
Bridging high-throughput genetic and transcriptional
data reveals cellular responses to alpha-synuclein toxicity
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Cells respond to stimuli by changes in various processes, including signaling pathways and gene expression. Efforts to identify
components of these responses increasingly depend on mRNA profiling and genetic library screens. By comparing the results
of these two assays across various stimuli, we found that genetic screens tend to identify response regulators, whereas mRNA
profiling frequently detects metabolic responses. We developed an integrative approach that bridges the gap between these
data using known molecular interactions, thus highlighting major response pathways. We used this approach to reveal cellular
pathways responding to the toxicity of alpha-synuclein, a protein implicated in several neurodegenerative disorders including
Parkinson’s disease. For this we screened an established yeast model to identify genes that when overexpressed alter
alpha-synuclein toxicity. Bridging these data and data from mRNA profiling provided functional explanations for many of
these genes and identified previously unknown relations between alpha-synuclein toxicity and basic cellular pathways.

The cellular response to perturbations including environmental
changes, toxins and mutations is typically complex and comprises
signaling and metabolic changes, as well as changes in gene
expression. Revealing the molecular mechanisms underlying cellu-
lar response to a specific perturbation may determine the nature of
the perturbation, thus illuminating disease mechanisms1 or a drug’s
mode of action2,3, and identify points of intervention with poten-
tial therapeutic value4.

High-throughput experimental techniques are commonly used
for finding components of these response pathways because
they provide a genome- and proteome-wide view of molecular
changes. mRNA profiling experiments rapidly identify genes that
are differentially expressed following stimuli. Genetic screening,
including deletion, overexpression and RNAi library screens,
identify genetic ‘hits’, genes whose individual manipulation alters
the phenotype of stimulated cells. However, each technique
has obvious limitations for identifying the full nature of
cellular responses. mRNA profiling experiments do not target
the series of events that led to the differential expres-
sion. Genetic screens provide strong evidence that a gene is
functionally related to the response process, but this relation-
ship is often indirect and hard to decipher, especially in

high-throughput experiments that typically result in scores
of relevant genes with various functions.

It has been noted previously in a few specific instances2,5–9 that
genetic screens do not identify the same genes as mRNA assays
conducted in the same conditions. Here we show that this discrepancy
is, in fact, a general rule. Furthermore, we find a marked bias in
each technique. We bridge this gap between the two forms of
high-throughput data by using an algorithm that exploits molecular
interactions data to reveal the functional context of genetic
hits and additional proteins that participate in the response but that
were not detected by either the genetic or the mRNA profiling
assays themselves.

We applied the algorithm to identify cellular responses to
increased expression of alpha-synuclein, a small human protein
implicated in Parkinson’s disease whose native function and role in
the etiology of the disease remain unclear10. We screened an
established yeast model for alpha-synuclein toxicity11,12 using an
additional set of 3,500 overexpression yeast strains, exposing the
multifaceted toxicity of alpha-synuclein. Application of our
approach to the genetic hits from the screen and to transcriptional
data of the yeast model provides the first cellular map of the
proteins and genes responding to alpha-synuclein expression.
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RESULTS
Comparing genetic hits and differentially expressed genes
We analyzed published mRNA profiles and genetic hits for 179 distinct
perturbations in yeast (Methods). The perturbations included chemi-
cal and genetic insults affecting a multitude of cellular processes.
Thirty of the genetic screens are complete, typically identifying 4100
genetic hits. In almost all cases the overlap was small and statistically
insignificant (Table 1 and Supplementary Table 1a online).

We used Gene Ontology (GO) enrichment analysis to check
whether each assay may be biased toward distinct aspects of cellular
responses (Supplementary Table 1b and Supplementary Fig. 1a
online). The combined genetic hits from all 179 genetic screens
were highly enriched for several annotations, among the most frequent
of which were biological regulation (23.3%, P o 10�82), including
transcription (14%, P o 10�44) and signal transduction (6.3%, P o
10�31). In contrast, the differentially expressed genes from all pertur-
bations were enriched mostly for various metabolic processes (for
example, organic acid metabolic process 7.1%, P o 10�18) and
oxidoreductase activities (7.2%, P o 10�34). We observed the same
enrichment trends upon focusing only on the 30 perturbations for
which complete data were available when analyzed individually or
when combined (Supplementary Tables 1 c,d and Supplementary
Note online). Thus, we find that genetic assays tend to probe the
regulation of cellular responses, whereas mRNA profiling assays tend
to probe the metabolic aspects of cellular responses.

The differences in annotation between genetic hits and differentially
expressed genes imply that each gene set alone often provides a limited
and biased view of cellular responses. This hypothesis was confirmed
in pathways that were well-studied by more classical methods. In the
yeast DNA-damage response pathway, for example, a genetic screen4

detected proteins that sense DNA damage
(Mec3, Ddc1, Rad17 and Rad24), whereas
mRNA profiling detected repair enzymes
such as Rnr4 (ref. 13). Yet core components
that had been uncovered by intense investiga-
tions over many years, such as the signal
transducers Mec1 and Rad53 and the tran-
scription factor Rfx1, remained undetected by
either high-throughput assay.

To fully reap the benefits of applying high-
throughput methods to new problems and
underexplored biological processes, it is essen-
tial to find new routes to connect these data
and obtain a true picture of the regulation of
cellular responses. Judging from characterized
pathways such as the DNA-damage response
discussed above, we expect that some of the
genetic hits, which are enriched for response

regulators, will be connected via regulatory pathways to the differen-
tially expressed genes, which are the output of such pathways, via
components of the response that are missing from the experimental
data (Fig. 1).

ResponseNet algorithm for identifying response networks
We devised the ResponseNet algorithm to identify molecular interac-
tion paths connecting genetic hits and differentially expressed genes,
including components of the response that are otherwise hidden
(Fig. 1). The yeast Saccharomyces cerevisiae provides a powerful
model system for such analysis owing to the extensive molecular
interactions data now available (Methods and Supplementary
Table 2a online). We assembled an integrated network model of the
yeast interactome that contains protein–protein interactions, meta-
bolic relations and protein–DNA interactions detected by various
methods with different levels of reliability14. The resulting interactome
relates 5,622 interacting proteins and 5,510 regulated genes, which are
represented by network nodes, via 57,955 molecular interactions,
which are represented by network edges.

Table 1 Measured responses to cellular perturbations

Perturbationa

Number of differentially

expressed genesb

Number of

genetic hitsc Overlap P value

Growth arrest (HU) 59 86 0 1

DNA damage (MMS) 198 1,448 43 0.81

ER stress (tunicamycin) 200 127 5 0.42

Fatty acid metabolism (oleate) 269 103 9 0.041

ATP synthesis block (arsenic) 828 50 9 0.25

Protein biosynthesis (cycloheximide) 20 164 0 1

Gene inactivation, screen complete

(24 data sets)d
27 130 0 1

Gene inactivation, screen incomplete

(149 data sets)d
24 12 0 1

aSee Supplementary Table 1a for data sources. bDifferentially expressed genes were defined as those showing at least a twofold
change in expression following the perturbation or as defined in the original papers. cNumber of genes whose genetic
manipulation affects the phenotype of perturbed cells as defined in the original papers. dMedian results are shown.

Genetic hit

Interaction not selected 
by ResponseNet

Interaction selected 
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Protein selected 
by ResponseNet

Differentially expressed gene
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TF
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Figure 1 Regulatory relationships between genetic and transcriptional data.

Cellular response is depicted through a general signaling pathway, including

receptor binding, transcription factor (TF) translocation into the nucleus and

gene expression. Genetic screens and mRNA profiling identify only some of

these molecular components and often do not identify the same genes, as

shown. We find that the proteins products of genes identified in genetic

screens (colored blue) tend to be molecules with regulatory roles. We
therefore hypothesize that they may directly or indirectly contribute to the

regulation of the observed change in gene expression (colored magenta).

ResponseNet identifies the likely regulatory pathways and predicts proteins

that are part of these pathways even if they are not identified in either

screen (colored red).
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Our interactome representation has two important features that
facilitate identification of pathways relating genetic hits to tran-
scriptional changes. First, we highlighted the transcriptional reg-
ulatory role of proteins by representing differentially expressed
genes and their protein products as separate gene and protein
nodes, respectively. The only connection between protein and gene
nodes is through edges representing observed protein–DNA inter-
actions between transcriptional regulators and their target genes.
Edges between two protein nodes represent other interaction types.
Consequently, pathways connecting genetic hits to differentially
expressed genes must pass through transcriptional regulators
(Supplementary Fig. 1b). Second, because interactions vary in
their reliability, each edge was given a weight that represents the
probability that the connected nodes interact in a response path-
way. Probabilities were computed using a Bayesian method that
considers the experimental evidence supporting an interaction, and
that favors interactions among proteins acting in a common
cellular response pathway (Methods and Supplementary Table 2b).

Because of the vast number of edges, a search for all interaction
paths connecting the genetic hits to the differentially expressed genes
typically results in ‘hairball’ networks that are very hard to interpret
(Fig. 2a). Pioneering approaches that searched an interactome for
high-probability paths had to limit the output path lengths to three
edges for computational complexity issues15,16. We aimed for a
solution that would (i) pick the subset of genetic hits most likely to
modulate the differentially expressed genes without limiting it a priori

to known regulatory genes, (ii) identify and rank intermediary
proteins that are likely to be part of response pathways but escaped
detection by high-throughput methods and (iii) give preference to
proteins that lie on high-probability paths connecting the genetic hits
to the differentially expressed genes without imposing constraints on
the network topology.

These requirements were met with a ‘flow algorithm’, a computa-
tional method used previously to analyze known signaling or meta-
bolic pathways (for example, see ref. 17). Basically, flow goes from a
source node to a sink node through the graph edges; edges are
associated with a capacity that limits the flow and with a cost. (As a
loose analogy, this resembles water finding the path of least resistance
through a complex landscape.) To identify response pathways we
required that flow pass from genetic hits through interactome edges to
differentially expressed genes (Supplementary Fig. 1b). We then
formulated our goal as a minimum-cost flow optimization problem18:
Cost was defined as the negative log of the probability of an edge.
Hence, minimizing the cost gives preference to high-probability
paths (Methods).

The solution to the optimization problem is a relatively sparse
network connecting many of the genetic hits to many of the differ-
entially expressed genes through known interactions and intermediary
proteins (Fig. 2b). Although these intermediary proteins escaped
detection by either high-throughput genetic analysis or mRNA profil-
ing, they are predicted by the algorithm to participate in the response.
All proteins in the solution are ranked by the amount of flow they

a

b

c
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Figure 2 Interactome subnetworks connecting genetic and transcriptional data. (a) A network connecting genetic and transcriptional19 data of STE5 deletion

strain via paths with length of three edges or fewer finds 193 nodes and 778 edges. (b) The network created by ResponseNet connects the genetic and

transcriptional19 data of STE5 deletion strain via 23 intermediary nodes and 96 edges. Higher ranked nodes, as determined by ResponseNet, appear in

darker shades of blue and include core components of the pheromone response pathway. Ste5 itself, marked by a red circle, is ranked ninth among the top

predicted proteins. (c) The highly ranked part of the network created by ResponseNet upon connecting genetic hits4,20 to DNA-damage signature genes21

identified in yeast treated with the DNA-damaging agent methyl methanesulfonate (MMS). The highest ranking intermediate nodes predicted by ResponseNet

include core components of the DNA-damage–response pathway. The complete network appears in Supplementary Figure 4 online. Each node represents

either a protein or a gene, and edges represent protein–protein, metabolic and protein–DNA interactions. The darkness of an edge increases with the

amount of flow it carries. Differentially expressed genes are labeled with a suffix of g+ for upregulation and g– for downregulation. Networks were visualized

using Cytoscape.
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carry. The more flow that passes through a protein, the more
important it is in connecting the input sets.

Validation of the ResponseNet algorithm
To determine whether ResponseNet provides valid biological insights,
we used it to analyze data from perturbations of well-studied path-
ways. For example, we used ResponseNet to connect genetic hits
associated with Ste5 (from the Saccharomyces Genome Database) and
differentially expressed genes19 collected from a strain lacking Ste5, a
scaffold protein that coordinates the MAP kinase cascade activated by
pheromone (Fig. 2b). Nodes selected by ResponseNet were highly
enriched for proteins functioning in the pheromone response pathway
(46%, P o 10�18), thus revealing the perturbed biological process.
The highly ranked intermediary proteins included key regulators of
the pheromone response including Ste5, the source of perturbation.

ResponseNet also performed well in analyzing the complex
cellular response to DNA damage4,20,21. Nodes discovered by
ResponseNet were highly enriched for the GO categories response
to DNA damage stimulus (21%, P o 10�14) and DNA repair
(19%, P o 10�14). The highly ranked part of the network
contained core pathway proteins that were uncovered by years of
intense investigation but escaped detection by high-throughput
screens, including signal transducers (Mec1, Rad53), members of
the RFC complex (Rfc2, Rfc3, Rfc4, Rfc5) and the transcriptional
regulator Rfx1 (Fig. 2c). Statistical evaluation of the performance
of ResponseNet on data for less well-characterized pathways is
described in the Supplementary Note.

Mapping the cellular responses to alpha-synuclein toxicity
Having established the validity of our method to uncover connections
between otherwise disparate high-throughput datasets, we applied
ResponseNet to investigate the cellular toxicity associated with alpha-
synuclein (a-syn). a-Syn is a small lipid-binding protein that is
natively unfolded when not bound to lipids and prone to forming
toxic oligomers22. It has been implicated in several neurodegenerative
disorders, particularly Parkinson’s disease (PD): it is the main com-
ponent of Lewy bodies, locus duplication or triplication of a-syn
lead to familial forms of PD, and increased expression of a-syn
leads to neurodegeneration in several animal models23. Despite
immense efforts, the cellular pathways by which a-syn leads to cell
death are just beginning to emerge.

The yeast Sacccharomyces cerevisiae pro-
vides a powerful system for studying the
toxicities of a-syn that result from its
intrinsic physical properties. Expression
of human a-syn in yeast yields dosage-
dependent defects also found in mamma-
lian systems, including cytosolic-lipid-dro-
plet accumulation, reactive-oxygen-species
production and ubiquitin-proteasome sys-
tem impairment11. An initial screen for
yeast genes that modify a-syn toxicity
when overexpressed identified genes
involved in ER-to-Golgi vesicle trafficking
and led to the observation that a-syn
blocks ER-to-Golgi vesicle trafficking12.

We now report the results of screening
5,500 overexpression yeast strains, thereby
covering 85% of the yeast proteome. We
identified 55 suppressors and 22 enhancers
of a-syn toxicity, many with clear human

orthologs, including the homolog of human PD gene ATP13A2 (also
known as PARK9; Table 2 and Supplementary Table 3a online). As
demonstrated in the accompanying article (Gitler et al.24), PARK9 and
the human homologs of eight other genetic modifiers with diverse
functions (Ypt1, Hrd1, Ubp3, Pde2, Cdc5, Yck3, Sit4 and Pmr1) are
efficacious in neuronal models, validating the yeast model as mean-
ingful to a-syn toxicity in neurons12,24. Major classes of genes that
emerged include vesicle-trafficking genes, kinases and phosphatases,
ubiquitin-related proteins, transcriptional regulators, manganese trans-
porters and trehalose-biosynthesis genes (Supplementary Table 3a,b).
Notably, trehalose was recently shown to promote the clearance of
misfolded mutant a-syn25, and manganese exposure has been linked
with Parkinson’s-like symptoms, albeit with a distinct underlying
pathology26. The genes identified by the screen point to causal
relations between a-syn expression and toxicities previously associated
with PD but not specifically linked to a-syn (Supplementary Note).

mRNA profiling of the yeast model was determined in a separate
study (unpublished data and Supplementary Table 3b,c). Upregu-
lated genes prominently included genes with oxidoreductase activities
(13%, P o 10–9). Downregulated genes included ribosomal genes
(28%, P o 10–30), as commonly observed under stress27. More
specific to a-syn toxicity, the downregulated genes were markedly
enriched for genes encoding proteins localized to the mitochondria
(60%, P o 10–44).

Table 2 Yeast genes that modify a-syn toxicity when overexpressed

Gene class a-syn toxicity suppressors a-syn toxicity enhancers

Amino acid transport Avt4, Dip5, Lst8

Autophagy Nvj1

Cytoskeleton Icy1, Icy2

Manganese transport Ccc1 Pmr1

Protein phosphorylation Cdc5, Gip2, Ime2, Ptp2, Ptc4, Rck1, Yck3 Cax4, Ppz1, Ppz2, Sit4

Transcription or translation Cup9, Fzf1, Hap4, Jsn1, Mga2,

Stb3, Tif4632, Vhr1

MATALPHA1, Mks1, Sut2

Trehalose biosynthesis Nth1, Tps3, Ugp1

Ubiquitin-related Cdc4, Hrd1, Uip5 Ubp7, Ubp11

Vesicular transport, ER-Golgi Bre5, Erv29, Sec21, Sec28,

Sft1, Ubp3, Ykt6, Ypt1

Bet4, Glo3, Gos1, Gyp8,

Sec31, Sly41, Trs120, Yip3

Other cellular processes Isn1, Mum2, Osh2, Osh3, Pde2,

Pho80, Pfs1, Qdr3

Eps1, Ids2, Izh3, Tpo4

Unknown function YBR030W, YDL121C, YDR374C,

YKL063C, YKL088W, YML081W, YML083C,

YMR111C, YNR014W, YOR129C, YOR291W (Ypk9)
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Figure 3 Nitrosative stress response to a-syn expression in yeast. (a) The

predicted subnetwork containing Fzf1 and its differentially expressed target

genes. Graphical representation is similar to Figure 2. (b) Immunoblotting

against S-nitrosocysteine performed on a control strain (vector), on a strain

expressing one copy of a-syn (NoTox) and on a high-toxicity strain (HiTox)

expressing several copies of a-syn reveals that increasing levels of a-syn

increase the amount of S-nitrosylated proteins.
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The genetic and mRNA profiling data exemplify both the power
and the limitations of the current approaches. Although they reveal
the wide range of cellular functions altered by a-syn, the precise roles
of the identified genes in the cellular response are unclear. For
example, we checked whether the ubiquitin-related genetic hits affect
a-syn degradation. However, in strains overexpressing these ubiquitin-
related genes, we did not detect changes in steady-state a-syn protein
concentrations (Supplementary Fig. 2 online). As with our analyses
above, the overlap between the genetic hits and the differentially
expressed genes was minor (four genes, P ¼ 0.96).

Application of ResponseNet to these disparate datasets gave a more
coherent view of the cellular response (Supplementary Fig. 3a online).
The resulting network provided context to a large portion of the data:
34 (44%) genetic hits and 166 (27%) differentially expressed genes
were linked to each other through 106 intermediary proteins.
These include two-thirds of the protein kinase, phosphatase and
ubiquitin-related genetic hits, illuminating their intricate role in the
response to a-syn.

The major cellular pathways identified by ResponseNet included
ubiquitin-dependent protein degradation, cell cycle regulation and
vesicle-trafficking pathways, all of which have previously been asso-
ciated with PD (Supplementary Note and Supplementary Fig. 3a).
Four examples illustrate the ability of ResponseNet to clarify aspects of
a-syn responses relevant to PD and uncover others whose relationship
to a-syn was completely unknown.

Nitrosative stress
Fzf1 was the only genetic hit related to nitrosative stress28. However,
ResponseNet connected it to four upregulated transcripts, including
that encoding Pdi1, a protein disulfide isomerase (PDI) (Fig. 3a).
Notably, the upregulation of human PDI protects neuronal cells from
neurotoxicity associated with ER stress and protein misfolding (both
of which are linked to a-syn expression in yeast and neurons), and
PDI is one of a small number of specific proteins S-nitrosylated in PD
that activate protective pathways, in addition to the generalized
nitrosative damage that is a hallmark of the disease29. We found
that increased expression of a-syn causes both specific and general

increases in S-nitrosylation of proteins (Fig. 3b). This was highly
surprising because the yeast genome does not encode a canonical
nitric oxide synthase and, until very recently, yeast were not thought to
produce nitric oxide30. Our results indicate that the nitrosylation of
specific proteins and generalized nitrosylation is a highly conserved
and deeply rooted response to cellular perturbations created by a-syn.

Heat shock
The induction of the heat-shock response directly or via chemical
inhibition of Hsp90 (ref. 31) suppresses a-syn toxicity in many model
systems including yeast, flies, mice and human cells (for example, see
refs. 32,33). However, heat-shock–related genes were conspicuously
absent among the list of genetic suppressors. Nonetheless, Response-
Net predicted the involvement of two highly conserved heat-shock
regulators, the chaperone Hsp90 (isoform Hsp82, Supplementary
Fig. 3a, panel a) and the heat-shock transcription factor Hsf1
(Fig. 4a). Hsf1 appeared downstream of the toxicity suppressor
Gip2, a putative regulatory subunit of the Glc7 phosphatase, which
interacts with Gac1. Gac1 is a regulatory subunit of the Glc7 complex
that is known to activate Hsf1 (ref. 34). These connections suggested
that Gip2 overexpression might induce a heat-shock response. Indeed,
we found that strains overexpressing Gip2 show elevated concentra-
tions of heat-shock proteins (Fig. 4b). ResponseNet therefore pro-
vided a mechanistic explanation for the suppression of a-syn toxicity
achieved by Gip2 overexpression and identified a new regulator of the
highly conserved heat-shock response.

The mevalonate-ergosterol biosynthesis pathway
This pathway, which is targeted by the cholesterol-lowering statin
drugs, synthesizes sterols as well as other products with connections to
a-syn toxicity, such as farnesyl groups required for vesicle trafficking
proteins and ubiquinone required for mitochondrial respiration.
ResponseNet ranked highly Hrd1, which regulates the protein target
of statins, and the predicted intermediary Hap1, a proposed transcrip-
tional regulator of the pathway35 (Supplementary Fig. 3a, panel a). In
addition, the a-syn mRNA profile modestly correlated with the profile
of yeast treated with lovastatin (r ¼ 0.32, P o 10�93, L.J.S. and S.L.,
unpublished data), and several genetic hits also could be associated
with products of the pathway (enzymes Bet4 and Cax4, farnesylated
proteins Ypt1 and Ykt6 and putative sterol carriers Sut2, Osh2 and
Osh3). We therefore tested the effect of lovastatin, which selectively
inhibits the highly conserved HMG-CoA reductase protein in yeast
and in mammalian cells, on a-syn toxicity. Addition of 5 mM
lovastatin to the media caused a further reduction in growth to strains
overexpressing a-syn (Fig. 5a), but did not reduce growth of either
wild-type controls or of cells expressing another toxic protein, a
glutamine-expansion variant of huntingtin exon I36 (Supplementary
Fig. 3b). We further tested ubiquinone, a downstream output of this
pathway, reasoning that its downregulation through the action of
a-syn might increase cellular vulnerability. Indeed, the addition of
ubiquinone-2 to the media provided a modest suppression against
a-syn toxicity. Ubiquinone is an antioxidant, but this was not a
nonspecific antioxidant response, as the antioxidant N-acetylcysteine
had no effect (data not shown).

The target of rapamycin (TOR) pathway
ResponseNet identified the TOR pathway proteins Tor1, Tor2 and
their target transcription factors as intermediary between the genetic
suppressor Lst8, a positive regulator of the TOR pathway, and several
upregulated genes involved in spore wall formation (a vectorially
directed secretory process in yeast) and vacuolar protein degradation
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Figure 4 Overexpression of Gip2 causes induced expression of Hsf1 targets.

(a) The predicted subnetwork links the toxicity suppressor Gip2 and the

toxicity enhancer Ppz1 to Hsf1 and Msn2 via components of type 1 protein

phosphatase complex (Gac1, Glc7, Ypi1, Sds22). Graphical representation

is similar to Figure 2. (b) Immunoblotting of vector cells overexpressing GFP,

Fzf1 or Gip2 with antibodies against Hsp104 and Hsp26. Overexpression

of Gip2 is sufficient to activate Hsf1 and induce higher protein levels of

both its targets Hsp104 and Hsp26, similar to that of vector cells subjected

to heat shock. In contrast, overexpression of another genetic suppressor,

Fzf1, does not activate Hsf1. Immunoblotting against Pgk1 was used as

a loading control.
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(Fig. 5b). We found that addition of the TOR-inhibitor rapamycin to
the media markedly enhanced the toxicity of a-syn. Indeed, a low dose
of a-syn, which is otherwise innocuous, became toxic (Fig. 5c).
Establishing the specificity of this effect to a-syn, rapamycin did not
reduce growth of cells expressing glutamine expansion variants of
huntingtin exon I (Supplementary Fig. 3c). As other studies have
suggested benefits of rapamycin treatment in PD models, these results
call for further investigation and suggest a complexity to the response
to rapamycin that is potentially due to the vast range of processes
affected by TOR activation.

DISCUSSION
We provide a novel framework in which genetic, physical and
transcriptional data naturally complement each other in the context
of cellular response to biological perturbations. Although the com-
plementary nature of these data has been noted2,5–9,37, a systematic
analysis of the relationship between stimulus-specific genetic modifiers
and transcriptional responses has been lacking. By examining over 150
distinct stimuli we find that differentially expressed genes and genetic
hits are consistently disparate (Table 1); genetic hits are biased toward
regulatory proteins, whereas the differentially expressed genes are
biased toward metabolic processes. Indeed, each assay has inherent
‘blind spots’. Many yeast regulatory proteins are not detected by
transcriptional assays because either they are predominantly regulated
post-transcriptionally, they have a low transcript concentration38 or
their differential expression is transient, making changes hard to
measure. Conversely, the genes that are differentially transcribed are
often involved in metabolic processes or redundant functions, which
tend to be robust against single mutations39.

The discordance between genetic hits and differentially expressed
genes has implications for the search for therapeutic strategies. In
yeast, inactivating a differentially expressed gene is no more likely to
affect cell viability than targeting a randomly chosen gene. Bridging
the gap between these data using techniques like ResponseNet can
potentially reveal intervention points not discovered in the high-
throughput assays themselves (Fig. 2) that may be targeted by drugs.

Our computational approach is based on a flow algorithm to
connect the genetic hits and differentially expressed genes. Unlike
studies that link a target gene with its causal transcriptional
change13,15,16,40–43, a flow-based approach allows for a global, efficient
and simultaneous solution for multiple target genes that puts no a
priori bounds on the structure of the output. Indeed, the predicted
output networks have rich structures with half of all paths having a
length of three edges or more. The ability of ResponseNet to analyze
interactome data containing tens of thousands of nodes and edges
make it well suited to analyzing the accumulating data from other
species or other techniques.

We applied our approach to a yeast model for a-syn pathobiology
implicated in PD. Our unbiased screen identified 77 genes whose
overexpression altered a-syn toxicity (Table 2). These included genes
involved in vesicle trafficking (as previously reported), protein
degradation, cell cycle regulation, nitrosative stress, osmolyte bio-
synthesis and manganese transport. This screen established an inter-
face between a-syn and a large number of cellular and environmental
factors previously linked to neuropathology and, in some cases,
specifically to parkinsonism, but not specifically linked to a-syn.
Many of the genes we identified are highly conserved in humans,
where they may exert similar effects. Indeed, eight out of nine toxicity
modifiers tested had similar effects on a-syn toxicity in yeast and in
neuronal systems24.

Application of ResponseNet to the a-syn model successfully pro-
vided functional context to many of the genetic hits identified in our
yeast screen (Supplementary Fig. 3a) and pointed to the involvement
of several cellular pathways (Figs. 3–5). Of these, the mevalonate-
ergosterol pathway is of special interest as its perturbation could
potentially alter a variety of downstream pathways, including protein
farnesylation and ubiquinone biosynthesis, which are closely related to
the vesicle trafficking defects and mitochondrial dysfunction observed
in the yeast model. Indeed, a link between sterol biosynthesis and the
etiology of PD has recently emerged. Individuals with PD have
significantly lower concentrations of low-density lipoprotein (LDL)
cholesterol than their spouses44, and low concentrations of LDL
preceded the appearance of PD in a group of men of Japanese
ancestry45. Our work provides a molecular framework for elucidating
this connection.

The global picture obtained by integrating high-throughput genetic,
transcriptional and physical data demonstrates the power of integra-
tive approaches to illuminate underexplored cellular processes. As
high-throughput assays are becoming routine in the study of complex
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Figure 5 Effects of the small molecules lovastatin and rapamycin on a-syn

toxicity. (a) Lovastatin inhibits growth of the yeast strain expressing an

intermediate level of a-syn. Growth of a control strain (vector) and an

intermediate toxicity strain (IntTox) expressing several copies of a-syn was

measured in a galactose containing media with and without 5 mM lovastatin.

Each growth curve reflects the average of three individual runs, each of

which is indicated by a bar. (b) The predicted subnetwork containing TOR

pathway components includes the predicted proteins Tor1 and Tor2.

Graphical representation is similar to Figure 2c. (c) The effect of rapamycin

on growth of different yeast strains. The upper panel shows the growth of a

control strain (vector), a strain expressing one copy of a-syn (NoTox), a high-

toxicity strain (HiTox) and an intermediate toxicity strain (IntTox) both

expressing several copies of a-syn, in a galactose containing media (SGal)

that is used to induce expression of a-syn. The lower panel shows the same

strains grown in media that also contains 1 nM rapamycin, showing that
rapamycin inhibits growth of all a-syn–expressing strains but not the control

strain, as observed by the difference in the number of colonies per drop. The

different columns correspond to serial dilutions.

NATURE GENETICS VOLUME 41 [ NUMBER 3 [ MARCH 2009 32 1

ART I C LES

 

 

©
20

09
 N

at
u

re
 A

m
er

ic
a,

 In
c.

  A
ll 

ri
g

h
ts

 r
es

er
ve

d
.



disease and developmental processes, approaches for deciphering these
data based on their underlying characteristics are vital.

METHODS
Genetic and transcriptional datasets. Chemical perturbation data were down-

loaded from original papers. Genetic hits for gene inactivation included

proteins that genetically interact with the inactivated gene according to

Saccharomyces cerevisiae Genome Databases (SGD). Differentially expressed

genes included genes that showed at least a twofold change in expression with a

P value r0.05 (ref. 19), or else as defined according to the original papers.

Genetic and mRNA profiling assays for chemical perturbations were paired if

the chemical concentrations were comparable.

Interactome data description. The interactome was represented as a graph

G ¼ (V, E) where nodes V represent genes and proteins and edges E represent

their interactions. Different nodes represent a gene and its correspon-

ding protein.

Bidirectional edges between protein nodes represent physical protein–

protein interactions or metabolic interactions between enzymes if the substrate

of one is the product of the other.

Directed edges represent regulatory interactions. Outgoing edges connected

protein nodes to gene nodes if there was evidence from literature or ChIP-chip

assays that the proteins may regulate the genes. Proteins nodes were connected

if both proteins were transcriptional regulators and one regulated the other.

The data sources appear in the Supplementary Note. Supplementary Table

2a lists the number of interacting pairs per interaction type in the interactome.

Weighting scheme for interactome edges. Interactions between protein nodes.

Each interacting protein pair pi,pj was associated with an interaction vector

Ipi,pj; vector entry Ikpi,pj is an indicator function for interaction evidence of

type k. Interactions are weighted (wij) to reflect the probability that pi,pj
function in a randomly selected response pathway (denoted RPPi,Pj ¼ 1)

as follows:

wij ¼ PðRPpipj ¼ 1jIpipj Þ ¼ PðIpipj jRPpipj ¼ 1ÞPðRPpipj ¼ 1Þ=PðIpipj Þ;

where

PðIpipj Þ ¼ PðIpipj jRPpipj ¼ 1ÞPðRPpipj ¼ 1Þ
+PðIpipj jRPpipj ¼ 0ÞPðRPpipj ¼ 0Þ

We assumed conditionally independence between different types of evidence:

PðIpipj jRPpipj Þ ¼
Y

k
PðIkpipj jRPpipj Þ

Interactions between protein and gene nodes. Weights were designed to reflect the

reliability of the interaction on the basis of experimental evidence and binding-

site conservation.

The scheme for calculating P(RP) and P(I k| RP) and the weights per

interaction type appear in the Supplementary Note. Because high edge weights

could indicate unusually well-studied proteins46 or imperfectness of the

assumption of conditional independence, all weights were capped to a max-

imum value of 0.7.

Linear programming formulation. For each perturbation, the input to

ResponseNet consisted of the weighted interactome G ¼ (V, E), the genetic

hits GenCV and the differentially expressed genes TraCV identified following

the perturbation. Each edge (i, j) AE was characterized by a weight wij and a

capacity cij ¼ 1.

The graph G was updated as follows:

1. V¢ ¼ V , {S, T}, where S and T are auxiliary nodes representing the

source and sink, respectively.

2. E¢ ¼ E,(S,i)8iAGen,(i,T)8iATra, connecting S to the genetic hits and T to

the differentially expressed genes by directed edges.

3.

cSi ¼
strengthij jP

j2Gen
strengthj
�� �� ;

8iAGen, where the strength of each genetic hit was measured by the variation it

conferred on the number of colonies per drop if available; otherwise, strengths

were uniform.

4.

ciT ¼
log2ðstrengthiÞ
�� ��

P
j2Tra

log2ðstrengthjÞ
�� �� ;

8iATra, where the strength was measured by either the relative change in its

transcript level or the P value associated with it, depending on their availability.

5. wSi ¼ cSi 8iAGen and wiT ¼ ciT 8iATra

Letting fij denote the flow from node i to node j and for any given gZ 0, the

following optimization problem was solved using LOQO47:

minð
f

ð
X

i2V 0 ;j2V 0
� logðwijÞ � fijÞ � ðg �

X

i2Gen
fSiÞÞ

Subject to:

X

j2V 0
fij �

X

j2V 0
fji ¼ 0 8i 2 V 0 � fS;Tg

X

i2Gen
f Si �

X

i2Tra
fiT ¼ 0

0 � fij � cij 8ði; jÞ 2 E0

The solution F ¼ {fij 4 0} defined the predicted response network. For

enrichment analysis only protein nodes were considered, and genetic hits were

included only if they received flow from nodes other than the source. Protein

nodes were ranked in decreasing order according to the total amount of their

incoming flow. Although the solution to the optimization problem is a directed

network, this directionality only reflects the way in which the algorithm

directed flow from the genetic hits to the differentially expressed genes and

does not represent the causal order of events (Supplementary Fig. 1b).

Additional information regarding the formulation, space of solutions, setting

g value and ResponseNet performance appear in the Supplementary Note. For

ResponseNet validation g ¼ 10.

Statistical analysis. Probabilities of overlap between genetic hits and differen-

tially expressed genes were calculated using Fisher’s exact test, given a total of

6,000 yeast genes. Enrichment analysis was done using the Gene Ontology Term

Finder from SGD.

a-Syn toxicity modifier screen The high-throughput yeast transformation

protocol appears elsewhere12.

Immunoblotting. Phosphoglycerate kinase 1(Pgk1) mouse monoclonal anti-

body was used at 1:5000. Hsp26 rabbit polyclonal antibody (gift from

J. Buchner, Center for Integrative Protein Science and Department of Chem-

istry, Technische Universität München) was used at 1:5000. Hsp104 mouse

monoclonal antibody (4B; ref. 48) was used at 1:5000. S-nitosocysteine rabbit

polyclonal antibody (Sigma) was used at 1:10,000.

a-Syn ResponseNet analysis. Differentially expressed genes had at least a

twofold change in expression with P value r0.05 (Supplementary

Table 3c). Capacities of edges connecting the source to genetic hits were

relative to the absolute strength of the genetic hits (Supplementary

Table 3a). Capacities of edges connecting differentially expressed genes to

the sink were relative to the absolute log of the change in expression. We

repeated the analysis excluding nonspecific stress responses (Supplementary

Note). ResponseNet was run with g ¼ 12.

a-Syn growth in presence of small molecules. For spotting assays, yeast strains

were initially grown to saturation in media containing raffinose, normalized for

their A600 and serially diluted by fivefold before spotting onto appropriate yeast

media. Growth curves were monitored using the Bioscreen instrument. Yeast

strains were pre-grown in 2% raffinose medium and induced in 2% galactose

medium in presence of either the compound or vehicle control (1% DMSO

final) with starting A600 of 0.1. Cells were grown at 30 1C, with plates shaken
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every 30 s to ensure proper aeration and A600 measurements taken every

half hour over a 2-d period. The resulting data (A600 versus time) were plotted

using Kaleidagraph. At least three independent runs were conducted for each

growth condition.

Note: Supplementary information is available on the Nature Genetics website.
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