
ephemeral keys. The TLS protocol also establishes a short-
term link key when communicating between ORs. Short-term
keys are rotated periodically and independently, to limit the
impact of key compromise.

Section 4.1 presents the fixed-size cells that are the unit
of communication in Tor. We describe in Section 4.2 how
circuits are built, extended, truncated, and destroyed. Sec-
tion 4.3 describes how TCP streams are routed through the
network. We address integrity checking in Section 4.4, and
resource limiting in Section 4.5. Finally, Section 4.6 talks
about congestion control and fairness issues.

4.1 Cells

Onion routers communicate with one another, and with users’
OPs, via TLS connections with ephemeral keys. Using TLS
conceals the data on the connection with perfect forward se-
crecy, and prevents an attacker from modifying data on the
wire or impersonating an OR.

Traffic passes along these connections in fixed-size cells.
Each cell is 512 bytes, and consists of a header and a pay-
load. The header includes a circuit identifier (circID) that
specifies which circuit the cell refers to (many circuits can
be multiplexed over the single TLS connection), and a com-
mand to describe what to do with the cell’s payload. (Circuit
identifiers are connection-specific: each circuit has a differ-
ent circID on each OP/OR or OR/OR connection it traverses.)
Based on their command, cells are either control cells, which
are always interpreted by the node that receives them, or re-
lay cells, which carry end-to-end stream data. The control
cell commands are: padding (currently used for keepalive,
but also usable for link padding); create or created (used to
set up a new circuit); and destroy (to tear down a circuit).

Relay cells have an additional header (the relay header) at
the front of the payload, containing a streamID (stream iden-
tifier: many streams can be multiplexed over a circuit); an
end-to-end checksum for integrity checking; the length of the
relay payload; and a relay command. The entire contents of
the relay header and the relay cell payload are encrypted or
decrypted together as the relay cell moves along the circuit,
using the 128-bit AES cipher in counter mode to generate a
cipher stream. The relay commands are: relay data (for data
flowing down the stream), relay begin (to open a stream), re-
lay end (to close a stream cleanly), relay teardown (to close a
broken stream), relay connected (to notify the OP that a relay
begin has succeeded), relay extend and relay extended (to ex-
tend the circuit by a hop, and to acknowledge), relay truncate
and relay truncated (to tear down only part of the circuit, and
to acknowledge), relay sendme (used for congestion control),
and relay drop (used to implement long-range dummies). We
give a visual overview of cell structure plus the details of re-
lay cell structure, and then describe each of these cell types
and commands in more detail below.

CircID

2

Relay StreamID Digest Len DATA

CircID CMD

2 1

DATA

2

CMD

1

509 bytes

1 2 6 498

4.2 Circuits and streams

Onion Routing originally built one circuit for each TCP
stream. Because building a circuit can take several tenths
of a second (due to public-key cryptography and network la-
tency), this design imposed high costs on applications like
web browsing that open many TCP streams.

In Tor, each circuit can be shared by many TCP streams.
To avoid delays, users construct circuits preemptively. To
limit linkability among their streams, users’ OPs build a new
circuit periodically if the previous ones have been used, and
expire old used circuits that no longer have any open streams.
OPs consider rotating to a new circuit once a minute: thus
even heavy users spend negligible time building circuits, but
a limited number of requests can be linked to each other
through a given exit node. Also, because circuits are built in
the background, OPs can recover from failed circuit creation
without harming user experience.

Figure 1: Alice builds a two-hop circuit and begins fetching
a web page.

Constructing a circuit
A user’s OP constructs circuits incrementally, negotiating a
symmetric key with each OR on the circuit, one hop at a time.
To begin creating a new circuit, the OP (call her Alice) sends
a create cell to the first node in her chosen path (call him
Bob). (She chooses a new circID CAB not currently used on
the connection from her to Bob.) The create cell’s payload
contains the first half of the Diffie-Hellman handshake (gx),
encrypted to the onion key of Bob. Bob responds with a cre-
ated cell containing gy along with a hash of the negotiated
key K = gxy .

Once the circuit has been established, Alice and Bob can
send one another relay cells encrypted with the negotiated


