
CS294-5 Great Algorithms Spring 2006

Lecture 4: 1.30.06
Lecturer: Karp Scribes: Norm Aleks & Jason Wolfe

News Flash

A (randomized) polynomial-time simplex algorithm, which has been sought after for many years, has finally
been discovered. When it comes time to write a final report, the this might be a good topic to consider.
For details, see J.A. Kelner and D.A. Spielman, “A randomized polynomial simplex algorithm for linear
programming.”

1 Signal analysis using the FFT

Let F (t) : Z → R be a real-valued periodic function with period N = 2k. Then, F is completely determined
by F (0), F (1), . . . F (N − 1). We want to perform a Fourier analysis of F , expressing it as a superposition of
sinusoids of periods N, N/2, N/3, . . . 1:

F (t) =
NX

j=1

cj · cos(
2πjt

N
+ aj),

for some cj , aj ∈ R.
More generally, if we allow F (t) : Z → C to take on complex values (but still require periodicity with

period N = 2k), we can instead express it as a superposition of complex exponentials of the form

A · ei(2πjt
N +θ),

where A ∈ C and θ ∈ R. Recall that functions of this form describe a type of simple harmonic motion,
rotation around the origin (of the complex plane) with constant radius and angular speed. Furthermore, the
projection of this motion onto the real axis is a sinusoid (by Euler’s formula, eiθ = cos(θ) + i · sin(θ)):

A · cos(
2πjt

N
+ θ).

Now, defining ω = e
2πi
N as a simple Nth root of unity, we can represent a simple harmonic motion of

period N/j as simply c ∗ ωjt, where the angle θ has been absorbed into the complex constant c. Under this
alternative representation, F can be expressed as a function of its Fourier coefficients as follows:

F (t) =
N−1X

j=0

cj · ωjt.

This is just a linear transformation from cj to F (t), which can be rewritten in matrix-vector form as




F (0)
F (1)

...
F (N − 1)




=

°
ωjt

¢
∗





c0

c1
...

cN−1




,

where
°
ωjt

¢
is shorthand for

1

Lecture 4: 1.30.06 2





ω0·0 ω1·0 · · · ω(N−1)·0

ω0·1 ω1·1 · · · ω(N−1)·1

...
...

. . .
...

ω0·(N−1) ω1·(N−1) · · · ω(N−1)·(N−1)




.

Hence,




c0

c1
...

cN−1




=

°
ωjt

¢−1 ∗





F (0)
F (1)

...
F (N − 1)




.

In the last lecture, we saw that
°
ωjt

¢−1 = 1
N

°
ω−jt

¢
. Thus, the Fourier coefficients of F can be computed

in only O(N log N) complex arithmetic operations using the FFT. For the special case when F is real-valued,
we have instead

F (t) =
N−1X

j=0

Re(cj · ωjt),

where Re(x) stands for the real part of x. Despite the fact that in general the cj are complex numbers, it
can be easily verified that Re(cj · wjt) is a sinusoid. The proof of this fact is left as an exercise to the reader.

2 Fast integer multiplication

Suppose we have two n-bit numbers, u and v, which we wish to multiply to obtain a 2n-bit product. The
primitive operations we will count in determining time complexity are those available on a basic computer:
shifts and 2-input or, and, and not.

2.1 The schoolbook method

The obvious “school book” method, adapted to base 2, requires Θ(n2) operations (a constant number of or ’s
and and ’s per pair of digits in u and v, plus n shifts). For example, multiplying (10110)2 × (11101)2:

1 0 1 1 0
× 1 1 1 0 1

1 0 1 1 0
1 0 1 1 0

1 0 1 1 0
1 0 1 1 0

1 0 0 1 1 1 1 1 1 0

2.2 The Karatsuba method

In 1962 the Russian mathematician Karatsuba described a faster method that recursively splits terms into
high-order and low-order parts, then uses a trick to find the split numbers’ product with three recursive calls
rather than four. Again using u and v, let u = u1· 2n/2 + u0 and v = v1· 2n/2 + v0. Now

uv = u1v1· 2n + (u1v0 + u0v1)· 2n/2 + u0v0 (1)

which apparently has four multiplications—a wash if multiplication is O(n2), since the terms are half as
long. The trick is that by rearranging

Lecture 4: 1.30.06 3

(u1 + u0)(v1 + v0) = u1v1 + u1v0 + u0v1 + u0v0

into

u1v0 + u0v1 = (u1 + u0)(v0 + v1) − u1v1 − u0v0

we express the middle part of Equation 1, including its two multiplications, in terms of Equation 1’s left and
right terms (which we already had to calculate), one new multiplication, and four additions. Thus the total
cost of calculating Equation 1 is two shifts, six additions, and three multiplications, which we perform as
recursive calls to the procedure. Letting T (n) be the number of operations required to multiply two n-bit
numbers,

T (n) = O(n) + 3T (n/2)
= O(nlog23)

2.3 Schönhage and Strassen’s method

Now that we’ve used the Fast Fourier Transform to multiply polynomials in O(n log n), it is natural to think
of integers as a special case of polynomials and use the FFT to multiply them. In 1971, Schönhage and
Strassen1 described a method for doing this efficiently.

As before, let the factors u and v be n-digit numbers. We will partition each into 2k l-bit blocks, perform
an FFT on the resulting 2k-value vectors (which, in signal processing terms, would be in the time domain),
do the multiplication in the “frequency domain,” and then interpolate to give a 2n-bit answer. The choice
of k and l turns out to be important for efficiency and accuracy, as will be described below; for now, we
require that 2n ≤ 2kl ≤ 4n and note that for 8,192-bit inputs on current hardware, k = 11 and l = 8 are
good choices.

2.3.1 Notation

As stated, u and v are our input numbers, each n bits long. We partition each into 2k l-bit blocks, padded
with leading zeros as necessary. For convenience, define K = 2k and L = 2l. Let us now refer to the padded,
partitioned u and v as vectors of K base-L digits, u0 . . . uK−1 and v0 . . . vK−1, where u0 and v0 represent
the least significant bits. Now

u =
K−1X

j=0

ujLj and v =
K−1X

j=0

vjLj

In this new shape it’s clear that uv can be calculated as a convolution of coefficients, and is a candidate for
calculation with the FFT:

uv =
K−1X

j=0

wjLj where wj =
jX

k=0

ukvj−k

2.3.2 Calculating the K roots of unity

To calculate the FFT we first need to calculate the values of the K roots of unity. Our earlier choice of K
as a power of two makes this easier: starting with ω2k

K = 1, we can progress through ω2k−1

K = −1, ω2k−2

K = i,
etc., taking square roots repeatedly until we reach ω1

K . The magnitude of every ωn is one, so both ωn+1
K and

ωn
K lie on the unit circle in the complex plane; since multiplying complex numbers adds their angles, ωn

K ’s
angle is half ωn+1

K ’s. Call ωn+1
K ’s angle 2α and remember that ei2α = cos 2α + i sin 2α; what we must find,

then, is eiα = cos α + i sin α. From high school trigonometry, cos 2α = cos2 α − sin2 α = 2 cos2 α − 1, giving
1Arnold Schönhage and Volker Strassen, “Schnelle Multiplikation großer Zahlen,” Computing 7 (1971), 281–292.

Lecture 4: 1.30.06 4

cos α =
r

cos 2α + 1
2

and sin α =
p

1 − cos2 α

Since we are in the first quadrant from i on, we always take the positive square root.
When this process is complete we will have generated all of ωK

K , ωK/2
K , ωK/4

K , . . . , ω1
K . We can now use

these values to generate a table of all powers of ωK up to ωK−1
K at a cost of O(K) multiplications, because

each ωn
K is the product of some ωr2

K and another ωm
K . For example, ω11

K = ω8
K × ω2

K × ω1
K and would be

calculated as ω10
K × ω1

K ; in the prior round, we would have calculated ω10
K = ω8

K × ω2
K .

2.3.3 Calculating uv

Using our table of the K roots of unity, we now use the methods we’ve already described to calculate the
complex-valued FFT’s of u and v, multiply corresponding magnitudes to find the point-value version of
uv, and finally interpolate back to w, the coefficient representation of uv. The process requires O(Kk) =
O(n log n) multiplications, or O(n log n T (m)) bit operations where T (m) is the number of bit operations
required to multiply m-bit numbers.

With the wj in hand, we are now ready to calculate uv as we described in Section 2.3.1:

uv =
K−1X

j=0

wj · 2lj (2)

What is the time complexity of this operation? Though we calculated the wj via a Fourier transform,
the values are the same we’d have reached by convolving u and v:

wj =
jX

k=0

ukvj−k

The un and vn are l-bit numbers and j ≤ 2k, so the length of any wn ≤ 2l + k. The multiplication by a
power of two in Equation 2 is a simple shift, so we are left with a series of additions in an integer 2k bits
long, with any given column of bits up to 2l + k bits high; the final cost is O(2k(k + l)), or O(n) under our
initial condition that 2n ≤ 2kl ≤ 4n.

2.3.4 How we choose k and l

Though both our math operations and our table of ωn
K have finite precision, we can still calculate uv exactly

by making approximate computations and then rounding results to the nearest integer. An error analysis,
which we do not perform here, tells us that for correct answers after rounding we need to keep m bits of
precision where m ≥ 3k +2l +log k + 7

2 . Thus our earlier choice of k = 11 and l = 8: this combination allows
n = 8, 192 and requires m ≥ 56, meaning that 64-bit precision suffices to multiply 8,192-bit integers.

2.3.5 Time complexity with arbitrary-length inputs

As noted in the previous section, 64-bit precision is adequate if we limit our inputs to < 28192; on current
hardware we may then be able to do the math in hardware, and the total algorithm’s complexity is O(n log n)
hardware operations. But suppose we have longer inputs or no hardware multiply—in that case we can use
the algorithm recursively. Using the time estimates above and letting T (n) be the number of operations
required to multiply n-bit numbers, we get T (n) = O(n) + O(KkT (m)). If k = l then Kk = n and
m ≤ 6 log n. Therefore,

T (n) = O(nT (6 log n))

It follows that, for some c,

T (n) ≤ cnT (c log n)

which unwinds to

Lecture 4: 1.30.06 5

T (n) ≤ cn(c log n)(c log log n) . . .

With a more careful analysis of a variant of this algorithm, Schönhage and Strassen achieved a bound of
O(n log n log log n) on the number of steps to multiply n-digit numbers.

3 Introduction to stable matching

Consider the problem of matching n men with n women2 in a 1-1 fashion, such that their preferences are
respected as much as possible. Assume that the men are named A, B, C, . . . and the women are named
a, b, c, . . . (or vice-versa, if you prefer), and every individual expresses his/her preferences as a total order
over the members of the opposite sex.

Now, consider an arbitrary 1-1 matching between the men and women. Such a matching exhibits in-
stability if there exist two individuals, who we will call A and b, who prefer one another to their current
partners. For example, perhaps A is paired with a and b is paired with B in the matching, but A prefers b
to a and b prefers A to B. We call a matching stable if does not exhibit instability, and thus no individual
has any incentive to leave his/her current partner.

In fact, a simple procedure called the proposal algorithm exists to efficiently construct a stable matching
given a set of preferences:

1. At each step, an unmatched man proposes to the first woman in his preference ordering who has not
yet rejected him.

2. When a woman receives a proposal from a man, she rejects it iff she is currently paired with a man
whom she prefers. Otherwise, she tentatively accepts the proposal.

3. The algorithm terminates and the partnerships become final when all n men and women have tentative
partners.

This algorithm always terminates with a stable matching. Furthermore, the resulting matching will be
optimal from the point of view of the proposers (here the men), in that each proposer ends up with the best
partner possible in any stable matching. Proofs of these facts are left to the reader.

The operation of the proposal algorithm can be best illustrated by an example. If the men and women
have the following preferences (listed best-first):

1 2 3 4
A b c a d
B a b d c
C c d a b
D b a c d

1 2 3 4
a D B A C
b D A C B
c D C A B
d D A B C

,

then the algorithm will proceed as follows:

• Initially, all men and women are unmatched.

• A proposes to his first choice b, who tentatively accepts since she is currently unmatched.

• B proposes to his first choice a, who tentatively accepts since she is unmatched.

• C proposes to his first choice c, who tentatively accepts since she is unmatched.

• D proposes to his first choice b. Since b likes D better than her current partner A, she rejects A and
tentatively accepts the proposal of D.

• A, now back on the market, proposes to his next choice c. Since c prefers her current partner C to A,
she rejects his proposal.

2Or, more practically, matching n medical students to n slots at k medical schools

Lecture 4: 1.30.06 6

• A proposes to his next choice a. Since a prefers her current partner B to A, she rejects his proposal.

• A proposes to his last choice d, who tentatively accepts since she is unmatched.

• Since all men and women are paired, the algorithm terminates, returning the current matching.

The reader can easily verify that this matching reached by the proposal algorithm is, in fact, stable.
It is important to note that the proposal algorithm only works for constructing bipartite matchings

between disjoint sets of individuals. In fact, in the related stable roommates problem where individuals
express their preferences over all other individuals, it may be the case that no stable matchings exist at all.

