
Red Hat Enterprise Linux 6

Performance Tuning Guide
Optimizing subsystem throughput in Red Hat Enterprise Linux 6

Russell Doty

Neil Horman

Sanjay Rao

Performance Tuning Guide Draft

Red Hat Enterprise Linux 6 Performance Tuning Guide
Optimizing subsystem throughput in Red Hat Enterprise Linux 6
Edition 0

Author Russell Doty rdoty@redhat.com
Author Neil Horman
Author Sanjay Rao srao@redhat.com
Editor Don Domingo ddomingo@redhat.com

Copyright © 2010 Red Hat, Inc. and others.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is available
at http://creativecommons.org/licenses/by-sa/3.0/. In accordance with CC-BY-SA, if you distribute this
document or an adaptation of it, you must provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, MetaMatrix, Fedora, the Infinity
Logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other countries.

Linux® is the registered trademark of Linus Torvalds in the United States and other countries.

Java® is a registered trademark of Oracle and/or its affiliates.

XFS® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

All other trademarks are the property of their respective owners.

 1801 Varsity Drive
 Raleigh, NC 27606-2072 USA
 Phone: +1 919 754 3700
 Phone: 888 733 4281
 Fax: +1 919 754 3701

The Performance Tuning Guide describes how to optimize the performance of a system running Red
Hat Enterprise Linux 6. It also documents performance-related upgrades in Red Hat Enterprise Linux
6.

While this guide contains procedures that are field-tested and proven, Red Hat recommends that you
properly test all planned configurations on a testing environment before applying it to a production
environment. You should also back up all your data and pre-tuning configurations.

mailto:rdoty@redhat.com
mailto:srao@redhat.com
mailto:ddomingo@redhat.com
http://creativecommons.org/licenses/by-sa/3.0/

Draft Draft

iii

Preface v

1. Overview [Russell Doty] 1
1.1. Audience ... 1
1.2. [tentative] History of Red Hat Enterprise Linux Performance Enhancements 2
1.3. Horizontal Scalability [BZ#646691] ... 2

1.3.1. Parallel Computing .. 3
1.4. Distributed Systems [BZ#646692] .. 3

1.4.1. Communication .. 4
1.4.2. [link] Storage .. 5
1.4.3. Management (Converged Networks) ... 6

2. Red Hat Enterprise Linux 6 Performance Features [BZ#646693] 9
2.1. System Overview ... 9
2.2. [link] 64-Bit Support .. 9
2.3. [link] Ticket Spinlocks .. 10
2.4. [link] Dynamic List Structure .. 10
2.5. [link] Tickless Kernel .. 11
2.6. [link] Control Groups ... 11
2.7. [link] Storage and File System Improvements .. 12

3. Monitoring and Analyzing System Performance 15
3.1. The /proc File System ... 15
3.2. Gnome and KDE System Monitors .. 15
3.3. Built-in Command-line Monitoring Tools ... 15
3.4. Application Profilers .. 15

3.4.1. SystemTap .. 15
3.4.2. OProfile ... 15
3.4.3. Valgrind ... 15

3.5. Red Hat Enterprise MRG .. 15

4. CPU [Jirka Hladky] 17
4.1. CPU and NUMA Topology [BZ#641009] ... 17
4.2. NUMA and Multi-Core Support [BZ#639780] ... 17
4.3. The CPU Scheduler [BZ#639781] .. 17
4.4. Tuned IRQs [BZ#639782] .. 17
4.5. Understanding CPU Statistics [BZ#639783] .. 17

4.5.1. Analyzing CPU Cycle Statistics With OProfile .. 17
4.6. Tuning CPU Performance [BZ#639784] .. 17

5. Input/Output [Sanjay Rao] 19
5.1. High-Level I/O Configuration [BZ#639786] .. 20
5.2. IOZone Benchmarks [BZ#639788] .. 21
5.3. Direct I/O [BZ#639789] .. 23
5.4. Asynchronous I/O to File Systems [BZ#639790] .. 24
5.5. I/O Merging [BZ#640872] .. 25
5.6. I/O Alignment [BZ#640874] .. 25
5.7. Schedulers [BZ#639785] .. 26

5.7.1. Selecting an I/O Scheduler ... 27
5.7.2. Completely Fair Queueing .. 27
5.7.3. Anticipatory Scheduler ... 28
5.7.4. deadline Scheduler ... 29
5.7.5. Noop Scheduler ... 30

6. Memory [Larry Woodman] 31
6.1. Huge Translation Lookaside Buffers [BZ#639791] ... 31
6.2. Huge Pages and Transparent Hugepages [BZ#639792] ... 31

Performance Tuning Guide Draft

iv

6.3. Using Valgrind to Profile Memory Usage [BZ#639793] ... 32
6.4. Capacity Tuning [BZ#639794] .. 32
6.5. Tuning Virtual Memory [BZ#639795] ... 32

7. Storage [Barry Marson] 33
7.1. The Ext4 File System [BZ#639796] .. 33

7.1.1. Useful Journaling and Mount Options ... 33
7.2. The XFS File System [BZ#640877] .. 33
7.3. Clustering [BZ#639797] ... 33
7.4. Global File System 2 [BZ#639798] ... 33

8. Networking [Neil Horman] [BZ#639799] 35
8.1. Network Performance Enhancements [BZ#639799] ... 35
8.2. Optimized Network Settings [BZ#639801] ... 37
8.3. Overview of Packet Reception [BZ#639800] ... 38
8.4. Resolving Common Queueing/Frame Loss Issues [BZ#639802] 39

8.4.1. NIC Hardware Buffer ... 40
8.4.2. Socket Queue ... 40

8.5. Multicast Considerations [BZ#639803] .. 41

9. Tuned Profiles [SME TBA] 43
9.1. Oracle .. 43
9.2. Samba Server .. 43
9.3. Web Servers .. 43

A. Revision History 45

Index 47

Draft Draft

v

Preface
restore conventions and feedback info later

vi

Draft Chapter 1. Draft

1

Overview [Russell Doty]
main source: rdoty docs
The Performance Tuning Guide is a comprehensive reference on the configuration and optimization of
Red Hat Enterprise Linux. While this release also contains information on Red Hat Enterprise Linux 5
performance capabilities, all instructions supplied herein are specific to Red Hat Enterprise Linux 6.

This book is divided into chapters discussing specific subsystems in Red Hat Enterprise Linux. The
Performance Tuning Guide focuses on three major themes per subsystem:

Features
Each subsystem chapter describes performance features unique to (or implemented differently) in
Red Hat Enterprise Linux 6. These chapters also discuss Red Hat Enterprise Linux 6 updates that
significantly improved the performance of specific subsystems over Red Hat Enterprise Linux 5.

Analysis
The book also enumerates performance indicators for each specific subsystem. Typical values
for these indicators are described in the context of specific services, helping you understand their
significance in real-world, production systems.

In addition, the Performance Tuning Guide also shows different ways of retrieving performance
data (i.e. profiling) for a subsystem. Note that some of the profiling tools showcased here are
documented elsewhere with more detail.

Configuration
Perhaps the most important information in this book are instructions on how to adjust the
performance of a specific subsystem in Red Hat Enterprise Linux 6. The Performance Tuning
Guide explains how to fine-tune a Red Hat Enterprise Linux 6 subsystem for specific services.

Keep in mind that tweaking a specific subsystem's performance may affect the performance of
another, sometimes adversely. The default configuration of Red Hat Enterprise Linux 6 is optimal for
most services running under moderate loads.

The procedures enumerated in the Performance Tuning Guide were tested extensively by Red Hat
engineers in both lab and field. However, Red Hat recommends that you properly test all planed
configurrations in a secure testing environment before applying it to your production servers. You
should also back up all data and pre-tuning configurations.

1.1. Audience
This book is suitable for two types of readers:

System/Business Analyst
This book enumerates and explains Red Hat Enterprise Linux 6 performance features at a high-
level, providing enough information on how subsystems perform for specific workloads (both by
default and when optimized). The level of detail used in describing Red Hat Enterprise Linux 6
performance features helps potential customers and sales engineers understand the suitability of
this platform in providing resource-intensive services at an acceptable level.

The Performance Tuning Guide also provides links to more detailed documentation on each
feature whenever possible. At that detail level, readers can understand these performance
features enough to form a high-level strategy in deploying and optimizing Red Hat Enterprise
Linux 6. This allows readers to both develop and evaluate infrastructure proposals.

Features documentation is suitable for readers with high-level understanding of Linux subsystems
and enterprise-level networks.

Chapter 1. Overview [Russell Doty] Draft

2

System Administrator
The procedures enumerated in this book are suitable for system administrators with RHCE 1

skill level (or its equivalent, i.e. 3-5 years experience in deploying and managing Linux). The
Performance Tuning Guide aims to provide as much detail on the effects of each configuration;
this means describing any performance trade-offs that may occur.

The underlying skill in performance tuning lies not in knowing how to analyze and tune a
subsystem. Rather, a system administrator adept at performance tuning knows how to balance
and optimize a Red Hat Enterprise Linux 6 system for a specific purpose. This means also
knowing which trade-offs and performance penalties are acceptable when attempting to implement
a configuration designed to boost a specific subsystem's performance.

1.2. [tentative] History of Red Hat Enterprise Linux
Performance Enhancements
source: RHEL-History-Perf-key2.odp

1.3. Horizontal Scalability [BZ#646691]
from rdoty "Red Hat Enterprise Linux 6 and Horizontal Scalability"
BZ#6466912

Red Hat's efforts in improving the performance of Red Hat Enterprise Linux 6 focuses on scalability.
Performance-boosting features are evaluated primarily on how they affect the platform's performance
in different ends of the workload spectrum — i.e. from the lonely webserver to the server farm
mainframe.

Focusing on scalability allows Red Hat Enterprise Linux to maintain its versatility for different types
of workloads and purposes. At the same time, this means that as your business grows and your
workload scales up, re-configuring your server environment is less prohibitive (in terms of cost and
man-hours) and more intuitive.

Specifically, Red Hat focuses on improving Red Hat Enterprise Linux to make it suitable for horizontal
scalability. The basic idea behind horizontal scalability is to use multiple standard computers to
distribute heavy workloads in order to improve performance and reliability.

In a typical server farm, these standard computers come in the form of rack-mounted servers (aka
"pizza box servers") and blade servers. Each standard computer may be as small as a simple 2-
socket system, although some server farms use large systems with more sockets. Some enterprise-
grade networks mix large and small systems; in such cases, the large systems are high performance
servers (e.g. databases) and the small ones are dedicated application servers (e.g. web, mail).

This type of scalability simplifies the growth of your IT infrastructure: a medium-sized business with
an appropriate load might only need 2 pizza box servers to suit all their needs. As the business hires
more people, expands its operations, increases its sales volumes, and so forth, its IT requirements
increase in both volume and complexity; horizontal scalability allows IT to simply deploy additional
machines with (mostly) identical configurations as their predecessors.

To sum, horizontal scalability adds a layer of abstraction that simplifies system hardware
administration. By developing the Red Hat Enterprise Linux platform to scale horizontally, increasing
the capacity and performance of IT services can be as simple as adding new, easily configured
machines.

1 Red Hat Certified Engineer. For more information, refer to http://www.apac.redhat.com/training/certification/rhce/.
2 https://bugzilla.redhat.com/bugzilla/show_bug.cgi?id=646691

https://bugzilla.redhat.com/bugzilla/show_bug.cgi?id=646691
http://www.apac.redhat.com/training/certification/rhce/
https://bugzilla.redhat.com/bugzilla/show_bug.cgi?id=646691

Draft Parallel Computing

3

any other points to add RE horizontal scalability?

1.3.1. Parallel Computing
Users benefit from Red Hat Enterprise Linux's horizontal scalability not just because it simplifies
system hardware administration; they benefit because horizontal scalability is a suitable development
philosophy given the current trends in hardware advancement.

Consider this: most applications have thousands of tasks that must be performed simultaneously, with
different coordination methods between tasks. While early computers had a single-core processor to
juggle all these tasks, virtually all processors available today have multiple cores. Effectively, modern
computers put multiple cores in a single socket, making even single-socket desktops or laptops multi-
processor systems.

As of 2010, standard Intel and AMD processors were available with two to sixteen cores. Such
processors are prevalent in pizza box or blade servers, which normally contain as many as 32 cores
total. These low-cost, high-performance systems brought large system capabilities and characteristics
into the mainstream.

To achieve the best performance and utilization of a system, each core must be kept busy. This means
that 32 separate tasks must be running to take advantage of a 32-core blade server. If a blade chassis
contains ten of these 32-core blades, then the entire setup can process a minimum of 320 tasks
simultaneously. If the tasks are part of a single job, they must be coordinated.

Red Hat Enterprise Linux was developed to adapt well to hardware development trends and ensure
that businesses can fully benefit from them. Section 1.4, “Distributed Systems [BZ#646692] ” explores
the technologies that enable Red Hat Enterprise Linux's horizontal scalability in greater detail.

1.4. Distributed Systems [BZ#646692]
BZ#6466923

To fully realize horizontal scalability, Red Hat Enterprise Linux uses many components of distributed
computing. The technologies that make up distributed computing are divided into three layers:

Communication
Horizontal scalability requires many tasks to be performed simultaneously (i.e. in parallel); as
such, it is necessary for these tasks to have interprocess communication to coordinate their
work. Further, a platform with horizontal scalability should be able to share tasks across multiple
systems.

Storage
Storage via local disks is not sufficient in addressing the requirements of horizontal scalability.
Some form of distributed or shared storage is needed, one with a layer of abstraction that allows a
single storage volume's capacity to grow seamlessly with the addition of new storage hardware.

Management
russell: does this item relate to Section 1.4.3, “Management (Converged Networks)”?
The most important duty in distributed computing is the management layer. An effective distributed
system has the proper technologies to coordinate all its hardware components (i.e. computers and
appliances within the environment), efficiently managing communication, storage, and the usage
of shared resources.

3 https://bugzilla.redhat.com/bugzilla/show_bug.cgi?id=646692

https://bugzilla.redhat.com/bugzilla/show_bug.cgi?id=646692
https://bugzilla.redhat.com/bugzilla/show_bug.cgi?id=646692

Chapter 1. Overview [Russell Doty] Draft

4

The following sections describe the technologies within each layer in more detail.

1.4.1. Communication
are 10GbE and Infiniband also fully supported in RHEL6?
The communication layer ensures the transport of data, and is composed of two parts:

• Hardware

• Software

The simplest (and fastest) way for multiple systems to communicate is through shared memory. This
entails the usage of familiar memory read/write operations; shared memory has the high bandwidth,
low latency, and low overhead of ordinary memory read/write operations.

IMPORTANT! need verification for next para
However, with shared memory, each application assumes full responsibility for managing data sharing
and integrity. Shared memory is consolidated inside a single server; this server is typically used as a
communication hub for tasks numbering from a few dozen to several hundred.

Ethernet
The most common way of communicating between computers is over Ethernet. Today, Gigabit
Ethernet (GbE) is provided by default on systems, and most servers include 2-4 ports of Gigabit
Ethernet. GbE provides good bandwidth and latency. This is the foundation of most distributed
systems in use today. Even when systems include faster network hardware, it is still common to use
GbE for a dedicated management interface.

10GbE
Ten Gigabit Ethernet (10GbE) is rapidly growing in acceptance for high end and even mid-range
servers. 10GbE provides ten times the bandwidth of GbE. One of its major advantages is with modern
multi-core processors, where it restores the balance between communication and computing. You
can compare a single core system using GbE to an eight core system using 10GbE. Used in this way,
10GbE is especially valuable for maintaining overall system performance and avoiding having systems
become communication bottlenecked.

Unfortunately, 10GbE is expensive. While the cost of 10GbE NICs has come down, the price of
interconnect (especially fibre optics) remains high, and 10GbE network switches are extremely
expensive. We can expect these prices to decline over time, but 10GbE today is most heavily used in
server room backbones and performance-critical applications.

Infiniband
Infiniband offers even higher performance than 10GbE. In addition to TCP/IP and UDP network
connections used with Ethernet, Infiniband also supports shared memory communication. This allows
Infiniband to work between systems via remote direct memory access (RDMA).

The use of RDMA allows Infiniband to move data directly between systems without the overhead of
TCP/IP or socket connections. In turn, this reduces latency, which is critical to some applications.

Infiniband is most commonly used in High Performance Technical Computing (HPTC) applications
which require high bandwidth, low latency and low overhead. Many supercomputing applications
benefit from this, to the point that the best way to improve performance is by investing in Infiniband
rather than faster processors or more memory.

can we add some RH links to Infiniband here?

Draft [link] Storage

5

RoCCE
RDMA over Ethernet (RoCCE) implements Infiniband communications (including RDMA) over a
10GbE infrastructure. Given the cost improvements associated with the growing volume of 10GbE
products, it is reasonable to expect wider usage of RDMA and RoCCE in a wide range of systems and
applications.

remove this statement if Infiniband + 10GbE are confirmed to be fully supported as well; use a blanket
statement instead
Red Hat Enterprise Linux 6 fully supports RoCCE.

1.4.2. [link] Storage
add links to respective books (Storage Admin Guide, GFS2 Guide, and their subsequent places in this
doc
An environment that uses distributed computing uses multiple instances of shared storage. This could
mean either of two things:

IMPORTANT: Please check
• Multiple systems storing data in a single location

• A storage unit (e.g. a volume) composed of multiple storage appliances

The most familiar example of storage is the local disk drive mounted on a system. This is appropriate
for IT operations where all applications are hosted on one host, or even a few. However, as the
infrastructure scales to dozens or even hundreds of systems, managing as many local storage disks
becomes difficult and complicated.

removed description of local storage, since earlier we discussed how local storage was NOT
appropriate for distributed computing.
Distributed storage adds a layer to ease and automate storage hardware administration as the
business scales. Having multiple systems share a handful of storage instances reduces the number of
devices the administrator needs to manage.

Consolidating the storage capabilities of multiple storage appliances into one volume helps both users
and administrators. This type of distributed storage provides a layer of abstraction to storage pools:
users get to see a single unit of storage, which an administrator can easily grow by adding more
hardware. Some technologies that enable distributed storage also provide added benefits, such as
failover and multipathing.

NFS
Network File System (NFS) allows multiple servers or users to mount and use the same instance of
remote storage via TCP or UDP. NFS is commonly used to hold data shared by multiple applications.
It is also convenient for bulk storage of large amounts of data.

SAN
Storage Area Networks (SANs) use either Fibre Channel or iSCSI protocol to provide remote access
to storage. Fibre Channel infrastructure (i.e. Fibre Channel host bus adapters, switches, and storage
arrays) combines high performance, high bandwidth, and massive storage. SANs separate storage
from processing, providing considerable flexibility in system design.

The other major advantage of SANs is that they provide a management environment for performing
major storage hardware administrative tasks. These tasks include:

• Controlling access to storage

Chapter 1. Overview [Russell Doty] Draft

6

• Managing large amounts of data

• Provisioning systems

• Backing up and replicating data

• Taking snapshots

• Supporting system failover

• Ensuring data integrity

• Migrating data

GFS2
The Red Hat Global File System 2 (GFS2) file system provides several specialized capabilities. The
basic function of GFS2 is to provide a single filesystem, including concurrent read/write access,
shared across multiple members of a cluster. This means that each member of the cluster sees
exactly the same data “on disk” in the GFS2 filesystem.

GFS2 allows all systems to have concurrent access to the “disk”. To maintain data integrity, GFS2
uses a Distributed Lock Manager (DLM), which only allows one system to write to a specific location at
a time.

GFS2 is especially well-suited for failover applications that require high availability in storage.

1.4.3. Management (Converged Networks)
Communication over the network is normally done through ethernet, with storage traffic using a
dedicated fibre channel SAN environment. It is common to have a dedicated network or serial link for
system management, and perhaps even heartbeat4. As a result, a single server is typically on multiple
networks.

Providing multiple connections on each server is expensive, bulky, and complex to manage. This gave
rise to the need for a way to consolidate all connections into one; this need is addressed by Fibre
Channel over Ethernet (FCoE) and Internet SCSI (iSCSI).

FCoE
With FCoE, standard fibre channel commands and data packets are transported over a 10GbE
physical infrastructure via a specialized converged network card (CNA). Standard TCP/IP ethernet
traffic and fibre channel storage operations can be transported via the same link. FCoE uses one
physical network interface card (and one cable) for multiple logical network/storage connections.

FCoE offers the following advantages:

Reduced number of connections
compact servers = pizza box servers?
FCoE reduces the number of network connections to a server by half. You can still choose to
have multiple connections for performance or availability; however, a single connection provides
both storage and network connectivity. This is especially helpful for pizza box servers and blade
servers, since they both have very limited space for components.

4 Heartbeat is the exchange of messages between systems to ensure that each system is still functioning. If a system “loses
heartbeat” it is assumed to have failed and is shut down, with another system taking over for it.

Draft Management (Converged Networks)

7

Lower cost
Reduced number of connections immediately means reduced number of cables, switches, and
other networking equipment. Ethernet's history also features great economies of scale; the cost of
networks drops dramatically as the number of devices in the market goes from millions to billions,
as was seen in the decline in the price of 100Mb ethernet and gigabit ethernet devices.

Similarly, 10GbE will also become cheaper as more businesses adapt to its use. Also, as CNA
hardware is integrated into a single chip, widespread use will also increase its volume in the
market, which will result in a significant price drop over time.

iSCSI
Internet SCSI (iSCSI) is another type of converged network protocol; it is an alternative to FCoE. Like
fibre channel, iSCSI provides block-level storage over a network. However, iSCSI does not provide a
complete management environment. The main advantage of iSCSI over FCoE is that iSCSI provides
much of the capability and flexibility of fibre channel, but at a lower cost.

8

Draft Chapter 2. Draft

9

Red Hat Enterprise Linux 6
Performance Features [BZ#646693]
source: larry_shak_perf_summit2010_v3.odp
items herein should only present high-level description of features/specs; the main purpose of this
chapter is to present a summary that everyone can read in one place
BZ#6466931

2.1. System Overview
source: larry_shak_perf_summit2010_v3.odp, slide 4+
supported processors, memory
showcase link to http://www.redhat.com/rhel/compare/

2.2. [link] 64-Bit Support
from rdoty: RHEL 6 Scalability 23Aut10.odt
add links to respective sections
Red Hat Enterprise Linux 6 supports 64-bit processors; these processors can theoretically use up
to 18 exabytes of memory. As of general availability (GA), Red Hat Enterprise Linux 6 is tested and
certified to support up to 246GB of memory. This value can grow over time, as Red Hat Engineering
introduces more features that enable the platform to use larger blocks of memory.

The size of memory supported by Red Hat Enterprise Linux 6 is expected to grow over several minor
updates, as Red Hat continues to introduce and improve more features that enable the use of larger
memory blocks. Examples of such improvements (as of Red Hat Enterprise Linux 6 GA) are:

Huge pages and transparent huge pages
The implementation of huge pages in Red Hat Enterprise Linux 6 allows the system to manage
memory use efficiently across different memory workloads. With huge pages, an application can scale
well from processing gigabyes and even terabytes of memory.

Huge pages are difficult to manually create, manage, and use. To address this, Red Hat Enterprise
6 also features the use of transparent huge pages (THP). THP automatically manages much of the
complexities involved in the use of huge pages.

For more information on huge pages and THP, refer to Section 6.2, “Huge Pages and Transparent
Hugepages [BZ#639792] ”.

NUMA improvements
Many new systems now support Non-Uniform Memory Access (NUMA). NUMA was built to simplify
the design and creation of hardware for large systems; however, it also adds a layer of complexity to
application development. For one, NUMA implements both local and remote memory, where remote
memory can take several times longer to access than local memory. This feature (among many)
has many performance implications that impact how operating systems, applications, and system
configurations should be deployed.

1 https://bugzilla.redhat.com/bugzilla/show_bug.cgi?id=646693

https://bugzilla.redhat.com/bugzilla/show_bug.cgi?id=646693
http://www.redhat.com/rhel/compare/
https://bugzilla.redhat.com/bugzilla/show_bug.cgi?id=646693

Chapter 2. Red Hat Enterprise Linux 6 Performance Features [BZ#646693] Draft

10

Red Hat Enterprise Linux 6 is better optimized for NUMA use, thanks to added features that help
manage users and applications on NUMA systems. These features include CPU affinity and CPU
pinning, both of which allow a process (affinity) or application (pinning) to "bind" to a CPU or set of
CPUs.

For more information about NUMA support in Red Hat Enterprise Linux 6, refer to Section 4.2, “NUMA
and Multi-Core Support [BZ#639780] ” and Section 4.1, “CPU and NUMA Topology [BZ#641009] ”.

2.3. [link] Ticket Spinlocks
from rdoty: RHEL 6 Scalability 23Aut10.odt
add links to respective sections
A key part of any system design is ensuring that one process does not alter memory used by another
process. Uncontrolled data change in memory result in data corruption and system crashes. To
prevent this, the operating system allows a process to lock a piece of memory, perform an operation,
then unlock (i.e. "free") the memory.

One common implementation of memory locking is through spin locks, which allow a process to keep
checking to see if a lock is available and take the lock as soon as it becomes available. If there are
multiple processes competing for the same lock, the first one to request the lock after it has been freed
gets it. When all processes have the same access to memory, this approach is “fair” and works quite
well.

Unfortunately, on a NUMA system, not all processes have equal access to the locks. As such,
processes on the same NUMA node as the lock having an unfair advantage in obtaining the lock.
Processes on remote NUMA nodes experience lock starvation and degraded performance.

To address this, Red Hat Enterprise Linux implemented ticket spinlocks. This feature adds a
reservation queue mechanism to the lock, allowing all processes to take a lock in the order that they
requested it. This eliminates timing problems and unfair advantages in lock requests.

While a ticket spinlock has slightly more overhead than an ordinary spinlock, it scales better and
provides better performance on NUMA systems.

2.4. [link] Dynamic List Structure
from rdoty: RHEL 6 Scalability 23Aut10.odt
add links to respective sections
The operating system requires a set of information on each processor in the system. In Red Hat
Enterprise Linux 5, this set of information is allocated to a fixed-size array in memory. Information
on each individual processor is obtained by indexing into this array. This method was fast, easy, and
straightforward for systems that contained relatively few processors.

However, as the number of processors for a system grows, this method produces significant overhead.
Because the fixed-size array in memory is a single, shared resource, it can become a bottleneck as
more processors attempt to access it at the same time.

To address this, Red Hat Enterprise Linux 6 uses a dynamic list structure for processor information.
This allows the array used for processor information to be allocated dynamically: if there are only eight
processors in the system, then only eight entries are created in the list. If there are 2048 processors,
then 2048 are created as well.

A dynamic list structure allows a finer granularity of locking. For example, if information needs to be
updated at the same time for processors 6, 72, 183, 657, 931 and 1546, this can be done with greater

Draft [link] Tickless Kernel

11

parallelism. Situations like this obviously occur much more frequently on large, high-performance
systems than small systems.

2.5. [link] Tickless Kernel
from rdoty: RHEL 6 Scalability 23Aut10.odt
add links to respective sections
In previous versions of Red Hat Enterprise Linux, the kernel used a timer-based mechanism that
continuously produced a system interrupt. During each interrupt, the system polled, i.e. it checked to
see if there was work to be done.

Depending on the setting, this system interrupt or timer tick could occur several hundred or several
thousand times per second. This happened every second, regardless of the system's workload. On
a lightly loaded system, this impacts power consumption by preventing the processor from effectively
using sleep states. The system uses the least power when it is in a sleep state.

The most power-efficient way for a system to operate is to do work as quickly as possible, go into the
deepest sleep state possible and sleep as long as ppossible. To implement this, Red Hat Enterprise
Linux 6 uses a tickless kernel. With this, the interrupt timer has been removed from the idle loop,
transforming Red Hat Enterprise Linux 6 into a completely interrupt-driven environment.

The tickless kernel allows the system to go into deep sleep states during idle times, and respond
quickly when there is work to be done.

add link to more info on tickless kernels

2.6. [link] Control Groups
intro from rdoty: RHEL 6 Scalability 23Aut10.odt
add links to respective sections
Red Hat Enterprise Linux provides many useful options for performance tuning that. Large systems,
scaling to hundreds of processors, can be tuned to deliver superb performance. But tuning these
systems requires considerable expertise and a well-defined workload. When large systems were
expensive and few in number, it was acceptable to give them special treatment. Now that these
systems are mainstream, more effective tools are needed.

To further complicate things, more powerful systems are being used now for service consolidation.
Workloads that may have been running on four to eight older servers are now placed into a single
server. And as discussed earlier in Section 1.3.1, “Parallel Computing”, many mid-range systems
nowadays contain more cores than yesterday's high-performance machines.

Many modern applications are designed for parallel processing, using multiple threads or processes to
improve performance. However, few applications can make effective use of more than eight threads.
Thus, multiple applications typically need to be installed on a 32-CPU system to maximize capacity.

Consider the situation: small, inexpensive mainstream systems are now at par with the performance
of yesterday's expensive, high-performance machines. Cheaper high-performance machines gave
system architects the ability to consolidate more services to fewer machines.

However, some resources (e.g. I/O and network communications) are shared resources, and do not
grow as fast as CPU count. As such, a system housing multiple applications can experience degraded
overall performance when one application hogs too much of a single resource.

To address this, Red Hat Enterprise Linux 6 now supports control groups (cgroups). Cgroups allow
administrators to allocate resources to specific tasks as needed. This means, for example, being able

Chapter 2. Red Hat Enterprise Linux 6 Performance Features [BZ#646693] Draft

12

to allocate 80% of four CPUs, 60GB of memory, and 40% of disk I/O to a database application. A
web application running on the same system would be given two CPUs, 2GB of memory, and 50% of
available network bandwidth.

As a result, both database and web applications deliver good performance, as the system prevents
both from excessively consuming system resources. In addition, many aspects of cgroups are self-
tuning, allowing the system to respond accordingly to changes in workload.

A cgroup has two major components:

• A list of tasks assigned to the cgroup

• Resources allocated to those tasks

Tasks assigned to the cgroup run within the cgroup. Any child tasks they spawn also run within the
cgroup. This allows an administrator to manage an entire application as a single unit. An administrator
can also configure allocations for the following resources:

• CPUsets

• Memory

• I/O

• Network (bandwidth)

Within CPUsets, cgroups allow administrators to configure the number of CPUs, affinity for specific
CPUs or nodes 2, and the amount of CPU time used by a set of tasks. Using cgroups to configure
CPUsets is vital for ensuring good overall performance, preventing an application from consuming
excessive resources at the cost of other tasks while simultaneously ensuring that the application is not
starved for CPU time.

I/O bandwidth and network bandwidth are managed by other resource controllers. Again, the resource
controllers allow you to determine how much bandwidth the tasks in a cgroup can consume, and
ensure that the tasks in a cgroup neither consume excessive resources nor are starved for resources.

Cgroups allow the administrator to define and allocate, at a high level, the system resources that
various applications need (and will) consume. The system then automatically manages and balances
the various applications, delivering good predictable performance and optimizing the performance of
the overall system.

For more information on how to use control groups, refer to the Red Hat Enterprise Linux 6 Resource
Management Guide3.

most updated version of guide is available internally at http://documentation-stage.bne.redhat.com/
docs/en-US/Red_Hat_Enterprise_Linux/6/html/Resource_Management_Guide/index.html

2.7. [link] Storage and File System Improvements
from rdoty: RHEL 6 Scalability 23Aut10.odt
add links to respective sections
Red Hat Enterprise Linux 6 also features several improvements to storage and file system
management. Two of the most notable advances in this version are ext4 and XFS support. For more

2 A node is generally defined as a set of CPUs or cores within a socket.
3 http://docs.redhat.com/docs/en-US/Red_Hat_Enterprise_Linux/6/html/Resource_Management_Guide/index.html

http://docs.redhat.com/docs/en-US/Red_Hat_Enterprise_Linux/6/html/Resource_Management_Guide/index.html
http://docs.redhat.com/docs/en-US/Red_Hat_Enterprise_Linux/6/html/Resource_Management_Guide/index.html
http://documentation-stage.bne.redhat.com/docs/en-US/Red_Hat_Enterprise_Linux/6/html/Resource_Management_Guide/index.html
http://documentation-stage.bne.redhat.com/docs/en-US/Red_Hat_Enterprise_Linux/6/html/Resource_Management_Guide/index.html
http://docs.redhat.com/docs/en-US/Red_Hat_Enterprise_Linux/6/html/Resource_Management_Guide/index.html

Draft [link] Storage and File System Improvements

13

comprehensive coverage of performance improvements relating to storage and file systems, refer to
Chapter 7, Storage [Barry Marson] .

Ext4
Ext4 is the default file system for Red Hat Enterprise Linux 6. It is the fourth generation version of the
EXT file system family, supporting a maximum file system size of 1 exabyte, and single file maximum
size of 16TB. Other than a much larger storage capacity, ext4 also includes several new features,
such as:

• Extent-based metadata

• Delayed allocation

• Journal check-summing

For more information about the ext4 file system, refer to Section 7.1, “The Ext4 File System
[BZ#639796] ”.

XFS
XFS is a robust and mature 64-bit journaling file system that supports very large files and file systems
on a single host. This file system was originally developed by SGI, and has a long history of running
on extremely large servers and storage arrays. XFS features include:

• Delayed allocation

• Dynamically-allocated inodes

• B-tree indexing for scalability of free space management

• Online defragmentation and file system growing

• Sophisticated metadata read-ahead algorithms

While XFS scales to exabytes, the maximum XFS file system size supported by Red Hat is 100TB. For
more information about XFS, refer to Section 7.2, “The XFS File System [BZ#640877] ”.

Large Boot Drives
Red Hat Enterprise Linux 6 also supports Unified Extensible Firmware Interface (UEFI), which can
be used to replace BIOS (still supported). The BIOS was originally created for the IBM PC; while
BIOS has evolved considerably to adapt to modern hardware, UEFI is designed to support new and
emerging hardware. Systems with UEFI running Red Hat Enterprise Linux 6 allow the use of GPT and
2.2TB (and larger) partitions for both boot partition and data partition.

link to more info for UEFI?

14

Draft Chapter 3. Draft

15

Monitoring and Analyzing System
Performance
source: larry_shak_perf_summit2010_v3.odp, slide 36+
introduction

3.1. The /proc File System
short intro: add reference to Deployment Guide and kernel-docs(?) for more info

3.2. Gnome and KDE System Monitors
short intro: then add reference to tool's built-in Help system

3.3. Built-in Command-line Monitoring Tools
advantages: can run out of runlevel 5, etc
CLI tools that can monitor CPU, Memory, and process
Enumerate and intro:
top
vmstat
ps
sar

3.4. Application Profilers
briefly discuss profiling
useful for developers monitoring running processes
"we don't document them here; read up on each tool's respective docs

3.4.1. SystemTap
introduce
advantages/disadvantages/suitability
mention Eclipse Callgraph

3.4.2. OProfile
introduce
advantages/disadvantages/suitability
mention Eclipse OProfile plug-in

3.4.3. Valgrind
introduce
advantages/disadvantages/suitability
mention Eclipse Valgrind plug-in

3.5. Red Hat Enterprise MRG
high-level; do not go into detail, as this product's components are documented heavily elsewhere

Chapter 3. Monitoring and Analyzing System Performance Draft

16

list lbrindle's documentation on MRG
http://www.redhat.com/mrg/
concentrate more on the RHEL/node aspect of an IT infrastructure running MRG; what components
are installed on a RHEL machine therein? am i asking the right question here? :-/

http://www.redhat.com/mrg/

Draft Chapter 4. Draft

17

CPU [Jirka Hladky]
SME is Jirka Hladky1 (soon to be hladky.jiri@gmail.com2

present a more detailed description of RHEL6 performance enhancements relating to CPU

4.1. CPU and NUMA Topology [BZ#641009]
source: as noted by JHladky
https://bugzilla.redhat.com/show_bug.cgi?id=641009

4.2. NUMA and Multi-Core Support [BZ#639780]
source: larry_shak_perf_summit2010_v3.odp, slide 8+, 100+
per-numa node resources (slide 17+)
...BUT MORE DETAILED.
https://bugzilla.redhat.com/show_bug.cgi?id=639780

4.3. The CPU Scheduler [BZ#639781]
source: larry_shak_perf_summit2010_v3.odp, slide 98+
https://bugzilla.redhat.com/show_bug.cgi?id=639781

4.4. Tuned IRQs [BZ#639782]
source: larry_shak_perf_summit2010_v3.odp, slide 47+
https://bugzilla.redhat.com/show_bug.cgi?id=639782

4.5. Understanding CPU Statistics [BZ#639783]
recommended CPU monitoring tools
when is CPU performance crucial? i.e. CPU needs to be optimized for what kinds of services/servers?
tips for reading and understanding CPU stats
caveats and general tips; "when you see this, that means..."
https://bugzilla.redhat.com/show_bug.cgi?id=639783

4.5.1. Analyzing CPU Cycle Statistics With OProfile
source: larry_shak_perf_summit2010_v3.odp, slide 60+

4.6. Tuning CPU Performance [BZ#639784]
tools? something with an interface, perhaps?
tunable setting, values, effects, and short description
https://bugzilla.redhat.com/show_bug.cgi?id=639784

1 mailto:jhladky@redhat.com
2 mailto:hladky.jiri@gmail.com

mailto:jhladky@redhat.com
mailto:hladky.jiri@gmail.com
https://bugzilla.redhat.com/show_bug.cgi?id=641009
https://bugzilla.redhat.com/show_bug.cgi?id=639780
https://bugzilla.redhat.com/show_bug.cgi?id=639781
https://bugzilla.redhat.com/show_bug.cgi?id=639782
https://bugzilla.redhat.com/show_bug.cgi?id=639783
https://bugzilla.redhat.com/show_bug.cgi?id=639784
mailto:jhladky@redhat.com
mailto:hladky.jiri@gmail.com

18

Draft Chapter 5. Draft

19

Input/Output [Sanjay Rao]
SME is Sanjay Rao1

have SME update content from http://documentation-stage.bne.redhat.com/docs/en-US/
Red_Hat_Enterprise_Linux/5/html/IO_Tuning_Guide/index.html for RHEL6, then add here
content from IO Tuning Guide for intro
are there any new defaults?
START: from old IO Tuning Guide
The I/O subsystem is a series of processes responsible for moving blocks of data between disk and
memory. In general, each task performed by either kernel or user consists of a utility performing any of
the following (or combination thereof):

• Reading a block of data from disk, moving it to memory

• Writing a new block of data from memory to disk

Read or write requests are transformed into block device requests that go into a queue. The I/O
subsystem then batches similar requests that come within a specific time window and processes them
all at once. Block device requests are batched together (into an “extended block device request”)
when they meet the following criteria:

• They are the same type of operation (read or write).

• They belong to the same block device (i.e. Read from the same block device, or are written to the
same block device.

• Each block device has a set maximum number of sectors allowed per request. As such, the
extended block device request should not exceed this limit in order for the merge to occur.

• The block device requests to be merged immediately follow or precede each other.

Read requests are crucial to system performance because a process cannot commence unless its
read request is serviced. This latency directly affects a user's perception of how fast a process takes to
finish.

Write requests, on the other hand, are serviced by batch by pdflush kernel threads. Since write
requests do not block processes (unlike read requests), they are usually given less priority than read
requests.

Read/Write requests can be either sequential or random. The speed of sequential requests is most
directly affected by the transfer speed of a disk drive. Random requests, on the other hand, are most
directly affected by disk drive seek time.

END: from old IO Tuning Guide
Over time, the amount of data handled by most systems has grown exponentially. With this growth,
the speed at which the I/O subsystem reads and writes data becomes more critical. I/O is by far the
most time-consuming process in the system, and therefore the most expensive piece of the enterprise
platform puzzle. As such, optimizing I/O is crucial to performance tuning.

I/O optimization starts with understanding the I/O needs of applications hosted on the system. This is
followed by thoughtful analysis and configuration of the system's hardware, file system, and operating
system.

1 mailto:srao@redhat.com

mailto:srao@redhat.com
http://documentation-stage.bne.redhat.com/docs/en-US/Red_Hat_Enterprise_Linux/5/html/IO_Tuning_Guide/index.html
http://documentation-stage.bne.redhat.com/docs/en-US/Red_Hat_Enterprise_Linux/5/html/IO_Tuning_Guide/index.html
mailto:srao@redhat.com

Chapter 5. Input/Output [Sanjay Rao] Draft

20

5.1. High-Level I/O Configuration [BZ#639786]
https://bugzilla.redhat.com/bugzilla/show_bug.cgi?id=639786
Whenever possible, performance optimization should start at the hardware planning level; i.e.
choosing the right hardware for the system. Most applications work quite well with ext3; however,
whenever there are critical performance levels (e.g. minimum transaction completion time and
recovery time as stated in a service level agreement), you will need to be more conscientious in
selecting a file system for your needs. Once both hardware and file system are in place, you will need
to tune both operating system and the application in question accordingly.

Always keep in mind that the objective is to optimize the performance of a system for a specific
application. With I/O tuning, focus on the average size of I/O transactions to be performed by an
application. Study the number of I/O transactions and total throughput for all types of I/O. Studying this
data will confirm if a configuration delivers the expected performance; in many cases, sub-optimal I/O
configuration can bottleneck the overall performance of a system.

Hardware
Every I/O sub-system has limits on how much data it can process per second. If your system hosts
an application that needs to perform many light (i.e. 2k-8k) I/O transactions, it is recommended that
you choose storage subsystems that have a fair amount of controller cache, high-speed disks (i.e.
15Kbps or higher, typically SAS or solid-state disks), and low-latency connection to storage. Examples
of systems that require such hardware are transaction processing systems.

While these hardware recommendations can improve I/O transaction rates, they come at a steep cost.
As such, it is imperative that you identify which hardware choices can provide the best performance
gains per dollar. High-speed disks are a primary consideration; normally, the cost of such a disk is
directly proportional to its speed. Other specific hardware recommendations include:

Controller cache
The cache on the storage controller. The controller cache is similar physical memory on a server,
and is one of the most expensive pieces in the storage-controller infrastructure. In most cases
the controller cache is battery-backed; in such cases, once the data is handed off to the controller
cache the server considers the I/O transaction as completed.

The amount of cache on the controller ranges from 1G to 64G (or higher), depending on the
storage vendor. The most important factors to consider when choosing controller cache hardware
are:

• The amount of cache and should be the determining factor in deciding which hardware to
choose.

• The rate at which the controllers can process I/O transactions

Low-latency connection
The most common types of external storage are based on fibre-channel, ethernet, or PCI direct-
connect. The rate at which I/O is processed depends on the connectors used. For example,
network-based storage can have significant latency overhead as each packet needs to be
processed. However, there are special network cards that offload the network layer processing
from the operating system to the hardware; this, in turn, reduces latency.

If the system is expected to process larger I/O blocks (typically in data processing environments), it is
recommended that you stripe across controllers to take advantage of collective bandwidth. In typical
data processing environments, storage tends to be quite large (i.e. 1TB or higher), so low latency is
the primary consideration, followed by disk speed. As most similar environments are read-based, the
controller cache can be scaled back to the lower end.

https://bugzilla.redhat.com/bugzilla/show_bug.cgi?id=639786

Draft File System

21

File System
Red Hat Enterprise Linux 6 supports the ext3, ext4, and XFS file systems. Ext4 is the default file
system of Red Hat Enterprise Linux 6, and is suitable for most types of workstations and servers. The
ext4 file system is extent-based (as opposed to block-based), can support files/file systems up to 16
terabytes in size, and allows an unlimited number of sub-directories.

The XFS file system is a high-performance file system designed to support extremely large file
systems, i.e. up to 16 exabytes. It can support file sizes up to 8 exabytes in size, and has a large
directory structure limit. XFS is also suitable for systems hosting applications that handle large files
and require smooth data transfers.

Note that both ext4 and XFS feature delayed allocation, which speeds up I/O at the expense of actual,
real-time writes. With delayed allocation, block allocation is delayed until the data is immediately going
to be written to disk; as such, application writes to the file system are not guaranteed to be on-disk
unless the application issues an fsync() call afterwards.

For more information about XFS, ext4, and other supported file systems in Red Hat Enterprise Linux 6,
refer to the Storage Administration Guide at:

http://docs.redhat.com/docs/en-US/Red_Hat_Enterprise_Linux/6/html/Storage_Administration_Guide/
index.html

Operating System
Tuning Red Hat Enterprise Linux 6's I/O can be an ongoing process if the application in question
evolves over its lifetime. There are many tools that can be used to do low-level I/O subsystem
profiling; the best example of this is iozone. Refer to Section 5.2, “IOZone Benchmarks [BZ#639788]
” for more information on this tool.

5.2. IOZone Benchmarks [BZ#639788]
source: Woodman,Shakshober_Performance Analys.pdf p.70+
http://www.iozone.org
https://bugzilla.redhat.com/show_bug.cgi?id=639788
The iozone utility is an award-winning open-source tool developed by community developers William
Norcott and Don Capps. It profiles a system's overall I/O performance by performing a variety of I/O
transactions, such as read, write, re-read, re-write, and the like.

sanjay: for now i'm assuming iozone is not included (i.e. unsupported) in RHEL6; added admonition
below.

Important

At present, iozone is not included (and therefore, currently unsupported) in Red Hat
Enterprise Linux 6. To download the iozone source, package, or documentation, refer to http://
www.iozone.org.

To perform a simple iozone I/O test, run:

iozone -a

This will run iozone in full-automatic mode. Doing so will profile how the system's I/O fares when
handling file of different sizes. For more information about iozone and its output, refer to man
iozone.

http://docs.redhat.com/docs/en-US/Red_Hat_Enterprise_Linux/6/html/Storage_Administration_Guide/index.html
http://docs.redhat.com/docs/en-US/Red_Hat_Enterprise_Linux/6/html/Storage_Administration_Guide/index.html
http://www.iozone.org
https://bugzilla.redhat.com/show_bug.cgi?id=639788
http://www.iozone.org
http://www.iozone.org

Chapter 5. Input/Output [Sanjay Rao] Draft

22

The following graph (Figure 5.1, “RHEL5 in-cache iozone results for ext3, GFS1, and NFS”) compares
the iozone test results for file sizes between 1MB to 4MB and transfer sizes between 1k and 1M
for an in-cache-run in Red Hat Enterprise Linux 5. These results are from iozone runs for three file
system types: ext3, GFS1, and NFS.

Figure 5.1. RHEL5 in-cache iozone results for ext3, GFS1, and NFS

The Figure 5.2, “RHEL5 direct I/O in-cache iozone results for ext3, GFS1, and NFS” graph displays
the results for the same test performed direct I/O enabled (for more information about direct I/O, refer
to Section 5.3, “Direct I/O [BZ#639789] ”).

Figure 5.2. RHEL5 direct I/O in-cache iozone results for ext3, GFS1, and NFS

This type of test data can help you profile accurately how the I/O sub-system performs under different
conditions, allowing you to make better decisions when configuring I/O.

Draft Direct I/O[BZ#639789]

23

5.3. Direct I/O [BZ#639789]
source: larry_shak_perf_summit2010_v3.odp, slide 138+
http://www.solarisinternals.com/wiki/index.php/Direct_I/O
https://bugzilla.redhat.com/show_bug.cgi?id=639789
Simply put, direct I/O is a mechanism that allows file systems to perform I/O without going through the
file cache. Direct I/O is only used by applications that manage their own caches. Many databases that
cache data support direct I/O. In most cases, such databases use direct I/O by default.

Some databases support direct I/O, but do not use it by default. When using such databases, it is
recommended that you enable direct I/O and configure the database to use it. This will prevent the
database from caching data twice (i.e. in the file cache and database cache).

Enabling direct I/O and configuring databases to support it is especially important in Red Hat
Enterprise Linux because all free memory outside the database cache will be used for file caching.
This can lead to a lot of page reclamation. Consider the following graph:

Figure 5.3. Database run without direct I/O

Figure 5.3, “Database run without direct I/O” displays results of an Oracle database I/O test. The blue
bars represent the I/O of the system (in terms of transactions per minute) with the database operating
in setall mode; this mode enables both direct I/O and asynchronous I/O. The orange bars represent
system I/O with direct I/O disabled and asynchronous I/O enabled.

The results in Figure 5.3, “Database run without direct I/O” show that as the number or size of I/
O transactions increase, the performance impact of not using direct I/O also increases. This is
represented by the yellow line, which shows a significant advantage in I/O performance with direct I/O
enabled starting at 40U.

http://www.solarisinternals.com/wiki/index.php/Direct_I/O
https://bugzilla.redhat.com/show_bug.cgi?id=639789

Chapter 5. Input/Output [Sanjay Rao] Draft

24

Note

The data collected for Figure 5.3, “Database run without direct I/O” was for a single instance. The
performance impact of disabling direct I/O can be even greater with more applications running on
the same system, as the file cache will be under more pressure then.

5.4. Asynchronous I/O to File Systems [BZ#639790]
source: larry_shak_perf_summit2010_v3.odp, slide 138+
https://bugzilla.redhat.com/show_bug.cgi?id=639790
related: http://davmac.org/davpage/linux/async-io.html
When the system is operating in synchronous mode, an application waits for an I/O transaction to
complete before issuing another. With asynchronous I/O, an application no longer needs to wait for
an I/O transaction to complete before being able to issue another. This allows an application to issue
multiple I/Os to a device and continue with its operation.

Many applications support asynchronous I/O to file systems. Whenever possible, configure your
applications to use asynchronous I/O as doing so reduces the I/O waits or stalls commonly seen when
running I/O-intensive applications in synchronous mode. Consider the followign graph:

Figure 5.4. Database run with and without asynchronous I/O

Figure 5.4, “Database run with and without asynchronous I/O” displays results of an Oracle database
I/O test. The blue bars represent the I/O of the system (in terms of transactions per minute) with the
database operating in setall mode (i.e. both direct I/O and asynchronous I/O enabled). The orange
bars represent system I/O with direct I/O enabled in synchronous mode.

https://bugzilla.redhat.com/show_bug.cgi?id=639790
http://davmac.org/davpage/linux/async-io.html

Draft I/O Merging[BZ#640872]

25

Like direct I/O, the performance impact of not using asynchronous I/O increases as the volume of I/
O also increases. This is represented by the yellow line, which shows a significant advantage in I/O
performance with direct I/O enabled starting at 40U.

5.5. I/O Merging [BZ#640872]
source: mentioned by Sanjay during chat 2010-10-06_sanjayrao-io_subsystem-intro.html
https://bugzilla.redhat.com/show_bug.cgi?id=640872
Most storage systems can only process a limited number of I/O transactions per second. This puts a
limit on the total throughput of each system, depending of the size of each I/O transaction.

For example, a system with a storage device that can process 100 I/O transactions per second has a
total throughput of 200 kb/s for a 2KB transfer size. If the transfer size were to be doubled to 4KB, the
total throughput of the storage sub-system would also double to 400 kb/s.

This increase is accomplished via I/O merging. To do this, the I/O subsystem allows a storage device
to merge contiguous I/O streams into larger I/O transactions, thereby resulting in fewer (albeit larger-
sized) I/O transactions.

Sanjay: i could not find any other resources/links to help me understand I/O merging more. can you
please provide these? i feel
There are three ways to enable I/O merging:

Block device read-ahead settings
Given a heuristic trigger, most block devices can predict which blocks will need to be fetched well
before they are due for reading. The read-ahead setting allows you to configure how much data (in
byte sectors) the block device can fetch and, subsequently, merge during each I/O transfer.

To configure this setting, run the following command:

blockdev --setra N

Here, N is the required read-ahead size in 512-byte sectors. For more information about
blockdev, refer to its man page.

Application read-ahead settings
Most databases (and other I/O-intensive applications) allow you to configure transfer size for
reads. The parameters for configuring read-ahead varies with each database.

I/O schedulers
I/O schedulers like cfq and deadline perform I/O merging to reduce the number of I/O
transactions. For more information on I/O elevators, refer to Section 5.7, “Schedulers [BZ#639785]
”.

5.6. I/O Alignment [BZ#640874]
https://bugzilla.redhat.com/bugzilla/show_bug.cgi?id=640874
Most storage devices and controllers nowadays have a sector size of 4K, as opposed to the traditional
512 bytes. On controllers that support RAID, the 4K sector size allows the controller to align with
the RAID chunk/stripe size, which in turn improves performance. In addition, LVM automatically also
manages I/O alignment.

However, if a device is partitioned using fdisk or parted, you may need to manually align sector
sizes for older platforms (e.g. Red Hat Enterprise Linux 5). The track size on older platforms was 63
sectors, with which 512-byte sectors can align easily; however, 4K-sector devices on 63-sector track
sizes are highly prone to mis-alignment.

https://bugzilla.redhat.com/show_bug.cgi?id=640872
https://bugzilla.redhat.com/bugzilla/show_bug.cgi?id=640874

Chapter 5. Input/Output [Sanjay Rao] Draft

26

Mis-alignment can cause a significant performance penalty for sequential I/O with transfer sizes of 8K
and above. To avoid this, choose a 56-sector track during partitioning to align tracks with 4K devices.
Consider the following graph:

Figure 5.5. Sequential and random writes test for I/O alignment (4K device)

Figure 5.5, “Sequential and random writes test for I/O alignment (4K device)” compares the
performance of sequential and random writes on file systems with no partitions (NP, blue bar),
partitions aligned to 56 tracks (P56, orange bar), and partitions aligned to 63 tracks (P63, yellow bar).
The results show that the 56-track file system outperforms the 63-track file system on transfer sizes
8K, 16K, 32K and 64K during sequential writes.

For more information about I/O alignment, refer to the Storage I/O Alignment and Size chapter of the
Red Hat Enterprise Linux 6 Storage Administration Guide.

5.7. Schedulers [BZ#639785]
source: mentioned by Sanjay during chat 2010-10-06_sanjayrao-io_subsystem-intro.html
https://bugzilla.redhat.com/show_bug.cgi?id=639785
placeholder
Generally, the I/O subsystem does not operate in a true FIFO manner. It processes queued read/ write
requests depending on selected scheduler algorithms.

Scheduler algorithms are sometimes called "elevators" because they operate in the same manner that
real-life building elevators do. To be efficient, a real-life elevator does not travel to each floor in the

https://bugzilla.redhat.com/show_bug.cgi?id=639785

Draft Selecting an I/O Scheduler

27

order they were requested. Rather, it moves in one direction at a time, fulfilling as many requests as it
can before reaching the top/lowest floor, then moves again in the opposite direction.

Similarly, scheduler algorithms schedule disk I/O requests according to their target logical block
address on disk. The most efficient way to access the disk is to keep the access pattern as sequential
(i.e. moving in one direction) as possible. In this case, "sequential" means "by increasing logical block
address number".

As such, a disk I/O request targeted for disk block 100 will normally be schedule before a disk I/O
request targeted for disk block 200. This is typically the case, even if the disk I/O request for disk block
200 was issued first.

However, the scheduler/elevator also takes into consideration the need for all disk I/O requests
(except for read-ahead requests) to be processed at some point. This means that the I/O subsystem
will not keep putting off a disk I/O request for disk block 200 simply because other requests with lower
disk address numbers keep appearing. The conditions which dictate the latency of unconditional disk I/
O scheduling is also set by the selected elevator (along with any specified request queue parameters).

5.7.1. Selecting an I/O Scheduler
To specify an I/O scheduler at boot-time, add the following directive to the kernel line in /boot/
grub/grub.conf:

elevator=scheduler-type

Replace scheduler-type with noop, deadline, as, or cfq. Each scheduler (except noop) has its
own set of tunable parameters; refer to their respective sections for more information.

You can also switch I/O schedulers on the fly for specific devices. To do so, run:

echo scheduler-type > /sys/block/dev/queue/scheduler

Replace dev with the target device name (e.g. hda, sda).

For more information about selecting an I/O scheduler, refer to file:///usr/share/doc/
kernel-version/Documentation/block/switching-sched.txt.

5.7.2. Completely Fair Queueing
discuss $TITLE
The completely fair queueing (cfq) scheduler aims to equally divide all available I/O bandwidth
among all processes issuing I/O requests. It is best suited for most medium and large multi-processor
systems, as well as systems which required balanced I/O performance over several I/O controllers and
LUNs. As such, cfq is the default scheduler for Red Hat Enterprise Linux 6.

The cfq scheduler maintains a maximum of 64 internal request queues; each process running on the
system is assigned is assigned to any of these queues. Each time a process submits a synchronous I/
O request, it is moved to the assigned internal queue. Asynchronous requests from all processes are
batched together according to their process's I/O priority; for example, all asynchronous requests from
processes with a scheduling priority of "idle" (3) are put into one queue.

During each cycle, requests are moved from each non-empty internal request queue into one dispatch
queue. in a round-robin fashion. Once in the dispatch queue, requests are ordered to minimize disk
seeks and serviced accordingly.

Example 5.1. How the cfq scheduler works
To illustrate: let's say that the 64 internal queues contain 10 I/O request seach, and quantum is
set to 8. In the first cycle, the cfq scheduler will take one request from each of the first 8 internal

Chapter 5. Input/Output [Sanjay Rao] Draft

28

queues. Those 8 requests are moved to the dispatch queue. In the next cycle (given that there are
8 free slots in the dispatch queue) the cfq scheduler will take one request from each of the next
batches of 8 internal queues.

The tunable variables for the cfq scheduler are set in files found under /sys/block/<device>/
queue/iosched/. These files are:

quantum

Total number of requests to be moved from internal queues to the dispatch queue in each cycle.

queued

Maximum number of requests allowed per internal queue.

Prioritizing I/O Bandwidth for Specific Processes
When the cfq scheduler is used, you can adjust the I/O throughput for a specific process using
ionice. ionice allows you to assign any of the following scheduling classes to a program:

• idle (lowest priority)

• best effort (default priority)

• real-time (highest priority)

For more information about ionice, scheduling classes, and scheduling priorities, refer to man
ionice.

5.7.3. Anticipatory Scheduler
An application that issues a read request for a specific disk block may also issue a request for the next
disk block after a certain think time. However, in most cases, by the time the request for the next disk
block is issued, the disk head may have already moved further past. This results in additional latency
for the application.

To address this, the anticipatory (as) scheduler enforces a delay after servicing an I/O requests before
moving to the next request. This gives an application a window within which to submit another I/
O request. If the next I/O request was for the next disk block (as anticipated), the anticipatory
scheduler helps ensure that it is serviced before the disk head has a chance to move past the targeted
disk block.

Read and write requests are dispatched and serviced in batches. The anticipatory scheduler
alternates between dispatching/servicing batches of read and write requests. The frequency,
amount of time and priority given to each batch type depends on the settings configured in /sys/
block/<device>/queue/iosched/.

The cost of using the anticipatory scheduler is the overall latency caused by numerous enforced
delays. You should consider this trade-off when assessing the suitability of the anticipatory
scheduler for your system. In most small systems that use applications with many dependent reads,
the improvement in throughput from using the anticipatory scheduler significantly outweighs the
overall latency.

The anticipatory scheduler tends to be recommended for servers running data processing
applications that are not regularly interrupted by external requests. Examples of these are servers
dedicated to compiling software. For the most part, the anticipatory scheduler performs well on
most personal workstations, but very poorly for server-type workloads.

Draft deadline Scheduler

29

The tunable variables for the anticipatory scheduler are set in files found under /sys/
block/<device>/queue/iosched/. These files are:

read_expire

The amount of time (in milliseconds) before each read I/O request expires. Once a read or write
request expires, it is serviced immediately, regardless of its targeted block device. This tuning
option is similar to the read_expire option of the deadline scheduler (for more information,
refer to Section 5.7.4, “deadline Scheduler”.

Read requests are generally more important than write requests; as such, it is advisable to issue a
faster expiration time to read_expire. In most cases, this is half of write_expire.

For example, if write_expire is set at 248, it is advisable to set read_expire to 124.

write_expire

The amount of time (in milliseconds) before each write I/O request expires.

read_batch_expire

The amount of time (in milliseconds) that the I/O subsystem should spend servicing a
batch of read requests before servicing pending write batches (if there are any). . Also,
read_batch_expire is typically set as a multiple of read_expire.

write_batch_expire

The amount of time (in milliseconds) that the I/O subsystem should spend servicing a batch of
write requests before servicing pending write batches.

antic_expire

The amount of time (in milliseconds) to wait for an application to issue another I/O request before
moving on to a new request.

5.7.4. deadline Scheduler
The deadline scheduler assigns an expiration time or “deadline” to each block device request. Once
a request reaches its expiration time, it is serviced immediately, regardless of its targeted block device.
To maintain efficiency, any other similar requests targeted at nearby locations on disk will also be
serviced.

The main objective of the deadline scheduler is to guarantee a response time for each request.
This lessens the likelihood of a request getting moved to the tail end of the request queue because its
location on disk is too far off.

In some cases, however, this comes at the cost of disk efficiency. For example, a large number of read
requests targeted at locations on disk far apart from each other can result in excess read latency.

The deadline scheduler aims to keep latency low, which is ideal for real-time workloads. On servers
that receive numerous small requests, the deadline scheduler can help by reducing resource
management overhead. This is achieved by ensuring that an application has a relatively low number of
outstanding requests at any one time.

The tunable variables for the deadline scheduler are set in files found under /sys/
block/<device>/queue/iosched/. These files are:

read_expire

The amount of time (in milliseconds) before each read I/O request expires. Since read requests
are generally more important than write requests, this is the primary tunable option for the
deadline scheduler.

Chapter 5. Input/Output [Sanjay Rao] Draft

30

write_expire

The amount of time (in milliseconds) before each write I/O request expires.

fifo_batch

When a request expires, it is moved to a "dispatch" queue for immediate servicing. These expired
requests are moved by batch. fifo_batch specifies how many requests are included in each
batch.

writes_starved

Determines the priority of reads over writes. writes_starved specifies how many read requests
should be moved to the dispatch queue before any write requests are moved.

front_merges

In some instances, a request that enters the deadline scheduler may be contiguous to another
request in that queue. When this occurs, the new request is normally merged to the back of the
queue.

front_merges controls whether such requests should be merged to the front of the queue
instead. To enable this, set front_merges to 1. front_merges is disabled by default (i.e. set to
0).

5.7.5. Noop Scheduler
Among all I/O scheduler types, the noop scheduler is the simplest. While it still implements request
merging, it moves all requests into a simple unordered queue, where they are processed by the disk in
a simple FIFO order. The noop scheduler has no tunable options

The noop scheduler is suitable for devices where there are no performance penalties for seeks.
Examples of such devices are ones that use flash memory. noop can also be suitable on some
system setups where I/O performance is optimized at the block device level, with either an intelligent
host bus adapter, or a controller attached externally.

Draft Chapter 6. Draft

31

Memory [Larry Woodman]
source: larry_shak_perf_summit2010_v3.odp, slide 114+
Larry Woodman1

The assumption is that users already know about memory, we just need to document RHEL-specific
memory management features

6.1. Huge Translation Lookaside Buffers [BZ#639791]
source: larry_shak_perf_summit2010_v3.odp, slide 104+
https://bugzilla.redhat.com/show_bug.cgi?id=639791

6.2. Huge Pages and Transparent Hugepages [BZ#639792]
source: larry_shak_perf_summit2010_v3.odp, slide 119+
https://bugzilla.redhat.com/show_bug.cgi?id=639792
intro from rdoty: RHEL 6 Scalability 23Aut10.odt
Memory is managed in terms of memory blocks known as pages. Traditionally, a page is 4096 bytes;
this makes 1MB of memory equal to 256 pages, 1GB equal to 256,000 pages, and so on. CPUs have
a built-in memory management unit that contains a list of these pages, with each page referenced
through a page table entry.

Hardware and memory management algorithms that work well with thousands of pages (i.e.
megabytes of memory) have difficulty performing well with millions (or even billions) of pages. This is
especially critical since the hardware memory management unit in modern processors only support
hundreds or thousands of page table entries – when an application needs to use more memory pages,
the system falls back to slower, software-based memory management.

There are two ways to enable the system to manage large amounts of memory:

• Increase the number of page table entries in the hardware memory management unit

• Increase the page size

The first method is expensive and could result in other performance issues. Red Hat Enterprise Linux
6 implemented the second method via the use of huge pages.

can we elaborate on what "performance issues" can arise? link?
Simply put, huge pages are blocks of memory that come in 2MB and 1GB sizes. The page tables used
by the 2MB pages are suitable for managing multiple gigabytes of memory, whereas the page tables
of 1GB pages are best for scaling to terabytes of memory.

Huge pages must be assigned at boot time. They are also difficult to manage manually, and often
require significant changes to code in order to be used effectively. As such, Red Hat Enterprise
Linux 6 also implemented the use of transparent huge pages (THP). THP is an abstraction layer that
automates most aspects of creating, managing, and using huge pages.

THP hides much of the complexity in using huge pages from the system administrators and
developers. As the goal of THP is improving performance, its developers (both from the community
and Red Hat) have tested and optimized THP across a wide range of systems, configurations,
applications, and workloads. This allows the default settings of THP to improve the performance of
most system configurations.

1 mailto:lwoodman@redhat.com

mailto:lwoodman@redhat.com
https://bugzilla.redhat.com/show_bug.cgi?id=639791
https://bugzilla.redhat.com/show_bug.cgi?id=639792
mailto:lwoodman@redhat.com

Chapter 6. Memory [Larry Woodman] Draft

32

6.3. Using Valgrind to Profile Memory Usage [BZ#639793]
suitability for memory profiling
one or two use cases
references to built-in documentation
https://bugzilla.redhat.com/show_bug.cgi?id=639793

6.4. Capacity Tuning [BZ#639794]
source: larry_shak_perf_summit2010_v3.odp, slide 78+
https://bugzilla.redhat.com/show_bug.cgi?id=639794

6.5. Tuning Virtual Memory [BZ#639795]
source: larry_shak_perf_summit2010_v3.odp, slide 87+
swappiness, 87
min_free_kbytes, 88
dirty_ratio
dirty_background_ratio
pagecache
slabcache
https://bugzilla.redhat.com/show_bug.cgi?id=639795

https://bugzilla.redhat.com/show_bug.cgi?id=639793
https://bugzilla.redhat.com/show_bug.cgi?id=639794
https://bugzilla.redhat.com/show_bug.cgi?id=639795

Draft Chapter 7. Draft

33

Storage [Barry Marson]
SME is Barry Marson1

use as main reference: RH442-RHEL5u1-en-4-20090715-ddomingo.pdf. any other docs??

7.1. The Ext4 File System [BZ#639796]
provide performance-related stats
https://bugzilla.redhat.com/show_bug.cgi?id=639796

7.1.1. Useful Journaling and Mount Options
RH442-RHEL5u1-en-4-20090715-ddomingo.pdf p.172+

7.2. The XFS File System [BZ#640877]
source: mentioned by Barry during talk
https://bugzilla.redhat.com/show_bug.cgi?id=640877

7.3. Clustering [BZ#639797]
provide intro only; refer to existing pkennedy docs
https://bugzilla.redhat.com/show_bug.cgi?id=639797

7.4. Global File System 2 [BZ#639798]
provide intro only; refer to http://documentation-stage.bne.redhat.com/docs/en-US/
Red_Hat_Enterprise_Linux/6/html/Global_File_System_2/index.html
https://bugzilla.redhat.com/show_bug.cgi?id=639798
https://access.redhat.com/kb/docs/DOC-35662

1 mailto:bmarson@redhat.com

mailto:bmarson@redhat.com
https://bugzilla.redhat.com/show_bug.cgi?id=639796
https://bugzilla.redhat.com/show_bug.cgi?id=640877
https://bugzilla.redhat.com/show_bug.cgi?id=639797
http://documentation-stage.bne.redhat.com/docs/en-US/Red_Hat_Enterprise_Linux/6/html/Global_File_System_2/index.html
http://documentation-stage.bne.redhat.com/docs/en-US/Red_Hat_Enterprise_Linux/6/html/Global_File_System_2/index.html
https://bugzilla.redhat.com/show_bug.cgi?id=639798
https://access.redhat.com/kb/docs/DOC-35662
mailto:bmarson@redhat.com

34

Draft Chapter 8. Draft

35

Networking [Neil Horman] [BZ#639799]
SME is Neil Horman1

REVISIT: take most important content from RH442-RHEL5u1-en-4-20090715-ddomingo.pdf -
Unit 13
IMPORTANT: all the kernel docs references herein are from Fedora 14, which i assume will be
identical to RHEL6. please advise.
Over time, Red Hat Enterprise Linux's network stack has been upgraded with numerous automated
optimization features. For most workloads, the auto-configured network settings provide optimized
performance.

In most cases, networking performance problems are actually caused by a malfunction in hardware or
faulty infrastructure. Such causes are beyond the scope of this document; the performance issues and
solutions discussed in this chapter are useful in optimizing perfectly functional systems.

Networking is a delicate subsystem, containing different parts with sensitive connections. This is why
the open source community and Red Hat invest much work in implementing ways to automatically
optimize network performance. As such, given most workloads, you may never even need to
reconfigure networking for performance.

overview: https://bugzilla.redhat.com/show_bug.cgi?id=639799

8.1. Network Performance Enhancements [BZ#639799]
https://bugzilla.redhat.com/bugzilla/show_bug.cgi?id=639799
The following network performance enhancements are available as of Red Hat Enterprise Linux 6.1:

omitted SO_REUSEPORT for now, since we don't have a target for that yet.

Receive Packet Steering (RPS)
RPS enables a single NIC rx queue to have its receive softirq workload distributed among several
CPUs. This helps prevent network traffic from being bottlenecked on a single NIC hardware queue.

Neil: do we need to define rx for our readers? do system admins typically know what it is? (answer:
no need to define!)
To enable RPS, specify the target CPU names in /sys/class/net/ethX/queues/rx-N/
rps_cpus, replacing ethX with the NIC's corresponding device name (e.g. eth1, eth2) and rx-N
with the specified NIC receive queue. This will allow the specified CPUs in the file to process data from
queue rx-N on ethX. When specifying CPUs, consider the queue's cache affinity2 .

Neil, Linda: where can users get more info on RPS and RFS (e.g. kernel docs file, man page)? also,
please verify definition of rx-N in previous paragraph
from: http://lwn.net/Articles/378617/

Receive Flow Steering
RFS is an extension of RPS, allowing the administrator to configure a hash table that gets populated
automatically when applications receive data and get interrogated by the network stack. This

1 mailto:nhorman@redhat.com
2 Ensuring cache affinity between a CPU and a NIC means configuring them to share the same L2 cache. For more information,
refer to Section 8.3, “Overview of Packet Reception [BZ#639800] ”. Neil: correct rephrasing?

mailto:nhorman@redhat.com
https://bugzilla.redhat.com/show_bug.cgi?id=639799
https://bugzilla.redhat.com/bugzilla/show_bug.cgi?id=639799
http://lwn.net/Articles/378617/
mailto:nhorman@redhat.com

Chapter 8. Networking [Neil Horman] [BZ#639799] Draft

36

determines which applications are receiving each piece of network data (based on source:destination
network information).

Using this information, the network stack can schedule the most optimal CPU to receive each packet.
To configure RFS, use the following tunables:

/proc/sys/net/core/rps_sock_flow_entries
This controls the maximum number of sockets/flows that the kernel can steer towards any
specified CPU. This is a system-wide, shared limit.

http://permalink.gmane.org/gmane.linux.network/179976

/sys/class/net/ethX/queues/rx-N/rps_flow_cnt
This controls the maximum number of sockets/flows that the kernel can steer for a
specified receive queue (rx-N) on a NIC (ethX). Note that sum of all per-queue values
for this tunable on all NICs should be equal or less than that of /proc/sys/net/core/
rps_sock_flow_entries.

Neil, Linda: ditto on rx-N

Unlike RPS, RFS allows both receive queue and application to share the same CPU when processing
packet flows. This can result in improved performance in some cases. However, such improvements
are dependent on factors such as cache heirarchy, application load, and the like.

http://lwn.net/Articles/381955/

getsockopt support for TCP thin-streams
Thin-stream is a term used to characterize transport protocols wherein applications send data at
such a low rate that the protocol's retransmission mechanisms are not fully saturated. Applications
that use thin-stream protocols typically transport via reliable protocols like TCP; in most cases, such
applications provide very time-sensitive services (e.g. stock trading, online gaming, control systems).

For time-sensitive services, packet loss can be devastating to service quality. To help prevent this, the
getsockopt call has been enhanced to support two extra options:

TCP_THIN_DUPACK
This boolean enables dynamic triggering of retransmissions after one dupACK for thin streams.

TCP_THIN_LINEAR_TIMEOUTS
This boolean enables dynamic triggering of linear timeouts for thin streams.

Both options are specifically activated by the application. For more information about these options,
refer to file:///usr/share/doc/kernel-doc-version/Documentation/networking/
ip-sysctl.txt. For more information about thin-streams, refer to file:///usr/share/doc/
kernel-doc-version/Documentation/networking/tcp-thin.txt.

http://www.mjmwired.net/kernel/Documentation/networking/tcp-thin.txt

Transparent Proxy (TProxy) support
The kernel can now handle non-locally bound IPv4 TCP and UDP sockets to support transparent
proxies. To enable this, you will need to configure IPtables accordingly. You will also need to enable
and configure policy routing properly.

For more information about transparent proxies, refer to file:///usr/share/doc/kernel-
doc-version/Documentation/networking/tproxy.txt.

http://permalink.gmane.org/gmane.linux.network/179976
http://lwn.net/Articles/381955/
http://www.mjmwired.net/kernel/Documentation/networking/tcp-thin.txt

Draft Optimized Network Settings[BZ#639801]

37

8.2. Optimized Network Settings [BZ#639801]
https://bugzilla.redhat.com/bugzilla/show_bug.cgi?id=639801
"reasons to not bother with adjusting your network settings"
Performance tuning is usually done in a pre-emptive fashion. Often, we adjust known variables
before running an application or deploying a system. If the adjustment proves to be ineffective, we try
adjusting other variables. The logic behind such thinking is that by default, the system is not operating
at an optimal level of performance; as such, we think we need to adjust the system accordingly. In
some cases, we do so via calculated guesses.

As mentioned earlier, the network stack is mostly self-optimizing. In addition, effectively tuning the
network requires a thorough understanding not just of how the network stack works, but also the
specific system's network resource requirements. Incorrect configurations to network performance
settings can actually lead to degraded performance.

For example, consider the bufferfloat problem. Increasing buffer queue depths result in TCP
connections that have congestion windows larger than the link would otherwise allow (due to deep
buffering). However, those connections also have huge RTT values since the frames spend so much
time in-queue. This, in turn, actually results in sub-optimal output, as it would become impossible to
detect congestion.

When it comes to network performance, it is advisable to keep the default settings unless a particular
perfomance issue becomes apparent. Such issues include frame loss, significantly reduced
throughput, and the like. Even then, the best solution is often one that results from meticulous study of
the problem, rather than simply tuning settings upward (e.g. increasing buffer/queue lengths, reducing
interrupt latency, etc).

To properly diagnose a network performance problem, use the following tools:

netstat
A command-line utility that prints network connections, routing tables, interface statistics,
masquerade connections and multicast memberships. It retrieves information about the
networking subsystem from the /proc/net/ file system. These files include:

• /proc/net/dev (device information)

• /proc/net/tcp (TCP socket information)

• /proc/net/unix (Unix domain socket information)

For more information about netstat and its referenced files from /proc/net/, refer to man
netstat.

dropwatch
A monitoring utility that monitors packets dropped by the kernel. For more information, refer to man
dropwatch.

ip
A utility for managing and monitoring routes, devices, policy routing, and tunnels. For more
information, refer to man ip.

ethtool
A utility for displaying and changing NIC settings. For more information, refer to man ethtool.

/proc/net/snmp
A file that displays ASCII data needed for the IP, ICMP, TCP, and UDP management information
bases for an snmp agent. It also displays real-time UDP-lite statistics.

https://bugzilla.redhat.com/bugzilla/show_bug.cgi?id=639801

Chapter 8. Networking [Neil Horman] [BZ#639799] Draft

38

The SystemTap Beginners Guide also contains several sample scripts you can use to profile and
monitor network performance. For more information, refer to:

http://docs.redhat.com/docs/en-US/Red_Hat_Enterprise_Linux/6/html/SystemTap_Beginners_Guide/
index.html

After collecting relevant data on a network performance problem, you should be able to formulate a
theory — and, hopefully, a solution. 3 For example, an increase in UDP input errors in /proc/net/
snmp indicates that one or more socket receive queues are full when the network stack attempts to
queue new frames into an applications socket.

This indicates that packets are bottlenecked at at least one socket queue, which means either the
socket queue drains packets too slowly, or packet volume is too large for that socket queue. If it is the
latter, then verify the logs of any network-intensive application for lost data -- to resolve this, you would
need to optimize or reconfigure the offending application.

Socket receive buffer size
If further analysis proves that the socket queue's drain rate is too slow, then you can increase the
depth of the applications socket queue. To do so, increase the size of receive buffers used by sockets.
This is achieved by configuring either of the following values:

rmem_default
A kernel parameter that controls the default size of receive buffers used by sockets. To configure
this, run the following command:

sysctl -w net.core.rmem_default=N

Replace N with the desired buffer size, in bytes. To determine the value for this kernel parameter,
view /proc/sys/net/core/rmem_default. Bear in mind that the value of rmem_default
should be no greater than rmem_max (/proc/sys/net/core/rmem_max); if need be, increase
the value of rmem_max.

Neil: please verify, got this from kernel docs

SO_RCVBUF
A socket option that controls the maximum size of a socket's receive buffer, in bytes. For more
information on SO_RCVBUF, refer to man 7 socket.

To configure SO_RCVBUF, use the setsockopt utility. You can retrieve the current SO_RCVBUF
value with getsockopt. For more information using both utilities, refer to man setsockopt.

Neil: are there any other popular examples to add here?

8.3. Overview of Packet Reception [BZ#639800]
https://bugzilla.redhat.com/show_bug.cgi?id=639800
To better analyze network bottlenecks and performance issues, you need to understand how packet
reception works. Packet reception is important in network performance tuning because the receive
path is where frames often get lost. Lost frames in the receive path often cause a significant penalty to
network performance.

3 Section 8.3, “Overview of Packet Reception [BZ#639800] ” contains an overview of packet travel, which should help you locate
and map bottleneck-prone areas in the network stack.

http://docs.redhat.com/docs/en-US/Red_Hat_Enterprise_Linux/6/html/SystemTap_Beginners_Guide/index.html
http://docs.redhat.com/docs/en-US/Red_Hat_Enterprise_Linux/6/html/SystemTap_Beginners_Guide/index.html

Draft CPU/cache affinity

39

Figure 8.1. Network receive path diagram

The Linux kernel receives each frame and subjects it to a four-step process:

1. Hardware Reception: the network interface card (NIC) receives the frame on the wire. Depending
on its driver configuration, the NIC transfers the frame either to an internal hardware buffer
memory or to a specified ring buffer.

2. Hard IRQ: the NIC asserts the presence of a net frame by interrupting the CPU. This causes the
NIC driver to acknowledge the interrupt and schedule the soft IRQ operation.

3. Soft IRQ: this stage implements the actual "frame receiving process", and is run in softirq
context. This means that the stage pre-empts all applications running on the specified CPU, but
still allows hard IRQs to be asserted.

Neil: i substituted "network data" with "frame" in the following parts, for consistency. correct?
In this context (i.e. running on the same CPU as hard IRQ, thereby minimizing locking overhead),
the kernel actually removes the frame from the NIC hardware buffers and processes it through the
network stack. From there, the frame is either forwarded, discarded, or passed to a target listening
socket.

When passed to a socket, the frame is appended to the application that owns the socket. This
process is done iteratively until the NIC hardware buffer runs out of frames, or until the device
weight (dev_weight). For more information about device weight, refer to Section 8.4.1, “NIC
Hardware Buffer”

4. Application receive: the application receives the frame and dequeues it from any owned sockets
via the standard POSIX calls (e.g. read, recv, recvfrom). At this point, data received over the
network no longer exist on the network stack.

CPU/cache affinity
To maintain high throughput on the receive path, it is recommended that you keep the L2 cache hot.
As described earlier, network buffers are received on the same CPU as the IRQ that signaled their
presence. This means that buffer data will be on the L2 cache of that receiving CPU.

To take advantage of this, place process affinity on applications expected to receive the most data on
the NIC that shares the same core as the L2 cache. This will maximize the chances of a cache hit, and
thereby improve performance.

8.4. Resolving Common Queueing/Frame Loss Issues
[BZ#639802]
https://bugzilla.redhat.com/bugzilla/show_bug.cgi?id=639802
By far, the most common reason for frame loss is a queue overrun. The kernel sets a limit to the length
of a queue, and in some cases the queue fills faster than it drains. When this occurs for too long,
frames start to get dropped.

https://bugzilla.redhat.com/bugzilla/show_bug.cgi?id=639802

Chapter 8. Networking [Neil Horman] [BZ#639799] Draft

40

As illustrated in Figure 8.1, “Network receive path diagram”, there are two major queues in the receive
path: the NIC hardware buffer and the socket queue. Both queues need to be configured accordingly
to protect against queue overruns.

8.4.1. NIC Hardware Buffer
The NIC fills its hardware buffer with frames; the buffer is then drained by the softirq, which the NIC
asserts via an interrupt. To interrogate the status of this queue, use the following command:

ethtool -S ethX

Replace ethX with the NIC's corresponding device name. This will display how many frames have
been dropped within ethX. Often, a drop occurs because the queue runs out of buffer space in which
to store frames.

There are different ways to address this problem, namely:

Input traffic
You can help prevent queue overruns by slowing down input traffic. This can be achieved by
filtering, reducing the number of joined multicast groups, lowering broadcast traffic, and the like.

Queue length
Alternatively, you can also increase the queue length. This involves increasing the number of
buffers in a specified queue to whatever maximum the driver will allow. To do so, edit the rx/tx
ring parameters of ethX using:

ethtool --set-ring ethX

Append the appropriate rx or tx values to the aforementioned command. For more information,
refer to man ethtool.

Device weight
You can also increase the rate at which a queue is drained. To do this, adjust the NIC's device
weight accordingly. This attribute refers to the maximum number of frames that the NIC can
receive before the softirq context has to yield the CPU and reschedule itself. It is controlled by
the /proc/sys/net/core/dev_weight variable.

Most administrators have a tendency to choose the third option. However, keep in mind that there are
consequences to do doing so. Increasing the number of frames that can be received from a NIC in one
iteration implies extra CPU cycles, during which no applications can be scheduled on that CPU.

8.4.2. Socket Queue
Like the NIC hardware queue, the socket queue is filled by the network stack from the softirq
context. Applications then drain the queues of their corresponding sockets via calls to read,
recvfrom, and the like.

To monitor the status of this queue, use the netstat utility; the Recv-Q column displays the queue
size. Generally speaking, overruns in the socket queue are managed in the same way as NIC
hardware buffer overruns (i.e. Section 8.4.1, “NIC Hardware Buffer”):

Draft Multicast Considerations[BZ#639803]

41

Input traffic
The first option is to slow down input traffic by configuring the rate at which the queue fills. To do
so, either filter frames or pre-emptively drop them. You can also slow down input traffic by lowering
the NIC's device weight4 .

Queue depth
You can also avoid socket queue overruns by increasing the queue depth. To do so, increase the
value of either the rmem_default kernel parameter or the SO_RCVBUF socket option. For more
information on both, refer to Section 8.2, “Optimized Network Settings [BZ#639801] ”.

Application call frequency
Whenever possible, optimize the application to perform calls more frequently. This involves
modifying or reconfiguring the network application to perform more frequent POSIX calls (e.g.
recv, read). In turn, this allows application to drain the queue faster.

For many administrators, increasing the queue depth is the preferable solution. This is the easiest
solution, and often works in the long term. However, this is only a short-term solution; as networking
technologies get faster, socket queues will continue to fill more quickly. Over time, this means having
to re-adjust the queue depth accordingly.

The best solution is to enhance or configure the application to drain data from the kernel quicker, even
if it means queueing the data in application space. At least then, the data can be stored more flexibly
(e.g. swapped out and paged back in as needed).

8.5. Multicast Considerations [BZ#639803]
https://bugzilla.redhat.com/bugzilla/show_bug.cgi?id=639803
Multicast traffic users report that in high volumes, the rate at which they lose frames increases as they
add instances of an application to the same system that listens on a multicast socket. This is caused
by a design requirement on the kernel code that handles multicast frames. If multiple applications are
listening to a multicast group, the kernel must make a copy of the network data for each individual
socket. This duplication must occur in the softirq context, and is time-consuming.

This means that adding multiple listeners on a single multicast group has a direct impact on the
softirq context's execution time. As such, adding one more listener to a given multicast group
implies that for each frame received destined for that group, the kernel needs to create an additional
copy of the frame.

The effect of this is minimal in low traffic and small numbers of listeners. However, when several
sockets begin listening on a single, high-volume traffic multicast group, the significantly increased
execution time of the softirq context can lead to frame drops, both at the network card and at the
socket queue. This implies that increased softirq runtimes translate to reduced opportunity for
applications to run on heavily-loaded systems.

To resolve this, optimize the socket queues and NIC hardware buffers. To do so, employ any of the
techniques enumerated in Section 8.4.2, “Socket Queue” or Section 8.4.1, “NIC Hardware Buffer”.
Alternatively, you can try optimizing an application's socket use; to do so, configure the application
to control a single socket and disseminate the received network data quickly to other user-space
processes.

4 Device weight is controlled via /proc/sys/net/core/dev_weight. For more information about device weight and the
implications of adjusting it, refer to Section 8.4.1, “NIC Hardware Buffer”.

https://bugzilla.redhat.com/bugzilla/show_bug.cgi?id=639803

42

Draft Chapter 9. Draft

43

Tuned Profiles [SME TBA]
https://engineering.redhat.com/rt3/Ticket/Display.html?id=72381
Q: can we also squeeze in special tuning considerations here for specific services? i.e. the current
nested sections

9.1. Oracle
RHELTuningandOptimizationforOracleV11.pdf
Woodman,Shakshober_Performance Analys.pdf, p.80+

9.2. Samba Server
from old PTG

9.3. Web Servers
from old PTG

https://engineering.redhat.com/rt3/Ticket/Display.html?id=72381

44

Draft Draft

45

Appendix A. Revision History
Revision 0-1 Mon Sep 6 2010 Dude McPants Dude.McPants@example.com

Initial creation of book by publican

mailto:Dude.McPants@example.com

46

Draft Draft

47

Index
A
anticipatory scheduler, 28

antic_expire, 29
performance trade-off, 28
read_batch_expire, 29
read_expire, 29
tunable variables, 29
write_batch_expire, 29
write_expire, 29

antic_expire
anticipatory scheduler, 29

B
best effort (default priority)

completely fair queueing, 28
block device requests

I/O subsystem, 19

C
cfq scheduler

best effort (default priority), 28
idle (lowest priority), 28
internal request queues, 27
ionice, 28
prioritizing I/O bandwidth for specific
processes, 28
quantum, 28
queued, 28
real-time (highest priority), 28
scheduling classes, 28
tunable variables, 28

completely fair queueing
best effort (default priority), 28
idle (lowest priority), 28
internal request queues, 27
ionice, 28
prioritizing I/O bandwidth for specific
processes, 28
quantum, 28
queued, 28
real-time (highest priority), 28
scheduling classes, 28
tunable variables, 28

D
deadline scheduler, 29

fifo_batch, 30
front_merges, 30
performance trade-off, 29
read_expire, 29
tunable variables, 29

writes_starved, 30
write_expire, 30

E
extended block device requests

I/O subsystem, 19

F
fifo_batch

deadline scheduler, 30
front_merges

deadline scheduler, 30

I
I/O subsystem

block device requests, 19
extended block device requests, 19
pdflush, 19
random read/write requests, 19
reading data blocks from disk, 19
sequential read/write requests, 19
writing data blocks to disk, 19

idle (lowest priority)
completely fair queueing, 28

internal request queues
completely fair queueing, 27

ionice
completely fair queueing, 28

N
noop Scheduler, 30

O
objective

deadline scheduler, 29

P
pdflush

I/O subsystem, 19
performance trade-off

anticipatory scheduler, 28
deadline scheduler, 29

prioritizing I/O bandwidth for specific processes
completely fair queueing, 28

Q
quantum

completely fair queueing, 28
queued

completely fair queueing, 28

R
random read/write requests

Index Draft

48

I/O subsystem, 19
reading data blocks from disk

I/O subsystem, 19
read_batch_expire

anticipatory scheduler, 29
read_expire

anticipatory scheduler, 29
deadline scheduler, 29

real-time (highest priority)
completely fair queueing, 28

S
scheduling classes

completely fair queueing, 28
sequential read/write requests

I/O subsystem, 19

T
tunable variables

anticipatory scheduler, 29
completely fair queueing, 28
deadline scheduler, 29

W
writes_starved

deadline scheduler, 30
write_batch_expire

anticipatory scheduler, 29
write_expire

anticipatory scheduler, 29
deadline scheduler, 30

writing data blocks to disk
I/O subsystem, 19

	Performance Tuning Guide
	Table of Contents
	Preface
	Chapter 1. Overview [Russell Doty]
	1.1. Audience
	1.2. [tentative] History of Red Hat Enterprise Linux Performance Enhancements
	1.3. Horizontal Scalability [BZ#646691]
	1.3.1. Parallel Computing

	1.4. Distributed Systems [BZ#646692]
	1.4.1. Communication
	1.4.2. [link] Storage
	1.4.3. Management (Converged Networks)

	Chapter 2. Red Hat Enterprise Linux 6 Performance Features [BZ#646693]
	2.1. System Overview
	2.2. [link] 64-Bit Support
	2.3. [link] Ticket Spinlocks
	2.4. [link] Dynamic List Structure
	2.5. [link] Tickless Kernel
	2.6. [link] Control Groups
	2.7. [link] Storage and File System Improvements

	Chapter 3. Monitoring and Analyzing System Performance
	3.1. The /proc File System
	3.2. Gnome and KDE System Monitors
	3.3. Built-in Command-line Monitoring Tools
	3.4. Application Profilers
	3.4.1. SystemTap
	3.4.2. OProfile
	3.4.3. Valgrind

	3.5. Red Hat Enterprise MRG

	Chapter 4. CPU [Jirka Hladky]
	4.1. CPU and NUMA Topology [BZ#641009]
	4.2. NUMA and Multi-Core Support [BZ#639780]
	4.3. The CPU Scheduler [BZ#639781]
	4.4. Tuned IRQs [BZ#639782]
	4.5. Understanding CPU Statistics [BZ#639783]
	4.5.1. Analyzing CPU Cycle Statistics With OProfile

	4.6. Tuning CPU Performance [BZ#639784]

	Chapter 5. Input/Output [Sanjay Rao]
	5.1. High-Level I/O Configuration [BZ#639786]
	5.2. IOZone Benchmarks [BZ#639788]
	5.3. Direct I/O [BZ#639789]
	5.4. Asynchronous I/O to File Systems [BZ#639790]
	5.5. I/O Merging [BZ#640872]
	5.6. I/O Alignment [BZ#640874]
	5.7. Schedulers [BZ#639785]
	5.7.1. Selecting an I/O Scheduler
	5.7.2. Completely Fair Queueing
	5.7.3. Anticipatory Scheduler
	5.7.4. deadline Scheduler
	5.7.5. Noop Scheduler

	Chapter 6. Memory [Larry Woodman]
	6.1. Huge Translation Lookaside Buffers [BZ#639791]
	6.2. Huge Pages and Transparent Hugepages [BZ#639792]
	6.3. Using Valgrind to Profile Memory Usage [BZ#639793]
	6.4. Capacity Tuning [BZ#639794]
	6.5. Tuning Virtual Memory [BZ#639795]

	Chapter 7. Storage [Barry Marson]
	7.1. The Ext4 File System [BZ#639796]
	7.1.1. Useful Journaling and Mount Options

	7.2. The XFS File System [BZ#640877]
	7.3. Clustering [BZ#639797]
	7.4. Global File System 2 [BZ#639798]

	Chapter 8. Networking [Neil Horman] [BZ#639799]
	8.1. Network Performance Enhancements [BZ#639799]
	8.2. Optimized Network Settings [BZ#639801]
	8.3. Overview of Packet Reception [BZ#639800]
	8.4. Resolving Common Queueing/Frame Loss Issues [BZ#639802]
	8.4.1. NIC Hardware Buffer
	8.4.2. Socket Queue

	8.5. Multicast Considerations [BZ#639803]

	Chapter 9. Tuned Profiles [SME TBA]
	9.1. Oracle
	9.2. Samba Server
	9.3. Web Servers

	Appendix A. Revision History
	Index

