
Documentation 0.1

Beaker guide
short description

Shikha Nansi

Beaker guide

Documentation 0.1 Beaker guide
short description
Edition 0

Author Shikha Nansi snansi@redhat.com

Copyright © 2010 | You need to change the HOLDER entity in the en-US/Beaker_guide.ent file |.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is available
at http://creativecommons.org/licenses/by-sa/3.0/. In accordance with CC-BY-SA, if you distribute this
document or an adaptation of it, you must provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, MetaMatrix, Fedora, the Infinity
Logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other countries.

Linux® is the registered trademark of Linus Torvalds in the United States and other countries.

Java® is a registered trademark of Oracle and/or its affiliates.

XFS® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

All other trademarks are the property of their respective owners.

 1801 Varsity Drive
 Raleigh, NC 27606-2072 USA
 Phone: +1 919 754 3700
 Phone: 888 733 4281
 Fax: +1 919 754 3701

A short overview and summary of the book's subject and purpose, traditionally no more than one
paragraph long. Note: the abstract will appear in the front matter of your book and will also be placed
in the description field of the book's RPM spec file.

mailto:snansi@redhat.com
http://creativecommons.org/licenses/by-sa/3.0/

iii

Preface v
1. Document Conventions ... v

1.1. Typographic Conventions .. v
1.2. Pull-quote Conventions .. vi
1.3. Notes and Warnings .. vii

2. Getting Help and Giving Feedback ... vii
2.1. Do You Need Help? .. vii
2.2. We Need Feedback! ... viii

A. Revision History 1

1. Introduction 3
1.1. Abstract ... 3
1.2. Introduction .. 3
1.3. Background .. 3
1.4. Beaker Overview .. 4

1.4.1. Components .. 5
1.4.2. Topology ... 5

2. Installation 7
2.1. Install Beaker ... 7

2.1.1. Disabling Repos .. 7
2.1.2. Install DB .. 7
2.1.3. Start Beaker .. 8

2.2. Setup Lab Controller .. 9
2.2.1. Install Lab Controller .. 9
2.2.2. Configure Lab Controller .. 9

2.3. Beaker Client ... 11

3. User Guide 15
3.1. Introduction .. 15
3.2. Getting Started ... 15

3.2.1. Process ... 15
3.2.2. Checklist Discussed ... 62

iv

v

Preface

1. Document Conventions
This manual uses several conventions to highlight certain words and phrases and draw attention to
specific pieces of information.

In PDF and paper editions, this manual uses typefaces drawn from the Liberation Fonts1 set. The
Liberation Fonts set is also used in HTML editions if the set is installed on your system. If not,
alternative but equivalent typefaces are displayed. Note: Red Hat Enterprise Linux 5 and later includes
the Liberation Fonts set by default.

1.1. Typographic Conventions
Four typographic conventions are used to call attention to specific words and phrases. These
conventions, and the circumstances they apply to, are as follows.

Mono-spaced Bold

Used to highlight system input, including shell commands, file names and paths. Also used to highlight
keycaps and key combinations. For example:

To see the contents of the file my_next_bestselling_novel in your current
working directory, enter the cat my_next_bestselling_novel command at the
shell prompt and press Enter to execute the command.

The above includes a file name, a shell command and a keycap, all presented in mono-spaced bold
and all distinguishable thanks to context.

Key combinations can be distinguished from keycaps by the hyphen connecting each part of a key
combination. For example:

Press Enter to execute the command.

Press Ctrl+Alt+F1 to switch to the first virtual terminal. Press Ctrl+Alt+F7 to
return to your X-Windows session.

The first paragraph highlights the particular keycap to press. The second highlights two key
combinations (each a set of three keycaps with each set pressed simultaneously).

If source code is discussed, class names, methods, functions, variable names and returned values
mentioned within a paragraph will be presented as above, in mono-spaced bold. For example:

File-related classes include filesystem for file systems, file for files, and dir for
directories. Each class has its own associated set of permissions.

Proportional Bold

This denotes words or phrases encountered on a system, including application names; dialog box text;
labeled buttons; check-box and radio button labels; menu titles and sub-menu titles. For example:

1 https://fedorahosted.org/liberation-fonts/

https://fedorahosted.org/liberation-fonts/
https://fedorahosted.org/liberation-fonts/

Preface

vi

Choose System → Preferences → Mouse from the main menu bar to launch Mouse
Preferences. In the Buttons tab, click the Left-handed mouse check box and click
Close to switch the primary mouse button from the left to the right (making the mouse
suitable for use in the left hand).

To insert a special character into a gedit file, choose Applications → Accessories
→ Character Map from the main menu bar. Next, choose Search → Find… from the
Character Map menu bar, type the name of the character in the Search field and click
Next. The character you sought will be highlighted in the Character Table. Double-
click this highlighted character to place it in the Text to copy field and then click the

Copy button. Now switch back to your document and choose Edit → Paste from the
gedit menu bar.

The above text includes application names; system-wide menu names and items; application-specific
menu names; and buttons and text found within a GUI interface, all presented in proportional bold and
all distinguishable by context.

Mono-spaced Bold Italic or Proportional Bold Italic

Whether mono-spaced bold or proportional bold, the addition of italics indicates replaceable or
variable text. Italics denotes text you do not input literally or displayed text that changes depending on
circumstance. For example:

To connect to a remote machine using ssh, type ssh username@domain.name at
a shell prompt. If the remote machine is example.com and your username on that
machine is john, type ssh john@example.com.

The mount -o remount file-system command remounts the named file
system. For example, to remount the /home file system, the command is mount -o
remount /home.

To see the version of a currently installed package, use the rpm -q package
command. It will return a result as follows: package-version-release.

Note the words in bold italics above — username, domain.name, file-system, package, version and
release. Each word is a placeholder, either for text you enter when issuing a command or for text
displayed by the system.

Aside from standard usage for presenting the title of a work, italics denotes the first use of a new and
important term. For example:

Publican is a DocBook publishing system.

1.2. Pull-quote Conventions
Terminal output and source code listings are set off visually from the surrounding text.

Output sent to a terminal is set in mono-spaced roman and presented thus:

books Desktop documentation drafts mss photos stuff svn
books_tests Desktop1 downloads images notes scripts svgs

Notes and Warnings

vii

Source-code listings are also set in mono-spaced roman but add syntax highlighting as follows:

package org.jboss.book.jca.ex1;

import javax.naming.InitialContext;

public class ExClient
{
 public static void main(String args[])
 throws Exception
 {
 InitialContext iniCtx = new InitialContext();
 Object ref = iniCtx.lookup("EchoBean");
 EchoHome home = (EchoHome) ref;
 Echo echo = home.create();

 System.out.println("Created Echo");

 System.out.println("Echo.echo('Hello') = " + echo.echo("Hello"));
 }
}

1.3. Notes and Warnings
Finally, we use three visual styles to draw attention to information that might otherwise be overlooked.

Note
Notes are tips, shortcuts or alternative approaches to the task at hand. Ignoring a note
should have no negative consequences, but you might miss out on a trick that makes your
life easier.

Important
Important boxes detail things that are easily missed: configuration changes that only
apply to the current session, or services that need restarting before an update will apply.
Ignoring a box labeled 'Important' won't cause data loss but may cause irritation and
frustration.

Warning
Warnings should not be ignored. Ignoring warnings will most likely cause data loss.

2. Getting Help and Giving Feedback

2.1. Do You Need Help?
If you experience difficulty with a procedure described in this documentation, you can find help in the
following ways:

Preface

viii

Red Hat Knowledgebase
Visit the Red Hat Knowledgebase at http://kbase.redhat.com to search or browse through
technical support articles about Red Hat products.

Red Hat Global Support Services
Your Red Hat subscription entitles you to support from Red Hat Global Support Services (GSS).
Visit http://support.redhat.com for more information about obtaining help from GSS.

Other Red Hat documentation
Access other Red Hat documentation at http://www.redhat.com/docs

Red Hat electronic mailing lists
Red Hat hosts a large number of electronic mailing lists for discussion of Red Hat software and
technology. You can find a list of publicly available lists at https://www.redhat.com/mailman/listinfo.
Click on the name of any list to subscribe to that list or to access the list archives.

2.2. We Need Feedback!
If you find a typographical error in this manual, or if you have thought of a way to make this manual
better, we would love to hear from you! Please submit a report in Bugzilla: http://bugzilla.redhat.com/
against the product Documentation.

When submitting a bug report, be sure to mention the manual's identifier: Beaker_guide

If you have a suggestion for improving the documentation, try to be as specific as possible when
describing it. If you have found an error, please include the section number and some of the
surrounding text so we can find it easily.

http://kbase.redhat.com
http://support.redhat.com
http://www.redhat.com/docs
https://www.redhat.com/mailman/listinfo
http://bugzilla.redhat.com/

1

Appendix A. Revision History
Revision 0 Tue Aug 17 2010 Dude McPants Dude.McPants@example.com

Initial creation of book by publican

mailto:Dude.McPants@example.com

2

Chapter 1.

3

Introduction

1.1. Abstract
• This is a short introduction to Beaker, designed for quick-learning the essential skills for automated

test case running.

• It will provide you with all the necessary steps to create and manage customized 'tests', while
keeping the instructions as brief as possible.

• By the end you will probably realize that creating a new Beaker test is much easier than you might
expect.

1.2. Introduction

Purpose of Beaker
There are many reasons why you might want to use Beaker Perhaps you:
• are a developer and want to create regression tests for packages you maintain

• want to automatically run a particular test on different architectures and versions of RHEL and see if
the results are the same

• are a quality engineer with testing responsibility for a particular package, RHEL/Fedora release.

• are a partner with special hardware that you would like to test RHEL on.

• want a simple way to reproduce and test customer issues and help to make sure they do not
happen again.

Bug reporting
Bug reporting does the following:
• Report bugs in Bugzilla component.

1.3. Background
Beaker is a new-project written in python which aims to achieve separation of concerns between
inventory management and test execution.
• Beaker provides an automated software testing system that should appeal to a variety of audiences

for a variety of purposes. It provides a programming interface for developing automated unit tests,
bug reproducers, hardware enablement, and regression tests. Beaker is composed of several
components, but the most primary are the Beaker framework for writing the tests and the tests
themselves. Everyone is encouraged to submit new tests to the Table Cloth repository and/or
download stored tests for their use.

• Most developers create new tests in a standalone environments (such as a workstation) first and
later deploy them in the automated test lab where they are run on machines dedicated for testing.
Many types of automated environments are possible:
• running on a farm of real machines in some kind of lab situation

Chapter 1. Introduction

4

• running as part of a continuous checkout/build/test "tinderbox"-style environment

• running inside a fake "chroot" tree on your development machine

• When tests are developed in accordance with the Beaker framework, they can be run either
standalone or in a lab test environment without modification. The Beaker framework defines both an
API and the format of required files that contain meta data. When run locally from a command line,
the results are reported to stdout. When deployed in the automated test lab, the results can be
stored in a repository and viewed via a UI.

• This section will first describe how to write tests within the Beaker framework. Later, once a new test
is written and tested, it can be packaged, as a conventional RPM package from its source files, and
submitted to the Table Cloth test repository, using Subversion source control system commands.
This allows the test to be downloaded by others, but in addtion, it also allows the test to be run in
a Fedora lab environment. The Fedora project has a dedicated test lab environment where tests
stored in the test repository can be run and the results of the tests made public. The name of this lab
is Beaker. The reporting of the test results will be done with the Testify UI.

• A test lab has the advantage of being able to automatically schedule the test and collect test
results on a variety of architectures and releases. The lab environment is also able to detect certain
types of failure. For example, if a dedicated test machine goes into an infinite loop, the test is
automatically killed and a failure is reported.

1.4. Beaker Overview
Beaker is the primary test harness and test deck used to test RHEL. It can be divided into two parts: a
test scheduler and individual tests.

Tests
At its most basic level, a Beaker test is a program that attempts to perform a task or a series of tasks,
and upon completion, determines success or failure and reports the results provided by hooks in
the API. Care should be taken when creating the test to make sure all test outcomes are reported
properly. A test can consist of code, data and meta data, as well as defining dependencies on other
packages (if necessary).The Beaker framework is provided by a series of packages where tools, API
libraries, and template files will be installed to the local workstation.

Test scheduler
The test scheduler manages the complex job of coordinating the farm machines set aside to run
individual tests. It handles all aspects of test execution, ranging from machine selection, distribution
installation, fencing (rebooting and reinstalling hosts that have exceeded their scheduled time), and
coordinating tests which require multiple hosts to participate with each other. The scheduler also
coordinates how tests are launched.

Individual tests
Tests make up one of the most important components of s/RHTS/Beaker. Individual tests are written
in a format understood by the scheduler so that they can be automatically run by the scheduler on
a variety of distributions, for example, RHEL3, RHEL4, RHEL5, and Fedora; and architectures, for
example, i386, ia64, ppc, s390, s390x, and x86_64.

Components

5

Tests written in the Beaker format can be launched from a lab controller or from a command line if the
rhts-devel packages are installed on a local workstation.

Beaker has two major sub-divisions:
• Components

• Topology

1.4.1. Components
Beaker is an Open Source automated testing framework, consisting of the following core parts:
• Lab Controller: The Lab Controller maintains inventory data about distros available to install and

machines to install on. It can be used by itself or in conjunction with the Beaker server. The Lab
Controller is the only conduit of communication between the Lab Machines and the Beaker Server.
The Lab Controller is built on top of several existing tools:
• Cobbler: Does the actul interations with the test systems (install distro etc).

• Conserver: Provides console logging

• Fence-agents: Power cycles machines to start PXE installs and to recover.

• Smolt: Provides the inventory data. That is, the hardware data of the test systems.

• Beaker server The Beaker server is the central point at which all Job related activity occurs.
System inventory as well as the ability to provision Systems is also controlled from here. It also
holds the repository of Tasks.

• Beaker Client The shell based client (CLI) provides users with a subset of functions available in the
Beaker web app, plus a few functions that the Beaker web app does not provide.

• Beah test harness Beaker needs a test harness to be responsible for executing the tasks on the
system, currently it uses Beah, although theoretically any test harness could be used. It runs locally
on the provisioned Systems.

1.4.2. Topology
Beaker's topology is relatively simple. The Beaker server acts as the interface through which all
user actions are performed. Some of the requests are performed local to the Beaker server (such as
scheduling Jobs and creating reports), but other requests are forwarded to the provisioned System (i.e
running of tasks). This communication between the Beaker server and the System occurs via the Lab
Controller.

Figure 1.1. High level network topology of Beaker's components

6

Chapter 2.

7

Installation
The installation guide will teach you how to install Beaker into your system.

2.1. Install Beaker
Add the beaker.repo file that Red Hat provided for you on the machine(s) that will be running your
Scheduler and Lab Controller. The following should be done as root.

2.1.1. Disabling Repos
Disable other repos to ensure that packages are installed from the beaker repo.

Install the dependencies

 $ yum -y install rpm-build python-devel TurboGears python-TurboMail
 $ yum -y install mod_wsgi python-decorator python-tgexpandingformwidget python-xmltramp

Install Beaker server.

 $ yum install beaker-server

2.1.2. Install DB
Beaker supports MySQL,MSSQL,Oracle,MaxDB,PostgreSQL, and SQLite. For this tutorial,we will use
MySQL. First, make sure MySQL server is installed, and configure the daemon to run at startup.

 $ yum install -y mysql-server MySQL-python
 $ chkconfig mysqld on
 $ service mysqld start

Create a database, and grant access to beaker user. You can put the database on the local machine,
or on a remote machine. In the example below, the database is hosted on the local machine.

 $ echo "create database beaker;" | mysql
 $ echo "grant all on beaker.* to 'beaker'@'localhost' IDENTIFIED BY 'beaker';"| mysql

Now let's initialise our DB with tables. We'll also create an admin account called admin with password
testing.

Table type
Beaker requires a transactional DB. If using a Database that default to something else (i.e MySQL
defaults to MyISAM), either the default table type for the database needs to be changed (to InnoDB in

Chapter 2. Installation

8

MySQL's case) or the user will have to convert the tables to a transactional DB after running beaker-
init.

You can change the default storage engine for mysql by editing the file /etc/my.cnf and adding the
following line in the [mysqld] section.

 default-storage-engine=INNODB
 $ beaker-init -u admin -p testing -e admin_email_address

2.1.3. Start Beaker
We are now ready to start the Beaker service. Make sure you have the following line in your /etc/httpd/
conf.d/wsgi.conf and that it is uncommented.

 LoadModule wsgi_module modules/mod_wsgi.so

First make sure apache is on and configured to run on startup.

 $ sudo chkconfig httpd on
 $ sudo /sbin/service/httpd start

We need to switch SELinux off.

 $ setenforce 0

Due to permission issues, we need to delete the log file before we start Beaker for the first time.
Otherwise Beaker will not run properly.

 $ sudo rm /var/log/beaker/server*.log

Start Beaker and configure it to run on startup.

 $ sudo chkconfig beakerd on
 $ sudo /sbin/service beakerd start

To make sure Beaker is running go to http://BeakerServer.example.com/bkr/ in your browser

Add Lab Controller details
One more step that we need to do is add the Lab Controller that we are yet to configureSection 2.2,
“Setup Lab Controller”. Login in athttp://BeakerServer.example.com/bkr/labcontrollers/new . Use the
username and password above from the beaker-init command. The new lab controller form requires 3
fields

http://BeakerServer.example.com/bkr/ in your browser
http://BeakerServer.example.com/bkr/labcontrollers/new

Setup Lab Controller

9

• FQDN: This is the fully qualified domain name of the lab controller.

• Username: This is the login name we will use for xmlrpc, for the purposes of this document will use
the login name testing

• Password: This is the password that goes along with the username, again we will use : testing

The new lab controller also needs a user account. Login at:

 http://BeakerServer.example.com/bkr/users/new

• Login: Should be the host/FQDN (FQDN is the fully qualified domain of the lab controller).

• Display Name: Should be just FQDN.

• Email adrress: The email address should be root@FQDN.

• Password: If you are not using Kerberos authentication, you will need a password here.

Save the form and we are done with the Inventory side for now.

2.2. Setup Lab Controller
Beaker uses Lab Controllers to manage the Systems in it's inventory.Open a terminal window on the
system you will be running the Lab Controller on. This can be a seperate system than the one running
the Beaker server.

2.2.1. Install Lab Controller
If you have not installed the beaker repo on the Lab Controller, see Section 2.1, “Install Beaker”.
Follow the instruction to install Beaker repo. Install the Lab Controller rpm. These dependencies are
needed to make the rpm.

 $ sudo yum -y install rpm-build python-devel TurboGears

To install the Lab Controller, enter the following.

 $ sudo yum install beaker-lab-controller

2.2.2. Configure Lab Controller
Cobbler is one of the dependencies that is installed with the Lab Controller. You'll need to edit the /etc/
cobbler/settings file.
• server: This needs to be set to the Lab Controllers Fully qualified domain name.

• next_server: If you use cobbler as your dhcp server this needs to be the ip address of the Lab
Controller.

• pxe_just_once: 1

Chapter 2. Installation

10

• anamon_enabled: 1

• redhat_management_server: https://login:password@BeakerServer.example.com/bkr. login would
be admin, password would be testing, and BeakerServer would be the HOSTNAME of the Beaker/
Server you installed earlier. If your Lab Controller is on the same machine as your Beaker server,
the values should be https://login:password@BeakerServer/bkr

You will need to enable an auth method in /etc/cobbler/modules.conf
• Change module = auth_denyall to module = authn_testing

• authn_testing gives a login of testing password testing

• If you create proper accounts, make sure they match what you entered in http://BeakerServer/
labcontrollers/new

If you are using SELinux, do the following.

 $ sudo setsebool -P httpd_can_network_connect true
 $ sudo semanage fcontext -a -t public_content_t "/var/lib/tftpboot/.*"
 $ sudo semanage fcontext -a -t public_content_t "/var/www/cobbler/images/.*"

Turn on http

 $ sudo chkconfig httpd on
 $ sudo service httpd start

Turn on tftp

 $ sudo chkconfig xinetd on
 $ sudo chkconfig tftp on
 $ sudo service xinetd start

Turn on cobbler

 $ sudo chkconfig cobblerd on
 $ sudo service cobblerd start

Enable and turn on beaker watchdog proxy

 $ sudo chkconfig beaker-watchdog on
 $ sudo chkconfig beaker-proxy on
 $ sudo service beaker-watchdog start
 $ sudo service beaker-proxy start

Cobbler should now be running.

https://login:password@BeakerServer.example.com/
https://login:password@BeakerServer/bkr
http://BeakerServer/labcontrollers/new
http://BeakerServer/labcontrollers/new

Beaker Client

11

You'll need to import some distros. You can use the following command (whilst replacing the
variables).

 $ cobbler import --path=/net/${NFSSERVER}/${NFSPATH} \ --name=$DISTRONAME \ --available-
as=nfs://${NFSSERVER}:/${NFSPATH}

Beaker/Server needs a little more info than cobbler normally stores about a distro in order to use it.
Thats why beaker-lab-controller provides a script in /var/lib/cobbler/triggers/sync/post/osversion.trigger
which needs to be run after you import a new distro. It looks up the distros full family.update and
looks for any yum repos that may be in the distro path. It also adds the cobbler distros into the Beaker
server.

 $ /var/lib/cobbler/triggers/sync/post/osversion.trigger

Check that the Disto was added succesfully by going to https://BeakerServer.example.com/bkr/
distros.You'll nee to configure the /etc/beaker/proxy.conf file with the following settings.

 # Hub xml-rpc address.
 HUB_URL = "https://BeakerServer.example.com/bkr"
 #HUB_URL = "http://localhost:8080"

 # Hub authentication method. Example: krbv, password, worker_key
 AUTH_METHOD = "password"
 #AUTH_METHOD = "krbv"

 # Username and password
 USERNAME = "host/lab.example.com" # This needs to match the account your created on the
 Beaker Scheduler
 PASSWORD = "testing" # Again, only if you are not using kerberos does this need to be set.

 # Kerberos service prefix. Example: host, HTTP
 KRB_SERVICE = "HTTP"

 # Kerberos realm. If commented, last two parts of domain name are used. Example:
 MYDOMAIN.COM.
 KRB_REALM = "EXAMPLE.COM"

2.3. Beaker Client
You'll then need to configure how your Beaker client authenticates with the Beaker server. You can use
either password authentication, or kerberos authentication. For password add the following:

 AUTH_METHOD = "password"
 USERNAME = "username"
 PASSWORD = "password"

If instead kerberos authentication is preferred:

https://BeakerServer.example.com/bkr/distros
https://BeakerServer.example.com/bkr/distros

Chapter 2. Installation

12

 AUTH_METHOD = "krbv"
 KRB_REALM = "krb_realm"

To verify it is working properly:

 $ bkr list-labcontrollers

It should return a list of labcontrollers configured in Beaker.

To create a simple Job workflow, the beaker client comes with the commandbkr workflow-
simple . This simple Job workflow will create the XML for you from various options passed in a the
shell prompt, and submit this to the Beaker server. To see all the options that can be passed to the
workflow-simple, use the following command:

 $ bkr workflow-simple --help

A common set of paramaters that may be passed to the workflow-simple options would be the
following:

 $ bkr workflow-simple --username=<user> --password=<passwd< --dryrun
 --arch=<arch> --distro=<distro_name> --task=<task_name>
 --type=<TYPE> --whiteboard=<whiteboard_name> --debug > my_job.xml

To submit an existing Job workflow:

 bkr job-submit job_xml

If succesful, you will be shown the Job ID and the progress of your Job.

To watch a Job:

 $ bkr job-watch J:job_id

To cancel a Job you have created:

 $ bkr job-cancel J:job_id

To show all Tasks available for a given distro:

 $ bkr task-list distro

Beaker Client

13

To add a Task:

 $ bkr task-add task_rpm

14

Chapter 3.

15

User Guide
This user guide contains both written guide and the associated images that is intended to give
assistance to people using Beaker.

3.1. Introduction
Beaker is the name for an automated testing framework proposed for Fedora. It allows you to:
• Build tasks.

• Run tasks on remote systems.

• Run tasks on multiple systems and system variations (i.e arch, operating system, memory size etc).

• Store and display test results in a central location.

• Manage an inventory of systems for running tests on.

Beaker enables users to create any task they would like (from testing changes to kernel memory
management to installing their favourite OS and game server) and run these tasks on any number
of machines of any specification located anywhere in the world, and provide a simple interface from
where they can review the outcome of these tasks.

3.2. Getting Started
This section gets you started using Beaker. There are three basic steps that a user needs to know
before using Beaker.
• Installation: See Chapter 2, Installation for instructions on installation.

• Process: comprises of description of procedures, workflows, componenets, architecture, test cases,
etc.

• Checklist: It's a list of steps in the workflow in order to have accurate test results.

3.2.1. Process
This section has a detailed description of all the components and procedures involved in Beaker Test
Environment.

3.2.1.1. Submitting and Reviewing a Job Workflow
To submit a Job you must create Job Workflow. This is an XML file containing the tasks you want to
run,as well as special environment variables and other options you want to setup for your Job.

Valid Job Specs
If this is the first time running this Job Workflow make sure that the Distro,System Arch
and Tasks are all available to Beaker. To do this See Section 3.2.1.3.1.1, “System
Searching”, Section 3.2.1.3.1.5.1, “Distro Searching” and Section 3.2.1.3.3.2, “Task
Searching” respectively

Chapter 3. User Guide

16

To submit the Job, use either the beaker-client Section 2.3, “Beaker Client” or submit the Job via the
web app Section 3.2.1.3.1.6.3.1, “Submitting a New Job”

Once Submitted you can view the progress of the Job by going to the Job search page
Section 3.2.1.3.1.6.2, “Job Searching”.Once your Job is Completed, see the Job results page
Section 3.2.1.3.1.6.3.4, “Job Results”.

3.2.1.2. Provisioning a system
If you would like to use one of these System you will need to provision it. Provisioning a System
means to have the system loaded with an Operating System and reserved for the user. There are a
couple of ways of doing this, which are outlined below.

3.2.1.2.1. Provision by System
Go to the System details page (see Section 5.1.3, “System Details Tabs”) of a System that is free
(see Section 5.1.1, “System Searching”) and click on Take in the Current User field. After successfully
taking the System, click the Provision tab of the System details page to provision the System.

Returning a System
After provisioning a System, you can manually return it by going to the above mentioned
System details page, clicking on the Return link in the Current User field.

Provision by System

3.2.1.2.2. Provision by Distro
Go to the Distro search page(Section 5.2.1, “Distro Searching”) and search for a Distro you would like
to provision onto a System. Once you have found the Distro you require, click Provision System, which

Process

17

is located in the far right column of your search results. If the Provision System link is not there, it's
because there is no suitable System available to use with that Distro.

The resulting page lists the Systems you can use. Systems with Reserve Nowin the far right
column mean that no on else is using them and you can take them, otherwise you will see Queue
ReservationQueue Reservation; which means that someone is currently using the System but you
can be appended to the queue of people wanting to use this System.

After choosing your System and clicking on the the aforementioned links, you will be presented with a
form with the following fields:
• System To Provision This is our System we will provision.

• Distro To Provision The Distro we will be installing on the System.

• Job Whiteboard This is a reference that will be displayed in Jobs list. You can enter anything in
here, however it cannot be changed later.

• KickStartMetaData Arguments passed to the KickStart script.

• Kernel Options (install)

• Kernel Options(Post)

Pressing the Queue Job button will submit this provisioning as a Job and redirect us to the details of
the newly created Job.

3.2.1.2.3. Reserve Workflow
The Reserve Workflow page is accessed from the top menu by going toScheduler>Reserve. The
Reserve Workflow process allows the ability to select which System and Distro is to be provisioned
based on the following:
• ArchArchitecture of the System we want to provision.

• Distro FamilyThe family of Distro we want installed.

• MethodHow we want the distro to be installed.

• TagThe Distro's tag.

• DistroBased on the above refinements we will be presented with a list of Distro's available to be
installed.

Selecting values for the above items should be done in a top to bottom fashion, staring at Arch and
ending with Distro.

Once the Distro to be installed is selected you have the option of showing a list of System's that you
are able to provision (Show Systems button), or you can have Beaker automatically pick a system for
you (Auto pick System). If you choose Show Systems you will be presented with a list of Systems
you are able to provision. Ones that are available now show the link Reserve now beside them. This
indicates the System is available to be provisioned immediately. If the System is currenty in use it will
have the link Queue Reservation instead. This indicates that the System is currently in use, but can
be provisioned for a later time.

Whether you choose to automatically pick a system or to pick one yourself, you will be presented with
a page that asks you for the following options:

Chapter 3. User Guide

18

• Job Whiteboard See Section 3.2.1.2.2, “Provision by Distro”

• KickStart MetaData See Section 3.2.1.2.2, “Provision by Distro”

• Kernel Options (Install) See Section 3.2.1.2.2, “Provision by Distro”

• Kernel Options (Post) See Section 3.2.1.2.2, “Provision by Distro”

Once you are ready you can provision your System with your selected Distro by pressing Queue Job.

3.2.1.3. Components

3.2.1.3.1. Systems
Beaker provides an inventory of Systems(These could be a physical machine,laptop,virtual guest, or
resource) attached to lab controllers. Systems can be added, removed, have details changed, and be
provisioned amongst other things.

3.2.1.3.1.1. System Searching
System searches are conducted by clicking on one of the items of the System menu at the top of the
page.

• System Searches
• All

• Will search through all Systems listed in Beaker.

• Available
• Will search through only Systems that the currently logged in user has permission to reserve.

• Free
• Will search through only Systems that the currently logged in user has permission to reserve

and are currently free.

Process

19

System Menu

The search panel has two modes; simple and advanced. The simple search is the default, and the
default search is of the System Name, using the contains operator. To toggle between the two search
modes, press the Toggle Search link.

The first column (Table) is the attribute on which the search is being performed; The second
(Operation) is the type of search, and the third (Value) is the actual value to search on. To add
another search criteria (row), click the Add(+) link just below the Table column. When using more
than just one search criteria, the defaul operation between the criterias is an SQL AND operation. The
operators change depending on what type of attribute is being searched.

Wildcards
No operator provides explicit wildcards other than the is operation, which allows the *
wildcard when searching an attribute which is a string.

The kind of data returned in the System search can be changed by adding/removing the result
columns. To do this the Toggle Result Columns link is pressed and the columns checked/unchecked.

Chapter 3. User Guide

20

Searching for a System

Shortcut for finding Systems you are using
The top right hand corner has a menu which starts with Hello, followed by the name of the
user currently logged in. Click on this, then down to My Systems

3.2.1.3.1.2. Adding a System
To add a System, go to any System search page, and click on the Add(+) link on the bottom left. You
must be logged in to do this. After filling in the details, press theSave Changes button on the bottom
left hand corner.

Process

21

Adding a System

3.2.1.3.1.3. System Details Tabs
After finding a System in the search page, clicking on the System name will show the System details.
To change these details, you must be logged in as either the owner of the System, or an admin.

• System Details
• Details

• Shows the details of the System's CPU, as well as Devices attached to the System.

• Arch
• Shows the architects supported by the system.

• Key/Values
• Shows further hardware details.

• Groups
• Shows the groups of which this System is a part of.

• Excluded Families
• Are the list of Distros that this System does not support.

• Power
• Allows the powering off/on and rebooting of this System. These options are only available if

you are the current user of this System, in the admin group or are part of a group that has been
given admin rights over the machine. Also the machine must be Taken.

• Notes
• Any info about the system that you want others to see and doesn't fit in anywhere else.

• Install Options

Chapter 3. User Guide

22

• Provision
• Allows the user of this System to install a Distro on it.

• Lab Info
• Will display practical details of the System like cost, power usage, weight etc.

• History
• Shows the activity on this System for the duration of the systems life as an inventory item in

Beaker. These activites can also be searched. By default, the simple search does a contains
search on the Field attribute. Please see Section 3.2.1.3.1.1, “System Searching” for details on
searching.

Searching through all System's activities

3.2.1.3.1.4. System Activity
To search through the historical activity of all Systems, navigate to Activity>All at the top of the page.
The default search is contains on the Property attribute.

Individual System history
To search the history of a specific System, see theHistory tab in Section 5.1.3,
Section 3.2.1.3.1.3, “ System Details Tabs”

3.2.1.3.1.5. Distros
Beaker can keep a record of Distros that are available to install on Systems in its Inventory.

Process

23

3.2.1.3.1.5.1. Distro Searching
The find a particular Distro, click Distros>All. The default search is on the Distro's Name, with a
contains clause

3.2.1.3.1.6. Jobs
The purpose of a Job is to provide an encapsulation of Tasks. It is to provide a single point of
submission of these Tasks, and a single point of reviewing the output and results of these Tasks. The
Tasks within a Job may or may not be related to each other; although it would make sense to define
Jobs based on the relationship of the Tasks within it. Once a Job has been submitted you can not
alter its contents, or pause it. You can however cancel it (Section 5.3.3.4, “Job Results”), and alter
its Recipe Set's priorities (you can only lower the priority level if you are not in the admin group).
Adjusting this priority upwards will change which Recipe Set is run sooner, and vice a versa.

3.2.1.3.1.6.1. Job Workflow
To create a simple Job workflow, see the bkr workflow-simpl command in Chapter 2, Beaker client

3.2.1.3.1.6.2. Job Searching
To search for a Job, navigate to Scheduler>Jobs at the top of the page. To look up the Job ID, enter
a number in the search box and press the Lookup ID button. Please see Section 5.1.1, “System
Searching” for details on searching.

Quick Searches
By pressing the Running,Queued, or Completed buttons you can quickly display
Recipes that have a status of running,queued, and completed respectively.

3.2.1.3.1.6.3. Job Submission
There are two ways of submitting a Job through the web app.They are outlined below.

3.2.1.3.1.6.3.1. Submitting a New Job
Once you have created an XML Job workflow, you able able to submit it as a new Job. To do this,
go to theScheduler > New Job. Click Browse to select your XML file, and then hit the Submit Data
button. The next page shown gives you an opportunity to check/edit your XML before queueing it as a
Job by pressing the Queue button.

3.2.1.3.1.6.3.2. Cloning an existing Job
Cloning a Job means to take a Job that has already been run on the System, and re-submit it. To do
this you first need to be on the Job search page. See Section 5.3.2, “Job Searching”.

Chapter 3. User Guide

24

Cloning a Job
Clicking on Clone under the Action column will take you to a page that shows the structure of the Job
in the XML.

Submitting a slightly different Job
If you want to submit a Job that's very similar to a Job already in Beaker,you can use the
Clone button to change details of a previous Job and resubmit it!

3.2.1.3.1.6.3.3. Job workflow details
There are various XML entities in a Job workflow. You may wish to look at what some of these may be
by looking at Section 3.2.1.3.1.6.3.2, “Cloning an existing Job”Each Job has a root node called the job
element:

 <job>
 </job>

A direct child is the whiteboard. The content is normally a mnemonic piece of text describing the Job:

 <job>
 <whiteboard>
 Apache 2.2 test
 </whiteboard>
 </ob>

The next tag in the recipeSet tag (which describes a Recipe Set. See Section 5.4, “Recipes” for
details). A Job workflow can have one or morerecipeSet. All Recipes within a Recipe Set are run
simultaneously, whereas multiple Recipe Sets are run in no predetermined order. This should help

Process

25

you decide whether you wish to run tasks in one or many Recipe Set (i.e Multihost tests will require no
more than one Recipe Set).

 <job>
 <whiteboard>
 Apache 2.2 test
 </whiteboard>
 <recipeset>
 </recipeset>
 </job>

Of course a recipeSet element needs one or more recipe children. As mentioned above, Recipes run
simultaneously. The recipeSet element can have the following attributes
• kernel_options

• kernel_options_post

• ks_meta

• roleIn a Multihost environment, it could be either SERVERS, CLIENT or STANDALONE. If it is not
important, it can be None.

• whiteboardText that describes the Recipe

Here is an example:

 <job>
 <whiteboard>
 Apache 2.2 test
 </whiteboard>
 <recipeset>
 <ecipe kernel_options="" kernel_options_post=""
 ks_meta="" role="None" whiteboard="Lab Controller">
 </recipe>
 </recipeset>
 </job>

Avoid having many Recipes in one Recipe Set
Because Recipes are run simultaneously, not one Recipe will commence until all other
sibling Recipes are ready. This involves each Recipe reserving a machine, and waiting
until every other Recipe has reserved a machine. This can tie up resources and keep
them idle for long amounts of time. Try having many Recipe Sets containing few Recipes,
rather than the opposite. Of course this only applies to Recipes that do not need to be run
simultaneously (i.e not Multihost Jobs)

Within the recipe tag, you can specify what packages need to be installed on top of anything that
comes installed by default.

 <job>
 <whiteboard>

Chapter 3. User Guide

26

 Apache 2.2 test
 </whiteboard>
 <recipeSet>
 <recipe kernel_options="" kernel_options_post=""
 ks_meta="" role="None" whiteboard="Lab Controller">
 <packages>
 <package name="emacs"/>
 <package name="vim-enhanced"/>
 <package name="unifdef"/>
 <package name="mysql-server"/>
 <package name="MySQL-python"/>
 <package name="python-twill"/>
 </packages>
 </recipe>
 </recipeSet>
 </job>

If you would like you can also specify your own repository that provides extra packages that your Job
requires. Use the repo tag for this. You can use any text you like for the name attribute.

 <job>
 <whiteboard>
 Apache 2.2 test
 </whiteboard>
 <recipeSet>
 <recipe kernel_options="" kernel_options_post=""
 ks_meta="" role="None" whiteboard="Lab Controller">
 <packages>
 <package name="emacs"/>
 <package name="vim-enhanced"/>
 <package name="unifdef"/>
 <package name="mysql-server"/>
 <package name="MySQL-python"/>
 <package name="python-twill"/>
 </packages>
 <repos>
 <repo name="myrepo_1" url="http://my-repo.com/tools/
beaker/devel/"/>
 </repos>
 </recipe>
 </recipeSet>
 </job>

To actually determine what distro will be installed, the distroRequires element needs to be populated.
Within, we can specify such elements as distro_arch, distro_name and distro_method. This relates
to the Distro architecture, the name of the Distro, and it's install method (i.e nfs,ftp etc) respectively.
The op determines if we do or do not want this value i.e = means we do want that value, != means we
do not want that value. The distro_virt element will determine whether we install on a virtual machine
or not.

 <job>
 <whiteboard>
 Apache 2.2 test
 </whiteboard>
 <recipeSet>
 <recipe kernel_options="" kernel_options_post=""
 ks_meta="" role="None" whiteboard="Lab Controller">

Process

27

 <packages>
 <package name="emacs"/>
 <package name="vim-enhanced"/>
 <package name="unifdef"/>
 <package name="mysql-server"/>
 <package name="MySQL-python"/>
 <package name="python-twill"/>
 </packages>
 <repos>
 <repo name="myrepo_1" url="http://my-repo.com/tools/
beaker/devel/"/>
 </repos>
 <distroRequires>
 <and>
 <distro_arch op="=" value="x86_64"/>
 <distro_name op="=" value="RHEL5-Server-U4"/>
 <distro_method op="=" value="nfs"/>
 </and>
 <distro_virt op="=" value=""/>
 </distroRequires>
 </recipe>
 </recipeSet>
 </job>

hostRequires has similar attributes to distroRequires

 <job>
 <whiteboard>
 Apache 2.2 test
 </whiteboard>
 <recipeSet>
 <recipe kernel_options="" kernel_options_post=""
 ks_meta="" role="None" whiteboard="Lab Controller">
 <packages>
 <package name="emacs"/>
 <package name="vim-enhanced"/>
 <package name="unifdef"/>
 <package name="mysql-server"/>
 <package name="MySQL-python"/>
 <package name="python-twill"/>
 </packages>
 <repos>
 <repo name="myrepo_1" url="http://my-repo.com/tools/
beaker/devel/"/>
 </repos>
 <distroRequires>
 <and>
 <distro_arch op="=" value="x86_64"/>
 <distro_name op="=" value="RHEL5-Server-U4"/>
 <distro_method op="=" value="nfs"/>
 </and>
 <distro_virt op="=" value=""/>
 </distroRequires>
 <hostRequires>
 <and>
 <arch op="=" value="x86_64"/>
 </and>
 </hostRequires>
 </recipe>
 </recipeSet>
 </job>

Chapter 3. User Guide

28

All that's left to populate our XML with, are the task elements. The two attributes we need to specify
are the name and the role. Details of how to find which Task's are available, see Section 5.5.2, “Task
Searching”. Also note that we've added in a param as a descendant of task. The value of this will be
assigned to a new environment variable specified by name.

 <job>
 <whiteboard>
 Apache 2.2 test
 </whiteboard>
 <recipeSet>
 <recipe kernel_options="" kernel_options_post=""
 ks_meta="" role="None" whiteboard="Lab Controller">
 <packages>
 <package name="emacs"/>
 <package name="vim-enhanced"/>
 <package name="unifdef"/>
 <package name="mysql-server"/>
 <package name="MySQL-python"/>
 <package name="python-twill"/>
 </packages>
 <repos>
 <repo name="myrepo_1" url="http://my-repo.com/tools/
beaker/devel/"/>
 </repos>
 <distroRequires>
 <and>
 <distro_arch op="=" value="x86_64"/>
 <distro_name op="=" value="RHEL5-Server-U4"/>
 <distro_method op="=" value="nfs"/>
 </and>
 <distro_virt op="=" value=""/>
 </distroRequires>
 <task name="/distribution/install" role="STANDALONE">
 <params>
 <param name="My_ENV_VAR" value="foo"/>
 </params>
 </task>
 </recipe>
 </recipeSet>
 </job>

3.2.1.3.1.6.3.4. Job Results
The whole purpose of Jobs is to view the output of the Job, and more to the point, Tasks that ran
within the Job. To do this, you must first go to the Job search screen (Section 5.3.2, “Job Searching”).
After finding the Job you want to see the results of, click on the link in the ID column.You don't have
to wait until the Job has completed to view the results. Of course only the results of those Tasks that
have already finished running will be available.

The Job results page is divided by Recipe Set. To show the results of each Recipe within these
Recipe Sets, click the Show All Results button. You can just show the tasks that have a status of Fail
by clicking Show Failed Results.

While your Job is still Queued it's possible to change the priority. You can change the priority of
individual Recipe Sets by changing the value of Priority, or you can change all the Job's Recipe Sets
at once by clicking an option beside the text Set all RecipeSet priorities, which is at the top right of

Process

29

the page. If successful, a green success message will briefly display, otherwise a red error message
will be shown.

Priority permissions
If you are not an Admin you will only be able to lower the priority. Admins can lower and
raise the priority

Changing the priority of a Job's Recipe Set
Result Details
• Run

• This is the ID of the instance of the particular Task.

• Task
• A Task which is part of our current Job.

• Start
• The time at which the Task commenced.

• Finish
• The time at which the Task completed.

• Duration
• Time the Task took to run.

• Logs
• This is a listing of all the output logs generated during the running of this Task.

• Status
• This is the current Status of the Task. Aborted,Cancelled and Completed mean that the Task

has finished running.

Chapter 3. User Guide

30

• Action
• The two options here are Cancel and Clone.See Section 5.3.3.2, “Cloning an existing Job” to

learn about Cloning.

Viewing Job results at a glance
If you would to be able to look at the Result of all Tasks within a particular Job, try the
Matrix Report, See Section 5.6.1, “Matrix Report”.

3.2.1.3.2. Recipes
Recipes are contained within a Job (although indirectly, as directly they are contained in a Recipe Set)
and are themselves a container for Tasks. There can be more than one Recipe per Job. The purpose
of a Recipe is to group a set of Tasks into a single logical unit.

3.2.1.3.2.1. Recipe Searching
The Recipe search is accessed through the Scheduler at the top of the page, and clicking on the
Recipe link.

Searching for a Recipe
To look up the Recipe ID enter a number into the search box and press the Lookup ID button. See
Section 5.1.1, “System Searching” for details on searching.

Quick Searches
By pressing the Running,Queued, or Completed buttons you can quickly display
Recipes that have a status of running,queued, and completed respectively.

Process

31

3.2.1.3.2.2. Recipe Actions
At any time you may wish to cancel the Recipe, you may press the Cancel link that is placed under
the Action column.

3.2.1.3.3. Tasks
Tasks are the lowest unit in the Job hierarchy, and running a Task is the primary purpose of running a
Job. There purpose is to run one or more commands, and then collect the results of those commands
in a way that other entities can access them. You can run as many or as few Tasks in a Job as you
like.

3.2.1.3.3.1. Creating a Task
To create Tasks the beaker-devel package will need to be installed. From your terminal, type:

$ yum install beaker-devel

Now make a new directory from where you will create the test. Then cd into the newly created folder
and run the following:

 $ beaker-create-new-test
 $ ls -l
 Makefile PURPOSE runtest.sh

Below is a rundown of the files created and how to use them

3.2.1.3.3.1.1. runtest.sh
The core of each Beaker test is a runtest.sh shell script. It performs the testing (or delegates the work
by invoking another script or executable) and reports the results. Either write the code that performs
the test in the runtest.sh shell script or have runtest.sh execute another program that does the bulk of
the work in perhaps another language. Choose a language appropriate to the job (and with which you
are familiar): testing of a library could be written in C, parsing of text streams could be done in Perl,
and GUI scripting in Python. Languages can be mixed and matched as appropriate within a single
test - the runtest.sh script can call other code as necessary. Aim for correctness and readability:
remember that others may have to debug this code if a test is flawed. Here is the example runtest.sh:

 #!/bin/sh

 # Copyright (c) 2006 Red Hat, Inc. All rights reserved. This
 copyrighted
 # material is made available to anyone wishing to use,
 modify, copy, or
 # redistribute it subject to the terms and conditions of the
 GNU General
 # Public License v.2.
 #
 # This program is distributed in the hope that it will be
 useful, but WITHOUT
 # ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS
 # FOR A PARTICULAR PURPOSE. See the GNU General Public License
 for more details.

Chapter 3. User Guide

32

 #
 # You should have received a copy of the GNU General Public
 License
 # along with this program; if not, write to the Free Software
 Foundation, Inc.,
 # 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,USA.

 # Author: Your Name <Your Email>

 beaker-run-simple-test $TEST ./do-my-test.sh

The do-my-test.sh is a rather simple test, seen below, just enough to illustrate the required
components of a task.

 #!/bin/sh
 # simple test example

 ls -al /root/.ssh

The exit code from listing the contents of /root/.ssh will be saved to the $? system variable and
based on this, beaker-run-simple-test will report the failure or success of the Task. So the most
basic Beaker coding requirements are that a shell script must be sourced (beaker-environment.sh)
and the report_result API must be called (this is called in beaker-run-simple-text).The output was
sent to $OUTPUTFILE (in beaker-environment.sh). The Beaker API provides the $OUTPUTFILE
variable so each test can create a log file to record its activities. When run from the command line,
$OUTPUTFILE points to a temporary file in /tmp. When run in a test lab environment, the logs are
stored in a central location. The report_result method is always called to inform the Beaker API of the
success or failure of the test.

3.2.1.3.3.1.2. Makefile
A standard Beaker Makefile coordinates many aspects of developing and running a Beaker test:
• compiling test executables.

• packaging test files into a single RPM.

• downloading external source files for use in the test.

• collect test files into a known location for execution.

• running tests

A sample Makefile is copied into the local directory when beaker-create-new-test tool is invoked (or
can be found at /usr/share/doc/beaker-devel-2.6/Makefile.template). The Makefile sets up certain
targets and defines variables necessary for test execution and reporting. It is best to use this example
when writing a new test, copying and modifying it as necessary. So for example, in order to have an
executable compiled by the Makefile, the following two lines were changed.

 BUILT_FILES=do-my-test
 FILES=$(METADATA) runtest.sh Makefile PURPOSE do-my-test.c

Process

33

When make run is typed, the Makefile will compile do-my-test.cintodo-my-test and run runtest.sh,
which will then execute do-my-test. You do not have to enter anything in the BUILT_FILES directive if
you are not compiling an executable. Also be sure to fill in the following section:

 # The toplevel namespace within which the test lives.
 # FIXME: You will need to change this:
 TOPLEVEL_NAMESPACE=

 # The name of the package under test:
 # FIXME: you wil need to change this:
 PACKAGE_NAME=

 # The path of the test below the package:
 # FIXME: you wil need to change this:
 RELATIVE_PATH=

Those three place holders will be used to determine how your Task is named in Beaker, and also
how it's mounted on a test System. It will be called /TOPLEVEL_NAMESPACE/PACKAGE_NAME/
RELATIVE_PATH and it will be mounted the same in the /mnt/tests directory on a test System.

3.2.1.3.3.1.3. PURPOSE
The test code directory contains a plain text file calledPURPOSE which explains what the test
addresses along with any other information useful for troubleshooting or understanding it better.
The PURPOSE file has no minimum or maximum length but should provide useful information. For
example:

 $ cat PURPOSE
 This trivial test compiles a .c file, runs the resulting code,
 and checks that the output is as expected.

 It is intended as a simple example of how to write a test that
 compiles source code to a binary and reports a single result using beaker-run-simple-test

 It can also be used as a primitive smoketest for the compiler.

3.2.1.3.3.1.4. Packaging
Before we can add a new Task to Beaker we need to package it. Firstly, you're able to run the task
locally (if it makes sense) to ensure that the task operates as expected. If you would like to run the
task locally:

 $ make run
 chmod a+x ./runtest.sh
 ./runtest.sh
 /tmp/simple_test/do-my-test.sh
 Running ./do-my-test.sh As root:
 total 48
 drwx------ 2 root root 4096 Dec 15 08:41 .
 drwxr-x--- 24 root root 12288 Jun 2 14:57 ..
 -rw------- 1 root root 415 Dec 13 19:12 authorized_keys
 -rw-r--r-- 1 root root 8630 May 25 09:42 known_hosts
 ...finished running ./do-my-test.sh, exit code=0

Chapter 3. User Guide

34

 /// result: PASS
 Log: /tmp/tmp.c24401

Once you're happy it works as expected, you can run the following:

Tagging
If you wish to, and your Task is revisioned with git or CVS, you can increase the version of
the package with the following command:

$ make tag

3.2.1.3.3.2. Task Searching
To search for a Task, go to Scheduler>Task Library at the top of the page. The default search is on
the Name property, with the contains operator. See Section 5.1.1, “System Searching” for search
details.

Once you've found a particular Task, you can see its details by clicking on the Link in the Name
column.

It's also possible to search on the history of the running of Tasks. This is made possible by the
Executed Tasks search, which is accessed by clicking on a task.

3.2.1.3.3.3. Adding a New Task
To add a Task which has already been packaged, click Scheduler>New Task. You will need to click on
Browse to locate your Task, and then add it with the Submit Data button. See also Chapter 2, Beaker
client for adding a task via the beaker client.

3.2.1.3.4. Reports
Beaker offers a few different reports. They can be accessed from the Reports menu at the top of the
page. The Reserve report will give reservation details of Systems that are currently in use. The other
report offered is the Matrix report.

3.2.1.3.4.1. Matrix Report
The Matrix report gives a user an overall picture of results for any given Job, or number of Jobs
combined. It shows a matrix of Tasks run and the Arch that they were run on. The Reports->Matrix is
accesable from the top menu.

Process

35

Generating a Matrix report from the Job's Whiteboard
There are two ways of defining what Job results to display. You can select the Job by its Whiteboard,
or by its Job ID. To show a Job's Matrix report from its Whiteboard, click on the Whiteboard text in the
Whiteboard select box. If you wish to select the Job by its ID, enter the Job ID into the Job ID text
area. The Job Whiteboard and the Job ID are mutually exclusive when generating the Matrix report. To
change between the two, click on their respective input areas. Click the Generate button to create the
report.

Filtering Whiteboards
You can filter what is displayed in the Whiteboard select box by typing text into the Filter
Whiteboard field, and then clicking anywhere outside the field.

Displaying reports of any combination of Jobs
Displaying the Matrix reports of any Jobs together, is possible when selecting by Job ID.
Enter in all the relevant Job IDs seperate by whitespace or a newline.

Chapter 3. User Guide

36

Generating a Matrix report from the Job ID
The generated Matrix report shows the result of each Task with its corresponding Arch and Recipe
Whiteboard. The points in the matrix describe the result of the Task, and how many occurences of
that result there are. Clicking on these results will take you to the Executed Tasks page. See Section
5.5.2, “Task Searching”.

Viewing the result of one or more Jobs via the Matrix report

Process

37

3.2.1.3.5. Groups
To have one or more Users grouped together, Beaker uses Groups. Systems can belong to one or
more Groups.

3.2.1.3.5.1. Adding a Group
Groups can only be created/edited by a User in the Admin Group. To add a new Group go to Admin-
>Groups and click the Add(+) link at the bottom left. You'll then be prompted to enter a Display
Name and a Group Name. The former is the name that users of Beaker will see, and the latter is the
name used internally. It's fine to have these names the same, or different.

3.2.1.4. Test Architecture Considerations
If you want your test to be smart, that intelligence must be in the test; the Beaker API can help. A test
running in an automated environment does not have intelligence, hunches, or the ability to notice
unusual activity. This intelligence must be programmed into the test. Naturally the return on investment
for time required to add this intelligence should be considered, however the more intelligence a test
has to handle false failures and false passes, the more valuable the automation is to the entity running
it. Contrasted with manual testing where tests are run on a local workstation and suspicious results
can be investigated easily, many organizations find that well written tests which can be trusted save
time that can be used for any number of other activities.

Questions to consider
• What is needed for a test run to return PASS?

• What is needed for a test run to return FAIL?

• How will PASS and FAIL conditions be determined pragmatically?

• If it is not possible for a test to ever FAIL, does it make sense to automate it?

Things to Keep in Mind
• Assume that nothing works:

• The test could be running in an unstable test environment.

• The package under test might be broken.

• An apparently-unrelated component might cause your test to fail in an unexpected way.

• The system might not be configured in the manner in which you expect.

• The test may be buggy, reporting false positives or false negatives.

• Identifying potential problem sections in a test can save someone, possibly you, hours of debugging
time.

Writing Good Test Code
• Check everything: all exit statuses, return values from function calls, etc. Unfortunately there are

plenty of programs which return success codes even when a failure occurs.

• Capture all debug output that might indicate an error; it may give clues as to what is going wrong
when a test fails.

Chapter 3. User Guide

38

• Comment your tests; good comments should describe the intent of what you are doing, along with
caveats being followed, rather than simply parroting the code back as pseudo code.

• In most (ideally all) situations a test should report true PASS and FAIL results, but test code is still
code, and will invariably contain bugs.

• Program defensively so that errors in test code report false FAIL results rather than false PASSes.
For example, initialize a result variable to FAIL and only set it to PASS if no errors are detected.

• Do not initialize a variable to PASS which fails only on a specific error & mdash;what if you missed
another error? What if the shell function you called failed to execute?

• It is easier to investigate and fix a failed test than a test that always passes (which it should not be).

3.2.1.5. Reporting Results
The philosophy of Beaker is that the engineers operating the system will want to quickly survey large
numbers of tests, and thus the report should be as simple and clear as possible. "PASS" indicates that
everything completed as expected. "FAIL" indicates that something unexpected occurred.

In general, a test will perform some setup (perhaps compiling code or configuring services), attempt
to perform some actions, and then report on how well those actions were carried out. Some of these
actions are your responsibility to capture or generate in your script:
• a PASS or FAIL and optionally a value indicating a test-specific metric, such as a performance

figure.

• a debug log of information & mdash;invaluable when troubleshooting an unexpected test result. A
test can have a single log file and report it into the root node of your results tree, or gather multiple
logs, reporting each within the appropriate child node.

Other components of the result can be provided automatically by the framework when in a test lab
environment:
• the content of the kernel ring buffer (from dmesg). Each report clears the ring buffer, so that if your

test reports multiple results, each will contain any messages logged by the kernel since the last
report was made.

• a list of all packages installed on the machine under test (at the time immediately before testing
began), including name, version/release, and architecture.

• a separate report of the packages listed in the RunFor of the metadata including name, version/
release, and architecture (since these versions are most pertinent to the test run).

• if a kernel panic occurs on the machine under test, this is detected for you from the console log
output, and will cause an Abort Panic result in place of a PASS or FAIL for that test.

In addition, the Beaker framework provides a hierarchical namespace of results, and each test is
responsible for a subtree of this namespace. Many simple tests will only return one result (the node
they own), but a complex test can return an entire subtree of results as desired. The location in the
namespace is determined by the value of variables defined in the Makefile. These variables will be
discussed in the Packaging section.

A test may be testing a number of related things with a common setup (e.g. a setup phase of a server
package onto localhost, followed by a collection of tests as a client). Some of these things may not

Process

39

work across every version/architecture combination. This will produce a list of "subresults", each of
which could be classified as one of:
• expected success: will lead to a PASS if nothing else fails

• expected failure: should be as a PASS (as you were expecting it).

• unexpected success: can be treated as a PASS (since it's a success), or a FAIL (since you were not
expecting it).

• unexpected failure: should always be a FAIL

Given that there may be more than one result, the question arises as to how to determine if the whole
test passes or fails. One way to verify regression tests is to write a script that compares a set of
outputs to an expected "gold" set of outputs which grants PASS or FAIL based on the comparison.

It is possible to write a script that silently handles unexpected successes, but it is equally valid for
a script to report a FAIL on an unexpected success, since this warrants further investigation (and
possible updating of the script).

To complicate matters further, expected success/failure may vary between versions of the package
under test, and architecture of the test machine.

If the test is checking multiple bugs, some of which are known to work, and some of which are due to
be fixed in various successive (Fedora) updates, ensure that the test checks everything that ought to
work, reporting PASS and FAIL accordingly. If the whole test is reporting a single result, it will typically
report this by ensuring that all expected things work; as bugs are fixed, more and more of the test is
expected to work and can cause an overall FAIL.

If it is reporting the test using a hierarchy of results, the test can have similar logic for the root node,
and can avoid reporting a result for a subtree node for a known failure until the bug is fixed in the
underlying packages, and avoid affecting the overall result until the bug(s) is fixed.

As a general Beaker rule of thumb, a FAIL anywhere within the result subtree of the test will lead to the
result for the overall test being a FAIL.

3.2.1.5.1. Logging Tips
Indicate failure-causing conditions in the log clearly, with "FAIL" in upper case to make it easier to grep
for.

Good log messages should contain three things: # what it is that you are attempting to do (e.g.
checking to see what ls reports for the permission bits that are set on file foo) # what it is that you
expect to happen (e.g. an expectation of seeing "-rw-r--r--") # what the actual result was an example
of a test log showing success might look like:

 Checking ls output: "foo" ought to have permissions "-rw-r--r--"
 Success: "foo" has permissions: "-rw-r--r--"

An example of a failure might look like:

 Checking ls output: "foo" ought to have permissions "-rw-r--r--"
 FAIL: ls exit status 2

Chapter 3. User Guide

40

For multihost tests, time stamp all your logs, so you can interleave them.

Use of tee is also helpful to ensure that the output at the terminal as you debug a test is comparable to
that logged from OUTPUTFILE in the lab environment.

Past experiences has shown problems where people confuse overwriting versus appending when
writing out each line of a log file. Use tee -a $OUTPUT rather than tee > $OUTPUT or tee >>
$OUTPUT.

Include a final message in the log, stating that this is the last line, and (for a single-result test) whether
the result is a success or failure; for example:

 echo "----- Test complete: result=$RESULT -----" | tee -a
 $OUTPUTFILE

Finish your runtest.sh: (after the report_result) to indicate that the final line was reached; for example:

 echo "***** End of runtest.sh *****"

3.2.1.5.2. Passing Parameters to Tests
When you need a test to perform different steps in some specific situations there is an option available
through Single package workflow command line interface called --test-params which allows you to
pass the supplied parameter to runtest.sh where you can access it by TEST_PARAM_NAME=value.

For example you can launch the single workflow with a commandline like this:

single_package.py ... -t /some/test/name --test-params="PAR1=val1" --test-params="PAR2=val2"

And then make use of the passed parameter inside the runtest.sh script:

if [[TEST_PARAM_PAR1 == 1]] ; then do something; fi

3.2.1.6. Unassimilated or Unfinished content

3.2.1.6.1. Using the startup_test function
The startup_test function can be used to provide a primitive smoketest of a program, by setting a shell
variable named result. You will need to use report_result if you use it. The syntax is:

startup_test program [arg1] [arg2] [arg3]

The function takes the name of a program, along with up to three arguments. It fakes an X server
for the test by ensuring that Xvfb is running (and setting DISPLAY accordingly), then enables core-

Process

41

dumping, and runs the program with the arguments provided, piping standard output and error into
OUTPUTFILE (overwriting, not appending).

The function then checks various things:
• any Gtk-CRITICAL warnings found in the resulting OUTPUTFILE cause result to be WARN.

• that the program can be found in the PATH, using the which command; if it is not found it causes
result to be FAIL, appending the problem to OUTPUTFILE

• for binaries, it uses ldd to detect missing libraries; if any are missing it causes result to be FAIL,
appending the problems to OUTPUTFILE

• if any coredumps are detected it causes result to be FAIL

Finally, it kills the fake X server. You then need to report the result.

 #!/bin/sh

 # source the test script helpers
 . /usr/bin/beaker-environment.sh

 # ---- do the actual testing ----
 result=PASS 1
 startup_test /usr/bin/evolution
 report_result $TEST $result 2

Normally it's a bad idea to start with a PASS and try to detect a FAIL, since an unexpected error that
prevents further setting of the value will lead to a false PASS rather than a false FAIL. Unfortunately in
this case the startup_test function requires it.

report_result $TEST $result

We report the result, using the special result shell variable set by startup_test

3.2.1.7. Writing and Running Multihosts Tests
All of the examples so far have run on a single host. Beaker has support for tests that run on multiple
hosts, e.g. for testing the interactions of a client and a server.

When a multihost test is run in the lab, a machine will be allocated to each role in the test. Each
machine has its own recipe. Multihost testing requires the concept of a recipe set: all of the per-
machine recipes within a particular multihost test that go together to form the test as a whole.

Each machine under test will need to synchronize to ensure that they start the test together, and may
need to synchronize at various stages within the test. Beaker has three notional roles: client, server
and driver.

For many purposes all you will need are client and server roles. For a test involving one or more
clients talking to one or more servers, a typical approach would be for the clients to block whilst the
servers get ready. Once all servers are ready, the clients perform whatever testing they need, using
the services provided by the server machines, and eventually report results back to Red Hat Test
System Whilst this is happening the server tests block; the services running on these machines are

Chapter 3. User Guide

42

carrying out work for the clients in parallel. Once all clients have finished testing, the server tests
finish, and report their results.

Each participant in a test will be reporting results within the same job, and so must report to different
places within the result hierarchy. For example, the server part of the test may PASS if it survives the
load, but the client part might FAIL upon, say, getting erroneous data from the server; this would lead
to an overall FAIL for the test.

If you have a more complex arrangement, it is possible to have a driver machine which controls all of
the testing. Talk to Red Hat Quality Engineering if you need to do this.

All of the participants in a multihost test share a single runtest.sh, which must perform every role
within the test (e.g. the client role and server role). When a multihost test is run in the lab, the
framework automatically sets environment variables to allow the various participants to know what
their role should be, which other machines they should be talking to, and what roles those other
machines are performing in the test. You will need to have logic in your runtest.sh to examine these
variables, and perform the necessary role accordingly. These variables are shared by all instances of
the runtest.sh within a recipeset:
• CLIENTS contains a space-separated list of hostnames of clients within this recipeset.

• SERVERS contains a space-separated list of hostnames of servers within this recipeset.

• DRIVER is the hostname of the driver of this recipeset, if any.

The variable HOSTNAME can be used by runtest.sh to determine its identity. It is set by beaker-
environment.sh, and will be unique for each host within a recipeset.

Your test can thus decide whether it is a client, server or driver by investigating these variables: see
the example below.

When you are developing your test outside the lab environment, only HOSTNAME is set for you (when
sourcing the beaker-environment.sh script). Typically you will copy your test to multiple development
machines, set up CLIENTS, SERVERS and DRIVER manually within a shell on each machine, and
then manually run the runtest.sh on each one, debugging as necessary.

A multihost test needs to be marked as such in the Type: Multihost.

3.2.1.7.1. Synchronization Commands
Synchronization of machines within a multihost test is performed using per-host state strings managed
on the Red Hat Test System server. Each machine's starting state is the empty string.

beaker-sync-set -s state

The beaker-sync-set command sets the state of this machine within the test to the given value.

beaker-sync-block -s state [hostnames...]

The beaker-sync-block command blocks further execution of this instance of the script until all of the
listed hosts are in the given state.

Unfortunately, there is currently no good way to run these commands in the standalone helper
environment.

Process

43

3.2.1.7.1.1. Example of a runtest.sh for a multihost test

 #!/bin/sh
 # Source the common test script helpers
 . /usr/bin/beaker_environment.sh

 # Save STDOUT and STDERR, and redirect everything to a file.
 exec 5>&1 6>&2
 exec >> "${OUTPUTFILE}" 2>&1

 client()
 {
 echo "-- wait the server to finish."
 beaker_sync_block -s "DONE" ${SERVERS}

 user="finger1"
 for i in ${SERVERS}
 do
 echo "-- finger user \"$user\" from server
 \"${i}\"."
 ./finger_client "${i}" "${user}"
 # It returns non-zero for failure.
 if [$? -ne 0]; then
 beaker_sync_set -s "DONE"
 report_result "${TEST}" "FAIL" 0
 exit 1
 fi
 done

 echo "-- client finishes."
 beaker_sync_set -s "DONE"
 result="PASS"
 }

 server()
 {
 # Start server and check it is up and running.
 /sbin/chkconfig finger on && sleep 5
 if ! netstat -a | grep "finger" ; then
 beaker_sync_set -s "DONE"
 report_result "${TEST}" "FAIL" 0
 exit 1
 fi
 useradd finger1
 echo "-- server finishes."
 beaker_sync_set -s "DONE"
 beaker_sync_block -s "DONE" ${CLIENTS}
 result="PASS"
 }
 # ---------- Start Test -------------
 result="FAIL"
 if echo "${CLIENTS}" | grep "${HOSTNAME}" >/dev/null; then
 echo "-- run finger test as client."
 TEST=${TEST}/client
 client
 fi
 if echo "${SERVERS}" | grep "${HOSTNAME}" >/dev/null; then
 echo "-- run finger test as server."
 TEST=${TEST}/server
 server
 fi
 echo "--- end of runtest.sh."
 report_result "${TEST}" "${result}" 0

Chapter 3. User Guide

44

 exit 0

3.2.1.7.1.2. Tuning up multihost tests
Multihost tests can be easily tuned up outside Beaker using following code snippet based on $JOBID
variable (which is set when running in Beaker environment). Just log in to two machines (let's say:
client.redhat.com and server.redhat.com) and add following lines at the beginning of your runtest.sh
script.

 # decide if we're runnig on Beaker or in developer mode
 if test -z $JOBID ; then
 echo "Variable JOBID not set, assuming developer mode"
 CLIENTS="client.redhat.com"
 SERVERS="server.redhat.com"
 else
 echo "Variable JOBID set, we're running on Beaker"
 fi
 echo "Clients: $CLIENTS"
 echo "Servers: $SERVERS"

Then you just run the script on both client and server. When scripts reach one of the synchronization
commands (beaker-sync-set or beaker-sync-block) you will be asked for supplying actual state of the
client/server by keyboard (usually just confirm readiness by hitting Enter). That's it! :-)

3.2.1.8. Beaker Makefile
This guide provide in depth information for the required and optional Makefile variables in an Beaker
test. A sample Makefile is copied into the local directory when beaker-create-new-test tool is invoked
(or can be found at /usr/share/doc/beaker-devel-x.y/Makefile.template).

3.2.1.8.1. PACKAGE NAME

The name of the package under test:
 PACKAGE_NAME=gcc

The package under test is the common command or executable being tested. This must be the
name of an installable RPM in the distribution. If the focus of your test is a third party application, set
PACKAGE_NAME equal to the primary package used by the third party application. For example, if
you are writing a Beaker test to test a web application based on CGI, set PACKAGE_NAME to perl.

3.2.1.8.2. TOPLEVEL NAMESPACE

The toplevel namespace within which the test lives.
 TOPLEVEL_NAMESPACE=CoreOS

The Makefile contains three hierarchies resembling file systems, each with their own collections of
paths. In order to ensure consistency between test creators and tests, the provided Makefile should
be used to manage these hierarchies. Thus, the scheme in the Makefile template does all the work.

Process

45

For clarity, it is worth noting the hierarchies at this time:
• installation tests are built as packages for clean deployment on test machines. More than one test

can be run on a given machine, so there is a hierarchy below /mnt/tests which keeps the files of the
individual tests separate from each other. This is set in each test's Makefile.

• result namespace a hierarchical namespace for results. For example, tests relating to the kernel
report their results somewhere within the /kernel subtree, and tests relating to the NFS file system
(as a part of the kernel) report their results inside /kernel/filesystems/nfs/. Each test "owns" a
subtree of the namespace, specified by the Name: field of the metadata. Many tests report only a
single result, but it is possible for a test to write out a complex hierarchy of results below its subtree.

The following top level reporting namespaces are predefined and should used to ensure consistent
reporting of test results. These are the only valid accepted namespaces.
• distribution contains tests that involve the distribution as a whole, or a large number of packages,

for example /distribution/standards/posixtestsuite

• kernel contains tests results relating to the kernel, for example /kernel/xen/xm/dmesg
• The kernel namespace is unique in that it is also the name of a package. In this case it is usually

best to define the TOPLEVEL_NAMESPACE like this:

The toplevel namespace definition for kernel tests
 TOPLEVEL_NAMESPACE=$(PACKAGE_NAME)

• Desktop contains tests results relating to desktop packages, for example /desktop/evolution/first-
time-wizard-password-settings, which is a specific test relating to evolution

• Tools contains tests results relating to the tool chain, for example /tools/gcc/testsuite/3.4

• CoreOS all test results relating to user-space packages not covered by any of the above
namespaces

• Examples example tests that illustrate usage and functionality and are not activly maintained. This
is a good place to experiment when you are getting hang of Beaker or to place simple examples to
help others.

3.2.1.8.3. RELATIVE PATH

 # The path of the test below the package:
 RELATIVE_PATH=example-compilation

An implementation of Beaker should run the test from the directory containing the runtest.sh, as listed
in the RELATIVE_PATH file of the Makefile. If the test needs to move around, store this somewhere
with DIR=`pwd` or use pushd and popd.

3.2.1.8.4. TESTVERSION

 # Version of the Test. Used with make tag.
 export TESTVERSION=1.0

Chapter 3. User Guide

46

This is used when building a package of a test, and provides the "version" component of the RPM
name-version-release triplet.
• The value must be valid as an RPM version string.

• It may consist of numbers, letters, and the dot symbol.

• It may not include a dash symbol this is used by RPM to delimit the version string within the name-
version-release triplet.

When writing a test from scratch, use 0.1 and increment gradually until the test has reached a level
of robustness to merit a "1.0" release. When wrapping a test from an upstream location, use the
upstream version string here, as closely as possibly given the restrictions on valid characters. The
version should be incremented each time a change is made to the Makefile or test files and a RPM is
created from these files to be publicly consumed in a test review or submission to a lab scheduler.

3.2.1.8.5. TEST

 # The compiled namespace of the test.
 export TEST=$(TOPLEVEL_NAMESPACE)/$(PACKAGE_NAME)/$(RELATIVE_PATH)

This variable defines the path to a test. This path should also be the same in source control.

3.2.1.8.6. BUILT_FILES

BUILT_FILES=hello-world

List the files that need to be compiled to be used in the test.

3.2.1.8.7. FILES=$(METADATA)

 FILES=$(METADATA) runtest.sh Makefile PURPOSE hello-world.c \
 verify-hello-world-output.sh

List all of the files needed to run the test to insure that there are no packaging errors when the test is
built binaries should be pulled in via BUILT_FILES.

3.2.1.8.8. Targets
Each test must supply a run target which allows an implementation of the framework to invoke
make run. It is usually best to have this as the first target defined in the Makefile so that a simple
invocation of make will use it as the default, and run the test. Note how the build target is set up as a
dependency of run to ensure that this happens if necessary.

Additional targets and variables supplied by the include for /usr/share/beaker/lib/beaker-
make.include. This file is supplied with beaker-devel as seen below.

 [root@dhcp83-5 example-compilation]# cat /usr/share/beaker/lib/
beaker-make.include

Process

47

 # Copyright (c) 2006 Red Hat, Inc. All rights reserved. This
 copyrighted material l
 # is made available to anyone wishing to use, modify, copy, or
 # redistribute it subject to the terms and conditions of the GNU
 General
 # Public License v.2.
 #
 # This program is distributed in the hope that it will be useful,
 but WITHOUT AN Y
 # WARRANTY; without even the implied warranty of MERCHANTABILITY
 or FITNESS FOR A
 # PARTICULAR PURPOSE. See the GNU General Public License for more
 details.
 #
 # You should have received a copy of the GNU General Public
 License
 # along with this program; if not, write to the Free Software
 # Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
 02110-1301, USA.
 #
 # Author: Greg Nichols <gnichols@redhat.com>

 #
 # beaker-make.include
 #
 # default rules and settings for beaker makefiles
 #

 # Common Variables.
 TEST_DIR=/mnt/tests$(TEST)
 INSTALL_DIR=$(DEST)$(TEST_DIR)
 METADATA=testinfo.desc

 # tag: mark the test source as a release

 tag:
 beaker-mk-tag-release

 release: tag

 # prep: prepare the test(s) for packaging

 install: $(FILES) runtest.sh testinfo.desc
 mkdir -p $(INSTALL_DIR)
 cp -a $(FILES) Makefile $(INSTALL_DIR)
 install -m 0755 runtest.sh $(INSTALL_DIR)

 # package: build the test package

 package:
 beaker-mk-build-package

 # submit: submit the test package to Beaker

 submit:
 beaker-mk-build-package -s $(TESTSERVER)

 ##
 # example makefile
 #
 # include ~/devel/beaker/greg/beaker_nb/make.include
 #
 # FILES=prog1.c prog2.c

Chapter 3. User Guide

48

 #
 # ARENA=$(DEST)/mnt/tests/glibc/double-free-exploit
 #
 # install:
 # mkdir -p $(ARENA)
 # cp -a runtest.sh $(FILES) $(ARENA)
 #
 # run: tests
 # runtest.sh
 #
 # tests: prog2 prog2

The tag target is used to tag a package in anticipation of submitting it to a test lab.

The submit target is used to submit a package to a test lab and requires the TESTSERVER variable
to be defined. It builds an RPM of the test (if necessary) and uploads the test package to a test lab
controller where it can be used to schedule tests.

3.2.1.8.9. $(METADATA)
Following is an example of the METADATA section needed to execute a basic test. Following
subsections will comment briefly on the values that must be set manually (not set by variables) and
optional values to enhance test reporting and execution.

 $(METADATA): Makefile
 @touch $(METADATA)
 @echo "Owner: David Malcolm
 <dmalcolm@redhat.com>" > $(METADATA)
 @echo "Name: $(TEST)" >> $(METADATA)
 @echo "Path: $(TEST_DIR)" >> $(METADATA)
 @echo "License: GPLv2" >> $(METADATA)
 @echo "TestVersion: $(TESTVERSION)" >>
 $(METADATA)
 @echo "Description: Ensure that compiling a
 simple .c file works as expected" >> $(METADATA)
 @echo "TestTime: 1m" >> $(METADATA)
 @echo "RunFor: $(PACKAGE_NAME)" >>
 $(METADATA) # add any other packages for which your test ought to run here
 @echo "Requires: $(PACKAGE_NAME)" >>
 $(METADATA) # add any other requirements for the script to run here

3.2.1.8.10. Owner
Owner: (optional) is the person responsible for this test. Initially for Beaker, this will be whoever
committed the test to Subversion. A naming policy may have to be introduced as the project develops.
Acceptable values are a subset of the set of valid email addresses, requiring the form: Owner: human
readable name <username@domain>.

3.2.1.8.11. Name
Name: (required) It is assumed that any result-reporting framework will organize all available tests into
a hierarchical namespace, using forward-slashes to separate names (analogous to a path). This field
specifies the namespace where the test will appear in the framework, and serves as a unique ID for
the test. Tests should be grouped logically by the package under test. This name should be consistent

Process

49

with the name used in source control too. Since some implementations will want to use the file system
to store results, make sure to only use characters that are usable within a file system path.

3.2.1.8.12. Description
Description (required) must contain exactly one string.

For example:

 Description: This test tries to map five 1-gigabyte files with a
 single process.
 Description: This test tries to exploit the recent security issue
 for large pix map files.
 Description: This test tries to panic the kernel by creating
 thousands of processes.

3.2.1.8.13. TestTime
Every Makefile must contain exactly one TestTime value. It represent the upper limit of time that the
runtest.sh script should execute before being terminated. That is, the API should automatically fail
the test after this time period has expired. This is to guard against cases where a test has entered an
infinite loop or caused a system to hang. This field can be used to achieve better test lab utilization by
preventing the test from running on a system indefinitely.

The value of the field should be a number followed by either the letter "m" or "h" to express the time in
minutes or hours. It can also be specified it in seconds by giving just a number. It is recommended to
provide a value in minutes, for readability.

The time should be the absolute longest a test is expected to take on the slowest platform supported,
plus a 10% margin of error. It is usually meaningless to have a test time of less than a minute, since
some implementations of the API may be attempting to communicate with a busy server such as
writing back to an NFS share or performing an XML-RPC call.

For example:

 TestTime: 90 # 90 seconds
 TestTime: 1m # 1 minute
 TestTime: 2h # 2 hours

3.2.1.8.14. Requires
Requires one or more. This field indicates the packages that are required to be installed on the
test machine for the test to work. The package being tested is automatically included via the
PACKAGE_NAME variable. Anything runtest.sh needs for execution must be included here.

This field can occur multiple times within the metadata. Each value should be a space-separated list
of package names, or of Kickstart package group names preceded with an @ sign. Each package or
group must occur within the distribution tree under test (specifically, it must appear in the comps.xml
file).

For exmaple:

Chapter 3. User Guide

50

 @echo "Requires: gdb" >> $(METADATA)
 @echo "Requires: @legacy-software-development" >>
 $(METADATA)
 @echo "Requires: @kde-software-development" >> $(METADATA)
 @echo "Requires: -pdksh" >> $(METADATA)

The last example above shows that we don't want a particular package installed for this test. Normally
you shouldn't have to do this unless the package is installed by default.

In a lab implementation, the dependencies of the packages listed can be automatically loaded using
yum.

Note that unlike an RPM spec file, the names of packages are used rather than Provides:
dependencies. If one of the dependencies changes name between releases, one of these approaches
below may be helpful:
• for major changes, split the test, so that each release is a separate test in a sub-directory, with the

common files built from a shared directory in the Makefile.

• if only a dependency has changed name, specify the union of the names of dependencies in the
Requires: field; an implementation should silently ignore unsolvable dependencies.

• it may be possible to work around the differences by logic in the section of the Makefile that
generates the testinfo.desc file.

When writing a multihost test involving multiple roles client(s) and server(s), the union of the
requirements for all of the roles must be listed here.

3.2.1.8.15. BeakerRequires
BeakerRequires one or more. This field indicates the other beaker tests that are required to be
installed on the test machine for the test to work.

This field can occur multiple times within the metadata. Each value should be a space-separated list of
Beaker Test RPM name without the version or .rpm. Each Test must exist on the Beaker Scheduler.

For example:

@echo "BeakerRequires: rh-tests-distribution-hts-common" >> $(METADATA)

3.2.1.8.16. RunFor
RunFor allows for the specification of the packages which are relevant for the test. This field is the
hook to be used for locating tests by package. For example, when running all tests relating to a
particular package[1], an implementation should use this field. Similarly, when looking for results on a
particular package, this is the field that should be used to locate the relevant test runs.

When testing a specific package, that package must be listed in this field. If the test might reasonably
be affected by changes to another package, the other package should be listed here. If a package
changes name in the various releases of the distribution, all its names should be listed here.

This field is optional; and can occur multiple times within the metadata. The value should be a space-
separated list of package names.

Process

51

3.2.1.8.17. Releases
Some tests are only applicable to certain distribution releases. For example, a kernel bug may only
be applicable to RHEL3 which contains the 2.4 kernel. Limiting the release should only be used when
a test will not execute on a particular release. Otherwise, the release should not be restricted so that
your test can run on as many different releases as possible.
• Valid Releases are:

• RedHatEnterpriseLinux3

• RedHatEnterpriseLinux4

• RedHatEnterpriseLinuxServer5

• RedHatEnterpriseLinuxClient5

• FedoraCore6

• Fedora7

• Fedora8

• Releases can be used in two ways:
• specifying releases you want run your test for : For example, if you want to run your test on

RHEL3 and RHEL4 only, add "Releases: RedHatEnterpriseLinux3 RedHatEnterpriseLinux4" to
your Makefile METADATA variable, i.e.:

 ...
 @echo "Requires: openldap-servers" >>
 $(METADATA)
 @echo "Releases: RedHatEnterpriseLinux3
 RedHatEnterpriseLinux4" >> $(METADATA)
 @echo "Priority: Normal" >> $(METADATA)
 ...

• specifiying releases you don't want run your test for (using "-" sign before given releases): For
example, if you don't want to run your test on RHEL3, but the other releases are valid for your
test, add "Releases: -RedHatEnterpriseLinux3" to your Makefile METADATA variable, i.e.:

 ...
 @echo "Requires: openldap-servers" >>
 $(METADATA)
 @echo "Releases: -RedHatEnterpriseLinux3" >>
 $(METADATA)
 @echo "Priority: Normal" >> $(METADATA)
 ...

3.2.1.9. Virtualization Workflow
Virtualization workflow is designed to take advantage all Beaker offers to be used for virtualization
testing. The audience of this tutorial is expected to have basic familiarity with Beaker.

Virtualization testing framework in Beaker utilizes libvirt tools, particularly virt-install program to have a
framework abstracted from the underlying virtualization technology of the OS. The crux of virtualization

Chapter 3. User Guide

52

test framework is guestrecipe. Each virtual machine is defined in its own guestrecipe and guestrecipes
are a part of the host's (dom0) recipe. To illustrate, let's say, we would like to create a job that will
create a host and 2 guests, named guest1 and guest2 respectively. The skeleton of the recipe will look
like this:

 <recipe>
 ...
 (dom0 test recipe)
 ...
 <guestrecipe guestname="guest1">
 ...
 (guest1 test recipe)
 ...
 </guestrecipe>
 <guestrecipe guestname="guest2">
 ...
 (guest2 test recipe)
 ...
 </guestrecipe>

 </recipe>

xml syntax workflows example can be found here: Section 3.2.1.3.1.6.1, “Job Workflow”

Anything that can be described inside a recipe can also be described inside a guestrecipe. This allows
the testers to run any existing Beaker test inside the guest just like it'd be run inside a baremetal
machine.

When Beaker encounters a guestrecipe it does create an environmental variable to be passed on to
virtinstall test. The tester-supplied elements of this variable all come from the guestrecipe element.
Consequently, it's vital that the tester fully understand the properties of this element. guestrecipe
element guestname and guestargs elements. guestname is the name of the guest you would like to
give and is optional. If you omit this property then the Beaker will assign the hostname of the guest as
the name of the guest. guestargs is where you define your guest. The values given here will be same
as what one would pass to virt-install program with the following exceptions:
• Name argument must not be passed on inside guestargs. As mentioned above, it should be passed

with guestname property..

• Other than name , -mac, -location, -cdrom (-c) , and -extra-args ks= must not be passed. Beaker
does those based on distro information passed inside the guestrecipe.

• In addition to what can be passed to virt-install, extra arguments -lvm or -part or -kvm can also be
passed to guestargs, to indicate lvm-based or partition- based guests or kvm guests (instead of xen
guests).

• If neither one of -lvm or -part options are given, then a filebased guest will be installed. If -kvm
option is not given then xen guests will be installed. See below for lvm-,partition-based guests
section for more info on this topic.

• The virtinstall test is very forgiving for the missed arguments, it'll use some default when it can.
Currently these arguments can be omitted:
• -ram or -r , a default of 512 is used

• 1.-nographics or -vnc, if the guest is a paravirtualized guest, then -nographics option will be used,
if the guest is an hvm guest, then -vnc option will be used.

Process

53

• 1.-file-size or -s, a default of 10 will be used.

• -file or -f, if the guest is a filebased guest, then the default will be /var/lib/xen/images/
${guestname}.img . For lvm-based and block-device based guest, this option MUST be provided.

3.2.1.9.1. KVM vs XEN GUESTS
Starting with RHEL 5.4, both xen and kvm hypervisors are shipped with the distro. To handle this
situation, guest install tests take an extra argument (-kvm) to identify which type of guests will be
installed. By default, kernel-xen kernel is installed hence the guests are xen guests. If -kvm is given
in the guestargs, then the installation program decides that kvm guests are intended to be tested, so
boots into the base kernel and then installs the guests. There can only be one hypervisor at work at
one moment, and hence the installation test expects them all to be either kvm or xen guest, but not a
mix of both.

3.2.1.9.2. Making More Sense of LVM and PARTITION based Guest Installations
Installing a file-based guest is the simplest of all. A specific file can be specified in guestarg with -file
or -f arguments , or can just be omitted. However, for lvm and partition based guests, the virtinstall test
will have to know where to install the guests exactly, because there is no way for it to know what the
partition or volume name might be.

Obviously, if lvm or partition based guests are desired a custom partitioning will have to be done.
Beaker allows the testers to submit a custom partition/lvm for their tests. The syntax for this below:
<partition> <type> type </type> <name> name </name> <size> size in GB </
size> <fs> filesystem to format </fs> </partition>
• type: Can be either lvm or part. This is required.

• name: For partitions, this will be mount point, such as /mnt/guest1 , for lvm, it'll be the name of the
volume, such as myguestlvm . In the case of lvm, it'll be named /TestVolumeGroup??/myguestlvm .
This is required.

• size: Size of the blockdevice in Gigabytes, this is required.

• fs: filesystem you'd like to be formatted for this partition . This is optional, if omitted, ext3 will be
used. * -file or -f guestargs, whatever the name is given inside the partition block should be passed
on.

3.2.1.9.3. Other Uses of PARTITIONS and LVM Volumes
In virtualization testing, block devices can be used for other purposes than installing a guest on
them. It's possible to have block devices attached to or detached from a guest. If you'd like to do this
operation in your tests, you can either pass the information about the partitions you have created as
environment variable to your test, or you can use the blockdevice utility, which is another test that lives
in /distribution/utils/blockdevice .This testcase just creates a text file containing information about the
block devices and manages them. Its commands are:

getdevice
• Usage: getdevice <lvm|partition> <minimum size in GB>

• Description: returns a free device that has enough space

Chapter 3. User Guide

54

• Returns: string with device name and return code 0 on success, error string and return code 1 on
failure

freedevice
• Usage: freedevice <devicename>

• Descriptions: Marks the device can free so it can be reused.

• Returns: return code zero on success or error string and return code 1 on failure.

When running blockdevice test-util, you need to provide testing an environmental variable named
BLOCKDB_ARGS, telling the test what partitions/lvms you have intended to be used in test script. The
format of $BLOCKDB_ARGS is name:type:size:fs;name:type:size:fs; for each block device. For example
suppose you have these partitions in your job:

 <partition>
 <type>part</type>
 <name>/mnt/block1</name>
 <size>1</size> <!- 1 gig ->
 </partition>
 <partition>
 <type>lvm</type>
 <name>mylvm</name>
 <size>5</size>
 </partition>
 <partition>
 <type>part</type>
 <name>/mnt/block4ext4</name>
 <size>1</size> <!- 1 gig ->
 <fs>ext4dev</fs>
 </partition>
 <partition>
 <type>lvm</type>
 <name>mylvm4ext4</name>
 <size>5</size>
 <fs>ext4dev</fs>
 </partition>

then BLOCKDB_ARGS would be: /mnt/block1:part:1;mylvm:lvm:5;/mnt/
block4ext4:part:1:ext4dev;mylvm4ext4:lvm:5:ext4dev

If you utilize blockdevices test, you should ensure that:
• blockdevice is called before any of your scripts

• freedevice must be called after the testing on the space is done.

3.2.1.9.4. Dynamic Partitioning/IVM

Telling Beaker to create partitions/lvm
On Beaker, each machine has its own kickstart for each OS family it supports. In it the partitioning
area is marked so that it can be overwritten to allow having dynamic partitions/lvms in your tests.

The easiest way to specify dynamic partitions is to use the xml workflow and specify it in your xml file.
Syntax of the partition tags is below:

Process

55

 <partition>
 <type> type </type> <!- required ->
 <name> name </name> <!- required ->
 <size> size in GB </size> <!- required ->
 <fs> filesystem to format </fs> <!- optional, defaulted to ext3 ->
 </partition>

<partition> is the xml element for the partitioning. You can have multiple partition elements in a recipe.
It has type, name, size and fs text contents all of which except for fs is required. Detailed information
for each are:
• type: Type of partition you'd like to use. This can be either part of lvm .

• name: If the type is part, then this will be the mount point of the partition. For example, if you would
like the partition to be mounted to /mnt/temppartition then just put it in here. For the lvm type, this
will be the name of the volume and all custom volumes will go under its own group, prefixed with
TestVolumeGroup? . For example, if you name your lvm type as "mytestvolume", it's go into /
TestVolumeGroup??/mytestvolume.

• size: The size of the partition or volume in GBs .

• fs:This will be the filesystem the partition will be formatted in. If omitted, the partition will be
formatted with ext3. By default, anaconda mounts all partitions. If you need the partition to be
unmounted at the time of the test, you can use the blockdevice utility which is a test that lives on /
distribution/utils/blockdevice . This test unmounts the specified partitions/volumes and lets users
manage custom partitions thru its own scripts.

• getdevice
• Usage: getdevice <lvm|partition> <minimum size in GB>>

• Description: returns a free device that has enough space

• Returns: string with device name and return code 0 on success, error string

• and return code 1 on failure

• freedevice
• Usage: freedevice <devicename>

• Descriptions: Marks the device can free so it can be reused.

• Returns: return code zero on success or error string and return code 1 on failure.

When running blockdevice test-util, you need to provide testing an environmental variable named
BLOCKDB_ARGS, telling the test what partitions/lvms you have intended to be used in test script. The
format of $BLOCKDB_ARGS is name,type,size;name,type,size; for each block device. For example
suppose you have these partitions in your job:

 <partition>
 <type>part</type>
 <name>/mnt/block1</name>
 <size>1</size> <!- 1 gig ->
 </partition>
 <partition>

Chapter 3. User Guide

56

 <type>lvm</type>
 <name>mylvm</name>
 <size>5</size>
 </partition>
 <partition>
 <type>part</type>
 <name>/mnt/block4ext4</name>
 <size>1</size> <!- 1 gig ->
 <fs>ext4dev</fs>
 </partition>
 <partition>
 <type>lvm</type>
 <name>mylvm4ext4</name>
 <size>5</size>
 <fs>ext4dev</fs>
 </partition>
 </screen>
 <para>then BLOCKDB_ARGS would be:
 </para>
 <screen>/mnt/block1:part:1;mylvm:lvm:5;/mnt/
block4ext4:part:1:ext4dev;mylvm4ext4:lvm:5:ext4dev

as in:

 <test role='STANDALONE' name='/distribution/utils/blockdevice'>
 <params>
 <param name='BLOCKDB_ARGS' value='/mnt/
block1:part:1;mylvm:lvm:5;/mnt/block4ext4:part:1:ext4dev;mylvm4ext4:lvm:5:ext4dev'/>
 </params>
 </test>

If you utilize blockdevices test, you should ensure that:
• blockdevice is called before any of your scripts

• freedevice must be called after the testing on the space is done.

3.2.1.9.4.1. Dynamic Partitioning from Your Workflow
If you are using a different workflow and would like to add dynamic partitioning capability, you can do
it by utilizing kickPart() call to the recipe object. The string you have to pass is exactly same format as
the BLOCKDB_ARGS argument mentioned above. An example can be :

 part_str = "/mnt/block1:part:1;mylvm:lvm:5;/mnt/
block4ext4:part:1:ext4dev;mylvm4ext4:lvm:5:ext4dev"
 rec = Recipe(scheduler=beaker_sched)
 rec.kickPart(part_str)

3.2.1.9.4.2. Installing Package with Workflows
Workflow scripts are packaged in the beaker-redhat package.
• Installing package with workflows 1

• Executing a Workflow 2

https://engineering.redhat.com/trac/beaker/wiki/ResultIntroduction#install
https://engineering.redhat.com/trac/beaker/wiki/ResultExecutingWorkflow

Process

57

3.2.1.9.5. Helper Programs Installed with Virtinstall
Virtinstall test also installs a few scripts that can later on be utilized in the tests. These are completely
non-vital scripts, provided only for convenience to the testers.

guestcheck4up:
• Usage: guestcheck4up <guestname>

• Description: checks whether or not the guest is live or not.

• Returns: 0 if guest is not shutoff, 1 if it is.

guestcheck4down:
• Usage: guestcheck4down <guestname>

• Description: checks whether or not the guest is live or not.

• Returns: 0 if guest is shutoff, 1 if it is not.

startguest:
• Usage: startguest <guestname> [timeout]

• Description: Starts a guest and makes sure that it's console is reachable within optional $timeout
seconds. If timeout value is omitted the default is 300 seconds.

• Returns: 0 if the guest is started and a connection can be made to its console within $timeout
seconds, 1 if it can't.

stopguest:
• Usage: stopguest <guestname> [timeout]

• Description: stops a guests and waits for shutdown by waiting for the "System Halted." string within
the optional $timeout seconds. If timeout is omitted , then the default is 300 seconds.

• Returns: 0 if the shutdown was successful, 1 if it wasn't.

getguesthostname:
• Usage: getguesthostname <guestname>

• Returns: A string that contains the hostname of the guest if successful, or an error string if it's an
error.

wait4login:
• Usage: wait4login <guestname> [timeout]

• Description: It waits until it gets login: prompt in the guest's console within $timeout seconds. If
timeout argument is not given, it'll wait indefinitely, unless there is an error!

• Returns: 0 on success , or 1 if it encounters an error.

fwait4shutdown:
• Usage: wait4shutdown <guestname> [timeout]

• Description: It waits until it gets shutdown message in the guest's console within $timeout seconds.
If timeout argument is not given, it'll wait indefinitely, unless there is an error!

Chapter 3. User Guide

58

• Returns: 0 on success , or 1 if it encounters an error.

3.2.1.10. Multihost Testing
Running multihost tests on Beaker is done thru having different test roles in multihost tests amongst
multiple recipes inside a recipeset. In it's simplest form, a job with multihost testing can look like:

 <job>
 <RecipeSet>
 <recipe>
 <test role='STANDALONE' name='/distribution/install'/>
 <test role='SERVERS' name='/my/multihost/test'/>
 </recipe>
 <recipe>
 <test role='STANDALONE' name='/distribution/install'/>
 <test role='CLIENTS' name='/my/multihost/test'/>
 </recipe>
 </RecipeSet>
 </job>

Note
For brewity some necessary parts are left out in the above job description

Tips
you can use multi_workflow.py3 to generate a XML template

Submitting the job above will export environmental variables SERVERS and CLIENTS set to their
respective hostnames. This allows a tester to write tests for each machines. So the runtest.sh in /my/
multihost/test test might look like:

 Server() {
 # .. server code here
 }

 Client() {
 # .. client code here
 }

 if test -z "$JOBID" ; then
 echo "Variable jobid not set! Assume developer mode"
 SERVERS="test1.beaker.bos.redhat.com"
 CLIENTS="test2.beaker.bos.redhat.com"
 DEVMODE=true
 fi

 if [-z "$SERVERS" -o -z "$CLIENTS"]; then
 echo "Can not determine test type! Client/Server Failed:"
 RESULT=FAILED
 report_result $TEST $RESULT
 fi

https://engineering.redhat.com/trac/beaker/wiki/ResultExecutingWorkflow#MultiWorkflow

Process

59

 if $(echo $SERVERS | grep -q $HOSTNAME); then
 TEST="$TEST/Server"
 Server
 fi

 if $(echo $CLIENTS | grep -q $HOSTNAME); then
 TEST="$TEST/Client"
 Client
 fi

Let's disect the code. First of, we have Server() and Client() functions which will be executed on
SERVERS and CLIENTS machines respectively. Then we have an if block to determine if this is
running as an beaker test, or if it's being run on the test developer's machine(s) to test it out. The
last couple if blocks determine what code to run on this particular machine. As mentioned before,
SERVERS and CLIENTS environmental variables will be set to their respective machines' names and
exported on both machines.

Obviously, there will have to be some sort of coordination and synchronization between the machines
and the execution of the test code on both sides. Beaker offers two utilities for this purpose, beaker-
sync-set and beaker-sync-block . beaker-sync-set is used to setting a state on a machine. beaker-
sync-block is used to block the execution of the code until a certain state on certain machine(s)
are reached. Those familiar with parallel programming can think of this as a barrier operation . The
detailed usage information about both of this utilities is below:
• beaker-sync-set: It does set the state of the current machine. State can be anything. Syntax:

beaker-sync-set -s STATE

• beaker-sync-block: It blocks the code and doesn't return until a desired STATE is set on desired
machine(s) . You can actually look for a certain state on multiple machines.. Syntax: beaker-sync-
block -s STATE [-s STATE1 -s STATE2] machine1 machine2 ...

There are a couple of important points to pay attention. First of, the multihost testing must be on the
same chronological order on all machines. For example, the below will fail:

 <recipe>
 <test role='STANDALONE' name='/distribution/install'/>
 <test role='STANDALONE' name='/my/test/number1'/>
 <test role='SERVERS' name='/my/multihost/test'/>
 </recipe>
 <recipe>
 <test role='STANDALONE' name='/distribution/install'/>
 <test role='CLIENTS' name='/my/multihost/test'/>
 </recipe>

This will fail, because the multihost test is the 3rd test on the server side and it's the 2nd test on the
client side.. To fix this, you can pad in dummy testcases on the side that has fewer testcases. There is
a dummy test that lives in /distribution/utils/dummy for this purpose. So, the above can be fixed as:

 <recipe>
 <test role='STANDALONE' name='/distribution/install'/>
 <test role='STANDALONE' name='/my/test/number1'/>
 <test role='SERVERS' name='/my/multihost/test'/>
 </recipe>

Chapter 3. User Guide

60

 <recipe>
 <test role='STANDALONE' name='/distribution/install'/>
 <test role='STANDALONE' name='/distribution/utils/dummy'/>
 <test role='CLIENTS' name='/my/multihost/test'/>
 </recipe>

Tips
multi_workflow.py4 automatically fix un-balanced recipes for you.

One shortcoming of the beaker-sync-block utility is that it blocks forever, so if there are multiple
things being done in your test between the hosts, your test will timeout without possibly a lot of code
being executed. There is a utility, blockwrapper.exp which can be used to put a limit on how many
second it should block. The script lives in /CoreOS/common test, so be sure to add that test before
your multihost tests in your recipes. The usage is exactly same as that of beaker-sync-block with the
addition of a timeout value at the end, i.e.:

 blockwrapper.exp -s STATE machine N

where N is the timeout value in seconds. If the desired state in the desired machine(s) haven't been
set in N seconds, then the script will exit with a non-zero return code. In case of success it'll exit with
code 0 .

3.2.1.10.1. A detailed example of multihost testing
For a detailed example of multihost testing, look at migration testing in $TOP/virt/xen/migrate . There,
a machine is running as an origin machine with the role of "MIGRATE_FROM", which does export
in /var/lib/xen directory as an NFS share, sets up passwordless-ssh between machines, copies over
guest domain config files and then migrates the domains.

3.2.1.11. Workflow XML
A workflow is a model to represent real work for further assessment. More abstractly, a workflow is a
pattern of activity enabled by a systematic organizatio information flows, into a work process that can
be documented and learned. Workflows are designed to achieve processing intents of some sort, such
as information processing.

3.2.1.11.1. XML Syntax
You can now specify Beaker jobs using an xml file that will be workflow agnostic. This allows users
a more consistent, maintainable ways of storing and submitting jobs. You can now specify and save
entire jobs, including many recipes and recipesets in them, in xml files and save them as regression
testsuites and such. Here is a barebone XML file:

 <job>
 <workflow>Reserve ia64</workflow>
 <submitter>tester@redhat.com</submitter>
 <whiteboard>Reserving ia64 machine</whiteboard>
 <recipeSet>

https://engineering.redhat.com/trac/beaker/wiki/ResultExecutingWorkflow#MultiWorkflow

Process

61

 <recipe testrepo='development'>
 <distroRequires>ARCH = ia64</distroRequires>
 <distroRequires>FAMILY = RedHatEnterpriseLinuxServer5</
distroRequires>
 <distroRequires>NAME = RHEL5-Server-U2-RC-1</distroRequires>
 <test role='STANDALONE' name='/distribution/install'/>
 <test role='STANDALONE' name='/distribution/reservesys'>
 <params>
 <param name='RESERVEBY' value='gozen@redhat.com'/>
 <param name='RESERVETIME' value='86400'/>
 </params>
 </test>
 </recipe>
 </recipeSet>
 </job>

All xml tags above are pretty self explanatory. One of the biggest advantages of using xml for your
jobs is not having to use different workflows for different types of tests. There is only one workflow,
submit_job.py namely, that's being used. It does not have all the functionality/binding for all the
workflows out there, but we are working on it to add more workflow functionalities into our xml binding
and submit_job.py script. Currently as of Nov 2008, you should be able to use submit_job.py for any
workflows that was used previously but not all cases have been tested yet and we are working on
this .

The easiest way to get started on the xml definition would be seeing if your workflow has a way to
provide xml definition for the job. For example, single_package workflow has -xml argument which
prints out an xml definition of the job.

Below is a list of XML elements for Beaker:
• <job> : It's the root element of any Beaker job definition. Has no attributes.

• <workflow> : The name of the workflow. Has no attributes.

• <submitter> : Name, email or other identifying string of the job submitter. Has no attributes.

• <whiteboard> : A whiteboard string of anything descriptive about the job. Has no attributes.

• <recipeSet> : Set of recipes, has multiple recipe child nodes. Has no attributes.

• <recipe> : Test recipe itself. Has attributes of testrepo, whiteboard, bootargs .

• <installPackage> : Package names to be installed. These will be appended to kickstart's %packages
section.

• <hostRequires> : Set host properties here.

• <distroProperties> : Set properties of the distribution you'd like to install here.

• <kickstart> : Pass in your custom kickstart with this element.

• <accesskey> : Specify the accesskey for certain systems here, if you need to.

• <partition> : Root element of partition definition

• <name> : name of the partition. If you are intending the partition to be used as partition , then just
give the mountpoint, such as /mnt/myblockdevice . If you'd rather have the spaces used for LVM ,
then give a logical volume name, for example, mylogvol .

Chapter 3. User Guide

62

• <type> : This is either part, for partition , or lvm , for logical volume.

• <size> : Size of the partition in Gigabytes.

• <test> : Specify the tests to run. Has attributes testrole and name . Can have the params child
elements.

• <params> : Root element for parameters to be passed to the test.

• <param> : It has name and value attributes with for setting name and value of the environmental
variables respectively.

• <guestrecipe> : This is a pseudo-recipe for virtual machine guests. Can have almost everything
<recipe> can have. You can specify distroProperties, installPackage, etc. here. The attributes of this
element are vitally important. First attribute is, guestname, which is the name you'd like to give to the
guest. You can omit guestname, in which case Beaker will assign the hostname of the guest as the
name of the guest. The second attribute is guestargs , which is identical to arguments that are given
to virtinstall program, except for -lvm or -part argument which indicates if the guest is to be installed
on blockdevice or lvm volume respectively.

For advanced xml examples, visit :https://engineering.redhat.com/trac/beaker/wiki/
WorkflowXmlExamples 5

3.2.2. Checklist Discussed

3.2.2.1. Quality of code
Check for the following:
• Commenting: Test code is commented and complex routines sufficiently documented.

• PURPOSE file: Test code directory contains a plain text file called PURPOSE which explains what
the test addresses along with any other information useful for troubleshooting or understanding it
better.

• Language-Review: Optional, but preferred: review by someone with language-of-implementation
knowledge.

• Functional-Review: Optional, but preferred: functionality peer-reviewed (i.e. by someone else) with
knowledge of the given domain.

3.2.2.2. Quality of Logs
Check the following attributes to ensure the quality of logs:
• Detail of logging

• Test logs should be verbose logging activity for both successful and unsuccessful operations. At a
minimum these conditions should be recorded:
• Name of Test (or subtest; something unique)

• Expected Result

• Actual Result

5 https://engineering.redhat.com/trac/beaker/wiki/WorkflowXmlExamples

https://engineering.redhat.com/trac/beaker/wiki/WorkflowXmlExamples
https://engineering.redhat.com/trac/beaker/wiki/WorkflowXmlExamples
https://engineering.redhat.com/trac/beaker/wiki/WorkflowXmlExamples

Checklist Discussed

63

• Whether items 2 and 3 constitute a PASS or a FAIL.

• This should help with questions such as:
• How many tests ran?

• What went wrong on FAILed cases?

• How many PASSes/FAILs were there?

• And, associating the Name+Result with prior runs:
• How well are we doing?

3.2.2.3. Correctness
Correctness has following parameters:
• True PASS and true FAIL results

• The test runs and generates true PASS and true FAIL results as appropriate. It is permissible for a
test to FAIL even if the expected result is PASS if the software under test has a known defect that
has been reported. The applicable bug number should be referenced in the error message so that
it is easy to research the failure.

• Watch for bogus success values
• The test verifies PASS and FAIL results (versus returning the success or failure from a particular

shell command... many shell commands return success because they successfully ran, not that
they returned expected data. This usually requires user verification)

• Security review
• A cursory review of the code should be performed to make sure it does not contain obviously

malicious or suspicious routines which appear more focused on damaging or casing the testing
infrastructure versus performing a valid test.

3.2.2.4. Packaging
Check the following attributes to ensure the correctness of Packaging:
• Makefile

• make package works correctly, generating an RPM with the expected payload. The RPM should
successfully install correctly without any errors or dependency problems.

• make clean should clean up all generated files that will not be stored in source control

• All unneeded comments and unused variable should be removed from the Makefile. The Makefile
template contains lots of FIXME comments indicating what to put where. These comments should
be removed from the final Makefile

• Metadata section of Makefile should have these fields filled properly:
• Releases (only few tests can correctly run on everything from RHEL-2.1 to F8)

• RunFor (some tests stresses a lot of RHEL components, so they could be all here)

• Bug (lot of tests tests specific bug number, it is not enough to have it in test name)

• Permissions: File permissions should be set approriately on built packages and verified by
running rpm -qplv [package name]. For example:

Chapter 3. User Guide

64

 File permissions should be set approriately on
 built packages and verified by running rpm -qplv [package name]. For example:

• runtest.sh should be executable by all users

• any other executables should be executable by all users

• PURPOSE and generated testinfo.desc should be 644

• Correct namespaceFor Correct namespace, double check the following:
• Confirm that the test is included in the correct namespace and has followed the proper naming

conventions. Refer to the [TOPLEVEL_NAMESPACE] to make sure that the underlying
package being tested is reporting results in the correct namespace.

• The Makefile variables and testnames should also correspond to the correct path in source
control. For example:

[grover@dhcp83-5 smoke-high-load]# pwd
/home/grover/rhts/tests/bind/smoke-high-load

Here are the applicable variables from the Makefile:

The toplevel namespace within which the test lives.
TOPLEVEL_NAMESPACE=CoreOS

The name of the package under test:
PACKAGE_NAME=bind

The path of the test below the package:
RELATIVE_PATH=smoke-high-load

	Beaker guide
	Table of Contents
	Preface
	1. Document Conventions
	1.1. Typographic Conventions
	1.2. Pull-quote Conventions
	1.3. Notes and Warnings

	2. Getting Help and Giving Feedback
	2.1. Do You Need Help?
	2.2. We Need Feedback!

	Appendix A. Revision History
	Chapter 1. Introduction
	1.1. Abstract
	1.2. Introduction
	1.3. Background
	1.4. Beaker Overview
	1.4.1. Components
	1.4.2. Topology

	Chapter 2. Installation
	2.1. Install Beaker
	2.1.1. Disabling Repos
	2.1.2. Install DB
	2.1.3. Start Beaker

	2.2. Setup Lab Controller
	2.2.1. Install Lab Controller
	2.2.2. Configure Lab Controller

	2.3. Beaker Client

	Chapter 3. User Guide
	3.1. Introduction
	3.2. Getting Started
	3.2.1. Process
	3.2.1.1. Submitting and Reviewing a Job Workflow
	3.2.1.2. Provisioning a system
	3.2.1.2.1. Provision by System
	3.2.1.2.2. Provision by Distro
	3.2.1.2.3. Reserve Workflow

	3.2.1.3. Components
	3.2.1.3.1. Systems
	3.2.1.3.1.1. System Searching
	3.2.1.3.1.2. Adding a System
	3.2.1.3.1.3. System Details Tabs
	3.2.1.3.1.4. System Activity
	3.2.1.3.1.5. Distros
	3.2.1.3.1.5.1. Distro Searching

	3.2.1.3.1.6. Jobs
	3.2.1.3.1.6.1. Job Workflow
	3.2.1.3.1.6.2. Job Searching
	3.2.1.3.1.6.3. Job Submission
	3.2.1.3.1.6.3.1. Submitting a New Job
	3.2.1.3.1.6.3.2. Cloning an existing Job
	3.2.1.3.1.6.3.3. Job workflow details
	3.2.1.3.1.6.3.4. Job Results

	3.2.1.3.2. Recipes
	3.2.1.3.2.1. Recipe Searching
	3.2.1.3.2.2. Recipe Actions

	3.2.1.3.3. Tasks
	3.2.1.3.3.1. Creating a Task
	3.2.1.3.3.1.1. runtest.sh
	3.2.1.3.3.1.2. Makefile
	3.2.1.3.3.1.3. PURPOSE
	3.2.1.3.3.1.4. Packaging

	3.2.1.3.3.2. Task Searching
	3.2.1.3.3.3. Adding a New Task

	3.2.1.3.4. Reports
	3.2.1.3.4.1. Matrix Report

	3.2.1.3.5. Groups
	3.2.1.3.5.1. Adding a Group

	3.2.1.4. Test Architecture Considerations
	3.2.1.5. Reporting Results
	3.2.1.5.1. Logging Tips
	3.2.1.5.2. Passing Parameters to Tests

	3.2.1.6. Unassimilated or Unfinished content
	3.2.1.6.1. Using the startup_test function

	3.2.1.7. Writing and Running Multihosts Tests
	3.2.1.7.1. Synchronization Commands
	3.2.1.7.1.1. Example of a runtest.sh for a multihost test
	3.2.1.7.1.2. Tuning up multihost tests

	3.2.1.8. Beaker Makefile
	3.2.1.8.1. PACKAGE NAME
	3.2.1.8.2. TOPLEVEL NAMESPACE
	3.2.1.8.3. RELATIVE PATH
	3.2.1.8.4. TESTVERSION
	3.2.1.8.5. TEST
	3.2.1.8.6. BUILT_FILES
	3.2.1.8.7. FILES=$(METADATA)
	3.2.1.8.8. Targets
	3.2.1.8.9. $(METADATA)
	3.2.1.8.10. Owner
	3.2.1.8.11. Name
	3.2.1.8.12. Description
	3.2.1.8.13. TestTime
	3.2.1.8.14. Requires
	3.2.1.8.15. BeakerRequires
	3.2.1.8.16. RunFor
	3.2.1.8.17. Releases

	3.2.1.9. Virtualization Workflow
	3.2.1.9.1. KVM vs XEN GUESTS
	3.2.1.9.2. Making More Sense of LVM and PARTITION based Guest Installations
	3.2.1.9.3. Other Uses of PARTITIONS and LVM Volumes
	3.2.1.9.4. Dynamic Partitioning/IVM
	3.2.1.9.4.1. Dynamic Partitioning from Your Workflow
	3.2.1.9.4.2. Installing Package with Workflows

	3.2.1.9.5. Helper Programs Installed with Virtinstall

	3.2.1.10. Multihost Testing
	3.2.1.10.1. A detailed example of multihost testing

	3.2.1.11. Workflow XML
	3.2.1.11.1. XML Syntax

	3.2.2. Checklist Discussed
	3.2.2.1. Quality of code
	3.2.2.2. Quality of Logs
	3.2.2.3. Correctness
	3.2.2.4. Packaging

