to be reconfigured on demand.

 KnowledgeAgent

39

ResourceChangeScannerConfiguration sconf =
 ResourceFactory.getResourceChangeScannerService().
 newResourceChangeScannerConfiguration();
// Set the disk scanning interval to 30s, default is 60s.
sconf.setProperty("drools.resource.scanner.interval", "30");
ResourceFactory.getResourceChangeScannerService().configure(sconf);

Example 3.20. Changing the Scanning Intervals

A KnowledgeAgent can handle either an empty or a populated Knowledge Base. If a populated
Knowledge Base is provided, the KnowledgeAgent will run an iterator from within it and subscribe
to all the resources that are found. Whilst it is possible for the KnowledgeBuilder to build all of the
resources found in a directory, that information is then lost by it. This means that those directories
will not be continuously scanned. Only directories specified via the applyChangeSet(Resource)
method are monitored.

You will find that one of the advantages of using Knowledge Base as the starting point is that you
can provide it with a KnowledgeBaseConfiguration class. When resource changes are detected
and a new Knowledge Base is instantiated, it will use the KnowledgeBaseConfiguration of the
previous Knowledge Base object.

KnowledgeBaseConfiguration kbaseConf =
 KnowledgeBaseFactory.newKnowledgeBaseConfiguration(null, cl);
KnowledgeBase kbase = KnowledgeBaseFactory.newKnowledgeBase(kbaseConf);
// Populate kbase with resources here.

KnowledgeAgent kagent =
 KnowledgeAgentFactory.newKnowledgeAgent("MyAgent", kbase);
KnowledgeBase kbase = kagent.getKnowledgeBase();

Example 3.21. Using an Existing Knowledge Base

In the example above, getKnowledgeBase() will return the same provided kbase instance until
resource changes are detected and a new Knowledge Base is built. When the new Knowledge
Base is built, it will be done with the KnowledgeBaseConfiguration that was provided to the
previous Knowledge Base.

As mentioned previously, if a Change Set XML is used to specify a directory, all of its contents will
be added. If this Change Set XML is used in conjunction with the applyChangeSet() method, any
directories will also be added to the scanning process. When the directory scan detects an additional
file it will be added to the Knowledge Base. Any removed file is removed from the Knowledge
Base and modified files will, as usual, force the build of a new Knowledge Base using the latest
version.

Chapter 3. User Guide

40

<change-set xmlns='http://drools.org/drools-5.0/change-set'
 xmlns:xs='http://www.w3.org/2001/XMLSchema-instance'
 xs:schemaLocation='http://drools.org/drools-5.0/change-set.xsd' >
 <add>
 <resource source='file:/projects/myproject/myrules' type='PKG' />
 </add>
</change-set>

Example 3.22. Change SetXML which adds the contents of a directory

Note
The drools-compiler dependency is not needed for the resource type entitled PKG, as
the KnowledgeAgent is able to handle those with drools-core alone.

The KnowledgeAgentConfiguration can be used to modify a KnowledgeAgent's default
behavior. You could use this to load the resources from a directory, while inhibiting the continuous
scan of that directory for changes.

KnowledgeBase kbase = KnowledgeBaseFactory.newKnowledgeBase();

KnowledgeAgentConfiguration kaconf =
 KnowledgeAgentFactory.newKnowledgeAgentConfiguration();
// Do not scan directories, just files.
kaconf.setProperty("drools.agent.scanDirectories", "false");
KnowledgeAgent kagent =
 KnowledgeAgentFactory.newKnowledgeAgent("test agent", kaconf);

Example 3.23. Change the Scanning Behaviour

Previously, one was taught how the JBoss™ Enterprise BRMS Platform can build and publish
serialized Knowledge Packages through a URL and also how the Change Set XML can handle
both URLs and Packages. Taken together, these form an important deployment scenario for the
Knowledge Agent.

3.3. Running

3.3.1. KnowledgeBase
The KnowlegeBase is a repository of all the application's knowledge definitions. It may contain rules,
processes, functions, and type models. The KnowledgeBase itself does not contain instance data,
known as facts. Instead sessions are created from the KnowledgeBase into which data (facts) can
be inserted and where process instances may be started. KnowlegeBase creation is a fairly intensive
process, whereas session creation is not. It is recommended that KnowledgeBases be cached where
possible to allow for repeated session creation.

StatefulKnowledgeSession

41

KnowledgeBase kbase = KnowledgeBaseFactory.newKnowledgeBase();

Example 3.24. Creating a new KnowledgeBase

3.3.2. StatefulKnowledgeSession
The StatefulKnowledgeSession stores and executes on the runtime data and is created from the
KnowledgeBase.

Figure 3.9. StatefulKnowledgeSession

StatefulKnowledgeSession ksession = kbase.newStatefulKnowledgeSession();

Example 3.25. Create a StatefulKnowledgeSession from a KnowledgeBase

3.3.3. KnowledgeRuntime

3.3.3.1. WorkingMemoryEntryPoint
The WorkingMemoryEntryPoint provides the methods for inserting, updating and retrieving facts.
The term "entry point" is related to the fact that we have multiple partitions in a WorkingMemory and
you can choose which one you are inserting into. However this use case is aimed at event processing
and most rule based applications will only make use of the default entry point.

The KnowledgeRuntime interface provides the main interaction with the engine and is available in
rule consequences and process actions. While the focus is on the methods and interfaces related to
rules, you'll notice that the KnowledgeRuntime inherits methods from both the WorkingMemory
and the ProcessRuntime. This provides a unified API to work with processes and rules. When
working with rules three interfaces form the KnowledgeRuntime: WorkingMemoryEntryPoint,
WorkingMemory, and the KnowledgeRuntime itself.

Chapter 3. User Guide

42

Figure 3.10. WorkingMemoryEntryPoint

3.3.3.1.1. Insertion
Insertion is the act of telling the WorkingMemory about a fact, e.g.
ksession.insert(yourObject). When you insert a fact, it is examined for matches against the
rules. This means all of the work for deciding about firing or not firing a rule is done during insertion;
no rule, however, is executed until you call fireAllRules(), which you call after you have finished
inserting your facts. It is a common misunderstanding for people to think the condition evaluation
happens when you call fireAllRules().

Note
Expert systems typically use the term assert or assertion to refer to facts made available
to the system. However, due to "assert" being a keyword in most languages, we have
decided to use the insert keyword; so expect to hear the two used interchangeably.

When an object is inserted it returns a FactHandle. This FactHandle is the token used to
represent your inserted object within the WorkingMemory. It is also used for interactions with the
WorkingMemory when you wish to retract or modify an object.

Cheese stilton = new Cheese("stilton");
FactHandle stiltonHandle = ksession.insert(stilton);

KnowledgeRuntime

43

A WorkingMemory may operate in one of two assertion modes: equality or identity. Identity is the
default.

Identity means that the Working Memory uses an IdentityHashMap to store all asserted objects.
New instance assertions always result in the return of a new FactHandle. Repeated insertions of the
same instance will simply return the original fact handle.

Equality means that the Working Memory uses a HashMap to store all asserted objects. New instance
assertions will only return a new FactHandle if no equal objects have been asserted.

3.3.3.1.2. Retraction
Retraction is the removal of a fact from the Working Memory. The fact will no longer be tracked or
matched to rules, and any rules that are activated and dependent on that fact will be cancelled.
Retraction is done using the FactHandle that was returned during the assert.

Note
It is possible to create rules (using the not and exist keywords) that will fire when
certain facts don't exist. In that case retracting a fact may cause the rule to activate.

Cheese stilton = new Cheese("stilton");
FactHandle stiltonHandle = ksession.insert(stilton);

ksession.retract(stiltonHandle);

3.3.3.1.3. Update
The Rule Engine must be notified of modified facts, so that they can be reprocessed. A fact which is
identified as updated is automatically retracted from the WorkingMemory and inserted again.

If an modified object is not able to notify the WorkingMemory itself you must use the update method
to notify the WorkingMemory. The update method always takes the modified object as a second
parameter, which allows you to specify new instances for immutable objects. The update method can
only be used with objects that have shadow proxies turned on.

The update method is only for use from Java code. Within a rule the modify keyword is supported
and provides calls to the setter methods of an object.

Cheese stilton = new Cheese("stilton");
FactHandle stiltonHandle = workingMemory.insert(stilton);
...
stilton.setPrice(100);
workingMemory.update(stiltonHandle, stilton);

3.3.3.2. WorkingMemory
The WorkingMemory provides access to the Agenda, permits query executions, and lets you access
named Entry Points.

Chapter 3. User Guide

44

Figure 3.11. WorkingMemory

3.3.3.2.1. Query
Queries are used to retrieve fact sets based on patterns, as they are used in rules. Patterns may make
use of optional parameters. Queries can be defined in the Knowlege Base, from where they are called
up to return the matching results. While iterating over the result collection, any bound identifier in the
query can be accessed using the get(String identifier) method and any FactHandle for that identifier
can be retrieved using getFactHandle(String identifier).

KnowledgeRuntime

45

Figure 3.12. QueryResults

Figure 3.13. QueryResultsRow

Chapter 3. User Guide

46

QueryResults results =
 ksession.getQueryResults("my query", new Object[] { "string" });
for (QueryResultsRow row : results) {
 System.out.println(row.get("varName"));
}

Example 3.26. Simple Query Example

3.3.3.3. KnowledgeRuntime
The KnowledgeRuntime provides further methods that are applicable to both rules and processes.
Such as setting globals and registering ExitPoints.

Figure 3.14. KnowledgeRuntime

3.3.3.3.1. Globals
Globals are named objects that can be passed to the rule engine, without needing to insert them.
Most often these are used for static information, or for services that are used in the RHS of a rule, or
perhaps as a means to return objects from the rule engine. If you use a global on the LHS of a rule,

KnowledgeRuntime

47

make sure it is immutable. A global must first be declared in a rules file before it can be set on the
session.

global java.util.List list

With the KnowledgeBase now aware of the global identifier and its type, it is now possible
to call ksession.setGlobal for any session. Failure to declare the global type and
identifier first will result in an exception being thrown. To set the global on the session use
ksession.setGlobal(identifier, value).

List list = new ArrayList();
ksession.setGlobal("list", list);

If a rule evaluates on a global before you set it then a NullPointerException exception will be
thrown.

3.3.3.4. StatefulRuleSession
The StatefulRuleSession is inherited by the StatefulKnowledgeSession and provides the
rule related methods that are relevant from outside of the engine.

Figure 3.15. StatefulRuleSession

Chapter 3. User Guide

48

3.3.3.4.1. Agenda Filters

Figure 3.16. AgendaFilters

Agenda filters are optional implementations of the filter interface which are used to allow or deny
the firing of an activation. What you filter on is entirely up to the implementation.

Note
Earlier versions of JBoss Rules supplied several filters which are not provided in version
5.0. They are simple to implement and the JBoss Rules 4 code base can be referred to.

To use a filter specify it when calling fireAllRules(). The following example permits only rules
ending in the string Test. All others will be filtered out.

ksession.fireAllRules(new RuleNameEndsWithAgendaFilter("Test"));

3.3.4. Agenda
The Agenda is a Rete feature. During actions on the WorkingMemory, rules may become fully
matched and eligible for execution. A single Working Memory Action can result in multiple eligible
rules. When a rule is fully matched an Activation is created, referencing the rule and the matched
facts, and placed onto the Agenda. The Agenda controls the execution order of these Activations
using a Conflict Resolution strategy.

The engine cycles repeatedly through two phases:

1. Working Memory Actions. This is where most of the work takes place, either in the Consequence
(the RHS itself) or the main Java application process. Once the Consequence has finished or
the main Java application process calls fireAllRules() the engine switches to the Agenda
Evaluation phase.

2. Agenda Evaluation. This attempts to select a rule to fire. If no rule is found it exits, otherwise it
fires the found rule, switching the phase back to Working Memory Actions.

Agenda

49

Figure 3.17. Two Phase Execution

The process repeats until the agenda is clear, in which case control returns to the calling application.
When Working Memory Actions are taking place, no rules are being fired.

Figure 3.18. Agenda

Chapter 3. User Guide

50

3.3.4.1. Conflict Resolution
Conflict resolution is required when there are multiple rules on the agenda, the basics to this are
covered in Chapter 2, Quick Start. As firing a rule may have side effects on the working memory, the
rule engine needs to know in what order the rules should fire. For example, firing ruleA may cause
ruleB to be removed from the agenda.

The default conflict resolution strategies employed by JBoss Rules are: Salience and LIFO (last in, first
out).

The most visible one is "salience" or priority, in which a user can specify that a certain rule has a
higher priority (by giving it a higher number) than other rules. In that case, the rule with higher salience
will be preferred.

LIFO priorities are based on the assigned Working Memory Action counter value, with all rules created
during the same action receiving the same value. The execution order of a set of firings with the same
priority value is arbitrary.

As a general rule, it is a good idea not to count on the rules firing in any particular order. Remember
that you should not be authoring rules as though they are steps in a imperative process.

Note
Previous versions of JBoss Rules supported custom conflict resolution strategies. This
capability still exists in version 5 but the API is not currently exposed.

3.3.4.2. AgendaGroup

Figure 3.19. AgendaGroup

Agenda Groups, known as "modules" in CLIPS terminology, are a way to partition Activations on the
Agenda. At any time only one group can have "focus", and only the Activations belonging to that group
will take effect.

Focus can be set from within a rule or by using the JBoss Rules API. Rules can also be set with "auto
focus", so its Agenda Group will become focused when it becomes matched.

Event Model

51

Agenda Groups are most commonly used to define phases of processing.

Each time setFocus() is called it pushes that Agenda Group onto a stack. When the focus group is
empty it is popped from the stack and the focus group that is now on top evaluates. An Agenda Group
can appear in multiple locations on the stack.

ksession.getAgenda().getAgendaGroup("Group A").setFocus();

The default Agenda Group is "MAIN". It it the first group on the stack and has the initial focus. Any rule
without a Agenda Group is automatically placed in this group.

3.3.4.3. ActivationGroup

Figure 3.20. ActivationGroup

An activation group is set of rules bound together by the activation-group rule attribute. In this group
only one rule can fire. After that rule has fired all the other rules are cancelled. The clear() method
can be called at any time, which cancels all of the activations before one has a chance to fire.

ksession.getAgenda().getActivationGroup("Group B").clear();

3.3.5. Event Model
The event package provides means to be notified of rule engine events, including rules firing, objects
being asserted, etc. This allows you, for instance, to separate logging and auditing activities from the
main part of your application and the rules.

The KnowlegeRuntimeEventManager interface is implemented by the KnowledgeRuntime which
provides two interfaces, WorkingMemoryEventManager and ProcessEventManager. We will only
cover the WorkingMemoryEventManager here.

Chapter 3. User Guide

52

Figure 3.21. KnowledgeRuntimeEventManager

The WorkingMemoryEventManager allows for listeners to be added and removed, so that events
for the working memory and the agenda can be listened to.

Figure 3.22. WorkingMemoryEventManager

The following code shows how a simple agenda listener is declared and attached to a session. It will
print activations after they have fired.

ksession.addEventListener(new DefaultAgendaEventListener() {
 public void afterActivationFired(AfterActivationFiredEvent event) {
 super.afterActivationFired(event);
 System.out.println(event);
 }
});

Example 3.27. Adding an AgendaEventListener

JBoss Rules also provides DebugWorkingMemoryEventListener,
DebugAgendaEventListener which implement each method with a debug print statement. To print
all Working Memory events, you can add one of these listeners.

KnowledgeRuntimeLogger

53

ksession.addEventListener(new DebugWorkingMemoryEventListener());

Example 3.28. Creating a new KnowledgeBuilder

All emitted events implement the KnowlegeRuntimeEvent interface which can be used to retrieve
the KnowlegeRuntime, the event originated from.

Figure 3.23. KnowlegeRuntimeEvent

The events currently supported are:

ActivationCreatedEvent ActivationCancelledEvent
BeforeActivationFiredEvent AfterActivationFiredEvent
AgendaGroupPushedEvent AgendaGroupPoppedEvent
ObjectInsertEvent ObjectRetractedEvent
ObjectUpdatedEvent ProcessCompletedEvent
ProcessNodeLeftEvent ProcessNodeTriggeredEvent
ProcessStartEvent

3.3.6. KnowledgeRuntimeLogger
The KnowledgeRuntimeLogger uses the comprehensive event system in JBoss Rules to create an
audit log of the execution of an application for later inspection. This log can be inspected in tools such
as the Eclipse audit viewer.

Figure 3.24. KnowledgeRuntimeLoggerFactory

Chapter 3. User Guide

54

KnowledgeRuntimeLogger logger =
 KnowledgeRuntimeLoggerFactory.newFileLogger(ksession, "logdir/
mylogfile");
...
logger.close();

Example 3.29. FileLogger

The newFileLogger() method automatically appends the file extension of .log to the filename that
you specify.

3.3.7. StatelessKnowledgeSession
The StatelessKnowledgeSession wraps the StatefulKnowledgeSession. Its main focus is
on decision service type scenarios. It removes the need to call dispose().

Stateless sessions do not support iterative insertions or calling the method fireAllRules() from
java code. The execute() internally instantiates a StatefullKnowledgeSession, adds all the
user data and execute user commands, calls fireAllRules(), and then calls dispose().

The usual way to work with this class is via the BatchExecution command as supported by the
CommandExecutor interface. However two convenience methods are provided for when simple
object insertion is all that is required. The CommandExecutor and BatchExecution are discussed
in detail in their own section.

Figure 3.25. StatelessKnowledgeSession

A simple example shows a stateless session executing for a given collection of java objects using the
convenience API. It iterates the collection, inserting each element in turn.

StatelessKnowledgeSession

55

KnowledgeBuilder kbuilder = KnowledgeBuilderFactory.newKnowledgeBuilder();
kbuilder.add(ResourceFactory.newFileResource(fileName),
 ResourceType.DRL);
if (kbuilder.hasErrors()) {
 System.out.println(kbuilder.getErrors());
} else {
 KnowledgeBase kbase = KnowledgeBaseFactory.newKnowledgeBase();
 kbase.addKnowledgePackages(kbuilder.getKnowledgePackages());
 StatelessKnowledgeSession ksession =
 kbase.newStatelessKnowledgeSession();
 ksession.execute(collection);
}

Example 3.30. Simple StatelessKnowledgeSession execution with a Collection

If this was done as a single Command it would be as follows:

ksession.execute(CommandFactory.newInsertElements(collection));

Example 3.31. Simple StatelessKnowledgeSession execution with InsertElements Command

Note if you wanted to insert the collection itself, and not the iterate and insert the elements, then you
can use CommandFactory.newInsert(collection).

The CommandFactory details the supported commands, all of which can marshalled using XStream
and the BatchExecutionHelper. BatchExecutionHelper provides details on the XML format
as well as how to use JBoss Rules Pipeline to automate the marshalling of BatchExecution and
ExecutionResults.

StatelessKnowledgeSession supports globals, scoped in a number of ways. I'll cover the non-
command way first, as commands are scoped to a specific execution call. Globals can be resolved in
three ways.

• The Stateless Knowledge Session method getGlobals() returns a Globals instance which
provides access to the session's globals. These are shared for all execution calls. Exercise caution
regarding mutable globals because execution calls can be executing simultaneously in different
threads.

StatelessKnowledgeSession ksession =
 kbase.newStatelessKnowledgeSession();
// sets a global hibernate session, that can be used
// for DB interactions in the rules.
ksession.setGlobal("hbnSession", hibernateSession);
// Execute while being able to resolve the "hbnSession" identifier.
ksession.execute(collection);

Example 3.32. Session scoped global

• Using a delegate is another way of global resolution. Assigning a value to a global (with
setGlobal(String, Object)) results in the value being stored in an internal collection mapping
identifiers to values. Identifiers in this internal collection will have priority over any supplied delegate.

Chapter 3. User Guide

56

Only if an identifier cannot be found in this internal collection, the delegate global (if any) will be
used.

• The third way of resolving globals is to have execution scoped globals. Here, a Command to set a
global is passed to the CommandExecutor.

The CommandExecutor interface also offers the ability to export data via "out" parameters. Inserted
facts, globals and query results can all be returned.

// Set up a list of commands
List cmds = new ArrayList();
cmds.add(CommandFactory.newSetGlobal("list1", new ArrayList(), true));
cmds.add(CommandFactory.newInsert(new Person("jon", 102), "person"));
cmds.add(CommandFactory.newQuery("Get People" "getPeople");

// Execute the list
ExecutionResults results =
 ksession.execute(CommandFactory.newBatchExecution(cmds));

// Retrieve the ArrayList
results.getValue("list1");
// Retrieve the inserted Person fact
results.getValue("person");
// Retrieve the query as a QueryResults instance.
results.getValue("Get People");

Example 3.33. Out identifiers

3.3.7.1. Sequential Mode
With Rete you have a stateful session where objects can be asserted and modified over time, and
where rules can also be added and removed. Now what happens if we assume a stateless session,
where after the initial data set no more data can be asserted or modified and rules cannot be added or
removed? Certainly it won't be necessary to re-evaluate rules, and the engine will be able to operate in
a simplified way.

1. Order the Rules by salience and position in the ruleset (by setting a sequence attribute on the rule
terminal node).

2. Create an array, one element for each possible rule activation; element position indicates firing
order.

3. Turn off all node memories, except the right-input Object memory.

4. Disconnect the Left Input Adapter Node propagation, and let the Object plus the Node be
referenced in a Command object, which is added to a list on the Working Memory for later
execution.

5. Assert all objects, and, when all assertions are finished and thus right-input node memories are
populated, check the Command list and execute each in turn.

6. All resulting Activations should be placed in the array, based upon the determined sequence
number of the Rule. Record the first and last populated elements, to reduce the iteration range.

Pipeline

57

7. Iterate the array of Activations, executing populated element in turn.

8. If we have a maximum number of allowed rule executions, we can exit our network evaluations
early to fire all the rules in the array.

The LeftInputAdapterNode no longer creates a Tuple, adding the Object, and then propagate
the Tuple – instead a Command object is created and added to a list in the Working Memory. This
Command object holds a reference to the LeftInputAdapterNode and the propagated object.
This stops any left-input propagations at insertion time, so that we know that a right-input propagation
will never need to attempt a join with the left-inputs (removing the need for left-input memory). All
nodes have their memory turned off, including the left-input Tuple memory but excluding the right-
input object memory, which means that the only node remembering an insertion propagation is
the right-input object memory. Once all the assertions are finished and all right-input memories
populated, we can then iterate the list of LeftInputAdatperNode Command objects calling each
in turn. They will propagate down the network attempting to join with the right-input objects, but they
won't be remembered in the left input as we know there will be no further object assertions and thus
propagations into the right-input memory.

There is no longer an Agenda, with a priority queue to schedule the Tuples; instead, there is simply
an array for the number of rules. The sequence number of the RuleTerminalNode indicates the
element within the array where to place the Activation. Once all Command objects have finished
we can iterate our array, checking each element in turn, and firing the Activations if they exist. To
improve performance, we remember the first and the last populated cell in the array. The network is
constructed, with each RuleTerminalNode being given a sequence number based on a salience
number and its order of being added to the network.

Typically the right-input node memories are Hash Maps, for fast object retraction; here, as we know
there will be no object retractions, we can use a list when the values of the object are not indexed. For
larger numbers of objects indexed Hash Maps provide a performance increase; if we know an object
type has only a few instances, indexing is probably not advantageous, and a list can be used.

Sequential mode can only be used with a Stateless Session and is off by default. To turn it on,
either call RuleBaseConfiguration.setSequential(true), or set the rulebase configuration
property drools.sequential to true. Sequential mode can fall back to a dynamic agenda by
calling setSequentialAgenda with SequentialAgenda.DYNAMIC. You may also set the
"drools.sequential.agenda" property to "sequential" or "dynamic".

3.3.8. Pipeline
The PipelineFactory and associated classes are there to help with the automation of getting
information into and out of JBoss Rules, especially when using services such as Java Message
Service (JMS), and other data sources that aren't Java objects. Transformers for Smooks, JAXB,
XStream and jXLS are povided. Smooks is an ETL (extract, transform, load) tool and can work with
a variety of data sources. JAXB is a Java standard for XML binding capable of working with XML
schemas. XStream is a simple and fast XML serialisation framework. jXLS finally allows for loading of
Java objects from an Excel spreadsheet. Minimal information on these technologies will be provided
here; beyond this, you should consult the relevant user guide for each of these tools.

Chapter 3. User Guide

58

Figure 3.26. PipelineFactory

Pipeline is not meant as a replacement for products like the more powerful Apache Camel. It is a
simple framework aimed at the specific JBoss Rules use cases.

In JBoss Rules, a pipeline is a series of stages that operate on and propagate a given
payload. Typically this starts with a Pipeline instance which is responsible for taking the
payload, creating a PipelineContext for it and propagating that to the first receiver stage.

Pipeline

59

Two subtypes of Pipeline are provided, both requiring a different PipelineContext:
StatefulKnowledgeSessionPipeline and StatelessKnowledgeSessionPipeline.
PipelineFactory provides methods to create both of the two Pipeline subtypes. Notice
that both factory methods take the relevant session as an argument. The construction of a
StatefulKnowledgeSessionPipeline is shown below, where also its receiver is set.

Pipeline pipeline =
 PipelineFactory.newStatefulKnowledgeSessionPipeline(ksession);
pipeline.setReceiver(receiver);

Example 3.34. StatefulKnowledgeSessionPipeline

A pipeline is then made up of a chain of Stages that implement both the Emitter and the Receiver
interfaces. The Emitter interface enables the Stage to propagate a payload, and the Receiver
interface lets it receive a payload. This is why the Pipeline interface only implements Emitter and
Stage and not Receiver, as it is the first instance in the chain. The Stage interface allows a custom
exception handler to be set on the Stage object.

Transformer transformer =
 PipelineFactory.newXStreamFromXmlTransformer(xstream);
transformer.setStageExceptionHandler(new StageExceptionHandler()
 { });

Example 3.35. StageExceptionHandler

The Transformer interface extends Stage, Emitter and Receiver, providing those interface
methods as a single type. Its other purpose is that of a marker interface indicating this particulare
role of the implementing class. (We have several other marker interfaces such as Expression and
Action, both of which also extend Stage, Emitter and Receiver.) One of the stages should
be responsible for setting a result value on the PipelineContext. It's the responsibility of the
ResultHandler interface, to be implemented by the user, to process on these results. It may do so
by inserting them into some suitable object, whence the user's code may retrieve them.

ResultHandler resultHandler = new ResultHandlerImpl();
pipeline.insert(factHandle, resultHandler);
System.out.println(resultHandler);
...
public class ResultHandlerImpl implements ResultHandler {
 Object result;

 public void handleResult(Object result) {
 this.result = result;
 }

 public Object getResult() {
 return this.result;
 }
}

Example 3.36. StageExceptionHandler

Chapter 3. User Guide

60

While the above example shows a simple handler that merely assigns the result to a field that the user
can access, it could do more complex work like sending the object as a message.

Pipeline provides an adapter to insert the payload and to create the correct Pipeline Context internally.

In general it is easier to construct the pipelines in reverse. In the following example XML data is loaded
from disk, transformed with XStream and finally inserted into the session.

// Make the results (here: FactHandles) available to the user
Action executeResultHandler = PipelineFactory.newExecuteResultHandler();

// Insert the transformed object into the session
// associated with the PipelineContext
KnowledgeRuntimeCommand insertStage =
 PipelineFactory.newStatefulKnowledgeSessionInsert();
insertStage.setReceiver(executeResultHandler);

// Create the transformer instance and the Transformer Stage,
// to transform from Xml to a Java object.
XStream xstream = new XStream();
Transformer transformer =
 PipelineFactory.newXStreamFromXmlTransformer(xstream);
transformer.setReceiver(insertStage);

// Create the start adapter Pipeline for StatefulKnowledgeSessions
Pipeline pipeline =
 PipelineFactory.newStatefulKnowledgeSessionPipeline(ksession);
pipeline.setReceiver(transformer);

// Instantiate a simple result handler and load and insert the XML
ResultHandlerImpl resultHandler = new ResultHandlerImpl();
pipeline.insert(ResourceFactory.newClassPathResource("path/facts.xml",
 getClass()),
 resultHandler);

Example 3.37. Constructing a pipeline

While the above example is for loading a resource from disk, it is also possible to work from a running
messaging service. JBoss Rules currently provides a single service for JMS, called JmsMessenger.
Support for other services will be added later. The code below shows part of a unit test which
illustrates part of the JmsMessenger in action:

Pipeline

61

// As this is a service, it's more likely that
 // the results will be logged or sent as a return message
Action resultHandlerStage = PipelineFactory.newExecuteResultHandler();

// Insert the transformed object into the session associated with the
 PipelineContext
KnowledgeRuntimeCommand insertStage =
 PipelineFactory.newStatefulKnowledgeSessionInsert();
insertStage.setReceiver(resultHandlerStage);

// Create the transformer instance and create the Transformer stage where
 we are
// going from XML to Pojo. JAXB needs an array of the available classes.
JAXBContext jaxbCtx = KnowledgeBuilderHelper.newJAXBContext(classNames,
 kbase);
Unmarshaller unmarshaller = jaxbCtx.createUnmarshaller();
Transformer transformer =
 PipelineFactory.newJaxbFromXmlTransformer(unmarshaller);
transformer.setReceiver(insertStage);

// Payloads for JMS arrive in a Message wrapper: we need to unwrap this
 object.
Action unwrapObjectStage = PipelineFactory.newJmsUnwrapMessageObject();
unwrapObjectStage.setReceiver(transformer);

// Create the start adapter Pipeline for StatefulKnowledgeSessions
Pipeline pipeline =
 PipelineFactory.newStatefulKnowledgeSessionPipeline(ksession);
pipeline.setReceiver(unwrapObjectStage);

// Services, like JmsMessenger take a ResultHandlerFactory implementation.
// This is because a result handler must be created for each incoming
 message.
ResultHandlerFactory factory = new ResultHandlerFactoryImpl();
Service messenger = PipelineFactory.newJmsMessenger(pipeline,
 props,
 destinationName,
 factory);
messenger.start();

Example 3.38. Using JMS with Pipeline

3.3.8.1. Xstream Transformer

XStream xstream = new XStream();
Transformer transformer =
 PipelineFactory.newXStreamFromXmlTransformer(xstream);
transformer.setReceiver(nextStage);

Example 3.39. XStream FromXML transformer stage

Chapter 3. User Guide

62

XStream xstream = new XStream();
Transformer transformer =
 PipelineFactory.newXStreamToXmlTransformer(xstream);
transformer.setReceiver(receiver);

Example 3.40. XStream ToXML transformer stage

3.3.8.2. JAXB Transformer
The Transformer objects are JaxbFromXmlTransformer and JaxbToXmlTransformer. The
former uses an javax.xml.bind.Unmarshaller for converting an XML document into a content
tree; the latter serializes a content tree to XML by passing it to a javax.xml.bind.Marshaller.
Both of these objects can be obtained from a JAXBContext object.

A JAXBContext maintains the set of Java classes that are bound to XML elements. Such classes may
be generated from an XML schema, by compiling it with JAXB's schema compiler xjc. Alternatively,
handwritten classes can be augmented with annotations from jaxb.xml.bind.annotation.

Unmarshalling an XML document results in an object tree. Inserting objects from this tree as facts into
a session can be done by walking the tree and inserting nodes as appropriate. This could be done in
the context of a pipeline by a custom Transformer that emits the nodes one by one to its receiver.

Options xjcOpts = new Options();
xjcOpts.setSchemaLanguage(Language.XMLSCHEMA);
KnowledgeBuilder kbuilder = KnowledgeBuilderFactory.newKnowledgeBuilder();

String[] classNames =
 KnowledgeBuilderHelper.addXsdModel(
 ResourceFactory.newClassPathResource("order.xsd", getClass()),
 kbuilder,
 xjcOpts,
 "xsd");

Example 3.41. JAXB XSD Generation into the KnowlegeBuilder

JAXBContext jaxbCtx =
 KnowledgeBuilderHelper.newJAXBContext(classNames, kbase);
Unmarshaller unmarshaller = jaxbCtx.createUnmarshaller();
Transformer transformer =
 PipelineFactory.newJaxbFromXmlTransformer(unmarshaller);
transformer.setReceiver(receiver);

Example 3.42. JAXB From XML transformer stage

Marshaller marshaller = jaxbCtx.createMarshaller();
Transformer transformer =
 PipelineFactory.newJaxbToXmlTransformer(marshaller);
transformer.setReceiver(receiver);

Example 3.43. JAXB to XML transformer stage

Pipeline

63

3.3.8.3. Smooks Transformer

Smooks smooks = new Smooks(getClass().getResourceAsStream("smooks-
config.xml"));
Transformer transformer =
 PipelineFactory.newSmooksFromSourceTransformer(smooks, "orderItem");
transformer.setReceiver(receiver);

Example 3.44. Smooks FromSource transformer stage

Smooks smooks = new Smooks(getClass().getResourceAsStream("smooks-
config.xml"));

Transformer transformer =
 PipelineFactory.newSmooksToSourceTransformer(smooks);
transformer.setReceiver(receiver);

Example 3.45. Smooks ToSource transformer stage

3.3.8.4. jXLS (Excel/Calc/CSV) Transformer
This transformer transforms from an Excel spreadsheet to a map of Java objects, using jXLS,
and the resulting map is set as the propagating object. You may need to use splitters and MVEL
expressions to split up the transformation to insert individual Java objects. Note that you must provde
an XLSReader, which references the mapping file and also an MVEL string which will instantiate the
map. The MVEL expression is pre-compiled but executed on each usage of the transformation.

XLSReader mainReader =

 ReaderBuilder.buildFromXML(ResourceFactory.newClassPathResource("departments.xml",
 getClass()).getInputStream());
String expr = "['departments' : new java.util.ArrayList()," +
 " 'company' : new
 org.drools.runtime.pipeline.impl.Company()]";
Transformer transformer = PipelineFactory.newJxlsTransformer(mainReader,
 expr);

Example 3.46. JXLS transformer stage

3.3.8.5. JMS Messenger
This transformer creates a new JmsMessenger which runs as a service in its own thread. It expects
an existing JNDI entry for "ConnectionFactory", used to create the MessageConsumer which will feed
into the specified pipeline.

Chapter 3. User Guide

64

// As this is a service, it's more likely the results
// will be logged or sent as a return message
Action resultHandlerStage = PipelineFactory.newExecuteResultHandler();

// Insert the transformed object into the session associated with the
 PipelineContext
KnowledgeRuntimeCommand insertStage =
 PipelineFactory.newStatefulKnowledgeSessionInsert();
insertStage.setReceiver(resultHandlerStage);

// Create the transformer instance and create the Transformer stage,
// where we are going from XML to Java object.
// JAXB needs an array of the available classes
JAXBContext jaxbCtx = KnowledgeBuilderHelper.newJAXBContext(classNames,
 kbase);
Unmarshaller unmarshaller = jaxbCtx.createUnmarshaller();
Transformer transformer =
 PipelineFactory.newJaxbFromXmlTransformer(unmarshaller);
transformer.setReceiver(insertStage);

// Payloads for JMS arrive in a Message wrapper, we need to unwrap this
 object.
Action unwrapObjectStage = PipelineFactory.newJmsUnwrapMessageObject();
unwrapObjectStage.setReceiver(transformer);

// Create the start adapter Pipeline for StatefulKnowledgeSessions
Pipeline pipeline =
 PipelineFactory.newStatefulKnowledgeSessionPipeline(ksession);
pipeline.setReceiver(unwrapObjectStage);

// Services like JmsMessenger take a ResultHandlerFactory implementation.
// This is so because a result handler must be created for each incoming
 message.
ResultHandleFactoryImpl factory = new ResultHandleFactoryImpl();
Service messenger = PipelineFactory.newJmsMessenger(pipeline,
 props,
 destinationName,
 factory);

Example 3.47. JMS Messenger stage

3.3.9. Commands and the CommandExecutor
JBoss Rules has the concept of stateful or stateless sessions. We've already covered stateful
sessions, which use the standard working memory that can be worked with iteratively over time.
Stateless is a one-off execution of a working memory with a provided data set. It may return some
results, with the session being disposed at the end, prohibiting further iterative interactions. You can
think of stateless as treating a rule engine like a function call with optional return results.

In previous versions we supported these two paradigms but the way the user interacted with them was
different. StatelessSession used an execute(...) method which would insert a collection of objects as

Commands and the CommandExecutor

65

facts. StatefulSession didn't have this method, and insert used the more traditional insert(...)
method. The other issue was that the StatelessSession did not return any results, so that users
themselves had to map globals to get results, and it wasn't possible to do anything besides inserting
objects; users could not start processes or execute queries.

JBoss Rules 5.0 addresses all of these issues and more. The foundation for this is the
CommandExecutor interface, which both the stateful and stateless interfaces extend, creating
consistency and ExecutionResults:

Figure 3.27. CommandExecutor

Chapter 3. User Guide

66

Figure 3.28. ExecutionResults

The CommandFactory allows for commands to be executed on those sessions, the only difference
being that the Stateless Knowledge Session executes fireAllRules() at the end before disposing
the session. The currently supported commands are:

The current supported commands are:

FireAllRules GetGlobal
SetGlobal InsertObject
InsertElements Query
StartProcess BatchExecution

InsertObject will insert a single object, with an optional "out" identifier. InsertElements will
iterate an Iterable, inserting each of the elements. What this means is that a Stateless Knowledge
Session is no longer limited to just inserting objects, it can now start processes or execute queries,
and do this in any order.

StatelessKnowledgeSession ksession = kbase.newStatelessKnowledgeSession();
ExecutionResults bresults =
 ksession.execute(CommandFactory.newInsert(new Cheese("stilton"
), "stilton_id"));
Stilton stilton = bresults.getValue("stilton_id");

Example 3.48. Insert Command

The execute method always returns an ExecutionResults instance, which allows access to any
command results if they specify an out identifier such as the "stilton_id" above.

Commands and the CommandExecutor

67

StatelessKnowledgeSession ksession = kbase.newStatelessKnowledgeSession();
Command cmd = CommandFactory.newInsertElements(
 Arrays.asList(new Object[] {
 new Cheese("stilton"), new Cheese("brie"), new Cheese("cheddar")}
));

ExecutionResults bresults = ksession.execute(cmd);

Example 3.49. InsertElements Command

However this method only allows for a single command. BatchExecution is a composite command
that takes a list of commands and will iterate and execute each command in turn. This means you can
insert some objects, start a process, call fireAllRules and execute a query all in a single execute(...)
call - much more powerful.

As mentioned previosly, the Stateless Knowledge Session will execute fireAllRules()
automatically at the end. However the keen-eyed reader probably has already noticed the
FireAllRules command and wondered how that works with a StatelessKnowledgeSession. The
FireAllRules command is allowed, and using it will disable the automatic execution at the end;
think of using it as a sort of manual override function.

Commands support out identifiers. Any command that has an out identifier set on it will add its results
to the returned ExecutionResults instance. Let's look at a simple example to see how this works.

StatelessKnowledgeSession ksession = kbase.newStatelessKnowledgeSession();
List cmds = new ArrayList();
cmds.add(CommandFactory.newInsertObject(new
 Cheese("stilton", 1), "stilton"));
cmds.add(CommandFactory.newStartProcess("process cheeses"));
cmds.add(CommandFactory.newQuery("cheeses"));
ExecutionResults bresults =
 ksession.execute(CommandFactory.newBatchExecution(cmds));
Cheese stilton = (Cheese) bresults.getValue("stilton");
QueryResults qresults = (QueryResults) bresults.getValue("cheeses");

Example 3.50. BatchExecution Command

In the above example multiple commands are executed, two of which populate the
ExecutionResults. The query command defaults to use the same identifier as the query name, but
it can also be mapped to a different identifier.

A custom XStream marshaller can be used with the JBoss Rules Pipeline to achieve XML scripting,
which is perfect for services. Here are two simple XML samples, one for the BatchExecution and one
for the ExecutionResults.

Chapter 3. User Guide

68

<batch-execution>
 <insert out-identifier='outStilton'>
 <org.drools.Cheese>
 <type>stilton</type>
 <price>25</price>
 <oldPrice>0</oldPrice>
 </org.drools.Cheese>
 </insert>
</batch-execution>

Example 3.51. Simple BatchExecution XML

<execution-results>
 <result identifier='outStilton'>
 <org.drools.Cheese>
 <type>stilton</type>
 <oldPrice>25</oldPrice>
 <price>30</price>
 </org.drools.Cheese>
 </result>
</execution-results>

Example 3.52. Simple ExecutionResults XML

The previously mentioned pipeline allows for a series of Stage objects, combined to help with getting
data into and out of sessions. There is a Stage implementing the CommandExecutor interface that
allows the pipeline to script either a stateful or stateless session. The pipeline setup is trivial:

Commands and the CommandExecutor

69

Action executeResultHandler = PipelineFactory.newExecuteResultHandler();

Action assignResult = PipelineFactory.newAssignObjectAsResult();

assignResult.setReceiver(executeResultHandler);

Transformer outTransformer =
 PipelineFactory.newXStreamToXmlTransformer(
 BatchExecutionHelper.newXStreamMarshaller());
outTransformer.setReceiver(assignResult);

KnowledgeRuntimeCommand cmdExecution =
 PipelineFactory.newCommandExecutor();
batchExecution.setReceiver(cmdExecution);

Transformer inTransformer =
 PipelineFactory.newXStreamFromXmlTransformer(
 BatchExecutionHelper.newXStreamMarshaller());
inTransformer.setReceiver(batchExecution);

Pipeline pipeline =
 PipelineFactory.newStatelessKnowledgeSessionPipeline(ksession);
pipeline.setReceiver(inTransformer);

Example 3.53. Pipeline for CommandExecutor

The key thing here to note is the use of the BatchExecutionHelper to provide a specially
configured XStream with custom converters for our Command objects and the new BatchExecutor
stage.

Using the pipeline is very simple. You must provide your own implementation of the ResultHandler
which is called when the pipeline executes the ExecuteResultHandler stage.

Figure 3.29. Pipeline ResultHandler

Chapter 3. User Guide

70

public static class ResultHandlerImpl implements ResultHandler {
 Object object;

 public void handleResult(Object object) {
 this.object = object;
 }

 public Object getObject() {
 return this.object;
 }
}

Example 3.54. Simple Pipeline ResultHandler

ResultHandler resultHandler = new ResultHandlerImpl();
pipeline.insert(inXml, resultHandler);

Example 3.55. Using a Pipeline

Earlier a BatchExecution was created with Java to insert some objects and execute a query. The
XML representation to be used with the pipeline for that example is shown below, with parameters
added to the query.

<batch-execution>
 <insert out-identifier="stilton">
 <org.drools.Cheese>
 <type>stilton</type>
 <price>1</price>
 <oldPrice>0</oldPrice>
 </org.drools.Cheese>
 </insert>
 <query out-identifier='cheeses2' name='cheesesWithParams'>
 <string>stilton</string>
 <string>cheddar</string>
 </query>
</batch-execution>

Example 3.56. BatchExecution Marshalled to XML

The CommandExecutor returns an ExecutionResults, and this is handled by the pipeline code
snippet as well. A similar output for the <batch-execution> XML sample above would be:

Commands and the CommandExecutor

71

<execution-results>
 <result identifier="stilton">
 <org.drools.Cheese>
 <type>stilton</type>
 <price>2</price>
 </org.drools.Cheese>
 </result>
 <result identifier='cheeses2'>
 <query-results>
 <identifiers>
 <identifier>cheese</identifier>
 </identifiers>
 <row>
 <org.drools.Cheese>
 <type>cheddar</type>
 <price>2</price>
 <oldPrice>0</oldPrice>
 </org.drools.Cheese>
 </row>
 <row>
 <org.drools.Cheese>
 <type>cheddar</type>
 <price>1</price>
 <oldPrice>0</oldPrice>
 </org.drools.Cheese>
 </row>
 </query-results>
 </result>
</execution-results>

Example 3.57. ExecutionResults Marshalled to XML

The BatchExecutionHelper provides a configured XStream instance to support the marshalling
of Batch Executions, where the resulting XML can be used as a message format, as shown above.
Configured converters only exist for the commands supported via the Command Factory. The user
may add other converters for their user objects. This is very useful for scripting stateless or stateful
knowledge sessions, especially when services are involved.

There is currently no XML schema to support schema validation. The basic format is
outlined here, and the drools-transformer-xstream module has an illustrative unit test in the
XStreamBatchExecutionTest unit test. The root element is <batch-execution> and it can contain
zero or more commands elements.

<batch-execution>
...
</batch-execution>

Example 3.58. Root XML element

This contains a list of elements that represent commands, the supported commands is limited to those
Commands provided by the Command Factory. The most basic of these is the <insert> element, which
inserts objects. The contents of the insert element is the user object, as dictated by XStream.

Chapter 3. User Guide

72

<batch-execution>
 <insert>
 ...<!-- any user object -->
 </insert>
</batch-execution>

Example 3.59. Insert

The insert element features an "out-identifier" attribute, demanding that the inserted object will also be
returned as part of the result payload.

<batch-execution>
 <insert out-identifier='userVar'>
 ...
 </insert>
</batch-execution>

Example 3.60. Insert with Out Identifier Command

It's also possible to insert a collection of objects using the <insert-elements> element. This command
does not support an out-identifier. The org.domain.UserClass is just an illustrative user object that
XStream would serialize.

<batch-execution>
 <insert-elements>
 <org.domain.UserClass>
 ...
 </org.domain.UserClass>
 <org.domain.UserClass>
 ...
 </org.domain.UserClass>
 <org.domain.UserClass>
 ...
 </org.domain.UserClass>
 </insert-elements>
</batch-execution>

Example 3.61. Insert Elements command

Next, there is the <set-global> element, which sets a global for the session.

<batch-execution>
 <set-global identifier='userVar'>
 <org.domain.UserClass>
 ...
 </org.domain.UserClass>
 </set-global>
</batch-execution>

Example 3.62. Insert Elements command

Commands and the CommandExecutor

73

<set-global> also supports two other optional attributes, out and out-identifier. A true value
for the boolean out will add the global to the <batch-execution-results> payload, using the
name from the identifier attribute. out-identifier works like out but additionally allows you to
override the identifier used in the <batch-execution-results> payload.

<batch-execution>
 <set-global identifier='userVar1' out='true'>
 <org.domain.UserClass>
 ...
 </org.domain.UserClass>
 </set-global>
 <set-global identifier='userVar2' out-identifier='alternativeUserVar2'>
 <org.domain.UserClass>
 ...
 </org.domain.UserClass>
 </set-global>
</batch-execution>

Example 3.63. Set Global Command

There is also a <get-global> element, without contents, with just an out-identifier attribute.
(There is no need for an out attribute because retrieving the value is the sole purpose of a <get-
global> element.

<batch-execution>
 <get-global identifier='userVar1' />
 <get-global identifier='userVar2' out-identifier='alternativeUserVar2'/>
</batch-execution>

Example 3.64. Get Global Command

While the out attribute is useful in returning specific instances as a result payload, we often wish to
run actual queries. Both parameter and parameterless queries are supported. The name attribute is
the name of the query to be called, and the out-identifier is the identifier to be used for the query
results in the <execution-results> payload.

<batch-execution>
 <query out-identifier='cheeses' name='cheeses'/>
 <query out-identifier='cheeses2' name='cheesesWithParams'>
 <string>stilton</string>
 <string>cheddar</string>
 </query>
</batch-execution>

Example 3.65. Query Command

The <start-process> command accepts optional parameters. Other process related methods will
be added later, like interacting with work items.

Chapter 3. User Guide

74

<batch-execution>
 <startProcess processId='org.drools.actions'>
 <parameter identifier='person'>
 <org.drools.TestVariable>
 <name>John Doe</name>
 </org.drools.TestVariable>
 </parameter>
 </startProcess>
</batch-execution

Example 3.66. Start Process Command

<signal-event process-instance-id='1' event-type='MyEvent'>
 <string>MyValue</string>
</signal-event>

Example 3.67. Signal Event Command

<complete-work-item id='" + workItem.getId() + "' >
 <result identifier='Result'>
 <string>SomeOtherString</string>
 </result>
</complete-work-item>

Example 3.68. Complete Work Item Command

<abort-work-item id='21' />

Example 3.69. Abort Work Item Command

Support for more commands will be added over time.

3.3.10. Marshalling
The MarshallerFactory is used to marshal and unmarshal Stateful Knowledge Sessions.

Marshalling

75

Figure 3.30. MarshallerFactory

At the simplest the MarshallerFactory can be used as follows:

// ksession is the StatefulKnowledgeSession
// kbase is the KnowledgeBase
ByteArrayOutputStream baos = new ByteArrayOutputStream();
Marshaller marshaller = MarshallerFactory.newMarshaller(kbase);
marshaller.marshall(baos, ksession);
baos.close();

Example 3.70. Simple Marshaller Example

However, with marshalling you need more flexibility when dealing with referenced user
data. To achieve this we have the ObjectMarshallingStrategy interface. Two
implementations are provided, but users can implement their own. The two supplied strategies
are IdentityMarshallingStrategy and SerializeMarshallingStrategy.
SerializeMarshallingStrategy is the default, as used in the example above,
and it just calls the Serializable or Externalizable methods on a user instance.
IdentityMarshallingStrategy instead creates an integer id for each user object and
stores them in a Map, while the id is written to the stream. When unmarshalling it accesses the
IdentityMarshallingStrategy map to retrieve the instance. This means that if you use the
IdentityMarshallingStrategy, it is stateful for the life of the Marshaller instance and will create
ids and keep references to all objects that it attempts to marshal. Below is he code to use an Identity
Marshalling Strategy.

Chapter 3. User Guide

76

ByteArrayOutputStream baos = new ByteArrayOutputStream();
ObjectMarshallingStrategy oms =
 MarshallerFactory.newIdentityMarshallingStrategy()
Marshaller marshaller =
 MarshallerFactory.newMarshaller(kbase, new ObjectMarshallingStrategy[]
{ oms });
marshaller.marshall(baos, ksession);
baos.close();

Example 3.71. IdentityMarshallingStrategy

For added flexability we can't assume that a single strategy is suitable. Therefore we have added the
ObjectMarshallingStrategyAcceptor interface that each Object Marshalling Strategy contains.
The Marshaller has a chain of strategies, and when it attempts to read or write a user object it iterates
the strategies asking if they accept responsability for marshalling the user object. One of the provided
implementations is ClassFilterAcceptor. This allows strings and wild cards to be used to match
class names. The default is "*.*", so in the above example the Identity Marshalling Strategy is used
which has a default "*.*" acceptor.

Assuming that we want to serialize all classes except for one given package, where we will use
identity lookup, we could do the following:

ByteArrayOutputStream baos = new ByteArrayOutputStream();
ObjectMarshallingStrategyAcceptor identityAcceptor =
 MarshallerFactory.newClassFilterAcceptor(new String[]
 { "org.domain.pkg1.*" });
ObjectMarshallingStrategy identityStrategy =
 MarshallerFactory.newIdentityMarshallingStrategy(identityAcceptor);
ObjectMarshallingStrategy sms =
 MarshallerFactory.newSerializeMarshallingStrategy();
Marshaller marshaller =
 MarshallerFactory.newMarshaller(kbase,
 new ObjectMarshallingStrategy[]
{ identityStrategy, sms });
marshaller.marshall(baos, ksession);
baos.close();

Example 3.72. IdentityMarshallingStrategy with Acceptor

Note that the acceptance checking order is in the natural order of the supplied array.

3.3.11. Persistence and Transactions
Longterm out of the box persistence with Java Persistence API (JPA) is possible with JBoss
Rules. You will need to have some implementation of the Java Transaction API (JTA) installed. For
development purposes we recommend the Bitronix Transaction Manager, as it's simple to set up and
works embedded, but for production use JBoss Transactions is recommended.

Persistence and Transactions

77

Environment env = KnowledgeBaseFactory.newEnvironment();

env.set(EnvironmentName.ENTITY_MANAGER_FACTORY,
 Persistence.createEntityManagerFactory("emf-name"));
env.set(EnvironmentName.TRANSACTION_MANAGER,
 TransactionManagerServices.getTransactionManager());

// KnowledgeSessionConfiguration may be null, and a default will be used

StatefulKnowledgeSession ksession =
 JPAKnowledgeService.newStatefulKnowledgeSession(kbase, null, env);
int sessionId = ksession.getId();

UserTransaction ut =
 (UserTransaction) new InitialContext().lookup("java:comp/
UserTransaction");
ut.begin();
ksession.insert(data1);
ksession.insert(data2);
ksession.startProcess("process1");
ut.commit();

Example 3.73. Simple example using transactions

To use a JPA, the Environment must be set with both the EntityManagerFactory and the
TransactionManager. If rollback occurs the ksession state is also rolled back, so you can continue
to use it after a rollback. To load a previously persisted Stateful Knowledge Session you'll need the id,
as shown below:

StatefulKnowledgeSession ksession =
 JPAKnowledgeService.loadStatefulKnowledgeSession(sessionId, kbase, null,
 env);

Example 3.74. Loading a StatefulKnowledgeSession

To enable persistence several classes must be added to your persistence.xml, as in the example
below:

Chapter 3. User Guide

78

<persistence-unit name="org.drools.persistence.jpa" transaction-type="JTA">
 <provider>org.hibernate.ejb.HibernatePersistence</provider>
 <jta-data-source>jdbc/BitronixJTADataSource</jta-data-source>
 <class>org.drools.persistence.session.SessionInfo</class>
 <class>org.drools.persistence.processinstance.ProcessInstanceInfo</
class>
 <class>org.drools.persistence.processinstance.ProcessInstanceEventInfo</
class>
 <class>org.drools.persistence.processinstance.WorkItemInfo</class>
 <properties>

 <property name="hibernate.dialect" value="org.hibernate.dialect.H2Dialect"/
>
 <property name="hibernate.max_fetch_depth" value="3"/>
 <property name="hibernate.hbm2ddl.auto" value="update" />
 <property name="hibernate.show_sql" value="true" />
 <property name="hibernate.transaction.manager_lookup_class"
 value="org.hibernate.transaction.BTMTransactionManagerLookup" />
 </properties>
</persistence-unit>

Example 3.75. Configuring JPA

The jdbc JTA data source would have to be configured first. Bitronix provides a number of ways
of doing this, and its documentation should be contsulted for details. For a quick start, here is the
programmatic approach:

PoolingDataSource ds = new PoolingDataSource();
ds.setUniqueName("jdbc/BitronixJTADataSource");
ds.setClassName("org.h2.jdbcx.JdbcDataSource");
ds.setMaxPoolSize(3);
ds.setAllowLocalTransactions(true);
ds.getDriverProperties().put("user", "sa");
ds.getDriverProperties().put("password", "sasa");
ds.getDriverProperties().put("URL", "jdbc:h2:mem:mydb");
ds.init();

Example 3.76. Configuring JTA DataSource

Bitronix also provides a simple embedded JNDI service, ideal for testing, to use it add a
jndi.properties file to your META-INF and add the following line to it:

java.naming.factory.initial=bitronix.tm.jndi.BitronixInitialContextFactory

Example 3.77. JNDI properties

Chapter 4.

79

The Rule Language

4.1. Overview
Jboss Rules has a "native" rule language. This format is very light in terms of punctuation, and
supports natural and domain specific languages via "expanders" that allow the language to adapt to
your problem domain. This chapter is mostly concerted with this native rule format.

The diagrams used to present the syntax are known as railroad diagrams, and are like flow charts for
the language terms. Interested readers can also refer to Antlr3 grammar for the rule language which
is in DRL.g but this is not required. If you use the Rule Workbench, a lot of the rule structure is done
for you with content assistance, for example, type "ru" and press ctrl+space, and it will build the rule
structure for you.

4.1.1. A rule file
A rule file is typically a file with a .drl extension. In a DRL file you can have multiple rules, queries
and functions, as well as some resource declarations like imports, globals and attributes that are
assigned and used by your rules and queries. However, you are also able to spread your rules across
multiple rule files and in that case, the extension .rule is suggested but not required. Spreading rules
across files can help with managing large numbers of rules. A DRL file is simply a text file.

The overall structure of a rule file is:

package package-name

imports

globals

functions

queries

rules

Example 4.1. Rules file

The order in which the elements are declared is not important, except for the package name that,
if declared, must be the first element in the rules file. All elements are optional, so you will use only
those you need. We will discuss each of them in the following sections.

4.1.2. What makes a rule
A rule has the following rough structure:

rule "name"
 attributes
when
 LHS

Chapter 4. The Rule Language

80

then
 RHS
end

It's really that simple. Mostly punctuation is not needed, even the double quotes for "name" are
optional, as are newlines. Attributes are simple (always optional) hints to how the rule should behave.
LHS is the conditional parts of the rule, which follows a certain syntax which is covered below. RHS is
basically a block that allows dialect specific semantic code to be executed.

It is important to note that white space is not important, except in the case of domain specific
languages. When using a domain specific language each line is processed before the following line
and spaces may be significant to the domain language.

4.2. Keywords
JBoss Rules 5 introduces the concept of Hard and Soft keywords.

Hard keywords are reserved, you cannot use any hard keyword when naming your domain objects,
properties, methods, functions and other elements that are used in the rule text.

Here is the list of hard keywords that must be avoided as identifiers when writing rules:

true false accumulate
collect from null
over then when

Soft keywords are just recognized in their context, enabling you to use these words in any other place
you wish. Here is a list of the soft keywords:

lock-on-active date-effective date-expires
no-loop auto-focus activation-group
agenda-group ruleflow-group entry-point
duration package import
dialect salience enabled
attributes rule extend
template query declare
function global eval
not in or
and exists forall
action reverse result
end init

You can use both hard and soft keywords as part of a method name in camel case, like
notSomething() or accumulateSomething().

Another improvement of the DRL language is the ability to escape hard keywords on rule text. This
feature enables you to use your existing domain objects without worrying about keyword collision. To
escape a word, simply enclose it in grave accents, like this:

Holiday(`when` == "july")

The escape should be used everywhere in rule text, except within code expressions in the LHS or
RHS code block. Here are examples of proper usage:

Comments

81

rule "validate holiday by eval"
dialect "mvel"
when
 h1 : Holiday()
 eval(h1.when == "july")
then
 System.out.println(h1.name + ":" + h1.when);
end

rule "validate holiday"
dialect "mvel"
when
 h1 : Holiday(`when` == "july")
then
 System.out.println(h1.name + ":" + h1.when);
end

4.3. Comments
Comments are sections of text that are ignored by the rule engine. They are stripped out when they
are encountered, except inside semantic code blocks, like the RHS of a rule.

4.3.1. Single line comment

Figure 4.1. Single line comment

To create single line comments, you can use either '#' or '//'. The parser will ignore anything in the line
after the comment symbol. Example:

rule "Testing Comments"
when
 # this is a single line comment
 // this is also a single line comment
 eval(true) # this is a comment in the same line of a pattern
then
 // this is a comment inside a semantic code block
 # this is another comment in a semantic code block
end

4.3.2. Multi-line comment

Figure 4.2. Multi-line comment

Chapter 4. The Rule Language

82

Multi-line comments are used to comment blocks of text, both in and outside semantic code blocks.
Example:

rule "Test Multi-line Comments"
when
 /* this is a multi-line comment
 in the left hand side of a rule */
 eval(true)
then
 /* and this is a multi-line comment
 in the right hand side of a rule */
end

4.4. Error Messages
JBoss Rules 5 introduces standardized error messages. This standardization aims to help users to
find and resolve problems in a easier and faster way. In this section you will learn how to identify and
interpret those error messages, and you will also receive some tips on how to solve the problems
associated with them.

4.4.1. Message format
The standardization includes the error message format and to better explain this format, let's use the
following example:

Figure 4.3. Error Message Format

1st Block
This area identifies the error code.

2nd Block
Line and column information.

3rd Block
Some text describing the problem.

4th Block
This is the first context. Usually indicates the rule, function, template or query where the error
occurred. This block is not mandatory.

5th Block
Identifies the pattern where the error occurred. This block is not mandatory.

Error Messages Description

83

4.4.2. Error Messages Description

4.4.2.1. 101: No viable alternative
Indicates the most common errors, where the parser came to a decision point but couldn't identify an
alternative. Here are some examples:

rule one
when
 exists Foo()
 exits Bar()
then
end

The above example generates this message:

[ERR 101] Line 4:4 no viable alternative at input 'exits' in rule one

At first glance this seems to be valid syntax, but it is not (exits != exists). Let's take a look at next
example:

package org.drools;
rule
when
 Object()
then
 System.out.println("A RHS");
end

Now the above code generates this message:

[ERR 101] Line 3:2 no viable alternative at input 'WHEN'

This message means that the parser encountered the token WHEN, actually a hard keyword, but it's in
the wrong place since the the rule name is missing.

The error "no viable alternative" also occurs when you make a simple lexical mistake. Here is a
sample of a lexical problem:

rule simple_rule
when
 Student(name == "Andy)
then
end

The above code misses to close the quotes and because of this the parser generates this error
message:

[ERR 101] Line 0:-1 no viable alternative at input

Chapter 4. The Rule Language

84

'<eof>' in rule simple_rule in pattern Student

Note
Usually the Line and Column information are accurate, but in some cases (like unclosed
quotes), the parser generates a 0:-1 position. In this case you should check whether you
didn't forget to close quotes, apostrophes or parentheses.

4.4.2.2. 102: Mismatched input
This error indicates that the parser was looking for a particular symbol that it didn’t find at the current
input position. Here are some samples:

rule simple_rule
when
 foo3 : Bar(

The above example generates this message:

[ERR 102] Line 0:-1 mismatched input '<eof>' expecting
')' in rule simple_rule in pattern Bar

To fix this problem, it is necessary to complete the rule statement.

Note
Usually when you get a 0:-1 position, it means that parser reached the end of source.

The following code generates more than one error message:

package org.drools;

rule "Avoid NPE on wrong syntax"
when
 not(Cheese((type=="stilton",price==10)||(type=="brie",price==15))
 from $cheeseList)
then
 System.out.println("OK");
end

These are the errors associated with this source:

[ERR 102] Line 5:36 mismatched input ',' expecting ')' in rule
"Avoid NPE on wrong syntax" in pattern Cheese

[ERR 101] Line 5:57 no viable alternative at input 'type' in
rule "Avoid NPE on wrong syntax"

Error Messages Description

85

[ERR 102] Line 5:106 mismatched input ')' expecting 'then' in
 rule "Avoid NPE on wrong syntax"

Note that the second problem is related to the first. To fix it, just replace the commas (',') by AND
operator ('&&').

Note
In some situations you can get more than one error message. Try to fix one by one,
starting at the first one. Some error messages are generated merely as consequences of
other errors.

4.4.2.3. 103: Failed predicate
A validating semantic predicate evaluated to false. Usually these semantic predicates are used to
identify soft keywords. This sample shows exactly this situation:

package nesting;
dialect "mvel"

import org.drools.Person
import org.drools.Address

fdsfdsfds

rule "test something"
when
 p: Person(name=="Michael")
then
 p.name = "other";
 System.out.println(p.name);
end

With this sample, we get this error message:

[ERR 103] Line 7:0 rule 'rule_key' failed predicate:
{(validateIdentifierKey(DroolsSoftKeywords.RULE))}? in rule

The 'fdsfdsfds' text is invalid and the parser couldn’t identify it as the soft keyword rule.

Note
This error is very similar to 102: Mismatched input, but usually involves soft keywords.

4.4.2.4. 104: Trailing semi-colon not allowed
This error is associated with the eval clause, where its expression may not be terminated with a semi-
colon. Check this example:

Chapter 4. The Rule Language

86

rule simple_rule
when
 eval(abc();)
then
end

Due to the trailing semi-colon within eval, we get this error message:

[ERR 104] Line 3:4 trailing semi-colon not allowed in rule
simple_rule

This problem is simple to fix: just remove the semi-colon.

4.4.2.5. 105: Early Exit
The recognizer came to a subrule in the grammar that must match an alternative at least once, but the
subrule did not match anything. Simply put: the parser has entered a branch from where there is no
way out. This example illustrates it:

template test_error
 aa s 11;
end

This is the message associated to the above sample:

[ERR 105] Line 2:2 required (...)+ loop did not match anything
at input 'aa' in template test_error

To fix this problem it is necessary to remove the numeric value as it is neither a valid data type which
might begin a new template slot nor a possible start for any other rule file construct.

4.5. Package
A package is a collection of rules and other related constructs, such as imports and globals. The
package members are typically related to each other - perhaps HR rules, for instance. A package
represents a namespace, which ideally is kept unique for a given grouping of rules. The package
name itself is the namespace, and is not related to files or folders in any way.

It is possible to assemble rules from multiple rule sources, and have one top level package
configuration that all the rules are kept under (when the rules are assembled). Although, it is not
possible to merge into the same package resources declared under different names. A single
Rulebase, can contain multiple packages built on it. It is common practice to have all the rules for a
package in the same file as the package declaration so that is it entirely self contained.

The following railroad diagram shows all the components that may make up a package. Note that
a package must have a namespace and be declared using standard Java conventions for package
names; i.e., no spaces, unlike rule names which allow spaces. In terms of the order of elements, they
can appear in any order in the rule file, with the exception of the package statement which must be at
the top of the file. In all cases, the semicolons are optional.

import

87

Figure 4.4. package

Note
Notice that any rule atttribute (as described the section Rule Attributes) may also be
written at package level, superseding the attribute's default value. The modified default
may still be replaced by an attribute setting within a rule.

4.5.1. import

Figure 4.5. import

Import statements work like import statements in Java. You need to specify the fully qualified paths
and type names for any objects you want to use in the rules. JBoss Rules automatically imports
classes from the Java package of the same name, and also from the package java.lang.

Chapter 4. The Rule Language

88

4.5.2. global

Figure 4.6. global

With global you define global variables. They are used to make application objects available to the
rules. Typically, they are used to provide data or services that the rules use, especially application
services used in rule consequences, and to return data from the rules, like logs or values added in
rule consequences, or for the rules to interact with the application, doing callbacks. Globals are not
inserted into the Working Memory, and therefore a global should never be used to establish conditions
in rules except when it has a constant immutable value. The engine cannot be notified about value
changes of globals and does not track their changes. Incorrect use of globals in constraints may yield
surprising results - surprising in a bad way.

If multiple packages declare globals with the same identifier they must be of the same type and all of
them will reference the same global value.

In order to use globals you must:

1. Declare your global variable in your rules file and use it in rules. Example:

global java.util.List myGlobalList;

rule "Using a global"
when
 eval(true)
then
 myGlobalList.add("Hello World");
end

2. Set the global value on your working memory. It is a best practice to set all global values before
asserting any fact to the working memory. Example:

List list = new ArrayList();
WorkingMemory wm = rulebase.newStatefulSession();
wm.setGlobal("myGlobalList", list);

Note that these are just named instances of objects that you pass in from your application to the
working memory. This means you can pass in any object you want: you could pass in a service
locator, or perhaps a service itself. With the new from element it is now common to pass a Hibernate
session as a global, to allow from to pull data from a named Hibernate query.

One example may be an instance of a Email service. In your integration code that is calling the rule
engine, you obtain your emailService object, and then set it in the working memory. In the DRL, you
declare that you have a global of type EmailService, and give it the name "email". Then in your rule
consequences, you can use things like email.sendSMS(number, message).

Globals are not designed to share data between rules and they should never be used for that purpose.
Rules always reason and react to the working memory state, so if you want to pass data from rule to
rule, assert the data as facts into the working memory.

Function

89

It is strongly discouraged to set or change a global value from inside your rules. We recommend to
you always set the value from your application using the working memory interface.

4.6. Function

Figure 4.7. function

Functions are a way to put semantic code in your rule source file, as opposed to in normal Java
classes. They can't do anything more then what you can do with helper classes (in fact, the compiler
generates the helper class for you behind the scenes). The main advantage of using functions in a rule
is that you can keep the logic all in one place, and you can change the functions as needed (this can
be a good and bad thing). Functions are most useful for invoking actions on the consequence ("then")
part of a rule, especially if that particular action is used over and over (perhaps with only differing
parameters for each rule - for example the contents of an email message).

A typical function declaration looks like:

function String hello(String name) {
 return "Hello "+name+"!";
}

Note that the "function" keyword is used, even though its not really part of Java. Parameters to the
function are just like a normal method (and you don't have to have parameters if they are not needed).
Return type is just like a normal method.

An alternative to the use of a function, could be to use a static method in a helper class: Foo.hello().
JBoss Rules supports the use of function imports, so all you would need to do is:

import function my.package.Foo.hello

In both cases above, to use the function, just call it by its name in the consequence or inside a
semantic code block. Example:

rule "using a static function"

Chapter 4. The Rule Language

90

when
 eval(true)
then
 System.out.println(hello("Bob"));
end

4.7. Type Declaration

Figure 4.8. meta_data

Figure 4.9. type_declaration

Declaring New Types

91

Type declarations have two main goals in the rules engine: to allow the declaration of new types, and
to allow the declaration of metadata for types.

• Declaring new types: JBoss Rules works out of the box with plain POJOs as facts. Although,
sometimes the users may want to define the model directly to the rules engine, without worrying
to create their models in a lower level language like Java. At other times, there is a domain model
already built, but eventually the user wants or needs to complement this model with additional
entities that are used mainly during the reasoning process.

• Declaring metadata: facts may have meta information associated to them. Examples of meta
information include any kind of data that is not represented by the fact attributes and are consistent
among all instances of that fact type. This meta information may be queried at runtime by the engine
and used in the reasoning process.

4.7.1. Declaring New Types
To declare a new type, all you need to do is use the keyword declare, followed by the list of fields and
the keyword end.

declare Address
 number : int
 streetName : String
 city : String
end

Example 4.2. declaring a new fact type: Address

The previous example declares a new fact type called Address. This fact type will have 3 attributes:
number, streetName and city. Each attribute has a type that can be any valid Java type, including any
other class created by the user or even other fact types previously declared.

For instance, we may want to declare another fact type Person:

declare Person
 name : String
 dateOfBirth : java.util.Date
 address : Address
end

Example 4.3. declaring a new fact type: Person

As we can see on the previous example, dateOfBirth is of type java.util.Date, from the Java API,
while address is of the previously defined fact type Address.

You may avoid having to write the fully qualified name of a class every time you write it by using the
import clause, previously discussed.

Chapter 4. The Rule Language

92

import java.util.Date

declare Person
 name : String
 dateOfBirth : Date
 address : Address
end

Example 4.4. avoiding the need to use fully qualified class names by using import

When you declare a new fact type, JBoss Rules will, at compile time, generate bytecode implementing
a POJO that represents the fact type. The generated Java class will be a one-to-one Java Bean
mapping of the type definition. So, for the previous example, the generated Java class would be:

public class Person implements Serializable {
 private String name;
 private java.util.Date dateOfBirth;
 private Address address;

 // getters and setters
 // equals/hashCode
 // toString
}

Example 4.5. generated Java class for the previous Person fact type declaration

Since it is a simple POJO, the generated class can be used transparently in the rules, like any other
fact.

rule "Using a declared Type"
when
 $p : Person(name == "Bob")
then
 System.out.println("The name of the person is "+)
 // lets insert Mark, that is Bob's mate
 Person mark = new Person();
 mark.setName("Mark");
 insert(mark);
end

Example 4.6. using the declared types in rules

4.7.2. Declaring Metadata
Metadata may be assigned to several different constructions in JBoss Rules, like fact types, fact
attributes and rules. JBoss Rules uses the @ symbol to introduce metadata, and it always uses the
form:

@matadata_key(metadata_value)

The parenthesis and the metadata_value are optional.

Declaring Metadata for Existing Types

93

For instance, if you want to declare a metadata attribute like author, whose value is Bob, you could
simply write:

@author(Bob)

Example 4.7. declaring an arbitrary metadata attribute

JBoss Rules allows the declaration of any arbitrary metadata attribute, but some will have special
meaning to the engine, while others are simply available for querying at runtime. JBoss Rules allows
the declaration of metadata both for fact types and for fact attributes. Any metadata that is declared
before the fields of a fact type are assigned to the fact type, while metadata declared after an attribute
are assigned to the attribute in particular.

import java.util.Date

declare Person
 @author(Bob)
 @dateOfCreation(01-Feb-2009)

 name : String @key @maxLength(30)
 dateOfBirth : Date
 address : Address
end

Example 4.8. declaring metadata attributes for fact types and attributes

In the previous example, there are two metadata declared for the fact type (@author and
@dateOfCreation), and two more defined for the name attribute (@key and @maxLength). Please
note that the @key metadata has no value, and so the parenthesis and the value were omitted.

4.7.3. Declaring Metadata for Existing Types
JBoss Rules allows the declaration of metadata attributes for existing types in the same way as when
declaring metadata attributes for new fact types. The only difference is that there are no fields in that
declaration.

For instance, if there is a class org.drools.examples.Person, and one wants to declare metadata for it,
just write the following code:

import org.drools.examples.Person

declare Person
 @author(Bob)
 @dateOfCreation(01-Feb-2009)
end

Example 4.9. declaring metadata for an existing type

Instead of using the import, it is also possible to reference the class by its fully qualified name, but
since the class will also be referenced in the rules, usually it is shorter to add the import and use the
short class name everywhere.

Chapter 4. The Rule Language

94

declare org.drools.examples.Person
 @author(Bob)
 @dateOfCreation(01-Feb-2009)
end

Example 4.10. declaring metadata using the fully qualified class name

4.7.4. Accessing Declared Types from the Application Code
Declared types are usually used inside rules files, while Java models are used when sharing the
model between rules and applications. Although, sometimes, the application may need to access and
handle facts from the declared types, specially when the application is wrapping the rules engine and
providing higher level, domain specific, user interfaces for rules management.

In such cases, the generated classes can be handled as usual with the Java Reflection APIs, but
as we know, that usually requires a lot of work for small results. This way, JBoss Rules provides a
simplified API for the most common fact handling the application may want to do.

The first important thing to realize is that a declared fact will belong to the package where it was
declared. So, for instance, in the example below, Person will belong to the org.drools.examples
package, and so the generated class fully qualified name will be: org.drools.examples.Person.

package org.drools.examples

import java.util.Date

declare Person
 name : String
 dateOfBirth : Date
 address : Address
end

Example 4.11. declaring a type in the org.drools.examples package

Declared types, as discussed previously, are generated at knowledge base compilation time, i.e., the
application will only have access to them at application run time. As so, these classes are not available
for direct reference from the application.

JBoss Rules then provides an interface through which the users can handle declared types from the
application code: org.drools.definition.type.FactType. Through this interface, the user can instantiate,
read and write fields in the declared fact types.

Accessing Declared Types from the Application Code

95

// get a reference to a knowledge base with a declared type:
KnowledgeBase kbase = ...

// get the declared FactType
FactType personType = kbase.getFactType("org.drools.examples",
 "Person");

// handle the type as necessary:
// create instances:
Object bob = personType.newInstance();

// set attributes values
personType.set(bob,
 "name",
 "Bob");
personType.set(bob,
 "age",
 42);

// insert fact into a session
StatefulKnowledgeSession ksession = ...
ksession.insert(bob);
ksession.fireAllRules();

// read attributes
String name = personType.get(bob, "name");
int age = personType.get(bob, "age");

Example 4.12. handling declared fact types through the API

The API also includes other helpful methods, like setting all the attributes at once, reading values from
a Map, or read all attributes at once, populating a Map.

Although the API is similar to Java reflection it does not use reflection. It instead relies on much faster
bytecode generated accessors.

Chapter 4. The Rule Language

96

4.8. Rule

Figure 4.10. rule

A rule specifies that when a particular set of conditions occur, specified in the Left Hand Side (LHS),
then do what is specified as a list of actions in the Right Hand Side (RHS). A common question from
users is "Why use when instead of if?" "When" was chosen over "if" because "if" is normally part of a
procedural execution flow, where, at a specific point in time, a condition is to be checked. In contrast,
"when" indicates that the condition evaluation is not tied to a specific evaluation sequence or point
in time, but that it happens continually, at any time during the life time of the engine; whenever the
condition is met, the actions are executed.

A rule must have a name, unique within its rule package. If you define a rule twice in the same DRL it
produces an error while loading. If you add a DRL that includes a rule name already in the package, it
replaces the previous rule. If a rule name is to have spaces, then it will need to be enclosd in double
quotes (it is best to always use double quotes).

Attributes are optional. They are best written one per line.

The LHS of the rule follows the when keyword (ideally on a new line), similarly the RHS follows the
then keyword (again, ideally on a newline). The rule is terminated by the keyword end. Rules cannot
be nested.

Rule Attributes

97

rule "<name>"
 <attribute>*
when
 <conditional element>*
then
 <action>*
end

Example 4.13. Rule Syntax Overview

rule "Approve if not rejected"
 salience -100
 agenda-group "approval"
when
 not Rejection()
 p : Policy(approved == false, policyState:status)
 exists Driver(age > 25)
 Process(status == policyState)
then
 log("APPROVED: due to no objections.");
 p.setApproved(true);
end

Example 4.14. A simple rule

4.8.1. Rule Attributes
Rule attributes provide a declarative way to influence the behavior of the rule. Some are quite simple,
while others are part of complex subsystems such as Ruleflow. To get the most from JBoss Rules you
should make sure you have a proper understanding of each attribute.

Chapter 4. The Rule Language

98

Figure 4.11. rule attributes

no-loop
default value: false

type: Boolean

When the rule's consequence modifies a fact it may cause the Rule to activate again, causing
recursion. Setting no-loop to true means the attempt to create the Activation for the current set of
data will be ignored.

ruleflow-group
default value: N/A

type: String

Ruleflow is a JBoss Rules feature that lets you exercise control over the firing of rules. Rules that
are assembled by the same ruleflow-group identifier fire only when their group is active.

lock-on-active
default value: false

type: Boolean

Rule Attributes

99

Whenever a ruleflow-group becomes active or an agenda-group receives the focus, any rule within
that group that has lock-on-active set to true will not be activated any more; irrespective of the
origin of the update, the activation of a matching rule is discarded. This is a stronger version of no-
loop, because the change could now be caused not only by the rule itself. It's ideal for calculation
rules where you have a number of rules that modify a fact and you don't want any rule re-matching
and firing again. Only when the ruleflow-group is no longer active or the agenda-group loses the
focus those rules with lock-on-active set to true become eligible again for their activations to be
placed onto the agenda.

salience
default value : 0

type : integer

Each rule has a salience attribute that can be assigned an integer number, which defaults to zero
and can be negative or positive. Salience is a form of priority where rules with higher salience
values are given higher priority when ordered in the Activation queue.

agenda-group
default value: MAIN

type: String

Agenda groups allow the user to partition the Agenda providing more execution control. Only rules
in the agenda group that has acquired the focus are allowed to fire.

auto-focus
default value: false

type: Boolean

When a rule is activated where the auto-focus value is true and the rule's agenda group does
not have focus yet, then it is given focus, allowing the rule to potentially fire.

activation-group
default value: N/A

type: String

Rules that belong to the same activation-group, identified by this attribute's string value, will only
fire exclusively. In other words, the first rule in an activation-group to fire will cancel the other rules'
activations, i.e., stop them from firing.

Note
This used to be called Xor group, but technically it's not quite an Xor. You may still
hear people mention Xor group; just swap that term in your mind with activation-
group.

dialect
default value : as specified by the package

type : String

Chapter 4. The Rule Language

100

possible values: "java" or "mvel"

The dialect species the language to be used for any code expressions in the LHS or the RHS code
block. Currently two dialects are available, Java and MVEL. While the dialect can be specified at
the package level, this attribute allows the package definition to be overridden for a rule.

date-effective
default value: N/A

type: String, containing a date and time definition

A rule can only activate if the current date and time is after date-effective attribute.

date-expires
default value: N/A

type: String, containing a date and time definition

A rule cannot activate if the current date and time is after the date-expires attribute.

duration
default value: no default value

type: long

The duration dictates that the rule will fire after a specified duration, if it is still true.

rule "my rule"
salience 42
agenda-group "number 1"
when ...

Example 4.15. Some attribute examples

4.8.2. Left Hand Side (when) Conditional Elements
The Left Hand Side (LHS) is a common name for the conditional part of the rule. It consists of zero or
more Conditional Elements. If the LHS is left empty, it is re-written as eval(true), which means that
the rule's condition is always true. It will be activated, once, when a new Working Memory session is
created.

Figure 4.12. Left Hand Side

Left Hand Side (when) Conditional Elements

101

rule "no CEs"
when
then
 <action>*
end

Is internally re-written as:

rule "no CEs"
when
 eval(true)
then
 <action>*
end

Example 4.16. Rule without a Conditional Element

Conditional elements work on one or more patterns (which are described below). The most common
one is and, which is implicit when you have multiple patterns in the LHS of a rule that are not
connected in any way. Note that an and cannot have a leading declaration binding like or. This is
obvious, since a declaration can only reference a single fact, and when the and is satisfied it matches
more than one fact - so which fact would the declaration bind to?

4.8.2.1. Pattern
The pattern element is the most important Conditional Element. The entity relationship diagram below
provides an overview of the various parts that make up the pattern's constraints and how they work
together; each is then covered in more detail with railroad diagrams and examples.

Chapter 4. The Rule Language

102

Figure 4.13. Pattern Entity Relationship Diagram

At the top of the ER diagram you can see that the pattern consists of zero or more constraints and has
an optional pattern binding. The railroad diagram below shows the syntax for this.

Left Hand Side (when) Conditional Elements

103

Figure 4.14. Pattern

In its simplest form with no constraints, a pattern matches against a fact of the given type. In the
following case the type is Cheese, which means that the pattern will match against all Cheese objects
in the Working Memory.

Notice that the type need not be the actual class of some fact object. Patterns may refer to
superclasses or even interfaces, thereby potentially matching facts from many different classes.

Cheese()

Example 4.17. Simple Pattern

For referring to the matched object, use a pattern binding variable such as $c. The prefixed dollar
symbol ('$') is optional and can be useful in complex rules where it helps to more easily differentiate
between variables and fields.

$c : Cheese()

Example 4.18. Pattern with a binding variable

Inside of the pattern parenthesis is where all the action happens. A constraint can be either a Field
Constraint, Inline Eval, or a Constraint Group. Constraints can be separated by the following symbols:
',', '&&' or '||'.

Figure 4.15. Constraints

Figure 4.16. Constraint

Figure 4.17. constraintGroup

The comma character (',') is used to separate constraint groups. It has implicit and connective
semantics.

Chapter 4. The Rule Language

104

Cheese type is stilton and price < 10 and age is mature.
Cheese(type == "stilton", price < 10, age == "mature")

Example 4.19. Constraint Group connective ','

The above example has three constraint groups, each with a single constraint:

1. The type is stilton, type == "stilton"

2. The price is less than 10, price < 10

3. The age is mature, age == "mature"

The '&&' (and) and '||' (or) constraint connectives allow constraint groups to have multiple constraints.
Example:

// Cheese type is "stilton" and price < 10, and age is mature
Cheese(type == "stilton" && price < 10, age == "mature")
// Cheese type is "stilton" or price < 10, and age is mature
Cheese(type == "stilton" || price < 10, age == "mature")

Example 4.20. && and || Constraint Connectives

The above example has two constraint groups. The first has two constraints and the second has one
constraint.

The connectives are evaluated in the following order, from first to last:

1. &&

2. ||

3. ,

It is possible to change the evaluation priority by using parenthesis, as in any logic or mathematical
expression. Example:

Cheese type is stilton and (price is less than 20 or age is mature).
Cheese(type == "stilton" && (price < 20 || age == "mature"))

Example 4.21. Using parenthesis to change evaluation priority

In the above example, the use of parenthesis makes the || connective be evaluated before the &&
connective.

Also, it is important to note that besides having the same semantics, the connectives '&&' and ',' are
resolved with different priorities, and ',' cannot be embedded in a composite constraint expression.

// invalid as ',' cannot be embedded in an expression:
Cheese((type == "stilton", price < 10) || age == "mature")
// valid as '&&' can be embedded in an expression:
Cheese((type == "stilton" && price < 10) || age == "mature")

Example 4.22. Not Equivalent connectives

Left Hand Side (when) Conditional Elements

105

4.8.2.1.1. Field Constraints
A Field constraint specifies a restriction to be used on a named field; the field name can have an
optional variable binding.

Figure 4.18. fieldConstraint

There are three types of restrictions: Single Value Restriction, Compound Value Restriction, and Multi
Restriction.

Figure 4.19. restriction

4.8.2.1.2. JavaBeans as facts
A field is derived from an accessible method of the object. If your model objects follow the Java Bean
pattern, then fields are exposed using "getXXX" or "isXXX" methods, where these methods take no
arguments, and return something. Within patterns, fields can be accessed using the bean naming
convention, so that "getType" would be accessed as "type". JBoss Rules uses the standard JDK
Introspector class to do this mapping.

For example, referring to our Cheese class, the pattern Cheese(type == "brie") applies the
getType() method to a Cheese instance. If a field name cannot be found, the compiler will resort to
using the name as a method without arguments. Thus, the method toString() is called due to a
constraint Cheese(toString == "cheddar"). In this case, you use the full name of the method
with correct capitalization, but still without parentheses. Do please make sure that you are accessing
methods that take no parameters, and that are in fact accessors which don't change the state of the
object in a way that may effect the rules. Remember that the rule engine effectively caches the results
of its matching in between invocations to make it faster.

4.8.2.1.3. Values
The field constraints can take a number of values; including literal, qualifiedIdentifier (enum), variable
and returnValue.

Chapter 4. The Rule Language

106

Figure 4.20. literal

Figure 4.21. qualifiedIdentifier

Figure 4.22. variable

Figure 4.23. returnValue

You can do checks against fields that are or may be null, using '==' and '!=' as you would expect,
and the literal null keyword, as in Cheese(type != null), where the evaluator will not throw an
exception and return true if the value is null. Type coercion is always attempted if the field and the
value are of different types; exceptions will be thrown if a bad coercion is attempted. For instance, if
"ten" is provided as a string in a numeric evaluator, an exception is thrown, whereas "10" would coerce
to a numeric 10. Coercion is always in favor of the field type and not the value type.

4.8.2.1.4. Single Value Restriction

Figure 4.24. singleValueRestriction

Left Hand Side (when) Conditional Elements

107

4.8.2.1.5. Operators

Figure 4.25. Operators

The operators '==' and '!=' are valid for all types. Other relational operatory may be used whenever
the type values are ordered; for date fields, '<' means "before". The pair matches and not matches
is only applicable to string fields, contains and not contains require the field to be of some
Collection type. Coercion to the correct value for the evaluator and the field will be attempted, as
mentioned in the "Values" section.

The Operator matches
Matches a field against any valid Java Regular Expression. Typically that regexp is a string literal,
but variables that resolve to a valid regexp are also allowed. It is important to note that, different
from Java, within regular expressions written as string literals you don't need to escape '\'.

Cheese(type matches "(Buffalo)?\S*Mozarella")

Example 4.23. Regular Expression Constraint

The Operator not matches
The operator returns true if the string does not match the regular expression. The same rules
apply as for the matches operator. Example:

Cheese(type not matches "(Buffulo)?\S*Mozerella")

Example 4.24. Regular Expression Constraint

The Operator contains
The operator contains is used to check whether a field that is a Collection or array contains the
specified value.

CheeseCounter(cheeses contains "stilton") // contains with a String
 literal
CheeseCounter(cheeses contains $var) // contains with a variable

Example 4.25. Contains with Collections

The Operator not contains
The operator not contains is used to check whether a field that is a Collection or array does
not contain the specified value.

CheeseCounter(cheeses not contains "cheddar") // not contains with a
 String literal
CheeseCounter(cheeses not contains $var) // not contains with a
 variable

Example 4.26. Literal Constraint with Collections

Chapter 4. The Rule Language

108

Note
For backward compatibility, the excludes operator is supported as a synonym for
not contains.

The Operator memberOf
The operator memberOf is used to check whether a field is a member of a collection or array; that
collection must be a variable.

CheeseCounter(cheese memberOf $matureCheeses)

Example 4.27. Literal Constraint with Collections

The Operator not memberOf
The operator not memberOf is used to check whether a field is not a member of a collection or
array; that collection must be a variable.

CheeseCounter(cheese not memberOf $matureCheeses)

Example 4.28. Literal Constraint with Collections

The Operator soundslike
This operator is similar to matches, but it checks whether a word has almost the same sound
(using English pronounciation) as the given value. This is based on the Soundex algorithm
described at http://en.wikipedia.org/wiki/Soundex.

// match cheese "fubar" or "foobar"
Cheese(name soundslike 'foobar')

Example 4.29. Test with soundslike

4.8.2.1.6. Literal Restrictions
Literal restrictions are the simplest form of restrictions and evaluate a field against a specified literal,
which may be numeric or a date, a string or a boolean.

Figure 4.26. literalRestriction

Literal Restrictions using the operator '==' provide for faster execution as we can index using hashing
to improve performance.

Numeric
All standard Java numeric primitives are supported.

Cheese(quantity == 5)

Example 4.30. Numeric Literal Restriction

http://en.wikipedia.org/wiki/Soundex

Left Hand Side (when) Conditional Elements

109

Date
The date format "dd-mmm-yyyy" is supported by default. You can customize this by providing
an alternative date format mask as the System property named drools.dateformat. If more
control is required, use the inline-eval constraint.

Cheese(bestBefore < "27-Oct-2007")

Example 4.31. Date Literal Restriction

String
Any valid Java String is allowed.

Cheese(type == "stilton")

Example 4.32. String Literal Restriction

Boolean
Only true or false can be used; 0 and 1 are not acceptable. A boolean field alone (as in
Cheese(smelly) is not permitted; you must compare this to a boolean literal.

Cheese(smelly == true)

Example 4.33. Boolean Literal Restriction

Qualified Identifier
Enums can be used as well, both JDK 1.4 and 5 style enums are supported. For the latter you
must be executing on a JDK 5 environment.

Cheese(smelly == SomeClass.TRUE)

Example 4.34. Boolean Literal Restriction

4.8.2.1.7. Bound Variable Restriction

Figure 4.27. variableRestriction

Variables can be bound to facts and their fields and then used in subsequent Field Constraints.
A bound variable is called a Declaration. Valid operators are determined by the type of the field
being constrained; coercion will be attempted where possible. Bound Variable Restrictions using the
operator '==' provide for very fast execution as we can use hashing to improve performance.

Person(likes : favouriteCheese)
Cheese(type == likes)

Example 4.35. Bound Field using the operator '=='

Here, likes is the variable that is bound in its declaration to the field favouriteCheese of any
matching Person instance. It is then used to constrain the type of Cheese in the following pattern. Any

Chapter 4. The Rule Language

110

valid Java variable name can be used, and it may be prefixed with a '$', which you will often see used
to help differentiate declarations from fields. The example below shows a declaration for $stilton,
bound to the object matching the first pattern and used with a contains operator. - Note the optional
use of '$'.

$stilton : Cheese(type == "stilton")
Cheesery(cheeses contains $stilton)

Example 4.36. Bound Fact using 'contains' operator

4.8.2.1.8. Return Value Restriction

Figure 4.28. returnValueRestriction

A Return Value restriction is a parenthesized expression composed from literals, any valid Java
primitive or object, previously bound variables, function calls, and operators. Functions used in a
Return Value must return results that do not depend on time.

Person(girlAge : age, sex == "F")
Person(age == (girlAge + 2)), sex == 'M')

Example 4.37. Return Value Restriction

4.8.2.1.9. Compound Value Restriction
The compound value restriction is used where there is more than one possible value to match.
Currently only the in and not in evaluators support this. The second operand of this operator must
be a comma-separated list of values, enclosed in parentheses. Values may be given as variables,
literals, return values or qualified identifiers. Both evaluators are actually "syntactic sugar", internally
rewritten as a list of multiple restrictions using the operators '!=' and '=='.

Figure 4.29. compoundValueRestriction

Person($cheese : favouriteCheese)
Cheese(type in ("stilton", "cheddar", $cheese)

Example 4.38. Compound Restriction using "in"

Left Hand Side (when) Conditional Elements

111

4.8.2.1.10. Multi Restriction
Multi restriction allows you to place more than one restriction on a field using the restriction
connectives '&&' or '||'. Grouping via parentheses is permitted, resulting in a recursive syntax pattern.

Figure 4.30. multiRestriction

Figure 4.31. restrictionGroup

// Simple multi restriction using a single &&
Person(age > 30 && < 40)
// Complex multi restriction using groupings of multi restrictions
Person(age ((> 30 && < 40) ||
 (> 20 && < 25)))
// Mixing muti restrictions with constraint connectives
Person(age > 30 && < 40 || location == "london")

Example 4.39. Multi Restriction

4.8.2.1.11. Inline Eval Constraints

Figure 4.32. Inline Eval Expression

An inline eval constraint can use any valid dialect expression as long as it results to a primitive
boolean. The expression must be constant over time. Any previously bound variable, from the current
or previous pattern, can be used; auto-vivification is also used to auto-create field binding variables.
When an identifier is found that is not a current variable, the builder looks to see if the identifier is a
field on the current object type, if it is, the field binding is auto-created as a variable of the same name.
This is called auto-vivification of field variables inside of inline evals.

This example will find all male-female pairs where the male is 2 years older than the female; the
variable age is auto-created in the second pattern by the auto-vivification process.

Person(girlAge : age, sex = "F")
Person(eval(age == girlAge + 2), sex = 'M')

Example 4.40. Return Value operator

4.8.2.1.12. Nested Accessors
JBoss Rules permits nested accessors in in the field constraints using the MVEL accessor graph
notation. Field constraints involving nested accessors are actually re-written as an MVEL dialect inline-

Chapter 4. The Rule Language

112

eval. Care should be taken when using nested accessors as the Working Memory is not aware of any
of the nested values, and does not know when they change; they should be considered immutable
while any of their parent references are inserted into the Working Memory. If you wish to modify a
nested value you should remove the parent objects first and re-assert afterwards. If you only have a
single parent at the root of the graph, when in the MVEL dialect, you can use the modify construct
and its block setters to write the nested accessor assignments while retracting and inserting the the
root parent object as required. Nested accessors can be used on either side of the operator symbol.

// Find a pet older than its owners first-born child
$p : Person()
Pet(owner == $p, age > $p.children[0].age)

This is internally rewriten as an MVEL inline eval:

// Find a pet older than its owners first-born child
$p : Person()
Pet(owner == $p, eval(age > $p.children[0].age))

Example 4.41. Nested Accessors

Note
Nested accessors have a much greater performance cost than direct field accesses, so
use them carefully.

4.8.2.2. Conditional Element and
The Conditional Element and is used to group other Conditional Elements into a logical conjunction.
The root element of the LHS is an implicit prefix and and doesn't need to be specified. JBoss Rules
supports both prefix and and infix and, but prefix is the preferred option as its implicit grouping avoids
confusion.

Figure 4.33. prefixAnd

(and Cheese(cheeseType : type)
Person(favouriteCheese == cheeseType))

Example 4.42. prefixAnd

when
Cheese(cheeseType : type)
Person(favouriteCheese == cheeseType)

Example 4.43. implicit root prefixAnd

Infix and is supported along with explicit grouping with parentheses, should it be needed. The symbol
'&&', as an alternative to and, is deprecated although it is still supported in the syntax for legacy
support reasons.

Left Hand Side (when) Conditional Elements

113

Figure 4.34. infixAnd

//infixAnd
Cheese(cheeseType : type) and Person(favouriteCheese == cheeseType)
//infixAnd with grouping
(Cheese(cheeseType : type) and
(Person(favouriteCheese == cheeseType) or
Person(favouriteCheese == cheeseType))

Example 4.44. infixAnd

4.8.2.3. Conditional Element or
The Conditional Element or is used to group other Conditional Elements into a logical disjunction.
JBoss Rules supports both prefix or and infix or, but prefix is the preferred option as its implicit
grouping avoids confusion. The behavior of the Conditional Element or is different from the connective
'||' for constraints and restrictions in field constraints. The engine actually has no understanding of
the Conditional Element or; instead, via a number of different logic transformations, a rule with or is
rewritten as a number of subrules. This process ultimately results in a rule that has a single or as the
root node and one subrule for each of its CEs. Each subrule can activate and fire like any normal rule;
there is no special behavior or interaction between these subrules. - This can be most confusing to
new rule authors.

Figure 4.35. prefixOr

(or Person(sex == "f", age > 60)
Person(sex == "m", age > 65)

Example 4.45. prefixOr

Infix or is supported along with explicit grouping with parentheses, should it be needed. The symbol
'||', as an alternative to or, is deprecated although it is still supported in the syntax for legacy support
reasons.

Figure 4.36. infixOr

Chapter 4. The Rule Language

114

//infixOr
Cheese(cheeseType : type) or Person(favouriteCheese == cheeseType)
//infixOr with grouping
(Cheese(cheeseType : type) or
(Person(favouriteCheese == cheeseType) and
Person(favouriteCheese == cheeseType))

Example 4.46. infixOr

The Conditional Element or also allows for optional pattern binding. This means that each resulting
subrule will bind its pattern to the pattern binding. Each pattern must be bound separately, using
eponymous variables:

(or pensioner : Person(sex == "f", age > 60)
pensioner : Person(sex == "m", age > 65))

Example 4.47. or with binding

Since the conditional element or results in multiple subrule generation, one for each possible logically
outcome, the example above would result in the internal generation of two rules. These two rules work
independently within the Working Memory, which means both can match, activate and fire - there is no
shortcutting.

The best way to think of the conditional element or is as a shortcut for generating two or more similar
rules. When you think of it that way, it's clear that for a single rule there could be multiple activations if
two or more terms of the disjunction are true.

4.8.2.4. Conditional Element eval

Figure 4.37. eval

The CE eval is essentially a catch-all which allows any semantic code (that returns a primitive
boolean) to be executed. This code can refer to variables that were bound in the LHS of the rule, and
functions in the rule package. Overuse of eval reduces the declarativeness of your rules and can result
in a poorly performing engine. While eval can be used anywhere in the patterns, the best practice is
to add it as the last conditional element in the LHS of a rule.

Evals cannot be indexed and thus are not as efficient as Field Constraints. However this makes them
ideal for being used when functions return values that change over time, which is not allowed within
Field Constraints.

p1 : Parameter()
p2 : Parameter()
eval(p1.getList().containsKey(p2.getItem()))
// call function isValid in the LHS
eval(isValid(p1, p2))

Example 4.48. eval

Left Hand Side (when) Conditional Elements

115

4.8.2.5. Conditional Element not

Figure 4.38. not

The CE not is first order logic's non-existential quantifier and checks for the non-existence of
something in the Working Memory. Think of "not" as meaning "there must be none of".

The keyword not be followed by parentheses around the CEs that it applies to. In the simplest case of
a single pattern (like below) you may optionally omit the parentheses.

not Bus()

Example 4.49. No Busses

// Brackets are optional:
not Bus(color == "red")

// Brackets are optional:
not (Bus(color == "red", number == 42))

// "not" with nested infix and - two patterns,
// brackets are requires:
not (Bus(color == "red") and Bus(color == "blue"))

Example 4.50. No red Busses

4.8.2.6. Conditional Element exists

Figure 4.39. exists

The CE exists is first order logic's existential quantifier and checks for the existence of something in
the Working Memory. Think of "exists" as meaning "there is at least one". It is different from just having
the pattern on its own, which is more like saying "for each one of". If you use exists with a pattern,
the rule will only activate at most once, regardless of how much data there is in working memory that
matches the condition inside of the exists pattern. Since only the existence matters, no bindings will
be established.

The keyword exists must be followed by parentheses around the CEs that it applies to. In the
simplest case of a single pattern, like below, you may optionally omit the parentheses.

exists Bus()

Example 4.51. At least one Bus

Chapter 4. The Rule Language

116

exists Bus(color == "red")
// brackets are optional:
exists (Bus(color == "red", number == 42))
// "exists" with nested infix and,
// brackets are required:
exists (Bus(color == "red") and
Bus(color == "blue"))

Example 4.52. At least one red Bus

4.8.2.7. Conditional Element forall

Figure 4.40. forall

The Conditional Element forall completes the First Order Logic support in JBoss Rules. The
Conditional Element forall evaluates to true when all facts that match the first pattern match all the
remaining patterns. Example:

rule "All English buses are red"
when
 forall($bus : Bus(type == 'english')
 Bus(this == $bus, color = 'red'))
then
 # all english buses are red
end

In the above rule, we "select" all Bus objects whose type is "english". Then, for each fact that matches
this pattern we evaluate the following patterns and if they match, the forall CE will evaluate to true.

To state that all facts of a given type in the working memory must match a set of constraints, forall
can be written with a single pattern for simplicity.

rule "All Buses are Red"
when
 forall(Bus(color == 'red'))
then
 # all asserted Bus facts are red
end

Example 4.53. Single Pattern Forall

Another example shows multiple patterns inside the forall.

Left Hand Side (when) Conditional Elements

117

rule "all employees have health and dental care programs"
when
 forall($emp : Employee()
 HealthCare(employee == $emp)
 DentalCare(employee == $emp)
)
then
 # all employees have health and dental care
end

Example 4.54. Multi-Pattern Forall

Forall can be nested inside other CEs for complete expressiveness. For instance, forall can be
used inside a not CE. Note that only single patterns have optional parentheses, so that with a nested
forall parentheses must be used.

rule "not all employees have health and dental care"
when
 not (forall($emp : Employee()
 HealthCare(employee == $emp)
 DentalCare(employee == $emp))
)
then
 # not all employees have health and dental care
end

Example 4.55. Combining Forall with Not CE

As a side note, not(forall(p1 p2 p3...)) is equivalent to writing:

not(p1 and not(and p2 p3...))

Also, it is important to note that forall is a scope delimiter. Therefore, it can use any previously
bound variable, but no variable bound inside it will be available for use outside of it.

4.8.2.8. Conditional Element from

Figure 4.41. from

The Conditional Element from enables users to specify an arbitrary source for data to be matched by
LHS patterns. This allows the engine to reason over data not in the Working Memory. The data source
could be a sub-field on a bound variable or the results of a method call. It is a powerful construction
that allows out of the box integration with other application components and frameworks. One common
example is the integration with data retrieved on-demand from databases using hibernate named
queries.

The expression used to define the object source is any expression that follows regular MVEL syntax.
Therefore, it allows you to easily use object property navigation, execute method calls and access
maps and collections elements.

Chapter 4. The Rule Language

118

Here is a simple example of reasoning and binding on another pattern sub-field.

rule "validate zipcode"
when
 Person($personAddress : address)
 Address(zipcode == "23920W") from $personAddress
then
 # zip code is ok
end

With all the flexibility from the new expressiveness in the JBoss Rules engine you can slice and dice
this problem many ways. This is the same but shows how you can use a graph notation with the 'from'.

rule "validate zipcode"
when
 $p : Person()
 $a : Address(zipcode == "23920W") from $p.address
then
 # zip code is ok
end

Previous examples were evaluations using a single pattern. The CE from also supports object
sources that return a collection of objects. In that case, from will iterate over all objects in the
collection and try to match each of them individually. For instance, if we want a rule that applies 10%
discount to each item in an order, we could do:

rule "apply 10% discount to all items over US$ 100,00 in an order"
when
 $order : Order()
 $item : OrderItem(value > 100) from $order.items
then
 # apply discount to $item
end

The above example will cause the rule to fire once for each item whose value is greater than 100 for
each given order.

You must take caution, however, when using from, especially in conjunction with the lock-on-
active rule attribute as it may produce unexpected results. Consider the example provided earlier,
but now slightly modified as follows:

rule "Assign people in North Carolina (NC) to sales region 1"
 ruleflow-group "test"
 lock-on-active true
when
 $p : Person()
 $a : Address(state == "NC") from $p.address
then
 modify ($p) {} #Assign person to sales region 1 in a modify block
end

Left Hand Side (when) Conditional Elements

119

rule "Apply a discount to people in the city of Raleigh"
 ruleflow-group "test"
 lock-on-active true
when
 $p : Person()
 $a : Address(city == "Raleigh") from $p.address
then
 modify ($p) {} #Apply discount to person in a modify block
end

In the above example, persons in Raleigh, NC should be assigned to sales region 1 and receive
a discount; i.e., you would expect both rules to activate and fire. Instead you will find that only the
second rule fires.

If you were to turn on the audit log, you would also see that when the second rule fires, it deactivates
the first rule. Since the rule attribute lock-on-active prevents a rule from creating new activations
when a set of facts change, the first rule fails to reactivate. Though the set of facts have not changed,
the use of from returns a new fact for all intents and purposes each time it is evaluated.

First, it's important to review why you would use the above pattern. You may have many rules across
different rule-flow groups. When rules modify working memory and other rules downstream of your
RuleFlow (in different rule-flow groups) need to be reevaluated, the use of modify is critical. You
don't, however, want other rules in the same rule-flow group to place activations on one another
recursively. In this case, the no-loop attribute is ineffective, as it would only prevent a rule from
activating itself recursively. Hence, you resort to lock-on-active.

There are several ways to address this issue.

• Avoid the use of from when you can assert all facts into working memory or use nested object
references in your constraint expressions (shown below).

• Place the variable assigned used in the modify block as the last sentence in your condition (LHS).

• Avoid the use of lock-on-active when you can explicitly manage how rules within the same rule-
flow group place activations on one another as explained below.

The preferred solution is to minimize use of from when you can assert all your facts into working
memory directly. In the example above, both the Person and Address instance can be asserted into
working memory. In this case, because the graph is fairly simple, an even easier solution is to modify
your rules as follows:

rule "Assign people in North Carolina (NC) to sales region 1"
 ruleflow-group "test"
 lock-on-active true
when
 $p : Person(address.state == "NC")
then
 modify ($p) {} #Assign person to sales region 1 in a modify block
end

rule "Apply a discount to people in the city of Raleigh"

Chapter 4. The Rule Language

120

 ruleflow-group "test"
 lock-on-active true
when
 $p : Person(address.city == "Raleigh")
then
 modify ($p) {} #Apply discount to person in a modify block
end

Now, you will find that both rules fire as expected. However, it is not always possible to access nested
facts as above. Consider an example where a Person holds one or more Addresses and you wish to
use an existential quantifier to match people with at least one address that meets certain conditions. In
this case, you would have to resort to the use of from to reason over the collection.

There are several ways to use from to achieve this and not all of them exhibit an issue with the use of
lock-on-active. For example, the following use of from causes both rules to fire as expected:

rule "Assign people in North Carolina (NC) to sales region 1"
 ruleflow-group "test"
 lock-on-active true
when
 $p : Person($addresses : addresses)
 exists (Address(state == "NC") from $addresses)
then
 modify ($p) {} #Assign person to sales region 1 in a modify block
end

rule "Apply a discount to people in the city of Raleigh"
 ruleflow-group "test"
 lock-on-active true
when
 $p : Person($addresses : addresses)
 exists (Address(city == "Raleigh") from $addresses)
then
 modify ($p) {} #Apply discount to person in a modify block
end

However, the following slightly different approach does exhibit the problem.

rule "Assign people in North Carolina (NC) to sales region 1"
 ruleflow-group "test"
 lock-on-active true
when
 $assessment : Assessment()
 $p : Person()
 $addresses : List() from $p.addresses
 exists (Address(state == "NC") from $addresses)
then
 modify ($assessment) {} #Modify assessment in a modify block
end

rule "Apply a discount to people in the city of Raleigh"

Left Hand Side (when) Conditional Elements

121

 ruleflow-group "test"
 lock-on-active true
when
 $assessment : Assessment()
 $p : Person()
 $addresses : List() from $p.addresses
 exists (Address(city == "Raleigh") from $addresses)
then
 modify ($assessment) {} #Modify assessment in a modify block
end

In the above example, the $addresses variable is returned from the use of from. The example
also introduces a new object, assessment, to highlight one possible solution in this case. If the
$assessment variable assigned in the condition (LHS) is moved to the last condition in each rule, both
rules fire as expected.

Though the above examples demonstrate how to combine the use of from with lock-on-active
where no loss of rule activations occurs, they carry the drawback of placing a dependency on the
order of conditions on the LHS. In addition, the solutions present greater complexity for the rule author
in terms of keeping track of which conditions may create issues.

A better alternative is to assert more facts into working memory. In this case, a person's addresses
may be asserted into working memory and the use of from would not be necessary.

There are cases, however, where asserting all data into working memory is not practical and we need
to find other solutions. Another option is to reevaluate the need for lock-on-active. An alternative
to lock-on-active is to directly manage how rules within the same rule-flow group activate one
another by including conditions in each rule that prevent rules from activating each other recursively
when working memory is modified. For example, in the case above where a discount is applied to
citizens of Raleigh, a condition may be added to the rule that checks whether the discount has already
been applied. If so, the rule does not activate.

4.8.2.9. Conditional Element collect

Figure 4.42. collect

The Conditional Element collect allows rules to reason over a collection of objects obtained
from the given source or from the working memory. In First Order Logic terms this is the cardinality
quantifier.

import java.util.ArrayList
rule "Raise priority if system has more than 3 pending alarms"

Chapter 4. The Rule Language

122

when
 $system : System()
 $alarms : ArrayList(size >= 3)
 from collect(Alarm(system == $system, status == 'pending'))
then
 # Raise priority, because system $system has
 # 3 or more alarms pending. The pending alarms
 # are $alarms.
end

In the above example, the rule will look for all pending alarms in the working memory for each given
system and group them in ArrayLists. If 3 or more alarms are found for a given system, the rule will
fire.

The result pattern of collect can be any concrete class that implements the
java.util.Collection interface and provides a default public constructor with no arguments.
This means that you can use Java collections like ArrayList, LinkedList, HashSet, or your own
class, as long as it implements the java.util.Collection interface and provide a default public
constructor with no arguments.

Both source and result patterns can be constrained as any other pattern.

Variables bound before the collect CE are in the scope of both source and result patterns and
therefore you can use them to constrain both your source and result patterns. But note that collect
is a scope delimiter for bindings, so that any binding made inside of it is not available for use outside of
it.

Collect accepts nested from CEs. The following example is a valid use of "collect":

import java.util.LinkedList;
rule "Send a message to all mothers"
when
 $town : Town(name == 'Paris')
 $mothers : LinkedList()
 from collect(
 Person(gender == 'F', children > 0)
 from $town.getPeople()
)
then
 # send a message to all mothers
end

Left Hand Side (when) Conditional Elements

123

4.8.2.10. Conditional Element accumulate

Figure 4.43. accumulate

The Conditional Element accumulate is a more flexible and powerful form of collect, the sense
that it can be used to do what collect does and also achieve things that the CE collect is not
capable of doing. Basically, what it does is that it allows a rule to iterate over a collection of objects,
executing custom actions for each of the elements, and at the end it returns a result object.

The general syntax of the accumulate CE is:

<result pattern> from accumulate(<source pattern>,
 init(<init code>),
 action(<action code>),
 reverse(<reverse code>),
 result(<result expression>))

The meaning of each of the elements is the following:

• <source pattern>: the source pattern is a regular pattern that the engine will try to match against
each of the source objects.

• <init code>: this is a semantic block of code in the selected dialect that will be executed once for
each tuple, before iterating over the source objects.

• <action code>: this is a semantic block of code in the selected dialect that will be executed for each
of the source objects.

• <reverse code>: this is an optional semantic block of code in the selected dialect that if present
will be executed for each source object that no longer matches the source pattern. The objective
of this code block is to undo any calculation done in the <action code> block, so that the engine

Chapter 4. The Rule Language

124

can do decremental calculation when a source object is modified or retracted, hugely improving
performance of these operations.

• <result expression>: this is a semantic expression in the selected dialect that is executed after all
source objects are iterated.

• <result pattern>: this is a regular pattern that the engine tries to match against the object returned
from the <result expression>. If it matches, the accumulate conditional element evaluates to true
and the engine proceeds with the evaluation of the next CE in the rule. If it does not matches, the
accumulate CE evaluates to false and the engine stops evaluating CEs for that rule.

It is easier to understand if we look at an example:

rule "Apply 10% discount to orders over US$ 100,00"
when
 $order : Order()
 $total : Number(doubleValue > 100)
 from accumulate(OrderItem(order == $order, $value : value),
 init(double total = 0;),
 action(total += $value;),
 reverse(total -= $value;),
 result(total))
then
 # apply discount to $order
end

In the above example, for each Order in the Working Memory, the engine will execute the init code
initializing the total variable to zero. Then it will iterate over all OrderItem objects for that order,
executing the action for each one (in the example, it will sum the value of all items into the total
variable). After iterating over all OrderItem objects, it will return the value corresponding to the result
expression (in the above example, the value of variable total). Finally, the engine will try to match
the result with the Number pattern, and if the double value is greater than 100, the rule will fire.

The example used Java as the semantic dialect, and as such, note that the usage of the semicolon
as statement delimiter is mandatory in the init, action and reverse code blocks. The result is an
expression and, as such, it does not admit ';'. If the user uses any other dialect, he must comply to that
dialect's specific syntax.

As mentioned before, the reverse code is optional, but it is strongly recommended that the user writes
it in order to benefit from the improved performance on update and retract.

The accumulate CE can be used to execute any action on source objects. The following example
instantiates and populates a custom object:

rule "Accumulate using custom objects"
when
$person : Person($likes : likes)
$cheesery : Cheesery(totalAmount > 100)
from accumulate($cheese : Cheese(type == $likes),
init(Cheesery cheesery = new Cheesery();),
action(cheesery.addCheese($cheese);),
reverse(cheesery.removeCheese($cheese);),

Left Hand Side (when) Conditional Elements

125

result(cheesery));
then
// do something
end

4.8.2.10.1. Accumulate Functions
The accumulate CE is a very powerful CE, but it gets real declarative and easy to use when using
predefined functions that are known as Accumulate Functions. They work exactly like accumulate, but
instead of explicitly writing custom code in every accumulate CE, the user can use predefined code for
common operations.

For instance, the rule to apply discount on orders written in the previous section, could be written in
the following way, using Accumulate Functions:

rule "Apply 10% discount to orders over US$ 100,00"
when
$order : Order()
$total : Number(doubleValue > 100)
from accumulate(OrderItem(order == $order, $value : value),
sum($value))
then
apply discount to $order
end

In the above example, sum is an Accumulate Function and will sum the $value of all OrderItems and
return the result.

JBoss Rules ships with the following built-in accumulate functions: average, min , max, count, and
sum.

These common functions accept any expression as input. For instance, if someone wants to calculate
the average profit on all items of an order, a rule could be written using the average function:

rule "Average profit"
when
 $order : Order()
 $profit : Number()
 from accumulate(OrderItem(order == $order, $cost : cost, $price :
 price)
 average(1 - $cost / $price))
then
 # average profit for $order is $profit
end

Accumulate Functions are all pluggable. That means that if needed, custom, domain specific functions
can easily be added to the engine and rules can start to use them without any restrictions. To
implement a new Accumulate Functions all one needs to do is to create a Java class that implements
the org.drools.base.acumulators.AccumulateFunction interface and add a line to the
configuration file or set a system property to let the engine know about the new function. As an

Chapter 4. The Rule Language

126

example of an Accumulate Function implementation, the following is the implementation of the
"average" function:

/*
* Copyright 2007 JBoss Inc
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* Created on Jun 21, 2007
*/
package org.drools.base.accumulators;

/**
* An implementation of an accumulator capable of calculating average values
*
* @author etirelli
*
*/
public class AverageAccumulateFunction implements AccumulateFunction {

protected static class AverageData {
public int count = 0;
public double total = 0;
}

/* (non-Javadoc)
* @see org.drools.base.accumulators.AccumulateFunction#createContext()
*/
public Object createContext() {
return new AverageData();
}

/* (non-Javadoc)
* @see
 org.drools.base.accumulators.AccumulateFunction#init(java.lang.Object)
*/
public void init(Object context) throws Exception {
AverageData data = (AverageData) context;
data.count = 0;
data.total = 0;

Left Hand Side (when) Conditional Elements

127

}

/* (non-Javadoc)
* @see
 org.drools.base.accumulators.AccumulateFunction#accumulate(java.lang.Object,
* java.lang.Object)
*/
public void accumulate(Object context,
 Object value) {
AverageData data = (AverageData) context;
data.count++;
data.total += ((Number) value).doubleValue();
}

/* (non-Javadoc)
* @see
 org.drools.base.accumulators.AccumulateFunction#reverse(java.lang.Object,
* java.lang.Object)
*/
public void reverse(Object context,
 Object value) throws Exception {
AverageData data = (AverageData) context;
data.count--;
data.total -= ((Number) value).doubleValue();
}

/* (non-Javadoc)
* @see
 org.drools.base.accumulators.AccumulateFunction#getResult(java.lang.Object)
*/
public Object getResult(Object context) throws Exception {
AverageData data = (AverageData) context;
return new Double(data.count == 0 ? 0 : data.total / data.count);
}

/* (non-Javadoc)
* @see org.drools.base.accumulators.AccumulateFunction#supportsReverse()
*/
public boolean supportsReverse() {
return true;
}

}

The code for the function is very simple, as we could expect, as all the "dirty" integration work is done
by the engine. Finally, to plug the function into the engine, we added it to the configuration file:

drools.accumulate.function.average =
 org.drools.base.accumulators.AverageAccumulateFunction

Chapter 4. The Rule Language

128

Here, drools.accumulate.function. is a prefix that must always be used, "average" is how the
function will be used in the rule file, and "org.drools.base.accumulators.AverageAccumulateFunction"
is the fully qualified name of the class that implements the function behavior.

4.8.3. The Right Hand Side (then)

4.8.3.1. Usage
The Right Hand Side (RHS) is a common name for the consequence or action part of the rule; this
part should contain a list of actions to be executed. It is bad practice to use imperative or conditional
code in the RHS of a rule; as a rule should be atomic in nature - "when this, then do this", not "when
this, maybe do this". The RHS part of a rule should also be kept small, thus keeping it declarative and
readable. If you find you need imperative and/or conditional code in the RHS, then maybe you should
be breaking that rule down into multiple rules. The main purpose of the RHS is to insert, retractor
modify working memory data. To assist with that there are a few convenience methods you can use to
modify working memory; without having to first reference a working memory instance.

update(object, handle) will tell the engine that an object has changed (one that has been bound
to something on the LHS) and rules may need to be reconsidered.

update(object) can also be used; here the Knowledge Helper will look up the facthandle for you,
using an identity check, for the passed object. If you provide Property Change Listeners to your Java
beans, you are inserting into the engine, and you do not need to call update() when the object
changes.

insert(new Something ()) will place a new object of your creation into the Working Memory.

insertLogical(new Something()) is similar to insert, but the object will be automatically
retracted when there are no more facts to support the truth of the currently firing rule.

retract(handle) removes an object from Working Memory.

These convenience methods are basically macros that provide short cuts to the KnowledgeHelper
instance that lets you access your Working Memory from rules files. The predefined variable
drools of type KnowledgeHelper lets you call several other useful methods. (Refer to the
KnowledgeHelper interface documentation for more advanced operations).

• The call drools.halt() terminates rule execution immediately. This is required for returning
control to the point whence the current session was put to work with fireUntilHalt().

• Methods insert(Object o), update(Object o) and retract(Object o) can be called on
drools as well, but due to their frequent use they can be called without the object reference.

• drools.getWorkingMemory() returns the WorkingMemory object.

• drools.setFocus(String s) sets the focus to the specified agenda group.

• drools.getRule().getName(), called from a rule's RHS, returns the name of the rule.

• drools.getTuple() returns the Tuple that matches the currently executing rule, and
drools.getActivation() delivers the corresponding Activation. (These calls are useful for
logging and debugging purposes.)

The full Knowlege Runtime API is exposed through another predefined variable, kcontext, of
type KnowledgeContext. Its method getKnowledgeRuntime() delivers an object of type

The Right Hand Side (then)

129

KnowledgeRuntime, which, in turn, provides access to a wealth of methods, many of which are quite
useful for coding RHS logic.

• The call kcontext.getKnowledgeRuntime().halt() terminates rule execution immediately.

• The accessor getAgenda() returns a reference to this session's Agenda, which in turn provides
access to the various rule groups: activation groups, agenda groups, and rule flow groups. A fairly
common paradigm is the activation of some agenda group, which could be done with the lengthy
call:

// give focus to the agenda group CleanUp
kcontext.getKnowledgeRuntime().getAgenda().getAgendaGroup("CleanUp").setFocus();

You can also achieve the same using drools.setFocus("CleanUp").

• To run a query, you call getQueryResults(String query), whereupon you may process the
results, as explained in section Section 4.9, “Query”.

• A set of methods dealing with event management lets you, among other things, add and remove
event listeners for the Working Memory and the Agenda.

• MethodgetKnowledgeBase() returns the KnowledgeBase object, the backbone of all the
Knowledge in your system, and the originator of the current session.

• You can manage globals with setGlobal(...), getGlobal(...) and getGlobals().

• Method getEnvironment() returns the runtime's Environment which works much like what you
know as your operating system's environment.

4.8.3.2. The modify Statement
This language extension provides a structured approach to fact updates. It combines the update
operation with a number of setter calls to change the object's fields. This is the syntax schema for the
modify statement:

modify (<fact-expression>) {
 <expression> [, <expression>]*
}

The parenthesized <fact-expression> must yield a fact object reference. The expression list in the
block should consist of setter calls for the given object, to be written without the usual object reference,
which is automatically prepended by the compiler.

The example illustrates a simple fact modification.

Chapter 4. The Rule Language

130

rule "modify stilton"
when
 $stilton : Cheese(type == "stilton")
then
 modify($stilton){
 setPrice(20),
 setAge("overripe")
 }
end

Example 4.56. A modify statement

4.8.4. A Note on Auto-boxing and Primitive Types
JBoss Rules attempts to preserve numbers in their primitive or object wrapper form, so a variable
bound to an int primitive when used in a code block or expression will no longer need manual
unboxing; unlike JBoss Rules 3.0 where all primitives were autoboxed, requiring manual unboxing.
A variable bound to an object wrapper will remain as an object; the existing JDK 1.5 and JDK 5 rules
to handle auto-boxing and unboxing apply in this case. When evaluating field constraints, the system
attempts to coerce one of the values into a comparable format; so a primitive is comparable to an
object wrapper.

4.9. Query

Figure 4.44. query

A query is a simple way to search the working memory for facts that match the stated conditions.
Therefore, it contains only the structure of the LHS of a rule, so that you specify neither "when" nor
"then". A query has an optional set of parameters, each of which can also be optionally typed. If the
type is not given then the type Object is assumed. The engine will attempt to coerce the values as
needed. Query names are global to the KnowledgeBase, so do not add queries of the same name to
different packages for the same RuleBase.

Domain Specific Languages

131

To return the results use ksession.getQueryResults("name"), where "name" is the query's
name. This returns a list of query results, which allow you to retrieve the objects that matched the
query.

The first example is a simple query for all the people over the age of 30. The second one, using
parameters, combines the age limit with a location.

query "people over the age of 30"
 person : Person(age > 30)
end

Example 4.57. Query People over the age of 30

query "people over the age of x" (int x, String y)
 person : Person(age > x, location == y)
end

Example 4.58. Query People over the age of x, and who live in y

We iterate over the returned QueryResults using a standard for loop. Each element is a
QueryResultsRow which we can use to access each of the columns in the tuple. These columns can
be accessed by bound declaration name or index position.

QueryResults results = ksession.getQueryResults("people over the age of
 30");
System.out.println("we have " + results.size() + " people over the age of
 30");

System.out.println("These people are are over 30:");

for (QueryResultsRow row : results) {
 Person person = (Person) row.get("person");
 System.out.println(person.getName() + "\n");
}

Example 4.59. Query People over the age of 30

4.10. Domain Specific Languages
Domain Specific Languages (or DSLs) are a way of extending the rule language to your problem
domain. They are wired in to the rule language for you, and can make use of all the underlying rule
language and engine features.

DSLs are used both in the IDE, as well as the web based BRMS UI. Of course as rules are text, you
can use them even without this tooling.

4.10.1. When to use a DSL
DSLs can serve as a layer of separation between rule authoring (and rule authors) and the domain
objects that the engine operates on. DSLs can also act as "templates" of conditions or actions that are
used over and over in your rules, perhaps only with parameters changing each time. If your rules need
to be read and validated by less technical folk, (such as Business Analysts) the DSLs are definitely for

Chapter 4. The Rule Language

132

you. If the conditions or consequences of your rules follow similar patterns which you can express in
a template. You wish to hide away your implementation details, and focus on the business rule. You
want to provide a controlled means of editing rules based on pre-defined templates.

DSLs have no impact on the rules at runtime, they are just a parse/compile time feature.

4.10.2. Editing and managing a DSL
A DSL's configuration like most things is stored in plain text. If you use the IDE, you get a nice
graphical editor (with some validation), but the format of the file is quite simple, and is basically a
properties file.

Note that since JBoss Rules 4.0, DSLs have become more powerful in allowing you to customize
almost any part of the language, including keywords. Regular expressions can also be used to match
words/sentences if needed (this is provided for enhanced localization). However, not all features are
supported by all the tools (although you can use them, the content assistance just may not be 100%
accurate in certain cases).

[when]This is {something}=Something(something=={something})

Example 4.60. Example DSL mapping

Referring to the above example, the [when] refers to the scope of the expression: i.e. does it belong
on the LHS or the RHS of a rule. The part after the [scope] is the expression that you use in the rule
(typically a natural language expression, but it doesn't have to be). The part on the right of the "=" is
the mapping into the rule language (of course the form of this depends on if you are talking about the
RHS or the LHS - if its the LHS, then its the normal LHS syntax, if its the RHS then its fragments of
Java code for instance).

The parser will take the expression you specify, and extract the values that match where the
{something} (named Tokens) appear in the input. The values that match the tokens are then
interpolated with the corresponding {something} (named Tokens) on the right hand side of the mapping
(the target expression that the rule engine actually uses).

Note also that the "sentences" above can be regular expressions. This means the parser will match
the sentence fragments that match the expressions. This means you can use (for instance) the '?' to
indicate the character before it is optional (think of each sentence as a regular expression pattern -
this means if you want to use regular expression characters - you will need to escape them with a '\' of
course.

It is important to note that the DSL expressions are processed one line at a time. This means that in
the above example, all the text after "This is " to the end of the line will be included as the value for
"{something}" when it is interpolated into the target string. This may not be exactly what you want, as
you may want to "chain" together different DSL expressions to generate a target expression. The best
way around this is to make sure that the {tokens} are enclosed with characters or words. This means
that the parser will scan along the sentence, and pluck out the value BETWEEN the characters (in
the example below they are double-quotes). Note that the characters that surround the token are not
included in when interpolating, just the contents between them (rather then all the way to the end of
the line, as would otherwise be the case).

As a rule of thumb, use quotes for textual data that a rule editor may want to enter. You can also
wrap words around the {tokens} to make sure you enclose the data you want to capture (see other
example).

Editing and managing a DSL

133

[when]This is "{something}" and
 "{another}"=Something(something=="{something}", another=="{another}")
[when]This is {also} valid=Another(something=="{also}")

Example 4.61. Example with quotes

It is a good idea to try and avoid punctuation in your DSL expressions where possible, other then
quotes and the like - keep it simple and things will be easier. Using a DSL can make debugging slightly
harder when you are first building rules, but it can make the maintenance easier (and of course the
readability of the rules).

The "{" and "}" characters should only be used on the left hand side of the mapping (the expression) to
mark tokens. On the right hand side you can use "{" and "}" on their own if needed - such as

if (foo) \{ doSomething();\ }

as well as with the token names as shown above.

Important
If you want curly braces to appear literally as curly braces, then escape them with a
backslash (\). Otherwise it may think it is a token to be replaced.

Don't forget that if you are capturing strings from users, you will also need the quotes on the right hand
side of the mapping, just like a normal rule, as the result of the mapping must be a valid expression in
the rule language.

#This is a comment to be ignored.
[when]There is a Person with name of "{name}"=Person(name=="{name}")
[when]Person is at least {age} years old and lives in
 "{location}"=Person(age > {age}, location=="{location}")
[then]Log "{message}"=System.out.println("{message}");
[when]And = and

Example 4.62. Some more examples

Referring to the above examples, this would render the following input as shown below:

There is a Person with name of "kitty" ---> Person(name="kitty")
Person is at least 42 years old and lives in "atlanta" ---> Person(age >
 42, location="atlanta")
Log "boo" ---> System.out.println("boo");
There is a Person with name of "bob" and Person is at least 30 years old
 and lives in "atlanta"
 ---> Person(name="kitty") and Person(age > 30,
 location="atlanta")

Example 4.63. Some examples as processed

Chapter 4. The Rule Language

134

4.10.3. Using a DSL in your rules
A good way to get started if you are new to Rules (and DSLs) is just write the rules as you normally
would against your object model. You can unit test as you go (like a good agile citizen!). Once you
feel comfortable, you can look at extracting a domain language to express what you are doing in the
rules. Note that once you have started using the "expander" keyword, you will get errors if the parser
does not recognize expressions you have in there - you need to move everything to the DSL. As a way
around this, you can prefix each line with ">" and it will tell the parser to take that line literally, and not
try and expand it (this is handy also if you are debugging why something isn't working).

Also, it is better to rename the extension of your rules file from ".drl" to ".dslr" when you start using
DSLs, as that will allow the IDE to correctly recognize and work with your rules file.

As you work through building up your DSL, you will find that the DSL configuration stabilizes pretty
quickly, and that as you add new rules and edit rules you are reusing the same DSL expressions over
and over. The aim is to make things as fluent as possible.

To use the DSL when you want to compile and run the rules, you will need to pass the DSL
configuration source along with the rule source.

// source is a reader for the rule source,
// dsl is a reader for the DSL configuration
PackageBuilder builder = new PackageBuilder();
builder.addPackageFromDrl(source, dsl);

You will also need to specify the expander by name in the rule source file:

expander your-expander.dsl

Typically you keep the DSL in the same directory as the rule, but this is not required if you are using
the above API (you only need to pass a reader). Otherwise everything is just the same.

You can chain DSL expressions together on one line, as long as it is clear to the parser what
the {tokens} are (otherwise you risk reading in too much text until the end of the line). The DSL
expressions are processed according to the mapping file, top to bottom in order. You can also have the
resulting rule expressions span lines - this means that you can do things like:

There is a person called Bob who is happy
 Or
There is a person called Mike who is sad

Example 4.64. Chaining DSL Expressions

Of course this assumes that "Or" is mapped to the "or" conditional element (which is a sensible thing
to do).

4.10.4. Adding constraints to facts
A common requirement when writing rule conditions is to be able to add many constraints to fact
declarations. A fact may have many (dozens) of fields, all of which could be used or not used at
various times. To come up with every combination as separate DSL statements would in many cases
not be feasible.

Adding constraints to facts

135

The DSL facility allows you to achieve this however, with a simple convention. If your DSL expression
starts with a "-", then it will be assumed to be a field constraint, which will be added to the declaration
that is above it (one per line).

This is easier to explain with an example. Lets take look at Cheese class, with the following fields:
type, price, age, country. We can express some LHS condition in normal DRL like the following

Cheese(age < 5, price == 20, type=="stilton", country=="ch")

If you know ahead of time that you will use all the fields, all the time, it is easy to do a mapping using
the above techniques. However, chances are that you will have many fields, and many combinations.
If this is the case, you can setup your mappings like so:

[when]There is a Cheese with=Cheese()
[when]- age is less than {age}=age<{age}
[when]- type is '{type}'=type=='{type}'
[when]- country equal to '{country}'=country=='{country}'

Important
It is NOT possible to use the "-" feature after an accumulate statement to add constraints
to the accumulate pattern. This limitation will be removed in a future version.

You can then write rules with conditions like the following:

There is a Cheese with
 - age is less than 42
 - type is 'stilton'

The parser will pick up the "-" lines (they have to be on their own line) and add them as constraints to
the declaration above. So in this specific case, using the above mappings, is the equivalent to doing
(in DRL):

Cheese(age<42, type=='stilton')

The parser will do all the work for you, meaning you just define mappings for individual constraints,
and can combine them how you like (if you are using context assistant, if you press "-" followed by
CTRL+space it will conveniently provide you with a filtered list of field constraints to choose from.

To take this further, after alter the DSL to have [when][org.drools.Cheese]- age is less than {age} ...
(and similar to all the items in the example above).

The extra [org.drools.Cheese] indicates that the sentence only applies for the main constraint
sentence above it (in this case "There is a Cheese with"). For example, if you have a class
called "Cheese" - then if you are adding constraints to the rule (by typing "-" and waiting for
content assistance) then it will know that only items marked as having an object-scope of
"com.yourcompany.Something" are valid, and suggest only them. This is entirely optional (you can
leave out that section if needed - OR it can be left blank).

Chapter 4. The Rule Language

136

4.10.5. How it works
DSLs kick in when the rule is parsed. The DSL configuration is read and supplied to the parser, so the
parser can "expand" the DSL expressions into the real rule language expressions.

When the parser is processing the rules, it will check if an "expander" representing a DSL is enabled,
if it is, it will try to expand the expression based on the context of where it is the rule. If an expression
can not be expanded, then an error will be added to the results, and the line number recorded (this
insures against typos when editing the rules with a DSL). At present, the DSL expander is fairly space
sensitive, but this will be made more tolerant in future releases (including tolerance for a wide range of
punctuation).

The expansion itself works by trying to match a line against the expression in the DSL configuration.
The values that correspond to the token place holders are stored in a map based on the name of the
token, and then interpolated to the target mapping. The values that match the token placeholders are
extracted by either searching until the end of the line, or until a character or word after the token place
holder is matched. The "{" and "}" are not included in the values that are extracted, they are only used
to demarcate the tokens - you should not use these characters in the DSL expression (but you can in
the target).

4.10.6. Creating a DSL from scratch
Rules engines require an object or a data model to operate on - in many cases you may know this
up front. In other cases the model will be discovered with the rules. In any case, rules generally work
better with simpler flatter object models. In some cases, this may mean having a rule object model
which is a subset of the main applications model (perhaps mapped from it). Object models can often
have complex relationships and hierarchies in them - for rules you will want to simplify and flatten
the model where possible, and let the rule engine infer relationships (as it provides future flexibility).
As stated previously, DSLs can have an advantage of providing some insulation between the object
model and the rule language.

Coming up with a DSL is a collaborative approach for both technical and domain experts. Historically
there was a role called "knowledge engineer" which is someone skilled in both the rule technology,
and in capturing rules. Over a short period of time, your DSL should stabilize, which means that
changes to rules are done entirely using the DSL. A suggested approach if you are starting from
scratch is the following workflow:
• Capture rules as loose "if then" statements - this is really to get an idea of size and complexity

(possibly in a text document).

• Look for recurring statements in the rules captured. Also look for the rule objects/fields (and match
them up with what may already be known of the object model).

• Create a new DSL, and start adding statements from the above steps. Provide the "holes" for data
to be edited (as many statements will be similar, with only some data changing).

• Use the above DSL, and try to write the rules just like that appear in the "if then" statements from
the first and second steps. Iterate this process until patterns appear and things stabilize. At this
stage, you are not so worried about the rule language underneath, just the DSL.

• At this stage you will need to look at the Objects, and the Fields that are needed for the rules,
reconcile this with the datamodel so far.

• Map the DSL statements to the rule language, based on the object model. Then repeat the process.
Obviously this is best done in small steps, to make sure that things are on the right track.

Scope and keywords

137

4.10.7. Scope and keywords
If you are editing the DSL with the GUI, or as text, you will notice there is a [scope] item at the start of
each mapping line. This indicates if the sentence/word applies to the LHS, RHS or is a keyword. Valid
values for this are [condition], [consequence] and [keyword] (with [when] and [then] being the same
as [condition] and [consequence] respectively). When [keyword] is used, it means you can map any
keyword of the language like "rule" or "end" to something else. Generally this is only used when you
want to have a non English rule language (and you would ideally map it to a single word).

4.10.8. DSLs in the BRMS and IDE
You can use DSLs in the BRMS in both guided editor rules, and textual rules that use a DSL. (In fact,
the same applies to the IDE).

In the guided editor - the DSLs generally have to be simpler - what you are doing is defining little
"forms" to capture data from users in text fields (i.e. as you pick a DSL expression - it will add an item
to the GUI which only allows you enter data in the {token} parts of a DSL expression). You can not
use sophisticated regular expressions to match text. However, in textual rules (which have a .dslr
extension in the IDE) you are free to use the full power as needed.

In the BRMS - when you build a package the DSLs are already included and all the work is done for
you. In the IDE (or in any IDE) - you will either need to use the drools-ant task, or otherwise use the
code shown in sections above.

4.11. XML Rule Language
As an option, JBoss Rules also supports a "native" XML rule language as an alternative to DRL. This
allows you to capture and manage your rules as XML data. Just like the non-XML DRL format, the
XML format is parsed into the internal "AST" representation - as fast as possible (using a SAX parser).
There is no external transformation step required. All the features are available with XML that are
available to DRL.

4.11.1. When to use XML
There are several scenarios that XML is desirable. However, we recommend that it is not a default
choice, as XML is not readily human readable (unless you like headaches) and can create visually
bloated rules.

Other scenarios where you may want to use the XML format are if you have a tool that generates
rules from some input (programmatically generated rules), or perhaps interchange from another rule
language, or from another tool that emits XML (using XSLT you can easily transform between XML
formats). Note you can always generate normal DRL as well.

Alternatively you may be embedding JBoss Rules in a product that already uses XML for
configuration, so you would like the rules to be in an XML format. You may be creating your own rule
language on XML - note that you can always use the AST objects directly to create your own rule
language as well (the options are many, due to the open architecture).

4.11.2. The XML format
A full W3C standards (XML Schema) compliant XSD is provided that describes the XML language,
which will not be repeated here verbatim. A summary of the language follows.

<?xml version="1.0" encoding="UTF-8"?>

Chapter 4. The Rule Language

138

<package name="com.sample"
 xmlns="http://drools.org/drools-4.0"
 xmlns:xs="http://www.w3.org/2001/XMLSchema-instance"
 xs:schemaLocation="http://drools.org/drools-4.0 drools-4.0.xsd">

 <import name="java.util.HashMap" />
 <import name="org.drools.*" />

 <global identifier="x" type="com.sample.X" />
 <global identifier="yada" type="com.sample.Yada" />

 <function return-type="void" name="myFunc">
 <parameter identifier="foo" type="Bar" />
 <parameter identifier="bada" type="Bing" />
 <body>System.out.println("hello world");</body>
 </function>

 <rule name="simple_rule">
 <rule-attribute name="salience" value="10" />
 <rule-attribute name="no-loop" value="true" />
 <rule-attribute name="agenda-group" value="agenda-group" />
 <rule-attribute name="activation-group" value="activation-group" />

 <lhs>
 <pattern identifier="foo2" object-type="Bar" >
 <or-constraint-connective>
 <and-constraint-connective>
 <field-constraint field-name="a">
 <or-restriction-connective>
 <and-restriction-connective>
 <literal-restriction evaluator=">" value="60" />
 <literal-restriction evaluator="<" value="70" />
 </and-restriction-connective>
 <and-restriction-connective>
 <literal-restriction evaluator="<" value="50" />
 <literal-restriction evaluator=">" value="55" />
 </and-restriction-connective>
 </or-restriction-connective>
 </field-constraint>

 <field-constraint field-name="a3">
 <literal-restriction evaluator="==" value="black" />
 </field-constraint>
 </and-constraint-connective>

 <and-constraint-connective>
 <field-constraint field-name="a">
 <literal-restriction evaluator="==" value="40" />
 </field-constraint>

The XML format

139

 <field-constraint field-name="a3">
 <literal-restriction evaluator="==" value="pink" />
 </field-constraint>
 </and-constraint-connective>

 <and-constraint-connective>
 <field-constraint field-name="a">
 <literal-restriction evaluator="==" value="12"/>
 </field-constraint>

 <field-constraint field-name="a3">
 <or-restriction-connective>
 <literal-restriction evaluator="==" value="yellow"/>
 <literal-restriction evaluator="==" value="blue" />
 </or-restriction-connective>
 </field-constraint>
 </and-constraint-connective>
 </or-constraint-connective>
 </pattern>

 <not>
 <pattern object-type="Person">
 <field-constraint field-name="likes">
 <variable-restriction evaluator="==" identifier="type"/>
 </field-constraint>
 </pattern>

 <exists>
 <pattern object-type="Person">
 <field-constraint field-name="likes">
 <variable-restriction evaluator="==" identifier="type"/>
 </field-constraint>
 </pattern>
 </exists>
 </not>

 <or-conditional-element>
 <pattern identifier="foo3" object-type="Bar" >
 <field-constraint field-name="a">
 <or-restriction-connective>
 <literal-restriction evaluator="==" value="3" />
 <literal-restriction evaluator="==" value="4" />
 </or-restriction-connective>
 </field-constraint>
 <field-constraint field-name="a3">
 <literal-restriction evaluator="==" value="hello" />
 </field-constraint>
 <field-constraint field-name="a4">
 <literal-restriction evaluator="==" value="null" />
 </field-constraint>
 </pattern>

Chapter 4. The Rule Language

140

 <pattern identifier="foo4" object-type="Bar" >
 <field-binding field-name="a" identifier="a4" />
 <field-constraint field-name="a">
 <literal-restriction evaluator="!=" value="4" />
 <literal-restriction evaluator="!=" value="5" />
 </field-constraint>
 </pattern>
 </or-conditional-element>

 <pattern identifier="foo5" object-type="Bar" >
 <field-constraint field-name="b">
 <or-restriction-connective>
 <return-value-restriction evaluator="==" >
 a4 + 1
 </return-value-restriction>
 <variable-restriction evaluator=">" identifier="a4" />
 <qualified-identifier-restriction evaluator="==">
 org.drools.Bar.BAR_ENUM_VALUE
 </qualified-identifier-restriction>
 </or-restriction-connective>
 </field-constraint>
 </pattern>

 <pattern identifier="foo6" object-type="Bar" >
 <field-binding field-name="a" identifier="a4" />
 <field-constraint field-name="b">
 <literal-restriction evaluator="==" value="6" />
 </field-constraint>
 </pattern>
 </lhs>
 <rhs>
 if (a == b) {
 assert(foo3);
 } else {
 retract(foo4);
 }
 System.out.println(a4);
 </rhs>
 </rule>

</package>

In the preceding XML text you will see the typical XML element, the package declaration, imports,
globals, functions, and the rule itself. Most of the elements are self explanatory if you have some
understanding of the JBoss Rules features.

The import elements import the types you wish to use in the rule.

The global elements define global objects that can be referred to in the rules.

The XML format

141

The function contains a function declaration, for a function to be used in the rules. You have to
specify a return type, a unique name and parameters, in the body goes a snippet of code.

The rule is discussed below.

<rule name="simple_rule">
<rule-attribute name="salience" value="10" />
<rule-attribute name="no-loop" value="true" />
<rule-attribute name="agenda-group" value="agenda-group" />
<rule-attribute name="activation-group" value="activation-group" />

<lhs>
 <pattern identifier="cheese" object-type="Cheese">
 <from>
 <accumulate>
 <pattern object-type="Person"></pattern>
 <init>
 int total = 0;
 </init>
 <action>
 total += $cheese.getPrice();
 </action>
 <result>
 new Integer(total));
 </result>
 </accumulate>
 </from>
 </pattern>

 <pattern identifier="max" object-type="Number">
 <from>
 <accumulate>
 <pattern identifier="cheese" object-type="Cheese"></pattern>
 <external-function evaluator="max" expression="$price"/>
 </accumulate>
 </from>
 </pattern>
</lhs>
<rhs>
 list1.add($cheese);
</rhs>
</rule>

Example 4.65. Detail of rule element

In the above detail of the rule we see that the rule has LHS and RHS (conditions and consequence)
sections. The RHS is simple, it is just a block of semantic code that will be executed when the rule
is activated. The LHS is slightly more complicated as it contains nested elements for conditional
elements, constraints and restrictions.

A key element of the LHS is the Pattern element. This allows you to specify a type (class) and perhaps
bind a variable to an instance of that class. Nested under the pattern object are constraints and

Chapter 4. The Rule Language

142

restrictions that have to be met. The Predicate and Return Value constraints allow Java expressions to
be embedded.

That leaves the conditional elements, not, exists, and, or etc. They work like their DRL counterparts.
Elements that are nested under and an "and" element are logically "anded" together. Likewise with
"or" (and you can nest things further). "Exists" and "Not" work around patterns, to check for the
existence or nonexistence of a fact meeting the pattern's constraints.

The Eval element allows the execution of a valid snippet of Java code - as long as it evaluates to a
boolean (do not end it with a semi-colon, as it is just a fragment) - this can include calling a function.
The Eval is less efficient than the columns, as the rule engine has to evaluate it each time, but it is a
"catch all" feature for when you can express what you need to do with Column constraints.

4.11.3. Automatic transforming between formats (XML and DRL)
JBoss Rules comes with some utility classes to transform between formats. This works by parsing the
rules from the source format into the AST, and then "dumping" out to the appropriate target format.
This allows you, for example, to write rules in DRL, and when needed, export to XML if necessary at
some point in the future.

The classes to look at if you need to do this are:

XmlDumper - for exporting XML.
DrlDumper - for exporting DRL.
DrlParser - reading DRL.
XmlPackageReader - reading XML.

Using combinations of the above, you can convert between any format (including round trip). Note that
DSLs will not be preserved (from DRLs that are using a DSL) - but they will be able to be converted.

Feel free to make use of XSLT to provide all sorts of possibilities for XML, XSLT and its ilk are what
make XML powerful.

Chapter 5.

143

Authoring

5.1. Decision tables in spreadsheets
Decision tables are a "precise yet compact" way of representing conditional logic, and are well suited
to business level rules.

JBoss Rules supports managing rules in a Spreadsheet format. Formats supported are Excel, and
CSV. Meaning that a variety of spreadsheet programs (such as Microsoft Excel, OpenOffice.org Calc
amongst others) can be utalized. It is expected that web based decision table editors will be included
in a near future release.

Decision tables are an old concept (in software terms) but have proven useful over the years. Very
briefly speaking, in JBoss Rules decision tables are a way to generate rules driven from the data
entered into a spreadsheet. All the usual features of a spreadsheet for data capture and manipulation
can be taken advantage of.

5.1.1. When to use Decision tables
Decision tables my want to be considered as a course of action if rules exist that can be expressed
as rule templates + data. In each row of a decision table, data is collected that is combined with the
templates to generate a rule.

Many businesses already use spreadsheets for managing data, calculations etc. If you are happy
to continue this way, you can also manage your business rules this way. This also assumes you are
happy to manage packages of rules in .xls or .csv files. Decision tables are not recommenced for rules
that do not follow a set of templates, or where there are a small number of rules (or if there is a dislike
towards software like excel or open office). They are ideal in the sense that there can be control over
what parameters of rules can be edited, without exposing the rules directly.

Decision tables also provide a degree of insulation from the underlying object model.

5.1.2. Overview
Here are some examples of real world decision tables.

Figure 5.1. Can have multiple actions for a rule row

Chapter 5. Authoring

144

Figure 5.2. Using excel to edit a decision table

Figure 5.3. Using OpenOffice

In the above examples, the technical aspects of the decision table have been collapsed away
(standard spreadsheet feature).

The rules start from row 17 (each row results in a rule). The conditions are in column C, D, E etc.. (off
screen are the actions). The value in the cells are quite simple, and have meaning when looking at the

How decision tables work

145

headers in Row 16. Column B is just a description. It is conventional to use color to make it obvious
what the different areas of the table mean.

Note
Note that although the decision tables look like they process top down, this is not
necessarily the case. Ideally, if the rules are able to be authored in such a way as order
does not matter (simply as it makes maintenance easier, as rows will not need to be
shifted around all the time).

As each row is a rule, the same principles apply. As the rule engine processes the facts, any rules
that match may fire (some people are confused by this. It is possible to clear the agenda when a rule
fires and simulate a very simple decision table where the first match exists). Also note that you can
have multiple tables on the one spreadsheet (so rules can be grouped where they share common
templates, yet at the end of the day they are all combined into a one rule package). Decision tables
are essentially a tool to generate DRL rules automatically.

Figure 5.4. Using multiple tables for grouping similar rules

5.1.3. How decision tables work
The key point to keep in mind is that in a decision table, each row is a rule, and each column in that
row is either a condition or action for that rule.

Chapter 5. Authoring

146

Figure 5.5. Rows and columns

The spreadsheet looks for the RuleTable keyword to indicate the start of a rule table (both the starting
row and column). Other keywords are also used to define other package level attributes (covered
later). It is important to keep the keywords in the one column. By convention the second column ("B")
is used for this, but it can be any column (convention is to leave a margin on the left for notes). In the
following diagram, C is actually the column where it starts. Everything to the left of this is ignored.

If we expand the hidden sections, it starts to make more sense how it works; note the keywords in
column C.

Figure 5.6. Expanded for rule templates

How decision tables work

147

Now the hidden magic which makes it work can be seen. The RuleSet keyword indicates the name
to be used in the rule package that all the rules will come under (the name is optional, it will have a
default but it MUST have the RuleSet keyword) in the cell immediately to the right.

The other keywords visible in Column C are: Import, Sequential which will be covered later. The
RuleTable keyword is important as it indicates that a chunk of rules will follow, based on some rule
templates. After the RuleTable keyword there is a name - this name is used to prefix the generated
rules names (the row numbers are appended to create unique rule names). The column of RuleTable
indicates the column in which the rules start (columns to the left are ignored).

Note
In general the keywords make up name/value pairs.

Referring to row 14 (the row immediately after RuleTable): the keywords CONDITION and ACTION
indicate that the data in the columns below are for either the LHS or the RHS parts of a rule. There are
other attributes on the rule which can also be optionally set this way.

Row 15 contains declarations of ObjectTypes ; the content in this row is optional (if this option is not in
use, a blank row must be left, however this option is usually found to be quite useful). When using this
row, the values in the cells below (row 16) become constraints on that object type. In the above case,
it will generate: Person(age=="42") etc (where 42 comes from row 18). In the above example, the "=="
is implicit (if just a field name is given it will assume that it is to look for exact matches).

Note
An ObjectType declaration can span columns (via merged cells), meaning that all columns
below the merged range will be combined into the one set of constraints.

Row 16 contains the rule templates themselves. They can use the "$para" place holder to indicate
where data from the cells below will be populated ($param can be sued or $1, $2 etc to indicate
parameters from a comma separated list in a cell below). Row 17 is ignored as it is textual descriptions
of the rule template.

Row 18 to 19 shows data, which will be combined (interpolated) with the templates in row 15, to
generate rules. If a cell contains no data, then its template is ignored (e.g. it means that condition,
or action, does not apply for that rule-row). Rule rows are read until there is a BLANK row. Multiple
RuleTables can exsist in a sheet. Row 20 contains another keyword, and a value. The row positions
of keywords like this do not matter (most people put them at the top) but their column should be the
same one where the RuleTable or RuleSet keywords should appear (in this case column C has been
chosen to be significant, but column A could be used instead).

In the above example, rules would be rendered like the following (as it uses the "ObjectType" row):

//row 18
rule "Cheese_fans_18"
when
 Person(age=="42")
 Cheese(type=="stilton")

Chapter 5. Authoring

148

then
 list.add("Old man stilton");
end

Note
The [age=="42"] and [type=="stilton"] are interpreted as single constraints to be added to
the respective ObjectType in the cell above (if the cells above were spanned, then there
could be multiple constraints on one "column".

5.1.4. Keywords and syntax

5.1.4.1. Syntax of templates
The syntax of what goes in the templates is dependent on if it is a CONDITION column or ACTION
column. In most cases, it is identical to vanilla DRL for the LHS or RHS respectively. This means in the
LHS, the constraint language must be used, and in the RHS it is a snippet of code to be executed.

The $param place holder is used in templates to indicate where data form the cell will be interpolated.
You can also use $1 to the same effect. If the cell contains a comma separated list of values, $1 and
$2 etc. may be used to indicate which positional parameter from the list of values in the cell will be
used.

If the templates is [Foo(bar == $param)] and the cell is [42] then the result will be [Foo(bar == 42)] If
the template is [Foo(bar < $1, baz == $2)] and the cell is [42,42] then the result will be [Foo(bar > 42,
baz ==42)]

For conditions: How snippets are rendered depends on if there is anything in the row above (where
ObjectType declarations may appear). If there is, then the snippets are rendered as individual
constraints on that ObjectType. If there isn't, then they are just rendered as is (with values substituted).
If just a plain field is entered (as in the example above) then it will assume this means equality. If
another operator is placed at the end of the snippet, then the values will put interpolated at the end of
the constraint, otherwise it will look for $param as outlined previously.

For consequences: How snippets are rendered also depends on if there is anything in the row
immediately above it. If there is nothing there, the output is simple the interpolated snippets. If there is
something there (which would typically be a bound variable or a global like in the example above) then
it will append it as a method call on that object (refer to the above example).

This may be easiest to understand with some examples below.

Keywords and syntax

149

The above shows how the Person ObjectType declaration spans 2 columns in the spreadsheet, thus
both constraints will appear as Person(age == ... , type == ...). As before, as only the field names are
present in the snippet, they imply an equality test.

The above condition example shows how you use interpolation to place the values in the snippet (in
this case it would result in Person(age == "42")).

Chapter 5. Authoring

150

The above condition example show that if you put an operator on the end by itself, the values will be
placed after the operator automatically.

A binding can be put in before the column (the constraints will be added from the cells below).
Anything can be placed in the ObjectType row (e.g. it could be a pre condition for the columns in the
spreadsheet columns that follow).

Keywords and syntax

151

This shows how the consequence could be done the by simple interpolation (just leave the cell
above blank, the same applies to condition columns). With this style anything can be placed in the
consequence (not just one method call).

5.1.4.2. Keywords
The following table describes the keywords that are pertinent to the rule table structure.

Keyword Description Inclusion Status

RuleSet The cell to the right of this
contains the ruleset name

One only (if left out, it will
default)

Sequential The cell to the right of this can
be true or false. If true, then
salience is used to ensure that
rules fire from the top down

optional

Import The cell to the right contains a
comma separated list of Java
classes to import

optional

RuleTable A cell starting with RuleTable
indicates the start of a definition
of a rule table. The actual rule
table starts the next row down.
The rule table is read left-to-
right, and top-down, until there
is one BLANK ROW.

at least one. if there are more,
then they are all added to the
one ruleset

CONDITION Indicates that this column will
be for rule conditions

At least one per rule table

ACTION Indicates that this column will
be for rule consequences

At least one per rule table

PRIORITY Indicates that this columns
values will set the 'salience'

optional

Chapter 5. Authoring

152

Keyword Description Inclusion Status
values for the rule row. Over-
rides the 'Sequential' flag.

DURATION Indicates that this columns
values will set the duration
values for the rule row.

optional

NAME Indicates that this columns
values will set the name for the
rule generated from that row

optional

Functions The cell immediately to the right
can contain functions which can
be used in the rule snippets.
JBoss Rules supports functions
defined in the DRL, allowing
logic to be embedded in the
rule, and changed without hard
coding, use with care. Same
syntax as regular DRL.

optional

Variables The cell immediately to the right
can contain global declarations
which JBoss Rules supports.
This is a type, followed by
a variable name. (if multiple
variables are needed, comma
separate them).

optional

No-loop or Unloop Placed in the header of a table,
no-loop or unloop will both
complete the same function
of not allowing a rule (row) to
loop. For this option to function
correctly, there must be a value
(true or false) in the cell for the
option to take effect. If the cell
is left blank then this option will
not be set for the row.

optional

XOR-GROUP Cell values in this column mean
that the rule-row belongs to the
given XOR/activation group .
An Activation group means
that only one rule in the named
group will fire (ie the first one
to fire cancels the other rules
activations).

optional

AGENDA-GROUP Cell values in this column mean
that the rule-row belongs to the
given agenda group (that is one
way of controlling flow between

optional

Keywords and syntax

153

Keyword Description Inclusion Status
groups of rules - see also "rule
flow").

RULEFLOW-GROUP Cell values in this column mean
that the rule-row belongs to the
given rule-flow group.

optional

Worksheet By default, the first worksheet
is only looked at for decision
tables.

N/A

Table 5.1. Keywords

Below you will find examples of using the HEADER keywords, which effects the rules generated for
each row. Note that the header name is what is important in most cases. If no value appears in the
cells below it, then the attribute will not apply (it will be ignored) for that specific row.

Figure 5.7. Example usage of keywords for imports, headers etc

The following is an example of Import (comma delimited), Variables (gloabls) - also comma delimited,
and a function block (can be multiple functions - just the usual drl syntax). This can appear in the same
column as the "RuleSet" keyword, and can be below all the rule rows if you desire.

Chapter 5. Authoring

154

Figure 5.8. Example usage of keywords for functions etc.

5.1.5. Creating and integrating Spreadsheet based Decision Tables
The API to use spreadsheet based decision tables is in the drools-decisiontables module. There
is really only one class to look at: SpreadsheetCompiler. This class will take spreadsheets in
various formats, and generate rules in DRL (which you can then use in the normal way). The
SpreadsheetComiler can just be used to generate partial rule files if it is wished, and assemble it into a
complete rule package after the fact (this allows the separation of technical and non-technical aspects
of the rules if needed).

To get started, a sample spreadsheet can be used as base. Alternatively, if the plug-in is being used
(Rule Workbench IDE), the wizard can generate a spreadsheet from a template (to edit it an xls
compatible spreadsheet editor will need to be used).

Figure 5.9. Wizard in the IDE

Managing business rules in decision tables.

155

5.1.6. Managing business rules in decision tables.

5.1.6.1. Workflow and collaboration.
Spreadsheets are well established business tools (in use for over 25 years). Decision tables lend
themselves to close collaboration between IT and domain experts, while making the business rules
clear to business analysts, it is an ideal separation of concerns.

Typically, the whole process of authoring rules (coming up with a new decision table) would be
something like:

1. Business analyst takes a template decision table (from a repository, or from IT)

2. Decision table business language descriptions are entered in the table(s)

3. Decision table rules (rows) are entered (roughly)

4. Decision table is handed to a technical resource, who maps the business language (descriptions)
to scripts (this may involve software development of course, if it is a new application or data
model)

5. Technical person hands back and reviews the modifications with the business analyst.

6. The business analyst can continue editing the rule rows as needed (moving columns around is
also fine etc).

7. In parallel, the technical person can develop test cases for the rules (liaising with business
analysts) as these test cases can be used to verify rules and rule changes once the system is
running.

5.1.6.2. Using spreadsheet features
Features of applications like Excel can be used to provide assistance in entering data into
spreadsheets, such as validating fields. Lists that are stored in other worksheets can be used to
provide valid lists of values for cells, like in the following diagram.

Figure 5.10. Wizard in the IDE

Some applications provide a limited ability to keep a history of changes, but it is recommended that
an alternative means of revision control is also used. When changes are being made to rules over

Chapter 5. Authoring

156

time, older versions are archived (many solutions exist for this which are also open source, such as
Subversion). http://www.drools.org/Business+rules+in+decision+tables+explained

http://www.drools.org/Business+rules+in+decision+tables+explained

Chapter 6.

157

The Java Rule Engine API

6.1. Introduction
JBoss Rules provides an implementation of JSR94, the Java Rule Engine Application Programming
Interface (API.) This implementation has the capacity to support multiple rule engines from a single
API. JSR94 does not, in any way, deal with the rule language itself.

Note
The World Wide Web Consortium (W3C) is developing a Rule Interchange Format
(RIF) http://www.w3.org/TR/2006/WD-rif-ucr-20060323 and the Object Management
Group (OMG) has started to create a standard based on RuleML, http://ruleml.org. In
addition, Haley Systems has also recently proposed a rule language standard called
RML.

It is important to remember that the JSR94 standard represents the "lowest common denominator" in
terms of features across rule engines. . This means that there is less functionality in the JSR94 API
than can be found in the standard JBoss Rules API. So, by using JSR94, you forfeit the advantage of
using the full capabilities of the JBoss Rules Rule Engine.

Further functionality, (such as "globals" and support for DRL, DSL and XML), can only be exposed
via property maps due to the very basic nature of JSR94. However, by doing this, non-portable
functionality is introduced. Furthermore, as JSR94 does not provide a rule language, you are only
reducing complexity by a small fraction when you switch rule engines, with very little to gain from the
move. So, whilst Red Hat will provide support for JSR94 if one insists upon using it, it is strongly
recommend that you instead program against the JBoss Rules API.

6.2. How To Use
There are two parts of JSR94. The first part is the administrative API, which is used to build and
register RuleExecutionSets. The second part is the runtime session, which is used to execute
those RuleExecutionSets.

6.2.1. Building and Registering RuleExecutionSets
The RuleServiceProviderManager manages the registration and retrieval of
RuleServiceProviders. The JBoss Rules RuleServiceProvider implementation is
automatically registered via a static block when the class is loaded using Class.forNamem. This
occurs in much the same way as it does for JDBC drivers.

http://www.w3.org/TR/2006/WD-rif-ucr-20060323
http://ruleml.org

Chapter 6. The Java Rule Engine API

158

// RuleServiceProviderImpl is registered to "http://drools.org/"
// via a static initialization block
Class.forName("org.drools.jsr94.rules.RuleServiceProviderImpl");

// Get the rule service provider from the provider manager.
RuleServiceProvider ruleServiceProvider =
 RuleServiceProviderManager.getRuleServiceProvider("http://drools.org/");

Example 6.1. Automatic RuleServiceProvider Registration

The RuleServiceProvider provides access to the RuleRuntime and
RuleAdministrationAPIs. The RuleAdministration provides an administration API for the
management of RuleExecutionSets. This makes it possible to register a RuleExecutionSet that
can then be retrieved via the RuleRuntime.

You obviously need to create a RuleExecutionSet before it can be registered;
RuleAdministrator provides factory methods to return either an empty
LocalRuleExecutionSetProvider or RuleExecutionSetProvider. The
LocalRuleExecutionSetProvider should be used to load a RuleExecutionSet from a local,
non-serialisable source, such as a Stream. The RuleExecutionSetProvider can be used to load
RuleExecutionSets from serializable sources, like DOM Elements or Packages.

Note
Both the
"ruleAdministrator.getLocalRuleExecutionSetProvider(null);" and the
"ruleAdministrator.getRuleExecutionSetProvider(null);" take "null" as
a parameter. This is because the properties map for these methods is not currently used.

// Get the RuleAdministration
RuleAdministrator ruleAdministrator =
 ruleServiceProvider.getRuleAdministrator();
LocalRuleExecutionSetProvider ruleExecutionSetProvider =
 ruleAdministrator.getLocalRuleExecutionSetProvider(null);

// Create a Reader for the drl
URL drlUrl = new URL("http://mydomain.org/sources/myrules.drl");
Reader drlReader = new InputStreamReader(drlUrl.openStream());

// Create the RuleExecutionSet for the drl
RuleExecutionSet ruleExecutionSet =
 ruleExecutionSetProvider.createRuleExecutionSet(drlReader, null);

Example 6.2. Registering a LocalRuleExecutionSet with the RuleAdministrator API

In the above example, "ruleExecutionSetProvider.createRuleExecutionSet(reader,
null)" takes a null parameter for the properties map; however it can actually be used to provide
configuration for the incoming source. When "null" is passed, the default is used to load the input as

 Using State-ful and Stateless RuleSessions

159

a DRL. The keys which are allowed for a map are "source" and "dsl". "source" takes "drl" or "xml"
as its value. You set "source" to "drl" to load a DRL and, likewise, you set it to "xml" to load an XML
source. ("xml" will ignore any "dsl" key/value settings.) The "dsl" key can take a Reader or a String
(the contents of the DSL) as a value.

// Get the RuleAdministration
RuleAdministration ruleAdministrator =
 ruleServiceProvider.getRuleAdministrator();
LocalRuleExecutionSetProvider ruleExecutionSetProvider =
 ruleAdministrator.getLocalRuleExecutionSetProvider(null);

// Create a Reader for the drl
URL drlUrl = new URL("http://mydomain.org/sources/myrules.drl");
Reader drlReader = new InputStreamReader(drlUrl.openStream());

// Create a Reader for the dsl and a put in the properties map
URL dslUrl = new URL("http://mydomain.org/sources/myrules.dsl");
Reader dslReader = new InputStreamReader(dslUrl.openStream());
Map properties = new HashMap();
properties.put("source", "drl");
properties.put("dsl", dslReader);

// Create the RuleExecutionSet for the drl and dsl
RuleExecutionSet ruleExecutionSet =
 ruleExecutionSetProvider.createRuleExecutionSet(reader, properties);

Example 6.3. Specifying a DSL when registering a LocalRuleExecutionSet

You must specify the name to be used for the retrieval of a RuleExecutionSet when you register it.
There is also a field for to "passing" properties; as this is currently unused, just pass "null."

// Register the RuleExecutionSet with the RuleAdministrator
String uri = ruleExecutionSet.getName();
ruleAdministrator.registerRuleExecutionSet(uri, ruleExecutionSet, null);

Example 6.4. Register the RuleExecutionSet

6.2.2. Using State-ful and Stateless RuleSessions
The Runtime, (obtained from the RuleServiceProvider), is used to create state-ful and stateless
rule engine sessions.

RuleRuntime ruleRuntime = ruleServiceProvider.getRuleRuntime();

Example 6.5. Obtaining the RuleRunTime

In order to create a rule session, you must use one of the two public constants
for RuleRuntime, namely "RuleRuntime.STATEFUL_SESSION_TYPE" or

Chapter 6. The Java Rule Engine API

160

"RuleRuntime.STATELESS_SESSION_TYPE." Additionally, you must provide the URI for
the RuleExecutionSet for which you wish to instantiate a RuleSession. The properties
map can be set to "null," or it can be used to specify globals, as shown in the next section. The
createRuleSession(....) method returns a RuleSession instance which must then be cast to
StatefulRuleSession or StatelessRuleSession.

(StatefulRuleSession) session =
 ruleRuntime.createRuleSession(uri,
 null,
 RuleRuntime.STATEFUL_SESSION_TYPE);
session.addObject(new PurchaseOrder("lots of cheese"));
session.executeRules();

Example 6.6. State-ful Rule

The StatelessRuleSession has a very simple API; you can only call executeRules(List
list) (which passes a list of objects), and an optional filter. The resulting objects are then returned.

(StatelessRuleSession) session =
 ruleRuntime.createRuleSession(uri,
 null,
 RuleRuntime.STATELESS_SESSION_TYPE);
List list = new ArrayList();
list.add(new PurchaseOrder("even more cheese"));

List results = new ArrayList();
results = session.executeRules(list);

Example 6.7. Stateless Rule

6.2.2.1. Globals
It is possible to support globals with JSR94, albeit in a non-portable manner. This can be achieved
by using a method whereby the properties map is passed to the RuleSession factory. Globals
must be defined in either the DRL or XML file first, otherwise an exception will be thrown. The key
represents the identifier declared in the DRL or XML and the value of the key is the instance that
you wish be used in the execution. In the following example, the results are collected in a global
java.util.List:

References

161

java.util.List globalList = new java.util.ArrayList();
java.util.Map map = new java.util.HashMap();
map.put("list", globalList);
//Open a stateless Session
StatelessRuleSession srs =
 (StatelessRuleSession) runtime.createRuleSession("SistersRules",
 map,

 RuleRuntime.STATELESS_SESSION_TYPE);
...
// Persons added to List
// call executeRules() giving a List of Objects as parameter
// There are rules which will put Objects in the List
// fetch the list from the map
List list = (java.util.List) map.get("list");

Example 6.8. Globals

Do not forget to declare the global "list" in your DRL:

package SistersRules;
import org.drools.jsr94.rules.Person;
global java.util.List list
rule FindSisters
when
 $person1 : Person ($name1:name)
 $person2 : Person ($name2:name)
 eval($person1.hasSister($person2))
then
 list.add($person1.getName() + " and " + $person2.getName() +" are
 sisters");
 assert($person1.getName() + " and " + $person2.getName() +" are
 sisters");
end

Example 6.9. Global List

6.3. References
If you need more information on JSR 94, please refer to the following references
1. Official JCP Specification for Java Rule Engine API (JSR 94)

• http://www.jcp.org/en/jsr/detail?id=94

2. The Java Rule Engine API documentation

• http://www.javarules.org/api_doc/api/index.html

3. The Logic From The Bottom Line: An Introduction to The Drools Project. By N. Alex Rupp,
published on TheServiceSide.com in 2004

http://www.jcp.org/en/jsr/detail?id=94
http://www.javarules.org/api_doc/api/index.html

Chapter 6. The Java Rule Engine API

162

• http://www.theserverside.com/articles/article.tss?l=Drools

4. Getting Started With the Java Rule Engine API (JSR 94): Toward Rule-Based Applications. By Dr.
Qusay H. Mahmoud, published on Sun Developer Network in 2005

• http://java.sun.com/developer/technicalArticles/J2SE/JavaRule.html

5. Jess and the javax.rules API. By Ernest Friedman-Hill, published on TheServerSide.com in 2003

• http://www.theserverside.com/articles/article.tss?l=Jess

http://www.theserverside.com/articles/article.tss?l=Drools
http://java.sun.com/developer/technicalArticles/J2SE/JavaRule.html
http://www.theserverside.com/articles/article.tss?l=Jess

Chapter 7.

163

Updated The JBoss Rules IDE
The JBoss Developer Studio (JBDS) product is the supported integrated development environment
(IDE) for JBoss Rules. It provides a set of features to ease the development of JBoss Rules assets.

Note
The JBoss Rules IDE components are also available separately as Eclipse plugins.

The authoring of JBoss Rules assets does not require the use of an IDE and the JBoss Rules engine
is not dependent on the Eclipse environment.

Figure 7.1. Overview

7.1. Outline of Features
The JBoss Rules IDE has the following features:

1. Textual/graphical rule editor

Chapter 7. The JBoss Rules IDE

164

a. An editor that is aware of DRL syntax, and provides content assistance (including an outline
view)

b. An editor that is aware of DSL (domain specific language) extensions, and provides content
assistance.

2. RuleFlow graphical editor

You can edit visual graphs which represent a process (a rule flow). The RuleFlow can then be
applied to your rule package to have imperative control.

3. Wizards for fast creation of

a. a "rules" project

b. a rule resource, either as a DRL file or a "guided rule editor" file (.brl)

c. a Domain Specific language

d. a decision table

e. a ruleflow

4. A domain specific language editor

a. Create and manage mappings from your user's language to the rule language

5. Rule validation

a. As rules are entered, the rule is "built" in the background and errors reported via the problem
view where possible

7.2. Creating a Rule Project
The aim of the new project wizard is to configure an executable "scaffold", with which once can start
using rules immediately. This project will set-up a basic structure, classpath, sample rules and test
case to start you on your way.

 Creating a Rule Project

165

Figure 7.2. New Rule Project Scaffolding

When you choose to create a new "rule project" you will have the choice to add some default artifacts
to it, like rules, decision tables, rule flows and so forth. These can serve as a starting point and will
give you an executable almost immediately, which you can then modify. A simple "hello world" rule is
shown below.

Figure 7.3. New Rule Project Result

Chapter 7. The JBoss Rules IDE

166

The newly created project contains an example rule file (Sample.drl) (which resides in the src/
rules directory) and an example Java file (DroolsTest.java) that can be used to execute
the rules in the JBoss Rules engine. This can be found in the src/java directory, (part of the
com.sample package.) All the other .jars necessary for execution can also be added via a custom
classpath container called JBoss Rules Library. Strictly speaking, rules do not have to be kept in
"Java" projects at all but this is just a convenience for people who are already using JBDS or Eclipse
as their Java IDE.

Important
The JBoss Developer Studio provides a feature called "JBoss Rules Builder" which
automatically builds and validates your rules when their resources change. Projects
created with the "Rule Project Wizard" have this enabled by default, but you can enable it
manually on any project.

If you have any files with a large number of rules (500 or more) then this will generate a lot
of processing since each rule will be rebuilt for all changes to those files. If this becomes
a problem then you have two options. The easiest solution is to temporarily disable the
builder. The other solution is to move the large rules into .rule files. The .rule files are
ignored by the builder but you will need to run them in a unit test to validate the rules.

7.3. Creating a New Rule and Wizards
You can create a rule, by simply generating an empty text file with a ".drl". You can also use the
wizard to do so. The wizard menu can be invoked with Control+N, or by choosing it from the toolbar,
where there is a menu signified by the JBoss Rules icon.

Creating a New Rule and Wizards

167

Figure 7.4. The Wizard Menu

The wizard will ask for some basic input for the options related to generating a rule resource. These
are just hints: You can change your mind later. In order to storing rule files, you would typically create a
directory called src/rules and add suitably named subdirectories. The package name is mandatory,
and is similar to a package name in Java (in other words, it establishes a namespace for grouping
related rules.)

Chapter 7. The JBoss Rules IDE

168

Figure 7.5. New Rule Wizard

The result of running this wizard is a rule skeleton, which you can "flesh out." As with all wizards, it is
merely an optional helper; you are not obligated to use it if you have no desire to do so.

 Textual Rule Editor

169

7.4. Textual Rule Editor
The Rule Editor is the tool which rule managers and developers will be using most often. The Rule
Editor follows the pattern of a normal text editor in Eclipse™ , as it has all of the customary features
of such an application. On top of this, the rule editor provides "pop-up" content assistance. You
can invoke pop-up content assistance in the normal way by pressing the Control and Space keys
simultaneously.

Figure 7.6. The Rule Editor in Action

The Rule Editor works on files that have a .drl (or .rule) extension. Usually these contain a
number of related rules but it is also possible to have rules in individual files, grouped by virtue of
being in the same package "namespace." These DRL files are plain text.

You can see from the example above that the rule group is using a domain specific language. Note
the "expander" keyword, which tells the rule compiler to look for a .dsl file of that name, in order to
resolve the rule language. Even with the Domain Specific Language (DSL) available, the rules are still

Chapter 7. The JBoss Rules IDE

170

stored as plain text mirroring what you see onscreen. This allows for much simpler management of
rules and versions, when, for example, you are comparing versions of rules.

The editor has an outline view that is kept synchronised with the structure of the rules (it is updated
when the file is saved.) This provides a quick way of navigating around rules by name, even in a file
which may have hundreds of rules. By default, the items are sorted alphabetically.

Figure 7.7. The Rule Outline View

7.5. The Guided Editor
A new JBoss Rules feature of JBoss Developer Studio is the Guided Editor for rules. This is similar to
the web-based editor that is available in the BRMS. It allows you to build rules based on your object
model in a graphically-driven fashion.

The Guided Editor

171

Figure 7.8. The Guided Editor

To create a rule this way, use the "Wizard" menu. From this, you create an instance of a .brl file and
open it in the Guided Editor. This editor works via a .package file in the same directory as the .brl
file. In this file there resides the package name and import statements, just like those you would find
at the top of a normal .drl file. The first time you create a .brl rule, you will need to populate the
package file with the "fact" classes in which you are interested. Once you have added this information,
the Guided Editor will be able to prompt you with facts and their associated fields so that you can build
rules graphically.

The Guided Editor works from the model or fact classes that have been configured by the user. It is
then able to "render" the graphical representation of your rule to DRL. You can do this visually, which
may be advantageous as a method to use in order to learn DRL. Alternatively, you can use it and then
build rules in the business rules language directly. One way to do this is by using the drools-ant
module, which is an ant task that creates all the rule assets as a rule package in a directory. This is
so that you can then deploy it as a binary file. Alternatively, you can use the following snippet of code
to convert the BRL to a .drl rule.

BRXMLPersitence read = BRXMLPersitence.getInstance();
BRDRLPersistence write = BRDRLPersistence.getInstance();
String brl = ... // read from the .brl file as needed...
String outputDRL = write.marshall(read.unmarshal(brl));
// Pass the outputDRL to the PackageBuilder, as usual

Example 7.1. Conversion Code

Chapter 7. The JBoss Rules IDE

172

7.6. JBoss Rules Views
A number of views can be used to check the state of the JBoss Rules engine when you are debugging
an application with it. These views are the Working Memory View, the Agenda View and the Global
Data View. To use these views, create breakpoints in your code that invoke the working memory. For
example, the line whereby you call workingMemory.fireAllRules() is a good candidate. If the
debugger halts at that joinpoint, you should select the working memory variable in the Debugging
Variables view. The following rules can then be used to show the details of the selected working
memory:

1. The Working Memory View shows all of the elements in JBoss Rules' working memory.

2. The Agenda View shows all elements on the agenda. The name and bound variables are shown
for each rule

3. The Global Data View shows all global data currently defined in the JBoss Rules working memory.

The Audit View is used to display, in a tree form, audit logs that were generated during the execution
of a rules engine.

7.6.1. The Working Memory View

The Working Memory View shows all of the elements in the working memory of the JBoss Rules
engine.

In order to customise what is shown, an action is added to the right of the view:

1. The "Show Logical Structure" option toggles between two options, that of showing the logical
structure of the elements in the working memory, and that of showing all of their details. Logical
structures allow the user to visualise sets of elements more easily and clearly.

 The Agenda View

173

7.6.2. The Agenda View

The Agenda View shows all elements on the agenda. The name and bound variables are shown for
each rule.

An action is added to the right of the view, in order to customize that which is shown:

1. The "Show Logical Structure" option toggles between two options, that of showing the logical
structure of the elements in the working memory, and that of showing all of their details. Logical
structures allow the user to visualise sets of elements more easily and clearly. The logical
structure of AgendaItems shows the rule that is represented by the AgendaItem, and the values
of all the parameters used in the rule.

7.6.3. The Global Data View

The Global Data View shows all of the global data currently defined in the JBoss Rules engine.

An action is added to the right of the view, to customize that information which is shown:

1. The "Show Logical Structure" option toggles between two options, that of showing the logical
structure of the elements in the working memory, and that of showing all of their details. Logical
structures allow the user to visualise sets of elements more easily and clearly.

Chapter 7. The JBoss Rules IDE

174

7.6.4. The Audit View

The Audit View displays an audit log that you can optionally create when you execute the rules engine.
To create an audit log, simply use the following code:

WorkingMemory workingMemory = ruleBase.newWorkingMemory();
// Create a new Working Memory Logger, that logs to file.
WorkingMemoryFileLogger logger = new
 WorkingMemoryFileLogger(workingMemory);
// An event.log file is created in the subdirectory log (which must exist)
// of the working directory.
logger.setFileName("log/event");

workingMemory.assertObject(...);
workingMemory.fireAllRules();

// stop logging
logger.writeToDisk();

Example 7.2. Set Up Audit Log

Open the log by clicking the "Open Log" action (this is the first action in the Audit View) and select
the file. The Audit View now displays all of the events that were logged during the executing of the
rules. There are different types of events, each with a different icon. Here is a key to understanding the
meaning of each:

1. Object inserted (green square)

2. Object updated (yellow square)

3. Object removed (red square)

4. Activation created (right arrow)

 Domain-Specific Languages

175

5. Activation cancelled (left arrow)

6. Activation executed (blue diamond)

7. Ruleflow started or ended ("process" icon)

8. Ruleflow group activated or deactivated ("activity" icon)

9. Rule package added or removed ("JBoss Rules" icon)

10. Rule added or removed (also the "JBoss Rules" icon)

All of these event records provide extra information about what has occurred. In the case of working
memory events (such as insert, modify and retract), these details include the id and toString
representation of the object. In case of an activation event (created, cancelled or executed), these
include the name of the rule and all the variables bound in the activation.

Note
If an event occurs whilst an activation is being executed, it is depicted as a child of that
execution.

You can retrieve the "cause" of some events:

1. The cause of an object "modification" or "retraction" is recorded as the last event for that object.
This is either the "object asserted" or the last "object modified" event against that same object.

2. The cause of an "activation canceled" or "executed" event is the corresponding "activation
created" event.

When you select an event, its cause, if visible, is shown in green in the Audit View. You can also right-
click on the action and select the "Show Cause" menu item. This will scroll the display to the point
where the cause is recorded.

7.7. Domain-Specific Languages
Domain-Specific Languages, (known as DSLs), allow you to create a custom language that allow
you to write rules that look like English. More often than not, the domain-specific language reads like
natural language. Typically, you note how a business analyst describes the rule in their own words,
and then map this to your object model via rule constructs. An additional benefit of this is that it can
provide an insulation layer between your domain objects, and the rules themselves. A domain-specific
language will grow as the rules grow. It is most efficient when common terms are used repeatedly,
albeit with different parameters.

To aid you in this work, the Rule Workbench provides an editor for domain-specific languages. (As the
languages are stored in plain text format, you can use any editor you desire; the Rules Workbench
tool simply has the advantage of providing a slightly-enhanced version of the "Properties" file format.)
The editor will be invoked on any file with a .dsl extension (there is also a wizard to create a sample
.dsl file).

Chapter 7. The JBoss Rules IDE

176

7.7.1. Editing languages

Figure 7.9. The Domain-Specific Language Editor

The DSL Editor provides a tabular view of the mapping of Language-to-Rule expressions. The
"Language Expressions" are those which are used in the rules. The DSL Editor also feeds the "content
assistance" for the rule editor. This is so that it can suggest Language Expressions from the DSL
configuration. (The Rule Editor loads the DSL configuration when the rule resource is opened for
editing.) The "Rule" language mapping defines the "code" into which the Language Expressions will be
compiled by the rule engine.

The form that a "Rule" language expression takes is dependent upon whether it is intended for the
"condition" or the "action" part of the rule. (For the right-hand side it may. for instance, be a snippet
of Java.) The "scope" item indicates where the expression belongs, "when" indicates the left-hand
side, "then" the right-hand side, and "*" means "anywhere." It is also possible to create aliases for
keywords.

When you select a mapping item (that is, a row in the table), you can see the expression and, indeed,
the mapping itself, as per the "greyed-out" fields below. If you double-click or press the "edit" button,
the "Edit" dialogue box will open. You can remove items, and add new ones. (Note that you should
generally only remove items when you are certain that the expression is no longer in use.)

 The Rete View

177

Figure 7.10. Language Mapping Editor Dialogue

The DSL translation process occurs in the following manner:

The parser reads the rule text in a DSL, line by line, and tries to match it against some "Language
Expression", depending on the scope. After a match is made, the values that correspond to a
placeholder between braces (such as {age}) are extracted from the rule source. The placeholders in
the "Rule Expression" are replaced by their corresponding value. In the example above, the natural
language expression maps to two constraints on a fact of the type "Person," based on the fields "age"
and "location," and the {age} and {location} values that are extracted from the original rule text.

If you do not wish to use a language mapping for a particular rule in a .drl file, prefix the expression
with > and the compiler will ignore it. Also, please note that Domain Specific Languages are optional.
When the rule is compiled, the .dsl file will also need to be available.

7.8. The Rete View
The Rete Tree View shows you the current Rete Network for your .drl file. You can display it by
clicking on the tab entitled "Rete Tree" at the bottom of the "DRL Editor" window. With the Rete
Network visualization being open, you can "drag-and-drop" on individual nodes in order to arrange
an optimal network overview. You can also select multiple nodes by dragging a rectangle over them;
in that way, the entire group can be moved around. The Eclipse™ toolbar magnification icons can be
used in the customary manner.

Note
A future version will include support for exporting the Rete Tree as an image. Until then if
you require this then you can take a screenshot of it.

Chapter 7. The JBoss Rules IDE

178

The Rete View is an advanced feature which takes full advantage of the Eclipse™ Graphical Editing
Framework (GEF.)

Note that it only works in JBoss Rules Rule Projects, in which the JBoss Rules Builder is configured in
the project´s properties.

If you are using JBoss Rules in another type of project whereby you have not created a Rule Project
with the appropriate JBoss Rules Builder, you can use a workaround: Set up a little JBoss Rules Rule
Project next to that on which you are working, put the needed libraries in it and also add the DRLs you
want to inspect with the Rete View. Now, just click on the right tab in the DRL Editor below, then follow
it by clicking on "Generate Rete View".

7.9. Large .drl Files
Depending on the JDK you use, it may be necessary to increase the "permanent generation"
maximum size. Both SUN and IBMJDK have a permanent generation, whereas BEA JRockit™ does
not.

To increase the permanent generation, start Eclipse™ with -XX:MaxPermSize=###m

Example: c:\Eclipse\Eclipse.exe -XX:MaxPermSize=128m

If you have sets of 4 000 or more rules, you should set the permanent generation to at least 128 Mb.

Note
This may also apply more generally when you compiling large numbers of rules. This is
because there are generally one or more classes per rule.

Debugging Rules

179

As an alternative to the above, you may put rules in a file with the ".rule" extension. If you do so, the
background builder will not try to compile them upon each change, which may provide performance
improvements, particularly if your IDE becomes sluggish when processing very large volumes of rules.

7.10. Debugging Rules
You can debug your rules during the execution of your JBoss Rules application. For instance, you can
add break-points in the consequences of your rules, and whenever such a break-point is encountered
during the execution of the rules, the processing is halted. You can then inspect the variables known
at that point and use any of the default debugging actions to decide what should happen next, whether
it be to step over, continue or so forth. You can also use the debugging views to inspect the content of
the working memory and the agenda.

7.10.1. Creating Break-Points
You can add or remove rule break-points to .drl files in two ways, which are similar to adding
breakpoints to Java files:

1. Double-click the ruler in the DRL Editor when you are on the line at which you want to add a
break-point. Note that rule break-points can only be created in the consequence of a rule. Double-
clicking on a line at which no break-point is allowed will do nothing.

A break-point can be removed by double-clicking the ruler once more.

2. If you right-click the ruler, a pop-up menu will present itself. It will contain the "Toggle Break-Point"
option. Clicking the action will add a break-point at the selected line, or remove it if there was one
already present.

The Debug Perspective contains a Break-Points View which can be used to see all defined
break-points, obtain their properties, enable, disable or remove them and so forth.

7.10.2. Debugging Rules
Break-points are only enabled if you debug your program as a "JBoss Rules Application." You can do
so like this:

Chapter 7. The JBoss Rules IDE

180

Figure 7.11. Debug as JBoss Rules Application

1. Select the main class of your application. Right click it and select the "Debug As" sub-menu and
select "JBoss Rules Application." Alternatively, you can also select the "Debug ..." menu item to
open a new dialog for creating, managing and running debug configurations (see the screenshot
below.)

2. Select the "JBoss Rules Application" item in the left tree and click the "New launch configuration"
button (leftmost icon in the toolbar above the tree). This will create a new configuration with
some of the properties (like project and main class)already filled in, based on the main class
you selected in the beginning. All properties shown here are the same as for any standard Java
program.

3. Change the name of your debug configuration to something meaningful. You can just accept the
defaults for all other properties. For more information about these properties, please check the
Eclipse JDT documentation.

4. Click the "Debug" button on the bottom to start debugging your application. You only have to
define your debug configuration once. The next time you run your JBoss Rules application, you
don't have to create a new one but select the previously defined one in the tree on the left, as
a sub-element of the "JBoss Rules Application" tree node, and then click the Debug button.
The Eclipse toolbar also contains shortcut buttons to quickly re-execute one of your previous

 Debugging Rules

181

configurations (at least when one of the Java, Java Debug, or JBoss Rules perspectives has been
selected).

Figure 7.12. "Debug as JBoss Rules Application" Configuration

After clicking the "Debug" button, the application starts executing and will halt if any break-point is
encountered. This can be a JBoss Rules rule break-point, or any other standard Java break-point.
Whenever a JBoss Rules rule break-point is encountered, the corresponding DRL file is opened and
the active line is highlighted. The Variables view also contains all rule parameters and their value. You
can then use the default Java debug actions to decide what to do next: resume, terminate, step over,
etc. The debug view can also be used to inspect the contents of the Working Memory and the Agenda
at that time as well. You don't have to select a Working Memory now, as the current executing working
memory is automatically shown.

Chapter 7. The JBoss Rules IDE

182

Figure 7.13. Debugging

Chapter 8.

183

Updated. Examples
To use the examples which follow in this chapter, you need to download the Examples zip archive
file. You can obtain this file from http://download.jboss.org/drools/release/5.0.1.26597.FINAL/
drools-5.0-examples.zip

8.1. Hello World

Name: HelloWorldExample

Main class: org.drools.examples.HelloWorldExample

Type: Java application

Objective: Tutorial that demonstrates simple Rules usage.

The "Hello World" example shows a simple example of rules usage, and both the MVEL and Java
dialects.

This example demonstrates how to build Knowledge Bases and Sessions. Also, the audit logging
and debugging outputs are shown, which had been omitted from other examples, due to their
similarity. A KnowledgeBuilder is used to turn a DRL source file into multiple Package objects
which the Knowledge Base can consume. The "add" method takes a Resource interface and
a "Resource Type" as parameters. The Resource can be used to retrieve a DRL source file
from various locations; in this case, the DRL file is being retrieved from the classpath using a
ResourceFactory, but it could come from a disk file or a URL. Here, we only add a single DRL
source file, but multiple DRL files can be used. Also, DRL files with different namespaces can be
added, whereby the Knowledge Builder creates a package for each namespace. Multiple packages of
different namespaces can be added to the same Knowledge Base.

When all of the DRL files have been added, you should check the Builder for errors. Whilst the
Knowledge Base will validate the package, it will only have access to the error information as a String,
so if you wish to debug it, you should do so on the KnowledgeBuilder instance. Once you know
that the Builder is error-free, obtain the Package collection, instantiate a KnowledgeBase from the
KnowledgeBaseFactory and add the package collection.

http://download.jboss.org/drools/release/5.0.1.26597.FINAL/drools-5.0-examples.zip
http://download.jboss.org/drools/release/5.0.1.26597.FINAL/drools-5.0-examples.zip

Chapter 8. Examples

184

final KnowledgeBuilder kbuilder =
 KnowledgeBuilderFactory.newKnowledgeBuilder();

// this will parse and compile in one step
kbuilder.add(ResourceFactory.newClassPathResource
 ("HelloWorld.drl",HelloWorldExample.class), ResourceType.DRL);

// Check the builder for errors
if (kbuilder.hasErrors())
{
 System.out.println(kbuilder.getErrors().toString());
 throw new RuntimeException("Unable to compile \"HelloWorld.drl\".");
}

// get the compiled packages (which are serializable)
final Collection<KnowledgePackage> pkgs = kbuilder.getKnowledgePackages();

// add the packages to a knowledgebase (deploy the knowledge packages).
final KnowledgeBase kbase = KnowledgeBaseFactory.newKnowledgeBase();
kbase.addKnowledgePackages(pkgs);

final StatefulKnowledgeSession ksession =
 kbase.newStatefulKnowledgeSession();

Example 8.1. HelloWorld Example: Creating the KnowledgeBase and Session

JBoss Rules has an event model that exposes much of that which is occurs internally. Two default
debug listeners are supplied that print out debug event information to the error console, namely
DebugAgendaEventListener and DebugWorkingMemoryEventListener. Adding listeners to
a session is relatively trivial and is discussed later. The KnowledgeRuntimeLogger is a specialised
implementation built on the Agenda and Working Memory listeners. It provides execution auditing,
the result pf which can be viewed in a graphical display. When the engine has finished executing,
logger.close() must be called.

Note
Most of the examples use the audit logging features of JBoss Rules to record execution
flow for future inspection.

// setup the debug listeners
ksession.addEventListener(new DebugAgendaEventListener());
ksession.addEventListener(new DebugWorkingMemoryEventListener());

// setup the audit logging
KnowledgeRuntimeLogger logger =
 KnowledgeRuntimeLoggerFactory.newFileLogger(ksession,"log/helloworld");

Example 8.2. HelloWorld Example: Event Logging and Auditing

Hello World

185

The single class used in this example is rather simple as it has only two fields, these being the
message, which is a String, and the status, which can be either the integer HELLO or the integer
GOODBYE.

public static class Message
{
 public static final int HELLO = 0;
 public static final int GOODBYE = 1;

 private String message;
 private int status;
 ...
}

Example 8.3. HelloWorld Example:Message Class

A single Message object is created. It contains the message "Hello World" and status of "HELLO." It
is then inserted into the engine, at which point fireAllRules() is executed. Remember that all of
the network evaluation is undertaken during the insert period, in order that by the time the program
execution reaches the fireAllRules() method call, the engine already knows which rules are full
matches and it is able to fire.

final Message message = new Message();
message.setMessage("Hello World");
message.setStatus(Message.HELLO);
ksession.insert(message);

ksession.fireAllRules();

logger.close();

ksession.dispose();

Example 8.4. Execution

In order to execute the example as a Java application, follow these steps:

1. Open the class entitled org.drools.examples.HelloWorldExample in your Eclipse IDE.

2. Right-click the class an select "Run as..." and then "Java application."

If you put a breakpoint on the fireAllRules() method and select the "ksession" variable, you can
see that the "Hello World" view is already activated and on the Agenda. This confirms that all of the
pattern-matching work was already undertaken during the insert.

Chapter 8. Examples

186

Figure 8.1. fireAllRules Agenda View

Any application print-outs go to System.out, whilst the debug listener print-outs go to System.err.

Hello World
Goodbye cruel world

Example 8.5. System.out in the Console Window

Hello World

187

==>[ActivationCreated(0): rule=Hello World;

tuple=[fid:1:1:org.drools.examples.HelloWorldExample$Message@17cec96]]
[ObjectInserted: handle=[fid:1:1:org.drools.examples.HelloWorldExample
$Message@17cec96];
object=org.drools.examples.HelloWorldExample$Message@17cec96]
[BeforeActivationFired: rule=Hello World;

tuple=[fid:1:1:org.drools.examples.HelloWorldExample$Message@17cec96]]

==>[ActivationCreated(4): rule=Good Bye;
tuple=[fid:1:2:org.drools.examples.HelloWorldExample$Message@17cec96]]
[ObjectUpdated: handle=[fid:1:2:org.drools.examples.HelloWorldExample
$Message@17cec96];
old_object=org.drools.examples.HelloWorldExample$Message@17cec96;

new_object=org.drools.examples.HelloWorldExample$Message@17cec96]
[AfterActivationFired(0): rule=Hello World]
[BeforeActivationFired: rule=Good Bye;

tuple=[fid:1:2:org.drools.examples.HelloWorldExample$Message@17cec96]]
[AfterActivationFired(4): rule=Good Bye]

Example 8.6. System.err in the Console Window

The left-hand portion of the rule (after "when") states that it will be activated for each Message object
inserted into the working memory whose status is "Message.HELLO." Additionally, two variable
bindings are created: The variable message is bound to the "message" attribute and the variable m is
bound to the matched Message object itself.

The right-hand side (after "then") is the "consequence" part of the rule. It is written using the MVEL
expression language, as declared by the rule's attribute dialect. After printing the content of the bound
variable message to System.out, the rule changes the values of the message and status attributes
of the Message object bound to "m." This is achieved via MVEL's modify statement, which allows you
to apply a block of assignments all at once, with the engine being automatically notified of the changes
at the end of the block.

rule "Hello World"
 dialect "mvel"
when
 m : Message(status == Message.HELLO, message : message)
then
 System.out.println(message);
 modify (m) { message="Goodbye cruel world", status=Message.GOODBYE };
end

Example 8.7. Rule "Hello World"

You can set a breakpoint in the DRL, on the "modify" call. You can then inspect the Agenda view
again during the execution of the rule's consequence. This time, start the execution via "Debug As"
and "JBoss Rules application" rather than by running a "Java application."

Chapter 8. Examples

188

1. Open the class org.drools.examples.HelloWorldExample in your Eclipse IDE.

2. Right-click the class and select "Debug as..." and then the "JBoss Rules application."

Now we can see that the other rule, "Good Bye," which uses the Java dialect is activated and placed
on the agenda.

Figure 8.2. Rule "Hello World" Agenda View

The "Good Bye" rule, which specifies the "Java" dialect, is similar to the "Hello World" rule except
that it matches Message objects whose status is "Message.GOODBYE."

rule "Good Bye"
 dialect "java"
when
 Message(status == Message.GOODBYE, message : message)
then
 System.out.println(message);
end

Example 8.8. Rule "Good Bye"

You may recall the Java code which used the KnowledgeRuntimeLoggerFactory method
newFileLogger to create a KnowledgeRuntimeLogger. It then called logger.close() at the
end. In doing so, it created an audit log file that can be seen in the Audit view. (The Audit view is used
in many of the examples in order to demonstrate the execution flow.)

 State Example

189

In the screen shot below, you can see that the object is inserted, which creates an activation for
the "Hello World" rule; the activation is then executed which updates the Message object which
subsequent;y causes the "Good Bye" rule to activate and execute. Selecting an event in the Audit
view highlights the origin event in green. In this example, the "Activation created" event is
highlighted in green as the origin of the "Activation executed" event.

Figure 8.3. Audit View

8.2. State Example
Three different versions of this example are implemented in order to demonstrate alternative ways of
implementing the same basic behaviour, called "forward chaining. Forward chaining is the ability of
the engine to evaluate, activate and fire rules in sequence, based on changes to the facts in working
memory.

8.2.1. Understanding the State Example

Name: State Example

Main class: org.drools.examples.StateExampleUsingSalience

Type: Java application

Rules file: StateExampleUsingSalience.drl

Objective: Demonstrate basic rule use and conflict resolution for rule firing priority.

There are fields for the name and current status of each "State" class (see
org.drools.examples.State.) The two possible states for each object are:

• NOTRUN

• FINISHED

Chapter 8. Examples

190

public class State {
 public static final int NOTRUN = 0;
 public static final int FINISHED = 1;

 private final PropertyChangeSupport changes =
 new PropertyChangeSupport(this);

 private String name;
 private int state;

 ... setters and getters go here...
}

Example 8.9. State Class

Ignoring the PropertyChangeSupport, which will be explained later, you can see the creation
of four State objects named A, B, C and D. Initially, their states are set to NOTRUN, which is the
default for the used constructor. Each instance is asserted, in turn, into the Session and then
fireAllRules() is called.

State a = new State("A");
State b = new State("B");
State c = new State("C");
final State d = new State("D");

// By setting dynamic to TRUE, JBoss Rules will use JavaBean
// PropertyChangeListeners so you do not have to call modify or update().
boolean dynamic = true;

session.insert(a, dynamic);
session.insert(b, dynamic);
session.insert(c, dynamic);
session.insert(d, dynamic);

session.fireAllRules();
session.dispose(); // Stateful rule session must always be disposed when
 finished</programlisting>

Example 8.10. Salience State Example Execution

In order to execute the application:

1. Open the class called org.drools.examples.StateExampleUsingSalience in your
EclipseIDE.

2. Right-click the class and select "Run as..." followed by "Java application."

The following output is displayed in the Eclipse console window:

 Understanding the State Example

191

A finished
B finished
C finished
D finished

Example 8.11. Salience State Console Output

There are four rules in total. First, the Bootstrap rule fires, setting A to the state of FINISHED, which
then causes B to also change its state to FINISHED. C and D are both dependent on B, causing a
temporary conflict which is resolved by the salience values. The next step is to examine the way in
which this process was executed.

The best way to understand what is happening is to use the Audit Logging feature. This allows
one to graphically view the results of each operation. To view the Audit log generated by a run of this
example:

1. If the Audit View is not visible, click on "Window" and then select "Show View", then
"Other..." and "JBoss Rules" and finally "Audit View".

2. In the "Audit View" click the "Open Log" button and select the file entitled drools-
examples-drl-dir>/log/state.log.

At this point, the "Audit View" on your screen should resemble like the following screenshot:

Figure 8.4. Salience State Example Audit View

Reading the log in the "Audit View", from top to bottom, one can see that every action and
the corresponding changes it has wrought in working memory. This way one can observe that
the assertion of the State object A in the state NOTRUN activates the Bootstrap rule, whilst the
assertions of the other State objects have no immediate effect.

rule Bootstrap
when
 a : State(name == "A", state == State.NOTRUN)
then
 System.out.println(a.getName() + " finished");
 a.setState(State.FINISHED);
end

Example 8.12. Salience State: Rule "Bootstrap"

The execution of the "Bootstrap" rule changes the state of "A" to FINISHED, which, in turn, activates
rule "A to B".

Chapter 8. Examples

192

rule "A to B"
when
 State(name == "A", state == State.FINISHED)
 b : State(name == "B", state == State.NOTRUN)
then
 System.out.println(b.getName() + " finished");
 b.setState(State.FINISHED);
end

Example 8.13. Rule "A to B"

The execution of rule "A to B" changes the state of "B" to FINISHED, which, in turn, activates both
rules "B to C" and "B to D", placing their Activations onto the Agenda.

From this moment on, both rules may fire and, therefore, they are said to be "in conflict". The conflict
resolution strategy allows the engine's agenda to decide which rule to fire. As rule "B to C" has the
higher salience value of ten (as opposed to the default value of zero), it fires first, modifying object "C"
to state FINISHED.

The Audit view depicted above shows the modification of the State object in the rule "A to B", which
results in two activations being in conflict. The Agenda View can also be used to investigate the state
of the agenda, as it allows one to place debugging points within the rules themselves with the Agenda
View opened. The screen-shot below shows the break-point in the rule "A to B." It also illustrates
the state of the agenda with the two conflicting rules.

 Understanding the State Example

193

Figure 8.5. State Example: Agenda View

rule "B to C"
 salience 10
when
 State(name == "B", state == State.FINISHED)
 c : State(name == "C", state == State.NOTRUN)
then
 System.out.println(c.getName() + " finished");
 c.setState(State.FINISHED);
end

Example 8.14. Rule "B to C"

The "B to D" rule fires last, modifying the "D" object to state FINISHED.

Chapter 8. Examples

194

rule "B to D"
when
 State(name == "B", state == State.FINISHED)
 d : State(name == "D", state == State.NOTRUN)
then
 System.out.println(d.getName() + " finished");
 d.setState(State.FINISHED);
end

Example 8.15. Rule "B to D"

At this point in time, there are no more rules to execute and, thus, the engine stops.

Another notable facet of this example is the use of dynamic facts, which are based upon
PropertyChangeListener objects. In order for the engine to "see" and react to changes in "fact"
properties, the application must inform it that changes have occurred. This can either be undertaken
explicitly via the rules by using the modify statement or, implicitly, by letting the engine know that the
facts have implemented PropertyChangeSupport (as defined in the JavaBeans specification.)

This example demonstrates how to use PropertyChangeSupport so that one can avoid the
need to use explicit "modify" statements in one's rules. To make use of this feature, ensure
that your facts implement PropertyChangeSupport, in the same way that the class entitled
org.drools.example.State does. Then, use the following code to insert the facts into working
memory:

// By setting dynamic to TRUE, JBoss Rules will use JavaBean
// PropertyChangeListeners so that one does not have to call modify or
 update().
final boolean dynamic = true;

session.insert(fact, dynamic);

Example 8.16. Inserting a Dynamic Fact

When using PropertyChangeListener objects, each "setter" must implement a little extra code for
the notification. Here is the setter for state in the class called org.drools.examples:

public void setState(final int newState) {
 int oldState = this.state;
 this.state = newState;
 this.changes.firePropertyChange("state",oldState,newState);
}

Example 8.17. "Setter" Example with PropertyChangeSupport

There are two other classes in this example. They are called StateExampleUsingAgendGroup and
StateExampleWithDynamicRules. Both execute from "A to B" to "C to D", as just shown. The
StateExampleUsingAgendGroup uses agenda-groups to control the rule conflict and to determine

 Understanding the State Example

195

which one fires first. StateExampleWithDynamicRules shows how an additional rule can be added
to an already-running working memory session whilst applying all the existing data to it at run-time.

"Agenda groups" are used to partition the agenda into groups and to determine which of these
groups have permission to execute. By default, all rules are in the agenda group entitled "MAIN." The
"agenda-group" attribute lets one specify a different agenda group for the rule. Initially, the Agenda
group "MAIN" is the focus of working memory. A group's rules will only fire when the group receives
the focus. This can be achieved either by using the method called setFocus() or the rule attribute
"auto-focus." With the latter method, the rule automatically sets the focus to its agenda group when
it is matched and activated, hence the name "auto-focus". It is this method that enables rule "B to
C" to fire before "B to D".

rule "B to C"
 agenda-group "B to C"
 auto-focus true
 when
 State(name == "B", state == State.FINISHED)
 c : State(name == "C", state == State.NOTRUN)
 then
 System.out.println(c.getName() + " finished");
 c.setState(State.FINISHED);
 kcontext.getKnowledgeRuntime().getAgenda().getAgendaGroup("B to D"
).setFocus();
end

Example 8.18. Agenda Group State Example: Rule "B to C"

The rule "B to C" calls setFocus() on the agenda group "B to D." This allows it to fire its active
rules, which, in turn, allows the "B to D" to fire.

rule "B to D"
 agenda-group "B to D"
when
 State(name == "B", state == State.FINISHED)
 d : State(name == "D", state == State.NOTRUN)
then
 System.out.println(d.getName() + " finished");
 d.setState(State.FINISHED);
end

Example 8.19. Agenda Group State Example: Rule "B to D"

The example StateExampleWithDynamicRules adds another rule to the base after
fireAllRules(). The added rule is just another state transition.

Chapter 8. Examples

196

rule "D to E"
when
 State(name == "D", state == State.FINISHED)
 e : State(name == "E", state == State.NOTRUN)
then
 System.out.println(e.getName() + " finished");
 e.setState(State.FINISHED);
end

Example 8.20. Dynamic State Example: Rule "D to E"

This produces the following output, which is as one would expect:

A finished
B finished
C finished
D finished
E finished

Example 8.21. Dynamic Sate Example Output

8.3. Fibonacci Example

Name: Fibonacci

Main class: org.drools.examples.FibonacciExample

Type: java application

Rules file: Fibonacci.drl

Objective: Demonsrate Recursion, 'not' CEs and Cross Product Matching.

The Fibonacci Numbers (see http://en.wikipedia.org/wiki/Fibonacci_number) discovered by Leonardo
of Pisa (see http://en.wikipedia.org/wiki/Fibonacci) are a sequence that start with zero and one.
The next Fibonacci number is obtained by adding the two preceding ones together. Therefore, the
Fibonacci sequence begins with 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597,
2584, 4181, 6765, 10946,... The Fibonacci Example demonstrates recursion and conflict resolution
with salience values.

The single fact class, "Fibonacci," is used in this example. It has two fields, namely, sequence
and value. The sequence field is used to indicate the position of the object in the Fibonacci number
sequence. The value field shows the value of that Fibonacci object for that sequence position, using
"minus one" to indicate a value that still needs to be computed.

http://en.wikipedia.org/wiki/Fibonacci_number
http://en.wikipedia.org/wiki/Fibonacci

 Fibonacci Example

197

public static class Fibonacci
{
 private int sequence;
 private long value;

 public Fibonacci(final int sequence) {
 this.sequence = sequence;
 this.value = -1;
 }

 ... setters and getters go here...

Example 8.22. Fibonacci Class

Execute the example:

1. Open the class org.drools.examples.FibonacciExample in your Eclipse IDE

2. Right-click the class and select "Run as..." and then, "Java application."

The following output is displayed in the Eclipse console window (with "...snip..." indicating lines that
were removed to save space):

recurse for 50
recurse for 49
recurse for 48
recurse for 47
...snip...
recurse for 5
recurse for 4
recurse for 3
recurse for 2
1 == 1
2 == 1
3 == 2
4 == 3
5 == 5
6 == 8
...snip...
47 == 2971215073
48 == 4807526976
49 == 7778742049
50 == 12586269025

Example 8.23. Fibonacci Example: Console Output

To activate this from Java, you need only insert a single Fibonacci object with a sequence field of fifty.
A recursive rule is then used to insert the other forty-nine Fibonacci objects. This example does not
use PropertyChangeSupport. Rather, it uses the MVEL dialect, which means you can utilise the

Chapter 8. Examples

198

"modify" keyword. This keyword allows you to use a "block setter action," and also notifies the engine
of changes.

ksession.insert(new Fibonacci(50));
ksession.fireAllRules();

Example 8.24. Fibonacci Example: Execution

The Recurse rule is very simple. It matches each asserted Fibonacci object with a value of "-1,"
thereby creating and asserting a new Fibonacci object with a sequence of one less than the current
one. Each time a Fibonacci object is added whilst that with a sequence field equal to "1" does not
exist, the rule re-matches and fires again. The "not" conditional element is used to stop the rule's
matching once you have all fifty Fibonacci objects in memory. The rule also has a salience value,
because you need to have all fifty Fibonacci objects asserted before you execute the Bootstrap
rule.

rule Recurse
 salience 10
when
 f : Fibonacci (value == -1)
 not (Fibonacci (sequence == 1))
then
 insert(new Fibonacci(f.sequence - 1));
 System.out.println("recurse for " + f.sequence);
end

Example 8.25. Fibonacci Example: "Recurse" Rule

The "Audit" view shows the original assertion of the Fibonacci object with a sequence field of 50,
undertaken from Java code. From there on, the Audit view shows the continual recursion of the
rule, whereby each asserted Fibonacci object causes the Recurse rule to become activated and to
process again.

Figure 8.6. Fibonacci Example: "Recurse" Audit View One

 Fibonacci Example

199

When a Fibonacci object with a sequence field of "2" is asserted, the "Bootstrap" rule is matched
and activated along with the "Recurse" rule.Note the multi-restriction on the field sequence, testing for
equality with "1" or "2."

rule Bootstrap
when
 f : Fibonacci(sequence == 1 || == 2, value == -1)
 // this is a multi-restriction || on a single field
then
 modify (f){ value = 1 };
 System.out.println(f.sequence + " == " + f.value);
end

Example 8.26. Fibonacci Example: Rule "Bootstrap"

At this point, the agenda looks as per the following figure. However the "Bootstrap" rule does not fire
because the "Recurse" rule has a higher salience.

Figure 8.7. Fibonacci Example: "Recurse" Agenda View One

When a Fibonacci object with a sequence of "1" is asserted, the Bootstrap rule is matched again,
causing it to activate twice. Note that the "Recurse" rule does not match and activate because the
"not" conditional element prevents the rules from matching as soon as a Fibonacci object with a
sequence of "1" exists.

Figure 8.8. Fibonacci Example: "Recurse" Agenda View Two

Once we have two Fibonacci objects with values that do not equal "-1," the "Calculate" rule is used
to match them. It was the "Bootstrap" rule that set the objects with sequence "1" and "2" to values of
"1." At this point, you have fiftyFibonacci objects in working memory. Now you need to select a suitable
"triple" to calculate the values of each in turn. If you use three Fibonacci patterns in a rule without
field constraints to confine the possible cross-products, you will ultimately have 50x49x48 possible
combinations, leading to about 125,000 possible rule firings, most of which would be incorrect. The

Chapter 8. Examples

200

"Calculate" rule uses field constraints to correctly constraint the three Fibonacci patterns in the
correct order; this technique is called "cross product matching." The first pattern finds any Fibonacci
with a value != -1 and binds both the pattern and the field. The second Fibonacci does this, too, but,
in addition, it adds an extra field constraint. This is in order to ensure that its sequence is greater by
one than the Fibonacci bound to f1. When this rule fires for the first time, only sequences "1" and "2"
have values of "1" and the two constraints ensure that f1 references sequence "1" and f2 references
sequence "2." The final pattern finds the Fibonacci with a value equal to "-1" and with a sequence one
greater than f2. At this point, you have three Fibonacci objects correctly selected from the available
cross products, and we can calculate the value for the third Fibonacci object that is bound to f3.

rule Calculate
 when
 // Bind f1 and s1
 f1 : Fibonacci(s1 : sequence, value != -1)
 // Bind f2 and v2; refer to bound variable s1
 f2 : Fibonacci(sequence == (s1 + 1), v2 : value != -1)
 // Bind f3 and s3; alternative reference of f2.sequence
 f3 : Fibonacci(s3 : sequence == (f2.sequence + 1), value == -1)

 then
 // Note the various referencing rechniques.
 modify (f3) { value = f1.value + v2 };
 System.out.println(s3 + " == " + f3.value);
end

Example 8.27. Fibonacci Example: Rule "Calculate"

The Modify statement updated the value of the Fibonacci object bound to f3. This means that you
now have another new Fibonacci object with a value that does not equal "-1," thereby allowing the
"Calculate" rule to re-match and process the next Fibonacci number. The Audit view below shows
how the firing of the last "Bootstrap" modifies the Fibonacci object, enabling the "Calculate"
rule to match. This then modifies another Fibonacci object allowing the "Calculate" rule to match
again. This continues until the value is set for all Fibonacci objects.

Figure 8.9. Fibonacci Example: "Bootstrap" Audit View

8.4. Banking Tutorial
Name: Banking Tutorial

 Banking Tutorial

201

Main class: org.drools.tutorials.banking

Type: java application

Rules file: org.drools.tutorials.banking.

Objective: Increase knowledge of pattern matching, basic sorting and calculation rules.

This tutorial demonstrates the process of developing a complete personal banking application to
handle credits and debits on multiple accounts. It uses a set of design patterns that have been created
for this process.

The class, "RuleRunner", is a simple harness used to execute one or more DRL files against a set of
data. It compiles the packages and creates the Knowledge Base for each execution. This allows you
to easily execute each scenario and inspect the outputs. Note that, in reality, this is not a good solution
for a production system, where the Knowledge Base should be built just once and cached. However,
for the purposes of this tutorial it shall suffice.

public class RuleRunner {

 public RuleRunner() {}

 public void runRules(String[] rules,Object[] facts) throws Exception
 {
 KnowledgeBase kbase = KnowledgeBaseFactory.newKnowledgeBase();
 KnowledgeBuilder kbuilder =
 KnowledgeBuilderFactory.newKnowledgeBuilder();

 for (int i = 0; i < rules.length; i++) {
 String ruleFile = rules[i];
 System.out.println("Loading file: " + ruleFile);
 kbuilder.add(ResourceFactory.newClassPathResource
 (ruleFile, RuleRunner.class),ResourceType.DRL);
 }

 Collection<KnowledgePackage> pkgs = kbuilder.getKnowledgePackages();
 kbase.addKnowledgePackages(pkgs);
 StatefulKnowledgeSession ksession =
 kbase.newStatefulKnowledgeSession();

 for (int i = 0; i < facts.length; i++) {
 Object fact = facts[i];
 System.out.println("Inserting fact: " + fact);
 ksession.insert(fact);
 }
 ksession.fireAllRules();
 }
}

Example 8.28. Banking Tutorial: RuleRunner

The first of our sample Java classes loads and executes a single DRL file, namely Example.drl;
however, it does so without inserting any data.

Chapter 8. Examples

202

public class Example1
{
 public static void main(String[] args) throws Exception
 {
 new RuleRunner().runRules(new String[]{"Example1.drl"},
 new Object[0]);
 }
}

Example 8.29. Banking Tutorial: Java Example One

This is the first simple rule to execute. It has a single "eval" condition that will always be true.
Therefore, it will always match and "fire" once, after starting.

rule "Rule 01"
when
 eval(1==1)
then
 System.out.println("Rule 01 Works");
end

Example 8.30. Banking Tutorial: Rule in Example1.drl

The output for the rule is below, showing that the rule matches and executes the single print
statement:

Loading file: Example1.drl
Rule 01 Works

Example 8.31. Banking Tutorial: Output of Example1.java

The next step is to assert some simple facts and print them out:

public class Example2
{
 private static Integer wrap(int i) {return new Integer(i);}

 public static void main(String[] args) throws Exception
 {
 Number[] numbers = new Number[] {wrap(3), wrap(1), wrap(4),
 wrap(1), wrap(5)};
 new RuleRunner().runRules(new String[] { "Example2.drl" },numbers);
 }
}

Example 8.32. Banking Tutorial: Java Example Two

This does not use any specific facts. Rather, it asserts a set of java.lang.Integers. This is not
considered "best practice" as a number of a collection is not a "fact" nor a "thing." A bank acount has

 Banking Tutorial

203

a number, (its balance), therefore the account is the "fact." Initially, asserting integers shall suffice for
demonstration purposes as the complexity of the example is built up.

Now you can create a simple rule to print out these numbers:

rule "Rule 02"
when
 Number($intValue : intValue)
then
 System.out.println("Number found with value: " + $intValue);
end

Example 8.33. Banking Tutorial: Rule in Example2.drl

Once again, this rule does nothing special. It identifies any facts that are numbers and prints out the
values. Note the use of interfaces here; you inserted integers but the pattern-matching engine is able
to match the interfaces and super classes of the asserted objects.

The output shows the DRL being loaded, the facts inserted and then the rules being matched and
fired. You can see that each inserted number is matched and fired and, thus, printed.

Loading file: Example2.drl
Inserting fact: 3
Inserting fact: 1
Inserting fact: 4
Inserting fact: 1
Inserting fact: 5
Number found with value: 5
Number found with value: 1
Number found with value: 4
Number found with value: 1
Number found with value: 3

Example 8.34. Banking Tutorial: Output of Example2.java

There are certainly many better ways to sort numbers than using rules, but since you will need to
apply some cashflows in date order when you commence looking at banking rules, you will now
develop a simple technique.

Chapter 8. Examples

204

public class Example3
{
 private static Integer wrap(int i) {return new Integer(i);}

 public static void main(String[] args) throws Exception
 {
 Number[] numbers = new Number[] {wrap(3), wrap(1), wrap(4),
 wrap(1), wrap(5)};

 new RuleRunner().runRules(new String[]{ "Example3.drl"},numbers);
 }
}

Example 8.35. Banking Tutorial: Example3.java

Again you insert your Integers but this time the rule is slightly different:

rule "Rule 03"
when
 $number : Number()
 not Number(intValue < $number.intValue)
then
 System.out.println("Number found with value: "+$number.intValue());
 retract($number);
end

Example 8.36. Banking Tutorial: Rule in Example3.drl

The first line of the rule identifies a number and extracts the value. The second line ensures that there
does not exist a smaller number than that found by the first pattern. You may possibly expect to match
only one number, the smallest in the set. However, the retraction of the number after it has been
printed means that the smallest number has been removed, revealing the next smallest number, and
so on.

The generated output is shown in the following example. Note that the numbers are now sorted
numerically.

Loading file: Example3.drl
Inserting fact: 3
Inserting fact: 1
Inserting fact: 4
Inserting fact: 1
Inserting fact: 5
Number found with value: 1
Number found with value: 1
Number found with value: 3
Number found with value: 4
Number found with value: 5

Example 8.37. Banking Tutorial: Output of Example3.java

 Banking Tutorial

205

Now you can start developing your personal accounting rules. The first step is to create a Cashflow
object.

public class Cashflow
{
 private Date date;
 private double amount;

 public Cashflow() {}

 public Cashflow(Date date,double amount)
 {
 this.date = date;this.amount = amount;
 }

 public Date getDate() { return date; }
 public void setDate(Date date) { this.date = date; }

 public double getAmount() { return amount; }
 public void setAmount(double amount) { this.amount = amount; }

 public String toString()
 {
 return "Cashflow[date=" + date + ",amount=" + amount + "]";
 }
}

Example 8.38. Banking Tutorial: Class Cashflow

The Cashflow has two simple attributes: A date and an amount. A toString method has been
added, in order to print it. (Note that using the type double for monetary units is generally not a good
idea because floating points cannot represent most numbers accurately.)There is also an "overloaded"
the constructor to set the values. The following example inserts five Cashflow objects with varying
dates and amounts.

Chapter 8. Examples

206

public class Example4
{
 public static void main(String[] args) throws Exception
 {
 Object[] cashflows = {
 new Cashflow(new SimpleDate("01/01/2007"), 300.00),
 new Cashflow(new SimpleDate("05/01/2007"), 100.00),
 new Cashflow(new SimpleDate("11/01/2007"), 500.00),
 new Cashflow(new SimpleDate("07/01/2007"), 800.00),
 new Cashflow(new SimpleDate("02/01/2007"), 400.00),
 };

 new RuleRunner().runRules(new String[] {"Example4.drl"},cashflows;
 }
}

Example 8.39. Banking Tutorial: Example4.java

The convenience class "SimpleDate" extends java.util.Date, providing a constructor that takes
a String as input and defines a date format. The code is listed below:

public class SimpleDate extends Date
{
 private static final SimpleDateFormat format =
 new SimpleDateFormat("dd/MM/yyyy");

 public SimpleDate(String datestr) throws Exception
 {
 setTime(format.parse(datestr).getTime());
 }
}

Example 8.40. Banking Tutorial: Class SimpleDate

Now, examine the rule04.drl file in order to determine how you print the sorted Cashflows:

rule "Rule 04"
when
 $cashflow : Cashflow($date : date, $amount : amount)
 not Cashflow(date < $date)
then
 System.out.println("Cashflow: "+$date+" :: "+$amount);
 retract($cashflow);
end

Example 8.41. Banking Tutorial: Rule in Example4.drl

Here, you can identify a Cashflow and extract the date and the amount. In the second line of the rule,
ensure that there is no Cashflow with an earlier date than the one found. In the consequence, you print
the Cashflow that satisfies the rule and then retract it, making way for the next earliest Cashflow.
So, the output you generate is:

 Banking Tutorial

207

Loading file: Example4.drl
Inserting fact: Cashflow[date=Mon Jan 01 00:00:00 GMT 2007,amount=300.0]
Inserting fact: Cashflow[date=Fri Jan 05 00:00:00 GMT 2007,amount=100.0]
Inserting fact: Cashflow[date=Thu Jan 11 00:00:00 GMT 2007,amount=500.0]
Inserting fact: Cashflow[date=Sun Jan 07 00:00:00 GMT 2007,amount=800.0]
Inserting fact: Cashflow[date=Tue Jan 02 00:00:00 GMT 2007,amount=400.0]
Cashflow: Mon Jan 01 00:00:00 GMT 2007 :: 300.0
Cashflow: Tue Jan 02 00:00:00 GMT 2007 :: 400.0
Cashflow: Fri Jan 05 00:00:00 GMT 2007 :: 100.0
Cashflow: Sun Jan 07 00:00:00 GMT 2007 :: 800.0
Cashflow: Thu Jan 11 00:00:00 GMT 2007 :: 500.0

Example 8.42. Banking Tutorial: Output of Example4.java

Next, you will extend your Cashflow, resulting in a TypedCashflow which can be eitehr a credit or
a debit operation. (Normally, you would just add this to the Cashflow type, but here you will use the
extension to keep the previous version of the class intact.)

public class TypedCashflow extends Cashflow {
 public static final int CREDIT = 0;
 public static final int DEBIT = 1;

 private int type;

 public TypedCashflow() { }

 public TypedCashflow(Date date, int type, double amount)
 {
 super(date, amount);
 this.type = type;
 }

 public int getType()
 {
 return type;
 }

 public void setType(int type)
 {
 this.type = type;
 }

 public String toString()
 {
 return "TypedCashflow[date=" + getDate()
 + ",type=" + (type == CREDIT ? "Credit" : "Debit")
 + ",amount=" + getAmount()
 + "]";
 }

Chapter 8. Examples

208

}

There are a multitude of ways to improve this code, but for the sake of the example this will suffice for
the present.

You will now create Example Five, a class for running your code.

public class Example5
{
 public static void main(String[] args) throws Exception
 {
 Object[] cashflows = {
 new TypedCashflow(new SimpleDate("01/01/2007"),
 TypedCashflow.CREDIT, 300.00),
 new TypedCashflow(new SimpleDate("05/01/2007"),
 TypedCashflow.CREDIT, 100.00),
 new TypedCashflow(new SimpleDate("11/01/2007"),
 TypedCashflow.CREDIT, 500.00),
 new TypedCashflow(new SimpleDate("07/01/2007"),
 TypedCashflow.DEBIT, 800.00),
 new TypedCashflow(new SimpleDate("02/01/2007"),
 TypedCashflow.DEBIT, 400.00),
 };

 new RuleRunner().runRules(
 new String[] { "Example5.drl" }, cashflows);
 }
}

Example 8.43. Banking Tutorial: Example5.java

Here, we simply create a set of Cashflow objects which are either credit or debit operations. We
supply them, along with Example5.drl, to the RuleEngine.

Now, you can take the time to examine a rule which prints the sorted Cashflow objects.

rule "Rule 05"
when
 $cashflow : TypedCashflow($date : date, $amount : amount,
 type == TypedCashflow.CREDIT)
 not TypedCashflow(date < $date, type == TypedCashflow.CREDIT)
then
 System.out.println("Credit: "+$date+" :: "+$amount);
 retract($cashflow);
end

Example 8.44. Banking Tutorial: Rule in Example5.drl

Here, you can identify a Cashflow fact with a type of CREDIT and extract the date and the amount.
In the second line of the rule, you ensure that there is no Cashflow of the same type with a date
earlier than that which is found. In the consequence, print the cashflow satisfying the patterns and then
retract it, making way for the next earliest cashflow of type CREDIT.

 Banking Tutorial

209

The generated output is described in the following example:

Loading file: Example5.drl
Inserting fact: TypedCashflow[date=Mon Jan 01 00:00:00 GMT
 2007,type=Credit,amount=300.0]
Inserting fact: TypedCashflow[date=Fri Jan 05 00:00:00 GMT
 2007,type=Credit,amount=100.0]
Inserting fact: TypedCashflow[date=Thu Jan 11 00:00:00 GMT
 2007,type=Credit,amount=500.0]
Inserting fact: TypedCashflow[date=Sun Jan 07 00:00:00 GMT
 2007,type=Debit,amount=800.0]
Inserting fact: TypedCashflow[date=Tue Jan 02 00:00:00 GMT
 2007,type=Debit,amount=400.0]
Credit: Mon Jan 01 00:00:00 GMT 2007 :: 300.0
Credit: Fri Jan 05 00:00:00 GMT 2007 :: 100.0
Credit: Thu Jan 11 00:00:00 GMT 2007 :: 500.0

Example 8.45. Banking Tutorial: Output of Example5.java

Continuing the banking exercise, you are now going to process both credits and debits on two bank
accounts, calculating the account balance. In order to do this, you will create two separate Account
objects and inject them into the Cashflows before passing them to the RuleEngine. The reason
for this is to provide easy access to the correct account without having to resort to helper classes.
Examine the Account class first. This is a simple Java object with an account number and balance:

public class Account
{
 private long accountNo;
 private double balance = 0;

 public Account() { }

 public Account(long accountNo)
 {
 this.accountNo = accountNo;
 }

 public long getAccountNo()
 {
 return accountNo;
 }

 public void setAccountNo(long accountNo)
 {
 this.accountNo = accountNo;
 }

 public double getBalance()
 {
 return balance;

Chapter 8. Examples

210

 }

 public void setBalance(double balance)
 {
 this.balance = balance;
 }

 public String toString()
 {
 return "Account[" + "accountNo=" + accountNo
 + ",balance=" + balance + "]";
 }
}

Now you can extend your TypedCashflow, resulting in AllocatedCashflow, to include an
Account reference.

 Banking Tutorial

211

public class AllocatedCashflow extends TypedCashflow
{
 private Account account;

 public AllocatedCashflow() {}

 public AllocatedCashflow(Account account, Date date,
 int type, double amount)
 {
 super(date, type, amount);
 this.account = account;
 }

 public Account getAccount()
 {
 return account;
 }

 public void setAccount(Account account)
 {
 this.account = account;
 }

 public String toString()
 {
 return "AllocatedCashflow["
 + "account=" + account
 + ",date=" + getDate()
 + ",type=" + (getType() == CREDIT ? "Credit" : "Debit")
 + ",amount=" + getAmount()
 + "]";
 }
}

Example 8.46. Class AllocatedCashflow

The Java code of Example5.java creates two Account objects and passes one of them into each
cashflow, in the constructor call.

Chapter 8. Examples

212

public class Example6
{
 public static void main(String[] args) throws Exception
 {
 Account acc1 = new Account(1);
 Account acc2 = new Account(2);

 Object[] cashflows =
 {
 new AllocatedCashflow(acc1,new SimpleDate("01/01/2007"),
 TypedCashflow.CREDIT, 300.00),
 new AllocatedCashflow(acc1,new SimpleDate("05/02/2007"),
 TypedCashflow.CREDIT, 100.00),
 new AllocatedCashflow(acc2,new SimpleDate("11/03/2007"),
 TypedCashflow.CREDIT, 500.00),
 new AllocatedCashflow(acc1,new SimpleDate("07/02/2007"),
 TypedCashflow.DEBIT, 800.00),
 new AllocatedCashflow(acc2,new SimpleDate("02/03/2007"),
 TypedCashflow.DEBIT, 400.00),
 new AllocatedCashflow(acc1,new SimpleDate("01/04/2007"),
 TypedCashflow.CREDIT, 200.00),
 new AllocatedCashflow(acc1,new SimpleDate("05/04/2007"),
 TypedCashflow.CREDIT, 300.00),
 new AllocatedCashflow(acc2,new SimpleDate("11/05/2007"),
 TypedCashflow.CREDIT, 700.00),
 new AllocatedCashflow(acc1,new SimpleDate("07/05/2007"),
 TypedCashflow.DEBIT, 900.00),
 new AllocatedCashflow(acc2,new SimpleDate("02/05/2007"),
 TypedCashflow.DEBIT, 100.00)
 };

 new RuleRunner().runRules(new String[]{"Example6.drl"},cashflows);
 }
}

Example 8.47. Banking Tutorial: Example5.java

Now, take look at the rule in Example6.drl to see how you should apply each cashflow in date order
and then calculate and print out the balance.

rule "Rule 06 - Credit"
when
 $cashflow : AllocatedCashflow($account : account,
 $date : date, $amount : amount, type==TypedCashflow.CREDIT)
 not AllocatedCashflow(account == $account, date < $date)
then
 System.out.println("Credit: " + $date + " :: " + $amount);
 $account.setBalance($account.getBalance()+$amount);
 System.out.println("Account: " + $account.getAccountNo() +
 " - new balance: " + $account.getBalance());
 retract($cashflow);

 Banking Tutorial

213

end

rule "Rule 06 - Debit"
when
 $cashflow : AllocatedCashflow($account : account,
 $date : date, $amount : amount, type==TypedCashflow.DEBIT)
 not AllocatedCashflow(account == $account, date < $date)
then
 System.out.println("Debit: " + $date + " :: " + $amount);
 $account.setBalance($account.getBalance() - $amount);
 System.out.println("Account: " + $account.getAccountNo() +
 " - new balance: " + $account.getBalance());
 retract($cashflow);
end

Although you have separate rules for credits and debits, you will not specify a type when checking
for earlier cashflows. This is so that all cashflows are applied in date order, regardless of type. In the
conditions, you identified the account with which to work, and in the consequences, you have updated
it with the cashflow amount.

Loading file: Example6.drl
Inserting fact:
 AllocatedCashflow[account=Account[accountNo=1,balance=0.0],date=Mon Jan 01
 00:00:00 GMT 2007,type=Credit,amount=300.0]
Inserting fact:
 AllocatedCashflow[account=Account[accountNo=1,balance=0.0],date=Mon Feb 05
 00:00:00 GMT 2007,type=Credit,amount=100.0]
Inserting fact:
 AllocatedCashflow[account=Account[accountNo=2,balance=0.0],date=Sun Mar 11
 00:00:00 GMT 2007,type=Credit,amount=500.0]
Inserting fact:
 AllocatedCashflow[account=Account[accountNo=1,balance=0.0],date=Wed Feb 07
 00:00:00 GMT 2007,type=Debit,amount=800.0]
Inserting fact:
 AllocatedCashflow[account=Account[accountNo=2,balance=0.0],date=Fri Mar 02
 00:00:00 GMT 2007,type=Debit,amount=400.0]
Inserting fact:
 AllocatedCashflow[account=Account[accountNo=1,balance=0.0],date=Sun Apr 01
 00:00:00 BST 2007,type=Credit,amount=200.0]
Inserting fact:
 AllocatedCashflow[account=Account[accountNo=1,balance=0.0],date=Thu Apr 05
 00:00:00 BST 2007,type=Credit,amount=300.0]
Inserting fact:
 AllocatedCashflow[account=Account[accountNo=2,balance=0.0],date=Fri May 11
 00:00:00 BST 2007,type=Credit,amount=700.0]
Inserting fact:
 AllocatedCashflow[account=Account[accountNo=1,balance=0.0],date=Mon May 07
 00:00:00 BST 2007,type=Debit,amount=900.0]
Inserting fact:
 AllocatedCashflow[account=Account[accountNo=2,balance=0.0],date=Wed May 02
 00:00:00 BST 2007,type=Debit,amount=100.0]

Chapter 8. Examples

214

Debit: Fri Mar 02 00:00:00 GMT 2007 :: 400.0
Account: 2 - new balance: -400.0
Credit: Sun Mar 11 00:00:00 GMT 2007 :: 500.0
Account: 2 - new balance: 100.0
Debit: Wed May 02 00:00:00 BST 2007 :: 100.0
Account: 2 - new balance: 0.0
Credit: Fri May 11 00:00:00 BST 2007 :: 700.0
Account: 2 - new balance: 700.0
Credit: Mon Jan 01 00:00:00 GMT 2007 :: 300.0
Account: 1 - new balance: 300.0
Credit: Mon Feb 05 00:00:00 GMT 2007 :: 100.0
Account: 1 - new balance: 400.0
Debit: Wed Feb 07 00:00:00 GMT 2007 :: 800.0
Account: 1 - new balance: -400.0
Credit: Sun Apr 01 00:00:00 BST 2007 :: 200.0
Account: 1 - new balance: -200.0
Credit: Thu Apr 05 00:00:00 BST 2007 :: 300.0
Account: 1 - new balance: 100.0
Debit: Mon May 07 00:00:00 BST 2007 :: 900.0
Account: 1 - new balance: -800.0

8.5. Pricing Rule Decision Table Example
The Pricing Rule Decision Table demonstrates the use of a "decision table" in a spreadsheet. It uses
Microsoft Excel's .XLS format to calculate the retail cost of an insurance policy. The purpose of
the provided set of rules is to calculate a base price and a discount for a car driver who is applying
for a specific policy. The driver's age, history and the policy type all contribute to the basic premium
amount. A number of additional rules then refine this by calculating a discount percentage.

Name: Example Policy Pricing

Main class: org.drools.examples.PricingRuleDTExample

Type: Java application

Rules file: ExamplePolicyPricing.xls

Objective: Demonstrate spreadsheet based decision tables.

8.5.1. Executing the Example
Open the file PricingRuleDTExample.java and execute it as a Java application. The following
output should flow to the Console window:

Cheapest possible
BASE PRICE IS: 120
DISCOUNT IS: 20

The code written to execute the example follows the usual pattern. The rules are loaded, the facts
inserted and a Stateless Session is created. The different lies in how the rules are added.

 The Decision Table

215

DecisionTableConfiguration dtableconfiguration =
 KnowledgeBuilderFactory.newDecisionTableConfiguration();
 dtableconfiguration.setInputType(DecisionTableInputType.XLS);

 KnowledgeBuilder kbuilder =
 KnowledgeBuilderFactory.newKnowledgeBuilder();

 Resource xlsRes =
 ResourceFactory.newClassPathResource("ExamplePolicyPricing.xls",

 getClass());
 kbuilder.add(xlsRes,
 ResourceType.DTABLE,
 dtableconfiguration);

Note the use of the DecisionTableConfiguration object. Its input type is set to
DecisionTableInputType.XLS. If you use the BRMS, all this is, of course, taken care of for you.

There are two fact types used in this example, namely Driver and Policy. The default values of
both are used. The Driver is thirty years of age, has had no prior claims and has a "LOW" risk profile.
The Policy for which the driver is applying is "COMPREHENSIVE." It has not yet been approved.

8.5.2. The Decision Table
In this decision table, each row represents a rule and each column represents either a condition or an
action.

Figure 8.10. Decision Table Configuration

If you refer to the spreadsheet shown above, you can see the RuleSet declaration, which provides
the package name. There are also other optional items you can add here, such as Variables for
global variables, and Imports (used to import classes.) In this case, the rules name-space is the
same as that of the fact classes being employed, so it can, therefore, be omitted.

Further down, you can see the RuleTable declaration. The name written after this (Pricing
Bracket) is used as the prefix for all the generated rules. Below that, there is the "CONDITION or
ACTION" which indicate the purpose of the column, in other words, as to whether it forms part of the
condition or the consequence of the rule that will be generated.

You can see that the data about the car driver is spanned across three cells. This means that the
template expressions below each fact apply to it. You can observe the driver's age range (which uses
$1 and $2 with comma-separated values), locationRiskProfile, and priorClaims in the

Chapter 8. Examples

216

respective columns. In the action columns, the policy base price is set. A message can also be logged
here.

Figure 8.11. Base Price Calculation

In the preceding spreadsheet section, there are broad category brackets, (which are indicated by
the comment in the leftmost column.) As you know the details of the drivers and their policies, with a
little thought you can quickly deduct that they should match row eighteen, (as they have had no prior
accidents), and that they are thirty years of age. This gives you a base price of 120.

Figure 8.12. Discount Calculation

The section above contains the conditions for the discount that you may grant the driver. The discount
results from the Age bracket, the number of prior claims, and the policy type. In this example case, the
driver is thirty, has had no prior claims and is applying for a "COMPREHENSIVE" policy. This means that
you can grant a discount of 20%. (Note that this is actually a separate table in the same worksheet.
This is so that different templates apply.)

 Pet Store Example

217

Note
It is important to understand that decision tables generate rules. This means they do
not simply employ top-down logic. Rather, think of them as a means to capture data that
results in rules. This is a subtle difference that confuses some people. The evaluation of
the rules is not necessarily in the given order, since all the normal mechanics of the rule
engine still apply.

8.6. Pet Store Example

Name: Pet Store

Main class: org.drools.examples.PetStore

Type: java application

Rules file: PetStore.drl

Objective: Demonstrate use of Agenda Groups, Global Variables and integration with a GUI
(including callbacks from within the Rules).

The "Pet Store" example shows how to integrate Rules with a GUI (in this case a Swing-based
desktop application). Within the Rules file, there is a demonstration of how to use agenda groups and
"auto-focus" in order to control which of a set of rules is allowed to fire at any given time. It also shows
mixing of Java and MVEL dialects within the rules, along with the use of "accumulate" functions and
calling of Java functions from within the rule-set.

All the Java code is contained in one file, PetStore.java, which defines the following principal
classes (in addition to several minor classes which are used to handle Swing Events):

• Petstore - containing the main() method that you will look at shortly.

• PetStoreUI - responsible for creating and displaying the Swing-based GUI. It contains several
smaller classes , mainly for responding to various GUI events such as mouse and button clicks.

• TabelModel - holds the table data. Consider it a JavaBean that extends the Swing
AbstractTableModel class.

• CheckoutCallback - allows the GUI to interact with the Rules.

• Ordershow - holds the items that you wish to buy.

• Purchase - stores details of the order and the products being bought.

• Product - is a JavaBean holding details and pricing information related to the product available for
purchase.

Much of the code is either in the form of plain JavaBeans or Swing-based. Only a few points relating
to Swing will be discussed in this section, but a good tutorial about it can be found on Sun's website:
http://java.sun.com/docs/books/tutorial/uiswing/.

The pieces of Java code in the Petstore.java file that relate to rules and facts are shown below:

http://java.sun.com/docs/books/tutorial/uiswing/

Chapter 8. Examples

218

KnowledgeBuilder kbuilder = KnowledgeBuilderFactory.newKnowledgeBuilder();

kbuilder.add(ResourceFactory.newClassPathResource("PetStore.drl",
 PetStore.class),
 ResourceType.DRL);
KnowledgeBase kbase = KnowledgeBaseFactory.newKnowledgeBase();
kbase.addKnowledgePackages(kbuilder.getKnowledgePackages());

// Create the stock.
Vector<Product> stock = new Vector<Product>();
stock.add(new Product("Gold Fish", 5));
stock.add(new Product("Fish Tank", 25));
stock.add(new Product("Fish Food", 2));

// A callback is responsible for populating the
// Working Memory and for firing all rules.
PetStoreUI ui = new PetStoreUI(stock,
 new CheckoutCallback(kbase));
ui.createAndShowGUI();

Example 8.48. Creating the PetStore RuleBase in PetStore.main

The code shown above loads the rules from a DRL file on the classpath. Unlike other examples,
in which the facts are asserted and executed immediately, this example defers that step until later.
The way it does this is via the second last line where a PetStoreUI object is created using a
constructor accepting the Vector object stock collecting our products and an instance of the
CheckoutCallback class containing the Rule Base that you have just loaded.

The actual Javacode that fires the rules is within the CheckoutCallBack.checkout() method.
This is eventually triggered when the "Checkout" button is clicked by the user.

public String checkout(JFrame frame, List<Product> items) {
 Order order = new Order();

 // Iterate through list and add to cart
 for (Product p: items) {
 order.addItem(new Purchase(order, p));
 }

 // Add the JFrame to the ApplicationData to allow for user interaction

 StatefulKnowledgeSession ksession =
 kbase.newStatefulKnowledgeSession();
 ksession.setGlobal("frame", frame);
 ksession.setGlobal("textArea", this.output);

 ksession.insert(new Product("Gold Fish", 5));
 ksession.insert(new Product("Fish Tank", 25));
 ksession.insert(new Product("Fish Food", 2));

 Pet Store Example

219

 ksession.insert(new Product("Fish Food Sample", 0));

 ksession.insert(order);
 ksession.fireAllRules();

 // Return the state of the cart
 return order.toString();
}

Two items are passed into this method. One is the handle to the JFrame Swing component
surrounding the output text frame, at the bottom of the GUI. The second is a list of order items; this
comes from the TableModel storing the information from the "Table" area at the top right section of
the GUI.

The "for" loop transforms the list of order items coming from the GUI into the OrderJavaBean, also
contained in the file PetStore.java. Note that it would be possible to refer to the Swing dataset
directly within the rules, but it is better coding practice to do it this way, using simple Java objects. It
means that you are not tied to Swing if you wanted to transform the sample into a Web application.

It is important to note that all states in this example are stored in the Swing components and that
the rules are effectively "stateless." Each time the "Checkout" button is pressed, this code copies the
contents of the Swing TableModel into the session's working memory.

Within this code, there are nine calls to the working memory. The first of these creates a new working
memory (as a Stateful Knowledge Session from the Knowledge Base.) Remember that you passed
in this Knowledge Base when you created the CheckoutCallBack class in the main() method.
The next two calls pass in two objects that you will hold as global variables in the rules. These are the
Swing text area and the Swing frame. These are used for writing messages.

More inserts put information on products into the Working Memory, as well as the order list. The final
call is the standard fireAllRules(). Next, we look at what this method causes to happen within the
rules file.

package org.drools.examples

import org.drools.WorkingMemory
import org.drools.examples.PetStore.Order
import org.drools.examples.PetStore.Purchase
import org.drools.examples.PetStore.Product
import java.util.ArrayList
import javax.swing.JOptionPane;

import javax.swing.JFrame

global JFrame frame
global javax.swing.JTextArea textArea

Example 8.49. Package, Imports, Globals and Dialect - Extracts from the PetStore.drl

The first part of the PetStore.drl file contains the standard package and import statements used
to make various Java classes available to the rules. In addition, there are the two globals, frame

Chapter 8. Examples

220

and textArea. These hold references to the Swing JFrame and Textarea components that were
previous passed by the Java code that called the setGlobal() method. Unlike variables in Rules,
which expire as soon as they have been fired, global variables retain their value for the lifetime of the
session, which, in this case, is "stateful."

The following example is taken from the end of the PetStore.drl file. It contains two functions that
are referenced by the rules that you will study shortly.

function void doCheckout(JFrame frame, WorkingMemory workingMemory)
{
 Object[] options = {"Yes","No"};

 int n = JOptionPane.showOptionDialog(frame,
 "Would you like to checkout?","",
 JOptionPane.YES_NO_OPTION,
 JOptionPane.QUESTION_MESSAGE,
 null,options,options[0]);

 if (n == 0) {workingMemory.setFocus("checkout");}
}

function boolean requireTank(JFrame frame, WorkingMemory workingMemory,
 Order order, Product fishTank, int total)
{
 Object[] options = {"Yes","No"};

 int n = JOptionPane.showOptionDialog(frame,
 "Would you like to buy a tank for your " +
 total + " fish?",
 "Purchase Suggestion",
 JOptionPane.YES_NO_OPTION,
 JOptionPane.QUESTION_MESSAGE,
 null,options,options[0]);

 System.out.print("SUGGESTION: Would you like to buy a tank for your "
 + total + " fish? - ");

 if (n == 0) {
 Purchase purchase = new Purchase(order, fishTank);
 workingMemory.insert(purchase);
 order.addItem(purchase);
 System.out.println("Yes");
 } else {
 System.out.println("No");
 }
 return true;
}

Having these functions in the rules file simply makes the Pet Store example more compact. In
real life, you will probably have the functions in a file of their own, within the same rules package

 Pet Store Example

221

or as a static method on a standard Java class, and import them, using import function
my.package.Foo.hello.

The purpose of these two functions is as follows:

• doCheckout() - displays a dialogue box that asks the user if they wish to check out. If they do,
focus is set to the checkOut agenda-group, allowing rules in that group to (potentially) fire.

• requireTank() - displays a dialogue box that asks the user if they wish to buy a tank. If so, a new
FishTankProduct is added to the order list in working memory.

Later, you will be taught the rules that call upon these functions. The next set of examples are,
themselves, derived from the Pet Store rules. The first extract is that which runs first, (partly because it
the auto-focus attibute has been set to true.)

/// Insert each item in the shopping cart into the Working Memory
// Insert each item in the shopping cart into the Working Memory
rule "Explode Cart"
 agenda-group "init"
 auto-focus true
 salience 10
 dialect "java"
when
 $order : Order(grossTotal == -1)
 $item : Purchase() from $order.items
then
 insert($item);
 kcontext.getKnowledgeRuntime().getAgenda().getAgendaGroup("show items"
).setFocus();
 kcontext.getKnowledgeRuntime().getAgenda().getAgendaGroup("evaluate"
).setFocus();
end

Example 8.50. Putting Items into Working Memory - Extract from the PetStore.drl File

This rule matches against all orders that do not yet have their Order.grossTotal calculated . It
loops for each purchase item in order. Some parts of the "Explode Cart" rule should be familiar,
these being the rule name, the salience (suggesting the order in which rules should be fired) and the
dialect set to Java. There are also three new items in the rule:

• agenda-group "init" - the name of the agenda group. In this case, there is only one rule in the
group. However, neither the Java code nor a rule consequence sets the focus to this group, and
therefore it relies on the next attibute for its chance to fire.

• auto-focus true - ensures that this rule, while being the only rule in the agenda group, gets a
chance to fire when fireAllRules() is called from the Java code.

• drools.setFocus() - sets the focus to the "show items" and "evaluate" agenda groups in
turn, permitting the execution of their rules. In practice, on order all items are looped. This inserts
them into memory, subsequently firing the other rules each time.

The next two listings shows the rules within the "show items" and "evaluate" agenda groups. They
shall be discussed in the order in which they are called.

Chapter 8. Examples

222

rule "Show Items"
 agenda-group "show items"
 dialect "mvel"
when
 $order : Order()
 $p : Purchase(order == $order)
then
 textArea.append($p.product + "\n");
end

Example 8.51. Show Items in the GUI - Extract from the PetStore.drl File

The "show items" agenda group has only one rule, which is called "Show Items" (note the
difference in case). It logs details to the text area (at the bottom of the GUI), for each purchase on the
order currently in the working memory session. The "textArea" variable used to do this is one of the
Globals discussed earlier.

The "evaluate" agenda group also gains focus from the "explode cart" listed previously. This
agenda group has two rules: "Free Fish Food Sample " and "Suggest Tank." These are
discussed below.

 Pet Store Example

223

// Free Fish Food sample when we buy a Gold Fish if we have not already
//bought Fish Food and dont already have a Fish Food Sample
rule "Free Fish Food Sample"
 agenda-group "evaluate"
 dialect "mvel"
when
 $order : Order()
 not ($p : Product(name == "Fish Food") &&
 Purchase(product == $p))
 not ($p : Product(name == "Fish Food Sample") &&
 Purchase(product == $p))
 exists ($p : Product(name == "Gold Fish") &&
 Purchase(product == $p))
 $fishFoodSample : Product(name == "Fish Food Sample");
then
 System.out.println("Adding free Fish Food Sample to cart");
 purchase = new Purchase($order, $fishFoodSample);
 insert(purchase);
 $order.addItem(purchase);
end

// Suggest a tank if we have bought more than 5 gold fish and do not
// already have one
rule "Suggest Tank"
 agenda-group "evaluate"
 dialect "java"
when
 $order : Order()
 not ($p : Product(name == "Fish Tank") &&
 Purchase(product == $p))
 ArrayList($total : size > 5) from collect(Purchase
 (product.name == "Gold Fish"))
 $fishTank : Product(name == "Fish Tank")
then
 requireTank(frame, drools.getWorkingMemory(),
 $order, $fishTank, $total);
end

Example 8.52. Evaluate Agenda Group: Extract from the PetStore.drl File

The "Free Fish Food Sample" rule will only execute if:

• You do notalready have any fish food;

• You do not already have a free fish food sample and

• You do have a Gold Fish in your order.

If the rule does fire, it creates a new product ("Fish Food Sample") and adds it to the order in
working memory.

Chapter 8. Examples

224

The Suggest Tank rule will only fire if:

• You do not already have a Fish Tank in your order;

• If you can find more than five Gold Fish products in your order.

If the rule does fire, it calls the requireTank() function about which you read earlier. This shows a
dialogue box to the user and adds a tank to the order/working memory if confirmed. The rule passes
the global frame variable when it calls the requireTank() function. This is so that the function has
a handle on the Swing graphical user interface.

The next rule for you to learn is the "do checkout."

rule "do checkout"
 dialect "java"
when
then
 doCheckout(frame, drools.getWorkingMemory());
end

Example 8.53. Undertaking the Checkout: Extract from the PetStore.drl File

The "do checkout" rule has no set agenda-group or auto-focus attribute. As such, it is deemed part
of the default agenda-group. This group receives focus by default when all of the rules in agenda-
groups that had been set to receive explicit focus have completed.

There is no left hand-side to the rule, so the right hand-side will always call the doCheckout()
function. When calling the doCheckout() function, the rule passes the global frame variable
to give the function a handle on the Swing graphical user interface. As you observed earlier, the
doCheckout() function displays a confirmation dialogue box to the user. If confirmed, the function
sets the focus to the checkout agenda-group, allowing the next set of rules to execute.

 Pet Store Example

225

rule "Gross Total"
 agenda-group "checkout"
 dialect "mvel"
when
 $order : Order(grossTotal == -1)
 Number(total : doubleValue) from accumulate(Purchase ($price :
 product.price),sum($price))
then
 modify($order) { grossTotal = total };
 textArea.append("\ngross total=" + total + "\n");
end

rule "Apply 5% Discount"
 agenda-group "checkout"
 dialect "mvel"
when
 $order : Order(grossTotal >= 10 && < 20)
then
 $order.discountedTotal = $order.grossTotal * 0.95;
 textArea.append("discountedTotal total="+$order.discountedTotal+"\n");
end

rule "Apply 10% Discount"
 agenda-group "checkout"
 dialect "mvel"
when
 $order : Order(grossTotal >= 20)
then
 $order.discountedTotal = $order.grossTotal * 0.90;
 textArea.append("discountedTotal total="+$order.discountedTotal+"\n");
end

Example 8.54. Checkout Rules: Extract from the PetStore.drl File

There are three rules in the "Checkout" agenda-group:

• Gross Total - if we haven't already calculated the gross total, accumulates the product prices
into a total, puts this total into working memory, and displays it via the Swing TextArea (using the
textArea global variable yet again).

• If the gross total is between ten and twenty, "Apply 5% Discount" calculates the discounted total
and adds it to working memory and displays it in the text area.

• If our gross total is not less than 20, "Apply 10% Discount" calculates the discounted total, adds
it to the working memory and displays it in the text area.

Now that you understand how the code works in theory, you can have a look at what happens in
practice. The file named PetStore.java contains a main() method, so that it can be run as a
standard Java application, either from the command line or via the IDE. (This assumes that you have
your classpath set correctly.) See the start of the examples section for more information.

Chapter 8. Examples

226

The first screen contains the Pet Store Demo. It has a list of available products (top left), an empty list
of selected products (top right), checkout and reset buttons (middle) and an empty system messages
area (bottom).

Figure 8.13. Depiction of Pet Store Demonstration Immediately After Launch

In order to reach this point, the following things have occurred:

1. The main() method has run and loaded the Rule Base but not yet fired the rules. So far, this is
the only code in connection with the rules that has been run.

2. A new PetStoreUI object has been created and given a handle on the Rule Base, which it will
use later.

3. Various Swing components perform their operations and then, the above screen is shown and
waits for user input.

Clicking on various products from the list will give you screens similar to those shown one below.

 Pet Store Example

227

Figure 8.14. Depiction of Pet Store Demonstration with Products Selected

Please note that no rules code has been fired here. This is only Swing code, whose role it is to "listen"
for mouse click events and, subsequently, add some selected products to the TableModel object for
display in the top, right-hand section. (As an aside, note that this is a classic use of the Model View
Controller design pattern.)

It is only when "Checkout" is clicked that the business rules are executed, in roughly the same order
as that described earlier.

1. The CheckOutCallBack.checkout() method is eventually called by the Swing class that has
been awaiting the click on the "Checkout" button. It inserts the data from the TableModel object
(top right-hand side of the graphical user interface), and also palces it in the session's working
memory. It then fires the rules.

2. The "Explode Cart" rule is the first to fire, because its auto-focus setting has a vlaue of "true."
It loops through all the products in the cart, ensuring that they are in the working memory. It then
gives the "Show Items" and Evaluation agenda groups a chance to fire. The rules in these
groups add the contents of the cart to the text area (at the bottom of the window), decide whether
or not to give the customer free fish food and ask us them whether or not they desire buy a fish
tank. This is depicted below:

Figure 8.15. Do You Want to Buy a Fish Tank?

Chapter 8. Examples

228

3. The "Do Checkout rule is the next to fire as, firstly, no other agenda group currently has focus
and, secondly it is part of the default agenda group. It always calls the doCheckout() function,
which displays a dialogue box containing the question "Would you like to Checkout?"

The doCheckout() function sets the focus to the checkout agenda-group, giving the rules in
that group the option to fire.

4. The doCheckout() function sets the focus to the checkout agenda group, giving the rules in that
group the option to fire.

5. The rules in the the checkout agenda group display the contents of the cart and apply the
appropriate discount.

6. Swing then waits for user input, based uponn which it will either check out more products (and to
cause the rules to fire again) or close the graphical user interface, as per the final image:

Figure 8.16. Pet Store Demonstraton After All Rules Have Fired.

Should we choose, we could add more System.out calls to demonstrate this flow of events. The
current output of the console of the above sample is as per the listing below.

 Sudoku Example

229

Adding free Fish Food Sample to cart
SUGGESTION: Would you like to buy a tank for your 6 fish? - Yes

Example 8.55. Console (System.out) from running the PetStore GUI

8.7. Sudoku Example

Name: Sudoku

Main class: org.drools.examples.sudoku.Main

Type: Java application

Rules file: sudokuSolver.drl, sudokuValidator.drl

Objective: Demonstrates the solving of logic problems, and complex pattern matching.

This example demonstrates how JBoss Rules can be used to find an answers in a potentially
large "solution-space," based on a number of constraints. It also shows how JBoss Rules can be
integrated into a graphical user interface and use callbacks in order to update the display based on
changes in the working memory at runtime.

8.7.1. Overview of Sudoku
Sudoku is a logic-based number placement puzzle, originating in Japan. The objective is to fill a 9x9
grid so that each column, each row and each of the nine 3x3 zones contains the digits from one to
nine once and once only.

The creator of the puzzle provides a partially-completed grid and the solver's task is to complete it
whilst abiding by the constraints of the rules.

The general strategy to solve the problem is to ensure that when you insert a new number it should be
unique in its particular row, column and 3x3 square,

You can refer to http://en.wikipedia.org/wiki/Sudoku for a more detailed description of the rules.

8.7.2. Running the Example
Download and install drools-examples as per the procedure described earlier. Then execute java
org.drools.examples.sudoku.Main. This example requires Java 5.

A relatively simple, partially-filled grid will be displayed in a window.

http://en.wikipedia.org/wiki/Sudoku

Chapter 8. Examples

230

Figure 8.17. Partially-Filled Grid

Click on the "Solve" button and the Rules Engine will fill in the remaining values. The console will
display detailed information of the rules as they are are executed. This is to show, in a human-
readable form, how the puzzle is solved.

Rule #3 determined the value at (4,1) could not be 4 as this value already
 exists in the same column at (8,1)
Rule #3 determined the value at (5,5) could not be 2 as this value already
 exists in the same row at (5,6)
Rule #7 determined (3,5) is 2 as this is the only possible cell in the
 column that can have this value
Rule #1 cleared the other PossibleCellValues for (3,5) as a
 ResolvedCellValue of 2 exists for this cell.
Rule #1 cleared the other PossibleCellValues for (3,5) as a
 ResolvedCellValue of 2 exists for this cell.
...
Rule #3 determined the value at (1,1) could not be 1 as this value already
 exists in the same zone at (2,1)
Rule #6 determined (1,7) is 1 as this is the only possible cell in the row
 that can have this value
Rule #1 cleared the other PossibleCellValues for (1,7) as a
 ResolvedCellValue of 1 exists for this cell.
Rule #6 determined (1,1) is 8 as this is the only possible cell in the row
 that can have this value

Once all of the rules pertaining to the "solving logic" have been activated and executed, the engine
then processes a second rule base. This checks that the solution is complete and valid. In this

 Running the Example

231

example, it finds that all is well, and the "Solve" button is, consequentially, disabled. The screen
displays the text "Solved (1052ms)".

Figure 8.18. Solved Grid

The example comes with a number of grids which can be loaded and solved. Click on "File", then
"Samples" and "Medium" to load a more challenging grid. Note that the "Solve" button is enabled
when the new grid is loaded.

Now, you are going to load a Sudoku grid that is deliberately invalid. Click on "File", "Samples" and "!
DELIBERATELY BROKEN!". Note that this grid has some errors: For example, the value "5" appears
twice in the first row.

Chapter 8. Examples

232

Figure 8.19. Broken Grid

Despite this, click on the "Solve" button to apply the "solving rules" to this invalid grid. Note that the
"Solve" button is relabeled to indicate that the resulting solution is invalid.

In addition, the Validation Rule Set outputs all of the issues it has discovered to the console.

There are two cells on the same column with the same value at (6,0) and
 (4,0)
There are two cells on the same column with the same value at (4,0) and
 (6,0)
There are two cells on the same row with the same value at (2,4) and (2,2)
There are two cells on the same row with the same value at (2,2) and (2,4)
There are two cells on the same row with the same value at (6,3) and (6,8)
There are two cells on the same row with the same value at (6,8) and (6,3)
There are two cells on the same column with the same value at (7,4) and
 (0,4)
There are two cells on the same column with the same value at (0,4) and
 (7,4)
There are two cells on the same row with the same value at (0,8) and (0,0)
There are two cells on the same row with the same value at (0,0) and (0,8)
There are two cells on the same column with the same value at (1,2) and
 (3,2)
There are two cells on the same column with the same value at (3,2) and
 (1,2)
There are two cells in the same zone with the same value at (6,3) and (7,3)
There are two cells in the same zone with the same value at (7,3) and (6,3)
There are two cells on the same column with the same value at (7,3) and
 (6,3)

Java Source and Rules Overview

233

There are two cells on the same column with the same value at (6,3) and
 (7,3)

You will learn more about the Solving Rule Set later in this section but, for the moment, you should
note that some theoretically-solvable puzzles cannot be deduced by the engine in its current state.
Click on "File", "Samples" and then "Hard 3" to load a sparsely-populated grid.

Now click on the "Solve" button. Note that the current rules are unable to complete the grid, even
though you, yourself, may be able to see a way to the solution.

Up until the present time, the solution have been achieved by the use of a ten rule set. This rule set
can now be extended in order to enable the engine to tackle the more complex logic to solve puzzles
such as this one.

8.7.3. Java Source and Rules Overview
The Java source code can be found in the /src/main/java/org/drools/examples/sudoku
directory. The two DRL files defining the rules are located in the /src/main/rules/org/drools/
examples/sudoku directory.

The package org.drools.examples.sudoku.swing contains a set of classes which implement a
framework for Sudoku puzzles. Note that this package does not have any dependencies on the JBoss
Rules libraries.

SudokuGridModel defines an interface which can be implemented in order to store a Sudoku puzzle
as a 9x9 grid of integervalues, some of which may be null. These indicate that the value for the cell
has not yet been resolved.

SudokuGridView is a Swing component that can depict any implementation of SudokuGridModel.

SudokuGridEvent and SudokuGridListener are used to communicate "state" changes between
the model and the view; events are fired when a cell's value is resolved or changed. If you are familiar
with the model-view-controller patterns in other Swing components such as JTable, then this pattern
should be familiar. SudokuGridSamples provides a number of partially-completed Sudoku puzzles
for demonstration purposes.

The package entitled org.drools.examples.sudoku.rules contains an implementation of
SudokuGridModel, based upon JBoss Rules. Two Java objects are used, both of which extend
AbstractCellValue and represent a value for a specific cell in the grid. These include the row and
column location of the cell, an index of the 3x3 zone in which the cell is contained, thirdly, and the
value of the cell.

PossibleCellValue indicates that the value of a cell is currently unknown. There can be anywhere
from two to nine possible cell values for a given cell.

ResolvedCellValue indicates that we have determined what must become the value of the cell.
There can only be one resolved value for a given cell.

DroolsSudokuGridModel implements SudokuGridModel. It is responsible for converting an
initially two-dimensional array of partially-specified cells into a set of CellValue Java objects. This
creates a working memory session based on solverSudoku.drl. It also inserts the CellValue
objects into the working memory.

When the solve() method is called, it, in turn, calls fireAllRules(), which will try to solve the
puzzle.

Chapter 8. Examples

234

DroolsSudokuGridModel attaches a WorkingMemoryListener to the working memory,
which allows it to be called back on insert and retract events as the puzzle is solved. When a new
ResolvedCellValue is inserted into the Working Memory, this callback allows the implementation to
fire a SudokuGridEvent to its SudokuGridListener clientele, which can then update themselves
in real time.

Once all the rules fired by the "Solver" working memory have executed, DroolsSudokuGridModel
runs a second set of rules, based on validatorSudoku.drl. These work with the same set of Java
objects to determine if the resulting grid is a valid and a full solution.

The class org.drools.examples.sudoku.Main implements a Java application that combines the
described components.

The package, org.drools.examples.sudoku, contains two .DRL files. These are, firstly,
solverSudoku.drl, which defines the rules that attempt to solve a Sudoku puzzle and, secondly,
validator.drl, which defines the rules which determine whether the current state of the working
memory represents a valid solution. Both use PossibleCellValue and ResolvedCellValue
objects as their facts. Also, they both output information to the Console window as their rules fire. In a
real-world situation, you would insert logging information and use the WorkingMemoryListener to
display this to a user, rather than use the console in this fashion.

8.7.4. Sudoku Validator Rules (validatorSudoku.drl)
The first rule simply checks that no PossibleCellValue objects remain in the working memory.
Once the puzzle is solved, only ResolvedCellValue objects should be present, one for each cell.

The other three rules match all of the ResolvedCellValue objects and bind them to the variable
entitled $resolved1. They then look for the ResolvedCellValues that both contain the same
value and are located, respectively, in the same row, column and 3x3 zone.

If these rules are fired, they add a message to a global list of strings that describes the reason the
solution is invalid. DroolsSudokoGridModel injects this list before it runs the rule set. It also checks
whether or not the list is empty after having called fireAllRules(). If it is not empty, then it prints
all the strings in the list and sets a flag to indicate that the grid is not solved.

8.7.5. Sudoku Solving Rules (solverSudoku.drl)
Now you are ready to study the more complex rule set used to solve Sudoku puzzles.

Rule #1 is used for book-keeping purposes. Several of the other rules insert ResolvedCellValues
into the working memory at specific rows and columns after they have determined that a given cell
must have a certain value.

At this point, it is important to clear the working memory of any inserted PossibleCellValues
that correspond with rows and columns holding invalid values. This rule is, therefore, given a higher
salience than the remaining rules to ensure that as soon as the left-hand side is "true," activations are
moved to the top of the agenda and fired.

This, in turn, prevents the spurious firing of other rules, due to the combination of a
ResolvedCellValue and one or more PossibleCellValues being present in the same cell.

This rule also calls update() on the ResolvedCellValue. This happens even though it has not, in
fact, been modified to ensure that JBoss Rules fires an event to any WorkingMemoryListeners

 Suggestions for Future Developments

235

attached to the working memory. Firing such an event would enable them to update themselves. In
this case, it would be so that the graphical user interface can display the new state of the grid.

Rule #2 identifies cells in the grid which have only one possible value. The first line of the
"when" clause matches all of the PossibleCellValue objects in the working memory. The
second line demonstrates a use of the "not" keyword. This rule will only fire if there are no other
PossibleCellValue objects in the working memory at the same row and column with differing
values.

When the rule fires, the single PossibleCellValue located at the row and column is retracted
from the working memory. It is replaced by a new ResolvedCellValue with the same value at that
location.

Rule #3 removes PossibleCellValues from a row when they have the same value as a
ResolvedCellValue. In other words, when a cell is filled with a resolved value, you need to
remove the possibility of any other cell on the same row having this value. The first line of the
"when" clause matches all ResolvedCellValue objects in the working memory. The second line
matches PossibleCellValues which have both the same row and the same value as these
ResolvedCellValue objects. If any are found, the rule activates and, when fired, it retracts the
PossibleCellValue which can no longer be the correct solution for that cell.

Rules #4 and #5 act in the same way as Rule #3 but check for redundant PossibleCellValues in
either a given column or zone of the grid as a ResolvedCellValue respectively.

Rule #6 checks for the scenario whereby a cell's possible value appears only once in a given row.
The first line of the left hand-side matches against all PossibleCellValue facts in the working
memory and stores the results in a number of local variables. The second line checks that no other
PossibleCellValue objects with the same value exist on this row. The third to fifth lines check that
there is not a ResolvedCellValue with the same value in the same zone, row or column. This so
that this rule does not fire prematurely. It is interesting to note that you could remove lines three to
five and give rules #3, #4 and #5 a higher salience to make sure they always fire before rules #6, #7
and #8. When the rule fires, $possible must represent the value for the cell; so, as in Rule #2, you
retract $possible and replace it with the equivalent, new ResolvedCellValue.

Rules #7 and #8 act in the same way as Rule #2 but check for single PossibleCellValues in a
given column of the grid and in a given zone of the grid respectively.

Rule #9 represents the most complex currently implemented rule. This rule implements the logic
that dictates, "If we know that a pair of given values can only occur in two cells on a specific row, (for
example we have determined the values of 4 and 6 can only appear in the first row in cells [0,3] and
[0,5]) and this pair of cells can not hold other values, then, although we do not know which of the pair
contains a four and which contains a six, we do know that these two values must be in these two cells.
Hence we can remove the possibility of them occurring anywhere else in the same row."

Rules #10 and #11 act in the same way as rule #9 but check for the existence of only two possible
values in a given column or a given zone respectively.

In order to solve more difficult grid puzzles, one would have to extend the rule set further with
additional laws that would encapsulate more complex reasoning.

8.7.6. Suggestions for Future Developments
There are a number of ways in which this example could be developed. The reader is encouraged to
consider the following propositions as possible exercises.

Chapter 8. Examples

236

• Agenda-group: Agenda groups are an ideal declarative tool for phased execution. In this example,
it is easy to see there are two phases, namely "resolution" and "validation". At present, they are
executed by creating two separate rule bases, one for each "job". It would be better to define
agenda-groups for all the rules, by splitting them into "resolution" and "validation" categories. These
would all be loaded from a single rule base. The engine would execute resolution and immediately
afterwards, validation.

• Auto-focus: This is a method for handling exceptions to the regular execution of rules. In the
present case, if you detect an inconsistency in either the input data or the resolution rules, why
should time be wasted in continuing the execution if it will be invalid anyway? It would most likely be
better to report the inconsistency immediately. To do that, now that there is a single rule-base, you
simply need to define the auto-focus attribute for all rules which validate puzzle consistency.

• Logical insert: An inconsistency only exists whilst wrong data is in working memory. As such,
one could state that the validation rules logically insert inconsistencies and, as soon as the offending
data is retracted, the inconsistency no longer exists.

• session.iterateObjects(): Although it is a valid use case to have a global list
for the purpose of recording problems, it would be more interesting to ask the stateful
session to call the desired issues by using session.iterateObjects(new
ClassObjectFilter(Inconsistency.class)). Having the inconsistency class can
also allow us to paint the offending cells a colour (such as red), making them easy to spot in the
graphical user interface.

• kcontext.getKnowledgeRuntime().halt(): Even if the software reports the error as soon as
it is found, one needs a way to tell the engine to stop evaluating rules. You can do that by creating a
rule that, in the presence of inconsistencies, calls the halt() code.

• Queries: By looking at the method getPossibleCellValues(int row, int col) in
DroolsSudokuGridModel, one can see that it iterates over all CellValue objects, searching
for the few that it actually wants. This process can be improved if one uses a JBoss Rules query.
Simply define a query to return the objects you want and cleanly iterate over it. Other queries may
be defined as needed.

• Globals as services: The main objective of this change is to facilitate that which follows, but it is
also useful in its own right. In order to teach the use of "globals" as services, it would be nice to set
up a callback. This is so that each rule that finds the ResolvedCellValue for a given cell can
"call," in order to notify and update the corresponding cell in the graphical user interface. This would
provide immediate feedback for the user. Also, the number in the last cell found could be "painted" a
different colour in order to quickly identify the conclusions of the different rules.

• Step-by-step execution: Now that immediate user feedback has been obtained, you can make
use of the "restricted run" feature in JBoss Rules. In other words, you could add a button to the
graphical user interface, that, when activated, would causes the execution of a single rule, by calling
fireAllRules(1). That way, the user would see what the engine is doing "step-by-step."

8.8. Miss Manners and Benchmarking

Name: Miss Manners

Main class: org.drools.benchmark.manners.MannersBenchmark

Type: java application

 Introduction

237

Rules file: manners.drl

Objective: Advanced walk-through of the Manners benchmark, covers Depth conflict resolution
in depth.

8.8.1. Introduction
Miss Manners is throwing a party and, being a good host, she wants to arrange seating appropriately.
Her initial design arranges everyone in male-female pairs but then she worries that people may not
have mutual topics of interest to discuss. What is a good host to do? She decides to note the hobby
of each guest. She can then arrange them by alternating gender and ensure that everybody is seated
next to someone on at least one side, with whom they have a common hobby.

8.8.1.1. Bench Marking
• Manners

uses a depth-first search approach to determine the seating arrangements alternating women and
men, whilst ensuring one common hobby for neighbours.

• Waltz

establishes a three-dimensional interpretation of a line drawing by line labeling by constraint
propagation.

• WaltzDB

is a more general version of Waltz, in that it supports the junctions of more than three lines and uses
a database.

• ARP

is a route planner for a robotic vehicle. It uses the A* search algorithm.

• Weavera

is a VLSI router for channels and boxes. It uses a blackboard technique.

Manners has become the de facto rule engine benchmark. Its behaviour, however, is now well-known
and many engines optimise for it, thereby negating its usefulness as a benchmark. This is why Waltz
is becoming more highly favoured.

8.8.1.2. Miss Manners Execution Flow
After the first seating arrangement has been assigned, the system executes "depth-first" recursion.
This repeatedly processes correct seating arrangements until the last seat is assigned. Manners uses
a Context instance to control execution flow. The activity diagram is partitioned in order to show the
relation of the rule execution to the current Context state.

Chapter 8. Examples

238

Figure 8.20. Manners Activity Diagram

8.8.1.3. The Data and Results
Before exploring the rules in detail, you are going to take a look at the asserted data and the resulting
seating arrangement. The data is a simple set of five guests who are to be arranged so that genders
are alternating and neighbours have a common hobby.

8.8.1.4. The Data
The data is given in OPS5 syntax. Each attribute has a parenthesised list of name and value pairs.
Each person has only one hobby.

(guest (name n1) (sex m) (hobby h1))
(guest (name n2) (sex f) (hobby h1))
(guest (name n2) (sex f) (hobby h3))
(guest (name n3) (sex m) (hobby h3))
(guest (name n4) (sex m) (hobby h1))
(guest (name n4) (sex f) (hobby h2))
(guest (name n4) (sex f) (hobby h3))
(guest (name n5) (sex f) (hobby h2))

 In-Depth Analysis

239

(guest (name n5) (sex f) (hobby h1))
(last_seat (seat 5))

8.8.1.5. The Results
Each line of the results list is printed upon execution of the "Assign Seat" rule. They key element
to which you should pay attention is that each line has a "pid" value one greater than that of the
last. (The significance of this will be explained in the discussion of the rule "Assign Seating".) The
"ls", "rs", "ln" and "rn" refer to the left and right seat and neighbour's name, respectively. The actual
implementation uses longer attribute names (such as, leftGuestName, but in this manual you will
read the notation from the original implementation.

[Seating id=1, pid=0, done=true, ls=1, ln=n5, rs=1, rn=n5]
[Seating id=2, pid=1, done=false, ls=1, ln=n5, rs=2, rn=n4]
[Seating id=3, pid=2, done=false, ls=2, ln=n4, rs=3, rn=n3]
[Seating id=4, pid=3, done=false, ls=3, rn=n3, rs=4, rn=n2]
[Seating id=5, pid=4, done=false, ls=4, ln=n2, rs=5, rn=n1]

8.8.2. In-Depth Analysis

8.8.2.1. Cheating
Manners has been designed to exercise cross-product joins and Agenda activities. Some people,
from not understanding this, tend to "tweak" the example to achieve better performance. This makes
their port of the Manners benchmark pointless. Known cheats or porting errors for Miss Manners are:

• Using arrays for a guest's hobbies, instead of asserting each one as a single fact. This massively
reduces the cross products.

• Altering the sequence of data which reduces the amount of matching, thereby increasing execution
speed.

• It is possible to change the "not" conditional element so that the test algorithm only uses the "first-
best-match." This is, basically, transforming the test algorithm to "backward chaining." The results
are only comparable to other backward chaining rule engines or ports of Manners.

• Removing the context so the rule engine matches the guests and seats prematurely. A proper port
will prevent facts from matching via the context start.

• It is possible to prevent the rule engine from performing "combinational" pattern-matching.

• The port is incorrect if no facts are retracted in the reasoning cycle as a result of "NOT CE."

8.8.2.2. Conflict Resolution
The Manners benchmark was written for OPS5, which has two conflict resolution strategies, LEX
and MEA. LEX is a chain of several strategies including salience, "recency" and complexity. The
recency aspect of the strategy drives the "depth first" (LIFO) firing order. The Clips Reference Manual
documents the recency strategy as per the following extract:

Chapter 8. Examples

240

Every fact and instance is marked internally with a "time tag" to indicate its relative
recency with respect to every other fact and instance in the system. The pattern
entities associated with each rule activation are sorted in descending order for
determining placement. An activation with a more recent pattern entities is placed
before activations with less recent pattern entities. To determine the placement
order of two activations, compare the sorted time tags of the two activations one by
one starting with the largest time tags. The comparison should continue until one
activation’s time tag is greater than the other activation’s corresponding time tag.
The activation with the greater time tag is placed before the other activation on the
agenda. If one activation has more pattern entities than the other activation and the
compared time tags are all identical, then the activation with more time tags is placed
before the other activation on the agenda.

However, Jess and Clips both use the "Depth" strategy, which is simpler and lighter. This is what
JBoss Rules also adopted. The Clips Reference Manual documents the Depth strategy as:

Newly activated rules are placed above all rules of the same salience. For example,
given that fact-a activates rule-1 and rule-2 and fact-b activates rule-3 and rule-4, then
if fact-a is asserted before fact-b, rule-3 and rule-4 will be above rule-1 and rule-2 on
the agenda. However, the position of rule-1 relative to rule-2 and rule-3 relative to
rule-4 will be arbitrary.

The initial JBoss Rules implementation for the Depth strategy would not work for Manners without
the use of salience on the "make_path" rule. Indeed, someone on the CLIPS Support Forum had this
to say:

The default conflict resolution strategy for CLIPS, depth, is different than the default
conflict resolution strategy used by OPS5. Therefore if you directly translate an OPS5
program to CLIPS, but use the default depth conflict resolution strategy, you're only
likely to get the correct behavior by coincidence. The lex and mea conflict resolution
strategies are provided in CLIPS to allow you to quickly convert and correctly run an
OPS5 program in CLIPS

An investigation of the CLIPS code reveals that there is undocumented functionality in the Depth
strategy, in the form of an accumulated time tag; it is not an extensive fact-by-fact comparison as in
the recency strategy as it simply adds the total of all the time tags for each activation and compares.

8.8.2.3. Assign First Seat
Once the context is changed to START_UP, Activations are created for all asserted guests. Because
all Activations are created as the result of a single working memory action, they all have the same
Activation time tag. The last asserted Guest would have a higher fact time tag and its Activation
would fire, because it has the highest accumulated fact time tag. The execution order in this rule has
little importance, but has a big impact in the rule "Assign Seat". The activation fires and asserts the
first Seating arrangement and a Path, and then sets the Context attribute state to create an
activation for rule findSeating.

rule assignFirstSeat
when
 context : Context(state == Context.START_UP)
 guest : Guest()
 count : Count()

 In-Depth Analysis

241

then
 String guestName = guest.getName();

 Seating seating = new Seating(count.getValue(),
 1,
 true,
 1,
 guestName,
 1,
 guestName);
 insert(seating);

 Path path = new Path(count.getValue(), 1, guestName);
 insert(path);

 modify(count) { setValue (count.getValue() + 1) }

 System.out.println("assign first seat : "+seating+" : "+path);

 modify(context) { setState(Context.ASSIGN_SEATS) }
end

8.8.2.4. Rule "findSeating"
This rule determines the seating arrangements. The rule creates cross-product solutions for all
asserted Seating arrangements against all of the asserted guests except against itself and any
already-assigned chosen solutions.

rule findSeating
when
 context : Context(state == Context.ASSIGN_SEATS)
 $s : Seating(pathDone == true)
 $g1 : Guest(name == $s.rightGuestName)
 $g2 : Guest(sex != $g1.sex, hobby == $g1.hobby)
 count : Count()
 not (Path(id == $s.id, guestName == $g2.name))
 not (Chosen(id == $s.id, guestName == $g2.name, hobby == $g1.hobby))
then
 int rightSeat = $s.getRightSeat();
 int seatId = $s.getId();
 int countValue = count.getValue();

 Seating seating = new Seating(countValue,
 seatId,
 false,
 rightSeat,
 $s.getRightGuestName(),
 rightSeat + 1,
 $g2.getName()
);
 insert(seating);

Chapter 8. Examples

242

 Path path = new Path(countValue, rightSeat + 1, $g2.getName());
 insert(path);

 Chosen chosen = new Chosen(seatId, $g2.getName(), $g1.getHobby());
 insert(chosen);

 System.err.println("find seating : "+seating+" : "+path+" : "+chosen);

 modify(count) {setValue(countValue + 1)}
 modify(context) {setState(Context.MAKE_PATH)}
end

=>[ActivationCreated(35): rule=findSeating
[fid:19:33]:[Seating id=3, pid=2, done=true, ls=2, ln=n4, rs=3, rn=n3]
[fid:4:4]:[Guest name=n3, sex=m, hobbies=h3]
[fid:3:3]:[Guest name=n2, sex=f, hobbies=h3]

=>[ActivationCreated(35): rule=findSeating
[fid:15:23]:[Seating id=2, pid=1, done=true, ls=1, ln=n5, rs=2, rn=n4]
[fid:5:5]:[Guest name=n4, sex=m, hobbies=h1]
[fid:2:2]:[Guest name=n2, sex=f, hobbies=h1]

=>[ActivationCreated(35): rule=findSeating
[fid:13:13]:[Seating id=1, pid=0, done=true, ls=1, ln=n5, rs=1, rn=n5]
[fid:9:9]:[Guest name=n5, sex=f, hobbies=h1]
[fid:1:1]:[Guest name=n1, sex=m, hobbies=h1]

The creation of these redundant activations might seem pointless but it must be remembered that
Manners is not about good rule design; it was intentionally designed as a bad ruleset to fully stress-
test the cross-product matching process and the Agenda. Note that each activation has the same
time tag of 35. This is because they were all activated by the change in the Context object to
ASSIGN_SEATS. With OPS5 and LEX, it would correctly fire the activation with the Seating asserted
last. With Depth, the "accumulated fact" time-tag ensures that the activation with the last asserted
Seating fires.

8.8.2.5. Rules "makePath" and "pathDone"
Rule makePath must always fire before pathDone. A Path object is asserted for each Seating
arrangement, up to the last asserted Seating. Note that the conditions in pathDone are a subset of
those in makePath, which may lead you to wonder about how it is that you can ensure that makePath
fires first.

rule makePath
when
 Context(state == Context.MAKE_PATH)
 Seating(seatingId:id, seatingPid:pid, pathDone == false)
 Path(id == seatingPid, pathGuestName:guestName, pathSeat:seat)
 not Path(id == seatingId, guestName == pathGuestName)
then

 In-Depth Analysis

243

 insert(new Path(seatingId, pathSeat, pathGuestName));
end

rule pathDone
when
 context : Context(state == Context.MAKE_PATH)
 seating : Seating(pathDone == false)
then
 modify(seating) {setPathDone(true)}
 modify(context) {setState(Context.CHECK_DONE)}
end

Chapter 8. Examples

244

Figure 8.21. Rete Diagram

Output Summary

245

Both rules end up on the Agenda in conflict and with identical activation time tags. However, the
"accumulate fact" time-tag is greater for "Make Path" so it receives the higher priority.

8.8.2.6. "Continue" and "Are We Done?"
"Are We Done" only activates when the last seat is assigned, at which point both rules will be
activated. For the same reason that "Make Path" always wins over "Path Done", "Are We Done" will
take priority over "Continue".

rule areWeDone
when
 context : Context(state == Context.CHECK_DONE)
 LastSeat(lastSeat: seat)
 Seating(rightSeat == lastSeat)
then
 modify(context) {setState(Context.PRINT_RESULTS)}
end

rule continue
when
 context : Context(state == Context.CHECK_DONE)
then
 context.setState(Context.ASSIGN_SEATS);
 update(context);
end

8.8.3. Output Summary

Assign First Seat

=>[fid:13:13]:[Seating id=1, pid=0, done=true, ls=1, ln=n5, rs=1, rn=n5]
=>[fid:14:14]:[Path id=1, seat=1, guest=n5]

==>[ActivationCreated(16): rule=findSeating
[fid:13:13]:[Seating id=1, pid=0, done=true, ls=1, ln=n5, rs=1, rn=n5]
[fid:9:9]:[Guest name=n5, sex=f, hobbies=h1]
[fid:1:1]:[Guest name=n1, sex=m, hobbies=h1]

==>[ActivationCreated(16): rule=findSeating
[fid:13:13]:[Seating id=1 , pid=0, done=true, ls=1, ln=n5, rs=1, rn=n5]
[fid:9:9]:[Guest name=n5, sex=f, hobbies=h1]
[fid:5:5]:[Guest name=n4, sex=m, hobbies=h1]*

Assign Seating

=>[fid:15:17] :[Seating id=2 , pid=1 , done=false, ls=1, lg=n5, rs=2,
 rn=n4]
=>[fid:16:18]:[Path id=2, seat=2, guest=n4]
=>[fid:17:19]:[Chosen id=1, name=n4, hobbies=h1]

Chapter 8. Examples

246

=>[ActivationCreated(21): rule=makePath
[fid:15:17] : [Seating id=2, pid=1, done=false, ls=1, ln=n5, rs=2, rn=n4]
[fid:14:14] : [Path id=1, seat=1, guest=n5]*

==>[ActivationCreated(21): rule=pathDone
[Seating id=2, pid=1, done=false, ls=1, ln=n5, rs=2, rn=n4]*

Make Path

=>[fid:18:22:[Path id=2, seat=1, guest=n5]]

Path Done

Continue Process

=>[ActivationCreated(25): rule=findSeating
[fid:15:23]:[Seating id=2, pid=1, done=true, ls=1, ln=n5, rs=2, rn=n4]
[fid:7:7]:[Guest name=n4, sex=f, hobbies=h3]
[fid:4:4] : [Guest name=n3, sex=m, hobbies=h3]*

=>[ActivationCreated(25): rule=findSeating
[fid:15:23]:[Seating id=2, pid=1, done=true, ls=1, ln=n5, rs=2, rn=n4]
[fid:5:5]:[Guest name=n4, sex=m, hobbies=h1]
[fid:2:2]:[Guest name=n2, sex=f, hobbies=h1], [fid:12:20] : [Count value=3]

=>[ActivationCreated(25): rule=findSeating
[fid:13:13]:[Seating id=1, pid=0, done=true, ls=1, ln=n5, rs=1, rn=n5]
[fid:9:9]:[Guest name=n5, sex=f, hobbies=h1]
[fid:1:1]:[Guest name=n1, sex=m, hobbies=h1]

Assign Seating

=>[fid:19:26]:[Seating id=3, pid=2, done=false, ls=2, lnn4, rs=3, rn=n3]]
=>[fid:20:27]:[Path id=3, seat=3, guest=n3]]
=>[fid:21:28]:[Chosen id=2, name=n3, hobbies=h3}]

=>[ActivationCreated(30): rule=makePath
[fid:19:26]:[Seating id=3, pid=2, done=false, ls=2, ln=n4, rs=3, rn=n3]
[fid:18:22]:[Path id=2, seat=1, guest=n5]*

=>[ActivationCreated(30): rule=makePath
[fid:19:26]:[Seating id=3, pid=2, done=false, ls=2, ln=n4, rs=3, rn=n3]
[fid:16:18]:[Path id=2, seat=2, guest=n4]*

=>[ActivationCreated(30): rule=done
[fid:19:26]:[Seating id=3, pid=2, done=false, ls=2, ln=n4, rs=3, rn=n3]*

Make Path

=>[fid:22:31]:[Path id=3, seat=1, guest=n5]

Output Summary

247

Make Path

=>[fid:23:32] [Path id=3, seat=2, guest=n4]

Path Done

Continue Processing

=>[ActivationCreated(35): rule=findSeating
[fid:19:33]:[Seating id=3, pid=2, done=true, ls=2, ln=n4, rs=3, rn=n3]
[fid:4:4]:[Guest name=n3, sex=m, hobbies=h3]
[fid:3:3]:[Guest name=n2, sex=f, hobbies=h3], [fid:12:29]*

=>[ActivationCreated(35): rule=findSeating
[fid:15:23]:[Seating id=2, pid=1, done=true, ls=1, ln=n5, rs=2, rn=n4]
[fid:5:5]:[Guest name=n4, sex=m, hobbies=h1]
[fid:2:2]:[Guest name=n2, sex=f, hobbies=h1]

=>[ActivationCreated(35): rule=findSeating
[fid:13:13]:[Seating id=1, pid=0, done=true, ls=1, ln=n5, rs=1, rn=n5]
[fid:9:9]:[Guest name=n5, sex=f, hobbies=h1], [fid:1:1] : [Guest name=n1,
 sex=m, hobbies=h1]

Assign Seating

=>[fid:24:36]:[Seating id=4, pid=3, done=false, ls=3, ln=n3, rs=4, rn=n2]]
=>[fid:25:37]:[Path id=4, seat=4, guest=n2]]
=>[fid:26:38]:[Chosen id=3, name=n2, hobbies=h3]

==>[ActivationCreated(40): rule=makePath
[fid:24:36]:[Seating id=4, pid=3, done=false, ls=3, ln=n3, rs=4, rn=n2]
[fid:23:32]:[Path id=3, seat=2, guest=n4]*

==>[ActivationCreated(40): rule=makePath
[fid:24:36]:[Seating id=4, pid=3, done=false, ls=3, ln=n3, rs=4, rn=n2]
[fid:20:27]:[Path id=3, seat=3, guest=n3]*

=>[ActivationCreated(40): rule=makePath
[fid:24:36]:[Seating id=4, pid=3, done=false, ls=3, ln=n3, rs=4, rn=n2]
[fid:22:31]:[Path id=3, seat=1, guest=n5]*

=>[ActivationCreated(40): rule=done
[fid:24:36]:[Seating id=4, pid=3, done=false, ls=3, ln=n3, rs=4, rn=n2]*

Make Path

=>fid:27:41:[Path id=4, seat=2, guest=n4]

Make Path

Chapter 8. Examples

248

=>fid:28:42]:[Path id=4, seat=1, guest=n5]]

Make Path

=>fid:29:43]:[Path id=4, seat=3, guest=n3]]

Path Done

Continue Processing

=>[ActivationCreated(46): rule=findSeating
[fid:15:23]:[Seating id=2, pid=1, done=true, ls=1, ln=n5, rs=2, rn=n4]
[fid:5:5]:[Guest name=n4, sex=m, hobbies=h1], [fid:2:2]
[Guest name=n2, sex=f, hobbies=h1]

=>[ActivationCreated(46): rule=findSeating
[fid:24:44]:[Seating id=4, pid=3, done=true, ls=3, ln=n3, rs=4, rn=n2]
[fid:2:2]:[Guest name=n2, sex=f, hobbies=h1]
[fid:1:1]:[Guest name=n1, sex=m, hobbies=h1]*

=>[ActivationCreated(46): rule=findSeating
[fid:13:13]:[Seating id=1, pid=0, done=true, ls=1, ln=n5, rs=1, rn=n5]
[fid:9:9]:[Guest name=n5, sex=f, hobbies=h1]
[fid:1:1]:[Guest name=n1, sex=m, hobbies=h1]

Assign Seating

=>[fid:30:47]:[Seating id=5, pid=4, done=false, ls=4, ln=n2, rs=5, rn=n1]
=>[fid:31:48]:[Path id=5, seat=5, guest=n1]
=>[fid:32:49]:[Chosen id=4, name=n1, hobbies=h1]

249

Appendix A. Revision History
Revision 1.1 Tue Oct 6 2009 David Le Sage dlesage@redhat.com

5.01 updates. First phase of grammar clean-up of this document.

Revision 1.0 Mon May 18 2009 Darrin Mison dmison@redhat.com

Published

mailto:dlesage@redhat.com
mailto:dmison@redhat.com

250

	JBoss Rules 5 Reference Guide
	Table of Contents
	Preface
	1. Document Conventions
	1.1. Typographic Conventions
	1.2. Pull-quote Conventions
	1.3. Notes and Warnings

	2. We Need Feedback!

	Chapter 1. Introduction
	1.1. What is a Rule Engine?
	1.2. Why use a Rule Engine?
	1.2.1. Advantages of a Rule Engine
	1.2.2. When should you use a Rule Engine?
	1.2.3. When not to use a Rule Engine
	1.2.4. Strong and Loose Coupling

	Chapter 2. Quick Start
	2.1. The Basics
	2.1.1. State-less Knowledge Session
	2.1.2. State-ful Knowledge Session

	2.2. A Little Theory
	2.2.1. Methods versus Rules
	2.2.2. Cross Products
	2.2.3. Activations, Agenda and Conflict Sets

	2.3. More on Building and Deploying
	2.3.1. Using "Change Sets" to Add Rules
	2.3.2. Knowledge Agent

	Chapter 3. User Guide
	3.1. Building
	3.1.1. Building with Code
	3.1.2. Building via Configurations and the Change Set XML

	3.2. Deploying
	3.2.1. KnowledgePackage and Knowledge Definitions
	3.2.2. Knowledge Bases
	3.2.3. In-Process Building and Deployment
	3.2.4. Building and Deployment as Separate Processes
	3.2.5. State-ful Knowledge Sessions and Knowledge Base Modifications
	3.2.6. KnowledgeAgent

	3.3. Running
	3.3.1. KnowledgeBase
	3.3.2. StatefulKnowledgeSession
	3.3.3. KnowledgeRuntime
	3.3.3.1. WorkingMemoryEntryPoint
	3.3.3.1.1. Insertion
	3.3.3.1.2. Retraction
	3.3.3.1.3. Update

	3.3.3.2. WorkingMemory
	3.3.3.2.1. Query

	3.3.3.3. KnowledgeRuntime
	3.3.3.3.1. Globals

	3.3.3.4. StatefulRuleSession
	3.3.3.4.1. Agenda Filters

	3.3.4. Agenda
	3.3.4.1. Conflict Resolution
	3.3.4.2. AgendaGroup
	3.3.4.3. ActivationGroup

	3.3.5. Event Model
	3.3.6. KnowledgeRuntimeLogger
	3.3.7. StatelessKnowledgeSession
	3.3.7.1. Sequential Mode

	3.3.8. Pipeline
	3.3.8.1. Xstream Transformer
	3.3.8.2. JAXB Transformer
	3.3.8.3. Smooks Transformer
	3.3.8.4. jXLS (Excel/Calc/CSV) Transformer
	3.3.8.5. JMS Messenger

	3.3.9. Commands and the CommandExecutor
	3.3.10. Marshalling
	3.3.11. Persistence and Transactions

	Chapter 4. The Rule Language
	4.1. Overview
	4.1.1. A rule file
	4.1.2. What makes a rule

	4.2. Keywords
	4.3. Comments
	4.3.1. Single line comment
	4.3.2. Multi-line comment

	4.4. Error Messages
	4.4.1. Message format
	4.4.2. Error Messages Description
	4.4.2.1. 101: No viable alternative
	4.4.2.2. 102: Mismatched input
	4.4.2.3. 103: Failed predicate
	4.4.2.4. 104: Trailing semi-colon not allowed
	4.4.2.5. 105: Early Exit

	4.5. Package
	4.5.1. import
	4.5.2. global

	4.6. Function
	4.7. Type Declaration
	4.7.1. Declaring New Types
	4.7.2. Declaring Metadata
	4.7.3. Declaring Metadata for Existing Types
	4.7.4. Accessing Declared Types from the Application Code

	4.8. Rule
	4.8.1. Rule Attributes
	4.8.2. Left Hand Side (when) Conditional Elements
	4.8.2.1. Pattern
	4.8.2.1.1. Field Constraints
	4.8.2.1.2. JavaBeans as facts
	4.8.2.1.3. Values
	4.8.2.1.4. Single Value Restriction
	4.8.2.1.5. Operators
	4.8.2.1.6. Literal Restrictions
	4.8.2.1.7. Bound Variable Restriction
	4.8.2.1.8. Return Value Restriction
	4.8.2.1.9. Compound Value Restriction
	4.8.2.1.10. Multi Restriction
	4.8.2.1.11. Inline Eval Constraints
	4.8.2.1.12. Nested Accessors

	4.8.2.2. Conditional Element and
	4.8.2.3. Conditional Element or
	4.8.2.4. Conditional Element eval
	4.8.2.5. Conditional Element not
	4.8.2.6. Conditional Element exists
	4.8.2.7. Conditional Element forall
	4.8.2.8. Conditional Element from
	4.8.2.9. Conditional Element collect
	4.8.2.10. Conditional Element accumulate
	4.8.2.10.1. Accumulate Functions

	4.8.3. The Right Hand Side (then)
	4.8.3.1. Usage
	4.8.3.2. The modify Statement

	4.8.4. A Note on Auto-boxing and Primitive Types

	4.9. Query
	4.10. Domain Specific Languages
	4.10.1. When to use a DSL
	4.10.2. Editing and managing a DSL
	4.10.3. Using a DSL in your rules
	4.10.4. Adding constraints to facts
	4.10.5. How it works
	4.10.6. Creating a DSL from scratch
	4.10.7. Scope and keywords
	4.10.8. DSLs in the BRMS and IDE

	4.11. XML Rule Language
	4.11.1. When to use XML
	4.11.2. The XML format
	4.11.3. Automatic transforming between formats (XML and DRL)

	Chapter 5. Authoring
	5.1. Decision tables in spreadsheets
	5.1.1. When to use Decision tables
	5.1.2. Overview
	5.1.3. How decision tables work
	5.1.4. Keywords and syntax
	5.1.4.1. Syntax of templates
	5.1.4.2. Keywords

	5.1.5. Creating and integrating Spreadsheet based Decision Tables
	5.1.6. Managing business rules in decision tables.
	5.1.6.1. Workflow and collaboration.
	5.1.6.2. Using spreadsheet features

	Chapter 6. The Java Rule Engine API
	6.1. Introduction
	6.2. How To Use
	6.2.1. Building and Registering RuleExecutionSets
	6.2.2. Using State-ful and Stateless RuleSessions
	6.2.2.1. Globals

	6.3. References

	Chapter 7. The JBoss Rules IDE
	7.1. Outline of Features
	7.2. Creating a Rule Project
	7.3. Creating a New Rule and Wizards
	7.4. Textual Rule Editor
	7.5. The Guided Editor
	7.6. JBoss Rules Views
	7.6.1. The Working Memory View
	7.6.2. The Agenda View
	7.6.3. The Global Data View
	7.6.4. The Audit View

	7.7. Domain-Specific Languages
	7.7.1. Editing languages

	7.8. The Rete View
	7.9. Large .drl Files
	7.10. Debugging Rules
	7.10.1. Creating Break-Points
	7.10.2. Debugging Rules

	Chapter 8. Examples
	8.1. Hello World
	8.2. State Example
	8.2.1. Understanding the State Example

	8.3. Fibonacci Example
	8.4. Banking Tutorial
	8.5. Pricing Rule Decision Table Example
	8.5.1. Executing the Example
	8.5.2. The Decision Table

	8.6. Pet Store Example
	8.7. Sudoku Example
	8.7.1. Overview of Sudoku
	8.7.2. Running the Example
	8.7.3. Java Source and Rules Overview
	8.7.4. Sudoku Validator Rules (validatorSudoku.drl)
	8.7.5. Sudoku Solving Rules (solverSudoku.drl)
	8.7.6. Suggestions for Future Developments

	8.8. Miss Manners and Benchmarking
	8.8.1. Introduction
	8.8.1.1. Bench Marking
	8.8.1.2. Miss Manners Execution Flow
	8.8.1.3. The Data and Results
	8.8.1.4. The Data
	8.8.1.5. The Results

	8.8.2. In-Depth Analysis
	8.8.2.1. Cheating
	8.8.2.2. Conflict Resolution
	8.8.2.3. Assign First Seat
	8.8.2.4. Rule "findSeating"
	8.8.2.5. Rules "makePath" and "pathDone"
	8.8.2.6. "Continue" and "Are We Done?"

	8.8.3. Output Summary

	Appendix A. Revision History

