Problem statement:

Mpt/0 thread and other thread like multipathd, iozone, etc. hangs while running multipath testing on Itnel ALUA setup.

Backtrace of mpt/0 thread :

PID: 477 TASK: ffff88003ba0b520 CPU: 6 COMMAND: "mpt/0"

 #0 [ffff8800376b5560] schedule at ffffffff814c8238

 #1 [ffff8800376b5628] schedule_timeout at ffffffff814c8fc5

 #2 [ffff8800376b56d8] wait_for_common at ffffffff814c8c33

 #3 [ffff8800376b5768] wait_for_completion at ffffffff814c8d4d

 #4 [ffff8800376b5778] blk_execute_rq at ffffffff812464ec

 #5 [ffff8800376b5828] scsi_execute at ffffffff8134ab5c

 #6 [ffff8800376b5878] scsi_execute_req at ffffffff8134adb6

 #7 [ffff8800376b5908] sd_sync_cache at ffffffffa00864e0
 #8 [ffff8800376b59a8] sd_shutdown at ffffffffa008671a

 #9 [ffff8800376b59d8] sd_remove at ffffffffa0086982

#10 [ffff8800376b5a08] __device_release_driver at ffffffff8132e9ef

#11 [ffff8800376b5a28] device_release_driver at ffffffff8132eb5d

#12 [ffff8800376b5a48] bus_remove_device at ffffffff8132d9f3

#13 [ffff8800376b5a78] device_del at ffffffff8132b5a7

#14 [ffff8800376b5aa8] __scsi_remove_device at ffffffff8134f3d5

#15 [ffff8800376b5ac8] scsi_remove_device at ffffffff8134f410

#16 [ffff8800376b5ae8] __scsi_remove_target at ffffffff8134f501

#17 [ffff8800376b5b18] __remove_child at ffffffff8134f5c3

#18 [ffff8800376b5b38] device_for_each_child at ffffffff8132acac

#19 [ffff8800376b5b78] scsi_remove_target at ffffffff8134f56e

#20 [ffff8800376b5b98] sas_rphy_remove at ffffffffa002a185

#21 [ffff8800376b5bb8] sas_rphy_delete at ffffffffa002bd56

#22 [ffff8800376b5bd8] sas_port_delete at ffffffffa002bd9a

#23 [ffff8800376b5c28] mptsas_del_end_device at ffffffffa006e893

#24 [ffff8800376b5cb8] mptsas_expander_delete at ffffffffa006e9eb

#25 [ffff8800376b5d58] mptsas_firmware_event_work at ffffffffa0073b5f

#26 [ffff8800376b5e38] worker_thread at ffffffff8108c610

#27 [ffff8800376b5ee8] kthread at ffffffff81091936

#28 [ffff8800376b5f48] kernel_thread at ffffffff810141ca

It hung while sending SYNCHRONIZE_CACHE command from “scsi_remove_target” context.

Expected behavior is : “SYNCHRONIZE_CACHE” command will come to mptsas driver and return with

DID_NO_CONNECT.

It should be return to block layer via below path.

scsi_done ->

blk_complete_request ->

__blk_complete_request
· __blk_complete_request will add request into perCPU list “blk_cpu_done”. Later which will be called from softirq context.

BLOCK_SOFTIRQ action handler:

blk_done_softirq -> rq->q->softirq_done_fn(rq); { This is pointing to scsi_softirq_done}
NOTE: scsi_softirq_done() context serial_number of the scsi_cmnd will be reset to 0.

cmd->serial_number = 0;
Here is a scsi_cmnd which is pointing to SYNCHRONIZE_CACHE:

struct scsi_cmnd {

 device = 0xffff88003dae7800,

 list = {

 next = 0xffff88003dae7838,

 prev = 0xffff88003dae7838

 },

 eh_entry = {

 next = 0x0,

 prev = 0x0

 },

 eh_eflags = 0,

 serial_number = 531497,

<- Serial_number is non-zero.
 jiffies_at_alloc = 4298427343,

 retries = 0,

 allowed = 5,

 prot_op = 0 '\000',

 prot_type = 0 '\000',

 cmd_len = 10,

 sc_data_direction = DMA_NONE,

 cmnd = 0xffff88002992f150 "5", (CDB is 0x35 means SYNCHRONIZE_CACHE command
 sdb = {

 table = {

 sgl = 0x0,

 nents = 0,

 orig_nents = 0

 },

 length = 0,

 resid = 0

 },

Above data is indicating request has not been processed by “BLOCK_SOFTIRQ “.

After doing code walkthrough and vmcore dump analysis, It looks like only possibility is if request of

SYNCHRONIZE_CACHE is not added on BLOCK_SOFTIRQ” list.

· blk_complete_request is a caller which will put request on “BLOCK_SOFTIRQ “ list.

Here is code of “blk_complete_request “

 if (unlikely(blk_should_fake_timeout(req->q))) <- This check is dummy so don’t care
 return;

 if (!blk_mark_rq_complete(req)) (If this failed request will be dropped.

 __blk_complete_request(req);
· When “blk_mark_rq_complete” will fail ?

blk_mark_rq_complete is atomic function.

It does very basic things. It will set “1” to “0th” bit of rq->atomic_flag. And return old value.

If 0th bit of rq->atomic_flag is already 1(which means request is already completed by somebody), it will skip calling “__blk_complete_request(req);”

“blk_mark_rq_complete(req)) “ check is mainly to deal with Race condition between Error handling thread and real IO completion.

Here I am seeing no chance of error handling to be kicked off since timeout value is 60 seconds.
Interesting part is “blk_mark_rq_complete(req)) “ has been called from “blk_abort_request” also.

Which is forcing to clear up all commands.

“blk_abort_request” has been called from multipath driver when it detects path is failed.

Here is a problem:

1. Path is down. As part of this Driver will remove device, which is handle by mpt/0 thread.
This thread will call “mptsas_expander_delete” which internally remove all device attached with expander. If Device has write cache enable, OS will send SYNCHRONIZE_CACHE to the driver as a part of device removal. (Remember at this time sdev_state will be SDEV_CANCEL)

2. At the same time when Driver is serving “SYNCHRONIZE_CACHE” command, multipath driver has called Fail path. This will internally call “blk_abort_request”

3. Assume before driver send back command to SCSI mid layer “blk_abort_request” has done it’s job. In that case, all request of that device will be marked as completed, timer will be deleted.

At the end it will inform LLD driver that those requests are flush out using “blk_rq_timed_out” call as if requests are timedout.

4. Once #3, has been executed, assume “SYNCHRONIZE_CACHE” has been return back to Scsi mid layer. Since request has been marked as “completed”, it will be dropped and won’t be added for further processing.

5. Since “SYNCHRONIZE_CACHE” is without timed out waiting call, it will wait forever for it to be completed.
6. Since “blk_abort_request” has marked request as completed, it is a responsibility of the same function to call completion callback.

7. YES, there is a mechanism to interact with LLD via “q->rq_timed_out_fn”. Depending upon return value from LLD it will either do following two actions.

(a) BLK_EH_NOT_HANDLED = Complete the request

(b) BLK_EH_RESET_TIMER = don’t complete the request, but just reset the timer.

8. “q->rq_timed_out_fn” mapped to scsi_times_out which internally calls scmd->device->host->hosttt>eh_timed_out. [This is mapped to our “mptsas_eh_timed_out” for mptsas driver]
9. Current logic of mptsas driver is if device is “removed” OR “in DMD” No need to enter into Scsi mid layer’s error handling thread.

If driver returns ” BLK_EH_RESET_TIMER “ mid layer will escape error handling. [This was the main reason to add this particular logic]

If driver returns “BLK_EH_NOT_HANDLED” mid layer will run error handling thread for that command. Since device is removed/in DMD running Error handling thread on that device will make the device to go offline instead of removing the device completely.

[See Novell bugzilla: https://bugzilla.novell.com/show_bug.cgi?id=603411]

10. Since multipath driver is also calling same function which was mainly for IO time out, it is creating confusion for driver what return value to be passed.

