
JBoss Enterprise
SOA Platform 5.0

ESB Administration Guide
Your guide to administering the JBoss SOA Platform ESB

ESB Administration Guide

JBoss Enterprise SOA Platform 5.0 ESB Administration Guide
Your guide to administering the JBoss SOA Platform ESB
Edition 3.0

Copyright © 2008 Red Hat, Inc.. This material may only be distributed subject to the terms and
conditions set forth in the Open Publication License, V1.0 or later (the latest version of the OPL is
presently available at http://www.opencontent.org/openpub/).

Red Hat and the Red Hat "Shadow Man" logo are registered trademarks of Red Hat, Inc. in the United
States and other countries.

All other trademarks referenced herein are the property of their respective owners.

 1801 Varsity Drive
 Raleigh, NC 27606-2072 USA
 Phone: +1 919 754 3700
 Phone: 888 733 4281
 Fax: +1 919 754 3701
 PO Box 13588 Research Triangle Park, NC 27709 USA

The Administration Guide contains important information on how to configure and manage the ESB of
the JBoss Enterprise SOA Platform 5.0.

http://www.opencontent.org/openpub/

iii

Preface v
1. Document Conventions ... v

1.1. Typographic Conventions .. v
1.2. Pull-quote Conventions .. vi
1.3. Notes and Warnings .. vii

2. We Need Feedback! ... viii

1. Configuration 1
1.1. Standalone server .. 1
1.2. JBossESB JMS Providers ... 1

1.2.1. JBossMessaging .. 2
1.2.2. Apache ActiveMQ .. 2
1.2.3. IBM Websphere MQ Series .. 3
1.2.4. Oracle Advanced Queuing (AQ) .. 4
1.2.5. Tibco Enterprise Message Service (EMS) ... 5
1.2.6. Extension Properties .. 5

1.3. Database Configuration ... 5
1.4. Switching Databases ... 7

1.4.1. Step by Step ... 8
1.5. Using a JSR-170 Message Store .. 9
1.6. Message Tracing .. 10
1.7. Clustering and Fail-Over Support ... 11
1.8. Using OpenSSO with the SOA Platform .. 12

1.8.1. Installing and configuring OpenSSO in Tomcat .. 12
1.8.2. Configuring OpenSSO for the JBoss SOA Platform .. 13

2. Registry 17

3. Configuring Web Service Integration 19

4. Default ReplyTo EPR 21

5. ServiceBinding Manager 23

6. Monitoring and Management 25
6.1. Monitoring and Management Console .. 25

6.1.1. Alternative Database Usage ... 25
6.1.2. Collection Periods .. 26
6.1.3. Console ... 26
6.1.4. Polling ... 26
6.1.5. Services .. 26
6.1.6. Message Counter .. 27
6.1.7. Transformations ... 28
6.1.8. Dead Letter Service ... 28

6.2. Alerts ... 28
6.3. JON for SOA ... 29

7. Hot Deployment 35
7.1. Server Mode .. 35
7.2. Standalone (Bootstrap) Mode .. 36

8. Contract Publishing 37
8.1. "Contract" Application ... 37
8.2. Publishing a Contract from an Action ... 37

9. jBPM_Console 39

ESB Administration Guide

iv

9.1. Overview .. 39

10. Performance Tuning 41
10.1. Overview .. 41
10.2. InVM transport .. 41
10.3. Maximum Threads for MessageAwareListener .. 42
10.4. Maximum Threads for jbr-listener ... 42
10.5. Message Filters ... 43

A. Revision History 45

v

Preface

1. Document Conventions
This manual uses several conventions to highlight certain words and phrases and draw attention to
specific pieces of information.

In PDF and paper editions, this manual uses typefaces drawn from the Liberation Fonts1 set. The
Liberation Fonts set is also used in HTML editions if the set is installed on your system. If not,
alternative but equivalent typefaces are displayed. Note: Red Hat Enterprise Linux 5 and later includes
the Liberation Fonts set by default.

1.1. Typographic Conventions
Four typographic conventions are used to call attention to specific words and phrases. These
conventions, and the circumstances they apply to, are as follows.

Mono-spaced Bold

Used to highlight system input, including shell commands, file names and paths. Also used to highlight
key caps and key-combinations. For example:

To see the contents of the file my_next_bestselling_novel in your current
working directory, enter the cat my_next_bestselling_novel command at the
shell prompt and press Enter to execute the command.

The above includes a file name, a shell command and a key cap, all presented in Mono-spaced Bold
and all distinguishable thanks to context.

Key-combinations can be distinguished from key caps by the hyphen connecting each part of a key-
combination. For example:

Press Enter to execute the command.

Press Ctrl-Alt-F1 to switch to the first virtual terminal. Press Ctrl-Alt-F7 to return
to your X-Windows session.

The first sentence highlights the particular key cap to press. The second highlights two sets of three
key caps, each set pressed simultaneously.

If source code is discussed, class names, methods, functions, variable names and returned values
mentioned within a paragraph will be presented as above, in Mono-spaced Bold. For example:

File-related classes include filesystem for file systems, file for files, and dir for
directories. Each class has its own associated set of permissions.

Proportional Bold

This denotes words or phrases encountered on a system, including application names; dialogue
box text; labelled buttons; check-box and radio button labels; menu titles and sub-menu titles. For
example:

1 https://fedorahosted.org/liberation-fonts/

https://fedorahosted.org/liberation-fonts/
https://fedorahosted.org/liberation-fonts/

Preface

vi

Choose System > Preferences > Mouse from the main menu bar to launch Mouse
Preferences. In the Buttons tab, click the Left-handed mouse check box and click
Close to switch the primary mouse button from the left to the right (making the mouse
suitable for use in the left hand).

To insert a special character into a gedit file, choose Applications > Accessories
> Character Map from the main menu bar. Next, choose Search > Find… from the
Character Map menu bar, type the name of the character in the Search field and click
Next. The character you sought will be highlighted in the Character Table. Double-
click this highlighted character to place it in the Text to copy field and then click the
Copy button. Now switch back to your document and choose Edit > Paste from the
gedit menu bar.

The above text includes application names; system-wide menu names and items; application-specific
menu names; and buttons and text found within a GUI interface, all presented in Proportional Bold and
all distinguishable by context.

Note the > shorthand used to indicate traversal through a menu and its sub-menus. This is to avoid
the difficult-to-follow 'Select Mouse from the Preferences sub-menu in the System menu of the main
menu bar' approach.

Mono-spaced Bold Italic or Proportional Bold Italic

Whether Mono-spaced Bold or Proportional Bold, the addition of Italics indicates replaceable or
variable text. Italics denotes text you do not input literally or displayed text that changes depending on
circumstance. For example:

To connect to a remote machine using ssh, type ssh username@domain.name at
a shell prompt. If the remote machine is example.com and your username on that
machine is john, type ssh john@example.com.

The mount -o remount file-system command remounts the named file
system. For example, to remount the /home file system, the command is mount -o
remount /home.

To see the version of a currently installed package, use the rpm -q package
command. It will return a result as follows: package-version-release.

Note the words in bold italics above — username, domain.name, file-system, package, version and
release. Each word is a placeholder, either for text you enter when issuing a command or for text
displayed by the system.

Aside from standard usage for presenting the title of a work, italics denotes the first use of a new and
important term. For example:

When the Apache HTTP Server accepts requests, it dispatches child processes
or threads to handle them. This group of child processes or threads is known as
a server-pool. Under Apache HTTP Server 2.0, the responsibility for creating and
maintaining these server-pools has been abstracted to a group of modules called
Multi-Processing Modules (MPMs). Unlike other modules, only one module from the
MPM group can be loaded by the Apache HTTP Server.

1.2. Pull-quote Conventions
Two, commonly multi-line, data types are set off visually from the surrounding text.

Notes and Warnings

vii

Output sent to a terminal is set in Mono-spaced Roman and presented thus:

books Desktop documentation drafts mss photos stuff svn
books_tests Desktop1 downloads images notes scripts svgs

Source-code listings are also set in Mono-spaced Roman but are presented and highlighted as
follows:

package org.jboss.book.jca.ex1;

import javax.naming.InitialContext;

public class ExClient
{
 public static void main(String args[])
 throws Exception
 {
 InitialContext iniCtx = new InitialContext();
 Object ref = iniCtx.lookup("EchoBean");
 EchoHome home = (EchoHome) ref;
 Echo echo = home.create();

 System.out.println("Created Echo");

 System.out.println("Echo.echo('Hello') = " + echo.echo("Hello"));
 }

}

1.3. Notes and Warnings
Finally, we use three visual styles to draw attention to information that might otherwise be overlooked.

Note
A Note is a tip or shortcut or alternative approach to the task at hand. Ignoring
a note should have no negative consequences, but you might miss out on a
trick that makes your life easier.

Important
Important boxes detail things that are easily missed: configuration changes
that only apply to the current session, or services that need restarting before
an update will apply. Ignoring Important boxes won't cause data loss but may
cause irritation and frustration.

Preface

viii

Warning
A Warning should not be ignored. Ignoring warnings will most likely cause data
loss.

2. We Need Feedback!
If you find a typographical error in this manual, or if you have thought of a way to make this manual
better, we would love to hear from you! Please submit a report in Bugzilla: http://bugzilla.redhat.com/
bugzilla/ against the product JBoss Enterprise SOA Platform.

When submitting a bug report, be sure to mention the manual's identifier:
SOA_ESB_Administration_Guide

If you have a suggestion for improving the documentation, try to be as specific as possible when
describing it. If you have found an error, please include the section number and some of the
surrounding text so we can find it easily.

http://bugzilla.redhat.com/bugzilla/
http://bugzilla.redhat.com/bugzilla/

Chapter 1.

1

Configuration

1.1. Standalone server
If you wish to run the JBoss Enterprise SOA Platform ESB server on the same machine
as JBoss Application Server (JBossAS), then you should look at http://wiki.jboss.org/wiki/
ConfiguringMultipleJBossInstancesOnOneMachine.

1.2. JBossESB JMS Providers
The JBoss Enterprise SOA Platform currently supports JBoss Messaging, IBM Websphere MQ Series
(version 5.3 and 6.0) and Tibco EMS as Java Message Service (JMS) providers.

We recommend JBoss Messaging and it is included with the default configuration.

Any JSR-914 (http://jcp.org/en/jsr/detail?id=914) compliant JMS implementation should also work such
as Apache ActiveMQ and OracleAQ. However other JMS providers have not been fully tested and
are not supported at this time. If you wish to try using another JMS provider you should consult that
vendor's documentation.

Important
This section is not intended as a replacement for the configuration
documentation that comes with the supported JMS implementations. For
advanced capabilities, such as clustering and management, you should consult
that documentation as well.

How can I configure them?
You can configure JMSListeners and JMSGateways to listen to a Queue or Topic by setting the
following parameters in the Service Configuration file:

• jndi-URL

• jndi-context-factory

• jndi-pkg-prefix

• connection-factory

• destination-type

• destination-name

You will need to ensure that the client jar files of your chosen JMS-provider are included in your
classpath.

Each JMSListener and JMSGateway can be configured to use it's own JMS provider so you can use
more than one provider in your deployment.

The SOA Platform utilizes a connection pool to improve performance when using JMS.
By default the size of this pool is set to 20, but this can be overridden by setting the

http://wiki.jboss.org/wiki/ConfiguringMultipleJBossInstancesOnOneMachine
http://wiki.jboss.org/wiki/ConfiguringMultipleJBossInstancesOnOneMachine
http://jcp.org/en/jsr/detail?id=914

Chapter 1. Configuration

2

org.jboss.soa.esb.jms.connectionPool property in the transports section of the ESB configuration file.
The service will keep retrying for up to 30 seconds if an initial session cannot be obtained. This time-
out period can be configured using the org.jboss.soa.esb.jms.sessionSleep property.

Important
In the following sections we will make the following assumptions:

• your JMS provider runs on 'localhost'

• the connection-factory is 'ConnectionFactory'

• the destination-type of 'queue'

• the destination-name is 'queue/A'

1.2.1. JBossMessaging
JBoss Messaging is the default JMS provider for the JBoss SOA Platform.

For JBossMessaging you should set the parameters to:

jndi-URL="localhost”
jndi-context-factory="org.jnp.interfaces.NamingContextFactory"
connection-factory="ConnectionFactory"
destination-type="queue"
destination-name="queue/A"

The jar file jboss-messaging-client.jar must be included in your classpath. Note that this jar
file is included in jbossall-client.jar, which can be found in lib/ext. Instructions for installing
JBoss Messaging can be found on the project website:

http://labs.jboss.com/jbossmessaging/docs/userguide-1.4.0.GA/html/installation.html

1.2.1.1. JBoss Messaging Clustering Configuration
Configuring JBoss Messaging in a clustered setup gives you load balancing and failover facilities
for JMS. Since this capability has changed between different versions of JBoss Messaging and may
continue to do so, you should consult the relevant JBoss Messaging documentation.

1.2.2. Apache ActiveMQ

Warning
Apache ActiveMQ has not been fully tested & is not a supported JMS
implementation.

For Apache ActiveMQ you should set the parameters to:

jndi-URL="tcp://localhost:61616”

http://labs.jboss.com/jbossmessaging/docs/userguide-1.4.0.GA/html/installation.html

IBM Websphere MQ Series

3

jndi-context-
factory="org.apache.activemq.jndi.ActiveMQInitialContextFactory"
connection-factory="ConnectionFactory"
destination-type="queue"
destination-name="queue/A"

In your classpath you should have:
• activemq-core-4.x

• backport-util-concurrent-2.1.jar

Both jars can be found in lib/ext/jms/activemq.

Apache ActiveMQ has been tested with the 4.1.0-incubator version.

1.2.3. IBM Websphere MQ Series
IBM Websphere MQ Series requires capitalized queue names and does not allow slashes
(QUEUEA). The name of the Queue Manager in MQ should match the value of 'connection-factory'
or you will need to bind this name to JNDI. In our case, we created a Queue Manager named
"ConnectionFactory".

jndi-URL="localhost:1414/SYSTEM.DEF.SVRCONN”
jndi-context-factory="com.ibm.mq.jms.context.WMQInitialContextFactory"
connection-factory="ConnectionFactory"
destination-type="queue"
destination-name="QUEUEA"

On your classpath you should have:
• com.ibm.mq.pcf.jar

• mqcontext.jar

• com.ibm.mq.jar (client jar)

• com.ibm.mqjms.jar (client jar)

Please note that the client jars differ between MQ 5.3 and MQ 6.0, but the 6.0 jars should be backward
compatible. The jars are not open source, and are not provided by us. You will have to obtain them
from your Websphere AS and MQ installations.

Also note that you may receive the following exception when running MQ 6.0, which can be fixed by
adding the user that runs the JBoss Enterprise SOA Platform to the mqm group.

Message: Unable to get a MQ series Queue Manager or Queue Connection.
 Reason: failed to
create connection --javax.jms.JMSSecurityException: MQJMS2013: invalid
 security
authentication supplied for MQQueueManager

Chapter 1. Configuration

4

1.2.4. Oracle Advanced Queuing (AQ)

Warning
OracleAQ has not been fully tested & is not a supported JMS implementation.

For Oracle AQ you should set the parameters to:

connection-factory=”QueueConnectionFactory”

and use the following properties:

<property name="java.naming.factory.initial"
 value="org.jboss.soa.esb.oracle.aq.AQInitialContextFactory"/>
<property name="java.naming.oracle.aq.user" value="<user>"/>
<property name="java.naming.oracle.aq.password" value="<pw>"/>
<property name="java.naming.oracle.aq.server" value="<server>"/>
<property name="java.naming.oracle.aq.instance" value="<instance>"/>
<property name="java.naming.oracle.aq.schema" value="<schema>"/>
<property name="java.naming.oracle.aq.port" value="1521"/>
<property name="java.naming.oracle.aq.driver" value="thin"/>

An alternative option is to specify a database connection URL. Here is an example that allows a user
to connect to an Oracle "Real Application Cluster" (RAC):

<property name="java.naming.factory.initial"
 value="org.jboss.soa.esb.oracle.aq.AQInitialContextFactory"/>
<property name="java.naming.oracle.aq.user" value="<user>"/>
<property name="java.naming.oracle.aq.password" value="<pw>"/>
<property name="java.naming.oracle.aq.url"
 value="jdbc:oracle:thin:@(description=(address_list=(load_balance=on)
(failover=on)(address=(protocol=tcp)(host=host1)
(port=1621))(address=(protocol=tcp)(host=host2)(port=1621)))
(connect_data=(service_name=SID)(failover_mode=(type=select)
(method=basic)))) "/>

You may notice the reference to the InitialContext factory. You only need this if you want to avoid
OracleAQ registering its queues with an LDAP server. The AqinitialContextFactory references
code in a plugin jar that you can find in the plugins/org.jboss.soa.esb.oracle.aq directory.
The jar is called org.jboss.soa.esb.oracle.aq-4.2.jar and you will have to deploy it to the
jbossesb.sar/lib directory.

When creating a Queue in Oracle AQ make sure to select a payload type of SYS AQ
$_JMS_MESSAGE.

For a sample you can check the samples/quickstarts/helloworld_action/oracle-aq
directory for an example jboss-esb.xml configuration file.

Tibco Enterprise Message Service (EMS)

5

1.2.5. Tibco Enterprise Message Service (EMS)
When using Tibco EMS you should set the parameters to:

jndi-URL="tcp://localhost:7222”
jndi-context-factory=”com.tibco.tibjms.naming.TibjmsInitialContextFactory"
connection-factory="QueueConnectionFactory"
destination-type="queue"
destination-name="<queue-name>"

In your classpath you should have the client jars that ship with Tibco EMS, which are found in the
tibco/ems/clients/java dir.
• jaxp.jar

• jndi.jar

• tibcrypt.jar

• tibjmsapps.jar

• tibrvjms.jar

• jms.jar

• jta-spec1_0_1.jar

• tibjmsadmin.jar

• tibjms.jar

TibcoEMS version 4.4.1 has tested with JBoss SOA

1.2.6. Extension Properties
By default the JNDI configuration used to retrieve the JMS resources will inherit all properties with
names prefixed by "java.naming". Some JMS providers may specify properties that use a different
naming prefix.

To support these properties, we provide a mechanism to specify property prefixes for each provider.
This allows properties which use these additional prefixes to be inherited.

The prefixes are configured by defining the "jndi-prefixes" property on the associated jms-provider
element, containing a comma separated list of the additional prefixes. The extension properties are
also configured in the same location.

<jms-provider name=”JMS” connection-factory=”ConnectionFactory”>
 <property name=”jndi-prefixes” value=”test.prefix.”/>
 <property name=”test.prefix.extension1” value=”extension1”/>
 <property name=”test.prefix.extension2” value=”extension2”/>
</jms-provider>

1.3. Database Configuration
The SOA Platform uses a database for persisting Registry services, and the Message-Store.

Chapter 1. Configuration

6

Database scripts for each of these can be found under:

Service Registry: ESB_ROOT/install/juddi-registry/sql

Message-Store: ESB_ROOT/services/jbossesb/src/main/resources/message-store-sql

A few database types and their scripts are provided, and you should be able to easily create one for
your particular database (if you do, please contribute it back to us).

For the Message-Store, you will need to also update the data-source setting properties in the main
config file jbossesb-properties.xml. The following are settings you will need to change, based on the
connection information appropriate to your environment – these settings are found in the DBSTORE
section of the file.

As long as there is a script for your database the SOA Platform will auto-create the schema's on
startup. By default the SOA Platform is configured to use a JEE DataSource.

<properties name="dbstore">
 <property name="org.jboss.soa.esb.persistence.db.conn.manager"
 value="org.jboss.soa.esb.persistence.manager.J2eeConnectionManager"/>

 <!-- this property is only used if using the
 j2ee connection manager -->
 <property name="org.jboss.soa.esb.persistence.db.datasource.name"
 value="java:/JBossESBDS"/>
</properties>

When running from the standalone bootstrapper use:

<properties name="dbstore">
 <!-- connection manager type -->
 <property name="org.jboss.soa.esb.persistence.db.conn.manager"
 value="org.jboss.soa.esb.persistence.manager.
StandaloneConnectionManager"/>
 <property name="org.jboss.soa.esb.persistence.db.conn.manager"
 <property name="org.jboss.soa.esb.persistence.db.connection.url"
 value="jdbc:hsqldb:hsql://localhost:9001/jbossesb"/>
 <property name="org.jboss.soa.esb.persistence.db.jdbc.driver"
 value="org.hsqldb.jdbcDriver"/>
 <property name="org.jboss.soa.esb.persistence.db.user" value="sa"/>
 <property name="org.jboss.soa.esb.persistence.db.pwd" value=""/>
 <property name="org.jboss.soa.esb.persistence.db.pool.initial.size"
 value="2"/>
 <property name="org.jboss.soa.esb.persistence.db.pool.min.size"
 value="2"/>
 <property name="org.jboss.soa.esb.persistence.db.pool.max.size"
 value="5"/>
 <property name="org.jboss.soa.esb.persistence.db.pool.test.table"
 value="pooltest"/>
 <property name="org.jboss.soa.esb.persistence.db.pool.timeout.millis"
 value="5000"/>
</properties>

Switching Databases

7

Database Configuration Properties
org.jboss.soa.esb.persistence.db.conn.manager

The database connection manager.

org.jboss.soa.esb.persistence.db.datasource.name
The datasource name (used for JNDI lookup)

org.jboss.soa.esb.persistence.db.connection.url
The database connection URL.

org.jboss.soa.esb.persistence.db.jdbc.driver
JDBC Driver

org.jboss.soa.esb.persistence.db.user
The database user

org.jboss.soa.esb.persistence.db.pwd
The database password

org.jboss.soa.esb.persistence.db.pool.initial.size
The initial size of database connection pool

org.jboss.soa.esb.persistence.db.pool.min.size
The minimum size of database connection pool

org.jboss.soa.esb.persistence.db.pool.max.size
The maximum size of database connection pool

org.jboss.soa.esb.persistence.db.pool.test.table
A table name (created dynamically by pool manager) to test for valid connections in the pool

org.jboss.soa.esb.persistence.db.pool.timeout.millis
The timeout period to wait for connection requests from pool

The Service Registry database information is contained in the esb.juddi.xml file. You should
consult the Service Registry section of this document for more detailed information on the various
settings, their respective values and how these effect the behavior of the SOA Platform.

The JBoss server comes with a pre-installed "Hypersonic" database (HSQLDB). The database can
only be accessed in the same JVM. The data-source definition can be found in the jbossesb.sar/
message-store-ds.xml.

Warning
Use of HSQLDB for production is not recommended.

1.4. Switching Databases
This section describes the steps to move from using the default Hypersonic database to Postgres.
The steps are the same for switching to other databases. Just replace "Postgres" with the name of the
database to which you wish to switch.

Chapter 1. Configuration

8

Warning
The Hypersonic database (HSQLDB) is included in the default SOA Platform
installation. This database has a number of limitations and is included only for
testing and demonstration use. It is not suitable for production deployment and
is not supported in that capacity.

1.4.1. Step by Step
1. Remove deploy/hsqldb-ds.xml and add the following in a file named deploy/postgres-

ds.xml:

<?xml version="1.0" encoding="UTF-8"?>
<datasources>
 <local-tx-datasource>
 <jndi-name>DefaultDS</jndi-name>
 <connection-url>jdbc:postgresql://host:port/database</connection-url>
 <driver-class>org.postgresql.Driver</driver-class>
 <user-name>username</user-name>
 <password>password</password>
 <metadata>
 <type-mapping>PostgreSQL 7.2</type-mapping>
 </metadata>
 <check-valid-connection-sql>
 select count(*) from jbm_user
 </check-valid-connection-sql>
 </local-tx-datasource>
</datasources>

Modify the above to suite your needs, connection parameters and such. Make sure the name of
the DS is the same though(DefaultDS)

2. Replace deploy/jbossesb.sar/juddi-ds.xml with the same configuration in the previous
step (change the database name if needed). Ensure you keep the jndi-name(juddiDB)

3. Replace deploy/jbossesb.esb/message-store-ds.xml with the same configuration in
step one (change the database name if needed). Ensure you keep the jndi-name(JBossESBDS).

4. Replace the database name in the 'message-store-sql' element in deploy/jbossesb.esb/
jbossesb-service.xml:

<?xml version="1.0" encoding="UTF-8"?>
<server>
 <mbean code="org.jboss.internal.soa.esb.dependencies.DatabaseInitializer"
 name="jboss.esb:service=MessageStoreDatabaseInitializer">
 <attribute name="Datasource">java:/JBossESBDS</attribute>
 <attribute name="ExistsSql">select * from message</attribute>
 <attribute name="SqlFiles">
 message-store-sql/postgresql/create_database.sql
 </attribute>

Using a JSR-170 Message Store

9

 <depends>
 jboss.jca:service=DataSourceBinding,name=JBossESBDS
 </depends>
 </mbean>
</server>

5. Edit deploy/jbossesb.sar/esb.uddi.xml, and verify that it has a section that looks like this:

<entry key="juddi.isUseDataSource">true</entry>

<!-- jUDDI DataSource to use -->
<entry key="juddi.dataSource">java:/juddiDB</entry>

<!-- jUDDI database creation -->
<entry key="juddi.isCreateDatabase">true</entry>

<!-- <entry key="juddi.tablePrefix">JUDDI_</entry> -->
<entry key="juddi.databaseExistsSql">
 select * from ${prefix}BUSINESS_ENTITY
</entry>

<entry key="juddi.sqlFiles">
juddi-sql/postgresql/create_database.sql,juddi-sql/postgresql/import.sql
</entry>

6. Replace deploy/jboss-messaging/hsqldb-persistence-service.xml with the
postgres-persistence-service.xml from the version of JBM that you are running.

This needs to match the same version and might not work if the versions mismatch. These files
can be found in src/etc/server/default/deploy of a JBM distribution.

7. Copy the database driver to the servers lib directory and fire up the server.

1.5. Using a JSR-170 Message Store
The JBoss SOA Platform allows for multiple message store implementations via a plugin-based
architecture. One of your alternatives to using the default database message store is to use a JSR-170
compliant Java Content Repository (JCR). The JCR implementation included is Apache Jackrabbit.
To enable the JCR message store, add the following property to the "core" section of the jbossesb-
properties.xml file in the root of the jboss-esb.sar:

<property name="org.jboss.soa.esb.persistence.base.plugin.jcr"
value="org.jboss.internal.soa.esb.persistence.format.jcr.JCRMessageStorePlu
gin"/>

This adds the JCR plugin to the list of available message stores. The JCR message store can use
an existing repository via JNDI or can create a standalone instance locally on the application server.
The following list of properties should be added in the "dbstore" section of jbossesb-properties.xml to
configure repository access:

<property name="org.jboss.soa.esb.persistence.jcr.jndi.path"

Chapter 1. Configuration

10

 value="jcr"/>
<property name="org.jboss.soa.esb.persistence.jcr.username"
 value="username"/>
<property name="org.jboss.soa.esb.persistence.jcr.password"
 value="password"/>
<property name="org.jboss.soa.esb.persistence.jcr.root.node.path"
 value="JBossESB/MessageStore"/>

• jcr.jndi.path - optional path in JNDI where the repository is found. If not specified, a new repository
will be created based on the repository.xml located in the root of jbossesb.sar. In this case,
repository data is stored in the JBossAS/server/{servername}/data/repository directory

• jcr.username - username for getting a repository session

• jcr.password - password for getting a repository session

• jcr.root.node.path - the path relative to the root of the repository where messages will be stored.

To quickly test that your JCR message store is configured properly, add the
org.jboss.soa.esb.actions.persistence.StoreJCRMessage action onto an existing
service. The action will attempt to store the current message to the JCR store.

1.6. Message Tracing
It is possible to trace any and all Messages sent through the JBoss SOA Platform. This is often
required for a number of reasons, including the audit trail and debugging. Messages must be uniquely
identified using the MessageID field of the Message header in order to be traced. This is referred to in
the Programmers' Guide. This is the only way in which Messages can be uniquely identified within the
JBoss SOA Platform.

By default, JBoss SOA components (e.g., gateways, ServiceInvoker and load balancing) log all
interactions with Messages using standard logger messages. The log messages will contain the
header information associated with the Message, enabling correlation across multiple SOA Platform
instances. These messages can be identified by looking for the following in your output:

header: [To: EPR: PortReference < <wsa:Address ftp://foo.bar/> >,
From: null, ReplyTo: EPR: PortReference < <wsa:Address http://bar.
foo/> >, FaultTo: null, Action: urn:dowork, MessageID: urn:foo/bar
/1234, RelatesTo: null]

Furthermore, you can enable a logging MetaData Filter, whose only role is to issue log messages
whenever a Message is either input to an SOA Platform component, or output from it. This filter,
org.jboss.internal.soa.esb.message.filter.TraceFilter, can be placed within the Filter section of the
JBossESB configuration file, in conjunction with any other filters: it has no effect on the input or output
Message. Whenever a Message passes through this filter, you will see the following log at info level:

TraceFilter.onOutput (header: [To: EPR: PortReference < <wsa:Add
ress ftp://foo.bar/> >, From: null, ReplyTo: EPR: PortReference <
<wsa:Address http://bar.foo/> >, FaultTo: null, Action: urn:dowork
, MessageID: urn:foo/bar/1234, RelatesTo: null])

TraceFilter.onInput (header: [To: EPR: PortReference < <wsa:Addr

Clustering and Fail-Over Support

11

ess ftp://foo.bar/> >, From: null, ReplyTo: EPR: PortReference < <
wsa:Address http://bar.foo/> >, FaultTo: null, Action: urn:dowork,
MessageID: urn:foo/bar/1234, RelatesTo: null])

TraceFilter will only log if the property org.jboss.soa.esb.messagetrace is set to on/ON. The default
setting is off/OFF. If enabled it will log all Messages that pass through it. However you may enable
finer grained control over which Messages are logged and which are ignored. To do this make sure
that the property org.jboss.soa.esb.permessagetrace is set to on/ON. Those Messages with a
property of org.jboss.soa.esb.message.unloggable set to yes/YES will now be ignored by this filter.

1.7. Clustering and Fail-Over Support
JBoss SOA has support for fail-over of "stateless" services. You should consult the Programmers'
Guide for further details, but the pertinent issues to note are:

• Because ServiceInvoker hides much of the fail-over complexity from users, it only works with
native SOA Platform Messages. Furthermore, not all gateways have been modified to use the
ServiceInvoker, so incoming SOA Platform-unaware messages to those gateway implementations
may not always be able to take advantage of service fail-over. The included Release Notes contain
more details regarding this.

• When the ServiceInvoker tries to deliver a message to your Service it may now get a choice
of potentially multiple Endpoint References (EPR). In order to help it determine which one
to select, you can configure a Policy. In the jbossesb-properties.xml you can set the
org.jboss.soa.esb.loadbalancer.policy property. Right now three Policies are provided, or you can
create your own.

1. First Available: If a healthy ServiceBinding is found it will be used unless it dies, and it will move
to the next EPR in the list. This Policy does not provide any load balancing between the two
service instances.

2. Round Robin: A typical Load Balance Policy where each EPR is hit in order of the list.

3. Random Robin: This one is like the previous policy, but the selection is randomized.

• The EPR list that the Policy uses may get smaller over time as dead EPRs will be removed. When
the list is exhausted or the time-to-live of the list cache is exceeded, the ServiceInvoker will obtain
a fresh list of EPRs from the Registry. The org.jboss.soa.esb.registry.cache.life property defaults to
60000 milliseconds but can be set in the jbossesb-properties file.

• If none of the EPRs work then this would be a good situation for using the Message Redelivery
Service.

• If you want to run the same service on more than one node in a cluster you have to wait for service
registry cache re-validation before the service will be fully working in the clustered environment.
You can setup this cache re-validation timeout in deploy/jbossesb.sar/jbossesb-
properties.xml.

<properties name="core">
 <property name="org.jboss.soa.esb.registry.cache.life" value="60000"/>

<!-- 60 seconds is the default -->
</properties>

Chapter 1. Configuration

12

• If you set the org.jboss.soa.esb.failure.detect.removeDeadEPR property to "true," then whenever
the ServiceInvoker suspects an EPR has failed it will remove it from the Registry. The default
setting is "false" because this should be used with extreme care. A service that is simply overloaded
and slow to respond may have its EPR removed from the Registry by mistake. These "orphaned"
services will receive no further interactions and may have to be restarted.

1.8. Using OpenSSO with the SOA Platform
The JBoss SOA Platform includes the Open Web SSO project (OpenSSO) to simplify the
implementation of a transparent single sign-on (SSO) service.

More information about OpenSSO, please visit its website at: http://opensso.dev.java.net

1.8.1. Installing and configuring OpenSSO in Tomcat
There is an known issue in deploying OpenSSO on the JBoss Enterprise SOA Platform but OpenSSO
can be deployed to other web-containers for use with the SOA Platform.

Instructions are provided here for deploying to Tomcat. Information about using OpenSSO with other
web-containers can be found at https://opensso.dev.java.net/public/use/docs/fampdf/index.html.

Details concerning the deployment issue can be found at https://jira.jboss.org/jira/browse/SOA-731.

JAVA_OPTS="$JAVA_OPTS "-Xmx1G" "-
Djava.util.logging.manager=org.apache.juli.ClassLoaderLogManager"

JAVA_OPTS="$JAVA_OPTS "-Xmx1G" "-
Djava.util.logging.manager=org.apache.juli.ClassLoaderLogManager"

JAVA_OPTS="$JAVA_OPTS "-Xmx1G" "-
Djava.util.logging.manager=org.apache.juli.ClassLoaderLogManager"

-

JAVA_OPTS="$JAVA_OPTS "-Xmx1G" "-
Djava.util.logging.manager=org.apache.juli.ClassLoaderLogManager"

Example 1.1. Adding max size to JAVA_OPTS

JAVA_OPTS="$JAVA_OPTS "-Xmx1G" "-
Djava.util.logging.manager=org.apache.juli.ClassLoaderLogManager"

Example 1.2. Adding max size to JAVA_OPTS

Procedure 1.1. Deploying OpenSSO to Tomcat
1. Download Tomcat from the Apache site: http://tomcat.apache.org

http://opensso.dev.java.net
https://opensso.dev.java.net/public/use/docs/fampdf/index.html
https://jira.jboss.org/jira/browse/SOA-731
http://tomcat.apache.org

Configuring OpenSSO for the JBoss SOA Platform

13

2. Unzip it to a directory. The following examples assume that this directory is /opt/tomcat

3. Edit /opt/tomcat/bin/catalina.sh (catalina.bat for Windows deployments) and add -
Xmx1G to the JAVA_OPTS property. This specifies the maximum heap size of the JVM instance
as one gigabyte.

JAVA_OPTS="$JAVA_OPTS "-Xmx1G" "-
Djava.util.logging.manager=org.apache.juli.ClassLoaderLogManager"

Example 1.3. Adding max size to JAVA_OPTS

4. Download opensso.zip (build 4.5) from OpenSSO website: https://opensso.dev.java.net/public/
use/index.html

5. Unpack opensso.zip and copy opensso.war from deployable-war/ to /opt/tomcat/
webapps/

6. If you want to deploy JBoss Enterprise SOA Platform and Tomcat on the same machine you can
update the Tomcat port in $tomcat/server.xml as below:

<Connector port="8090" protocol="HTTP/1.1">
<Connector port="8099" protocol="AJP/1.3" redirectPort="8443"/>

Example 1.4. Updating Tomcat port

7. Start Tomcat by running /opt/tomcat/bin/startup.sh (startup.bat for Windows
deployments).

8. Open http://localhost:8090/opensso in a browser.

9. Click on Create Default Configuration.

10. Enter adminpass for the Default User[amAdmin] and ldappass for Default Agent
[amldapuser]

11. Click on Create Configuration. This is cause OpenSSO to configure itself

12. Open http://localhost:8090/opensso again. Log in using the proper credentials. User Name is
amAdmin and Password is the password you chose to go with amAdmin.

You can find further details of OpenSSO on Tomcat at this blog entry: http://blogs.sun.com/JohnD/
entry/how_to_install_tomcat_6.

1.8.2. Configuring OpenSSO for the JBoss SOA Platform
The AuthContext class found in openssoclientsdk.jar performs the authentication. The
following steps describe the configuration required to enable this integration.

Procedure 1.2. Configuring OpenSSO integration
1. Edit login-config.xml

You need to edit the login-config.xml file located in the conf/ directory of your server, eg. /
jbossas/server/default/conf/login-config.xml.

https://opensso.dev.java.net/public/use/index.html
https://opensso.dev.java.net/public/use/index.html
http://localhost:8090/opensso
http://localhost:8090/opensso
http://blogs.sun.com/JohnD/entry/how_to_install_tomcat_6
http://blogs.sun.com/JohnD/entry/how_to_install_tomcat_6

Chapter 1. Configuration

14

<application-policy name="OpenSSOLogin">
 <authentication>
 <login-module
 code="org.jboss.soa.security.opensso.OpenSSOLoginModule"
 flag="required">
 <module-option name="orgName">opensso</module-option>
 <module-option name="moduleName">DataStore</module-option>
 <module-option name="amPropertiesFile">
 /props/AMConfig.properties
 </module-option>
 </login-module>
 </authentication>
</application-policy>

Example 1.5. Editing login-config.xml for OpenSSO

You need to have above configuration in the login-config.xml to provide the ability
to integrate with OpenSSO. the 'orgName' and the 'moduleName' are the information
that you configured in the OpenSSO system. The last property shows that where the
AMConfig.properties file located.

2. Edit AMConfig.properties

AMConfig.properties is located in the conf/props/ directory of your server, eg. /
jbossas/server/default/conf/props/AMConfig.properties

By default, we configured it to localhost, 8080 port and the opensso context path. If you want
to change it to your own configuration, or adopt an existed deployed OpenSSO, it is suggested
that you use the scripts/setup.sh (setup.bat for Windows deployments) to do the
configuration.

The script is /samples/fam-client/sdk/scripts/setup.sh which is found in can be
found in opensso.zip.Once you run it, you will simply have a screen as following:

Debug directory (make sure this directory exists): /var/local/tmp
Password of the server application: opensso1
Protocol of the server: http
Host name of the server: putian.nay.redhat.com
Port of the server: 8080
Server's deployment URI: opensso
Naming URL (hit enter to accept default value, http://
putian.nay.redhat.com:8080/opensso/namingservice):

Copy the AMConfig.properties from $opensso.zip/samples/fam-client/sdk/
resources/AMConfig.properties. For other information about opensso configuration,
please conduct the opensso documentation at: http://opensso.dev.java.net.

After finishing the above two steps, you are able to use the OpenSSOLogin module as a JAAS plugin
provider.

You can use it as an identity provider to secure the SOA Platform like this:

http://opensso.dev.java.net

Configuring OpenSSO for the JBoss SOA Platform

15

<service category="OpenSSO"
 name="SimpleListenerSecured" description="Hello World">
 <security moduleName="OpenSSOLogin" runAs="adminRole"/>
 <listeners>
 <jms-listener name="JMS-Gateway" busidref="quickstartGwChannel"
 maxThreads="1" is-gateway="true"/>
 </listeners>

 <actions mep="OneWay">
 <action name="debug" class="org.jboss.soa.esb.actions.SystemPrintln">
 <property name="printfull" value="false"/>
 <property name="message" value="In Service1"/>
 </action>
 </actions>
</service>

16

Chapter 2.

17

Registry
At the heart of all JBoss SOA Platform deployments is the registry. This is fully described in the JBoss
SOA Platform Services Guide, where configuration information is also discussed. However, it is worth
noting the following:

• When services run they typically place the EndPointReference (EPR), through which they can be
contacted, within the registry. If they are correctly developed, then services should remove EPRs
from the registry when they terminate. However, entries could be left within the registry by machine
crashes or incorrectly developed services. These stale entries prevent the correct execution of
subsequent deployments. In that case these entries may be removed manually. However, it is
obviously important that you ensure the system is in an inactive state before doing so.

• If you set the optional remove-old-service tag name in the EPR to "true" then the ESB will remove
any existing service entry from the Registry prior to adding this new instance. However, this option
should be used with care, because the entire service will be removed, including all EPRs.

18

Chapter 3.

19

Configuring Web Service Integration
The JBoss SOA Platform exposes Webservice Endpoints using the SOAPProcessor action. This
action integrates the JBoss Webservices v2.x container into JBoss SOA, allowing you to invoke
JBossWS Endpoints over any channel supported by JBoss SOA.

The SOAPProcessor action requires JBossWS 2.0.1.SP2 (native) or higher to be properly installed on
your JBoss SOA Server.

You should refer to the Programmers' Guide for more details.

20

Chapter 4.

21

Default ReplyTo EPR
JBoss SOA uses Endpoint References (EPRs) to address messages to and from services. As
described in the Programmers' Guide, messages have headers that contain recipient addresses,
sequence numbers (for message correlation) and optional addresses for replies, faults etc. Because
the recommended interaction pattern within JBoss SOA is based on one-way message exchange,
responses to messages are not necessarily automatic: it is application dependent as to whether or not
a sender expects a response.

A reply address is an optional part of the header routing information which an application should
set if necessary. When a response is required and the ReplyTo EPR has not been set, JBoss SOA
supports default values for each type of transport. Some of these ReplyTo defaults require system
administrators to configure JBoss SOA correctly.
• For JMS, it is assumed to be a queue with the same name as the one used to deliver the original

request, prefixed with '_reply'.

• For JDBC, it is assumed to be a table in the same database with the same name as one used to
deliver the original request, prefixed with '_reply_table'. The new table needs the same columns as
the request table.

• For local and remote files no administration changes are required. Responses are written into the
same directory as the request, with a unique suffix to ensure that only the original sender will pick up
the response.

22

Chapter 5.

23

ServiceBinding Manager
If you wish to run multiple JBoss SOA servers on the same machine, you may want to use the JBoss
ServiceBinding Manager. The Binding Manager allows you to centralise port configuration for all of
the instances you will be running. The JBoss SOA server ships with a sample bindings file in docs/
examples/binding-manager/sample-bindings.xml.

The JBoss Application Server documentation contains detailed instructions on how to set up the
ServiceBinding Manager.

Note
If you are using jboss-messaging as your JMS provider, your ServiceBinding
Manager configuration for jboss-messaging must match the contents of
remoting-service.xml.

24

Chapter 6.

25

Monitoring and Management
There are a number of options for monitoring and managing your ESB server. For instance, shipping
with the ESB are a number of useful JMX MBeans that help administrators monitor the performance of
their server.

Under the jboss.esb domain, you should see the following MBean types:

• deployment=<ESB package name> – Deployments show the state of all of the ESB packages that
have been deployed and give information about their XML configuration and their current state.

• listener-name=<Listener name> – All deployed listeners are displayed with information including
their XML configuration, start time, maxThreads and state. The administrator has the options of
initializing, starting, stopping or destroying a listener.

• category=MessageCounter – Message counters display all of the services deployed for a listener,
each service's separate actions and counts of how many messages were processed, as well as the
processing time of each message.

• service=<Service-name> – Displays statistics for each service including message counts, state,
average size of message and processing time. The message counts may be reset and services may
be stopped and started.

Additionally, JMS domain MBeans show statistics for message queues, which is useful for debugging
or determining performance.

6.1. Monitoring and Management Console
The JBoss SOA Platform has its own monitoring and management console for SOA related properties
(http://localhost:8080/jbossesb).

The JBoss SOA monitoring console gathers information on the performance of different services that
are deployed. It also keeps records of their historical state over time. The monitoring console allows
users to get message counts by service, action, and node, as well as other information like processing
time, number of failed messages, bytes transferred, and last successful and failed message date time.

The monitoring console is automatically installed in JBossAS and the stand-alone ESB server.
However, if you have need to install it manually then installing the JBoss ESB monitoring console is
easy. The console uses HSQLDB as its database by default, so you can install with the steps of :

% cd tools/console/management-esb
% ant deploy

You must then point your browser to the following URL:

http://localhost:8080/jbossesb

6.1.1. Alternative Database Usage
The console has also been tested with Oracle and MySQL as well as HSQLDB. It can be extended to
use any JDBC/Hibernate-supported database.

In the management-esb directory there is a db.properties file. In order to change the database
from HSQLDB to MySQL or Oracle, edit this file and change the db property to "mysql" or "oracle"

http://localhost:8080/jbossesb

Chapter 6. Monitoring and Management

26

respectively. You will also need to add your JDBC driver into the server/<instance>/lib directory of your
application server. JBoss SOA ships with hsqldb.jar in this directory by default.

For MySQL, it also may be necessary to create the database "statistics" before deploying. Please look
over the management-ds.xml for your database in the /management-esb/src/main/resources/<db>
directory.

6.1.2. Collection Periods
The period of time between data collections is 10 minutes by default, but it can be set to any
desired period of minutes. The default collection period can be altered at build time by changing
the "pollMinuteFrequency" property in management-esb/db.properties, or by changing the
PollMinuteFrequency property in the jboss.esb:service=DataFilerScheduler Mbean in either the
monitoring console or jmx-console.

6.1.3. Console
The console requests and displays MBean information from each node within the ESB registry.

The console can be found at http://localhost:8080/jbossesb/.

Figure 6.1. JBoss ESB Monitoring Console

6.1.4. Polling
The console's default polling period is 10 minutes. This can can be changed using the jmx-console.
The Collect Statistics button at the top of the console page allows a user to force a statistics
collection.

6.1.5. Services
Each ESB service is displayed along with the processing time per action, processed count per action,
failed count per action, and overall message count (per service). If you select any of these options,
you should see a screen that charts the count or time you have selected.

http://localhost:8080/jbossesb/

Message Counter

27

By default, the last 10 records are displayed. You can display more records by changing the display
records text box or you can change the charting time period (graph over the last 5 minutes, hour, day,
week, month, or graph all records).

Figure 6.2. JBoss ESB Monitoring Console

6.1.6. Message Counter
The monitoring console also provides an overall counter which counts all messages that pass through
the ESB. The MessageCounter keeps track of the successful and failed message counts, as well as
time and date.

Chapter 6. Monitoring and Management

28

Figure 6.3. JBoss ESB Monitoring Console Message Counter

6.1.7. Transformations
The monitoring console keeps track of the processed count and processing time for each Smooks
Transformation that is registered. It also keeps track of the overall count for the transformation chain.

Figure 6.4. JBoss ESB Monitoring Console Transformations

6.1.8. Dead Letter Service
As has been mentioned in the Programmers' Guide, the DeadLetterService (DLQ) can be used to
store messages that cannot be delivered. This is a JBossESB service and can be monitored and
inspected. Note, however, that the DLQ is not used if the underlying transport has native support, e.g.,
JMS. In this case you should inspect the JBossESB DLQ as well as any transport-specific equivalent.

6.2. Alerts
The JBoss Web Console (https://wiki.jboss.org/auth/wiki/WebConsole) is a utility within both the
JBoss AS and the JBoss ESB Server that is capable of monitoring and sending alerts based on JMX
MBean properties. You can use this functionality to receive alerts for ESB-related events, such as the
DeadLetterService counter reaching a certain threshold.

1. Configure ./deploy/mail-service.xml with your SMTP settings.

2. Change ./deploy/monitoring-service.xml – uncomment the EmailAlertListener section and add
appropriate header related information.

3. Create a file ./deploy to serve as your monitor MBean.

<?xml version="1.0" encoding="UTF-8"?>
<server>

JON for SOA

29

 <mbean code="org.jboss.monitor.ThresholdMonitor"
 name="jboss.monitor:service=ESBDLQMonitor">
 <attribute name="MonitorName">
 ESB DeadLetterQueue Monitor
 </attribute>

 <attribute name="ObservedObject">
 jboss.esb:category=MessageCounter,
deployment=jbossesb.esb,service-name=DeadLetterService
 </attribute>

 <attribute name="ObservedAttribute">
 overall service message count
 </attribute>
 <attribute name="Threshold">4</attribute>
 <attribute name="CompareTo">-1</attribute>
 <attribute name="Period">1000</attribute>
 <attribute name="Enabled">true</attribute>
 <depends-list optional-attribute-name="AlertListeners">
 <depends-list-element>
 jboss.alerts:service=ConsoleAlertListener
 </depends-list-element>
 <depends-list-element>
 jboss.alerts:service=EmailAlertListener
 </depends-list-element>
 </depends-list>
 <depends>jboss.esb:deployment=jbossesb.esb</depends>
 </mbean>
</server>

This MBean will serve as a monitor, and once the DeadLetterService counter reaches 5, it will
send an e-mail to the address(es) specified in the monitoring-service.xml. Note that the alert is
only sent once, this being when the threshold is reached. If you want to be alerted again once the
counter is reset, you can also reset the alerted flag on your monitoring service MBean (in this case
jboss.monitor:service=ESBDLQMonitor).

For more details on how to use the JBoss Web Console monitoring, please read http://wiki.jboss.org/
auth/wiki/JBossMonitoring.

6.3. JON for SOA
An additional option that you have for monitoring and administering your JBoss SOA Platform server is
the JBoss Operations Network product.

The JBoss Operations Network (JON) product provides inventorying, administration, monitoring,
deployment and updating for JBoss-based middleware applications. This is performed using a
centrally managed model with a customizable web-portal interface. Additional details on this product
can be found at its website, http://www.jboss.com/products/jbosson.

"JON for SOA" is a standalone release of JON that includes functionality specifically designed for the
JBoss SOA Platform. This chapter provides an overview of that functionality and assumes a basic
knowledge of the JBoss Operations Network product.

http://wiki.jboss.org/auth/wiki/JBossMonitoring
http://wiki.jboss.org/auth/wiki/JBossMonitoring
http://www.jboss.com/products/jbosson

Chapter 6. Monitoring and Management

30

Important
Unlike the embedded JBoss SOA Platform consoles, access to the JON
console is not restricted to the local server. This grants you greater freedom
in its use, but also means you cannot rely on those restrictions to ensure the
security of the JON console.

Adding your JBoss SOA Platform Server to the JON Inventory
Your JBoss SOA Platform server will appear in JON as a resource of type "JBossAS Server". It will
have the description of "JBoss Enterprise SOA Platform".

When you first try to access your SOA Platform server in JON you will see an error message because
you have not yet provided the authentication details for a valid SOA Platform user.

Figure 6.5. Error displayed when no or incorrect authentication information is supplied.

The user information is found in the conf/props/soa-users.properties file of the server profile
in use. You enter this information as Principal and Credentials (username & password) in the server's
Connection Properties. These details are accessed by selecting the server and then the INVENTORY
tab. The error message also contains a shortcut link to the connection properties page.

JBoss SOA ESB Statistics
Once your JBoss SOA Platform server is correctly configured in JON you will find JBoss ESB
Statistics listed under it in Resources on the MONITOR tab.

Clicking on JBoss ESB Statistics drills down into the ESB Statistics. At this level the figures
displayed are an overall of the ESB instance.

If you click on the JBoss ESB Deployment item this will show a list of all the deployed ESB packages
on your server. No statistics are displayed at this level.

Selecting an ESB deployment will drill down into that deployment and display the statistics for it. From
here you can also drill down into the details for the services and actions that make up the deployment.

JON for SOA

31

The metrics collected and displayed vary depending on the ESB component. The available metrics
include:

• Message Count

• Message Count (avg)

• Messages Failed

• Messages Failed (avg)

• Messages Successfully Processed

• Messages Successfully Processed (avg)

• Overall Bytes

• Overall Bytes Failed

• Overall Bytes Processed

• Processing Time

• Message Count

• Message Count (avg)

• Deployment Type

• .esb State

• .esb State String

• Message Counts (Failed)

• Message Counts (Successful)

• Message Counts (Total)

• Processed Bytes

• Last Failed Message Date

• Last Successful Message Date

• State

• Lifecycle State

• Maximum NUmber of Threads

• MEP

• Service Category

• Service Description

• Service Name

Chapter 6. Monitoring and Management

32

• Start Date

Based on these statistics, all the standard JON functionality such as Alerts and Charts can be
configured for an ESB Deployment, Service or Action.

Figure 6.6. Displayed Metrics

Managing deployed ESB archives
JON for SOA also includes functionality for deploying and deleting ESB archives on your server. This
functionality is found in the Child Resources section of the INVENTORY tab for JBoss ESB Statistics.

A new ESB archive can be deployed by selecting JBoss ESB Deployment from the Create New
menu. From the Create New Resource page you then specify the archive to deploy, to where to
should deploy it (normally your deploy directory) and whether to deploy it as a zipped or exploded
archive.

Existing archives can be deleted by checking them in the list of Child Resources and clicking
DELETE.

The history of ESB deploy and delete requests is shown in this section as well.

JON for SOA

33

Automatic Service Discovery
The JON Agent will automatically detect ESB archives which have been deployed or deleted
independently of the JON interface. Newly deployed ESB archives are added to the server inventory
automatically but deleted archives are not removed from the inventory.

The default agent configuration only performs this service discovery once every 24 hours. You have
two means with which to change this time period.

1. Edit conf/agent-configuration.xml

This time period can be changed in the agent configuration file, conf/agent-
configuration.xml. You have to restart the agent for this to take effect.

<entry key="rhq.agent.plugins.service-discovery.period-
secs" value="86400"/>

Figure 6.7. Service discovery period setting in conf/agent-configuration.xml

2. Use JON console to edit the configuration

JON Agents can be added to your inventory of server resources. Once added, their configuration
can be edited like any other inventoried resource. You can edit the Service Discovery Period
value under the CONFIGURE tab of that resource. This does not require a restart of the Agent to
take effect.

Unlike the SOA Platform embedded console, there is no way to force the JON Console to perform
an immediate collection of new data. Buttons such as Get Current Values in the Metric Data tab
only update the display to reflect the most recently collected data. To obtain an immediate update
you can set the collection period to a very low value like 30 seconds (and then set the interval back
afterwards). For performance reasons you are not recommended to lower the collection period
significantly.

34

Chapter 7.

35

Hot Deployment

7.1. Server Mode
The JBoss SOA Platform supports "hot deployment". The server regularly checks the 'deploy' directory
for new files to deploy. However it also checks files that have already been deployed for specific
changes. When these changes are detected, the files are removed from deployment by the server and
the new files are deployed in their place. This is referred to as "hot re-deployment".

The specific changes that are monitored vary by package type.

1. sar files

The jbossesb.sar is hot deployable. It will redeploy when:

• the timestamp of the archive changes, if the sar is a compressed archive.

• the timestamp of the META-INF/jboss-service.xml changes, if the sar is in exploded form.

2. esb files

Any *.esb archive will redeploy when

• the timestamp of the archive changes, if the esb is a compressed archive.

• the timestamp of the META-INF/jboss-esb.xml changes, if the esb is in exploded form.

Our actions have life-cycle support. Upon hot re-deployment it will go down gracefully, finishing
active requests. It will not accept any more incoming messages until it is back up. All of this
occurs automatically. If you want to update just one action, you can use "Groovy" scripting to
modify an action at run-time (see the Groovy QuickStart at http://wiki.jboss.org/wiki/Wiki.jsp?
page=JBossESBQuickStart).

3. Rule Files

There are two options to refresh rule files (drl or dsl):

• redeploy the jbrules.esb archive

• turn on the 'ruleReload' in the action configuration (see JBossESBContentBasedRouting at
http://wiki.jboss.org/wiki/Wiki.jsp?page=JBossESBContentBasedRouting). Now if a rule file
changes it will be reloaded.

4. Transformation Files

There are two options to refresh transformation files:

• redeploy the esb archive in which the transformation file resides.

• send out a notification message over JMS(topic) using the esb-console. The Smooks
processors will receive this event and reload.

5. Business Process Definitions

http://wiki.jboss.org/wiki/Wiki.jsp?page=JBossESBQuickStart
http://wiki.jboss.org/wiki/Wiki.jsp?page=JBossESBQuickStart
http://wiki.jboss.org/wiki/Wiki.jsp?page=JBossESBContentBasedRouting

Chapter 7. Hot Deployment

36

New versions of jBPM Business Process Definitions can be deployed to the jBPM database
using the jBPM Eclipse plug-in. The new version will be used by new process instances. Existing
processes will finish their life-cycle on the previous definition. For more details please refer to the
jBPM documentation.

7.2. Standalone (Bootstrap) Mode
The bootstrapper does not deploy esb archives. You can only have one jboss-esb.xml
configuration file per node. It will monitor the timestamp on this file and it will reread the configuration
if a change occurs. To updates rules you will have to use the 'ruleReload'. To update BPDs, you can
follow the same process mentioned above.

Chapter 8.

37

Contract Publishing
Integrating to certain JBoss SOA endpoints may require information about that endpoint and the
operations it supports. This is particularly the case for Webservice endpoints exposed via the
SOAPProcessor action (see JBoss SOA Message Action Guide).

8.1. "Contract" Application
For this purpose, we bundle the "Contract" application with JBoss SOA 1. This application is installed
by default with the ESB (after running "ant deploy" from the install directory.) 2

It can be accessed via http://localhost:8080/contract/.

Figure 8.1. JBoss ESB "Contract" Application

As you can see, it groups the endpoint according to the Service with which it is associated (servicing).
Another thing you'll notice is how some of them have an active "Contract" hyperlink. The ones visible
here are for Webservice endpoints exposed via the SOAPProcessor. This hyperlink links off to the
WSDL.

8.2. Publishing a Contract from an Action
JBossESB discovers endpoint contracts based on the action pipeline that is configured on a Service.
It looks for the first action in the pipeline that publishes contract information. If none of the actions

1 This application is only being offered as a Technical Preview. It will be superseded in a later release.
2 Note that the Contract application is also bundled inside the JBoss SOA Console. If you are deploying the console, you will first
need to undeploy the default Contract application. Just remove contract.war from the default/deploy folder of your JBoss SOA
Server.

http://localhost:8080/contract/

Chapter 8. Contract Publishing

38

publish contract information, then the Contract application just displays "Unavailable" on Contract for
that endpoint.

An Action publishes contract information by being annotated with the
org.jboss.internal.soa.esb.publish.Publish annotation as follows (using the SOAPProcessor as an
example):

@Publish(WebserviceContractPublisher.class)
public class SOAPProcessor extends AbstractActionPipelineProcessor {
 //TODO: implement
}

Example SOAPProcessor code: http://anonsvn.labs.jboss.com/labs/jbossesb/trunk/product/services/
soap/src/main/java/org/jboss/soa/esb/actions/soap/SOAPProcessor.java

You then need to implement a "ContractPublisher" (org.jboss.soa.esb.actions.soap.ContractPublisher),
which requires implementation of just a single method:

public ContractInfo getContractInfo(EPR epr);

Example WebserviceContractPublisher code as an example: http://anonsvn.labs.jboss.com/
labs/jbossesb/trunk/product/services/soap/src/main/java/org/jboss/soa/esb/actions/soap/
WebserviceContractPublisher.java

http://anonsvn.labs.jboss.com/labs/jbossesb/trunk/product/services/soap/src/main/java/org/jboss/soa/esb/actions/soap/SOAPProcessor.java
http://anonsvn.labs.jboss.com/labs/jbossesb/trunk/product/services/soap/src/main/java/org/jboss/soa/esb/actions/soap/SOAPProcessor.java
http://anonsvn.labs.jboss.com/labs/jbossesb/trunk/product/services/soap/src/main/java/org/jboss/soa/esb/actions/soap/WebserviceContractPublisher.java
http://anonsvn.labs.jboss.com/labs/jbossesb/trunk/product/services/soap/src/main/java/org/jboss/soa/esb/actions/soap/WebserviceContractPublisher.java
http://anonsvn.labs.jboss.com/labs/jbossesb/trunk/product/services/soap/src/main/java/org/jboss/soa/esb/actions/soap/WebserviceContractPublisher.java

Chapter 9.

39

jBPM_Console

9.1. Overview
The jBPM Web Console is deployed by default as part of jbpm.esb and can be found at http://
localhost:8080/jbpm-console/. Please refer to the jBPM documentation for information regarding the
console.

http://localhost:8080/jbpm-console/
http://localhost:8080/jbpm-console/

40

Chapter 10.

41

Performance Tuning

10.1. Overview
There are various ways of tuning and optimizing the performance of the JBoss ESB for your specific
environment. Before doing this, however, you should realize that, as with any system, there is always
a compromise between performance and reliability. The default configuration is designed for maximum
reliability and resiliency, which may have an adverse affect on performance in certain circumstances.

10.2. InVM transport
The term InVM transport means that the service can be invoked using the ServiceInvoker from
within the same VM with minimal overhead. This is because it does not incur any networking or
message serialization overhead.

Important
Due to the volatility of the InVM queue, you may not be able to achieve all of
the ACID semantics, particularly when used with other transactional resources
such as databases.

This code shows you how to configure your service using InVM transport:

<service category="HelloWorld" name="Service1"
 description="Service 1" invmScope="GLOBAL">
 <listeners>
 <!-- So we just need to define a Gateway to the service... -->
 <jms-listener name="JMS-Gateway" busidref="quickstartGwChannel"
 is-gateway="true"/>
 </listeners>

 <actions>
 <action name="println"
 class="org.jboss.soa.esb.actions.SystemPrintln">
 <property name="message" value=" - > Service 1"/>
 </action>
 <!-- Route to the "Service 2" -->
 <action name="routeAction"
 class="org.jboss.soa.esb.actions.StaticRouter">
 <property name="destinations">
 <route-to service-category="HelloWorld"
 service-name="Service2"/>
 </property>
 </action>
 </actions>

</service>

Chapter 10. Performance Tuning

42

For additional details on the InVM transport refer to the "InVM Transport" section in Programmers
Guide.

10.3. Maximum Threads for MessageAwareListener
The default value for the maximum number of threads allowed by MessageAwareListener is 1. This
example shows how to change that value to 100:

<services>
 <service category="MyServiceCategory" name="MyWSProducerService1"
 description="WS Frontend speaks natively to the ESB"
 invmScope="GLOBAL">

 <property name="maxThreads">100</property>

 <listeners>
 <jbr-listener name="Http-Gateway" busidref="Http-1" is-
gateway="true" maxThreads="1"/>
 </listeners>

 <actions>

 <action name="println" class="org.jboss.soa.esb.actions.SystemPrintln">
 <property name="message" value=" - > Service 1"/>
 </action>
 </actions>
 </service>
</services>

10.4. Maximum Threads for jbr-listener
The default value for the maximum number of threads allowed by jbr-listener is 50. This example
shows how to change that value to 100:

<services>
 <service category="MyServiceCategory" name="MyWSProducerService1"
 description="WS Frontend speaks natively to the ESB"
 invmScope="GLOBAL">
 <listeners>
 <jbr-listener name="Http-Gateway" busidref="Http-1"
 is-gateway="true">
 <property name="jbr-maxThreads" value="100"/>
 </jbr-listener>
 </listeners>
 <actions>
 <action name="println"
 class="org.jboss.soa.esb.actions.SystemPrintln">
 <property name="message" value=" - > Service 1"/>
 </action>
 </actions>

Message Filters

43

 </service>
</services>

10.5. Message Filters
Message filters are used to dynamically augment the message. For example, they can add
transactions or security information when the message flows through the ESB. These may have
impacts upon performance, depending upon the particular message filters that have been configured
in your ESB. For further information regarding message filters please refer to the "Meta-data and
Filters" section in Programmers Guide.

44

45

Appendix A. Revision History
Revision 3.0 Mon June 15 2009 David Le Sage dlesage@redhat.com

Update for Version 5.0

Revision 1.0 Fri Sep 5 2008 Darrin Mison dmison@redhat.com

Initial Creation

mailto:dlesage@redhat.com
mailto:dmison@redhat.com

46

	ESB Administration Guide
	Table of Contents
	Preface
	1. Document Conventions
	1.1. Typographic Conventions
	1.2. Pull-quote Conventions
	1.3. Notes and Warnings

	2. We Need Feedback!

	Chapter 1. Configuration
	1.1. Standalone server
	1.2. JBossESB JMS Providers
	1.2.1. JBossMessaging
	1.2.1.1. JBoss Messaging Clustering Configuration

	1.2.2. Apache ActiveMQ
	1.2.3. IBM Websphere MQ Series
	1.2.4. Oracle Advanced Queuing (AQ)
	1.2.5. Tibco Enterprise Message Service (EMS)
	1.2.6. Extension Properties

	1.3. Database Configuration
	1.4. Switching Databases
	1.4.1. Step by Step

	1.5. Using a JSR-170 Message Store
	1.6. Message Tracing
	1.7. Clustering and Fail-Over Support
	1.8. Using OpenSSO with the SOA Platform
	1.8.1. Installing and configuring OpenSSO in Tomcat
	1.8.2. Configuring OpenSSO for the JBoss SOA Platform

	Chapter 2. Registry
	Chapter 3. Configuring Web Service Integration
	Chapter 4. Default ReplyTo EPR
	Chapter 5. ServiceBinding Manager
	Chapter 6. Monitoring and Management
	6.1. Monitoring and Management Console
	6.1.1. Alternative Database Usage
	6.1.2. Collection Periods
	6.1.3. Console
	6.1.4. Polling
	6.1.5. Services
	6.1.6. Message Counter
	6.1.7. Transformations
	6.1.8. Dead Letter Service

	6.2. Alerts
	6.3. JON for SOA

	Chapter 7. Hot Deployment
	7.1. Server Mode
	7.2. Standalone (Bootstrap) Mode

	Chapter 8. Contract Publishing
	8.1. "Contract" Application
	8.2. Publishing a Contract from an Action

	Chapter 9. jBPM_Console
	9.1. Overview

	Chapter 10. Performance Tuning
	10.1. Overview
	10.2. InVM transport
	10.3. Maximum Threads for MessageAwareListener
	10.4. Maximum Threads for jbr-listener
	10.5. Message Filters

	Appendix A. Revision History

