Theorem 2.1. There is a (randomized) algorithm that, given $\varepsilon, \eta>0$, returns a real number ζ for which

$$
(1-\varepsilon) \zeta<\operatorname{vol}(K)<(1+\varepsilon) \zeta
$$

with probability at least $1-\eta$. The algorithm uses

$$
O\left(\frac{n^{5}}{\varepsilon^{2}}\left(\ln \frac{1}{\varepsilon}\right)^{3}\left(\ln \frac{1}{\eta}\right) \ln ^{5} n\right)=O^{*}\left(n^{5}\right)
$$

oracle calls.
The proof of this Theorem is given at the end of Section 6.
As in all previous volume algorithms, the main technical tool is sampling from K, i.e., generating (approximately) uniformly distributed and (approximately) independent random points in K. We in fact make use of several sampling algorithms, working under slightly different assumptions. A result that has a simple statement is the following.

Theorem 2.2. Given a convex body K satisfying $B \subseteq K \subseteq d B$, a positive integer N and $\varepsilon>0$, we can generate a set of N random points $\left\{v_{1}, \ldots, v_{N}\right\}$ in K that are
(a) almost uniform in the sense that the distribution of each one is at most ε away from the uniform in total variation distance, and
(b) almost (pairwise) independent in the sense that for every $1 \leq i<j \leq N$ and every two measurable subsets A and B of K,

$$
\left|\mathrm{P}\left(v_{i} \in A, v_{j} \in B\right)-\mathrm{P}\left(v_{i} \in A\right) \mathrm{P}\left(v_{j} \in B\right)\right| \leq \varepsilon
$$

The algorithm uses only $O^{*}\left(n^{3} d^{2}+N n^{2} d^{2}\right)$ calls on the oracle.
This running time represents an improvement of $O^{*}(n)$ over previous algorithms (see Lovász and Simonovits [23], Theorem 3.7) for this problem.

To make the sampling algorithm as efficient as possible, we have to find an affine transformation that minimizes the parameter d. Finding an affine transformation A such that

$$
\begin{equation*}
B \subseteq A K \subseteq d^{\prime} B \tag{1}
\end{equation*}
$$

for some small d^{\prime} is called rounding or sandwiching. For every convex K, the sandwiching ratio $d^{\prime}=n$ can be achieved (using the so called the Löwner-John ellipsoid), but it is not known how to find the corresponding A in polynomial time. For related references we again recommend Grötschel, Lovász, and Schrijver [10] and the Handbook of Convex Geometry [11]. For our purposes "approximate sandwiching" is sufficient, where $d^{\prime} B$ is required to contain most of K but not the whole body. The theorem below will imply that that one can approximately well-round K with $d^{\prime}=O(\sqrt{n} \ln (1 / \varepsilon))$ using $O^{*}\left(n^{5}\right)$ oracle calls.

The approximate sandwiching will be done using an important auxiliary result, which may be of interest in its own: an algorithm to find an affine transformation

