
JBoss Ruleflow 1.1

Ruleflow Guide
A User Guide for Ruleflow

David Le Sage (Product Version)

Ruleflow Guide

JBoss Ruleflow 1.1 Ruleflow Guide
A User Guide for Ruleflow
Edition 1

Author David Le Sage (Product Version)

Copyright © 2010 Red Hat.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is available
at http://creativecommons.org/licenses/by-sa/3.0/. In accordance with CC-BY-SA, if you distribute this
document or an adaptation of it, you must provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, MetaMatrix, Fedora, the Infinity
Logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other countries.

Linux® is the registered trademark of Linus Torvalds in the United States and other countries.

Java® is a registered trademark of Oracle and/or its affiliates.

XFS® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL® is a registered trademark of MySQL AB in the United States, the European Union and other
countries.

All other trademarks are the property of their respective owners.

A guide to using Ruleflow with BRMS 5.1

http://creativecommons.org/licenses/by-sa/3.0/

iii

Preface vii
1. Document Conventions .. vii

1.1. Typographic Conventions .. vii
1.2. Pull-quote Conventions ... viii
1.3. Notes and Warnings .. ix

2. We Need Feedback! ... ix

1. Introduction 1

2. Installer 3
2.1. Prerequisites .. 3
2.2. Download the installer .. 3
2.3. Download the installer .. 3
2.4. Using Eclipse Tooling ... 4
2.5. Using Guvnor repository ... 4
2.6. Using web management consoles ... 4

3. Getting Started 7
3.1. Creating Your First Process .. 7
3.2. Executing your first process .. 12

4. Rule Flow 15
4.1. Creating a RuleFlow Process .. 15

4.1.1. Using the Graphical RuleFlow Editor ... 15
4.1.2. Defining Processes Using XML .. 17
4.1.3. Defining Processes Using the Process API ... 18

4.2. Using a Process in Your Application .. 20
4.3. Detailed Explanation of the Different Node Types ... 21
4.4. Data .. 23
4.5. Constraints ... 24
4.6. Actions ... 24
4.7. Events ... 25
4.8. Exceptions ... 27
4.9. Timers ... 28
4.10. Updating processes .. 28

4.10.1. Process instance migration ... 29
4.11. Assigning Rules to a Ruleflow Group ... 30
4.12. A Simple Ruleflow .. 30
4.13. Using JBoss Rules 4.x RuleFlow Processes ... 33

5. Drools Flow API 35
5.1. Knowledge Base .. 35
5.2. Session .. 35
5.3. Events ... 35

6. Persistence 37
6.1. Runtime State .. 37

6.1.1. Binary Persistence ... 37
6.1.2. Safe Points ... 37
6.1.3. Configuring Persistence ... 37
6.1.4. Transactions .. 39

6.2. Process Definitions ... 40
6.3. History Log .. 40

6.3.1. Storing Process Events in a Database .. 41

7. JBoss Rules Flow Process Model 43

8. Rules and Processes 45

Ruleflow Guide

iv

8.1. Why Use Rules in Processes? .. 45
8.2. Why Integrate Rules and Processes in a Single Engine? .. 45
8.3. Approach ... 46

8.3.1. Teaching a Rules Engine About Processes ... 46
8.3.2. Inversion of Control ... 47

8.4. Example .. 47
8.4.1. Evaluating a Set of Rules in Your Process .. 48
8.4.2. Using Rules for Evaluating Constraints ... 49
8.4.3. Assignment Rules .. 50
8.4.4. Describing Exceptional Situations Using Rules .. 51
8.4.5. Modularizing Concerns Using Rules .. 51
8.4.6. Rules for Altering Process Behavior Dynamically ... 51
8.4.7. Integrated Tooling .. 52
8.4.8. Domain-specific Rules and Processes .. 52

9. Domain-specific processes 55
9.1. Introduction .. 55
9.2. Example: Notifications .. 56

9.2.1. Creating the work definition .. 56
9.2.2. Registering the work definition .. 56
9.2.3. Using your new work item in your processes ... 57
9.2.4. Executing work items ... 58

9.3. Testing processes using work items .. 59
9.4. Future .. 59

10. Human Tasks 61
10.1. Human tasks inside processes .. 61

10.1.1. Swimlanes ... 63
10.2. Human task management component .. 64

10.2.1. Task life cycle ... 64
10.2.2. Linking the task component to the JBoss Rules Flow engine 66
10.2.3. Starting the Task Management Component ... 67
10.2.4. Interacting With the Task Management Component .. 68

10.3. Human Task Management Interface .. 70
10.3.1. Eclipse integration .. 70
10.3.2. Web-based Task View ... 70

11. Debugging processes 71
11.1. A simple example ... 71
11.2. Debugging the process ... 72

11.2.1. The Process Instances View .. 72
11.2.2. The Audit View .. 74

12. JBoss Rules IDE Features 77
12.1. JBoss Rules Runtimes .. 77

12.1.1. Defining a JBoss Rules Runtime ... 77
12.1.2. Selecting a runtime for your JBoss Rules project ... 79

12.2. Process Skins .. 81

13. Business Activity Monitoring 83
13.1. Reporting ... 83
13.2. Direct Intervention .. 85

14. Business Process Model and Notation (BPMN 2.0) 87
14.1. Current limitations ... 92

15. Console 99

v

15.1. Installation .. 99
15.2. Running the process management console .. 99

15.2.1. Managing process instances ... 100
15.2.2. Human task lists .. 104
15.2.3. Reporting ... 105

15.3. Adding new process / task forms ... 107

A. Revision History 109

Index 111

vi

vii

Preface

1. Document Conventions
This manual uses several conventions to highlight certain words and phrases and draw attention to
specific pieces of information.

In PDF and paper editions, this manual uses typefaces drawn from the Liberation Fonts1 set. The
Liberation Fonts set is also used in HTML editions if the set is installed on your system. If not,
alternative but equivalent typefaces are displayed. Note: Red Hat Enterprise Linux 5 and later includes
the Liberation Fonts set by default.

1.1. Typographic Conventions
Four typographic conventions are used to call attention to specific words and phrases. These
conventions, and the circumstances they apply to, are as follows.

Mono-spaced Bold

Used to highlight system input, including shell commands, file names and paths. Also used to highlight
keycaps and key combinations. For example:

To see the contents of the file my_next_bestselling_novel in your current
working directory, enter the cat my_next_bestselling_novel command at the
shell prompt and press Enter to execute the command.

The above includes a file name, a shell command and a keycap, all presented in mono-spaced bold
and all distinguishable thanks to context.

Key combinations can be distinguished from keycaps by the hyphen connecting each part of a key
combination. For example:

Press Enter to execute the command.

Press Ctrl+Alt+F2 to switch to the first virtual terminal. Press Ctrl+Alt+F1 to
return to your X-Windows session.

The first paragraph highlights the particular keycap to press. The second highlights two key
combinations (each a set of three keycaps with each set pressed simultaneously).

If source code is discussed, class names, methods, functions, variable names and returned values
mentioned within a paragraph will be presented as above, in mono-spaced bold. For example:

File-related classes include filesystem for file systems, file for files, and dir for
directories. Each class has its own associated set of permissions.

Proportional Bold

This denotes words or phrases encountered on a system, including application names; dialog box text;
labeled buttons; check-box and radio button labels; menu titles and sub-menu titles. For example:

Choose System → Preferences → Mouse from the main menu bar to launch Mouse
Preferences. In the Buttons tab, click the Left-handed mouse check box and click

1 https://fedorahosted.org/liberation-fonts/

https://fedorahosted.org/liberation-fonts/
https://fedorahosted.org/liberation-fonts/

Preface

viii

Close to switch the primary mouse button from the left to the right (making the mouse
suitable for use in the left hand).

To insert a special character into a gedit file, choose Applications → Accessories
→ Character Map from the main menu bar. Next, choose Search → Find… from
the Character Map menu bar, type the name of the character in the Search field
and click Next. The character you sought will be highlighted in the Character Table.
Double-click this highlighted character to place it in the Text to copy field and then

click the Copy button. Now switch back to your document and choose Edit → Paste
from the gedit menu bar.

The above text includes application names; system-wide menu names and items; application-specific
menu names; and buttons and text found within a GUI interface, all presented in proportional bold and
all distinguishable by context.

Mono-spaced Bold Italic or Proportional Bold Italic

Whether mono-spaced bold or proportional bold, the addition of italics indicates replaceable or
variable text. Italics denotes text you do not input literally or displayed text that changes depending on
circumstance. For example:

To connect to a remote machine using ssh, type ssh username@domain.name at
a shell prompt. If the remote machine is example.com and your username on that
machine is john, type ssh john@example.com.

The mount -o remount file-system command remounts the named file
system. For example, to remount the /home file system, the command is mount -o
remount /home.

To see the version of a currently installed package, use the rpm -q package
command. It will return a result as follows: package-version-release.

Note the words in bold italics above — username, domain.name, file-system, package, version and
release. Each word is a placeholder, either for text you enter when issuing a command or for text
displayed by the system.

Aside from standard usage for presenting the title of a work, italics denotes the first use of a new and
important term. For example:

Publican is a DocBook publishing system.

1.2. Pull-quote Conventions
Terminal output and source code listings are set off visually from the surrounding text.

Output sent to a terminal is set in mono-spaced roman and presented thus:

books Desktop documentation drafts mss photos stuff svn
books_tests Desktop1 downloads images notes scripts svgs

Source-code listings are also set in mono-spaced roman but add syntax highlighting as follows:

package org.jboss.book.jca.ex1;

import javax.naming.InitialContext;

Notes and Warnings

ix

public class ExClient
{
 public static void main(String args[])
 throws Exception
 {
 InitialContext iniCtx = new InitialContext();
 Object ref = iniCtx.lookup("EchoBean");
 EchoHome home = (EchoHome) ref;
 Echo echo = home.create();

 System.out.println("Created Echo");

 System.out.println("Echo.echo('Hello') = " + echo.echo("Hello"));
 }
}

1.3. Notes and Warnings
Finally, we use three visual styles to draw attention to information that might otherwise be overlooked.

Note

Notes are tips, shortcuts or alternative approaches to the task at hand. Ignoring a note should
have no negative consequences, but you might miss out on a trick that makes your life easier.

Important

Important boxes detail things that are easily missed: configuration changes that only apply to
the current session, or services that need restarting before an update will apply. Ignoring a box
labeled 'Important' will not cause data loss but may cause irritation and frustration.

Warning

Warnings should not be ignored. Ignoring warnings will most likely cause data loss.

2. We Need Feedback!
If you find a typographical error in this manual, or if you have thought of a way to make this manual
better, we would love to hear from you! Please submit a report in Bugzilla: http://bugzilla.redhat.com/
bugzilla/ against the product Documentation.

When submitting a bug report, be sure to mention the manual's identifier: Ruleflow_Guide

If you have a suggestion for improving the documentation, try to be as specific as possible when
describing it. If you have found an error, please include the section number and some of the
surrounding text so we can find it easily.

http://bugzilla.redhat.com/bugzilla/
http://bugzilla.redhat.com/bugzilla/

x

Chapter 1.

1

Introduction
JBoss Rules Flow is a workflow or process engine that allows advanced integration of processes and
rules. A process or a workflow describes the order in which a series of steps need to be executed,
using a flow chart. For example, the following figure shows a process where first Task1 and Task2
need to be executed in parallel. After completion of both, Task3 needs to be executed.

The following chapters will teach you everything you need to know about JBoss Rules Flow. Its
distinguishing characteristics are:

1. Advanced integration of processes and rules: Processes and rules are usually considered as
two different paradigms when it comes to defining business logic. While loose coupling between
a processes and rules is possible by integrating both a process and a rules engine, we provide
advanced integration of processes and rules out-of-the-box. This allows users to use rules to
define part of their business logic when defining their business processes and vice versa.

2. Unification of processes and rules: We consider rules, processes and event processing all as
different types of knowledge. Not only do we allow the advanced integration of these three types,
we also offer a unified API and unified tooling so that users should not have to learn three different
products but can easily combine these three types using our knowledge-based API. The tooling
also allows seamless integration of these different kinds of knowledge, including things like a
unified knowledge repository, audit logs, debugging, etc.

3. Declarative modelling: JBoss Rules Flow tries to keep processes as declarative as possible, i.e.,
focussing on what should happen instead of how. As a result, we try to avoid having to hardcode
details into your process but offer ways to describe your work in an abstract way (e.g., by using
pluggable work items, a business scripting language, etc.). We also allow users to easily create
domain-specific extensions, making it much simpler to read, update or create these processes as
they are using domain-specific concepts that are closely related to the problem at hand and can
be understood by domain experts.

4. Generic process engine supporting multiple process languages: We do not believe that there is
one process language that fits all purposes. Therefore, the JBoss Rules Flow engine is based
on a generic process engine that allows the definition and execution of different types of process
languages, like for example our RuleFlow language, WS-BPEL (a standard targeted towards
web service orchestration), OSWorkflow (another existing workflow language), jPDL (the process
language defined by the jBPM project), etc. All these languages are based on the same set of
core building blocks, making it easier to implement your own process language by reusing and
combining these low-level building blocks the way you want to.

2

Chapter 2.

3

Installer
JBoss Rules now comes with an installer.

2.1. Prerequisites
This script assumes you have Java JDK 1.5+ (set as JAVA_HOME), and Ant 1.7+ installed. If you
don't, use the following links to download and install them:

Java: http://java.sun.com/javase/downloads/index.jsp

Ant: http://ant.apache.org/bindownload.cgi

2.2. Download the installer
First of all, you need to download the installer: drools-{version}-install.zip

You can for example find the latest snapshot release here.

http://hudson.jboss.org/hudson/job/drools/lastSuccessfulBuild/artifact/trunk/target/

2.3. Download the installer
The easiest way to get started is to simply run the installation script to install the demo setup. Simply
go into the install folder and run:

ant install.demo

This will:
• Download JBoss AS

• Download Eclipse

• Install Guvnor into JBoss AS

• Install the gwt-console into JBoss AS

• Install the Eclipse plugins

Once the demo setup has finished (this could take a while as it might have to download the various
components), you can start playing with the various components by starting the demo setup:

ant start.demo

This will:
• Start the H2 database

• Start the JBoss AS

• Start Eclipse

• Start the Human Task Service

Once everything is started, you can start playing with the Eclipse tooling, Guvnor and gwt-console, as
explained in the next three sections.

http://java.sun.com/javase/downloads/index.jsp
http://ant.apache.org/bindownload.cgi
http://hudson.jboss.org/hudson/job/drools/lastSuccessfulBuild/artifact/trunk/target/

Chapter 2. Installer

4

2.4. Using Eclipse Tooling
The following screencast1 gives an overview of how to run a simple demo process in Eclipse. It shows
you:

How to import an existing example project into your workspace, containing
• a sample BPMN2 process for requesting a performance evaluation

• a sample Java class to start the process

• How to start the process

• How to complete human tasks using the test human task client in Eclipse

If you want to know more, we recommend you take a look at the rest of the Drools documentation.

2.5. Using Guvnor repository
Open up Drools Guvnor:

http://localhost:8080/drools-guvnor

Log in, using any non-empty username / password (we disabled authentication for demo purposes).
The following screencast2 gives an overview of how to manage your repository. It shows you:
• How to import an existing sample repository, containing the performance evaluation process as

shown in the previous section

• How to look up the processes that are part of a package

• How to build a package so it can be used for creating a session (like for example in the gwt-console
as shown in the next section)

If you want to know more, we recommend you take a look at the rest of the Drools documentation.

2.6. Using web management consoles
First make sure you have imported the sample repository and built the defaultPackage in Guvnor first
(see previous section). Open up the process management console:

http://localhost:8080/gwt-console

Log in, using krisv / krisv as username / password. The following screencast3 gives an overview of
how to manage your process instances. It shows you:
• How to start a new process

• How to look up the current status of a running process instance

• How to look up your tasks

• How to complete a task

• How to generate reports to monitor your process execution

1 http://people.redhat.com/kverlaen/install-eclipse.swf
2 http://people.redhat.com/kverlaen/install-guvnor.swf
3 http://people.redhat.com/kverlaen/install-gwt-console.swf

http://people.redhat.com/kverlaen/install-eclipse.swf
http://localhost:8080/drools-guvnor
http://people.redhat.com/kverlaen/install-guvnor.swf
http://localhost:8080/gwt-console
http://people.redhat.com/kverlaen/install-gwt-console.swf
http://people.redhat.com/kverlaen/install-eclipse.swf
http://people.redhat.com/kverlaen/install-guvnor.swf
http://people.redhat.com/kverlaen/install-gwt-console.swf

Using web management consoles

5

If you want to know more, we recommend you take a look at the rest of the Drools documentation.

Once you're done playing:

ant stop.demo

and simply close all the rest.

6

Chapter 3.

7

Getting Started
This section describes how to get started with JBoss Rules Flow. It will guide you to create and
execute your first JBoss Rules Flow process.

3.1. Creating Your First Process
The JBoss Rules project wizard can be used to set up an executable project that contains the
necessary files to get started easily with defining and executing processes. This wizard will set up a
basic project structure, the classpath, a sample process and execution code to get you started. To
create a new JBoss Rules project, simply left-click on the JBoss Rules action button (with the JBoss
Rules head) in the IDE toolbar and select "New JBoss Rules Project". (Note that the JBoss Rules
action button only shows up in the JBoss Rules perspective. To open the JBoss Rules perspective (if
you haven't done so already), click the "Open Perspective" button in the top right corner of your IDE
window, select "Other..." and pick the JBoss Rules perspective.) Alternatively, you could also select
"File", then "New" followed by "Project ...", and in the JBoss Rules folder, select "JBoss Rules Project".
This should open the following dialog:

Give your project a name and click "Next". In the following dialog you can select which elements
are added to your project by default. Since we are creating a new process, deselect the first two
checkboxes and select the last two. This will generate a sample process and a Java class to execute
this process.

Chapter 3. Getting Started

8

If you have not yet set up a JBoss Rules runtime, you should do this now. A JBoss Rules runtime is
a collection of jars on your file system that represent one specific release of the JBoss Rules project
jars. To create a runtime, you must either point the IDE to the release of your choice, or you can
simply create a new runtime on your file system from the jars included in the JBoss Rules IDE plugin.
Since we simply want to use the JBoss Rules version included in this plugin, we will do the latter. Note
that you will only have to do this once; next time you create a JBoss Rules project, it will automatically
use the default JBoss Rules runtime (unless you specify otherwise).

Unless you have already set up a JBoss Rules runtime, click the "Next" button. The following dialog,
as displayed below, shows up, telling you that you have not yet defined a default JBoss Rules runtime
and that you should configure the workspace settings first. Do this by clicking on the "Configure
Workspace Settings ..." link.

Creating Your First Process

9

The dialog that pops up shows the workspace settings for JBoss Rules runtimes. The first time you
do this, the list of installed JBoss Rules runtimes is probably empty, as shown below. To create a
new runtime on your file system, click the "Add..." button. This shows a dialog where you should give
the new runtime a name (e.g. "JBoss Rules 5.0.0 runtime"), and a path to your JBoss Rules runtime
on your file system. In this tutorial, we will simply create a new JBoss Rules 5 runtime from the jars
embedded in the JBoss Rules IDE plugin. Click the "Create a new JBoss Rules 5 runtime ..." button
and select the folder where you want this runtime to be stored and click the "OK" button. You will see
the selected path showing up in the previous dialog. As we're all done here, click the "OK" button. You
will see the newly created runtime shown in your list of JBoss Rules runtimes. Select this runtime as
the new default runtime by clicking on the check box in front of your runtime name and click "OK".
After successfully setting up your runtime, you can now finish the project creation wizard by clicking on
the "Finish" button.

Chapter 3. Getting Started

10

The end result should look like this and contains:

1. ruleflow.rf: the process definition, which is a very simple process containing a Start node
(the entry point), an Action node (that prints out "Hello World") and an End node (the end of the
process).

2. RuleFlowTest.java: a Java class that executes the process.

3. The necessary libraries are automatically added to the project classpath as a JBoss Rules library.

Creating Your First Process

11

By double-clicking the ruleflow.rf file, the process will be opened in the RuleFlow editor. The
RuleFlow editor contains a graphical representation of your process definition. It consists of nodes
that are connected to each other. The editor shows the overall control flow, while the details of each
of the elements can be viewed (and edited) in the Properties View at the bottom. The editor contains a
palette at the left that can be used to drag-and-drop new nodes, and an outline view at the right.

This process is a simple sequence of three nodes. The Start node defines the start of the process. It is
connected to an Action node (called "Hello" that simply prints out "Hello World" to the standard output.
You can see this by clicking on the "Hello" node and checking the action property in the Properties
View below. This node is then connected to an End node, signaling the end of the process.

While it is probably easier to edit processes using the graphical editor, users can also modify the
underlying XML directly. The XML for our sample process is shown below (note that we did not include
the graphical information here for simplicity). The process element contains parameters like the
name and id of the process, and consists of three main subsections: a header (where information like
variables, globals and imports can be defined), the nodes and the connections.

<?xml version="1.0" encoding="UTF-8"?>
<process xmlns="http://drools.org/drools-5.0/process"
 xmlns:xs="http://www.w3.org/2001/XMLSchema-instance"
 xs:schemaLocation="http://drools.org/drools-5.0/process drools-processes-5.0.xsd"
 type="RuleFlow"
 name="ruleflow"
 id="com.sample.ruleflow"
 package-name="com.sample" >

 <header>
 </header>

 <nodes>
 <start id="1" name="Start" x="16" y="16" />

Chapter 3. Getting Started

12

 <actionNode id="2" name="Hello" x="128" y="16" >
 <action type="expression"
 dialect="mvel">System.out.println("Hello World");</action>
 </actionNode>
 <end id="3" name="End" x="240" y="16" />
 </nodes>

 <connections>
 <connection from="1" to="2" />
 <connection from="2" to="3" />
 </connections>

</process>

3.2. Executing your first process
To execute this process, right-click on RuleFlowTest.java and select "Run As..." and "Java
Application". When the process in executed, the following output should appear in the Console
window:

Hello World

If you look at the code of class RuleFlowTest (see below), you will see that executing a process
requires a few steps:

1. You should first create a Knowledge Base. A Knowledge Base contains all the knowledge (i.e.,
processes, rules, etc.) that are relevant in your application. This Knowledge Base is usually
created once, and then reused. In this case, the Knowledge Base only consists of our sample
process.

2. Next, you should create a session to interact with the engine. Note that we also add a logger to the
session to log execution events and make it easier to visualize what is going on.

3. Finally, you can start a new instance of the process by invoking the startProcess(String
processId) method on the session. This starts the execution of your process instance, resulting
in the executions of the Start node, the Action node, and the End node, in this order, after which
the process instance will be completed.

package com.sample;

import org.drools.KnowledgeBase;
import org.drools.builder.KnowledgeBuilder;
import org.drools.builder.KnowledgeBuilderFactory;
import org.drools.builder.ResourceType;
import org.drools.io.ResourceFactory;
import org.drools.logger.KnowledgeRuntimeLogger;
import org.drools.logger.KnowledgeRuntimeLoggerFactory;
import org.drools.runtime.StatefulKnowledgeSession;

/**
 * This is a sample file to launch a process.
 */
public class ProcessTest {

 public static final void main(String[] args) {
 try {
 // load up the knowledge base
 KnowledgeBase kbase = readKnowledgeBase();
 StatefulKnowledgeSession ksession = kbase.newStatefulKnowledgeSession();

Executing your first process

13

 KnowledgeRuntimeLogger logger = KnowledgeRuntimeLoggerFactory.newFileLogger(ksession,
 "test");
 // start a new process instance
 ksession.startProcess("com.sample.ruleflow");
 logger.close();
 } catch (Throwable t) {
 t.printStackTrace();
 }
 }

 private static KnowledgeBase readKnowledgeBase() throws Exception {
 KnowledgeBuilder kbuilder = KnowledgeBuilderFactory.newKnowledgeBuilder();
 kbuilder.add(ResourceFactory.newClassPathResource("ruleflow.rf"), ResourceType.DRF);
 return kbuilder.newKnowledgeBase();
 }

}

Congratulations, you have successfully executed your first process! Because we added a logger to the
session, you can easily check what happened internally by looking at the audit log. Select the "Audit
View" tab on the bottom right, next to the Console tab. Click on the "Open Log" button (the first one
one the right of the view) and navigate to the newly created test.log file in your project folder. (If
you are not sure where this project folder is located, right-click on the project folder and you will find
the location in the "Resource" section). An image like the one below should be shown. It is a tree view
of the events that occurred at runtime. Events that were executed as the direct result of another event
are shown as the children of that event. This log shows that after starting the process, the Start node,
the Action node and the End node were triggered, in that order, after which the process instance was
completed.

You can now start experimenting and designing your own process by modifying our example. Note
that you can validate your process by clicking on the "Check the ruleflow model" button, i.e., the green
check box action in the upper toolbar that shows up if you are editing a process. Processes will also
be validated upon save, and errors will be shown in the Error View.

Continue reading our documentation to learn about our more advanced features.

14

Chapter 4.

15

Rule Flow

Figure 4.1. Ruleflow

A RuleFlow is a process that describes the order in which a series of steps need to be executed,
using a flow chart. A process consists of a collection of nodes that are linked to each other using
connections. Each of the nodes represents one step in the overall process while the connections
specify how to transition from one node to the other. A large selection of predefined node types have
been defined. This chapter describes how to define such processes and use them in your application.

4.1. Creating a RuleFlow Process
Processes can be created by using one of the following three methods:

1. Using the graphical RuleFlow editor in the JBoss Rules plug-in for Eclipse

2. As an XML file, according to the XML process format as defined in the XML Schema definition for
JBoss Rules processes.

3. By directly creating a process using the Process API.

4.1.1. Using the Graphical RuleFlow Editor
The graphical RuleFlow editor is a editor that allows you to create a process by dragging and dropping
different nodes on a canvas and editing the properties of these nodes. The graphical RuleFlow editor
is part of the JBoss Rules plug-in for Eclipse. Once you have set up a JBoss Rules project (check the
IDE chapter if you do not know how to do this), you can start adding processes. When in a project,
launch the "New" wizard: use Ctrl+N or right-click the directory you would like to put your ruleflow in
and select "New", then "Other...". Choose the section on "JBoss Rules" and then pick "RuleFlow file".
This will create a new .rf file.

Chapter 4. Rule Flow

16

Figure 4.2. Creating a new RuleFlow file

Next you will see the graphical RuleFlow editor. Now would be a good time to switch to the JBoss
Rules Perspective (if you haven't done so already). This will tweak the user interface so that it is
optimal for rules. Then, ensure that you can see the Properties View down the bottom of the Eclipse
window, as it will be necessary to fill in the different properties of the elements in your process. If you
cannot see the properties view, open it using the menu "Window", then "Show View" and "Other...",
and under the "General" folder select the Properties View.

Defining Processes Using XML

17

Figure 4.3. New RuleFlow process

The RuleFlow editor consists of a palette, a canvas and an Outline View. To add new elements
to the canvas, select the element you would like to create in the palette and then add them to the
canvas by clicking on the preferred location. For example, click on the "RuleFlowGroup" icon in the
"Components" palette of the GUI: you can then draw a few rule flow groups. Clicking on an element in
your rule flow allows you to set the properties of that element. You can connect the nodes (as long as
it is permitted by the different types of nodes) by using "Connection Creation" from the "Components"
palette.

You can keep adding nodes and connections to your process until it represents the business logic
that you want to specify. You'll probably need to check the process for any missing information (by
pressing the green "Check" icon in the IDE menu bar) before trying to use it in your application.

4.1.2. Defining Processes Using XML
It is also possible to specify processes using the underlying XML directly. The syntax of these XML
processes is defined using an XML Schema definition. For example, the following XML fragment
shows a simple process that contains a sequence of a Start node, an Action node that prints "Hello
World" to the console, and an End node.

<?xml version="1.0" encoding="UTF-8"?>
<process xmlns="http://drools.org/drools-5.0/process"
 xmlns:xs="http://www.w3.org/2001/XMLSchema-instance"
 xs:schemaLocation="http://drools.org/drools-5.0/process drools-processes-5.0.xsd"
 type="RuleFlow" name="ruleflow" id="com.sample.ruleflow" package-name="com.sample" >

 <header>
 </header>

 <nodes>
 <start id="1" name="Start" x="16" y="16" />
 <actionNode id="2" name="Hello" x="128" y="16" >
 <action type="expression" dialect="mvel" >System.out.println("Hello World");</action>
 </actionNode>
 <end id="3" name="End" x="240" y="16" />
 </nodes>

Chapter 4. Rule Flow

18

 <connections>
 <connection from="1" to="2" />
 <connection from="2" to="3" />
 </connections>

</process>

The process XML file should consist of exactly one <process> element. This element contains
parameters related to the process (its type, name, id and package name), and consists of three
subsections: a <header> (where process-level information like variables, globals, imports and
swimlanes can be defined), a <nodes> section that defines each of the nodes in the process, and
a <connections> section that contains the connections between all the nodes in the process. In
the nodes section, there is a specific element for each node, defining the various parameters and,
possibly, sub-elements for that node type.

4.1.3. Defining Processes Using the Process API
While it is recommended to define processes using the graphical editor or the underlying
XML (to shield yourself from internal APIs), it is also possible to define a process using the
Process API directly. The most important process elements are defined in the packages
org.drools.workflow.core and org.drools.workflow.core.node. A "fluent API" is
provided that allows you to easily construct processes in a readable manner using factories. At the
end, you can validate the process that you were constructing manually. Some examples about how to
build processes using this fluent API are added below.

4.1.3.1. Example 1
This is a simple example of a basic process with a ruleset node only:

RuleFlowProcessFactory factory =
 RuleFlowProcessFactory.createProcess("org.drools.HelloWorldRuleSet");
factory
 // Header
 .name("HelloWorldRuleSet")
 .version("1.0")
 .packageName("org.drools")
 // Nodes
 .startNode(1).name("Start").done()
 .ruleSetNode(2)
 .name("RuleSet")
 .ruleFlowGroup("someGroup").done()
 .endNode(3).name("End").done()
 // Connections
 .connection(1, 2)
 .connection(2, 3);
RuleFlowProcess process = factory.validate().getProcess();

You can see that we start by calling the static createProcess() method from the
RuleFlowProcessFactory class. This method creates a new process with the given id and returns
the RuleFlowProcessFactory that can be used to create the process. A typical process consists
of three parts. The header part comprises global elements like the name of the process, imports,
variables, etc. The nodes section contains all the different nodes that are part of the process. The
connections section finally links these nodes to each other to create a flow chart.

In this example, the header contains the name and the version of the process and the package name.
After that, you can start adding nodes to the current process. If you have auto-completion you can see
that you have different methods to create each of the supported node types at your disposal.

Defining Processes Using the Process API

19

When you start adding nodes to the process, in this example by calling the startNode(),
ruleSetNode() and endNode() methods, you can see that these methods return a specific
NodeFactory, that allows you to set the properties of that node. Once you have finished configuring
that specific node, the done() method returns you to the current RuleFlowProcessFactory so you
can add more nodes, if necessary.

When you are finished adding nodes, you must connect them by creating connections between them.
This can be done by calling the method connection, which will link previously created nodes.

Finally, you can validate the generated process by calling the validate() method and retrieve the
created RuleFlowProcess object.

4.1.3.2. Example 2
This example is using Split and Join nodes:

RuleFlowProcessFactory factory =
 RuleFlowProcessFactory.createProcess("org.drools.HelloWorldJoinSplit");
factory
 // Header
 .name("HelloWorldJoinSplit")
 .version("1.0")
 .packageName("org.drools")
 // Nodes
 .startNode(1).name("Start").done()
 .splitNode(2).name("Split").type(Split.TYPE_AND).done()
 .actionNode(3).name("Action 1")
 .action("mvel", "System.out.println(\"Inside Action 1\")").done()
 .actionNode(4).name("Action 2")
 .action("mvel", "System.out.println(\"Inside Action 2\")").done()
 .joinNode(5).type(Join.TYPE_AND).done()
 .endNode(6).name("End").done()
 // Connections
 .connection(1, 2)
 .connection(2, 3)
 .connection(2, 4)
 .connection(3, 5)
 .connection(4, 5)
 .connection(5, 6);
RuleFlowProcess process = factory.validate().getProcess();

This shows a simple example using Split and Join nodes. As you can see, a Split node can have
multiple outgoing connections, and a Join node multiple incoming connections. To understand the
behavior of the different types of Split and Join nodes, take a look at the documentation for each of
these nodes.

4.1.3.3. Example 3
Now we show a more complex example with a ForEach node, where we have nested nodes:

RuleFlowProcessFactory factory =
 RuleFlowProcessFactory.createProcess("org.drools.HelloWorldForeach");
factory
 // Header
 .name("HelloWorldForeach")
 .version("1.0")
 .packageName("org.drools")
 // Nodes
 .startNode(1).name("Start").done()
 .forEachNode(2)

Chapter 4. Rule Flow

20

 // Properties
 .linkIncomingConnections(3)
 .linkOutgoingConnections(4)
 .collectionExpression("persons")
 .variable("child", new ObjectDataType("org.drools.Person"))
 // Nodes
 .actionNode(3)
 .action("mvel", "System.out.println(\"inside action1\")").done()
 .actionNode(4)
 .action("mvel", "System.out.println(\"inside action2\")").done()
 // Connections
 .connection(3, 4)
 .done()
 .endNode(5).name("End").done()
 // Connections
 .connection(1, 2)
 .connection(2, 5);
RuleFlowProcess process = factory.validate().getProcess();

Here you can see how we can include a ForEach node with nested action nodes. Note the
linkIncomingConnections() and linkOutgoingConnections() methods that are called to
link the ForEach node with the internal action node. These methods are used to specify the first and
last nodes inside the ForEach composite node.

4.2. Using a Process in Your Application
There are two things you need to do to be able to execute processes from within your application: (1)
you need to create a Knowledge Base that contains the definition of the process, and (2) you need to
start the process by creating a session to communicate with the process engine and start the process.

1. Creating a Knowledge Base: Once you have a valid process, you can add the process to the
Knowledge Base. Note that this is almost identical to adding rules to the Knowledge Base, except
for the type of knowledge added:

KnowledgeBuilder kbuilder = KnowledgeBuilderFactory.newKnowledgeBuilder();
kbuilder.add(ResourceFactory.newClassPathResource("MyProcess.rf"),
 ResourceType.DRF);

After adding all your knowledge to the builder (you can add more than one process, and even
rules), you can create a new knowledge base like this:

KnowledgeBase kbase = kbuilder.newKnowledgeBase();

Note that this will throw an exception if the knowledge base contains errors (because it could not
parse your processes correctly).

2. Starting a process: Processes are only executed if you explicitly state that they should be
executed. This is because you could potentially define a lot of processes in your Knowledge Base
and the engine has no way to know when you would like to start each of these. To activate a
particular process, you will need to start it by calling the startProcess method on your session.
For example:

StatefulKnowledgeSession ksession = kbase.newStatefulKnowledgeSession();
ksession.startProcess("com.sample.MyProcess");

Detailed Explanation of the Different Node Types

21

The parameter of the startProcess method represents the id of the process that needs to
be started. This process id needs to be specified as a property of the process, shown in the
Properties View when you click the background canvas of your process. If your process also
requires the execution of rules during the execution of the process, you also need to call the
ksession.fireAllRules() method to make sure the rules are executed as well. That's it!

You may specify additional parameters that are used to pass on input data to the process, using
the startProcess(String processId, Map parameters) method, which takes an
additional set of parameters as name-value pairs. These parameters are then copied to the newly
created process instance as top-level variables of the process.

You can also start a process from within a rule consequence, or from inside a process action,
using the predefined kcontext parameter:

kcontext.getKnowledgeRuntime().startProcess("com.sample.MyProcess");

4.3. Detailed Explanation of the Different Node Types
A ruleflow process is a flow chart where different types of nodes are linked using connections. The
process itself exposes the following properties:
• Id: The unique id of the process.

• Name: The display name of the process.

• Version: The version number of the process.

• Package: The package (namespace) the process is defined in.

• Variables: Variables can be defined to store data during the execution of your process. See section
“Data” for details.

• Swimlanes: Specify the actor responsible for the execution of human tasks. See chapter Human
Tasks for details.

• Exception Handlers: Specify the behaviour when a fault occurs in the process. See section
“Exceptions” for details.

• Connection Layout: Specify how the connections are visualized on the canvas using the connection
layout property:
• 'Manual' always draws your connections as lines going straight from their start to end point (with

the possibility to use intermediate break points).

• 'Shortest path' is similar, but it tries to go around any obstacles it might encounter between the
start and end point, to avoid lines crossing nodes.

• 'Manhattan' draws connections by only using horizontal and vertical lines.

Chapter 4. Rule Flow

22

A RuleFlow process supports different types of nodes:

Figure 4.4. The different types of ruleflow nodes

1. Start Event: The start of the ruleflow. A ruleflow should have exactly one start node, which cannot
have incoming connections and should have one outgoing connection. Whenever a RuleFlow
process is started, execution will start at this node and automatically continue to the first node
linked to this start node, and so on. It contains the following properties:

• Id: The id of the node (which is unique within one node container).

• Name: The display name of the node.

• Triggers: A Start node can also specify additional triggers that can be used to automatically
start the process. Examples are a "constraint" trigger that automatically starts the process if a
given rule or constraint is satisfied, or an "event" trigger that automatically starts the process
if a specific event is signalled. Note that it currently not possibly to specify this in the graphical
editor. You should manually update the process XML for now.

• MetaData: Metadata related to this node.

2. End Event: The end of the ruleflow. A ruleflow should have one or more End nodes. The End
node should have one incoming connection and cannot have outgoing connections. It contains the
following properties:

• Id: The id of the node (which is unique within one node container).

• Name: The display name of the node.

• Terminate: An End node can be terminating for the entire process (default) or just for the path.
If the process is terminated, all nodes that are still active (on parallel paths) in this ruleflow are
cancelled. Non-terminating End nodes are simply ends for some path, while other parallel paths
still continue.

• MetaData: Metadata related to this node.

3. Rule Task (or RuleFlowGroup): Represents a set of rules that need to be evaluated. The rules
are evaluated when the node is reached. A RuleFlowGroup node should have one incoming
connection and one outgoing connection. Rules can become part of a specific ruleflow group
using the ruleflow-group attribute in the header. When a RuleFlowGroup node is reached
in the ruleflow, the engine will start executing rules that are part of the corresponding ruleflow-
group (if any). Execution will automatically continue to the next node if there are no more active
rules in this ruleflow group. This means that, during the execution of a ruleflow group, it is possible
that new activations belonging to the currently active ruleflow group are added to the Agenda due
to changes made to the facts by the other rules. Note that the ruleflow will immediately continue
with the next node if it encounters a ruleflow group where there are no active rules at that time.
If the ruleflow group was already active, the ruleflow group will remain active and execution will
only continue if all active rules of the ruleflow group has been completed. It contains the following
properties:

• Id: The id of the node (which is unique within one node container).

• Name: The display name of the node.

• RuleFlowGroup: The name of the ruleflow group that represents the set of rules of this
RuleFlowGroup node.

• Timers: Timers that are linked to this node. See section “Timers” for details.

• MetaData: Metadata related to this node.

4. Diverging Gateway (or Split): Allows you to create branches in your ruleflow. A Split node should
have one incoming connection and two or more outgoing connections. There are three types of
Split nodes currently supported:
• AND means that the control flow will continue in all outgoing connections simultaneously.

• XOR means that exactly one of the outgoing connections will be chosen. The decision is made
by evaluating the constraints that are linked to each of the outgoing connections. Constraints
are specified using the same syntax as the left-hand side of a rule. The constraint with the
lowest priority number that evaluates to true is selected. Note that you should always make sure
that at least one of the outgoing connections will evaluate to true at runtime (the ruleflow will
throw an exception at runtime if it cannot find at least one outgoing connection). For example,
you could use a connection which is always true (default) with a high priority number to specify
what should happen if none of the other connections can be taken.

• OR means that all outgoing connections whose condition evaluates to true are selected.
Conditions are similar to the XOR split, except that no priorities are taken into account. Note
that you should make sure that at least one of the outgoing connections will evaluate to true
at runtime because the ruleflow will throw an exception at runtime if it cannot determine an
outgoing connection.

It contains the following properties:

• Id: The id of the node (which is unique within one node container).

• Name: The display name of the node.

• Type: The type of the split node, i.e., AND, XOR or OR (see above).

• Constraints: The constraints linked to each of the outgoing connections (in case of an (X)OR
split).

• MetaData: Metadata related to this node.

5. Converging Gateway (or Join): Allows you to synchronize multiple branches. A join node should
have two or more incoming connections and one outgoing connection. There are four types of
splits currently supported:
• AND means that is will wait until all incoming branches are completed before continuing.

• XOR means that it continues as soon as one of its incoming branches has been completed. If
it is triggered from more than one incoming connection, it will trigger the next node for each of
those triggers.

• Discriminator means that it continues if one of its incoming branches has been completed.
Completions of other incoming branches are registered until all connections have completed. At
that point, the node will be reset, so that it can trigger again when one of its incoming branches
has been completed once more.

• n-of-m means that it continues if n of its m incoming branches have been completed. The
variable n could either be hardcoded to a fixed value, or refer to a process variable that will
contain the number of incoming branches to wait for.

It contains the following properties:

• Id: The id of the node (which is unique within one node container).

• Name: The display name of the node.

• Type: The type of the Join node, i.e. AND, XOR or Discriminator (see above).

• n: The number of incoming connections to wait for (in case of a n-of-m join).

• MetaData: Metadata related to this node.

6. State: Represents a wait state. A state should have one incoming connection and one or more
outgoing connections. For each of the outgoing connections, a rule constraint can be specified
which defines how long the process should wait in this state before continuing. For example, a
constraint in an order entry application might specify that the process should wait until no more
errors are found in the given order. Constraints are specified using the same syntax as the left-
hand side of a rule. When a state is reached in the ruleflow, the engine will check the associated
constraints. If one of the constraint evaluates to true directly, the flow will continue imediately.
Otherwise, the flow will continue if one of the constraints is satisfied later on, for example when
a fact is inserted, updated or removed from the working memory. A state can also be signaled
manually to make it progress to the next state, using ksession.signalEvent("signal", "name") where
"name" should either be the name of the constraint for the connection that should be selected, or
the name of the node that should be moved to. A state contains the following properties:

• Id: The id of the node (which is unique within one node container).

• Name: The display name of the node.

• Constraints: Defines when the process can leave this state and continue for each of the
outgoing connections.

• Timers: Timers that are linked to this node. See section “Timers” for details.

• On-entry and on-exit actions: Actions that are executed upon entry or exit of this node,
respectively.

• MetaData: Metadata related to this node.

7. Reusable Sub-Process (or SubFlow): represents the invocation of another process from within
this process. A sub-process node should have one incoming connection and one outgoing
connection. When a SubFlow node is reached in the ruleflow, the engine will start the process with
the given id. It contains the following properties:

• Id: The id of the node (which is unique within one node container).

• Name: The display name of the node.

• ProcessId: The id of the process that should be executed.

• Wait for completion: If this property is true, the SubFlow node will only continue if that SubFlow
process has terminated its execution (completed or aborted); otherwise it will continue
immediately after starting the subprocess.

• Independent: If this property is true, the subprocess is started as an independent process, which
means that the SubFlow process will not be terminated if this process reaches an end node;
otherwise the active sub-process will be cancelled on termination (or abortion) of the process.

• On-entry and on-exit actions: Actions that are executed upon entry or exit of this node,
respectively.

• Parameter in/out mapping: A SubFlow node can also define in- and out-mappings for variables.
The value of variables in this process with variable names given in the "in" mapping will be used
as parameters (with the associated parameter name) when starting the process. The value
of the variables in the subprocess with the given variable name in the "out" mappings will be
copied to the variables of this process when the subprocess has been completed. Note that you
can use "out" mappings only when "Wait for completion" is set to true.

• Timers: Timers that are linked to this node. See section “Timers” for details.

• MetaData: Metadata related to this node.

8. Script Task (or Action): represents an action that should be executed in this ruleflow. An Action
node should have one incoming connection and one outgoing connection. The associated
action specifies what should be executed, the dialect used for coding the action (i.e., Java or
MVEL), and the actual action code. This code can access any globals, the predefined variable
drools referring to a KnowledgeHelper object (which can, for example, be used to retrieve the
Working Memory by calling drools.getWorkingMemory()), and the variable kcontext that
references the ProcessContext object (which can, for example, be used to access the current
ProcessInstance or NodeInstance, and to get and set variables). When an Action node is
reached in the ruleflow, it will execute the action and then continue with the next node. It contains
the following properties:

• Id: The id of the node (which is unique within one node container).

• Name: The display name of the node.

• Action: The action associated with this action node.

• MetaData: Metadata related to this node.

9. Timer Event: represents a timer that can trigger one or multiple times after a given period of time.
A Timer node should have one incoming connection and one outgoing connection. The timer
delay specifies how long (in milliseconds) the timer should wait before triggering the first time.
The timer period specifies the time between two subsequent triggers. A period of 0 means that
the timer should only be triggered once. When a Timer node is reached in the ruleflow, it will start
the associated timer. The timer is cancelled if the timer node is cancelled (e.g., by completing
or aborting the process). Consult the section “Timers” for more information. - The Timer node
contains the following properties:

• Id: The id of the node (which is unique within one node container).

• Name: The display name of the node.

• Timer delay: The delay (in milliseconds) that the node should wait before triggering the first time.

• Timer period: The period (in milliseconds) between two subsequent triggers. If the period is 0,
the timer should only be triggered once.

• MetaData: Metadata related to this node.

10. Error Event (or Fault): A Fault node can be used to signal an exceptional condition in the
process. It should have one incoming connection and no outgoing connections. When a Fault
node is reached in the ruleflow, it will throw a fault with the given name. The process will search
for an appropriate exception handler that is capable of handling this kind of fault. If no fault handler
is found, the process instance will be aborted. A Fault node contains the following properties:

• Id: The id of the node (which is unique within one node container).

• Name: The display name of the node.

• FaultName: The name of the fault. This name is used to search for appriopriate exception
handlers that is capable of handling this kind of fault.

• FaultVariable: The name of the variable that contains the data associated with this fault. This
data is also passed on to the exception handler (if one is found).

• MetaData: Metadata related to this node.

11. (Message) Event: An Event node can be used to respond to internal or external events during the
execution of the process. An Event node should have no incoming connections and one outgoing
connection. It specifies the type of event that is expected. Whenever that type of event is detected,
the node connected to this Event node will be triggered. It contains the following properties:

• Id: The id of the node (which is unique within one node container).

• Name: The display name of the node.

• EventType: The type of event that is expected.

• VariableName: The name of the variable that will contain the data associated with this event (if
any) when this event occurs.

• Scope: An event could be used to listen to internal events only, i.e., events that are signalled
to this process instance directly, using processInstance.signalEvent(String
type, Object data). When an Event node is defined as external, it will also be
listening to external events that are signalled to the process engine directly, using
workingMemory.signalEvent(String type, Object event).

• MetaData: Metadata related to this node.

12. User Task (or Human Task): Processes can also involve tasks that need to be executed by
human actors. A Human Task node represents an atomic task to be executed by a human actor.
It should have one incoming connection and one outgoing connection. Human Task nodes can
be used in combination with Swimlanes to assign multiple human tasks to similar actors. Refer
to chapter Human Tasks for more details. A Human Task node is actually nothing more than
a specific type of work item node (of type "Human Task"). A Human Task node contains the
following properties:

• Id: The id of the node (which is unique within one node container).

• Name: The display name of the node.

• TaskName: The name of the human task.

• Priority: An integer indicating the priority of the human task.

• Comment: A comment associated with the human task.

• ActorId: The actor id that is responsible for executing the human task. A list of actor id's can be
specified using a comma (',') as separator.

• Skippable: Specifies whether the human task can be skipped, i.e., whether the actor may decide
not to execute the task.

• Content: The data associated with this task.

• Swimlane: The swimlane this human task node is part of. Swimlanes make it easy to assign
multiple human tasks to the same actor. See the human tasks chapter for more detail on how to
use swimlanes.

• Wait for completion: If this property is true, the human task node will only continue if the human
task has been terminated (i.e., by completing or reaching any other terminal state); otherwise it
will continue immediately after creating the human task.

• On.entry and on-exit actions: Actions that are executed upon entry and exit of this node,
respectively.

• Parameter mapping: Allows copying the value of process variables to parameters of the human
task. Upon creation of the human tasks, the values will be copied.

• Result mapping: Allows copying the value of result parameters of the human task to a process
variable. Upon completion of the human task, the values will be copied. Note that you can
use result mappings only when "Wait for completion" is set to true. A human task has a result
variable "Result" that contains the data returned by the human actor. The variable "ActorId"
contains the id of the actor that actually executed the task.

• Timers: Timers that are linked to this node. Consult the section “Timers” for details.

• MetaData: Metadata related to this node.

13. Sub-Process (or Composite): A Composite node is a node that can contain other nodes so
that it acts as a node container. This allows not only the embedding of a part of the flow within
such a Composite node, but also the definition of additional variables and exception handlers that
are accessible for all nodes inside this container. A Composite node should have one incoming
connection and one outgoing connection. It contains the following properties:

• Id: The id of the node (which is unique within one node container).

• Name: The display name of the node.

• StartNodeId: The id of the node (within this node container) that should be triggered when this
node is triggered.

• EndNodeId: The id of the node (within this node container) that represents the end of the flow
contained in this node. When this node is completed, the composite node will also be completed
and trigger its outgoing connection. All other executing nodes within this composite node will be
cancelled.

• Variables: Additional variables can be defined to store data during the execution of this node.
See section “Data” for details.

• Exception Handlers: Specify the behavior when a fault occurs in this node container. See
section “Exceptions” for details.

14. Multiple Instance (or ForEach): A ForEach node is a special kind of composite node that allows
you to execute the contained flow multiple times, once for each element in a collection. A ForEach
node should have one incoming connection and one outgoing connection. A ForEach node awaits
the completion of the embedded flow for each of the collection''s elements before continuing. It
contains the following properties:

• Id: The id of the node (which is unique within one node container).

• Name: The display name of the node.

• StartNodeId: The id of the node (within this node container) that should be triggered for each of
the elements in a collection.

• EndNodeId: The id of the node (within this node container) that represents the end of the flow
contained in this node. When this node is completed, the execution of the ForEach node will
also be completed for the current collection element. The outgoing connection is triggered if the
collection is exhausted. All other executing nodes within this composite node will be cancelled.

• CollectionExpression: The name of a variable that represents the collection of elements that
should be iterated over. The collection variable should be of type java.util.Collection.

• VariableName: The name of the variable to contain the current element from the collection. This
gives nodes within the composite node access to the selected element.

15. WorkItem (or Service Task): Represents an (abstract) unit of work that should be executed
in this process. All work that is executed outside the process engine should be represented (in
a declarative way) using a WorkItem node. Different types of work items are predefined, e.g.,
sending an email, logging a message, etc. Users can define domain-specific work items, using a
unique name and by defining the parameters (input) and results (output) that are associated with
this type of work. Refer to the chapter Domain_Specific_Processes for a detailed explanation and
illustrative examples of how to define and use work items in your processes. When a WorkItem
node is reached in the process, the associated work item is executed. A WorkItem node should
have one incoming connection and one outgoing connection.

• Id: The id of the node (which is unique within one node container).

• Name: The display name of the node.

• Wait for completion: If the property "Wait for completion" is true, the WorkItem node will only
continue if the created work item has terminated (completed or aborted) its execution; otherwise
it will continue immediately after starting the work item.

• Parameter mapping: Allows copying the value of process variables to parameters of the work
item. Upon creation of the work item, the values will be copied.

• Result mapping: Allows copying the value of result parameters of the work item to a process
variable. Each type of work can define result parameters that will (potentially) be returned after
the work item has been completed. A result mapping can be used to copy the value of the given
result parameter to the given variable in this process. For example, the "FileFinder" work item
returns a list of files that match the given search criteria within the result parameter Files. This
list of files can then be bound to a process variable for use within the process. Upon completion
of the work item, the values will be copied. Note that you can use result mappings only when
"Wait for completion" is set to true.

• On-entry and on-exit actions: Actions that are executed upon entry or exit of this node,
respectively.

• Timers: Timers that are linked to this node. See the section “Timers” for details.

• Additional parameters: Each type of work item can define additional parameters that are
relevant for that type of work. For example, the "Email" work item defines additional parameters
such as From, To, Subject and Body. The user can either provide values for these
parameters directly, or define a parameter mapping that will copy the value of the given variable
in this process to the given parameter; if both are specified, the mapping will have precedence.
Parameters of type String can use #{expression} to embed a value in the string. The value
will be retrieved when creating the work item, and the substitution expression will be replaced
by the result of calling toString() on the variable. The expression could simply be the name
of a variable (in which case it resolves to the value of the variable), but more advanced MVEL
expressions are possible as well, e.g., #{person.name.firstname}.

• MetaData: Metadata related to this node.

Data

23

4.4. Data
While the flow graph focusses on specifying the control flow of the process, it is usually also necessary
to look at the process from a data perspective. Throughout the execution of a process, data can
retrieved, stored, passed on and used.

For storing runtime data, during the execution of the process, you use variables. A variable is defined
by a name and a data type. This could be a basic data type, such as boolean, int, or String, or any
kind of Object subclass. Variables can be defined inside a variable scope. The top-level scope is the
variable scope of the process itself. Subscopes can be defined using a Composite node. Variables
that are defined in a subscope are only accessible for nodes within that scope.

Whenever a variable is accessed, the process will search for the appropriate variable scope that
defines the variable. Nesting of variable scopes is allowed. A node will always search for a variable in
its parent container. If the variable cannot be found, it will look in that one's parent container, and so
on, until the process instance itself is reached. If the variable cannot be found, a read access yields
null, and a write access produces an error message, with the process continuing its execution.

Variables can be used in various ways:

• Process-level variables can be set when starting a process by providing a map of parameters to the
invocation of the startProcess method. These parameters will be set as variables on the process
scope.

• Actions can access variables directly, simply by using the name of the variable as a parameter
name.

// call method on the process variable "person"
person.setAge(10);

Changing the value of a variable can be done through the Knowledge Context:

kcontext.setVariable(variableName, value);

• WorkItem and SubFlow nodes can pass the value of parameters to the outside world by mapping
the variable to one of the work item parameters, either by using a parameter mapping or by
interpolating it into a String parameter, using #{expression}. The results of a WorkItem can also
be copied to a variable using a result mapping.

• Various other nodes can also access data. Event nodes, for example, can store the data associated
to the event in a variable, exception handlers can read error data from a specific variable, etc.
Check the properties of the different node types for more information.

Finally, processes and rules all have access to globals, i.e., globally defined variables that are
considered immutable with regard to rule evaluation, and data in the Knowledge Session. The
Knowledge Session can be accessed in actions using the Knowledge Context:

kcontext.getKnowledgeRuntime().insert(new Person(...));

Chapter 4. Rule Flow

24

4.5. Constraints
Constraints can be used in various locations in your processes, for example in a Split node using
OR or XOR decisions, or as a constraint for a State node. JBoss Rules Flow supports two types of
constraints:

• Code constraints are boolean expressions, evaluated directly whenever they are reached. We
currently support two dialects for expressing these code constraints: Java and MVEL. Both Java and
MVEL code constraints have direct access to the globals and variables defined in the process. Here
is an example of a valid Java code constraint, person being a variable in the process:

return person.getAge() > 20;

A similar example of a valid MVEL code constraint is:

return person.age > 20;

• Rule constraints are equals to normal JBoss Rules rule conditions. They use the JBoss Rules Rule
Language syntax to express possibly complex constraints. These rules can, like any other rule, refer
to data in the Working Memory. They can also refer to globals directly. Here is an example of a valid
rule constraint:

Person(age > 20)

This tests for a person older than 20 being in the Working Memory.

Rule constraints do not have direct access to variables defined inside the process. It is
however possible to refer to the current process instance inside a rule constraint, by adding the
process instance to the Working Memory and matching for the process instance in your rule
constraint. We have added special logic to make sure that a variable processInstance of type
WorkflowProcessInstance will only match to the current process instance and not to other
process instances in the Working Memory. Note that you are however responsible yourself to insert
the process instance into the session and, possibly, to update it, for example, using Java code or an
on-entry or on-exit or explicit action in your process. The following example of a rule constraint will
search for a person with the same name as the value stored in the variable "name" of the process:

processInstance : WorkflowProcessInstance()
Person(name == (processInstance.getVariable("name")))
add more constraints here ...

4.6. Actions
Actions can be used in different ways:
• Within an Action node,

• As entry or exit actions, with a number of nodes,

• Actions specifying the behavior of exception handlers.

Actions have access to globals and the variables that are defined for the process and the predefined
variable context. This variable is of type org.drools.runtime.process.ProcessContext and
can be used for several tasks:

Events

25

• Getting the current node instance (if applicable). The node instance could be queried for data, such
as its name and type. You can also cancel the current node instance.

NodeInstance node = context.getNodeInstance();
String name = node.getNodeName();

• Getting the current process instance. A process instance can be queried for data (name, id,
processId, etc.), aborted or signalled an internal event.

WorkflowProcessInstance proc = context.getProcessInstance();
proc.signalEvent(type, eventObject);

• Getting or setting the value of variables.

• Accessing the Knowledge Runtime allows you do things like starting a process, signalling external
events, inserting data, etc.

JBoss Rules currently supports two dialects, Java and MVEL. Java actions should be valid Java
code. MVEL actions can use the business scripting language MVEL to express the action. MVEL
accepts any valid Java code but additionally provides support for nested accesses of parameters
(e.g., person.name instead of person.getName()), and many other scripting improvements. Thus,
MVEL expressions are more convenient for the business user. For example, an action that prints out
the name of the person in the "requester" variable of the process would look like this:

// Java dialect
System.out.println(person.getName());

// MVEL dialect
System.out.println(person.name);

4.7. Events

Figure 4.5. A sample process using events

During the execution of a process, the process engine makes sure that all the relevant tasks are
executed according to the process plan, by requesting the execution of work items and waiting for the
results. However, it is also possible that the process should respond to events that were not directly

Chapter 4. Rule Flow

26

requested by the process engine. Explicitly representing these events in a process allows the process
author to specify how the process should react to such events.

Events have a type and possibly data associated with them. Users are free to define their own event
types and their associated data.

A process can specify how to respond to events by using Event nodes. An Event node needs to
specify the type of event the node is interested in. It can also define the name of a variable, which will
receive the data that is associated with the event. This allows subsequent nodes in the process to
access the event data and take appropriate action based on this data.

An event can be signalled to a running instance of a process in a number of ways:

• Internal event: Any action inside a process (e.g., the action of an action node, or an on-entry or on-
exit action of some node) can signal the occurence of an internal event to the surrounding process
instance, using code like the following:

context.getProcessInstance().signalEvent(type, eventData);

• External event: A process instance can be notified of an event from outside using code such as:

processInstance.signalEvent(type, eventData);

• External event using event correlation: Instead of notifying a process instance directly, it is also
possible to have the engine automatically determine which process instances might be interested in
an event using event correlation, which is based on the event type. A process instance that contains
an event node listening to external events of some type is notified whenever such an event occurs.
To signal such an event to the process engine, write code such as:

workingMemory.signalEvent(type, eventData);

Events could also be used to start a process. Whenever a Start node defines an event trigger of a
specific type, a new process instance will be started every time that type of event is signalled to the
process engine.

Exceptions

27

4.8. Exceptions

Figure 4.6. A sample process using exception handlers

Whenever an exceptional condition occurs during the execution of a process, a fault could be raised
to signal the occurrence of this exception. The process will then search for an appropriate exception
handler that is capable of handling such a fault.

Similar to events, faults also have a type and possibly data associated with the fault. Users are free to
define their own types of faults, together with their data.

Faults are effected by a Fault node, generating a fault of the given type, indicated by the fault name.
If the Fault node specifies a fault variable, the value of the given variable will be associated with the
fault.

Whenever a fault is created, the process will search for an appropriate exception handler that is
capable of handling the given type of fault. Processes and Composite nodes both can define exception
handlers for handling faults. Nesting of exception handlers is allowed; a node will always search for an
appropriate exception handler in its parent container. If none is found, it will look in that one's parent
container, and so on, until the process instance itself is reached. If no exception handler can be found,
the process instance will be aborted, resulting in the cancellation of all nodes inside the process.

Exception handlers can also specify a fault variable. The data associated with the fault (if any) will
be copied to this variable whenever an exception handler is selected to handle a fault. This allows
subsequent Action nodes in the process to access the fault data and take appropriate action based on
this data.

Exception handlers need to define an action that specifies how to respond to the given fault. In most
cases, the behavior that is needed to react to the given fault cannot be expressed in one action. It is
therefore recommended to have the exception handler signal an event of a specific type (in this case
"Fault") using

context.getProcessInstance().signalEvent("FaultType", context.getVariable("FaultVariable");

Chapter 4. Rule Flow

28

4.9. Timers
Timers wait for a predefined amount of time, before triggering, once or repeatedly. They cou be used
to specify time supervision, or to trigger certain logic after a certain period, or to repeat some action at
regular intervals.

A Timer node is set up with a delay and a period. The delay specifies the amount of time (in
milliseconds) to wait after node activation before triggering the timer the first time. The period defines
the time between subsequent trigger activations. A period of 0 results in a one-shot timer.

The timer service is responsible for making sure that timers get triggered at the appropriate times.
Timers can also be cancelled, meaning that the timer will no longer be triggered.

Timers can be used in two ways inside a process:

• A Timer node may be added to the process flow. Its activation starts the timer, and its triggers, once
or repeatedly, activate the Timer node's successor. This means that the outgoing connection of a
timer with a positive perios is triggered multiple times. Cancelling a Timer node also cancels the
associated timer, whereafter no more triggerings will occur.

• Timers may be associated with event-based nodes like WorkItem, SubFlow, etc. A timer associated
with a node is activated whenever the node becomes active. The associated action is executed
whenever the timer triggers. You may use this, for instance, to send out notifications, at regular
intervals, when the execution of a task takes too long, or to signal an event or a fault in case a
time supervision expires. When the node owning the timer completes, the timer is automatically
cancelled.

4.10. Updating processes
Over time, processes may evolve, for example because the process itself needs to be improved, or
due to changing requirements. Actually, you cannot really update a process, you can only deploy a
new version of the process, the old process will still exist. That is because existing process instances
might still need that process definition. So the new process should have a different id, though the
name could be the same, and you can use the version parameter to show when a process is updated
(the version parameter is just a String and is not validated by the process framework itself, so you can
select your own format for specifying minor/major updates, etc.).

Whenever a process is updated, it is important to determine what should happen to the already
running process instances. There are various strategies one could consider for each running instance:

• Proceed: The running process instance proceeds as normal, following the process (definition) as
it was defined when the process instance was started. As a result, the already running instance
will proceed as if the process was never updated. New instances can be started using the updated
process.

• Abort (and restart): The already running instance is aborted. If necessary, the process instance can
be restarted using the new process definition.

• Transfer: The process instance is migrated to the new process definition, meaning that - once it has
been migrated successfully - it will continue executing based on the updated process logic.

By default, JBoss Rules Flow uses the proceed approach, meaning that multiple versions of the same
process can be deployed, but existing process instances will simply continue executing based on the
process definition that was used when starting the process instance. Running process instances could
always be aborted as well of course, using the process management API. Process instance migration
is more difficult and is explained in the following paragraphs.

Process instance migration

29

4.10.1. Process instance migration
A process instance contains all the runtime information needed to continue execution at some later
point in time. This includes all the data linked to this process instance (as variables), but also the
current state in the process diagram. For each node that is currently active, a node instance is used
to represent this. This node instance can also contain additional state linked to the execution of that
specific node only. There are different types of node instances, one for each type of node.

A process instance only contains the runtime state and is linked to a particular process (indirectly,
using id references) that represents the process logic that needs to be followed when executing this
process instance (this clear separation of definition and runtime state allows reuse of the definition
accross all process instances based on this process and minimizes runtime state). As a result,
updating a running process instance to a newer version so it used the new process logic instead of the
old one is simply a matter of changing the referenced process id from the old to the new id.

However, this does not take into account that the state of the process instance (the variable instances
and the node instances) might need to be migrated as well. In cases where the process is only
extended and all existing wait states are kept, this is pretty straightforward, the runtime state of the
process instance does not need to change at all. However, it is also possible that a more sofisticated
mapping is necessary. For example, when an existing wait state is removed, or split into multiple wait
states, an existing process instance that is waiting in that state cannot simply be updated. Or when a
new process variable is introduced, that variable might need to be initiazed correctly so it can be used
in the remainder of the (updated) process.

The WorkflowProcessInstanceUpgrader can be used to upgrade a workflow process instance to a
newer process instance. Of course, you need to provide the process instance and the new process
id. By default, JBoss Rules Flow will automatically map old node instances to new node instances
with the same id. But you can provide a mapping of the old (unique) node id to the new node id. The
unique node id is the node id, preceded by the node ids of its parents (with a colon inbetween), to
allow to uniquely identify a node when composite nodes are used (as a node id is only unique within
its node container. The new node id is simply the new node id in the node container (so no unique
node id here, simply the new node id). The following code snippet shows a simple example.

// create the session and start the process "com.sample.ruleflow"
KnowledgeBuilder kbuilder = ...
StatefulKnowledgeSession ksession = ...
ProcessInstance processInstance = ksession.startProcess("com.sample.ruleflow");

// add a new version of the process "com.sample.ruleflow2"
kbuilder = KnowledgeBuilderFactory.newKnowledgeBuilder();
kbuilder.add(..., ResourceType.DRF);
kbase.addKnowledgePackages(kbuilder.getKnowledgePackages());

// migrate process instance to new version
Map<String, Long> mapping = new HashMap<String, Long>();
// top level node 2 is mapped to a new node with id 3
mapping.put("2", 3L);
// node 2, which is part of composite node 5, is mapped to a new node with id 4
mapping.put("5.2", 4L);
WorkflowProcessInstanceUpgrader.upgradeProcessInstance(
 ksession, processInstance.getId(),
 "com.sample.ruleflow2", mapping);

If this kind of mapping is still insufficient, you can still describe your own custom mappers for specific
situations. Be sure to first disconnect the process instance, change the state accordingly and then
reconnect the process instance, similar to how the WorkflowProcessinstanceUpgrader does it.

Chapter 4. Rule Flow

30

4.11. Assigning Rules to a Ruleflow Group
JBoss Rules already provides some functionality to define the order in which rules should be
executed, like salience, activation groups, etc. When dealing with potentially many large rule-sets,
managing the order in which rules are evaluated might become complex. Ruleflow allows you to
specify the order in which rule sets should be evaluated by using a flow chart. This allows you to
define which rule sets should be evaluated in sequence or in parallel, to specify conditions under
which rule sets should be evaluated. This chapter contains a few ruleflow examples.

A ruleflow is a graphical description of a sequence of steps that the rule engine needs to take,
where the order is important. The ruleflow can also deal with conditional branching, parallelism, and
synchonization.

To use a ruleflow to describe the order in which rules should be evaluated, you should first group rules
into ruleflow groups using the ruleflow-group rule attribute ("options" in the GUI). Then you should
create a ruleflow graph (which is a flow chart) that graphically describe the order in which the rules
should be considered, by specifying the order in which the ruleflow-groups should be evaluated.

rule 'YourRule'
 ruleflow-group 'group1'
when
 ...
then
 ...
end

This rule belongs to the ruleflow-group called "group1".

Rules that are executing as part of a ruleflow-group that is triggered by a process, can also access the
process context in the rule consequence. Through the process context, the process instance or node
instance that triggered the ruleflow-group can be accessed, or variables could be set or retrieved, e.g.

drools.getContext(ProcessContext.class).getProcessInstance()

4.12. A Simple Ruleflow

Figure 4.7. Ruleflow

The above rule flow specifies that the rules in the group "Check Order" must be executed before the
rules in the group "Process Order". This means that first only rules which are marked as having a
ruleflow-group of "Check Order" will be considered, and then, only if there aren't any more of those,
the rules of "Process Order". That's about it. You could achieve similar results with either using
salience, but this is harder to maintain and makes the time-relationship implicit in the rules, or Agenda
groups. However, using a ruleflow makes the order of processing explicit, in a layer on top of the rule
structure, so that managing more complex situations becomes much easier.

In practice, if you are using ruleflow, you will most likely be doing more than setting a simple sequence
of groups to progress though. You'll use Split and Join nodes for modeling branches of processing,

A Simple Ruleflow

31

and define the flows of control by connections, from the Start to ruleflow groups, to Splits and then on
to more groups, Joins, and so on. All this is done in a grphic editor.

Figure 4.8. Complex ruleflow

The above flow is a more complex example, representing the rule flow for processing an insurance
claim. Initially the claim data validation rules are processed, checking for data integrity, consistency
and completeness. Next, in a Split node, there is a decision based on a condition based on the value
ofthe claim. Processing will either move on to an "auto-settlement" group, or to another Split node,
which checks whether there was a fatality in the incident. If so, it determines whether the "regular" of
fatality specific rules should take effect, with more processing to follow. Based on a few conditions,
many different control flows are possible. Note that all the rules can be in one package, with the
control flow definition being separated from the actual rules.

Figure 4.9. Split types

To edit Split nodes you click on the node, which will show you a properties panel as shown above. You
then have to choose the type: AND, OR, and XOR. If you choose OR, then any of the "outputs" of the
split can happen, so that processing can proceed, in parallel, along two or more paths. If you chose
XOR, then only one path is chosen.

If you choose OR or XOR, the "Constraints" row will have a square button on the right hand side.
Clickin on this button opens the Constraint editor, where you set the conditions deciding which
outgoing path to follow.

Chapter 4. Rule Flow

32

Figure 4.10. Edit constraints

Choose the output path you want to set the constraints for (e.g. Autosettlement), and then you should
see the following constraint editor:

Figure 4.11. Constraint editor

This is a text editor where the constraints - which are like the condition part of a rule - are entered.
These constraints operate on facts in the working memory. In the above example, there is a check for
claims with a value of less than 250. Should this condition be true, then the associated path will be
followed.

Using JBoss Rules 4.x RuleFlow Processes

33

4.13. Using JBoss Rules 4.x RuleFlow Processes
The XML format that was used in JBoss Rules4 to store RuleFlow processes was generated
automatically, using XStream. As a result, it was hard to read by human readers and difficult to
maintain and extend. The new JBoss Rules Flow XML format has been created to simplify this. This
however means that, by default, old RuleFlow processes cannot simply be executed on the JBoss
Rules5 engine.

We do however provide a Rule Flow Migrator that allows you to transform your old .rf file to the new
format. It uses an XSLT transformation to generate the new XML based on the old content. You can
use this class to manually transform your old processes to the new format once when upgrading from
JBoss Rules4.x to JBoss Rules5.x. You can however also let the KnowledgeBuilder automatically
upgrade your processes to the new format when they are loaded into the Knowledge Base. While this
requires a conversion every time the process is loaded into the Knowledge Base, it does support a
more seamless upgrade. To enact this automatic upgrade you need to set the "drools.ruleflow.port"
system property to "true", for example by adding -Ddrools.ruleflow.port=true when starting
your application, or by calling System.setProperty("drools.ruleflow.port", "true").

The JBoss Rules Eclipse plugin also automatically detects if an old RuleFlow file is opened. At that
point, it will automatically perform the conversion and show the result in the graphical editor. You then
need to save this result, either in a new file or overwriting the old one, to retain the old process in
the new format. Note that the plugin does not support editing and saving processes in the old JBoss
Rules4.x format.

34

Chapter 5.

35

Drools Flow API
The Drools Flow API should be used to (1) create a knowledge base that contains your process
definitions, and to (2) create a session to start new process instances, signal existing ones, register
listeners, etc.

5.1. Knowledge Base
Our knowledge-based API allows you to first create one Knowledge Base that contains all the
necessary knowledge and can be reused across sessions. This knowledge base includes all your
process definitions (and other knowledge types like for example rules). The following code snippet
shows how to create a Knowledge Base consisting of only one process definition, using a Knowledge
Builder to add the resource (from the classpath in this case).

KnowledgeBuilder kbuilder = KnowledgeBuilderFactory.newKnowledgeBuilder();
kbuilder.add(ResourceFactory.newClassPathResource("MyProcess.rf"), ResourceType.DRF);
KnowledgeBase kbase = kbuilder.newKnowledgeBase();

Note that the knowledge-based API allows users to add different types of resources, such as
processes and rules, in almost identical ways into the same Knowledge Base. This enables a user
who knows how to use Drools Flow to start using Drools Fusion almost instantaneously, and even to
integrate these different types of Knowledge.

5.2. Session
Next, you should create a session to interact with the engine. The following code snippet shows how
easy it is to create a session based on the earlier created Knowledge Base, and to start a process (by
id).

StatefulKnowledgeSession ksession = kbase.newStatefulKnowledgeSession();
ProcessInstance processInstance = ksession.startProcess("com.sample.MyProcess");

The ProcessRuntime interface defines all the session methods for interacting with processes, as
shown below. Consult the JavaDocs to get a detailed explanation for each of the methods.

ProcessInstance startProcess(String processId);
ProcessInstance startProcess(String processId, Map<String, Object> parameters);
void signalEvent(String type, Object event);
void signalEvent(String type, Object event, long processInstanceId);
Collection<ProcessInstance> getProcessInstances();
ProcessInstance getProcessInstance(long id);
void abortProcessInstance(long id);
WorkItemManager getWorkItemManager();

5.3. Events
Both the stateful and stateless knowledge sessions provide methods for registering and removing
listeners. ProcessEventListener objects can be used to listen to process-related events, like
starting or completing a process, entering and leaving a node, etc. Below, the different methods of a
ProcessEventListener are shown. An event object provides access to related information, like the
process instance and node instance linked to the event.

Chapter 5. Drools Flow API

36

public interface ProcessEventListener {

 void beforeProcessStarted(ProcessStartedEvent event);
 void afterProcessStarted(ProcessStartedEvent event);
 void beforeProcessCompleted(ProcessCompletedEvent event);
 void afterProcessCompleted(ProcessCompletedEvent event);
 void beforeNodeTriggered(ProcessNodeTriggeredEvent event);
 void afterNodeTriggered(ProcessNodeTriggeredEvent event);
 void beforeNodeLeft(ProcessNodeLeftEvent event);
 void afterNodeLeft(ProcessNodeLeftEvent event);

}

An audit log can be created based on the information provided by these process listeners. We provide
various default logger implementations:
1. Console logger: This logger writes out all the events to the console.

2. File logger: This logger writes out all the events to a file using an XML representation. This log file
might then be used in the IDE to generate a tree-based visualization of the events that occurred
during execution.

3. Threaded file logger: Because a file logger writes the events to disk only when closing the logger
or when the number of events in the logger reaches a predefined level, it cannot be used when
debugging processes at runtime. A threaded file logger writes the events to a file after a specified
time interval, making it possible to use the logger to visualize the progress in realtime, while
debugging processes.

The KnowledgeRuntimeLoggerFactory lets you add a logger to your session, as shown below.
When creating a console logger, the knowledge session for which the logger needs to be created must
be passed as an argument. The file logger also requires the name of the log file to be created, and the
threaded file logger requires the interval (in milliseconds) after which the events should be saved.

KnowledgeRuntimeLogger logger =
 KnowledgeRuntimeLoggerFactory.newFileLogger(ksession, "test");
// add invocations to the process engine here,
// e.g. ksession.startProcess(processId);
...
logger.close();

The log file can be opened in Eclipse, using the Audit View in the Drools Eclipse plugin, where the
events are visualized as a tree. Events that occur between the before and after event are shown as
children of that event. The following screenshot shows a simple example, where a process is started,
resulting in the activation of the Start node, an Action node and an End node, after which the process
was completed.

Chapter 6.

37

Persistence
Drools Flow allows the persistent storage of certain information, i.e., the process runtime state, the
process definitions and the history information.

6.1. Runtime State
Whenever a process is started, a process instance is created, which represents the execution of
the process in that specific context. For example, when executing a process that specifies how to
process a sales order, one process instance is created for each sales request. The process instance
represents the current execution state in that specific context, and contains all the information related
to that process instance. Note that it only contains the minimal runtime state that is needed to continue
the execution of that process instance at some later time, but it does not include information about the
history of that process instance if that information is no longer needed in the process instance.

The runtime state of an executing process can be made persistent, for example, in a database. This
allows to restore the state of execution of all running processes in case of unexpected failure, or to
temporarily remove running instances from memory and restore them at some later time. Drools Flow
allows you to plug in different persistence strategies. By default, if you do not configure the process
engine otherwise, process instances are not made persistent.

6.1.1. Binary Persistence
Drools Flow provides a binary persistence mechanism that allows you to save the state of a process
instance as a binary dataset. This way, the state of all running process instances can always be
stored in a persistent location. Note that these binary datasets usually are relatively small, as they
only contain the minimal execution state of the process instance. For a simple process instance, this
usually contains one or a few node instances, i.e., any node that is currently executing, and, possibly,
some variable values.

6.1.2. Safe Points
The state of a process instance is stored at so-called "safe points" during the execution of the process
engine. Whenever a process instance is executing, after its start or continuation from a wait state, the
engine proceeds until no more actions can be performed. At that point, the engine has reached the
next safe state, and the state of the process instance and all other process instances that might have
been affected is stored persistently.

6.1.3. Configuring Persistence
By default, the engine does not save runtime data persistently. It is, however, pretty straightforward
to configure the engine to do this, by adding a configuration file and the necessary dependencies.
Persistence itself is based on the Java Persistence API (JPA) and can thus work with several
persistence mechanisms. We are using Hibernate by default, but feel free to employ alternatives. A H2
database is used underneath to store the data, but you mighto choose your own alternative for this,
too.

First of all, you need to add the necessary dependencies to your classpath. If you're using the Eclipse
IDE, you can do that by adding the jar files to your Drools runtime directory (cf. chapter IDE Features),
or by manually adding these dependencies to your project. First of all, you need the jar file drools-
persistence-jpa.jar, as that contains code for saving the runtime state whenever necessary.
Next, you also need various other dependencies, depending on the persistence solution and database
you are using. For the default combination with Hibernate as the JPA persistence provider, the H2

Chapter 6. Persistence

38

database and Bitronix for JTA-based transaction management, the following list of dependencies is
needed:

1. drools-persistence-jpa (org.drools)

2. persistence-api-1.0.jar (javax.persistence)

3. hibernate-entitymanager-3.4.0.GA.jar (org.hibernate)

4. hibernate-annotations-3.4.0.GA.jar (org.hibernate)

5. hibernate-commons-annotations-3.1.0.GA.jar (org.hibernate)

6. hibernate-core-3.3.0.SP1.jar (org.hibernate)

7. dom4j-1.6.1.jar (dom4j)

8. jta-1.0.1B.jar (javax.transaction)

9. btm-1.3.2.jar (org.codehaus.btm)

10. javassist-3.4.GA.jar (javassist)

11. slf4j-api-1.5.2.jar (org.slf4j)

12. slf4j-jdk14-1.5.2.jar (org.slf4j)

13. h2-1.0.77.jar (com.h2database)

14. commons-collections-3.2.jar (commons-collections)

Next, you need to configure the Drools engine to save the state of the engine whenever necessary.
The easiest way to do this is to use JPAKnowledgeService to create your knowledge session,
based on a Knowledge Base, a Knowledge Session Configuration (if necessary) and an environment.
The environment needs to contain a reference to your Entity Manager Factory.

// create the entity manager factory and register it in the environment
EntityManagerFactory emf =
 Persistence.createEntityManagerFactory("org.drools.persistence.jpa");
Environment env = KnowledgeBaseFactory.newEnvironment();
env.set(EnvironmentName.ENTITY_MANAGER_FACTORY, emf);

// create a new knowledge session that uses JPA to store the runtime state
StatefulKnowledgeSession ksession =
 JPAKnowledgeService.newStatefulKnowledgeSession(kbase, null, env);
int sessionId = ksession.getId();

// invoke methods on your method here
ksession.startProcess("MyProcess");
ksession.dispose();

You can also yse the JPAKnowledgeService to recreate a session based on a specific session id:

// recreate the session from database using the sessionId
ksession = JPAKnowledgeService.loadStatefulKnowledgeSession(sessionId, kbase, null, env);

Note that we only save the minimal state that is needed to continue execution of the process instance
at some later point. This means, for example, that it does not contain information about already

Transactions

39

executed nodes if that information is no longer relevant, or that process instances that have been
completed or aborted are removed from the database. If you want to search for history-related
information, you should use the history log, as explained later.

By default, drools-persistence-jpa.jar contains a configuration file that configures JPA
to use Hibernate and the H2 database, called persistence.xml in the META-INF directory, as
shown below. You will need to override these defaults if you want to change them, by adding your
own persistence.xml in your classpath, preceding the default one in drools-persistence-
jpa.jar. Refer to the JPA and Hibernate documentation for more information on how to do this.

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<persistence
 version="1.0"
 xsi:schemaLocation=
 "http://java.sun.com/xml/ns/persistence
 http://java.sun.com/xml/ns/persistence/persistence_1_0.xsd
 http://java.sun.com/xml/ns/persistence/orm
 http://java.sun.com/xml/ns/persistence/orm_1_0.xsd"
 xmlns:orm="http://java.sun.com/xml/ns/persistence/orm"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://java.sun.com/xml/ns/persistence">

 <persistence-unit name="org.drools.persistence.jpa">
 <provider>org.hibernate.ejb.HibernatePersistence</provider>
 <jta-data-source>jdbc/processInstanceDS</jta-data-source>
 <class>org.drools.persistence.session.SessionInfo</class>
 <class>org.drools.persistence.processinstance.ProcessInstanceInfo</class>
 <class>org.drools.persistence.processinstance.ProcessInstanceEventInfo</class>
 <class>org.drools.persistence.processinstance.WorkItemInfo</class>

 <properties>
 <property name="hibernate.dialect" value="org.hibernate.dialect.H2Dialect"/>
 <property name="hibernate.max_fetch_depth" value="3"/>
 <property name="hibernate.hbm2ddl.auto" value="update"/>
 <property name="hibernate.show_sql" value="true"/>
 <property name="hibernate.transaction.manager_lookup_class"
 value="org.hibernate.transaction.BTMTransactionManagerLookup"/>
 </properties>
 </persistence-unit>
</persistence>

This configuration file refers to a data source called "jdbc/processInstanceDS". The following Java
fragment could be used to set up this data source, where we are using the file-based H2 database.

PoolingDataSource ds = new PoolingDataSource();
ds.setUniqueName("jdbc/processInstanceDS");
ds.setClassName("org.h2.jdbcx.JdbcDataSource");
ds.setMaxPoolSize(3);
ds.setAllowLocalTransactions(true);
ds.getDriverProperties().put("user", "sa");
ds.getDriverProperties().put("password", "sasa");
ds.getDriverProperties().put("URL", "jdbc:h2:file:/NotBackedUp/data/process-instance-db");
ds.init();

6.1.4. Transactions
Whenever you do not provide transaction boundaries inside your application, the engine will
automatically execute each method invocation on the engine in a separate transaction. If this
behavior is acceptable, you don't need to do anything else. You can, however, also specify the

Chapter 6. Persistence

40

transaction boundaries yourself. This allows you, for example, to combine multiple commands into one
transaction.

You need to register a transaction manager at the environment before using user-defined transactions.
The following sample code uses the Bitronix transaction manager. Next, we use the Java Transaction
API (JTA) to specify transaction boundaries, as shown below:

// create the entity manager factory and register it in the environment
EntityManagerFactory emf =
 Persistence.createEntityManagerFactory("org.drools.persistence.jpa");
Environment env = KnowledgeBaseFactory.newEnvironment();
env.set(EnvironmentName.ENTITY_MANAGER_FACTORY, emf);
env.set(EnvironmentName.TRANSACTION_MANAGER,
 TransactionManagerServices.getTransactionManager());

// create a new knowledge session that uses JPA to store the runtime state
StatefulKnowledgeSession ksession =
 JPAKnowledgeService.newStatefulKnowledgeSession(kbase, null, env);

// start the transaction
UserTransaction ut =
 (UserTransaction) new InitialContext().lookup("java:comp/UserTransaction");
ut.begin();

// perform multiple commands inside one transaction
ksession.insert(new Person("John Doe"));
ksession.startProcess("MyProcess");
ksession.fireAllRules();

// commit the transaction
ut.commit();

6.2. Process Definitions
Process definition files are usually written in an XML format. These files can easily be stored on a file
system during development. However, whenever you want to make your knowledge accessible to one
or more engines in production, we recommend using a knowledge repository that (logically) centralizes
your knowledge in one or more knowledge repositories.

Guvnor is a sub-project that provides exactly that. It consists of a repository for storing different kinds
of Knowledge, not only process definitions but also rules, object models, etc. It allows easy retrieval of
this knowledge using WebDAV or by employing a Knowledge Agent that automatically downloads the
information from Guvnor when creating a Knowledge Base, and provides a web application that allows
business users to view and possibly update the information in the Knowledge Repository. Check out
the Drools Guvnor documentation for more information on how to do this.

6.3. History Log
In many cases it is useful (if not necessary) to store information about the execution of process
instances, so that this information can be used afterwards, for example, to verify what actions have
been executed for a particular process instance, or to monitor and analyze the efficiency of a particular
process. Storing history information in the runtime database is usually not a good idea, as this
would result in ever-growing runtime data, and monitoring and analysis queries might influence the
performance of your runtime engine. That is why history information about the execution of process
instances is stored separately.

This history log of execution information is created based on the events generated by the process
engine during execution. The Drools runtime engine provides a generic mechanism to listen to

Storing Process Events in a Database

41

different kinds of events. The necessary information can easily be extracted from these events and
made persistent, for example in a database. Filters can be used to only store the information you find
relevant.

6.3.1. Storing Process Events in a Database
The drools-bam module contains an event listener that stores process-related information in a
database using Hibernate. The database contains two tables, one for process instance information
and one for node instance information (see the figure below):

1. ProcessInstanceLog: This lists the process instance id, the process (definition) id, the start date
and (if applicable) the end date of all process instances.

2. NodeInstanceLog: This table contains more detailed information about which nodes were actually
executed inside each process instance. Whenever a node instance is entered from one of its
incomming connections or is exited through one of its outgoing connections, that information is
stored in this table. For this, it stores the process instance id and the process id of the process
instance it is being executed in, and the node instance id and the corresponding node id (in the
process definition) of the node instance in question. Finally, the type of event (0 = enter, 1 = exit)
and the date of the event is stored as well.

To log process history information in a database like this, you need to register the logger on your
session (or working memory) like this:

StatefulKnowledgeSession ksession = ...;
WorkingMemoryDbLogger logger = new WorkingMemoryDbLogger(ksession);

// invoke methods one your session here

logger.dispose();

Note that this logger is like any other audit logger, which means that you can add one or more filters
by calling the method addFilterd to ensure that only relevant information is stored in the database.
Only information accepted by all your filters will appear in the database. You should dispose the logger
when it is no longer needed.

To specify the database where the information should be stored, modify the file
hibernate.cfg.xml file. By default, it uses a memory-resident database (H2). Consult the
Hibernate documentation if you do not know how to do this.

All this information can easily be queried and used in a lot of different use cases, ranging from creating
a history log for one specific process instance to analyzing the performance of all instances of a
specific process. Class ProcessInstanceDbLog (in package org.drools.process.audit)
shows some examples on how to retrieve all process instances, one specific process instance (by id),
all process instances for one specific process, all node instances of a specific process instance, etc.
You can of course easily create your own Hibernate queries, or access the information in the database
directly.

Chapter 6. Persistence

42

By default, the audit logger uses the H2 memory-resident database that is recreated on startup. You
can change this default by including your own configuration file hibernate.cfg.xml. This allows
you, for example, to change the underlying database, etc. Refer to the Hibernate documentation for
more information on how to do this.

Chapter 7.

43

JBoss Rules Flow Process Model

44

Chapter 8.

45

Rules and Processes
JBoss Rules Flow is a workflow and process engine that allows advanced integration of processes
and rules. This chapter discusses the integration of rules and processes, ranging from simple to
advanced scenarios.

8.1. Why Use Rules in Processes?
Workflow languages that depend purely on process constructs (like nodes and connections) to
describe the business logic of applications tend to be quite complex. While these workflow constructs
are very well suited to describe the overall control flow of an application, it can be very difficult to
describe complex logic and exceptional situations. Therefore, executable processes tend to become
very complex. We believe that, by extending a process engine with support for declarative rules in
combination with these regular process constructs, this complexity can be kept under control.

1. Simplicity: Complex decisions are usually easier to specify using a set of rules. Rules can pinpoint
complex business logic more easily, using their advanced constraint language. Multiple rules can
be combined, each describing a part of the business logic.

2. Agility: Rules and processes can have a separate life cycle. This means that we can change the
rules describing some crucial decision points without having to change the process itself. Rules
can be added, removed or modified to fine-tune the behavior of the process to the constantly
evolving requirements and environment.

3. Different scope: Rules can be reused across processes or outside processes. Therefore, your
business logic is not locked inside your processes.

4. Declarativeness: Focus on describing "what" instead of "how".

5. Granularity: It is easy to write simple rules that handle specific circumstances. Processes are more
suited to describe the overall control flow but tend to become very complex if they also need to
describe a lot of exceptional situations.

6. Data-centric: Rules can easily handle large data sets.

7. Performance: Rule evaluation is optimized.

8. Advanced condition and action language: Rule languages support advanced features like custom
functions, collections, conditional elements, including quantifiers, etc.

9. High-level: By using DSLs, business editors, decision tables, and decision trees, your business
logic could be described in a way that can be understood (and possibly even modified) by
business users.

8.2. Why Integrate Rules and Processes in a Single
Engine?
JBoss Rules Flow combines a process and a rules engine in one software product. This offers several
advantages, compared to trying to loosely couple an existing process and rules product.

1. Simplicity: Easier for end user to combine both rules and processes.

2. Encapsulation: Sometimes close integration between processes and rules is beneficial.

3. Performance: No unnecessary passing, transformation or synchronization of data

Chapter 8. Rules and Processes

46

4. Learning curve: Easier to learn one product.

5. Manageability: Easier to manage one product, rules and processes can be similar artefacts in a
larger knowledge repository.

6. Integration of features: We provide an integrated IDE, audit log, web-based management platform,
repository, debugging, etc.

8.3. Approach
Workflow languages describe the order in which activities should be performed using a flow chart. A
process engine is responsible for selecting which activities should be executed based on the current
state of the executing processes. On the other hand, rules are composed of a set of conditions that
describe when a rule is applicable and an action that is executed when the conditions are met. The
rules engine is then responsible for evaluating and executing the rules. It decides which rules need to
be executed based on the current state of the application.

Workflow processes are very good at describing the overall control flow of (possibly long-running)
applications. However, processes that are used to define complex business decisions, to handle a
lot of exceptional situations, and need to respond to various external events tend to become very
complex indeed. Rules are very good at describing complex decisions and reasoning about large
amounts of data or events. It is, however, not trivial to define long-running processes using rules.

In the past, users were forced to choose between defining their business logic using either a process
or a rules engine. Problems that required complex reasoning about large amounts of data used a rules
engine, while users that wanted to focus on describing the control flow of their processes were forced
to use a process engine. However, businesses nowadays might want to combine both processes and
rules in order to be able to define all their business logic in the format that best suits their needs.

Basically, both a rules and a process engine will derive the next steps that need to be executed by
looking at its Knowledge Base (a set of rules or processes, respectively) and the current known state
of the application (the data in the Working Memory or the state of the executing process instances,
respectively). If we want to integrate rules and processes, we need an engine that can decide the next
steps taking into account the logic that is defined inside both the processes and the rules.

8.3.1. Teaching a Rules Engine About Processes
It is very difficult (and probably very inefficient as well) to extend a process engine to also take rules
into account. The process engine would need to check for rules that might need to be executed at
every step and would have to keep the data that is used by the rules engine up to date. However, it
is not that difficult to "teach" a rules engine about processes. If the current state of the processes is
also inserted as part of the Working Memory data the rules engine reasons about, and we instruct the
rules engine how to derive the next steps of an executing process, the rules engine will then be able to
derive the next steps taking rules and processes into account jointly.

Inversion of Control

47

8.3.2. Inversion of Control
From the process perspective, this means that there is an inversion of control. A normal process
engine exercises full control, deriving the next steps based on the current state of the process
instance. If needed, it can contact external services to retrieve additional information, but it solely
decides which steps to take, and is alone responsible for executing these steps.

However, only our extended rules engine (that can reason jointly about rules and processes) is
capable of deriving the next steps taking both rules and processes into account. If a part of the
process needs to be executed, the rules engine will request the process engine to execute this step.
Once this step has been performed, the process engine returns control to the rules engine to again
derive the next steps. This means that the control on what to do next has been inverted: the process
engine itself no longer decides the next step to take but our enhanced rules engine will be in control,
notifying the process engine what to execute next, and when.

8.4. Example
The drools-examples project contains a sample process
(org.drools.examples.process.order) that illustrates some of the advantages of being able to
combine processes and rules. This process describes an order application where incoming orders are
validated, discounts are calculated and shipping of the goods is requested.

Chapter 8. Rules and Processes

48

8.4.1. Evaluating a Set of Rules in Your Process
JBoss Rules Flow can easily include a set of rules as part of the process. The rules that need to be
evaluated should be grouped in a ruleflow group, using the ruleflow-group rule attribute. Activating
a RuleSet node for the group triggers the evaluation of these rules in your process. This example
uses two RuleSet nodes in the process: one for the validation of the order and one for calculating the

Using Rules for Evaluating Constraints

49

discount. For example, one of the rules for validiting an order is shown below. Note the ruleflow-
group attribute, which ensures that this rule is evaluated as part of the RuleSet node with the same
ruleflow group shown in the figure.

rule "Invalid item id"
 ruleflow-group "validate"
 lock-on-active true
when
 o: Order()
 i: Order.OrderItem() from o.getOrderItems()
 not (Item() from itemCatalog.getItem(i.getItemId()))
then
 System.err.println("Invalid item id found!");
 o.addError("Invalid item id " + i.getItemId());
end

Figure 8.1. RuleSet node and one of its rules

8.4.2. Using Rules for Evaluating Constraints
Rules can be used for expressing and evaluating complex constraints in your process. For example,
when to decide about the choice of the execution path at a Split node, rules could be used to define
these conditions. Similarly, a Wait state could use a rule to define the wait duration. This example
uses rules for deciding the next action after validating the order. If the order contains errors, a sales
representative should try to correct the order. Orders with a value > 1000$ are more important, so
that a senior sales representative should attend to the order. All other orders should just proceed
normally. A decision node is used to select one of these alternatives, and rules are used to describe
the constraints for each of them.

Chapter 8. Rules and Processes

50

8.4.3. Assignment Rules
Human tasks can be used in a process to describe work that needs to be executed by a human
actor. The selection of the actor could be based on the current state of the process and the history.
Assignment rules describe how to determine the actor, based on this information. These assignment
rules will then be applied automatically whenever a new human task needs to be executed.

Describing Exceptional Situations Using Rules

51

Note that the rules shown below are written in a Domain Specific Language (DSL), tailored to the
specific requirements for formulating conditions in the order processing environment.

/********** Generic assignment rules **********/

rule "Assign 'Correct Order' to any sales representative"
 salience 30
 when
 There is a human task
 - with task name "Correct Order"
 - without actor id
 then
 Set actor id "Sales Representative"
end

/********** Assignment rules for the RuleSetExample process **********/

rule "Assign 'Follow-up Order' to a senior sales representative"
 salience 40
 when
 Process "org.drools.examples.process.ruleset.RuleSetExample" contains a human task
 - with task name "Follow-up Order"
 - without actor id
 then
 Set actor id "Senior Sales Representative"
end

8.4.4. Describing Exceptional Situations Using Rules
Rules can be used for describing exceptional situations and how to respond to these situations.
Adding all this information in the control flow of the regular process makes the basic process much
more complex. Rules can be used to handle each of these situations separately, leaving the core
process in its simple form. It also makes it much easier to adapt existing processes to take previously
unanticipated events into account.

8.4.5. Modularizing Concerns Using Rules
The process defines the overall control flow. Rules could be used to add additional concerns to this
process without making the overall control flow more complex. For example, rules could be defined
to log certain information during the execution of the process. The original process is not altered,
whereas all logging functionality is cleanly modularized as a set of rules. This greatly improves
reusability, allowing users to easily apply the same strategy to different processes, readability (by
not altering the control flow of the original process) and maintainability, due to the separation of the
logging strategy rules from those of the process itself.

8.4.6. Rules for Altering Process Behavior Dynamically
Rules let you dynamically fine-tune the behavior of your processes. Imagine that a problem is
encountered, at runtime, with one of the processes. Now, new rules could be added, at runtime, to
log additional information or for handling specific process states. Once the problem is solved or the
circumstances have changed, these rules can easily be removed again. Based on the current status,
different strategies could be selected dynamically. For example, based on the current load of all the
services, rules could be used to optimize the process to the current load. This process contains a
simple example that allows you to dynamically add or remove logging for the "Check Order" task.
When the "Debugging output" checkbox in the main application window is checked, the rule shown
below is loaded dynamically, to write log output to the console whenever the "Check Order" task is
requested. Unchecking the box will dynamically remove the rule again.

Chapter 8. Rules and Processes

52

rule "Log the execution of 'Correct Order'"
 salience 25
when
 workItemNodeInstance: WorkItemNodeInstance(workItemId <= 0, node.name == "Correct
 Order")
 workItem: WorkItemImpl(state == WorkItemImpl.PENDING) from
 workItemNodeInstance.getWorkItem()
then
 ProcessInstance proc = workItemNodeInstance.getProcessInstance();
 VariableScopeInstance variableScopeInstance =
 (VariableScopeInstance)proc.getContextInstance(VariableScope.VARIABLE_SCOPE);
 System.out.println("LOGGING: Requesting the correction of " +
 variableScopeInstance.getVariable("order"));
end

8.4.7. Integrated Tooling
Processes and rules are integrated in the JBoss Rules Eclipse IDE. Both processes and rules are
simply considered as different types of business logic, to be managed almost identically. For example,
loading a process or a set of rules into the engine is very similar. Also, different rule implementations,
such DRL or DSL, are handled in a uniform way.

private static KnowledgeBase createKnowledgeBase() throws Exception {
 KnowledgeBuilder kbuilder = KnowledgeBuilderFactory.newKnowledgeBuilder();
 kbuilder.add(ResourceFactory.newClassPathResource(
 "RuleSetExample.rf", OrderExample.class), ResourceType.DRF);
 kbuilder.add(ResourceFactory.newClassPathResource(
 "workflow_rules.drl", OrderExample.class), ResourceType.DRL);
 kbuilder.add(ResourceFactory.newClassPathResource(
 "assignment.dsl", OrderExample.class), ResourceType.DSL);
 kbuilder.add(ResourceFactory.newClassPathResource(
 "assignment.dslr", OrderExample.class), ResourceType.DSLR);

 KnowledgeBase kbase = KnowledgeBaseFactory.newKnowledgeBase();
 kbase.addKnowledgePackages(kbuilder.getKnowledgePackages());
 return kbase;
}

Our audit log also contains an integrated view, showing how rules and processes are influencing each
other. For example, a part of the log shows how rule "5% discount" is executed as part of the node
"Calculate Discount".

8.4.8. Domain-specific Rules and Processes
Rules do not need to be defined using the core rule language syntax, but they also can be defined
using our more advanced rule editors, using domain-specific languages, decision tables, guided
editors, etc. Our example defines a domain-specific language for describing assignment rules, based
on the type of task, its properties, the process it is defined in, etc. This makes the assignment rules
much more understandable for non-experts.

Domain-specific Rules and Processes

53

/********** Generic assignment rules **********/

rule "Assign 'Correct Order' to any sales representative"
 salience 30
 when
 There is a human task
 - with task name "Correct Order"
 - without actor id
 then
 Set actor id "Sales Representative"
end

/********** Assignment rules for the RuleSetExample process **********/

rule "Assign 'Follow-up Order' to a senior sales representative"
 salience 40
 when
 Process "org.drools.examples.process.ruleset.RuleSetExample" contains a human task
 - with task name "Follow-up Order"
 - without actor id
 then
 Set actor id "Senior Sales Representative"
end

54

Chapter 9.

55

Domain-specific processes

9.1. Introduction
One of the goals of our unified rules and processes framework is to allow users to extend the default
programming constructs with domain-specific extensions that simplify development in a particular
application domain. While JBoss Rules has been offering constructs to create domain-specific rule
languages for some time now, this tutorial describes our first steps towards domain-specific process
languages.

Most process languages offer some generic action (node) construct that allows plugging in custum
user actions. However, these actions are usually low-level, where the user is required to write custom
code to implement the work that should be incorporated in the process. The code is also closely linked
to a specific target environment, making it difficult to reuse the process in different contexts.

Domain-specific languages are targeted to one particular application domain and therefore can offer
constructs that are closely related to the problem the user is trying to solve. This makes the processes
and easier to understand and self-documenting. We will show you how to define domain-specific work
items, which represent atomic units of work that need to be executed. These work items specify the
work that should be executed in the context of a process in a declarative manner, i.e. specifying what
should be executed (and not how) on a higher level (no code) and hiding implementation details.

So we want work items that are:
1. domain-specific

2. declarative (what, not how)

3. high-level (no code)

4. customizable to the context

Users can easily define their own set of domain-specific work items and integrate them in our process
language(s). For example, the next figure shows an example of a process in a healthcare context.
The process includes domain-specific work items for ordering nursing tasks (e.g. measuring blood
pressure), prescribing medication and notifying care providers.

Chapter 9. Domain-specific processes

56

9.2. Example: Notifications
Let's start by showing you how to include a simple work item for sending notifications. A work
item represent an atomic unit of work in a declarative way. It is defined by a unique name and
additional parameters that can be used to describe the work in more detail. Work items can also return
information after they have been executed, specified as results. Our notification work item could thus
be defined using a work definition with four parameters and no results:

 Name: "Notification"
 Parameters
 From [String]
 To [String]
 Message [String]
 Priority [String]

9.2.1. Creating the work definition
All work definitions must be specified in one or more configuration files in the project classpath,
where all the properties are specified as name-value pairs. Parameters and results are maps where
each parameter name is also mapped to the expected data type. Note that this configuration file
also includes some additional user interface information, like the icon and the display name of the
work item. (We use MVEL for reading in the configuration file, which allows us to do more advanced
configuration files). Our MyWorkDefinitions.conf file looks like this:

import org.drools.process.core.datatype.impl.type.StringDataType;
[
 // the Notification work item
 [
 "name" : "Notification",
 "parameters" : [
 "Message" : new StringDataType(),
 "From" : new StringDataType(),
 "To" : new StringDataType(),
 "Priority" : new StringDataType(),
],
 "displayName" : "Notification",
 "icon" : "icons/notification.gif"
]

]

9.2.2. Registering the work definition
The JBoss Rules Configuration API can be used to register work definition files for your project
using the drools.workDefinitions property, which represents a list of files containing work definitions
(separated usings spaces). For example, include a drools.rulebase.conf file in the META-INF directory
of your project and add the following line:

 drools.workDefinitions = MyWorkDefinitions.conf

Using your new work item in your processes

57

9.2.3. Using your new work item in your processes
Once our work definition has been created and registered, we can start using it in our processes. The
process editor contains a separate section in the palette where the different work items that have been
defined for the project appear.

Using drag and drop, a notification node can be created inside your process. The properties can be
filled in using the properties view.

Apart from the properties defined by for this work item, all work items also have these three properties:

1. Parameter Mapping: Allows you map the value of a variable in the process to a parameter of the
work item. This allows you to customize the work item based on the current state of the actual
process instance (for example, the priority of the notification could be dependent of some process-
specific information).

Chapter 9. Domain-specific processes

58

2. Result Mapping: Allows you to map a result (returned once a work item has been executed) to a
variable of the process. This allows you to use results in the remainder of the process.

3. Wait for completion: By default, the process waits until the requested work item has been
completed before continuing with the process. It is also possible to continue immediately after the
work item has been requested (and not waiting for the results) by setting "wait for completion" to
false.

9.2.4. Executing work items
The JBoss Rules engine contains a WorkItemManager that is responsible for executing work
items whenever necessary. The WorkItemManager is responsible for delegating the work items to
WorkItemHandlers that execute the work item and notify the WorkItemManager when the work item
has been completed. For executing notification work items, a NotificationWorkItemHandler should be
created (implementing the WorkItemHandler interface):

package com.sample;

import org.drools.process.instance.WorkItem;
import org.drools.process.instance.WorkItemHandler;
import org.drools.process.instance.WorkItemManager;

public class NotificationWorkItemHandler implements WorkItemHandler {

 public void executeWorkItem(WorkItem workItem, WorkItemManager manager) {
 // extract parameters
 String from = (String) workItem.getParameter("From");
 String to = (String) workItem.getParameter("To");
 String message = (String) workItem.getParameter("Message");
 String priority = (String) workItem.getParameter("Priority");
 // send email
 EmailService service = ServiceRegistry.getInstance().getEmailService();
 service.sendEmail(from, to, "Notification", message);
 // notify manager that work item has been completed
 manager.completeWorkItem(workItem.getId(), null);
 }

 public void abortWorkItem(WorkItem workItem, WorkItemManager manager) {
 // Do nothing, notifications cannot be aborted
 }

}

This WorkItemHandler sends a notification as an email and then immediate notifies the
WorkItemManager that the work item has been completed. Note that not all work items can be
completed directly. In cases where executing a work item takes some time, execution can continue
asynchronously and the work item manager can be notified later. In these situations, it might also be
possible that a work item is being aborted before it has been completed. The abort method can be
used to specify how to abort such work items.

WorkItemHandlers should be registered at the WorkItemManager, using the following API:

 workingMemory.getWorkItemManager().registerWorkItemHandler(
 "Notification", new NotificationWorkItemHandler());

Decoupling the execution of work items from the process itself has the following advantages:

1. The process is more declarative, specifying what should be executed, not how.

Testing processes using work items

59

2. Changes to the environment can be implemented by adapting the work item handler. The process
itself should not be changed. It is also possible to use the same process in different environments,
where the work item handler is responsible for integrating with the right services.

3. It is easy to share work item handlers across processes and projects (which would be more
difficult if the code would be embedded in the process itself).

4. Different work item handlers could be used depending on the context. For example, during testing
or simulation, it might not be necessary to actually execute the work items. The next section
shows an example of how to use specialized work item handlers during testing.

9.3. Testing processes using work items
Customizable execution depending on context, easier to manage changes in environment (by
changing handler), sharing processes accross contexts (using different handlers), testing, simulation
(custom test handlers)

9.4. Future
Our process framework is based on the (already well-known) idea of a Process Virtual Machine
(PVM), where the process framework can be used as a basis for multiple process languages. This
allows users to more easily create their own process languages, where common services provided by
the process framework (e.g. persistence, audit) can be (re)used by the process language designer.
Processes are represented as a graph of nodes, each node describing a part of the process logic.
Different types of nodes are used for expressing different kinds of functionality, like creating or
merging parallel flows (split and join), invoking a sub process, invoking external services, etc. One of
our goals is creating a truly pluggable process language, where language designers can easily plug in
their own node implementations.

60

Chapter 10.

61

Human Tasks
An important aspect of work flow and BPM (business process management)is human task
management. While some of the work performed in a process can be executed automatically, some
tasks need to be executed with the interaction of human actors. JBoss Rules Flow supports the use
of human tasks inside processes using a special human task node that will represent this interaction.
This node allows process designers to define the type of task, the actor(s), the data associated with
the task, etc. We also have implemented a task service that can be used to manage these human
tasks. Users are however open to integrate any other solution if they want to, as this is fully pluggable.

To start using human tasks inside your processes, you first need to (1) include human task nodes
inside your process, (2) integrate a task management component of your choice (e.g. the WS-HT
implementation provided by us) and (3) have end users interact with the human task management
component using some kind of user interface. These elements will be discussed in more detail in the
next sections.

10.1. Human tasks inside processes

JBoss Rules Flow supports the use of human tasks inside processes using a special human task
node (as shown in the figure above). A human task node represents an atomic task that needs to be
executed by a human actor. Although JBoss Rules Flow has a special human task node for including
human tasks inside a process, human tasks are simply considered as any other kind of external
service that needs to be invoked and are therefore simply implemented as a special kind of work item.
The only thing that is special about the human task node is that we have added support for swimlanes,
making it easier to assign tasks to users (see below). A human task node contains the following
properties:

• Id: The id of the node (which is unique within one node container).

• Name: The display name of the node.

• TaskName: The name of the human task.

• Priority: An integer indicating the priority of the human task.

• Comment: A comment associated with the human task.

• ActorId: The actor id that is responsible for executing the human task. A list of actor id's can be
specified using a comma (',') as separator.

• Skippable: Specifies whether the human task can be skipped (i.e. the actor decides not to execute
the human task).

• Content: The data associated with this task.

• Swimlane: The swimlane this human task node is part of. Swimlanes make it easy to assign multiple
human tasks to the same actor. See below for more detail on how to use swimlanes.

Chapter 10. Human Tasks

62

• Wait for completion: If this property is true, the human task node will only continue if the human
task has been terminated (i.e. completed or any other terminal state); otherwise it will continue
immediately after creating the human task.

• On-entry and on-exit actions: Actions that are executed upon entry and exit of this node.

• Parameter mapping: Allows copying the value of process variables to parameters of the human
task. Upon creation of the human tasks, the values will be copied.

• Result mapping: Allows copying the value of result parameters of the human task to a process
variable. Upon completion of the human task, the values will be copied. Note that can only use
result mappings when "Wait for completion" is set to true. A human task has a result variable
"Result" that contains the data returned by the human actor. The variable "ActorId" contains the id of
the actor that actually executed the task.

• Timers: Timers that are linked to this node (see the 'timers' section for more details).

• ParentId: Allows to specify the parent task id, in the case that this task is a sub task of another. (see
the 'sub task' section for more details)

You can edit these variables in the properties view (see below) when selecting the human task node,
or the most important properties can also be edited by double-clicking the human task node, after
which a custom human task node editor is opened, as shown below as well.

Swimlanes

63

Note that you could either specify the values of the different parameters (actorId, priority, content,
etc.) directly (in which case they will be the same for each execution of this process), or make
them context-specific, based on the data inside the process instance. For example, parameters of
type String can use #{expression} to embed a value in the String. The value will be retrieved when
creating the work item and the #{...} will be replaced by the toString() value of the variable. The
expression could simply be the name of a variable (in which case it will be resolved to the value of the
variable), but more advanced MVEL expressions are possible as well, like #{person.name.firstname}.
For example, when sending an email, the body of the email could contain something like "Dear
#{customer.name}, ...". For other types of variables, it is possible to map the value of a variable to a
parameter using the parameter mapping.

10.1.1. Swimlanes
Human task nodes can be used in combination with swimlanes to assign multiple human tasks to the
similar actors. Tasks in the same swimlane will be assigned to the same actor. Whenever the first task
in a swimlane is created, and that task has an actorId specified, that actorId will be assigned to the
swimlane as well. All other tasks that will be created in that swimlane will use that actorId as well, even
if an actorId has been specified for the task as well.

Whenever a human task that is part of a swimlane is completed, the actorId of that swimlane is set to
the actorId that executed that human task. This allows for example to assign a human task to a group
of users, and to assign future tasks of that swimlame to the user that claimed the first task. This will

Chapter 10. Human Tasks

64

also automatically change the assignment of tasks if at some point one of the tasks is reassigned to
another user.

To add a human task to a swimlane, simply specify the name of the swimlane as the value of the
"Swimlane" parameter of the human task node. A process must also define all the swimlanes that it
contains. To do so, open the process properties by clicking on the background of the process and click
on the "Swimlanes" property. You can add new swimlanes there.

10.2. Human task management component
As far as the JBoss Rules Flow engine is concerned, human tasks are similar to any other external
service that needs to be invoked and are implemented as an extension of normal work items. As
a result, the process itself only contains an abstract description of the human tasks that need to
be executed, and a work item handler is responsible for binding this abstract tasks to a specific
implementation. Using our pluggable work item handler approach (see the chapter on domain-specific
processes for more details), users can plug in any back-end implementation.

We do however provide an implementation of such a human task management component based on
the WS-HumanTask specification. If you do not have the requirement to integrate a specific human
task component yourself, you can use this service. It manages the task life cycle of the tasks (creation,
claiming, completion, etc.) and stores the state of the task persistently. It also supports features like
internationalization, calendar integration, different types of assignments, delegation, deadlines, etc.

Because we did not want to implement a custom solution when a standard is available, we chose to
implement our service based on the WS-HumanTask (WS-HT) specification. This specification defines
in detail the model of the tasks, the life cycle, and a lot of other features as the ones mentioned above.
It is pretty comprehensive and can be found here1.

10.2.1. Task life cycle
Looking from the perspective of the process, whenever a human task node is triggered during the
execution of a process instance, a human task is created. The process will only continue from that
point when that human task has been completed or aborted (unless of course you specify that the
process does not need to wait for the human task to complete, by setting the "Wait for completion"
property to true). However, the human task usually has a separate life cycle itself. We will now shortly
introduce this life cycle, as shown in the figure below. For more details, check out the WS-HumanTask
specification.

1 http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-bpel4people/WS-HumanTask_v1.pdf

http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-bpel4people/WS-HumanTask_v1.pdf
http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-bpel4people/WS-HumanTask_v1.pdf

Task life cycle

65

Whenever a task is created, it starts in the "Created" stage. It usually automatically transfers to the
"Ready" state, at which point the task will show up on the task list of all the actors that are allowed to
execute the task. There, it is waiting for one of these actors to claim the task, indicating that he or she
will be executing the task. Once a user has claimed a task, the status is changed to "Reserved". Note
that a task that only has one potential actor will automatically be assigned to that actor upon creation
of that task. After claiming the task, that user can then at some point decide to start executing the task,
in which case the task status is changed to "InProgress". Finally, once the task has been performed,
the user must complete the task (and can specify the result data related to the task), in which case
the status is changed to "Completed". If the task could not be completed, the user can also indicate
this using a fault response (possibly with fault data associated), in which case the status is changed to
"Failed".

The life cycle explained above is the normal life cycle. The service also allows a lot of other life cycle
methods, like:
• Delegating or forwarding a task, in which case it is assigned to another actor

• Revoking a task, so it is no longer claimed by one specific actor but reappears on the task list of all
potential actors

• Temporarly suspending and resuming a task

• Stopping a task in progress

• Skipping a task (if the task has been marked as skippable), in which case the task will not be
executed

Chapter 10. Human Tasks

66

10.2.2. Linking the task component to the JBoss Rules Flow engine
The task management component needs to be integrated with the JBoss Rules Flow engine just like
any other external service, by registering a work item handler that is responsible for translating the
abstract work item (in this case a human task) to a specific invocation. We have implemented such a
work item handler (org.drools.process.workitem.wsht.WSHumanTaskHandler in the drools-process-
task module) so you can easily link this work item handler like this:

 StatefulKnowledgeSession session = ...;
 session.getWorkItemManager().registerWorkItemHandler("Human Task", new
 WSHumanTaskHandler());

By default, this handler will connect to the human task management component on the local machine
on port 9123, but you can easily change that by invoking the setConnection(ipAddress, port) method
on the WSHumanTaskHandler.

At this moment WSHumanTaskHandler is using Mina (http://mina.apache.org/)2 for testing the
behavior in a client/server architecture. Mina uses messages between client and server to enable the
client comunicate with the server. That's why WSHumanTaskHandler have a MinaTaskClient that
create different messages to give the user different actions that are executed for the server.

In the client (MinaTaskClient in this implementation) we should see the implementation of the following
methods for interacting with Human Tasks:

public void start(long taskId, String userId, TaskOperationResponseHandler responseHandler)
public void stop(long taskId, String userId, TaskOperationResponseHandler responseHandler)
public void release(long taskId, String userId, TaskOperationResponseHandler
 responseHandler)
public void suspend(long taskId, String userId, TaskOperationResponseHandler
 responseHandler)
public void resume(long taskId, String userId, TaskOperationResponseHandler
 responseHandler)
public void skip(long taskId, String userId, TaskOperationResponseHandler responseHandler)
public void delegate(long taskId, String userId, String targetUserId,
 TaskOperationResponseHandler responseHandler)
public void complete(long taskId, String userId, ContentData outputData,
 TaskOperationResponseHandler responseHandler)
...

Using this methods we will implement any kind of GUI that the end user will use to do the task that
they have assigned. If you take a look a this method signatures you will notice that almost all of this
method takes the following arguments:

• taskId: the id of the task with we are working. Probably you will pick this Id from the user task list in
the UI (User Interface).

• userId: the id of the user that is executing the action. Probably the Id of the user that is signed in the
application.

• responseHandler: this is the handler have responsibility to catch the response and get the results
or just let us know that the task is already finished.

2 http://mina.apache.org/

http://mina.apache.org/
http://mina.apache.org/

Starting the Task Management Component

67

As you can imagine all the methods create a message that will be send to the server, and the server
will execute the logic that implement the correct action. A creation of one of this messages will be like
this:

public void complete(long taskId,
 String userId,
 ContentData outputData,
 TaskOperationResponseHandler responseHandler) {
 List<Object> args = new ArrayList<Object>(5);
 args.add(Operation.Complete);
 args.add(taskId);
 args.add(userId);
 args.add(null);
 args.add(outputData);
 Command cmd = new Command(counter.getAndIncrement(),
 CommandName.OperationRequest,
 args);

 handler.addResponseHandler(cmd.getId(),
 responseHandler);
 session.write(cmd);
}

Here we can see that a Command is created and the arguments of the method are inserted inside the
command with the type of operation that we are trying to execute and then this command is sended to
the server with session.write(cmd) method.

If we see the server implementation, when the command is recived, we find that depends of the
operation type (here Operation.Complete) will be the logic that will be executed. If we look at the
class TaskServerHandler in the messageReceived method the taskOperation is executed using
the taskServiceSession that is the responsible for get, persist and manipulate all the Human Task
Information when the tasks are created and the user is not interacting with them.

10.2.3. Starting the Task Management Component
The task management component is a completely independent service that the process engine
communicates with. We therefore recommend to start it as a separate service as well. To start the task
server, you can use the following code fragment:

EntityManagerFactory emf = Persistence.createEntityManagerFactory("org.drools.task");
taskService = new TaskService(emf);
MinaTaskServer server = new MinaTaskServer(taskService);
Thread thread = new Thread(server);
thread.start();

The task management component uses the Java Persistence API (JPA) to store all task information
in a persistent manner. To configure the persistence, you need to modify the persistence.xml
configuration file accordingly. We refer to the JPA documentation on how to do that. The following
fragment shows for example how to use the task management component with hibernate and an in-
memory H2 database:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<persistence
 version="1.0"
 xsi:schemaLocation=
 "http://java.sun.com/xml/ns/persistence

Chapter 10. Human Tasks

68

 http://java.sun.com/xml/ns/persistence/persistence_1_0.xsd
 http://java.sun.com/xml/ns/persistence/orm
 http://java.sun.com/xml/ns/persistence/orm_1_0.xsd"
 xmlns:orm="http://java.sun.com/xml/ns/persistence/orm"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://java.sun.com/xml/ns/persistence">

 <persistence-unit name="org.drools.task">
 <provider>org.hibernate.ejb.HibernatePersistence</provider>
 <class>org.drools.task.Attachment</class>
 <class>org.drools.task.Content</class>
 <class>org.drools.task.BooleanExpression</class>
 <class>org.drools.task.Comment</class>
 <class>org.drools.task.Deadline</class>
 <class>org.drools.task.Comment</class>
 <class>org.drools.task.Deadline</class>
 <class>org.drools.task.Delegation</class>
 <class>org.drools.task.Escalation</class>
 <class>org.drools.task.Group</class>
 <class>org.drools.task.I18NText</class>
 <class>org.drools.task.Notification</class>
 <class>org.drools.task.EmailNotification</class>
 <class>org.drools.task.EmailNotificationHeader</class>
 <class>org.drools.task.PeopleAssignments</class>
 <class>org.drools.task.Reassignment</class>
 <class>org.drools.task.Status</class>
 <class>org.drools.task.Task</class>
 <class>org.drools.task.TaskData</class>
 <class>org.drools.task.SubTasksStrategy</class>
 <class>org.drools.task.OnParentAbortAllSubTasksEndStrategy</class>
 <class>org.drools.task.OnAllSubTasksEndParentEndStrategy</class>
 <class>org.drools.task.User</class>

 <properties>
 <property name="hibernate.dialect" value="org.hibernate.dialect.H2Dialect"/>
 <property name="hibernate.connection.driver_class" value="org.h2.Driver"/>
 <property name="hibernate.connection.url" value="jdbc:h2:mem:mydb" />
 <property name="hibernate.connection.username" value="sa"/>
 <property name="hibernate.connection.password" value="sasa"/>
 <property name="hibernate.connection.autocommit" value="false" />
 <property name="hibernate.max_fetch_depth" value="3"/>
 <property name="hibernate.hbm2ddl.auto" value="create" />
 <property name="hibernate.show_sql" value="true" />
 </properties>
 </persistence-unit>
</persistence>

The first time you start the task management component, you need to make sure that all the
necessary users and groups are added to the database. Our implementation requires all users and
groups to be predefined before trying to assign a task to that user or group. So you need to make sure
you add the necessary users and group to the database using the taskSession.addUser(user) and
taskSession.addGroup(group) methods. Note that you at least need an "Administrator" user as all
tasks are automatically assigned to this user as the administrator role.

The drools-process-task module contains a org.drools.task.RunTaskService class in the src/test/java
source folder that can be used to start a task server. It automatically adds users and groups as defined
in LoadUsers.mvel and LoadGroups.mvel configuration files.

10.2.4. Interacting With the Task Management Component
The task management component exposes various methods to manage the life cycle of the tasks
through a Java API. This allows clients to integrate (at a low level) with the task management
component. Note that end users should probably not interact with this low-level API directly but rather

Interacting With the Task Management Component

69

use one of the task list clients. These clients interact with the task management component using this
API.

This interaction will be described with the following image:

As we can see in the image we have MinaTaskClient and MinaTaskServer. They communicate to
each other sending messages to query and manipulate human tasks. Step by step the interactio n will
be something like this:

• Some client need to complete some task. So he/she needs to create an instace of MinaTaskClient
and connect it to the MinaTaskServer to have a session to talk to each other. This is the step one in
the image.

• Then the client can call the method complete() in MinaTaskClient with the corresponding arguments.
This will generate a new Message (or Command) that will be inserted in the session that the client
open when it connects to the server. This message must specify a type that the server recognize
and know what to do when the message is recieved. This is the step two in the image.

• At this moment TaskServerHandler noticed that there is a new message in the session
so an analysis about what kind of message is will take place. In this case is the type of
Operation.Complete, because the client is finishing succesfully some task. So we need to complete
the task that the user want to finish. This is achieved using the TaskServiceSession that will fire an
specific type of event that will be procesed by an specific subclass of TaskEventListener. This are
step three and four in the image.

• When the event is recived by TaskEventListener it will know how to modify the status of the task.
This is achieved using the EntityManager to retrieve and modify the status of an specific task from

Chapter 10. Human Tasks

70

the database. In this case, because we are finishing a task, the status will be updated to Completed.
This is step five in the image.

• Now, when the changes are made we need to notify the client about that the task was succesfully
ended and this is achieved creating a response message that TaskClientHandler will receive and
inform MinaTaskClient. This are steps six, seven and eight in the image.

10.3. Human Task Management Interface

10.3.1. Eclipse integration
The JBoss Rules IDE contains a org.drools.eclipse.task plugin that allows you to test and/or debug
processes using human tasks. In contains a Human Task View that can connect to a running task
management component, request the relevant tasks for a particular user (i.e. the tasks where the user
is either a potential owner or the tasks that the user already claimed and is executing). The life cycle of
these tasks can then be executed, i.e. claiming or releasing a task, starting or stopping the execution
of a task, completing a task, etc. A screenshot of this Human Task View is shown below. You can
configure which task management component to connect to in the JBoss Rules Task preference page
(select Window -> Preferences and select JBoss Rules Task). Here you can specify the url and port
(default = 127.0.0.1:9123).

10.3.2. Web-based Task View
We are targeting to add a web-based view that end users can use for managing their tasks for JBoss
Rules 5.1.

Chapter 11.

71

Debugging processes
This section describes how to debug processes. This means that the current state of your running
processes can be inspected and visualized during the execution. Note that we currently don't allow
you to put breakpoints on the nodes within a RuleFlow directly. You can however put breakpoints
inside rules (that could be evaluated in the context of a process if you use a ruleset node), or on any
Java code you might have (i.e. your application code that is invoking the engine or invoked by the
engine, listeners, etc.). At these breakpoints, you can then inspect the internal state of your processes.

A screencast that shows processing debugging in action can be found at http://downloads.jboss.com/
drools/videos/OrderExample.swf

We use a simple example throughout this section to illustrate the debugging capabilities. The example
will be introduced first, followed by an illustration on how to use the debugging capabilities.

11.1. A simple example
Our example contains two processes and some rules (used inside the ruleflow groups):

1. The main process contains some of the most common nodes: a start and end node (obviously),
two ruleflow groups, an action (that simply prints a string to the default output), a milestone (a wait
state that is trigger when a specific Event is inserted in the working memory) and a subprocess.

2. The SubProcess simply contains a milestone that also waits for (another) specific Event in the
working memory.

3. There are only two rules (one for each ruleflow group) that simply print out either a hello world or
goodbye world to default output.

We will simulate the execution of this process by starting the process, firing all rules (resulting in the
executing of the hello rule), then adding the specific milestone events for both the milestones (in the
main process and in the subprocess) and finally by firing all rules again (resulting in the executing of
the goodbye rule). The console will look something like this:

Hello World
Executing action
Goodbye cruel world

http://downloads.jboss.com/drools/videos/OrderExample.swf
http://downloads.jboss.com/drools/videos/OrderExample.swf

Chapter 11. Debugging processes

72

11.2. Debugging the process
We now add four breakpoints during the execution of the process (in the order in which they will be
encountered):

1. At the start of the consequence of the hello rule

2. Before inserting the triggering event for the milestone in the main process

3. Before inserting the triggering event for the milestone in the subprocess

4. At the start of the consequence of the goodbye rule

When debugging the application, one can use the following debug views to track the execution of the
process:

1. The working memory view, showing the contents (data) in the working memory.

2. The agenda view, showing all activations in the agenda.

3. The global data view, showing the globals.

4. The default Java Debug views, showing the current line and the value of the known variables, and
this both for normal Java code as for rules.

5. The process instances view, showing all running processes (and their state).

6. The audit view, showing the audit log.

11.2.1. The Process Instances View

The process instances view shows the currently running process instances. The example shows that
there is currently one running process (instance), currently executing one node (instance), i.e. RuleSet
node. When double-clicking a process instance, the process instance viewer will graphically show the
progress of the process instance. At each of the breakpoints, this will look like:

1. At the start of the consequence of the hello rule, only the hello ruleflow group is active, waiting on
the execution of the hello rule:

The Process Instances View

73

2. Once that rule has been executed, the action, the milestone and the subprocess will be triggered.
The action will be executed immediately, triggering the join (which will simply wait until all
incomming connections have been triggered). The subprocess will wait at the milestone. So,
before inserting the triggering event for the milestone in the main process, there now are two
process instances, looking like this:

3. When triggering the event for the milestone in the main process, this will also trigger the join
(which will simply wait until all incomming connections have been triggered). So at that point
(before inserting the triggering event for the milestone in the subprocess), the processes will look
like this:

Chapter 11. Debugging processes

74

4. When triggering the event for the milestone in the subprocess, this process instance will be
completed and this will also trigger the join, which will then continue and trigger the goodbye
ruleflow group, as all its incomming connections have been triggered. Firing all the rules will trigger
the breakpoint in the goodbye rule. At that point, the situation looks like this:

5. After executing the goodbye rule, the main process will also be completed and the execution will
have reached the end.

11.2.2. The Audit View
For those who want to look at the result in the audit view, this will look something like this [Note: the
object insertion events might seem a little out of place, which is caused by the fact that they are only
logged after (and never before) they are inserted, making it difficult to exactly pinpoint their location.]

The Audit View

75

76

Chapter 12.

77

JBoss Rules IDE Features
The JBoss Rules plugin for the IDE provides a few additional features that might be interesting for
developers.

12.1. JBoss Rules Runtimes
A JBoss Rules runtime is a collection of jar files that represent one specific release of the JBoss Rules
project jars. To create a runtime, you must point the IDE to the release of your choice. If you want to
create a new runtime based on the latest JBoss Rules project jars included in the plugin itself, you
can also easily do that. You are required to specify a default JBoss Rules runtime for your workspace,
but each individual project can override the default and select the appropriate runtime for that project
specifically.

12.1.1. Defining a JBoss Rules Runtime
To define one or more JBoss Rules runtimes using the preferences view you open up your
Preferences, by selecting the "Preferences" menu item in the menu "Window". A "Preferences" dialog
should show all your settings. On the left side of this dialog, under the JBoss Rules category, select
"Installed JBoss Rules runtimes". The panel on the right should then show the currently defined JBoss
Rules runtimes. If you have not yet defined any runtimes, it should look like the figure below.

To define a new JBoss Rules runtime, click on the add button. A dialog such as the one shown below
should pop up, asking for the name of your runtime and the location on your file system where it can
be found.

Chapter 12. JBoss Rules IDE Features

78

In general, you have two options:

1. If you simply want to use the default jar files as included in the JBoss Rules plugin, you can create
a new JBoss Rules runtime automatically by clicking the "Create a new JBoss Rules 5 runtime ..."
button. A file browser will show up, asking you to select the folder on your file system where you
want this runtime to be created. The plugin will then automatically copy all required dependencies
to the specified folder. After selecting this folder, the dialog should look like the figure shown
below.

2. If you want to use one specific release of the JBoss Rules project, you should create a folder on
your file system that contains all the necessary JBoss Rules libraries and dependencies. Instead
of creating a new JBoss Rules runtime as explained above, give your runtime a name and select
the location of this folder containing all the required jars.

After clicking the OK button, the runtime should show up in your table of installed JBoss Rules
runtimes, as shown below. Click on checkbox in front of the newly created runtime to make it the
default JBoss Rules runtime. The default JBoss Rules runtime will be used as the runtime of all your
JBoss Rules project that have not selected a project-specific runtime.

Selecting a runtime for your JBoss Rules project

79

You can add as many JBoss Rules runtimes as you need. For example, the screenshot below shows
a configuration where three runtimes have been defined: a JBoss Rules 4.0.7 runtime, a JBoss
Rules 5.0.0 runtime and a JBoss Rules 5.0.0.SNAPSHOT runtime. The JBoss Rules 5.0.0 runtime is
selected as the default one.

Note that you will need to restart the IDE if you changed the default runtime and you want to make
sure that all the projects that are using the default runtime update their classpath accordingly.

12.1.2. Selecting a runtime for your JBoss Rules project
Whenever you create a JBoss Rules project (using the New JBoss Rules Project wizard or by
converting an existing Java project to a JBoss Rules project using the action "Convert to JBoss Rules

Chapter 12. JBoss Rules IDE Features

80

Project" that is shown when you are in the JBoss Rules perspective and you right-click an existing
Java project), the plugin will automatically add all the required jars to the classpath of your project.

When creating a new JBoss Rules project, the plugin will automatically use the default JBoss Rules
runtime for that project, unless you specify a project-specific one. You can do this in the final step
of the New JBoss Rules Project wizard, as shown below, by deselecting the "Use default JBoss
Rules runtime" checkbox and selecting the appropriate runtime in the drop-down box. If you click the
"Configure workspace settings ..." link, the workspace preferences showing the currently installed
JBoss Rules runtimes will be opened, so you can add new runtimes there.

You can change the runtime of a JBoss Rules project at any time by opening the project properties
and selecting the JBoss Rules category, as shown below. Mark the "Enable project specific settings"
checkbox and select the appropriate runtime from the drop-down box. If you click the "Configure
workspace settings ..." link, the workspace preferences showing the currently installed JBoss Rules
runtimes will be opened, so you can add new runtimes there. If you deselect the "Enable project
specific settings" checkbox, it will use the default runtime as defined in your global preferences.

Process Skins

81

12.2. Process Skins
The concept of process skins provides a way of control the visualization of the different nodes of
a processd. You may change the visualization of the various node types to the way you prefer by
implementing your own SkinProvider.

BPMN is a popular language used by business users for modeling business processes. BPMN defines
terminology, different types of nodes, how these should be visualized, etc. People who are familiar
with BPMN might find it easier to implement an executable process (possibly based on a BPMN
process diagram) using a similar visualization. We have therefore created a BPMN skin that maps the
JBoss Rules Flow concepts to the equivalent BPMN visualization.

As an example, the following figure shows a process using some of the different types of nodes in the
RuleFlow language using the default skin.

Chapter 12. JBoss Rules IDE Features

82

You may now change the preferred process skin in the JBoss Rules Preferences dialog:

After reopening the editor, the same process is displayed using the BPMN skin.

Chapter 13.

83

Business Activity Monitoring
You need to actively monitor your processes to make sure you can detect any anomalies and react
to unexpected events as soon as possible. Business Activity Monitoring is concerned with real-time
monitoring of your processes and the option of intervening directly, possibly even automatically, based
on the analysis of these events.

JBoss Rules Flow allows users to define reports based on the events generated by the process
engine, and possibly direct intervention in specific situations using complex event processing rules
(JBoss Rules Fusion), as described in the next two sections. Future releases of the JBoss Rules
platform will include support for all requirements of Business Activity Monitoring, including a web-
based application that can be used to more easily interact with a running process engine, inspect its
state, generate reports, etc.

13.1. Reporting
By adding a history logger to the process engine, all relevent events are stored in the database. This
history log can be used to monitor and analyze the execution of your processes. We are using the
Eclipse BIRT (Business Intelligence Reporting Tool) to create reports that show the key performance
indicators. Its easy to define your own reports yourself, using the predefined data sets containing all
process history information, and any other data sources you might want to add yourself.

The Eclipse BIRT framework allows you to define data sets, create reports, include charts, preview
your reports, and export them on web pages. (Consult the Eclipse BIRT documentation on how to
define your own reports.) The following screen shot shows a sample on how to create such a chart.

Chapter 13. Business Activity Monitoring

84

Figure 13.1. Creating a report using Eclipse BIRT

The next figure displays a simple report based on some history data, showing the number of requests
per hour and the average completion time of the request during that hour. These charts could be used
to check for an unexpected drop or rise of requests, an increase in the average processing time, etc.
These charts could signal possible problems before the situation really gets out of hand.

Direct Intervention

85

Figure 13.2. The eventing report

13.2. Direct Intervention
Reports can be used to visualize an overview of the current state of your processes, but they rely on
a human actor to take action based on the information in these charts. However, we allow users to
define automatic responses to specific circumstances.

JBoss Rules Fusion provides numerous features that make it easy to process large sets of events.
This can be used to monitor the process engine itself. This can be achieved by adding a listener to
the engine that forwards all related process events, such as the start and completion of a process
instance, or the triggering of a specific node, to a session responsible for processing these events.
This could be the same session as the one executing the processes, or an independent session as
well. Complex Event Processing (CEP) rules could then be used to specify how to process these
events. For example, these rules could generate higher-level business events based on a specific
occurrence of low-level process events. The rules could also specify how to respond to specific
situations.

The next section shows a sample rule that accumulates all start process events for one specific order
process over the last hour, using the "sliding window" support. This rule prints out an error message
if more than 1000 process instances were started in the last hour (e.g., to detect a possible overload
of the server). Note that, in a realistic setting, this would probably be replaced by sending an email or
other form of notification to the responsible instead of the simple logging.

Chapter 13. Business Activity Monitoring

86

declare ProcessStartedEvent
 @role(event)
end

dialect "mvel"

rule "Number of process instances above threshold"
when
 Number(nbProcesses : intValue > 1000)
 from accumulate(
 e: ProcessStartedEvent(processInstance.processId == "com.sample.order.OrderProcess")
 over window:size(1h),
 count(e))
then
 System.err.println("WARNING: Number of order processes in the last hour above 1000: " +
 nbProcesses);
end

These rules could even be used to alter the behavior of a process automatically at runtime, based on
the events generated by the engine. For example, whenever a specific situation is detected, additional
rules could be added to the Knowledge Base to modify process behavior. For instance, whenever
a large amount of user requests within a specific time frame are detected, an additional validation
could be added to the process, enforcing some sort of flow control to reduce the frequency of incoming
requests. There is also the possibility of deploying additional logging rules as the consequence of
detecting problems. As soon as the situtation reverts back to normal, such rules would be removed
again.

Chapter 14.

87

Business Process Model and Notation
(BPMN 2.0)
The Business Process Model and Notation (BPMN) 2.0 specification is steadily moving forward on
its way to become a great standard, and we are adopting it for our process modeling in JBoss Rules
Flow. BPMN 2.0 not only defines a standard on how to graphically represent a business process (like
BPMN 1.1), but now also includes execution semantics for the elements defined, and an XML format
on how to store (and share) process definitions.

JBoss Rules Flow allows you to execute processes defined using the BPMN 2.0 XML format, just the
same way as it allows you to execute processes using the custom RuleFlow format. That means that
you can use the same API, engine and components like Guvnor and the gwt-console, to execute and
manage your BPMN 2.0 processes.

We do yet implement all node types and attributes as defined in the BPMN 2.0 specification, but we
already support a very significant subset, which includes all common node types. The following list
gives an overview of the various elements that can already be executed using the BPMN 2.0 XML
format:

• Flow objects

Events
• Start Event (None, Conditional, Signal, Message, Timer)

• End Event (None, Terminate, Error, Escalation, Signal, Message, Compensation)

• Intermediate Catch Event (Signal, Timer, Conditional, Message)

• Intermediate Throw Event (None, Signal, Escalation, Message, Compensation)

• Non-interrupting Boundary Event (Escalation, Timer)

• Interrupting Boundary Event (Escalation, Error, Timer, Compensation)

Activities
• Script Task (Java or MVEL expression language)

• Task

• Service Task

• User Task

• Business Rule Task

• Manual Task

• Send Task

• Receive Task

• Reusable Sub-Process (Call Activity)

• Embedded Sub-Process

• Ad-Hoc Sub-Process

Chapter 14. Business Process Model and Notation (BPMN 2.0)

88

• Data-Object

Gateways
• Diverging

• Exclusive (Java, MVEL or XPath expression language)

• Inclusive (Java, MVEL or XPath expression language)

• Parallel

• Event-Based

Converging
• Exclusive

• Parallel

• Lanes

Data
• Java type language

• Process properties

• Embedded Sub-Process properties

• Activity properties

Connecting Objects
• Sequence flow

For example, consider the following BPMN process for performing evaluations. Whenever an
evaluation process is started for a specific employee, that employee must first perform a self-
evaluation, after which the project manager and human resource manager must also fill in their
evaluation, as shown in the figure below.

An executable version of this process expressed using BPMN 2.0 XML would look something like this
(note that the process needs to contain all the details to make it execuble, including all the parameters
for each of the tasks present, hence the large process definition):

<?xml version="1.0" encoding="UTF-8"?>
<definitions id="Definition"
 targetNamespace="http://www.jboss.org/drools"
 typeLanguage="http://www.java.com/javaTypes"
 expressionLanguage="http://www.mvel.org/2.0"
 xmlns="http://www.omg.org/spec/BPMN/20100524/MODEL"
 xmlns:xs="http://www.w3.org/2001/XMLSchema-instance"
 xs:schemaLocation="http://www.omg.org/spec/BPMN/20100524/MODEL BPMN20.xsd"
 xmlns:g="http://www.jboss.org/drools/flow/gpd"
 xmlns:tns="http://www.jboss.org/drools">

89

 <process processType="Private" isExecutable="true" id="com.sample.evaluation"
 name="Evaluation Process" >

 <property id="employee" itemSubjectRef="_employeeItem"/>

 <startEvent id="_1" name="StartProcess" g:x="16" g:y="56" g:width="48" g:height="48" />
 <userTask id="_2" name="Self Evaluation" g:x="96" g:y="56" g:width="143" g:height="48" >
 <ioSpecification>
 <dataInput id="_2_CommentInput" name="Comment" />
 <dataInput id="_2_SkippableInput" name="Skippable" />
 <dataInput id="_2_TaskNameInput" name="TaskName" />
 <dataInput id="_2_ContentInput" name="Content" />
 <dataInput id="_2_PriorityInput" name="Priority" />
 <inputSet>
 <dataInputRefs>_2_CommentInput</dataInputRefs>
 <dataInputRefs>_2_SkippableInput</dataInputRefs>
 <dataInputRefs>_2_TaskNameInput</dataInputRefs>
 <dataInputRefs>_2_ContentInput</dataInputRefs>
 <dataInputRefs>_2_PriorityInput</dataInputRefs>
 </inputSet>
 <outputSet>
 </outputSet>
 </ioSpecification>
 <dataInputAssociation>
 <targetRef>_2_CommentInput</targetRef>
 <assignment>
 <from xs:type="tFormalExpression">You need to perform a self-evaluation</from>
 <to xs:type="tFormalExpression">_2_CommentInput</to>
 </assignment>
 </dataInputAssociation>
 <dataInputAssociation>
 <targetRef>_2_SkippableInput</targetRef>
 <assignment>
 <from xs:type="tFormalExpression">false</from>
 <to xs:type="tFormalExpression">_2_SkippableInput</to>
 </assignment>
 </dataInputAssociation>
 <dataInputAssociation>
 <targetRef>_2_TaskNameInput</targetRef>
 <assignment>
 <from xs:type="tFormalExpression">Performance Evaluation</from>
 <to xs:type="tFormalExpression">_2_TaskNameInput</to>
 </assignment>
 </dataInputAssociation>
 <dataInputAssociation>
 <targetRef>_2_ContentInput</targetRef>
 <assignment>
 <from xs:type="tFormalExpression"></from>
 <to xs:type="tFormalExpression">_2_ContentInput</to>
 </assignment>
 </dataInputAssociation>
 <dataInputAssociation>
 <targetRef>_2_PriorityInput</targetRef>
 <assignment>
 <from xs:type="tFormalExpression">1</from>
 <to xs:type="tFormalExpression">_2_PriorityInput</to>
 </assignment>
 </dataInputAssociation>
 <potentialOwner>
 <resourceAssignmentExpression>
 <formalExpression>#{employee}</formalExpression>
 </resourceAssignmentExpression>
 </potentialOwner>
 </userTask>

Chapter 14. Business Process Model and Notation (BPMN 2.0)

90

 <parallelGateway id="_3" name="Diverge" g:x="271" g:y="56" g:width="49" g:height="49"
 gatewayDirection="Diverging" />
 <userTask id="_4" name="HR Manager Evaluation" g:x="352" g:y="96" g:width="225"
 g:height="48" >
 <ioSpecification>
 <dataInput id="_4_CommentInput" name="Comment" />
 <dataInput id="_4_SkippableInput" name="Skippable" />
 <dataInput id="_4_TaskNameInput" name="TaskName" />
 <dataInput id="_4_ContentInput" name="Content" />
 <dataInput id="_4_PriorityInput" name="Priority" />
 <inputSet>
 <dataInputRefs>_4_CommentInput</dataInputRefs>
 <dataInputRefs>_4_SkippableInput</dataInputRefs>
 <dataInputRefs>_4_TaskNameInput</dataInputRefs>
 <dataInputRefs>_4_ContentInput</dataInputRefs>
 <dataInputRefs>_4_PriorityInput</dataInputRefs>
 </inputSet>
 <outputSet>
 </outputSet>
 </ioSpecification>
 <dataInputAssociation>
 <targetRef>_4_CommentInput</targetRef>
 <assignment>
 <from xs:type="tFormalExpression">You need to perform an evaluation for
 #{employee}</from>
 <to xs:type="tFormalExpression">_4_CommentInput</to>
 </assignment>
 </dataInputAssociation>
 <dataInputAssociation>
 <targetRef>_4_SkippableInput</targetRef>
 <assignment>
 <from xs:type="tFormalExpression">false</from>
 <to xs:type="tFormalExpression">_4_SkippableInput</to>
 </assignment>
 </dataInputAssociation>
 <dataInputAssociation>
 <targetRef>_4_TaskNameInput</targetRef>
 <assignment>
 <from xs:type="tFormalExpression">Performance Evaluation</from>
 <to xs:type="tFormalExpression">_4_TaskNameInput</to>
 </assignment>
 </dataInputAssociation>
 <dataInputAssociation>
 <targetRef>_4_ContentInput</targetRef>
 <assignment>
 <from xs:type="tFormalExpression"></from>
 <to xs:type="tFormalExpression">_4_ContentInput</to>
 </assignment>
 </dataInputAssociation>
 <dataInputAssociation>
 <targetRef>_4_PriorityInput</targetRef>
 <assignment>
 <from xs:type="tFormalExpression">1</from>
 <to xs:type="tFormalExpression">_4_PriorityInput</to>
 </assignment>
 </dataInputAssociation>
 <potentialOwner>
 <resourceAssignmentExpression>
 <formalExpression>mary</formalExpression>
 </resourceAssignmentExpression>
 </potentialOwner>
 </userTask>
 <userTask id="_5" name="Project Manager Evaluation" g:x="352" g:y="16" g:width="225"
 g:height="48" >
 <ioSpecification>
 <dataInput id="_5_CommentInput" name="Comment" />
 <dataInput id="_5_SkippableInput" name="Skippable" />

91

 <dataInput id="_5_TaskNameInput" name="TaskName" />
 <dataInput id="_5_ContentInput" name="Content" />
 <dataInput id="_5_PriorityInput" name="Priority" />
 <inputSet>
 <dataInputRefs>_5_CommentInput</dataInputRefs>
 <dataInputRefs>_5_SkippableInput</dataInputRefs>
 <dataInputRefs>_5_TaskNameInput</dataInputRefs>
 <dataInputRefs>_5_ContentInput</dataInputRefs>
 <dataInputRefs>_5_PriorityInput</dataInputRefs>
 </inputSet>
 <outputSet>
 </outputSet>
 </ioSpecification>
 <dataInputAssociation>
 <targetRef>_5_CommentInput</targetRef>
 <assignment>
 <from xs:type="tFormalExpression">You need to perform an evaluation for
 #{employee}</from>
 <to xs:type="tFormalExpression">_5_CommentInput</to>
 </assignment>
 </dataInputAssociation>
 <dataInputAssociation>
 <targetRef>_5_SkippableInput</targetRef>
 <assignment>
 <from xs:type="tFormalExpression">false</from>
 <to xs:type="tFormalExpression">_5_SkippableInput</to>
 </assignment>
 </dataInputAssociation>
 <dataInputAssociation>
 <targetRef>_5_TaskNameInput</targetRef>
 <assignment>
 <from xs:type="tFormalExpression">Performance Evaluation</from>
 <to xs:type="tFormalExpression">_5_TaskNameInput</to>
 </assignment>
 </dataInputAssociation>
 <dataInputAssociation>
 <targetRef>_5_ContentInput</targetRef>
 <assignment>
 <from xs:type="tFormalExpression"></from>
 <to xs:type="tFormalExpression">_5_ContentInput</to>
 </assignment>
 </dataInputAssociation>
 <dataInputAssociation>
 <targetRef>_5_PriorityInput</targetRef>
 <assignment>
 <from xs:type="tFormalExpression">1</from>
 <to xs:type="tFormalExpression">_5_PriorityInput</to>
 </assignment>
 </dataInputAssociation>
 <potentialOwner>
 <resourceAssignmentExpression>
 <formalExpression>john</formalExpression>
 </resourceAssignmentExpression>
 </potentialOwner>
 </userTask>
 <parallelGateway id="_6" name="Converge" g:x="603" g:y="55" g:width="49" g:height="49"
 gatewayDirection="Converging" />
 <endEvent id="_7" name="EndProcess" g:x="690" g:y="56" g:width="48" g:height="48" >
 <terminateEventDefinition/>
 </endEvent>

 <sequenceFlow id="_1-_2" sourceRef="_1" targetRef="_2" />
 <sequenceFlow id="_2-_3" sourceRef="_2" targetRef="_3" />
 <sequenceFlow id="_3-_4" sourceRef="_3" targetRef="_4" g:bendpoints="[295,120]" />
 <sequenceFlow id="_3-_5" sourceRef="_3" targetRef="_5" g:bendpoints="[295,39]" />
 <sequenceFlow id="_5-_6" sourceRef="_5" targetRef="_6" g:bendpoints="[627,40]" />

Chapter 14. Business Process Model and Notation (BPMN 2.0)

92

 <sequenceFlow id="_4-_6" sourceRef="_4" targetRef="_6" g:bendpoints="[627,121]" />
 <sequenceFlow id="_6-_7" sourceRef="_6" targetRef="_7" />

 </process>

</definitions>

To create your own process using BPMN 2.0 format, you can

• Create a new Flow file using the JBoss Rules Eclipse plugin wizard and in the last page of the
wizard, make sure you select JBoss Rules 5.1 code compatibility. This will create a new process
using the BPMN XML format instead of the old RuleFlow format. Note however that this is not a real
BPMN 2.0 editor, as it still uses different attributes. It does however save the process using valid
BPMN 2.0 syntax. Also note that the editor does not yet support all node types and attributes that
are already supported in the execution engine.

• Oryx is an open-source web-based editor that supports the BPMN 2.0 format. We have embedded
it into Guvnor for BPMN 2.0 process visualization and editing. You could use the Oryx editor (either
standalone or integrated) to create / edit BPMN 2.0 processes and then export them to BPMN
2.0 format so they can be executed. Be aware however that Oryx is still using the BPMN 2.0
beta 1 format and that their implementation is currently incomplete (especially the import / export
functionality).

• You can always manually create your BPMN 2.0 process files by writing the XML directly.

The following code fragment shows you how to load a BPMN process into your knowledge base ...

private static KnowledgeBase readKnowledgeBase() throws Exception {
 KnowledgeBuilder kbuilder = KnowledgeBuilderFactory.newKnowledgeBuilder();
 kbuilder.add(ResourceFactory.newClassPathResource("sample.bpmn"), ResourceType.BPMN2);
 return kbuilder.newKnowledgeBase();
}

... and how to execute this process.

KnowledgeBase kbase = readKnowledgeBase();
StatefulKnowledgeSession ksession = kbase.newStatefulKnowledgeSession();
KnowledgeRuntimeLogger logger = KnowledgeRuntimeLoggerFactory.newFileLogger(ksession,
 "test");
ksession.getWorkItemManager().registerWorkItemHandler("Human Task", new
 WSHumanTaskHandler());
// start a new process instance
Map<String, Object> params = new HashMap<String, Object>();
params.put("employee", "krisv");
ksession.startProcess("com.sample.evaluation", params);

14.1. Current limitations
Since the BPMN 2.0 specification is still being finalized, the BPMN 2.0 execution is still an
experimental feature. It uses the same execution engine and constructs as the RuleFlow format
however (it's just another XML serialization format). Therefore, all features and components that
are available using the RuleFlow format also work for BPMN 2.0 processes. You simply have to
use the right ResourceType when adding BPMN 2.0 processes to your knowledge base. Since the
specification hasn't been finalized yet, it is possible that the XSD that defines the format might still
change (slightly) due to updates of the specification, so keep this in mind if you decide to start using
the BPMN 2.0 format.

Current limitations

93

The use of a specification should give you a lot of advantages, as it allows you to share your
processes across tools and possibly even engines as the specification defines the exact format (and
even execution semantics) for each of the elements. At this point however, it is likely that different
tools are using different intermediate versions of the specification. We believe that this issue will
automatically resolve itself over time once the specification is finalized and everyone is using the
same version of the specification, but until then, you can encounter compatibility issues related to this
problem. Please be a little patient with this.

Finally, the BPMN 2.0 specification defines a lot of node types and attributes, but nevertheless it is
not possible to express everything using the constructs offered by the BPMN 2.0 specification only.
However, the specification is designed to allow additional node types, attributes, etc. While we try to
limit the use of custom extensions to a minimum, we sometimes have to define custom attributes to
express features that we believe are important but cannot be expressed as core BPMN 2.0 syntax.
The following table gives an overview of which features of the RuleFlow language have already
been ported to the BPMN 2.0 XML format. A green check mark means that the functionality can be
expressed using the features defined in the BPMN 2.0 specification. In those cases where we extend
the BPMN 2.0 specification with additional attributes and/or elements, we show these using an orange
check mark. As shown in the table below, most of the basic BPMN 2.0 nodes are already supported.
We decided to not yet implement some of the features that cannot be expressed in BPMN 2.0 by
default, like for example the on-entry / on-exit actions or the state node. We will decide later whether
we want to support these features for BPMN 2.0 processes in the future, and how.

Table 14.1. Keywords

Feature JBoss Rules BPMN JBoss Rules Flow

A. Process-level

Imports

Function Imports

Variable

- primitive Java types

- Java object types

- default value

Swimlanes

Exception handlers

- fault name

- bind to variable

- action

B. Nodes

1. Start Node

- rule trigger

Chapter 14. Business Process Model and Notation (BPMN 2.0)

94

Feature JBoss Rules BPMN JBoss Rules Flow

- signal trigger

- parameter mapping

2. End Node

- terminate

3. Action Node

- Java dialect

* access to variables, global,
context

- MVEL dialect

* access to variables, global,
context

4. RuleSet Node

- timers

5. Split Node

- AND

- XOR

- OR

- Java code constraints

- MVEL code constraints

- rule constraints

- constraint names

- constraint priorities

6. Join Node

AND

XOR

Discriminator

n-of-m

Current limitations

95

Feature JBoss Rules BPMN JBoss Rules Flow

7. State Node

- timers

- on entry actions

- on exit actions

- automatic transition
constraints

- manual transition signal

8. SubProcess Node

- timers

- on entry actions

- on exit actions

- wait for completion

- independant

- parameter mapping (in/out)

- dynamic process id

9. WorkItem Node

- parameters

- parameter mapping (in/out)

- timers

- on entry actions

- on exit actions

- wait for completion

10. Timer Node

- delay

- period

11. Human Task Node (also
see WorkItem Node)

Chapter 14. Business Process Model and Notation (BPMN 2.0)

96

Feature JBoss Rules BPMN JBoss Rules Flow

- swimlane

12. Composite Node

- timers

- on entry actions

- on exit actions

- variables

- exception handlers

- multiple entry points

- multiple exit points

13. ForEach Node

- bind to variable

- wait for completion

- multiple entry points

- multiple exit points

14. Event Node

- bind to variable

- internal / external

- event filters

15. Fault Node

- fault name

- fault data

Graphical information (x, y,
width, height)

C. Connections

From, To

From type

To type

Current limitations

97

Feature JBoss Rules BPMN JBoss Rules Flow

Graphical information
(bendpoints)

98

Chapter 15.

99

Console
JBoss Rules processes can be managed through a web console. This includes features like managing
your process instances (starting/stopping/inspecting), inspecting your (human) task list and executing
those tasks, and generating reports.

The JBoss Rules build system generates two wars for you that can be deployed in your application
server and contains the necessary libraries, the actual application, etc. One jar contains the server
application, the other one the client. Download gwt-console-server-drools-{version}.war and gwt-
console-drools-{version}.war and deploy them to your application server, {AS_HOME}/server/
{configuration}/deploy (so for example, we are using jboss-4.2.3.GA/server/default/deploy).

15.1. Installation
The easiest way to get started with the console is probably to use the installer. This will download,
install and configure all the necessary components to get the console running, including Guvnor, a
human task service, etc. Check out the chapter on the installer for more information. If you want to
manually install the console, you can continue reading here.

You need to have an application server installed. This chapter assumes you are using the JBoss AS
version 4.2.3.GA, but other versions or other application servers should be possible as well.

15.2. Running the process management console
Now navigate to the following URL (replace the host and/or port depending on how the application
server is configured): http://localhost:8080/gwt-console

A login screen should pop up, asking for your user name and password.

After filling these in, the process management workbench should be opened, as shown in the
screenshot below. On the right you will see several tabs, related to process instance management,
human task lists and reporting, as explained in the following sections.

http://localhost:8080/gwt-console

Chapter 15. Console

100

15.2.1. Managing process instances
The "Processes" section allows you to inspect the process definitions that are currently part of the
installed knowledge base, start new process instances and manage running process instances (which
includes inspecting their state and data).

15.2.1.1. Inspecting process definitions
When you open the process definition list, all processes that are stored in the "default" package on
Guvnor are shown. You can then either inspect process instances for one specific process or start a
new process instance.

Managing process instances

101

15.2.1.2. Starting new process instances
To start a new process instance for one specific process definition, select the process definition in the
process definition list and select the process instances tab. Click on the "Start" button to start a new
instance of that specific process. When a form is associated with this particular process (to ask for
additional information before starting the process), this form will be shown. After completing this form,
the process will be started with the provided information.

Chapter 15. Console

102

15.2.1.3. Managing process instances
The process instances tab also contains a table showing all running instances of that specific process
definition. Select a process instance to show the details of that specific process instance.

Managing process instances

103

15.2.1.4. Inspecting process instance state
You can inspect the (top-level) variables of a specific process instance by clicking on the "Instance
Data" button. This will show you how each variable defined in the process maps to it's corresponding
value for that specific process instance.

15.2.1.5. Inspecting process instance variables
You can inspect the state of a specific process instance by clicking on the "Diagram" button. This will
show you the process flow chart, where a red traingle is shown at each node that is currently active
(like for example a human task node waiting for the task to be completed or a join node waiting for
more incoming connections before continuing). [Note that multiple instances of one node could be
executing simultaneously. They will still be shown using only one red triangle.]

Chapter 15. Console

104

15.2.2. Human task lists
The task management section allows a user to see his/her current task list. The group task list shows
all the tasks that are not yet assigned to one specific user but that the currently logged in user could
claim. The personal task list shows all tasks that are assigned to the currently logged in user. To
execute a task, select it in your personal task list and select "View". If a form is associated with the
selected task (for example to ask for additional information), this form will be shown. After completing
the form, the task will also be completed.

Reporting

105

15.2.3. Reporting
The reporting section allows you to view reports about the execution of processes. This includes an
overall report showing an overview of all processes, as shown below.

Chapter 15. Console

106

A report regarding one specific process instance can also be generated.

Adding new process / task forms

107

JBoss Rules Flow provides some sample reports that could be used to visualize some generic
execution characteristics like the number of active process instances per process etc. But custom
reports could be generated to show the information your company thinks is important, by replacing the
report templates in the report directory.

15.3. Adding new process / task forms
Forms can be used to (1) start a new process or (2) complete a human task. We use freemarker
templates to dynamically create forms. To create a form for a specific process definition, create a
freemarker template with the name {processId}.ftl. The template itself should use HTML code to
model the form. For example, the form to start the evalution process shown above is defined in the
com.sample.evaluation.ftl file:

<html>
<body>
<h2>Start Performance Evaluation</h2>
<hr>
<form action="complete" method="POST" enctype="multipart/form-data">
Please fill in your username: <input type="text" name="employee" /></BR>
<input type="submit" value="Complete">
</form>
</body>

Chapter 15. Console

108

</html>

Similarly, task forms for a specific type of human task (uniquely identified by its task name) can
be linked to that human task by creating a freemarker template with the name {taskName}.ftl. The
form has access to a "task" parameter that represents the current human task, so it allows you to
dynamically adjust the task form based on the task input. The task parameter is a Task model object
as defined in the drools-process-task module. This for example allows you to customize the task form
based on the description or input data related to that task. For example, the evaluation form shown
earlier uses the task parameter to access the description of the task and show that in the task form:

<html>
<body>
<h2>Employee evaluation</h2>
<hr>
${task.descriptions[0].text}

Please fill in the following evaluation form:
<form action="complete" method="POST" enctype="multipart/form-data">
Rate the overall performance: <select name="performance">
<option value="outstanding">Outstanding</option>
<option value="exceeding">Exceeding expectations</option>
<option value="acceptable">Acceptable</option>
<option value="below">Below average</option>
</select>

Check any that apply:

<input type="checkbox" name="initiative" value="initiative">Displaying initiative

<input type="checkbox" name="change" value="change">Thriving on change

<input type="checkbox" name="communication" value="communication">Good communication
 skills

<input type="submit" value="Complete">
</form>
</body>
</html>

Data that is provided by the user when filling in the task form will be added as parameters when
completing the task. For example, when completing the task above, the Map of outcome parameters
will include result variables called "performance", "initiative", "change" and "communication". The
result parameters can be accessed in the related process by mapping these parameters to process
variables.

Forms should be included in the drools-gwt-form.jar in the server war.

109

Appendix A. Revision History
Revision 1.0 Mon Nov 15 2010 David Le Sage dlesage@redhat.com

Initial creation of book by publican

mailto:dlesage@redhat.com

110

111

Index

F
feedback

contact information for this manual, ix

112

	Ruleflow Guide
	Table of Contents
	Preface
	1. Document Conventions
	1.1. Typographic Conventions
	1.2. Pull-quote Conventions
	1.3. Notes and Warnings

	2. We Need Feedback!

	Chapter 1. Introduction
	Chapter 2. Installer
	2.1. Prerequisites
	2.2. Download the installer
	2.3. Download the installer
	2.4. Using Eclipse Tooling
	2.5. Using Guvnor repository
	2.6. Using web management consoles

	Chapter 3. Getting Started
	3.1. Creating Your First Process
	3.2. Executing your first process

	Chapter 4. Rule Flow
	4.1. Creating a RuleFlow Process
	4.1.1. Using the Graphical RuleFlow Editor
	4.1.2. Defining Processes Using XML
	4.1.3. Defining Processes Using the Process API
	4.1.3.1. Example 1
	4.1.3.2. Example 2
	4.1.3.3. Example 3

	4.2. Using a Process in Your Application
	4.3. Detailed Explanation of the Different Node Types
	4.4. Data
	4.5. Constraints
	4.6. Actions
	4.7. Events
	4.8. Exceptions
	4.9. Timers
	4.10. Updating processes
	4.10.1. Process instance migration

	4.11. Assigning Rules to a Ruleflow Group
	4.12. A Simple Ruleflow
	4.13. Using JBoss Rules 4.x RuleFlow Processes

	Chapter 5. Drools Flow API
	5.1. Knowledge Base
	5.2. Session
	5.3. Events

	Chapter 6. Persistence
	6.1. Runtime State
	6.1.1. Binary Persistence
	6.1.2. Safe Points
	6.1.3. Configuring Persistence
	6.1.4. Transactions

	6.2. Process Definitions
	6.3. History Log
	6.3.1. Storing Process Events in a Database

	Chapter 7. JBoss Rules Flow Process Model
	Chapter 8. Rules and Processes
	8.1. Why Use Rules in Processes?
	8.2. Why Integrate Rules and Processes in a Single Engine?
	8.3. Approach
	8.3.1. Teaching a Rules Engine About Processes
	8.3.2. Inversion of Control

	8.4. Example
	8.4.1. Evaluating a Set of Rules in Your Process
	8.4.2. Using Rules for Evaluating Constraints
	8.4.3. Assignment Rules
	8.4.4. Describing Exceptional Situations Using Rules
	8.4.5. Modularizing Concerns Using Rules
	8.4.6. Rules for Altering Process Behavior Dynamically
	8.4.7. Integrated Tooling
	8.4.8. Domain-specific Rules and Processes

	Chapter 9. Domain-specific processes
	9.1. Introduction
	9.2. Example: Notifications
	9.2.1. Creating the work definition
	9.2.2. Registering the work definition
	9.2.3. Using your new work item in your processes
	9.2.4. Executing work items

	9.3. Testing processes using work items
	9.4. Future

	Chapter 10. Human Tasks
	10.1. Human tasks inside processes
	10.1.1. Swimlanes

	10.2. Human task management component
	10.2.1. Task life cycle
	10.2.2. Linking the task component to the JBoss Rules Flow engine
	10.2.3. Starting the Task Management Component
	10.2.4. Interacting With the Task Management Component

	10.3. Human Task Management Interface
	10.3.1. Eclipse integration
	10.3.2. Web-based Task View

	Chapter 11. Debugging processes
	11.1. A simple example
	11.2. Debugging the process
	11.2.1. The Process Instances View
	11.2.2. The Audit View

	Chapter 12. JBoss Rules IDE Features
	12.1. JBoss Rules Runtimes
	12.1.1. Defining a JBoss Rules Runtime
	12.1.2. Selecting a runtime for your JBoss Rules project

	12.2. Process Skins

	Chapter 13. Business Activity Monitoring
	13.1. Reporting
	13.2. Direct Intervention

	Chapter 14. Business Process Model and Notation (BPMN 2.0)
	14.1. Current limitations

	Chapter 15. Console
	15.1. Installation
	15.2. Running the process management console
	15.2.1. Managing process instances
	15.2.1.1. Inspecting process definitions
	15.2.1.2. Starting new process instances
	15.2.1.3. Managing process instances
	15.2.1.4. Inspecting process instance state
	15.2.1.5. Inspecting process instance variables

	15.2.2. Human task lists
	15.2.3. Reporting

	15.3. Adding new process / task forms

	Appendix A. Revision History
	Index

