
 Data Test Program

 Page 1 of 70

dt – Data Test Program

July 27, 2009

Version 16.20

Author: Robin T. Miller

EXTREME WARNING!!!

Use of this program is almost guaranteed to find

problems and cause your schedules to slip. If you

are afraid to find bugs or otherwise break your system,

then please do not use this program for testing.

.

You can pay now or pay later, but you've been warned!

 Data Test Program

 Page 2 of 70

Modification History ... 6
Overview ... 7

Operating Systems Supported ... 7
Test Uses ... 8
Program Options ... 9

Input File “if=" Option .. 9
Output File “of=" Option .. 9

Pattern File "pf=" Option .. 10
Block Size "bs=" Option ... 10
Log File "log[tu]=" Options .. 11
POSIX Asynchronous I/O "aios=" Option ... 11

Keepalive Alarm Time “alarm=” Option .. 12
Keepalive Message “*keepalive=” Options.. 12

Keepalive Message Format Control.. 12

Buffer Alignment "align=" Option ... 13
File Disposition "dispose=" Option .. 13

Dump Data Limit "dlimit=" Option .. 13
Device Size "dsize=" Option .. 13
Device Type "dtype=" Option .. 14

Input Device Type "idtype=" Option .. 14
Output Device Type "odtype=" Option .. 14

Error Limit "errors=" Option .. 14
File Limit "files=" Option ... 15

Terminal Flow Control "flow=" Option ... 15
History "history=" Option ... 16

History Data Size "hdsize=" Option ... 16
Record Increment "incr=" Option ... 16
I/O Direction "iodir=" Option ... 16

I/O Mode "iomode=" Option .. 16
IOT Pass "iotpass=" Option .. 17
IOT Seed "iotseed=" Option ... 17

I/O Type "iotype=" Option ... 17
Minimum Record Size "min=" Option ... 18
Maxmimum Record Size “max=“ Option... 18
Logical Block Address “lba=“ Option .. 18

Logical Block Size “lbs=“ Option .. 18
Data Limit “limit=“ Option ... 19
Munsa (DLM) “munsa=“ Option .. 19

Common Open Flags “flags=“ Option .. 20
Output Open Flags “oflags=“ Option ... 20
On Child Error “oncerr=“ Option ... 20
No Progress Time “noprogt=“ Option .. 20
No Progress Time Trigger “noprogtt=“ Option .. 21
No Time “notime=“ Option .. 21
Terminal Parity Setting “parity=“ Option ... 21

 Data Test Program

 Page 3 of 70

Pass Limit “passes=“ Option .. 21

Data Pattern “pattern=“ Option ... 22
File Position “position=“ Option .. 22
Prefix “prefix=“ Option .. 22

Multiple Processes “procs=“ Option ... 23
Set Queue Depth “qdepth=“ Option ... 23
Random I/O Offset Alignment “ralign=“ Option ... 23
Random I/O Data Limit “rlimit=“ Option .. 24
Random Seed Value “rseed=“ Option .. 24

Record Limit “records=“ Option .. 24
Run Time “runtime=“ Option ... 24
Retry Delay “retry_delay=“ Option .. 24
Slice “slice=“ Option .. 25

Slices “slices=“ Option ... 25
Record Skip “skip=“ Option ... 25

Record Seek “seek=“ Option .. 25
Data Step “step=“ Option ... 26

Terminal Speed “speed=“ Option ... 26
Terminal Read Timeout “timeout=“ Option ... 26
Terminal Read Minimum “ttymin=“ Option .. 27

Trigger Action “trigger=“ Option ... 27
Multiple Volumes “volumes=“ Option ... 28

Multi-Volume Records “vrecords=“ Option ... 28
Enable “enable=“ and Disable “disable=“ Options .. 28

POSIX Asynchronous I/O “aio” Flag ... 28

Reporting Close Errors “cerror” Flag... 28

Data Comparison “compare” Flag .. 29
Core Dump on Errors “coredump” Flag ... 29
Diagnostic Logging “diag” Flag ... 29

Debug Output “debug” Flag ... 29
Verbose Debug Output “Debug” Flag .. 29

Random I/O Debug Output “rdebug” Flag ... 29
Dump Data Buffer “dump” Flag ... 30

Tape EEI Reporting “eei” Flag ... 30
Flush Terminal I/O Queues “flush” Flag .. 30
History Dumping “hdump” Flag ... 31
History Timing “htiming” Flag ... 31

Log File Header “header” Flag ... 31
Loop On Error “looponerror” Flag... 31
Logical Block Data Mode “lbdata” Flag .. 31

Enable Loopback Mode “loopback” Flag ... 32
Microsecond Delays “microdelay” Flag ... 32
Memory Mapped I/O “mmap” Flag .. 32
Test Modem Lines “modem” Flag .. 33
Multiple Volumes “multi” Flag .. 33
No I/O Progress “noprog” Flag .. 33

 Data Test Program

 Page 4 of 70

Prefill “prefill” Flag .. 34

Control Per Pass Statistics “pstats” Flag .. 34
Read After Write “raw” Flag .. 34
Tape Reset Handling “resets” Flag ... 34

Retry Data Corruptions “retryDC” Flag... 35
Control Program Statistics “stats” Flag .. 35
Table(sysinfo) timing “table” Flag ... 35
System Log “syslog” Flag .. 35
Timestamp Blocks “timestamp” Flag ... 35

Unique Pattern “unqiue” Flag ... 36
Verbose Output “verbose” Flag .. 36
Verify Data “verify” Flag ... 36

Program Delays ... 36

Close File “cdelay=“ Delay .. 37
End of Test “edelay=“ Delay .. 37

Read Record “rdelay=“ Delay .. 37
Start Test “sdelay=“ Delay ... 37

Child Terminate “tdelay=“ Delay ... 37
Write Record “wdelay=“ Delay .. 38

Numeric Input Parameters .. 38

Time Input Parameters .. 38
Future Enhancements? .. 39

Final Comments .. 40
Appendix A dt Help Text .. 41
Appendix B Test Strategy ... 45

Recommended Command Lines? ... 46

Appendix C dt Examples .. 47
Simple Raw Test (to get started) ... 47
Simple File System Test ... 47

Memory Mapped File Test.. 48
QIC Tape Test ... 49

Multiple Tape Files Test ... 50
Unix Pipe Testing ... 50

Unix FIFO Testing .. 51
Serial Line Testing .. 51
Multiple Process Test .. 53
Tru64 Unix Disklabel Note ... 54

Data Corruption – Buffer Overrun Issue .. 54
Data Corruption – Tape Variable Record Issue .. 55
Data Corruption – I/O Hang Issue .. 56

Data Corruption – Tape Buffer Overrun Issue ... 58
Another Use – Copy/Verify Data ... 59
Tru64 Unix Extended Error Information (EEI) .. 60
Multiple Volume Tape Test .. 61
Read-After-Write Test .. 62
Slice And Dice Test .. 63

 Data Test Program

 Page 5 of 70

Variable I/O Requests Test ... 64

Reverse I/O Test ... 65
Multiple Volume Options Test ... 66
Data Corruption w/Timestamp Option ... 67

Large Capacity Disk Testing .. 68
Appendix D Trigger Script ... 69

 Data Test Program

 Page 6 of 70

Modification History

Date Version Description
July 27, 2009 16.20 Document retry/history, timing, and other minor changes.

January 4, 2007 15.32 Document alarm, *keepalive, noprogt, prefix, trigger, and slice options.

Document noprog and timestamp flags. Update examples and more.

February 2, 2001 14.1 Added support for better random access device testing via multiple slices

option slices=value), controlling direction via "iodir=" option, variable

request sizes (incr=var), setting device block size (dsize=), better support

of multiple volumes via "volumes=" and "vrecords=" options.

Also updated logic to allow random and reverse I/O to regular disk files.

November 10, 2000 13.22 Added more test features and options, including: read-after-write (raw),

setting the random I/O seed (rseed), and multi-volume media testing.

July 24, 1999 12.0 Add numerous new test features and parameters, including: AIO

w/lbdata, AIO w/random, EEI & tape resets, IOT test pattern, larger

data/record limits and statistics, Linux & Windows/NT support.

February 21, 1996 9.3 Documented iotype={random or sequential} option.

December 11, 1995 9.0 Logical block data feature, additional (higher) tty speeds, and other

minor changes.

July 26, 1995 8.0 Modem testing, child process control, pattern string enhancements, and

other minor changes.

September 11, 1993 7.0 Initial release of Users Manual.

 Data Test Program

 Page 7 of 70

Overview
dt is a generic data test program used to verify the proper operation of peripherals and I/O sub-

systems, and for obtaining performance information. Since verification of data is performed, dt

can be thought of as a generic diagnostic tool.

Although the original design goals of being a generic test tool were accomplished, it quickly

become evident that device specific tests, such as terminals, and different programming

interfaces such as memory mapped files and POSIX asynchronous I/O API's were necessary.

Therefore, special options were added to enable these test modes and to specify necessary test

parameters.

dt command lines are similar to the dd program, which is popular on most UNIX systems. dt

contains numerous options to provide user control of most test parameters so customized tests

can be written easily and quickly by specifying simple command line options. Since the exit

status of the program always reflects the completion status of a test, scripts can easily detect

failures to perform automatic regression tests.

dt has been used to successfully test disks, tapes, serial lines, parallel lines, pipes & FIFO's,

memory mapped files, and POSIX Asynchronous I/O. In fact, dt can be used with any device

that supports the standard open, read, write, and close system calls. Special support is necessary

for some devices, such as serial lines, for setting up the speed, parity, data bits, etc, but dt's

design provides easy addition of this setup.

Most tests can be initiated by a simple dt command line, and lots of I/O can be initiated quickly

using multiple processes and/or POSIX AIO, for those operating systems supporing AIO. More

complex tests are normally initiated by writing shell scripts and using dt in conjunction with

other tools, such as scu (SCSI Command Utility). Several shell scripts for testing disks, tapes,

and serial lines are also supplied with this kit which can used as templates for developing other

specialized test scripts.

Specific system features are now being added to dt so more extensive testing can be

accomplished. The program has been restructured to allow easy inclusion of new device specific

tests by dispatching to test functions through a function lookup table. This table gets setup

automatically, based on options enabled, or via the device type "dtype=" option.

WARNING: dt does not perform any sanity checking of the output device specified. This

means if you are running as root on Unix and you specify a raw disk device, dt will overwrite

existing file systems, so please be careful! I HATE TO ADMIT, I‟VE DONE THIS MYSELF!

Operating Systems Supported
dt is conditionalized to run on AIX, HP-UX, SUN, ULTRIX, OSF, QNX, SCO Unixware,

Windows, and Linux operating systems. Porting is simple for OS‟s with POSIX API‟s.

 Data Test Program

 Page 8 of 70

Test Uses
Those people with an imagination will find many uses for dt, but I'll list a few I've used it for,

just to whet your appetite:

 Testing of tape devices using different block sizes to determine the best blocking factor

for optimum performance and capacity. This is very important for streaming tapes

devices.

 Write tapes to end of tape, to determine the total tape capacity. This gives the total data

capacity of tapes, after inter-record gaps, preamble/postambles, or pad blocks are written

on the tape.

 Read existing tapes with data comparison disabled, to determine the amount of data on

the tape. This is useful to determine how much disk space is required to read in a tape, or

to simply verify the tape can be read without errors.

 Reading/writing an entire tape to ensure device drivers properly sense and handle end of

tape error conditions.

 Write a tape and ensure it can be read on another tape drive to test drive compatibility

(also referred to as transportability).

 Read multiple tape files to ensure file marks and end of tape are reported and handled

properly by tape drivers.

 I/O to disks using the raw device interface, to determine the optimum performance of the

controller. This usually gives a good indication of how well the controller cache or read-

ahead improves I/O performance for sequential or random file access.

 I/O to disk files through the file system, to determine the affect the buffer cache has on

write and read performance. You must know the characteristics of your O/S's buffer

cache to select file sizes to either get optimum performance from the cache, or to defeat

the affect of the buffer cache.

 Reading/writing of entire disks, to ensure the media capacity and end of media error
handling is properly reported by device drivers.

 Test memory mapped files to compare I/O performance against raw and file system I/O.

Typically, memory mapped I/O approaches the raw device performance.

 Testing I/O to files on NFS mounted file systems. This will give you a good indication of

your ethernet performance to remote files.

 Writing/reading pipes & FIFO's to verify pipe operation and performance.

 Initiating multiple processes to test optimizations of buffer cache, device drivers, and/or

intelligent controllers. This is also useful to test multiple device access and for loading

the I/O sub-system.

 Force I/O at different memory boundaries to test low level driver handling. Using the

align option, you can set memory alignment for testing specialized device driver DMA

code. This is very useful when developing new I/O sub-systems.

 Do loopback testing of parallel or serial lines on either the same system of different

systems. This is a useful compatibility test when running different machines running

different operating systems.

 Enable POSIX Asynchronous I/O to verify proper operation of this API and to determine

performance gains (over standard synchronous I/O). This is also useful for queuing

multiple I/O requests to drivers and for testing SCSI tag queuing and RAID

configurations.

 Data Test Program

 Page 9 of 70

 Specify variable record options for testing variable tape devices.

 On Tru64 cluster systems, distributed lock manager (DLM) options can be used to

control access to shared devices or files.

 Also available on Tru64 UNIX is the ability to use Extended Error Information (EEI) to

detect and recover from SCSI bus/device resets (tape is repositioned for continuing the

test).

 Monitor slow or no I/O progress.

 Execute a trigger when failures occur.

Program Options
This section describes program options and and special notes related to each. The dt help file

provides a summary of the options, and the default value of most options. The dt help summary

is shown in Appendix A.

Input File “if=" Option

This option specifies the input file to open for reads. The device is opened read-only so devices

which only permit or support read access, e.g., parallel input devices, can be opened

successfully.

Special Notes:

 Data read is automatically verified with the default data pattern, unless you disable this

action via the “disable=compare” option.

 Extra pad bytes of sizeof(int), are allocated at the end of data buffers, initialized with the

inverted data pattern, and then verified after each read request to ensure the end of data

buffers didn't get overwritten by file system and/or device drivers. This extra check has

found problems with flushing DMA FIFO's on several machines.

 Syntax:

 if=filename The input file to read.

Output File “of=" Option

This option specifies the output file to open for writes. After the write portion of the test, the

device is closed (to reposition to start of file or to rewind the tape), re-opened, and then a read

verification pass is performed. If you wish to prevent the read verify pass, you must specify the

"disable=verify" option.

Special Notes:

 Terminal devices are not closed between passes so previously set terminal characteristics

don't get reset. This also caused a race condition when doing loopback testing with two

processes.

 When testing terminal (serial) devices, modem control is disabled (via setting CLOCAL)

to prevent tests from hanging. If the "enable=modem" option is specified, then CLOCAL

is reset, hangup on close HUPCL is set, and testing will not preceed until carrier or DSR

 Data Test Program

 Page 10 of 70

is detected. This code is not fully tested, but this description accurately describes the

code.

 At the present time, tapes are rewound by closing the device, so you must specify the

rewind device during testing if the read verify pass is being performed. This restriction

will probably change in the next release since magtape control commands will be

supported (tape specific tests as well).

 A special check is made for the /dev/ prefix, and if located, the O_CREAT open flag is

cleared to prevent accidently creating files in this directory when not specifying the

correct device name (very easy to do when running tests as super-user 'root').

 When writing to raw disks on Tru64 UNIX, if the disk was previously labeled, you must

issue the "disklabel -z" command to destroy the label block or else you cannot write to

this area of this disk (block 0). Failure to do this results in the error "Read-only file

system" (errno=EROFS) being returned on write requests.

 Syntax:

 of=filename The output file to write.

Pattern File "pf=" Option

This option specifies a pattern file to use for the data pattern during testing. This option

overrides the "pattern=" option and allows you to specify specialized patterns. The only

restriction to this option is that the entire file must fit in memory. A buffer is allocated to

read the entire pattern file into memory before testing starts so performance is not affected by

reading the pattern file.

 Syntax:

 pf=filename The data pattern file to use.

Block Size "bs=" Option

This option specifies the block size, in bytes, to use during testing. At the present time, this

option sets both the input and output block sizes. At the time I originally wrote this program, I

didn't have the need for seperate block sizes, but this may change in a future release where I'll

add back the "ibs=" and "obs=" options available with dd.

Special Notes:

 When enabling variable length records via the "min=" option, this also sets the maximum

record size to be written/read.

 For memory mapped files, the block size must be a multiple of the system dependent

page size (normally 4k or 8k bytes).

 Syntax:

 bs=value The block size to read/write.

 Data Test Program

 Page 11 of 70

Log File "log[tu]=" Options

This option specifies the log file to redirect all program output to. This is done by re-opening the

standard error stream (stderr) to the specifed log file. Since all output from dt is directed to

stderr, library functions such as perror() also write to this log file.

Special Notes:

 A seperate buffer is allocated for the stderr stream, and this stream is set buffered so

timing isn't affected by program output.

 When starting multiple processes via the "procs=" option, all output is directed to the

same log file. The output from each process is identified by the process ID (PID) as part

of the message (errors & statistics).

 logt=filename will truncate the existing log file.

 logu=filename will create unique log files with multiple processes (w/pid).

 Syntax:

 log[tu]=filename The log file name to write.

Special format keywords are now expanded when part of the log file name, so unique names can

be created for each test:

 Log File Format Keywords:

 %iodir = The I/O direction. %iotype = The I/O type.

 %host = The host name. %pid = The process ID.

 %user = The user name.

 Example: log=dt_%host_%user_%iodir_%iotype-%pid.log

Please see the DiskTests.ksh script for examples of using this.

POSIX Asynchronous I/O "aios=" Option

This option enables and controls the number of POSIX Asychronous I/O requests used by the

program.

Special Notes:

 The default is to queue up to 8 requests.

 The system limit for AIO on Tru64 UNIX is dynamic, and can be queried by using the

"sysconfig -q rt" command.

 You can use the "enable=aio" option to enable AIO and use the default request limit.

 AIO is only supported for character devices and is disabled for terminals. On Tru64

UNIX, you can alter the Makefile and link against libaio.a, which allows AIO with any

device/file by mimic'ing AIO using POSIX threads.

 AIO requests can not be cancelled on Tru64 UNIX, so queuing many requests to 1/2"

tape devices will probably result in running off the end of the tape reel. This is not a

problem for cartridge tapes.

 Data Test Program

 Page 12 of 70

 Syntax:

 aios=value Set number of AIO's to queue.

Keepalive Alarm Time “alarm=” Option

Keepalive Message “*keepalive=” Options

These options control a user defined message that will be emitted during the test. The user

defines how often to display the keepalive message, via the “alarm=time” option, and the format

of the message(s), via the “*keepalive=string” options. The normal “keepalive=” option defines

the script emitted during the test, while “pkeepalive=” is the per pass message string, and

“tkeepalive=” is the totals message string (overriding what dt normally displays).

 Syntax:
 alarm=time The keepalive alarm time.

 keepalive=string The keepalive message string.

 pkeepalive=str The pass keepalive msg string.

 tkeepalive=str The totals keepalive msg string.

Keepalive Message Format Control

The keepalive string is free format like a printf(), with the following format control strings:

 Keepalive Format Control:

 %b = The bytes read or written. %B = Total bytes read and written.

 %c = Record count for this pass. %C = Total records for this test.

 %d = The device name. %D = The real device name.

 %e = The number of errors. %E = The error limit.

 %f = The files read or written. %F = Total files read and written.

 %h = The host name. %H = The full host name.

 %k = The kilobytes this pass. %K = Total kilobytes for this test.

 %l = Blocks read or written. %L = Total blocks read and written.

 %m = The megabytes this pass. %M = Total megabytes for this test.

 %p = The pass count. %P = The pass limit.

 %r = Records read this pass. %R = Total records read this test.

 %s = The seconds this pass. %S = The total seconds this test.

 %t = The pass elapsed time. %T = The total elapsed time.

 %i = The I/O mode (read/write) %u = The user (login) name.

 %w = Records written this pass. %W = Total records written this test.

 Performance Keywords:

 %bps = The bytes per second. %lbps = Logical blocks per second.

 %kbps = Kilobytes per second. %mbps = The megabytes per second.

 %iops = The I/O's per second. %spio = The seconds per I/O.

 Lowercase means per pass stats, while uppercase means total stats.

 Default: %d Stats: mode %i, blocks %l, %m Mbytes, pass %p/%P, elapsed %t

 or if pass statistics summary is disabled:

 %d Stats: mode %i, blocks %L, %M Mbytes, pass %p/%P, elapsed %T

Here‟s an example used by Hazards‟ diskdt process:

 keepalive="count = %C; e = %e; t = %S; IOpS = %IOPS; SpIO = %SPIO"

 tkeepalive="STAT +RawMbytes %MBPS +RawReads %R +RawWrites %W";

 Data Test Program

 Page 13 of 70

Buffer Alignment "align=" Option

This option controls the alignment of the normally page aligned data buffer allocated. This

option is often useful for testing certain DMA boundary conditions not easily reproduced

otherwise. The rotate option automatically adjust the data buffer pointer by (0, 1, 2, 3, ...) for

each I/O request to ensure various boundaries are fully tested.

 Syntax:

 align=offset Set offset within page aligned buffer.

 or align=rotate Rotate data address through sizeof(ptr).

File Disposition "dispose=" Option

This option controls the disposition of test files created on file systems. By default, the test file

created is deleted before exiting, but sometimes you may wish to keep this file for further

examination, for use as a pattern file, or simply for the read verify pass of another test (e.g.,

reading the file via memory map API).

 Syntax:

 dispose=mode Set file dispose to: {delete, keep, or keeponerror}.

Dump Data Limit "dlimit=" Option

This option allows you to specify the dump data limit used when data compare errors occur. The

default dump data limit is 64 bytes.

 Syntax:

 dlimit=value Sets the data dump limit to value.

Device Size "dsize=" Option

This option allows you to specify the device block size used. On Tru64 Unix, the device block

size is obatined automatically by an OS specific IOCTL. For all other systems, random access

devices default to 512 byte blocks. You'll likely use this option with C/DVD's, since their

default block size to 2048 bytes per block.

 Syntax:

 dsize=value Set the device block (sector) size.

 Data Test Program

 Page 14 of 70

Device Type "dtype=" Option

Input Device Type "idtype=" Option

Output Device Type "odtype=" Option

These options provide a method to inform dt of the type of device test to be performed. Without

this knowledge, only generic testing is possible.

Special Notes:

 On Tru64 UNIX systems, these options are not necessary, since this information is

obtained via the DECIOCGET or DEVGETINFO IOCTL's.

 Although the program accepts a large number of device types, as shown below, specific

tests only exists for "disk", "tape", "fifo", and "terminal" device types. Others may be

added in the future.

 In the case of "disk" device type, dt reports the relative block number when read, write, or

data compare errors occur.

 Also for "disk" devices, dt will automatically determine the disk capacity if a data or

record limit is not specified. This is done via a series of seek/read requests.

 On each operating system supported, string compares are done on well known device

names to automatically select the device type. For example on QNX, "/dev/hd" for disk,

"/dev/tp" for tapes, and "/dev/ser" for serial lines.

 The device type gets displayed in the total statictics.

 Syntax:

 dtype=string Sets the device type.

 idtype=string Sets the input device type.

 odtype=string Sets the output device type.

 The Valid Device Types Are:

 audio comm disk graphics memory

 mouse network fifo pipe printer

 processor socket special streams tape

 terminal unknown

Note: Although dt does not provide specific test support for each of the devices shown above,

its' design makes it easy to add new device specific tests. Specific support exists for disk, fifo,

pipe, tape, and terminals. Support for "ptys" may be added in the future as well.

Error Limit "errors=" Option

This option controls the maximum number of errors tolerated before the program exits.

Special Notes:

 The default error limit is 1.

 Data Test Program

 Page 15 of 70

 All errors have a time stamp associated with them, which are useful for characterizing

intermittent error conditions.

 The error limit is adjusted for read, write, or data compare failures. This limit is not

enforced when flushing data, or for certain AIO wait operations which are considered

non-fatal (perhaps this will change).

 A future release may support an "onerr=" option to control the action of errors (e.g.,

loop, ignore (continue), or exit).

 Syntax:

 errors=value The number of errors to tolerate.

File Limit "files=" Option

This option controls the number of tape files to process with tape devices.

Special Notes:

 During the write pass, a tape file mark is written after each file. After all files are written,

1 or 2 file marks will be written automatically by the tape driver when the device is

closed.

 During reads, each file is expected to be terminated by a file mark and read() system calls

are expected to return a value of 0 denoting the end of file. When reading past all tapes

files, an errno of ENOSPC is expected to flag the end of media condition.

 Writing tape file marks is currently not supported on the QNX Operating System. The

release I currently have does not support the mtio commands, and unfortunately the

POSIX standard does not define this interface (the mtio interface appears to be a UNIX

specific standard). Multiple tape files can still be read on QNX systems however.

 Syntax:

 files=value Set number of tape files to process.

Terminal Flow Control "flow=" Option

This option specifies the terminal flow control to use during testing.

Special Notes:

 The default flow control is "xon_xoff".

 When using XON/XOFF flow control, you must make sure these byte codes (Ctrl/Q =

XON = '\021', Ctrl/S = XOFF = '\023), since the program does not filter these out

automatically. Also be aware of terminal servers (e.g., LAT), or modems (e.g., DF296)

which may eat these characters.

 Some serial lines do not support clear-to-send (CTS) or request-to-send (RTS) modem

signals. For example on Alpha Flamingo machines, only one port (/dev/tty00) supports

full modem control, while the alternate console port (/dev/tty01) does not. Therefore, if

running loopback between both ports, you can not use cts_rts flow control, the test will

hang waiting for these signals to transition (at least, I think this is the case).

 Data Test Program

 Page 16 of 70

 Syntax:

 flow=type Set flow to: none, cts_rts, or xon_xoff.

History "history=" Option

This option sets the number of I/O history entries to record. During failures, the history is

dumped, which can be helpful when troubleshooting failures.

 Syntax:
 history=value Set the number of history request entries.

History Data Size "hdsize=" Option

When I/O history is enabled, this option controls how many data bytes are saved for each I/O.

 Syntax:
 hdsize=value Set the history data size (bytes to save).

 Default hdsize=32 (set to 0 to disable copy)

Record Increment "incr=" Option

This option controls the bytes incremented when testing variable length records. After each

record, this increment value (default 1), is added to the last record size (starting at "min=", up to

the maximum record size "max=").

Special Notes:

 If variable length record testing is enabled on fixed block disks and this option is omitted,

then "incr=” defaults to 512 bytes.

 Syntax:

 incr=value Set number of record bytes to increment.

 or incr=variable Enables variable I/O request sizes.

I/O Direction "iodir=" Option

This option allows you to control the I/O direction with random access devices. The default

direction is forward.

 Syntax:

 iodir=direction Set I/O direction to: {forward or reverse}.

I/O Mode "iomode=" Option

This option controls the I/O mode used, either copy, test, or verify modes. The copy option was

added to do a byte for byte copy between devices, while skipping bad blocks and keeping file

 Data Test Program

 Page 17 of 70

offsets on both disks in sync. I've used this option to (mostly) recover my system disk which

developed bad blocks which could not be re-assigned. A verify operation automatically occurs

after the copy, which is real handy for unreliable diskettes.

 Syntax:

 iomode=mode Set I/O mode to: {copy, test, or verify}.

IOT Pass "iotpass=" Option

This option is used to specify the IOT pass number. When multiple passes occur, dt factors in the

pass count to generate unique data during each pass. For example, the IOT seed is normally

0x01010101, and will be multiplied by the pass specified, useful for re-reading previously

written IOT data patterns.

 Syntax:

 iotpass=value Set the IOT pattern for specified pass.

IOT Seed "iotseed=" Option

This option is used to specify the last IOT pattern seed dt used. When multiple passes occur, dt

now factors in the pass count to generate unique data during each pass. For example, the IOT

seed is normally 0x01010101, but this is now multiplied by the pass count for uniqueness.

 Syntax:

 iotseed=value Set the IOT pattern block seed value.

I/O Type "iotype=" Option

This option controls the type of I/O performed, either random or sequential. The default is to do

sequential I/O.

Special Notes:

 The random number generator used is chosen by defines: RAND48 to select

srand48()/lrand48(), RANDOM to select srandom()/random(), and if neither are defined,

srand()/rand() gets used by default. Refer to your system literature or manual pages to

determine which functions are supported.

 Syntax:

 iotype=type Set I/O type to: {random or sequential}.

The seeks are limited to the data limited specified or calculated from other options on the dt

command line. If data limits are not specified, seeks are limited to the size of existing files, or to

the entire media for disk devices (calculated automatically by dt). If the data limits exceed the

capacity of the media/partition/file under test, a premature end-of-file will be encountered on

reads or writes, but this is treated as a warning (expected), and not as an error.

 Data Test Program

 Page 18 of 70

Minimum Record Size "min=" Option

This option controls the minimum record size to start at when testing variable length records.

Special Notes:

 By default, dt tests using fixed length records of block size “bs=“ bytes.

 This option, in conjuntion with the “max=“ and “incr=“ control variable length record

sizes.

 If variable length record testing is enabled on fixed block disks and this option is omitted,

then “min=” defaults to 512 bytes.

 Syntax:

 min=value Set the minumum record size to transfer.

Maxmimum Record Size “max=“ Option

The option controls the maximum record size during variable length record testing.

Special Notes:

 If the “min=“ option is specified, and this option is omitted, then the maximum record

size is set to the block size “bs=“.

 This option, in conjuntion with the “min=“ and “incr=“ control variable length record

sizes.

 Syntax:

 max=value Set the maximum record size to transfer.

Logical Block Address “lba=“ Option

This option sets the starting logical block address used with the “lbdata” option. When

specified, the logical block data (enable=lbdata) option is automatically enabled.

 Syntax:

 lba=value Set starting block used w/lbdata option.

Special Notes:

 Please do not confuse this option with the disks' real logical block address. See dt's

“seek=“ or “position=“ options to set the starting file position.

 Also note that dt doesn't know about disk partitions, so any position specified is relative

to the start of the partition used.

Logical Block Size “lbs=“ Option

This option sets the starting logical block size used with the lbdata option. When specified, the

logical block data (enable=lbdata) option is automatically enabled.

 Data Test Program

 Page 19 of 70

 Syntax:

 lbs=value Set logical block size for lbdata option.

Data Limit “limit=“ Option

This option specifies the number of data bytes to transfer during each write and/or read pass for

the test.

Special Notes:

 You must specify either a data limit, record limit, or files limit to initiate a test, unless the

device type is "disk", in which case dt will automatically determine the disk capacity.

 When specifying a runtime via the “runtime=“ option, the data limit controls how many

bytes to process for each pass (write and/or read pass).

 If you specify a infinite “limit=Inf” value, each pass will continue until the end of media

or file is reached.

 When the “step=value” option is used, limit controls the maximum offset stepped to.

 Syntax:

 limit=value The number of bytes to transfer.

Munsa (DLM) “munsa=“ Option

This option is used on Tru64 Cluster systems to specify various distributed lock manager (DLM)

options with devices or files.

 Syntax:

 munsa=string Set munsa to: cr, cw, pr, pw, ex.

 MUNSA Lock Options:

 cr = Concurrent Read (permits read access, cr/pr/cw by others)

 pr = Protected Read (permits cr/pr read access to all, no write)

 cw = Concurrent Write (permits write and cr access to resource by all)

 pw = Protected Write (permits write access, cr by others)

 ex = Exclusive Mode (permits read/write access, no access to others)

 For more details, please refer to the dlm(4) reference page.

Special Notes:

 .MUNSA is an obsolete Tru64 Cluster term which meant MUltiple Node Simultaneous

Access. The new term is DAIO for Direct Access I/O. Finally, the last term used is DRD

for Distributed Request Dispatcher.

 Data Test Program

 Page 20 of 70

Common Open Flags “flags=“ Option

Output Open Flags “oflags=“ Option

These options are used to specify various POSIX compliant open flags, and system specific

flags, to test the affect of these open modes.

Special Notes:

 .Each operating system has different flags, which can be queried by reviewing the dt help

text (“dt help”).

 Syntax:

 flags=flags Set open flags: {excl,sync,...}.

 oflags=flags Set output flags: {append,trunc,...}.

On Child Error “oncerr=“ Option

This option allows you to control the action taken by dt when a child process exits with an error.

By default, the action is continue, which allows all child processes to run to completion. If the

child error action is set to abort, then dt aborts all child processes if any child process exits with

an error status.

 Syntax:

 oncerr={abort|continue} Set child error action.

No Progress Time “noprogt=“ Option

This option allows you to specify a time (in seconds) to report when I/O is not making progress.

This option is used in conjunction with the “alarm=” option to periodically check for an report

when I/O is taking too long. This is especially useful during controller failover type testing.

 Syntax:

 noprogt=value Set the no progress time (in seconds).

 Example:

 dt … alarm=5s trigger="cmd:trigger" enable=noprog noprogt=120s

 dt (16308): No progress made for 120 seconds!
 dt (16308): Executing: trigger /var/tmp/dt.data-16308 noprog 512 131072 0 0 0
 /var/tmp/dt.data-16308 noprog 512 131072 0 0 0
 dt (16308): Trigger exited with status 2!
 dt (16308): Sleeping forever...
 ...

In this example, an alarm() is set for every 5 seconds, and when the current I/O exceeds 120

seconds, a message is displayed and the trigger script is executed with “op = noprog”. If the

“trigger=” option were omitted, then only the warning message is displayed.

 Data Test Program

 Page 21 of 70

When the “trigger=cmd:...” option is utilized, the exit status controls the subsequent action to

take: CONTINUE = 0, TERMINATE = 1, SLEEP = 2, or ABORT = 3

No Progress Time Trigger “noprogtt=“ Option

This option allows you to specify a time (in seconds) when to initiate the no-progress time

trigger script. Note: This option has no effect, unless the noprogt= option is enabled.

 Syntax:

 noprogtt=value Set the no progress time trigger (in seconds).

No Time “notime=“ Option

This option allows you to disable timing of certain operations (system calls), when the no-

progress options is enabled.

Special Notes:

 This option has no effect, unless the noprogt= option is enabled.
 Valid optype's are: open close read write ioctl fsync msync aiowait

 Syntax:

 notime=optype Disable timing of specified operation type.

Terminal Parity Setting “parity=“ Option

This option specifies the terminal parity setting to use during testing.

 Syntax:

 parity=string Set parity to: even, odd, or none.

 on QNX parity=string Set parity to: even, odd, mark, space, or none.

Pass Limit “passes=“ Option

This option controls the number of passes to perform for each test.

Special Notes:

 The default is to perform 1 pass.

 When using the “of=“ option, each write/read combination is considered a single pass.

 When multiple passes are specified, a different data pattern is used for each pass, unless

the user specified a data pattern or pattern file. [Please keep this in mind when using the

“dispose=keep” option, since using this same file for a subsequent dt read verify pass,

will report comparison errors... I've burnt myself this way.]

 Syntax:

 passes=value The number of passes to perform.

 Data Test Program

 Page 22 of 70

Data Pattern “pattern=“ Option

This option specifies a 32 bit hexadecimal data pattern to be used for the data pattern. dt has 12

built-in patterns, which it alternates through when running multiple passes. The default data

patterns are:

 0x39c39c39, 0x00ff00ff, 0x0f0f0f0f, 0xc6dec6de, 0x6db6db6d, 0x00000000,

 0xffffffff, 0xaaaaaaaa, 0x33333333, 0x26673333, 0x66673326, 0x71c7c71c

You can also specify the special keyword “incr” to use an incrementing data pattern, or specify a

character string (normally contained within single or double quotes).

 Syntax:

 pattern=value The 32 bit hex data pattern to use.

 or pattern=iot Use DJ's IOT test pattern.

 or pattern=incr Use an incrementing data pattern.

 or pattern=string The string to use for the data pattern.

So, what is DJ's IOT test pattern? This pattern places the logical block address (lba) in the first

word (4 bytes) of each block, with (lba+=0x01010101) being placed in all remaining words in

the data block (512 bytes by default). In this way, the logical block is seeded throughout each

word in the block. Note: The 4 byte lba needs increased to 8 bytes for larger capacity disks!

When specifying a pattern string via “pattern=string”, the following special mapping occors:

 Pattern String Mapping:

 \\ = Backslash \a = Alert (bell) \b = Backspace

 \f = Formfeed \n = Newline \r = Carriage Return

 \t = Tab \v = Vertical Tab \e or \E = Escape

 \ddd = Octal Value \xdd or \Xdd = Hexadecimal Value

File Position “position=“ Option

This option specifies a byte offset to seek to prior to starting each pass of each test.

 Syntax:

 position=offset Position to offset before testing.

Prefix “prefix=“ Option

This option allows the user to define a free format prefix string which is written at the beginning

of each block. It is used to generate uniqueness useful when data corruption occur. Certain

format control strings are interpreted as shown below.

 Syntax:

 prefix=string The data pattern prefix string.

 Data Test Program

 Page 23 of 70

The prefix format controls permitted are:

 Prefix Format Control:

 %d = The device name. %D = The real device name.

 %h = The host name. %H = The full host name.

 %p = The process ID. %P = The parent PID.

 %u = The user name.

 Example: prefix="%u@%h (pid %p)"

Multiple Processes “procs=“ Option

This option specifies the number of processes to initiate performing the same test. This option

allows an easy method for initiating multiple I/O requests to a single device or file system.

Special Notes:

 The per process limit on Tru64 UNIX is 64, and can be queried by using the “sysconfig -q

proc” command.

 Spawning many processes can render your system useless, well at least very slow, and

consumes large amounts of swap space (make sure you have plenty!).

 The parent process simply monitors (waits for) all child prcoesses.

 When writing to a file system, the process ID (PID) is appended to the file name

specified with the “of=“ option to create unique file names. If no pattern is specified,

each process is started with a unique data pattern. Subsequent passes cycle through the

12 internal data patterns. Use “disable=unique” to avoid this behaviour.

 The spawn() facility, used to execute on a different node, is not implemented on the QNX

Operating System at this time.

 Syntax:

 procs=value The number of processes to create.

Set Queue Depth “qdepth=“ Option

This option is currently only implemented on HP-UX. It allow you to set the queue depth of the

device under test, overriding its‟ default. Note: The settings is sticky (retained).

 Syntax:

 qdepth=value Set the queue depth to specified value.

Random I/O Offset Alignment “ralign=“ Option

This option is used when performing random I/O, to align each random block offset to a

particular alignment, for example 32K.

 Syntax:

 ralign=value The random I/O offset alignment.

 Data Test Program

 Page 24 of 70

Random I/O Data Limit “rlimit=“ Option

This option is used with random I/O to specify the number of bytes to limit random I/O between

(starting from block 0 to this range). This option is independent of the data limit option.

 Syntax:

 rlimit=value The random I/O data byte limit.

Random Seed Value “rseed=“ Option

This options sets the seed to initialize the random number generator with, when doing random

I/O. When selecting random I/O, the total statistics displays the random seed used during that

test. This option can be used to repeat the random I/O sequence of a test.

 Syntax:

 rseed=value The random seed to initialize with.

Record Limit “records=“ Option

This option controls the number of records to process for each write and/or read pass of each test.

The “count=“ option is an alias for this option (supported for dd compatibility).

Special Notes:

 You must specify either a data limit, record limit, or files limit to initiate a test, unless the

device type is "disk", in which case dt will automatically determine the disk capacity.

 When specifying a runtime via the “runtime=“ option, the record limit controls how many

records process for each pass (write and/or read pass).

 If you specify a infinite “records=Inf” value, each pass will continue until the end of

media or file is reached.

 Syntax:

 records=value The number of records to process.

Run Time “runtime=“ Option

This option controls how long the total test should run. When used in conjunction with a data

limit or record limit, multiple passes will be performed until the runtime limit expires. A later

section entitled “Time Input Parameters”, describes the shorthand notation for time values.

 Syntax:

 runtime=time The number of seconds to execute.

Retry Delay “retry_delay=“ Option

This option controls the number of seconds to delay between reads performed after a data

corruption. (see enable=retryDC option)

 Data Test Program

 Page 25 of 70

 Syntax:
 retry_delay=value Delay before retrying operation. (Def: 5)

Slice “slice=“ Option

This option is used with random access devices. This option is used in conjunction with the

“slices=value” option, which divides the media into slices (see below), then “slice=value”

defines the slice to do testing to. Since dt does the calculations, this simplifies simultaneous

testing from multiple hosts to shared storage (usually a multi-initiator test requrement).

 Syntax:

 slice=value The specific disk slice to test.

Slices “slices=“ Option

This option is used with random access devices. This option divides the media into slices. Each

slice contains a different range of blocks to operate on in a separate process. If no pattern is

specified, then each slice is started with a unique data pattern. Subsequent passes alternate

through dt's 12 internal patterns.

 Syntax:

 slices=value The number of disk slices to test.

Note: This option can be used in conjuntion with multiple processes and/or asynchronous I/O

options to generate a heavy I/O load, great for stress testing!

Record Skip “skip=“ Option

This option specifies the numer of records to skip prior to starting each write and/or read pass of

each test. The skips are accomplished by reading records.

 Syntax:

 skip=value The number of records to skip past.

Record Seek “seek=“ Option

This option specifies the number of records to seek past prior to starting each write and/or read

test. The seeks are accomplished by lseek()'ing past records, which is much faster than skipping

when using random access devices.

 Syntax:

 seek=value The number of records to seek past.

 Data Test Program

 Page 26 of 70

Data Step “step=“ Option

This option is used to specify non-sequential I/O requests to random access devices. Normally,

dt does sequential read & writes, but this option specifies that step bytes to be seeked past after

each request.

Special Notes:

 The “limit=value” option can be used to set the maximum offset.

 Syntax:

 step=value The number of bytes seeked after I/O.

Terminal Speed “speed=“ Option

This option specifies the terminal speed (baud rate) to setup prior to initiating the test. Although

dt supports all valid baud rates, some speeds may not be supported by all serial line drivers, and

in some cases, specifying higher speeds may result in hardware errors (e.g., silo overflow,

framing error, and/or hardware/software overrun errors). The valid speeds accepted by dt are:

 0 50 75 110 134 150

 200 300 600 1200 1800 2400

 4800 9600 19200 38400 57600 115200

Although a baud rate of zero is accepted, this is done mainly for testing purposes (some systems

use zero to hangup modems). The higher baud rates are only valid on systems which define the

Bxxxxx speeds in termios.h.

Special Notes:

 The default speed is 9600 baud.

 Syntax:

 speed=value The tty speed (baud rate) to use.

Terminal Read Timeout “timeout=“ Option

This option specifies the timeout to use, in 10ths of a second, when testing terminal line

interfaces. This is the timeout used between each character after the first character is received,

which may prevent tests from hanging when a character is garbled and lost.

Special Notes:

 The default terminal timeout is 3 seconds.

 The default timeout is automatically adjusted for slow baud rates.

 Syntax:

 timeout=value The tty read timeout in .10 seconds.

 Data Test Program

 Page 27 of 70

Terminal Read Minimum “ttymin=“ Option

This option specifies the minmum number of characers to read, sets the VMIN tty attribute.

Special Notes:

 The tty VMIN field normally gets sets to the value of the block size (bs=value).

 Note that on some systems, the VMIN field is an unsigned char, so the maximum value is

255.

 On QNX, this field is an unsigned short, so a maximum of 65535 is valid.

 Syntax:

 ttymin=value The tty read minimum count (sets vmin).

Trigger Action “trigger=“ Option

This option specifies a trigger action to take whenever an error occurs and/or when the no-

progress time has been exceeded (see “enable=noprog”). It‟s main purpose is for triggering an

anlyzer and/or stopping I/O by some means (panic, etc) when trouble-shooting.

 Syntax:

 trigger=type The trigger to execute during errors.

 Trigger Types:

 br = Execute a bus reset.

 bdr = Execute a bus device reset.

 seek = Issue a seek to the failing lba.

 cmd:string = Execute command with these args:

 string dname op dsize offset position lba errno

 The first three options require Scu in your PATH.

When specifying the “cmd:” type, which invokes a program/script, the following arguments are

passed on the command line:

Format: cmd dname op dsize offset position lba errno noprogtime

 Where:

 dname = The device/file name.

 op = open/close/read/write/miscompare/noprog

 dsize = The device block size.

 offset = The current file offset.

 position = The failing offset within block.

 lba = The logical block address (relative for FS).

 errno = The error number on syscall errors.

 noprogtime = The no-progress time (in seconds).

 Data Test Program

 Page 28 of 70

Multiple Volumes “volumes=“ Option

Multi-Volume Records “vrecords=“ Option

These options are used with removal media devices, to define how many volumes and records on

the last volume to process (i.e., tapes, etc). By using these options, you do not have to guess at a

data limit or record limit, to overflow onto subsequent volumes. These options automatically

sets the “enable=multi” option.

 Syntax:

 volumes=value The number of volumes to process.

 vrecords=value The record limit for the last volume.

Enable “enable=“ and Disable “disable=“ Options

These options are used to either enable or disable program flags which either alter default test

modes, test actions, or provide additional debugging information. You can specify a single flag

or multiple flags each seperated by a comma (e.g., “enable=aio,debug,dump”).

 Syntax:

 enable=flag Enable one or more of the flags below.

 disable=flag Disable one or more of the flags below.

The flags which can be enabled or disabled are described below.

POSIX Asynchronous I/O “aio” Flag

This flag is used to control use of POSIX Asynchronous I/O during testing, rather than the

synchronous I/O read() and write() system calls.

Special Notes:

 Beware, you may need to rebuild dt on new versions of Tru64 Unix due to POSIX

changes and/or AIO library changes between major releases.

 Reference the “aios=“ option, for more special notes.

 Flag:

 aio POSIX Asynchronous I/O.(Default: disabled)

Reporting Close Errors “cerror” Flag

This flag controls where close errors are reported as an error or a failure. When disabled, close

errors are reported as a warning. This flag is meant to be used as a workaround for device drivers

which improperly return failures when closing the device. Many system utilities ignore close

failures, but when testing terminals and tapes, the close status us very important. For example

with tapes, the close reflects the status of writing filemarks (which also flush buffered data), and

the rewind status.

 Data Test Program

 Page 29 of 70

 Flag:

 cerrors Report close errors. (Default: enabled)

Data Comparison “compare” Flag

This flag disables data verification during the read pass of tests. This flag should be disabled to

read to end of file/media to obtain maximum capacity statistics, or to obtain maximum

performance statistics (less overhead).

 Flag:

 compare Data comparison. (Default: enabled)

Core Dump on Errors “coredump” Flag

This flag controls whether a core file is generated, via abort(), when dt is exiting with a failure

status code. This is mainly used for program debug, and is not of much interest to normal users.

When testing multiple processes, via fork(), this is useful if your OS debugger does not support

debugging child processes.

 Flag:

 coredump Core dump on errors. (Default: disabled)

Diagnostic Logging “diag” Flag

This option is only valid on Tru64 Unix. When enabled, error messages get logged to the binary

error logger. This is useful to correlate device error entries with test failures. Please note, the

logging only occurs when running as superuser (API restriction, not mine!).

 Flag:

 diag Log diagnostic msgs. (Default: disabled)

Debug Output “debug” Flag

Verbose Debug Output “Debug” Flag

Random I/O Debug Output “rdebug” Flag

These flags enable two different levels of debug, which are useful when trouble-shooting certain

problems (i.e., what is dt doing to cause this failure?). Both flags can be specified for full debug

output.

 Flag:

 debug Debug output. (Default: disabled)

 Debug Verbose debug output. (Default: disabled)

 edebug End of file debug. (Default: disabled)

 Data Test Program

 Page 30 of 70

 rdebug Random debug output. (Default: disabled)

 tdebug Timer debug output. (Default: disabled)

Dump Data Buffer “dump” Flag

This flag controls dumping of the data buffer during data comparision failures. If a pattern file is

being used, then the pattern buffer is also dumped for easy comparision purposes. To prevent

too many bytes from being dumped, esp. when using large block sizes, dumping is limited to 512

bytes of data (was 64, recently increased).

Special Notes:

 When the failure occurs within the first 64 bytes of the buffer, dumping starts at the

beginning of the buffer.

 When the failure occurs at some offset within the data buffer, then dumping starts at (data

limit/2) bytes prior to the failing byte to provide context.

 The start of the failing data is marked by an asterisk '*'.

 You can use the dlimit= option to override the default dump limit.

 Buffer addresses are displayed for detection of memory boundary problems.

 Flag:

 dump Dump data buffer. (Default: enabled)

Tape EEI Reporting “eei” Flag

This option controls the reporting of Extended Error Information (EEI) on Tru64 UNIX systems,

for tape devices when errors occur. The standard tape information available from mt is reported,

along with the EEI status, CAM status, and SCSI request sense data. This is excellent

information to help diagnose tape failures. (thank-you John Meneghini!)

 Flag:

 eei Tape EEI reporting. (Default: enabled)

Flush Terminal I/O Queues “flush” Flag

This flag controls whether the terminal I/O queues get flushed before each test begins. This must

be done to ensure no residual characters are left in the queues from a prior test, or else data

verification errors will be reported. Residual characters may also be left from a previous

XOFF‟ed terminal state (output was suspended).

 Flag:

 flush Flush tty I/O queues. (Default: enabled)

 Data Test Program

 Page 31 of 70

History Dumping “hdump” Flag

This flag controls dumping the history entries at the end of a test. Normally dt only dumps the

history during errors, but this option when enabled, dumps the history when exiting. This is

useful if you are timing I/O‟s, or wish to see the LBA‟s I/O went to, etc.

 Flag:

 hdump History dump. (Default: disabled)

History Timing “htiming” Flag

This flag controls the timing of history entries. Please be aware, that enabling timing of each I/O

will impact your overall test performance, as an extra system call is used to obtain system time.

 Flag:

 htiming History timing. (Default: disabled)

Log File Header “header” Flag

When a log file is specified, dt automatically writes the command line and dt version information

at the beginning of the log file. This option allows you to control whether this header should be

written.

 Flag:

 header Log file header. (Default: enabled)

Loop On Error “looponerror” Flag

This flag controls lopping on data corruption rereads. This can be helpful in capturing the failing

read request on an analyzer.

Special Notes:

 Also see “retry_delay=value” and retryDC flag control.

 Flag:

 looponerror Loop on error. (Default: disabled)

Logical Block Data Mode “lbdata” Flag

This option enables a feature called logical block data mode. This feature allows reading/writing

of a 4-byte (32-bit) logical block address at the beginning of each data block tested. The block

number is stored using SCSI byte ordering (big-endian), which matches what the SCSI Write

Same w/lbdata option uses, so dt can verify this pattern, generated by scu‟s “write same”

command.

Special Notes:

 The starting logical block address defaults to 0, unless overridden with the “lba=“ option.

 Data Test Program

 Page 32 of 70

 The logical block size defaults to 512 bytes, unless overridden with the “lbs=“ option.

 The logical block address is always inserted started at the beginning of each data block.

 Enabling this feature will degrade performance statistics (slightly).

Enable Loopback Mode “loopback” Flag
This flag specifies that either the input or output file should be used in a loopback mode. In

loopback mode, dt forks(), and makes the child process the reader, while the parent process

becomes the writer. In previous versions of dt, you had to specify both the same input and

output file to enable loopback mode. When specifying this flag, dt automatically duplicates the

input or output device, which is a little cleaner than the old method (which still works).

Some people may argue that dt should automatically enable loopback mode when a single

terminal or FIFO device is detected. The rationale behind not doing this is described below:

1. You may wish to have another process as reader and/or writer (which also includes

another program, not necessarily dt).

2. You may wish to perform device loopback between two systems (e.g., to verify the

terminal drivers of two operating systems are compatible).

3. A goal of dt is not to force (hardcode) actions or options to make the program more

flexible. A minimum of validity checking is done to avoid being too restrictive, although

hooks exists to do this.

Special Notes:

 The read verify flag is automatically disabled.

 This mode is most useful with terminal devices and/or FIFO's (named pipes).

Microsecond Delays “microdelay” Flag
This flag tells dt that delay values, i.e. “sdelay=“ and others, should be executed using

microsecond intervals, rather the second intervals. (thank-you George Bittner for implementing

this support!)

 Flag:

 microdelay Microsecond delays. (Default: disabled)

Memory Mapped I/O “mmap” Flag

This flag controls whether the memory mapped API is used for testing. This test mode is

currently supported on SUN/OS, Tru64 UNIX, and Linux operating systems.

Special Notes:

 The block size specified “bs=“ must be a multiple of the system dependent page size

(normally 4k or 8k).

 An msync() is done after writing and prior to closing to force modified pages to

permanent storage. It may be useful to add an option to inhibit this action at some point,

but my testing was specifically to time mmap performance. Obviously, invalidating the

 Data Test Program

 Page 33 of 70

memory mapped pages, kind of defeats the purpose of using memory mapped files in the

first place.

 Specifying multiple passes when doing a read verify test, gives you a good indication of

the system paging utilization on successive passes.

 Memory mapping large data files (many megabytes) may exhaust certain system

resources. On an early version of SUN/OS V4.0?, I could hang my system by gobbling

up all of physical memory and forcing paging (this was certainly a bug which has

probably been corrected since then).

 Flag:

 mmap Memory mapped I/O. (Default: disabled)

Test Modem Lines “modem” Flag

This flag controls the testing of terminal modem lines. Normally, dt disables modem control, via

setting CLOCAL, to prevent tests from hanging. When this flag is enabled, dt enables modem

control, via clearing CLOCAL, and then monitoring the modem signals looking for either carrier

detect (CD) or dataset ready (DSR) before allowing the test to start.

Special Notes:

 The program does not contain modem signal monitoring functions for the all operating

systems. The functions in dt are specific to Tru64 UNIX and ULTRIX systems, but these

can be used as templates for other operating systems.

 Flag:

 modem Test modem tty lines. (Default: disabled)

Multiple Volumes “multi” Flag

This flag controls whether multiple volumes are used during testing. When this flag is enabled,

if the data limit or record count specified does not fit on the current loaded media, the user is

prompted to insert the next media to continue testing. Although this is used mostly with tape

devices, it can be used with any removeable media.

 Flag:

 multi Multiple volumes. (Default: disabled)

No I/O Progress “noprog” Flag

This flag controls whether dt will check for slow or no I/O progress during testing.

 Special Notes:

 Enabling this flag will do nothing by itself. The “alarm=” option specifies the frequency

of how often dt checks for no progress.

 The “noprogt=secs” option specified the no I/O progress time.

 Data Test Program

 Page 34 of 70

 If “noprogt=” is omitted, it defaults to the “alarm=” time value.

 The noprog flag is implicitly enabled by the “noprogt=value” option.

 Flag:

 noprog No progress check. (Default: disabled)

Prefill “prefill” Flag

This flag controls the buffer prefill normally performed prior to reads. Normally, dt prefills the

buffer with the inverted data pattern (1
st
 four bytes). This, of course, ensures the data is

overwritten with data read, but also imposes overhead not always desirable.

Special Notes:

 When IOT pattern is used, this flag is automatically enabled, since IOT blocks are

unique.

 Flag:

 prefill Prefill read buffer. (Default: enabled)

Control Per Pass Statistics “pstats” Flag

This flag controls whether the per pass statistics are displayed. If this flag is disabled, a single

summary line is still displayed per pass and the total statistics are still displayed in the full

format.

 Flag:

 pstats Per pass statistics. (Default: enabled)

Read After Write “raw” Flag

This flag controls whether a read-after-write will be performed. Sorry, raw does not mean

character device interface. Normally dt performs a write pass, followed by a read pass. When

this flag is enabled the read/verify is done immediately after the write.

 Flag:

 raw Read after write. (Default: disabled)

Tape Reset Handling “resets” Flag

This option is used during SCSI bus and device reset testing, to reposition the tape position

(tapes rewind on resets), and to continue testing. This option is only enabled for Tru64 UNIX

systems (currently), since this option requires reset detection from EEI status, and tape position

information from the CAM tape driver (although dt also maintains the tape position as a sanity

check against the drivers‟ data).

 Data Test Program

 Page 35 of 70

 Flag:

 resets Tape reset handling. (Default: disabled)

Retry Data Corruptions “retryDC” Flag

This flag controls whether a data corruption retry is performed. A second read is done to re-read

the data, with direct I/O for file systems, and the data is compared against the previous read data,

and the expected data. If the reread data matches the expected data, then dt assumes a "read

failure" occurred, otherwise if the reread data matches the previous read, dt assumes a "write

failure" (the data was written incorrectly).

 Flag:

 retryDC Retry data corruptions.(Default: enabled)

Control Program Statistics “stats” Flag

This flag controls whether any statistics get displayed (both pass and total statistics). Disabling

this flag also disabled the pass statistics described above.

 Flag:

 stats Display statistics. (Default: enabled)

Table(sysinfo) timing “table” Flag

On Tru64 UNIX systems, this option enables additional timing information which gets reported

as part of the statistics display. (thanks to Jeff Detjen for adding this support!)

 Flag:

 table Table(sysinfo) timing. (Default: disabled)

System Log “syslog” Flag

This flag controls logging startup/finish and errors being logged to the system logger. This can

be helpful when correlating dt‟s errors with system (driver/file system) error messages.

 Flag:

 syslog Log errors to syslog. (Default: disabled)

Timestamp Blocks “timestamp” Flag

This flag controls whether blocks are timestamped when written. The timestamp is skipped

during data comparisions, but is displayed if any remaining data is incorrect.

 Special Notes:

 When IOT or lbdata patterns are used, the block number is overwritten by the timestamp.

 Data Test Program

 Page 36 of 70

 This flag is a stop-gap, until block tagging (w/more information) is implemented.

 Flag:

 timestamp Timestamp each block. (Default: disabled)

Unique Pattern “unqiue” Flag

This flag controls whether multiple process, get a unqiue data pattern. This affects processes

started with the “slices=“ or the “procs=“ options. This only affects the procs= option when

writing to a regular file.

 Flag:

 unique Unique pattern. (Default: enabled)

Verbose Output “verbose” Flag

This flag controls certain informational program messages such as reading and writing partial

records. If you find these messages undesirable, then they can be turned off by disabling this

flag. But beware, partial reads or writes of disk records if not at EOF is usually a problem!

 Flag:

 verbose Verbose output. (Default: enabled)

Verify Data “verify” Flag

This flag controls whether the read verify pass is performed automatically after the write pass.

Ordinarily, when specifying an output device via the “of=“ option, a read verify pass is done to

read and perform a data comparision. If you only wish to write the data, and omit the data

verification read pass, then di able this flag.

 Flag:

 verify Verify data written. (Default: enabled)

Special Notes:

 If you don't plan to ever read the data being written, perhaps for performance reasons,

specifying “disable=compare” prevents the data buffer from being initialized with a data

pattern.

 This verify option has no affect when reading a device. You must disable data

comparsions via “disable=compare”.

Program Delays

dt allows you to specify various delays to use at certain points of the test. These delays are

useful to slow down I/O requests or to prevent race conditions when testing terminals devices

 Data Test Program

 Page 37 of 70

with multiple processes, or are useful for low level driver debugging. All delay values are in

seconds, unless you specify “enable=microdelay”, to enable micro-second delays.

Close File “cdelay=“ Delay

This delay, when enabled, is performed prior to closing a file descriptor.

 Delay

 cdelay=value Delay before closing the file. (Def: 0)

End of Test “edelay=“ Delay

This delay, when enabled, is used to delay after closing a device, but prior to re-opening the

device between multiple passes.

 Delay:

 edelay=value Delay between multiple passes. (Def: 0)

Read Record “rdelay=“ Delay

This delay, when enabled, is used prior to issuing each read request (both synchronous read()'s

and asynchronous aio_read()'s).

 Delay:

 rdelay=value Delay before reading each record. (Def: 0)

Start Test “sdelay=“ Delay

This delay, when enabled, is used prior to starting the test. When testing terminal devices, when

not in self loopback mode, the writing process (the parent) automatically delays 1 second, to

allow the reading process (the child) to startup and setup its‟ terminal characteristics. If this

delay did not occur prior to the first write, the reader may not have its‟ terminal characteristics

(flow, parity, & speed) setup yet, and may inadvertantly flush the writers data or receive garbled

data.

 Delay:

 sdelay=value Delay before starting the test. (Def: 0)

Child Terminate “tdelay=“ Delay

This delay is used by child processes before exiting, to give the parent process sufficient time to

cleanup and wait for the child. This is necessary since if the child exits first, a SIGCHLD signal

may force the parent to it's termination signal handler before it's ready to. This is a very

simplistic approach to prevent this parent/child race condition and is only currently used by the

child for terminal loopback testing.

 Data Test Program

 Page 38 of 70

 Delay:

 tdelay=value Delay before child terminates. (Def: 1)

Write Record “wdelay=“ Delay

This delay, when enabled, is used prior to issuing each write request (both synchronous write()'s

and asynchronous aio_write()'s).

 Delay:

 wdelay=value Delay before writing each record. (Def: 0)

Numeric Input Parameters

For any options accepting numeric input, the string entered may contain any combination of the

following characters:

Special Characters:

 w = words (4 bytes) q = quadwords (8 bytes)

 b = blocks (512 bytes) k = kilobytes (1024 bytes)

 m = megabytes (1048576 bytes) p = page size (8192 bytes)

 g = gigabytes (1073741824 bytes)

 t = terabytes (1099511627776 bytes)

 inf or INF = infinity (18446744073709551615 bytes)

Arithmetic Characters:

 + = addition - = subtraction

 * or x = multiplcation / = division

 % = remainder

Bitwise Characters:

 ~ = complement of value >> = shift bits right

 << = shift bits left & = bitwise 'and' operation

 | = bitwise 'or' operation ^ = bitwise exclusive 'or'

The default base for numeric input is decimal, but you can override this default by specifying 0x

or 0X for hexadecimal coversions, or a leading zero „0‟ for octal conversions.

NOTE: Certain values will vary depending on the operating system and/or machine you are

running on. For example, the page size is system dependent, and the value for Infinity is the

largest value that will fit into an unsigned long long (value shown above is for 64-bit systems), or

double for systems which don‟t support “long long”.)

Time Input Parameters

When specifying the run time “runtime=“ option, the time string entered may contain any

combination of the following characters:

 Data Test Program

 Page 39 of 70

Time Input:

 d = days (86400 seconds), h = hours (3600 seconds)

 m = minutes (60 seconds), s = seconds (the default)

Arithmetic characters are permitted, and implicit addition is performed

on strings of the form '1d5h10m30s'.

Future Enhancements?
Initially dt was written to be a generic test tool, designed to test any device, and although that

was (mostly) accomplished, device specific tests needed to be and were developed, based on the

device type detected or specified by the “dtype=” option if not determined automatically.

Some of the features requested include:

 Support for an initialization file (.dtrc) to setup frequent or common test parameters.

 Develop corruption analysis logic. What is this? Folks familiar with HP‟s Hazard know

how valuable this is: data re-read logic, I/O history, metadata prowlers, and detailed

analysis of expected and received data. A lot of work is involved here, especially with

file system prowlers, which are responsible for converting file system data structures to

physical underlying LBA‟s, to help identify bad data in analyzer traces.

 Improved file system testing. Although not developed as a file system exerciser, many

folks use it this way. Multiple processes creating unique data files generates a data load,

but many file system specific features, such as truncating files, file locking, creating lots

of metadata (via subdirectories), and many more are not tested well. Major effort here!

 Supporting multiple devices in one dt invocation (perhaps a comma separated list).

Although multiple processes or threads could accomplish this, it does add complexity

requiring locking and switching to reentrant library API‟s, and the savings is shared code

is minimal (I think) since most of the address space is data buffers.

 Multiple threads for I/O is likely to be implemented one day. The reason I haven‟t

rushed this I/O method, is because POSIX AIO provides my need, and most modern day

OS‟s now support POSIX AIO. Interestingly enough, the Linux AIO is implemented via

POSIX threads! Threads are interesting to overcome OS‟s with a process limit, and

threads (should) reduce system resources.

 Incorporate SCSI library to implement bus/target/lun reset triggers, etc.

 Interactive interface to keep the device open, like scu does, to allow more creative tests,

especially for tapes and tape libraries (although most use dt for disk testing).

 Add output formats to allow statistics to be imported to tools such as MS Excel, etc.

 GUI front-end? Might be nice, but not necessary for test automation. Volunteers?

 Port to VMS? There‟s a need, so given the time, this will likely happen.

 Native Windows? Mostly there, thanks to the HP Hazard India team, but unfortuanatly I

no longer have a Windows development environment, so I cannot supply updates. The

code needs a few tweaks for file system testing, ported for raw I/O testing initially.

 iozone supplies many of the features above, so you may wish to consider this tool too.

It‟s difficult, if not impossible, to supply sufficient features for everyones test needs!

http://www.iozone.org/

 Data Test Program

 Page 40 of 70

Final Comments
I'm happy to report that dt is getting wide spread use all over the world! Storage groups,

terminal/lat groups, Q/A, developers, and other peripheral qualification groups are using dt as

part of their testing. I guess maybe this will be my (computer) legacy?

Anyways, I hope you find dt as useful as I have. This is usually one of the first tools I port to a

new operating system, since it's an excellent diagnostic and performance tool (it gives me a

warm and fuzzy feeling).

Please send me mail on any problems or suggestions you may have, and I'll try to help you out.

The future development of dt depends alot on user interest. Many of dt's features have come

about from user requests.

If You Like My Work,

You Can Do

One Of Two Things:

THROW MONEY OR APPLAUD*
(or hire me and allow me to work remotely from Mesquite, NV?)

*I've heard enough applause!

 Data Test Program

 Page 41 of 70

Appendix A dt Help Text

The following help text is contained within the dt program. Please review the WhatsNew* files

for the changes added for each version (the html/ directory has HTML versions of these files).

% dt help

Usage: dt options...

 Where options are:

 if=filename The input file to read.

 of=filename The output file to write.

 pf=filename The data pattern file to use.

 bs=value The block size to read/write.

 log[tu]=filename The log file name to write.

 t=truncate, u=unique (w/pid)

 aios=value Set number of AIO's to queue.

 alarm=time The keepalive alarm time.

 keepalive=string The keepalive message string.

 pkeepalive=str The pass keepalive msg string.

 tkeepalive=str The totals keepalive msg string.

 align=offset Set offset within page aligned buffer.

 or align=rotate Rotate data address through sizeof(ptr).

 capacity=value Set the device capacity in bytes.

 dispose=mode Set file dispose to: {delete, keep, or keeponerror}.

 dlimit=value Set the dump data buffer limit.

 dtype=string Set the device type being tested.

 idtype=string Set input device type being tested.

 odtype=string Set output device type being tested.

 dsize=value Set the device block (sector) size.

 errors=value The number of errors to tolerate.

 files=value Set number of tape files to process.

 flow=type Set flow to: none, cts_rts, or xon_xoff.

 incr=value Set number of record bytes to increment.

 or incr=variable Enables variable I/O request sizes.

 iodir=direction Set I/O direction to: {forward or reverse}.

 iomode=mode Set I/O mode to: {copy, test, or verify}.

 iotype=type Set I/O type to: {random or sequential}.

 iotpass=value Set the IOT pattern for specified pass.

 iotseed=value Set the IOT pattern block seed value.

 history=value Set the number of history request entries.

 hdsize=value Set the history data size (bytes to save).

 min=value Set the minumum record size to transfer.

 max=value Set the maximum record size to transfer.

 lba=value Set starting block used w/lbdata option.

 lbs=value Set logical block size for lbdata option.

 limit=value The number of bytes to transfer.

 flags=flags Set open flags: {excl,sync,...}

 oflags=flags Set output flags: {append,trunc,...}

 oncerr=action Set child error action: {abort or continue}.

 noprogt=value Set the no progress time (in seconds).

 noprogtt=value Set the no progress trigger time (secs).

 notime=optype Disable timing of specified operation type.

 parity=string Set parity to: {even, odd, or none}.

 passes=value The number of passes to perform.

 pattern=value The 32 bit hex data pattern to use.

 Data Test Program

 Page 42 of 70

 or pattern=iot Use DJ's IOT test pattern.

 or pattern=incr Use an incrementing data pattern.

 or pattern=string The string to use for the data pattern.

 position=offset Position to offset before testing.

 prefix=string The data pattern prefix string.

 procs=value The number of processes to create.

 ralign=value The random I/O offset alignment.

 rlimit=value The random I/O data byte limit.

 rseed=value The random number generator seed.

 records=value The number of records to process.

 runtime=time The number of seconds to execute.

 slice=value The specific disk slice to test.

 slices=value The number of disk slices to test.

 skip=value The number of records to skip past.

 seek=value The number of records to seek past.

 step=value The number of bytes seeked after I/O.

 stats=level The stats level: {brief, full, or none}

 trigger=type The trigger to execute during errors.

 volumes=value The number of volumes to process.

 vrecords=value The record limit for the last volume.

 enable=flag Enable one or more of the flags below.

 disable=flag Disable one or more of the flags below.

 Flags to enable/disable:

 aio POSIX Asynchronous I/O.(Default: disabled)

 cerrors Report close errors. (Default: enabled)

 compare Data comparison. (Default: enabled)

 coredump Core dump on errors. (Default: disabled)

 debug Debug output. (Default: disabled)

 Debug Verbose debug output. (Default: disabled)

 edebug End of file debug. (Default: disabled)

 rdebug Random debug output. (Default: disabled)

 tdebug Timer debug output. (Default: disabled)

 dump Dump data buffer. (Default: enabled)

 eof EOF/EOM exit status. (Default: disabled)

 fsalign File system align. (Default: disabled)

 funique Unique output file. (Default: disabled)

 fsync Controls file sync'ing.(Default: runtime)

 header Log file header. (Default: enabled)

 hdump History dump. (Default: disabled)

 htiming History timing. (Default: disabled)

 lbdata Logical block data. (Default: disabled)

 logpid Log process ID. (Default: disabled)

 looponerror Loop on error. (Default: disabled)

 microdelay Microsecond delays. (Default: disabled)

 mmap Memory mapped I/O. (Default: disabled)

 multi Multiple volumes. (Default: disabled)

 noprog No progress check. (Default: disabled)

 prefill Prefill read buffer. (Default: enabled)

 pstats Per pass statistics. (Default: enabled)

 raw Read after write. (Default: disabled)

 retryDC Retry data corruptions.(Default: enabled)

 sighup Hangup signal control. (Default: enabled)

 stats Display statistics. (Default: enabled)

 syslog Log errors to syslog. (Default: disabled)

 timestamp Timestamp each block. (Default: disabled)

 trigargs Trigger cmd arguments. (Default: enabled)

 unique Unique pattern. (Default: enabled)

 verbose Verbose output. (Default: enabled)

 verify Verify data written. (Default: enabled)

 Example: enable=debug disable=compare,pstats

 Data Test Program

 Page 43 of 70

 Common Open Flags:

 excl (O_EXCL) Exclusive open. (don't share)

 ndelay (O_NDELAY) Non-delay open. (don't block)

 nonblock (O_NONBLOCK) Non-blocking open/read/write.

 direct (O_DIRECT) Direct disk access. (don't cache data).

 fsync (O_FSYNC) Sync both read/write data with disk file.

 rsync (O_RSYNC) Synchronize read operations.

 sync (O_SYNC) Sync updates for data/file attributes.

 large (O_LARGEFILE) Enable large (64-bit) file system support.

 Output Open Flags:

 append (O_APPEND) Append data to end of existing file.

 dsync (O_DSYNC) Sync data to disk during write operations.

 trunc (O_TRUNC) Truncate an existing file before writing.

 Delays (Values are seconds, unless microdelay enabled):

 cdelay=value Delay before closing the file. (Def: 0)

 edelay=value Delay between multiple passes. (Def: 0)

 rdelay=value Delay before reading each record. (Def: 0)

 sdelay=value Delay before starting the test. (Def: 0)

 tdelay=value Delay before child terminates. (Def: 1)

 wdelay=value Delay before writing each record. (Def: 0)

 retry_delay=value Delay before retrying operation. (Def: 5)

 Numeric Input:

 For options accepting numeric input, the string may contain any

 combination of the following characters:

 Special Characters:

 w = words (4 bytes) q = quadwords (8 bytes)

 b = blocks (512 bytes) k = kilobytes (1024 bytes)

 m = megabytes (1048576 bytes) p = page size (4096 bytes)

 g = gigabytes (1073741824 bytes)

 t = terabytes (1099511627776 bytes)

 inf or INF = infinity (18446744073709551615 bytes)

 Arithmetic Characters:

 + = addition - = subtraction

 * or x = multiplcation / = division

 % = remainder

 Bitwise Characters:

 ~ = complement of value >> = shift bits right

 << = shift bits left & = bitwise 'and' operation

 | = bitwise 'or' operation ^ = bitwise exclusive 'or'

 The default base for numeric input is decimal, but you can override

 this default by specifying 0x or 0X for hexadecimal conversions, or

 a leading zero '0' for octal conversions. NOTE: Evaluation is from

 right to left without precedence, and parenthesis are not permitted.

 Keepalive Format Control:

 %b = The bytes read or written. %B = Total bytes read and written.

 %c = Record count for this pass. %C = Total records for this test.

 %d = The device name. %D = The real device name.

 %e = The number of errors. %E = The error limit.

 %f = The files read or written. %F = Total files read and written.

 %h = The host name. %H = The full host name.

 %k = The kilobytes this pass. %K = Total kilobytes for this test.

 %l = Blocks read or written. %L = Total blocks read and written.

 %m = The megabytes this pass. %M = Total megabytes for this test.

 %p = The pass count. %P = The pass limit.

 %r = Records read this pass. %R = Total records read this test.

 Data Test Program

 Page 44 of 70

 %s = The seconds this pass. %S = The total seconds this test.

 %t = The pass elapsed time. %T = The total elapsed time.

 %i = The I/O mode (read/write) %u = The user (login) name.

 %w = Records written this pass. %W = Total records written this test.

 Performance Keywords:

 %bps = The bytes per second. %lbps = Logical blocks per second.

 %kbps = Kilobytes per second. %mbps = The megabytes per second.

 %iops = The I/O's per second. %spio = The seconds per I/O.

 Lowercase means per pass stats, while uppercase means total stats.

 Default: %d Stats: mode %i, blocks %l, %m Mbytes, pass %p/%P, elapsed %t

 or if pass statistics summary is disabled:

 %d Stats: mode %i, blocks %L, %M Mbytes, pass %p/%P, elapsed %T

 Log File Format Keywords:

 %iodir = The I/O direction. %iotype = The I/O type.

 %host = The host name. %pid = The process ID.

 %user = The user name.

 Example: log=dt_%host_%user_%iodir_%iotype-%pid.log

 Pattern String Input:

 \\ = Backslash \a = Alert (bell) \b = Backspace

 \f = Formfeed \n = Newline \r = Carriage Return

 \t = Tab \v = Vertical Tab \e or \E = Escape

 \ddd = Octal Value \xdd or \Xdd = Hexadecimal Value

 Prefix Format Control:

 %d = The device name. %D = The real device name.

 %h = The host name. %H = The full host name.

 %p = The process ID. %P = The parent PID.

 %u = The user name.

 Example: prefix="%u@%h (pid %p)"

 Time Input:

 d = days (86400 seconds), h = hours (3600 seconds)

 m = minutes (60 seconds), s = seconds (the default)

 Arithmetic characters are permitted, and implicit addition is

 performed on strings of the form '1d5h10m30s'.

 Trigger Types:

 br = Execute a bus reset.

 bdr = Execute a bus device reset.

 seek = Issue a seek to the failing lba.

 cmd:string = Execute command with these args:

 string dname op dsize offset position lba errno noprogt

 args following cmd:string get appended to above args.

 The first three options require Scu in your PATH.

 Defaults:

 errors=1, files=0, passes=1, records=0, bs=512, log=stderr

 pattern=0x39c39c39, dispose=delete, align=0 (page aligned)

 aios=8, dlimit=512, oncerr=continue, volumes=0, vrecords=1

 iodir=forward, iomode=test, iotype=sequential, stats=full

 iotseed=0x01010101, hdsize=32

 --> Date: April 20th, 2009, Version: 16.20, Author: Robin T. Miller <--

%

 Data Test Program

 Page 45 of 70

Appendix B Test Strategy

Depending on your needs, dt provides a wide range of options to help customize your tests. My

preference is to use a variety of tests, and for that matter different test tools, since each tool has

its‟ own strengths and I/O patterns. But in general, dt serves most of my needs. Here are a

couple things to keep in mind while developing your test strategy:

 Are you testing storage, driver, firmware, switch, file systems, network, or all?

o what are the buffer alignment restrictions (if any)?

o what are the characteristics of the component (s)?

o what are the debug capabilities (for trouble-shooting)?

o what mechanisms are available to stop I/O on errors?

o what is the best trigger mechanism? consider scu or spt if SCSI.

o what tunables are available? queue depth, max transfer size, etc.

 Are your goals unit testing, stress testing, or reliability testing?

o consider using a wide variety of variable request aizes.

o consider using runtime= option to specify length of test times.

o consider using errors= option to tolerate a number of errors.

 Are you concerned with buffer alignment and/or pattern sensitive data?

o consider using align=, pattern=, and pf= options.

 Are you doing shared (multi-initiatior) style storage testing?

o consider using slices= and slice= options to test sections of disks simultaneously

from each host (an integral and necessary part of shared storage testing)

o consider using prefix= to create unique string from each host.

 Before generating an I/O load, please consider the following:

o what is the service queue limits of your storage (max I/O requests)?

o what is the queue depth of your storage device, driver, and host adapter?

o does your host OS disk driver handle “queue fulls” well?

o how many hosts are accessing your shared storage?

o how many processors, memory, and swap space is available?

o depending out the above, you may need to limit your I/O loads.

 How much I/O load do you wish to generate?

o consider aios=, procs=, and/or slices= options.

o don‟t overdrive your host OS or storage (unless intended).

o don‟t spawn so many processes that paging/swapping occurs.

 What tools are available for monitoring the I/O load?

o consider using iostat, vmstst, top, etc to monitor I/O and processes.

o consider monitoring per path I/O, e.g. AIX “iostat –m” w/MPIO.

o consider monitoring/gathering statistics from your storage array.

o consider using scu to gather SCSI Log Page statistics.

 Are you doing perturbation testing?

o abort, bus/target/lun resets? consider using scu or spt.

o do you need to do panic and reboot testing?

 Data Test Program

 Page 46 of 70

o will you be doing storage controller failures?

o consider failover characteristics of your storage.

o consider using alarm= and noprogt= options to monitor I/O.

 Consider tools for troubleshooting problems:

o does the OS supply an error logger? (AIX has errpt).

o where do kernel error messages get written?

o can you display kernel messages via dmesg?

o does your host supply a method to panic the system?

o consider using trigger= option to trigger analyzers or stop software traces.

 Are you doing performance testing?

o use aios=value option with large value (say 64).

o use larger block sizes: e.g. bs=64k to 256k or greater.

o disable data comparisions via disable=compar.

o keep buffers page aligned (i.e., don‟t use align= option).

o do not use read-after-write (enable=raw) option.

o sequntial I/O is always faster than random I/O (of course).

o during file system testing, umount/re-mount to invalidate the buffer cache.

o keep in mind, dt was not developed to be a perfomance tool (though useful).

Obviously, this is only some of what needs to be considered. Each storage device, host OS,

drivers, etc. have different attributes. Each lab has their own requirements, and dt is usually

wrapped by some test harness (Hazard, QSuite, NATE, etc). Sadly, none of these are open

sourced nor productized for purchase, so test harnesses or scripts need to be developed.

Recommended Command Lines?

One of the most frequently asked questions, esp. with newbie‟s, is what are good dt command

lines to test with? Well, as described above, this really depends on your test needs, but here are

good tests to consider for disk testing:

 dt of=%s aios=%u min=%u max=%u incr=var pattern=iot prefix="%h on %d"

iotype={random|sequential}

 dt of=%s aios=%u min=%u max=%u incr=%u enable=lbdata prefix="%h on %d"

iotype={random|sequential}

 If sequential I/O, vary this option: iodir={forward|reverse}

 iodir=reverse starts at the end of the disk/file, and stops at the beginning.

 For best performance:

 dt of=%s aios=%u bs=%u (max block size supported by OS)

 Disabling data comparisions improves performance.

 Data Test Program

 Page 47 of 70

Appendix C dt Examples

This section contains various dt examples used to show its' capabilities and to help get new users

started. A short description prefaces each test to describe the nature of the test being performed.

Several of the latter tests, are real life problems which were either uncovered directly by dt, or

were easily reproduced using a specific dt command lines which helps trouble-shooting

problems.

On Tru64 UNIX systems, next to the device name in the total statistics, you'll notice the device

name and device type. This information is obtained by using the DEC specific DEVIOCGET

I/O control command. This is very useful for identifying the device under test, especially since

performance and various problems are device specific. For non-Tru64 UNIX systems you'll only

see the device type displayed, not the real device name, which is setup based on known system

dependent device naming conventions (e.g., "/dev/ser" prefix for QNX serial ports, "/dev/cd" or

"/dev/scd" prefix for Linux CD-ROM devices).

Simple Raw Test (to get started)

TEST DESCRIPTION: This test does read testing of a raw disk partition with data

comparisons disabled using the POSIX Asynchronous I/O (8 by default).

% dt if=/dev/rrz3c bs=8k limit=50m disable=compare enable=aio

Total Statistics:

 Input device/file name: /dev/rrz3c (Device: RZ25, type=disk)

 Data pattern read: 0x39c39c39 (data compare disabled)

 Total records processed: 6400 @ 8192 bytes/record (8.000 Kbytes)

 Total bytes transferred: 52428800 (51200.000 Kbytes, 50.000 Mbytes)

 Average transfer rates: 2227853 bytes/sec, 2175.637 Kbytes/sec

 Total passes completed: 1/1

 Total errors detected: 0/1

 Total elapsed time: 00m23.53s

 Total system time: 00m01.36s

 Total user time: 00m00.20s

 Starting time: Wed Sep 15 12:47:55 1993

 Ending time: Wed Sep 15 12:48:18 1993

%

Simple File System Test

TEST DESCRIPTION: This test does a write/read verify pass of a 50MB file through the UFS

file system, with the file disposition set to "keep", so the test file is not deleted. Normally, dt

deletes test files created when exiting.

% dt of=/usr/tmp/x bs=8k limit=50m dispose=keep

Write Statistics:

 Data Test Program

 Page 48 of 70

 Total records processed: 6400 @ 8192 bytes/record (8.000 Kbytes)

 Total bytes transferred: 52428800 (51200.000 Kbytes, 50.000 Mbytes)

 Average transfer rates: 1530768 bytes/sec, 1494.891 Kbytes/sec

 Total passes completed: 0/1

 Total errors detected: 0/1

 Total elapsed time: 00m34.25s

 Total system time: 00m03.48s

 Total user time: 00m06.70s

Read Statistics:

 Total records processed: 6400 @ 8192 bytes/record (8.000 Kbytes)

 Total bytes transferred: 52428800 (51200.000 Kbytes, 50.000 Mbytes)

 Average transfer rates: 2243743 bytes/sec, 2191.155 Kbytes/sec

 Total passes completed: 1/1

 Total errors detected: 0/1

 Total elapsed time: 00m23.36s

 Total system time: 00m02.05s

 Total user time: 00m13.95s

Total Statistics:

 Output device/file name: /usr/tmp/x

 Data pattern read/written: 0x39c39c39

 Total records processed: 12800 @ 8192 bytes/record (8.000 Kbytes)

 Total bytes transferred: 104857600 (102400.000 Kbytes, 100.000 Mbytes)

 Average transfer rates: 1819918 bytes/sec, 1777.264 Kbytes/sec

 Total passes completed: 1/1

 Total errors detected: 0/1

 Total elapsed time: 00m57.61s

 Total system time: 00m05.55s

 Total user time: 00m20.65s

 Starting time: Wed Sep 15 13:42:05 1993

 Ending time: Wed Sep 15 13:43:03 1993

% ls -ls /usr/tmp/x

51240 -rw-r--r-- 1 rmiller system 52428800 Sep 15 13:42 /usr/tmp/x

% od -x < /usr/tmp/x

0000000 9c39 39c3 9c39 39c3 9c39 39c3 9c39 39c3

*

310000000

%

Memory Mapped File Test

TEST DESCRIPTION: This test does a read verify pass of the 50MB file created in the

previous test, using the memory mapped I/O API‟s. File data is mapped automaticically by the

virtual memory system, rather than using read() or write() API‟s. Multiple passes will show

much improved performance since the data is paged in/out or already in the buffer cache.

% dt if=/usr/tmp/x bs=8k limit=50m enable=mmap

Total Statistics:

 Input device/file name: /usr/tmp/x

 Data pattern read: 0x39c39c39

 Total records processed: 6400 @ 8192 bytes/record (8.000 Kbytes)

 Total bytes transferred: 52428800 (51200.000 Kbytes, 50.000 Mbytes)

 Average transfer rates: 2282821 bytes/sec, 2229.318 Kbytes/sec

 Total passes completed: 1/1

 Data Test Program

 Page 49 of 70

 Total errors detected: 0/1

 Total elapsed time: 00m22.96s

 Total system time: 00m01.13s

 Total user time: 00m07.73s

 Starting time: Wed Sep 15 13:49:10 1993

 Ending time: Wed Sep 15 13:49:33 1993

% rm /usr/tmp/x

%

QIC Tape Test

TEST DESCRIPTION: This test does a write/read verify pass to a QIC-320 1/4" tape drive.

Please notice the total average transfer rate. This lower rate is caused by the tape rewind

performed after writing the tape. Note: This rewind time is not included in the write/read times,

but is part of the total time.

% dt of=/dev/rmt0h bs=64k limit=10m

Write Statistics:

 Total records processed: 160 @ 65536 bytes/record (64.000 Kbytes)

 Total bytes transferred: 10485760 (10240.000 Kbytes, 10.000 Mbytes)

 Average transfer rates: 157365 bytes/sec, 153.677 Kbytes/sec

 Total passes completed: 0/1

 Total errors detected: 0/1

 Total elapsed time: 01m06.63s

 Total system time: 00m00.10s

 Total user time: 00m01.33s

Read Statistics:

 Total records processed: 160 @ 65536 bytes/record (64.000 Kbytes)

 Total bytes transferred: 10485760 (10240.000 Kbytes, 10.000 Mbytes)

 Average transfer rates: 194842 bytes/sec, 190.276 Kbytes/sec

 Total passes completed: 1/1

 Total errors detected: 0/1

 Total elapsed time: 00m53.81s

 Total system time: 00m00.08s

 Total user time: 00m02.78s

Total Statistics:

 Output device/file name: /dev/rmt0h (Device: TZK10, type=tape)

 Data pattern read/written: 0x39c39c39

 Total records processed: 320 @ 65536 bytes/record (64.000 Kbytes)

 Total bytes transferred: 20971520 (20480.000 Kbytes, 20.000 Mbytes)

 Average transfer rates: 115950 bytes/sec, 113.233 Kbytes/sec

 Total passes completed: 1/1

 Total errors detected: 0/1

 Total elapsed time: 03m00.86s

 Total system time: 00m00.18s

 Total user time: 00m04.11s

 Starting time: Wed Sep 15 11:50:36 1993

 Ending time: Wed Sep 15 11:53:50 1993

%

 Data Test Program

 Page 50 of 70

Multiple Tape Files Test

TEST DESCRIPTION: This test does a write/read verify pass of 2 tape files to a DEC TZ86

tape drive using variable length records ranging from 10 Kbytes to 100 Kbytes using the default

increment value of 1 byte.

% dt of=/dev/rmt1h min=10k max=100k limit=5m files=2

Write Statistics:

 Total records processed: 1000 with min=10240, max=102400, incr=1

 Total bytes transferred: 10485760 (10240.000 Kbytes, 10.000 Mbytes)

 Average transfer rates: 642641 bytes/sec, 627.579 Kbytes/sec

 Total passes completed: 0/1

 Total files processed: 2/2

 Total errors detected: 0/1

 Total elapsed time: 00m16.31s

 Total system time: 00m00.28s

 Total user time: 00m01.26s

Read Statistics:

 Total records processed: 1000 with min=10240, max=102400, incr=1

 Total bytes transferred: 10485760 (10240.000 Kbytes, 10.000 Mbytes)

 Average transfer rates: 214725 bytes/sec, 209.693 Kbytes/sec

 Total passes completed: 1/1

 Total files processed: 2/2

 Total errors detected: 0/1

 Total elapsed time: 00m48.83s

 Total system time: 00m00.45s

 Total user time: 00m30.95s

Total Statistics:

 Output device/file name: /dev/rmt1h (Device: TZ86, type=tape)

 Data pattern read/written: 0x39c39c39

 Total records processed: 2000 with min=10240, max=102400, incr=1

 Total bytes transferred: 20971520 (20480.000 Kbytes, 20.000 Mbytes)

 Average transfer rates: 229322 bytes/sec, 223.948 Kbytes/sec

 Total passes completed: 1/1

 Total files processed: 4/4

 Total errors detected: 0/1

 Total elapsed time: 01m31.45s

 Total system time: 00m00.75s

 Total user time: 00m32.21s

 Starting time: Mon Sep 13 15:29:23 1993

 Ending time: Mon Sep 13 15:31:00 1993

%

Unix Pipe Testing

TEST DESCRIPTION: This test does writing/reading through a pipe. Notice the special

character '-' which indicates write standard out/read standard in. While one might say why is this

important, consider how dt can be used as a data generation tool for other programs!

% dt of=- bs=8k limit=1g disable=stats | dt if=- bs=8k limit=1g

Total Statistics:

 Input device/file name: -

 Data pattern read: 0x39c39c39

 Data Test Program

 Page 51 of 70

 Total records processed: 131072 @ 8192 bytes/record (8.000 Kbytes)

 Total bytes transferred: 1073741824 (1048576.000 Kbytes, 1024.000 Mbytes)

 Average transfer rates: 2334644 bytes/sec, 2279.926 Kbytes/sec

 Total passes completed: 1/1

 Total errors detected: 0/1

 Total elapsed time: 07m39.91s

 Total system time: 00m17.65s

 Total user time: 04m44.66s

 Starting time: Wed Sep 15 11:40:08 1993

 Ending time: Wed Sep 15 11:47:48 1993

%

 Unix FIFO Testing

TEST DESCRIPTION: This test does writing/reading through a fifo (named pipe). This is

similar to the previous test, except a fifo file is created, and a single invocation of dt is used for

testing.

% mkfifo NamedPipe

% ls -ls NamedPipe

0 prw-r--r-- 1 rmiller system 0 Sep 16 09:52 NamedPipe

% dt of=NamedPipe bs=8k limit=1g enable=loopback

Total Statistics:

 Output device/file name: NamedPipe (device type=fifo)

 Data pattern written: 0x39c39c39 (read verify disabled)

 Total records processed: 131072 @ 8192 bytes/record (8.000 Kbytes)

 Total bytes transferred: 1073741824 (1048576.000 Kbytes, 1024.000 Mbytes)

 Average transfer rates: 2264402 bytes/sec, 2211.330 Kbytes/sec

 Total passes completed: 1/1

 Total errors detected: 0/1

 Total elapsed time: 07m54.18s

 Total system time: 00m21.80s

 Total user time: 02m14.96s

 Starting time: Thu Sep 16 09:42:24 1993

 Ending time: Thu Sep 16 09:50:18 1993

Total Statistics:

 Input device/file name: NamedPipe (device type=fifo)

 Data pattern read: 0x39c39c39

 Total records processed: 131072 @ 8192 bytes/record (8.000 Kbytes)

 Total bytes transferred: 1073741824 (1048576.000 Kbytes, 1024.000 Mbytes)

 Average transfer rates: 2264402 bytes/sec, 2211.330 Kbytes/sec

 Total passes completed: 1/1

 Total errors detected: 0/1

 Total elapsed time: 07m54.18s

 Total system time: 00m19.90s

 Total user time: 04m44.01s

 Starting time: Thu Sep 16 09:42:24 1993

 Ending time: Thu Sep 16 09:50:19 1993

% rm NamedPipe

%

Serial Line Testing

TEST DESCRIPTION: This test performs a loopback test between two serial lines. Debug

was enabled to display additional test information, which is useful if serial line testing hangs. dt

does not use a watchdog timer by default, although an option exists to add one.

 Data Test Program

 Page 52 of 70

Also notice the number of bytes allocated was 68, not 64 as “bs=” indicates. Pad bytes are

allocated at the end of data buffers and checked after reads to ensure drivers/file system code do

not overwrite the end of buffers (this has uncovered DMA FIFO flush problems in device

drivers in the past).

% dt if=/dev/tty00 of=/dev/tty01 bs=64 limit=100k flow=xon_xoff parity=none

speed=38400 enable=debug

dt: Attempting to open input file '/dev/tty00', mode = 00...

dt: Input file '/dev/tty00' successfully opened, fd = 3

dt: Saving current terminal characteristics, fd = 3...

dt: Setting up test terminal characteristics, fd = 3...

dt: Attempting to open output file '/dev/tty01', mode = 01...

dt: Output file '/dev/tty01' successfully opened, fd = 4

dt: Saving current terminal characteristics, fd = 4...

dt: Setting up test terminal characteristics, fd = 4...

dt: Parent PID = 1809, Child PID = 1810

dt: Allocated buffer at address 0x4a000 of 68 bytes, using offset 0

dt: Allocated buffer at address 0x4a000 of 68 bytes, using offset 0

dt: Characters remaining in output queue = 304

dt: Waiting for output queue to drain...

dt: Output queue finished draining...

Total Statistics:

 Output device/file name: /dev/tty01 (device type=terminal)

 Terminal characteristics: flow=xon_xoff, parity=none, speed=38400

 Data pattern written: 0x39c39c39 (read verify disabled)

 Total records processed: 1600 @ 64 bytes/record (0.063 Kbytes)

 Total bytes transferred: 102400 (100.000 Kbytes, 0.098 Mbytes)

 Average transfer rates: 3840 bytes/sec, 3.750 Kbytes/sec

 Total passes completed: 1/1

 Total errors detected: 0/1

 Total elapsed time: 00m26.66s

 Total system time: 00m00.06s

 Total user time: 00m00.01s

 Starting time: Wed Sep 15 11:37:39 1993

 Ending time: Wed Sep 15 11:38:07 1993

Total Statistics:

 Input device/file name: /dev/tty00 (device type=terminal)

 Terminal characteristics: flow=xon_xoff, parity=none, speed=38400

 Data pattern read: 0x39c39c39

 Total records processed: 1600 @ 64 bytes/record (0.063 Kbytes)

 Total bytes transferred: 102400 (100.000 Kbytes, 0.098 Mbytes)

 Average transfer rates: 3703 bytes/sec, 3.617 Kbytes/sec

 Total passes completed: 1/1

 Total errors detected: 0/1

 Total elapsed time: 00m27.65s

 Total system time: 00m00.28s

 Total user time: 00m00.05s

 Starting time: Wed Sep 15 11:37:39 1993

 Ending time: Wed Sep 15 11:38:07 1993

dt: Restoring saved terminal characteristics, fd = 3...

dt: Closing file '/dev/tty00', fd = 3...

dt: Waiting for child PID 1810 to exit...

dt: Child PID 1810, exited with status = 0

dt: Restoring saved terminal characteristics, fd = 4...

 Data Test Program

 Page 53 of 70

dt: Closing file '/dev/tty01', fd = 4...

%

Multiple Process Test

TEST DESCRIPTION: This test does write/read testing to a raw device starting 2 processes,

each of which will execute 2 passes. Notice the IOT pattern is specified, to avoid possible data

compare failures. Normally a different pattern gets used for each pass. There are 12 different

patterns which get cycled through, if a data pattern was not specified on the command line.

Since each process runs at an indeterminate speed, it's possible for one process to be writing

a different pattern, while the other process is still reading the previous pattern, which results in

false data comparison failures. Please beware of this, until this issue is resolved in a future

release.

% dt of=/dev/rrz2c bs=64k limit=1g pattern=iot procs=2

Write Statistics (29090):

 Current Process Reported: 1/2

 Total records processed: 16384 @ 65536 bytes/record (64.000 Kbytes)

 Total bytes transferred: 1073741824 (1048576.000 Kbytes, 1024.000 Mbytes)

 Average transfer rates: 4176629 bytes/sec, 4078.740 Kbytes/sec

 Number I/O's per second: 63.730

 Total passes completed: 0/1

 Total errors detected: 0/1

 Total elapsed time: 04m17.08s

 Total system time: 00m03.43s

 Total user time: 00m31.96s

Write Statistics (29105):

 Current Process Reported: 2/2

 Total records processed: 16384 @ 65536 bytes/record (64.000 Kbytes)

 Total bytes transferred: 1073741824 (1048576.000 Kbytes, 1024.000 Mbytes)

 Average transfer rates: 4175005 bytes/sec, 4077.154 Kbytes/sec

 Number I/O's per second: 63.706

 Total passes completed: 0/1

 Total errors detected: 0/1

 Total elapsed time: 04m17.18s

 Total system time: 00m02.81s

 Total user time: 00m32.35s

 .

 .

 .

Total Statistics (29090):

 Output device/file name: /dev/rrz2c (Device: BB01811C, type=disk)

 Type of I/O's performed: sequential

 Current Process Reported: 1/2

 Data pattern string used: 'IOT Pattern'

 Total records processed: 32768 @ 65536 bytes/record (64.000 Kbytes)

 Total bytes transferred: 2147483648 (2097152.000 Kbytes, 2048.000 Mbytes)

 Average transfer rates: 3615597 bytes/sec, 3530.856 Kbytes/sec

 Number I/O's per second: 55.170

 Total passes completed: 1/1

 Total errors detected: 0/1

 Total elapsed time: 09m53.95s

 Total system time: 00m06.63s

 Total user time: 02m32.51s

 Starting time: Thu Nov 9 09:50:28 2000

 Ending time: Thu Nov 9 10:00:22 2000

 Data Test Program

 Page 54 of 70

Total Statistics (29105):

 Output device/file name: /dev/rrz2c (Device: BB01811C, type=disk)

 Type of I/O's performed: sequential

 Current Process Reported: 2/2

 Data pattern string used: 'IOT Pattern'

 Total records processed: 32768 @ 65536 bytes/record (64.000 Kbytes)

 Total bytes transferred: 2147483648 (2097152.000 Kbytes, 2048.000 Mbytes)

 Average transfer rates: 3604370 bytes/sec, 3519.893 Kbytes/sec

 Number I/O's per second: 54.998

 Total passes completed: 1/1

 Total errors detected: 0/1

 Total elapsed time: 09m55.80s

 Total system time: 00m05.90s

 Total user time: 02m38.21s

 Starting time: Thu Nov 9 09:50:28 2000

 Ending time: Thu Nov 9 10:00:24 2000

%

Tru64 Unix Disklabel Note

TEST DESCRIPTION: This test attempts to write to a Tru64 UNIX raw disk which contains a

valid label block, and the action necessary to destroy this label block before writes are possible.

As you can see, the first disk block (block 0) is write protected (all other blocks are not

however). Since many people, including myself, have been burnt (mis-lead) by this

wonderful feature, I thought it was worth documenting here.

file /dev/rrz11c

/dev/rrz11c: character special (8/19458) SCSI #1 RZ56 disk #88 (SCSI ID #3)

disklabel -r -w /dev/rrz11c rz56

ls -ls /dev/rrz11a

0 crw-rw-rw- 1 root system 8,19456 Sep 15 11:33 /dev/rrz11a

dt of=/dev/rrz11c bs=64k limit=1m disable=stats

dt: 'write' - Read-only file system

dt: Error number 1 occurred on Thu Sep 16 10:53:54 1993

dt of=/dev/rrz11a position=1b bs=64k limit=1m disable=stats

disklabel -z /dev/rrz11c

dt of=/dev/rrz11c bs=64k limit=1m disable=stats

Data Corruption – Buffer Overrun Issue

TEST DESCRIPTION: This test shows a real life problem discovered on a DEC 3000-500

(Flamingo) system using Tru64 UNIX V1.3. This test uncovers a data corruption problem that

occurs at the end of data buffers on read requests. The problem results from the FIFO being

improperly flushed when DMA transfers abort on certain boundaries (residual bytes left in

FIFO). This failure is uncovered by performing large reads of short records and verifying the pad

bytes, allocated at the end of data buffers, do not get inadvertantly overwritten.

% dt of=/dev/rmt0h min=1k max=25k incr=p-1 limit=1m disable=stats,verify

% dt if=/dev/rmt0h min=1k+25 max=25k incr=p-1 limit=1m disable=stats

dt: WARNING: Record #1, attempted to read 1049 bytes, read only 1024 bytes.

dt: WARNING: Record #2, attempted to read 9240 bytes, read only 9215 bytes.

dt: Data compare error at pad byte 0 in record number 2

dt: Data expected = 0xc6, data found = 0xff

dt: Error number 1 occurred on Sat Sep 18 11:15:08 1993

 Data Test Program

 Page 55 of 70

% dt if=/dev/rmt0h min=1k+25 max=25k incr=p-1 limit=1m disable=stats

dt: WARNING: Record #1, attempted to read 1049 bytes, read only 1024 bytes.

dt: WARNING: Record #2, attempted to read 9240 bytes, read only 9215 bytes.

dt: Data compare error at pad byte 0 in record number 2

dt: Data expected = 0xc6, data found = 0xff

dt: Data buffer pointer = 0x3e3ff, buffer offset = 9215

Dumping Buffer (base = 0x3c000, offset = 9215, size = 9219 bytes):

0x3e3df 39 39 9c c3 39 39 9c c3 39 39 9c c3 39 39 9c c3

0x3e3ef 39 39 9c c3 39 39 9c c3 39 39 9c c3 39 39 9c c3

0x3e3ff ff c6 63 3c c6 c6 63 3c c6 c6 63 3c c6 c6 63 3c

0x3e40f c6 c6 63 3c c6 c6 63 3c c6 c6 63 3c c6 c6 63 3c

dt: Error number 1 occurred on Sat Sep 18 11:15:31 1993

% echo $status

-1

%

Data Corruption – Tape Variable Record Issue

TEST DESCRIPTION: This test shows a real life problem discovered on a DEC 7000 (Ruby)

system using Tru64 UNIX V1.3. A simple variable length record test is performed, and as you

can see, reading the same record size written runs successfully. The failure does not occur until

large reads of the short tape records previously written is performed.

Upon reviewing this problem on an SDS-3F SCSI analyzer, it appears this device does a

disconnect/save data pointers/reconnect sequence, followed by the check condition status, which

is not being handled properly by someone (either our CAM xza driver, or the KZMSA

firmware... this is still being investigated). The problem results in wrong record sizes being

returned, and in this example the first record is returned with a count of zero which looks like an

end of file indication. The tapex -g option “Random record-size tests” originally found this

problem, but as you can see, dt was able to easily reproduce this problem.

% dt of=/dev/rmt12h min=2k+10 max=250k incr=p-3 records=10

Write Statistics:

 Total records processed: 10 with min=2058, max=256000, incr=8189

 Total bytes transferred: 389085 (379.966 Kbytes, 0.371 Mbytes)

 Average transfer rates: 2593900 bytes/sec, 2533.105 Kbytes/sec

 Total passes completed: 0/1

 Total errors detected: 0/1

 Total elapsed time: 00m00.15s

 Total system time: 00m00.00s

 Total user time: 00m00.03s

Read Statistics:

 Total records processed: 10 with min=2058, max=256000, incr=8189

 Total bytes transferred: 389085 (379.966 Kbytes, 0.371 Mbytes)

 Average transfer rates: 188267 bytes/sec, 183.854 Kbytes/sec

 Total passes completed: 1/1

 Total errors detected: 0/1

 Total elapsed time: 00m02.06s

 Total system time: 00m00.01s

 Total user time: 00m00.63s

Total Statistics:

 Output device/file name: /dev/rmt12h (Device: TZ86, type=tape)

 Data pattern read/written: 0x39c39c39

 Data Test Program

 Page 56 of 70

 Total records processed: 20 with min=2058, max=256000, incr=8189

 Total bytes transferred: 778170 (759.932 Kbytes, 0.742 Mbytes)

 Average transfer rates: 53239 bytes/sec, 51.991 Kbytes/sec

 Total passes completed: 1/1

 Total errors detected: 0/1

 Total elapsed time: 00m14.61s

 Total system time: 00m00.01s

 Total user time: 00m00.66s

 Starting time: Sat Sep 18 12:33:26 1993

 Ending time: Sat Sep 18 12:34:44 1993

% dt if=/dev/rmt12h bs=250k records=10

Total Statistics:

 Input device/file name: /dev/rmt12h (Device: TZ86, type=tape)

 Data pattern read: 0x39c39c39

 Total records processed: 0 @ 256000 bytes/record (250.000 Kbytes)

 Total bytes transferred: 0 (0.000 Kbytes, 0.000 Mbytes)

 Average transfer rates: 0 bytes/sec, 0.000 Kbytes/sec

 Total passes completed: 1/1

 Total errors detected: 0/1

 Total elapsed time: 00m01.31s

 Total system time: 00m00.00s

 Total user time: 00m00.01s

 Starting time: Sat Sep 18 12:40:15 1993

 Ending time: Sat Sep 18 12:40:22 1993

% dt if=/dev/rmt12h bs=250k records=10 enable=debug

dt: Attempting to open input file '/dev/rmt12h', mode = 00...

dt: Input file '/dev/rmt12h' successfully opened, fd = 3

dt: Allocated buffer at address 0x52000 of 256004 bytes, using offset 0

dt: End of file/tape/media detected, count = 0, errno = 0

dt: Exiting with status code 254...

Total Statistics:

 Input device/file name: /dev/rmt12h (Device: TZ86, type=tape)

 Data pattern read: 0x39c39c39

 Total records processed: 0 @ 256000 bytes/record (250.000 Kbytes)

 Total bytes transferred: 0 (0.000 Kbytes, 0.000 Mbytes)

 Average transfer rates: 0 bytes/sec, 0.000 Kbytes/sec

 Total passes completed: 1/1

 Total errors detected: 0/1

 Total elapsed time: 00m01.30s

 Total system time: 00m00.01s

 Total user time: 00m00.01s

 Starting time: Sat Sep 18 12:40:36 1993

 Ending time: Sat Sep 18 12:40:43 1993

dt: Closing file '/dev/rmt12h', fd = 3...

%

Data Corruption – I/O Hang Issue

TEST DESCRIPTION: This test shows a real life problem discovered on a DEC 3000-500

(Flamingo) system using Tru64 UNIX V1.3. The test uncovers a problem issuing I/O requests

with large transfer sizes (>2.5 megabytes). I don't know the specifics of correcting this problem,

which is not important in this context, but the failure indication was that dt never completed

(the process appeared hung... actually sleeping waiting for I/O completion).

When a failure like this occurs, it is oftentimes useful to see where in the kernel the process is

sleeping. This example shows how to identify the dt process ID (PID), and how to use dbx to

 Data Test Program

 Page 57 of 70

map that process and obtain a kernel stack traceback. This seems like useful debugging

information to include here, since my experience is that many people are unaware of how to

trouble-shoot these types of problems.

% file /dev/rrz11c

/dev/rrz11c: character special (8/19458) SCSI #1 RZ56 disk #88 (SCSI ID #3)

% dt if=/dev/rrz11a bs=3m count=1 enable=debug

dt: Attempting to open input file '/dev/rrz11a', mode = 00...

dt: Input file '/dev/rrz11a' successfully opened, fd = 3

dt: Allocated buffer at address 0x52000 of 3145732 bytes, using offset 0

[Ctrl/Z typed to background hung dt process at this point.]

Stopped

% ps ax | fgrep dt

 4512 p6 U 0:00.48 dt if=/dev/rrz11a bs=3m count=1 enable=debug

 4514 p6 S 0:00.02 fgrep dt

% dbx -k /vmunix /dev/mem

dbx version 3.11.1

Type 'help' for help.

stopped at

warning: Files compiled -g3: parameter values probably wrong

 [thread_block:1414 ,0xfffffc00002ddf80] Source not available

(dbx) set $pid=4512

stopped at [thread_block:1414 ,0xfffffc00002ddf80] Source not available

(dbx) trace\s-2

> 0 thread_block() ["../../../../src/kernel/kern/sched_prim.c":1414,

0xfffffc00002ddf80]

 1 mpsleep(chan = 0xffffffff8445fea0 = "...", pri = 0x18, wmesg = 0xfffffc000042a258

= "event", timo = 0x0, lockp = (nil), flags = 0x1)

["../../../../src/kernel/bsd/kern_synch.c":278, 0xfffffc0000264934]

 2 event_wait(evp = 0x52000, interruptible = 0x0, timo = 0x0)

["../../../../src/kernel/kern/event.c":137, 0xfffffc00002ce2a8]

 3 biowait(bp = 0xffffffff8434ba00) ["../../../../src/kernel/vfs/vfs_bio.c":904,

0xfffffc00002a458c]

 4 physio(strat = 0xfffffc00003956d0, bp = 0x14002aac0, dev = 0x804c00, rw = 0x1,

mincnt = 0xfffffc00003a4af0, uio = 0xffffffff8434ba00)

["../../../../src/kernel/ufs/ufs_physio.c":205, 0xfffffc0000291fbc]

 5 cdisk_read(dev = 0x804c00, uio = 0xffffffff8d5f1d68)

["../io/cam/cam_disk.c":2249, 0xfffffc0000396d5c]

 6 spec_read(vp = 0x14c, uio = 0xffffffff84474640, ioflag = 0x0, cred =

0xffffffff843e9360) ["../../../../src/kernel/vfs/spec_vnops.c":1197,

0xfffffc00002a2614]

 7 ufsspec_read(vp = (nil), uio = 0xffffffff843e9360, ioflag = 0xffffffff84342030,

cred = 0x352000) ["../../../../src/kernel/ufs/ufs_vnops.c":2731, 0xfffffc0000298e68]

 8 vn_read(fp = 0xffffffff8c74f428, uio = 0xffffffff8d5f1d68, cred =

0xffffffff843e9360) ["../../../../src/kernel/vfs/vfs_vnops.c":580, 0xfffffc00002ae3c8]

 9 rwuio(p = 0xffffffff8c763490, fdes = 0xffffffff844f5cc0, uio =

0xffffffff8d5f1d68, rw = UIO_READ, retval = 0xffffffff8d5f1e40)

["../../../../src/kernel/bsd/sys_generic.c":351, 0xfffffc000026ce34]

 10 read(p = 0xffffffff8d5f1d58, args = 0xffffffff00000001, retval = (nil))

["../../../../src/kernel/bsd/sys_generic.c":201, 0xfffffc000026caf0]

 11 syscall(ep = 0xffffffff8d5f1ef8, code = 0x3)

["../../../../src/kernel/arch/alpha/syscall_trap.c":593, 0xfffffc0000379698]

 12 _Xsyscall() ["../../../../src/kernel/arch/alpha/locore.s":751,

0xfffffc000036c550]\s+2

(dbx) quit

%

 Data Test Program

 Page 58 of 70

Data Corruption – Tape Buffer Overrun Issue

TEST DESCRIPTION: This test shows a real life problem discovered on a DEC 3000-500

(Flamingo) system using Tru64 UNIX V3.2. The test uncovers a problem of too much data

being copied to the user buffer, when long reads of short tape records are performed.

% dt of=/dev/rmt0h min=10k max=64k count=100

Write Statistics:

 Total records processed: 100 with min=10240, max=65536, incr=1

 Total bytes transferred: 1028950 (1004.834 Kbytes, 0.981 Mbytes)

 Average transfer rates: 61552 bytes/sec, 60.110 Kbytes/sec

 Total passes completed: 0/1

 Total errors detected: 0/1

 Total elapsed time: 00m16.71s

 Total system time: 00m00.03s

 Total user time: 00m00.23s

Read Statistics:

 Total records processed: 100 with min=10240, max=65536, incr=1

 Total bytes transferred: 1028950 (1004.834 Kbytes, 0.981 Mbytes)

 Average transfer rates: 150946 bytes/sec, 147.408 Kbytes/sec

 Total passes completed: 1/1

 Total errors detected: 0/1

 Total elapsed time: 00m06.81s

 Total system time: 00m00.05s

 Total user time: 00m00.48s

Total Statistics:

 Output device/file name: /dev/rmt0h (Device: TZK10, type=tape)

 Data pattern read/written: 0x39c39c39

 Total records processed: 200 with min=10240, max=65536, incr=1

 Total bytes transferred: 2057900 (2009.668 Kbytes, 1.963 Mbytes)

 Average transfer rates: 53966 bytes/sec, 52.701 Kbytes/sec

 Total passes completed: 1/1

 Total errors detected: 0/1

 Total elapsed time: 00m38.13s

 Total system time: 00m00.08s

 Total user time: 00m00.71s

 Starting time: Tue Nov 14 16:06:54 1995

 Ending time: Tue Nov 14 16:07:37 1995

im2fast% dt if=/dev/rmt0h min=20k max=64k count=100

dt: WARNING: Record #1, attempted to read 20480 bytes, read only 10240 bytes.

dt: WARNING: Record #2, attempted to read 20481 bytes, read only 10241 bytes.

dt: Data compare error at inverted byte 10242 in record number 2

dt: Data expected = 0x63, data found = 0xff, pattern = 0xc63c63c6

dt: The incorrect data starts at address 0x140012801 (marked by asterisk '*')

dt: Dumping Data Buffer (base = 0x140010000, offset = 10241, limit = 64

bytes):

0x1400127e1 9c c3 39 39 9c c3 39 39 9c c3 39 39 9c c3 39 39

0x1400127f1 9c c3 39 39 9c c3 39 39 9c c3 39 39 9c c3 39 39

0x140012801 *ff ff 03 c6 63 3c c6 c6 63 3c c6 c6 63 3c c6 c6

0x140012811 63 3c c6 c6 63 3c c6 c6 63 3c c6 c6 63 3c c6 c6

dt: Error number 1 occurred on Tue Nov 14 17:54:28 1995

 Data Test Program

 Page 59 of 70

Total Statistics:

 Input device/file name: /dev/rmt0h (Device: TZK10, type=tape)

 Data pattern read: 0x39c39c39

 Total records processed: 2 with min=20480, max=65536, incr=1

 Total bytes transferred: 20481 (20.001 Kbytes, 0.020 Mbytes)

 Average transfer rates: 17810 bytes/sec, 17.392 Kbytes/sec

 Total passes completed: 0/1

 Total errors detected: 1/1

 Total elapsed time: 00m01.15s

 Total system time: 00m00.01s

 Total user time: 00m00.01s

 Starting time: Tue Nov 14 17:54:22 1995

 Ending time: Tue Nov 14 17:54:28 1995

im2fast%

Another Use – Copy/Verify Data

DESCRIPTION: This example shows copying a partition with the bad block to another disk.

I've used this operation to save my system disk more than once. This copy w/verify is also very

useful for floppy diskettes which tend to be unreliable in my experience.

Note the use of “errors=10” so dt will continue after reading the bad block. Without this option

dt exits after 1 error.

If copying an active file system, like your system disk, expect a couple verification errors since

certain system files will likely get written. Whenever possible, the copy operation should be done

on unmounted disks.

% dt if=/dev/rrz0b of=/dev/rrz3b iomode=copy errors=10 limit=5m

dt: 'read' - I/O error

dt: Relative block number where the error occcured is 428

dt: Error number 1 occurred on Fri Mar 7 10:53:15 1997

Copy Statistics:

 Data operation performed: Copied '/dev/rrz0b' to '/dev/rrz3b'.

 Total records processed: 20478 @ 512 bytes/record (0.500 Kbytes)

 Total bytes transferred: 10484736 (10239.000 Kbytes, 9.999 Mbytes)

 Average transfer rates: 87677 bytes/sec, 85.622 Kbytes/sec

 Total passes completed: 0/1

 Total errors detected: 1/10

 Total elapsed time: 01m59.58s

 Total system time: 00m06.26s

 Total user time: 00m00.35s

dt: 'read' - I/O error

dt: Relative block number where the error occcured is 428

dt: Error number 1 occurred on Fri Mar 7 10:55:11 1997

Verify Statistics:

 Data operation performed: Verified '/dev/rrz0b' with '/dev/rrz3b'.

 Total records processed: 20478 @ 512 bytes/record (0.500 Kbytes)

 Total bytes transferred: 10484736 (10239.000 Kbytes, 9.999 Mbytes)

 Average transfer rates: 359477 bytes/sec, 351.051 Kbytes/sec

 Total passes completed: 1/1

 Total errors detected: 1/10

 Data Test Program

 Page 60 of 70

 Total elapsed time: 00m29.16s

 Total system time: 00m06.68s

 Total user time: 00m01.76s

Total Statistics:

 Input device/file name: /dev/rrz0b (Device: RZ28, type=disk)

 Total records processed: 40956 @ 512 bytes/record (0.500 Kbytes)

 Total bytes transferred: 20969472 (20478.000 Kbytes, 19.998 Mbytes)

 Average transfer rates: 140940 bytes/sec, 137.636 Kbytes/sec

 Total passes completed: 1/1

 Total errors detected: 2/10

 Total elapsed time: 02m28.78s

 Total system time: 00m12.96s

 Total user time: 00m02.13s

 Starting time: Fri Mar 7 10:53:06 1997

 Ending time: Fri Mar 7 10:55:35 1997

%

Tru64 Unix Extended Error Information (EEI)

TEST DESCRIPTION: Here's an example which shows the Extended Error Information (EEI)

available for SCSI tapes on Tru64 Unix systems.

$ dt if=/dev/rmt0h bs=16k limit=10m disable=compare

dt: 'read' - I/O error

DEVIOGET ELEMENT CONTENTS

---------------- --------

category DEV_TAPE

bus DEV_SCSI

interface SCSI

device TZK10

adpt_num 0

nexus_num 0

bus_num 0

ctlr_num 0

slave_num 5

dev_name tz

unit_num 5

soft_count 0

hard_count 16

stat 0x108

 DEV_WRTLCK DEV_HARDERR

category_stat 0x8000

 DEV_10000_BPI

DEVGETINFO ELEMENT CONTENTS

------------------ --------

media_status 0x10108

 WrtProt HardERR POS_VALID

unit_status 0x131

 Ready 1_FM_Close Rewind Buffered

record_size 512

density (current) 10000 BPI

density (on write) 16000 BPI

Filemark Cnt 0

Record Cnt 673

Class 4 - QIC

 Data Test Program

 Page 61 of 70

MTIOCGET ELEMENT CONTENTS

---------------- --------

mt_type MT_ISSCSI

mt_dsreg 0x108

 DEV_WRTLCK DEV_HARDERR

mt_erreg 0x3 Nonrecoverable medium error.

mt_resid 31

mt_fileno 0

mt_blkno 673

DEV_EEI_STATUS

 version 0x1

 status 0x15 Device hardware error (hard error)

 flags 0x1000007

 CAM_STATUS SCSI_STATUS SCSI_SENSE CAM_DATA

 cam_status 0x4 CCB request completed with an err

 scsi_status 0x2 SCSI_STAT_CHECK_CONDITION

 scsi_sense_data

 Error Code: 0x70 (Current Error)

 Valid Bit: 0x1 (Information field is valid)

 Segment Number: 0

 Sense Key: 0x3 (MEDIUM ERROR - Nonrecoverable medium error)

 Illegal Length: 0

 End Of Media: 0

 File Mark: 0

 Information Field: 0x1f (31)

 Additional Sense Length: 0x16

 Command Specific Information: 0

Additional Sense Code/Qualifier: (0x3a, 0) = Medium not present

 Field Replaceable Unit Code: 0

 Sense Specific Bytes: 00 00 00

 Additional Sense Bytes: 00 02 a1 00 00 00 00 00 00 00 00 04

dt: Error number 1 occurred on Sat Sep 13 16:48:40 1997

Total Statistics:

 Input device/file name: /dev/rmt0h (Device: TZK10, type=tape)

 Data pattern read: 0x39c39c39 (data compare disabled)

 Total records processed: 21 @ 16384 bytes/record (16.000 Kbytes)

 Total bytes transferred: 344064 (336.000 Kbytes, 0.328 Mbytes)

 Average transfer rates: 70941 bytes/sec, 69.278 Kbytes/sec

 Number I/O's per second: 4.330

 Total passes completed: 0/1

 Total errors detected: 1/1

 Total elapsed time: 00m04.85s

 Total system time: 00m00.01s

 Total user time: 00m00.00s

 Starting time: Sat Sep 13 16:48:26 1997

 Ending time: Sat Sep 13 16:48:40 1997

$

Multiple Volume Tape Test

DESCRIPTION: This example show a multiple volume test to a tape drive. The test ensures

End Of Media (EOM) is detected properly, and that the close operation succeeds which indicated

all buffered data and filemarks were written properly.

Note: A short 7mm DAT tape was used for this test.

linux% dt of=/dev/st0 bs=32k files=4 limit=50m pattern=iot enable=multi

Please insert volume #2 in drive /dev/st0... Press ENTER when ready to proceed:

 [Continuing in file #3, record #1425, bytes written so far 151519232...]

 Data Test Program

 Page 62 of 70

Write Statistics:

 Total records processed: 6400 @ 32768 bytes/record (32.000 Kbytes)

 Total bytes transferred: 209715200 (204800.000 Kbytes, 200.000 Mbytes)

 Average transfer rates: 510529 bytes/sec, 498.564 Kbytes/sec

 Number I/O's per second: 15.580

 Total passes completed: 0/1

 Total files processed: 4/4

 Total errors detected: 0/1

 Total elapsed time: 06m50.78s

 Total system time: 00m00.75s

 Total user time: 00m06.90s

Please insert volume #1 in drive /dev/st0... Press ENTER when ready to proceed:

Please insert volume #2 in drive /dev/st0... Press ENTER when ready to proceed:

 [Continuing in file #3, record #1425, bytes read so far 151519232...]

Read Statistics:

 Total records processed: 6400 @ 32768 bytes/record (32.000 Kbytes)

 Total bytes transferred: 209715200 (204800.000 Kbytes, 200.000 Mbytes)

 Average transfer rates: 489657 bytes/sec, 478.181 Kbytes/sec

 Number I/O's per second: 14.943

 Total passes completed: 1/1

 Total files processed: 4/4

 Total errors detected: 0/1

 Total elapsed time: 07m08.29s

 Total system time: 00m00.91s

 Total user time: 00m26.53s

Total Statistics:

 Output device/file name: /dev/st0 (device type=tape)

 Type of I/O's performed: sequential

 Data pattern string used: 'IOT Pattern'

 Total records processed: 12800 @ 32768 bytes/record (32.000 Kbytes)

 Total bytes transferred: 419430400 (409600.000 Kbytes, 400.000 Mbytes)

 Average transfer rates: 434589 bytes/sec, 424.403 Kbytes/sec

 Number I/O's per second: 13.263

 Total passes completed: 1/1

 Total files processed: 8/8

 Total errors detected: 0/1

 Total elapsed time: 16m05.12s

 Total system time: 00m01.66s

 Total user time: 00m33.43s

 Starting time: Fri Feb 18 18:48:22 2000

 Ending time: Fri Feb 18 19:04:28 2000

linux%

Read-After-Write Test

DESCRIPTION: This example shows the results of doing a read-after-write (raw) test to a

floppy diskette. This option is valid with disks and tapes. This option avoids the multiple write

and read pass dt normally performs. Yes I know, raw is a bad option name! (sorry)

tru64% dt of=/dev/rfd0c min=b max=64k incr=7b iotype=random enable=raw runtime=3m

Read After Write Statistics:

 Total records processed: 100 with min=512, max=65536, incr=3584

 Total bytes transferred: 2949120 (2880.000 Kbytes, 2.812 Mbytes)

 Average transfer rates: 16923 bytes/sec, 16.526 Kbytes/sec

 Number I/O's per second: 0.574

 Total passes completed: 1

 Data Test Program

 Page 63 of 70

 Total errors detected: 0/1

 Total elapsed time: 02m54.26s

 Total system time: 00m00.01s

 Total user time: 00m00.16s

Total Statistics:

 Output device/file name: /dev/rfd0c (Device: floppy, type=disk)

 Type of I/O's performed: random (seed 0xa775f81)

 Data pattern read/written: 0x00ff00ff

 Total records processed: 109 with min=512, max=65536, incr=3584

 Total bytes transferred: 3011072 (2940.500 Kbytes, 2.872 Mbytes)

 Average transfer rates: 16642 bytes/sec, 16.252 Kbytes/sec

 Number I/O's per second: 0.602

 Total passes completed: 1

 Total errors detected: 0/1

 Total elapsed time: 03m00.93s

 Total system time: 00m00.01s

 Total user time: 00m00.16s

 Starting time: Wed Jan 12 16:38:38 2000

 Ending time: Wed Jan 12 16:41:43 2000

tru64%

Slice And Dice Test

TEST DESCRIPTION: The following test shows starting 12 slices using the first 12 GBytes

of disk space, writing/reading 1 MByte in each slice with the lbdata option enabled, and doing a

read-after-write operation. The debug option is enabled simply to show the range of block for

each slice.

tru64% dt of=/dev/rrz1c bs=256k capacity=12g limit=1m slices=12

enable=debug,lbdata,raw

dt: Data limit set to 12884901888 bytes (12288.000 Mbytes), 25165824 blocks.

dt: Started process 18122...

dt: Started process 18121...

dt: Started process 18127...

dt: Started process 18126...

dt: Started process 18128...

dt: Started process 18115...

dt: Started process 18133...

dt: Started process 18134...

dt: Started process 18132...

dt: Started process 18131...

dt (18122): Start Position 0 (lba 0), Limit 1048576, Pattern 0x39c39c39

dt (18122): Attempting to open output file '/dev/rrz1c', open flags = 02 (0x2)...

dt (18121): Start Position 1073741824 (lba 2097152), Limit 1048576 bytes

dt (18121): Attempting to open output file '/dev/rrz1c', open flags = 02 (0x2)...

dt (18127): Start Position 2147483648 (lba 4194304), Limit 1048576 bytes

dt (18127): Attempting to open output file '/dev/rrz1c', open flags = 02 (0x2)...

dt (18126): Start Position 3221225472 (lba 6291456), Limit 1048576 bytes

dt (18126): Attempting to open output file '/dev/rrz1c', open flags = 02 (0x2)...

dt (18128): Start Position 4294967296 (lba 8388608), Limit 1048576 bytes

dt (18128): Attempting to open output file '/dev/rrz1c', open flags = 02 (0x2)...

dt (18115): Start Position 5368709120 (lba 10485760), Limit 1048576 bytes

dt (18115): Attempting to open output file '/dev/rrz1c', open flags = 02 (0x2)...

dt (18133): Start Position 6442450944 (lba 12582912), Limit 1048576 bytes

dt (18133): Attempting to open output file '/dev/rrz1c', open flags = 02 (0x2)...

dt (18134): Start Position 7516192768 (lba 14680064), Limit 1048576 bytes

dt (18134): Attempting to open output file '/dev/rrz1c', open flags = 02 (0x2)...

dt (18132): Start Position 8589934592 (lba 16777216), Limit 1048576 bytes

 Data Test Program

 Page 64 of 70

dt (18132): Attempting to open output file '/dev/rrz1c', open flags = 02 (0x2)...

dt (18131): Start Position 9663676416 (lba 18874368), Limit 1048576 bytes

dt (18131): Attempting to open output file '/dev/rrz1c', open flags = 02 (0x2)...

 .

 .

 .

Total Statistics (18138):

 Output device/file name: /dev/rrz1c (Device: BB01811C, type=disk)

 Type of I/O's performed: sequential (forward, read-after-write)

 Slice Range Parameters: position=11811160064 (lba 23068672), limit=1048576

 Current Slice Reported: 12/12

 Data pattern read/written: 0xffffffff (w/lbdata, lba 0, size 512 bytes)

 Total records processed: 8 @ 262144 bytes/record (256.000 Kbytes)

 Total bytes transferred: 2097152 (2048.000 Kbytes, 2.000 Mbytes)

 Average transfer rates: 1797559 bytes/sec, 1755.429 Kbytes/sec

 Number I/O's per second: 6.857

 Total passes completed: 1/1

 Total errors detected: 0/1

 Total elapsed time: 00m01.16s

 Total system time: 00m00.00s

 Total user time: 00m00.05s

 Starting time: Mon Jan 29 14:38:49 2001

 Ending time: Mon Jan 29 14:38:51 2001

dt: Child process 18138, exiting with status 0

tru64%

Variable I/O Requests Test

TEST DESCRIPTION: The following test shows enabling variable requests sizes. Each

request will be between the min and max values specified. Again, the debug is only enabled to

show you the affects of this option.

tru64% dt of=/dev/rrz1c min=4k max=256k incr=variable enable=Debug,lbdata

disable=pstats count=3

dt: Attempting to open output file '/dev/rrz1c', open flags = 01 (0x1)...

dt: Output file '/dev/rrz1c' successfully opened, fd = 3

dt: Allocated buffer at address 0x140036000 of 262148 bytes, using offset 0

dt: Record #1 (lba 0), Writing 4096 bytes from buffer 0x140036000...

dt: Record #2 (lba 8), Writing 235520 bytes from buffer 0x140036000...

dt: Record #3 (lba 468), Writing 225280 bytes from buffer 0x140036000...

dt: End of Write pass 0, records = 3, errors = 0, elapsed time = 00m00.05s

dt: Closing file '/dev/rrz1c', fd = 3...

dt: Attempting to reopen file '/dev/rrz1c', open flags = 00 (0)...

dt: File '/dev/rrz1c' successfully reopened, fd = 3

dt: Record #1 (lba 0), Reading 4096 bytes into buffer 0x140036000...

dt: Record #2 (lba 8), Reading 235520 bytes into buffer 0x140036000...

dt: Record #3 (lba 468), Reading 225280 bytes into buffer 0x140036000...

dt: End of Read pass 1, records = 3, errors = 0, elapsed time = 00m00.10s

dt: Closing file '/dev/rrz1c', fd = 3...

Total Statistics:

 Output device/file name: /dev/rrz1c (Device: BB01811C, type=disk)

 Type of I/O's performed: sequential (forward, rseed=0xf41e15)

 Data pattern read/written: 0x39c39c39 (w/lbdata, lba 0, size 512 bytes)

 Total records processed: 6 with min=4096, max=262144, incr=variable

 Total bytes transferred: 929792 (908.000 Kbytes, 0.887 Mbytes)

 Average transfer rates: 6198613 bytes/sec, 6053.333 Kbytes/sec

 Number I/O's per second: 40.000

 Total passes completed: 1/1

 Total errors detected: 0/1

 Data Test Program

 Page 65 of 70

 Total elapsed time: 00m00.15s

 Total system time: 00m00.00s

 Total user time: 00m00.06s

 Starting time: Mon Jan 29 14:30:08 2001

 Ending time: Mon Jan 29 14:30:08 2001

tru64%

Reverse I/O Test

TEST DESCRIPTION: The next test shows the affect of enabling the reverse I/O direction

on random access devices. The capacity= option artificially limits the size of the device media.

tru64% dt of=/dev/rrz1c bs=256k capacity=1m enable=Debug,lbdata,raw iodir=reverse

dt: Attempting to open output file '/dev/rrz1c', open flags = 02 (0x2)...

dt: Output file '/dev/rrz1c' successfully opened, fd = 3

dt: Random data limit set to 1048576 bytes (1.000 Mbytes), 2048 blocks.

dt: Allocated buffer at address 0x140036000 of 262148 bytes, using offset 0

dt: Allocated buffer at address 0x140078000 of 262148 bytes, using offset 0

dt: Seeked to block 2048 (0x800) at byte position 1048576.

dt: Seeked to block 1536 (0x600) at byte position 786432.

dt: Record #1 (lba 1536), Writing 262144 bytes from buffer 0x140078000...

dt: Seeked to block 1536 (0x600) at byte position 786432.

dt: Record #1 (lba 1536), Reading 262144 bytes into buffer 0x140036000...

dt: Seeked to block 1024 (0x400) at byte position 524288.

dt: Record #2 (lba 1024), Writing 262144 bytes from buffer 0x140078000...

dt: Seeked to block 1024 (0x400) at byte position 524288.

dt: Record #2 (lba 1024), Reading 262144 bytes into buffer 0x140036000...

dt: Seeked to block 512 (0x200) at byte position 262144.

dt: Record #3 (lba 512), Writing 262144 bytes from buffer 0x140078000...

dt: Seeked to block 512 (0x200) at byte position 262144.

dt: Record #3 (lba 512), Reading 262144 bytes into buffer 0x140036000...

dt: Seeked to block 0 (0) at byte position 0.

dt: Record #4 (lba 0), Writing 262144 bytes from buffer 0x140078000...

dt: Seeked to block 0 (0) at byte position 0.

dt: Record #4 (lba 0), Reading 262144 bytes into buffer 0x140036000...

dt: Beginning of media detected [file #1, record #4]

dt: Exiting with status code 254...

dt: Closing file '/dev/rrz1c', fd = 3...

Total Statistics:

 Output device/file name: /dev/rrz1c (Device: BB01811C, type=disk)

 Type of I/O's performed: sequential (reverse, read-after-write)

 Data pattern read/written: 0x39c39c39 (w/lbdata, lba 0, size 512 bytes)

 Total records processed: 8 @ 262144 bytes/record (256.000 Kbytes)

 Total bytes transferred: 2097152 (2048.000 Kbytes, 2.000 Mbytes)

 Average transfer rates: 9679163 bytes/sec, 9452.308 Kbytes/sec

 Number I/O's per second: 36.923

 Total passes completed: 1/1

 Total errors detected: 0/1

 Total elapsed time: 00m00.21s

 Total system time: 00m00.00s

 Total user time: 00m00.05s

 Starting time: Mon Jan 29 14:36:36 2001

 Ending time: Mon Jan 29 14:36:37 2001

tru64%

 Data Test Program

 Page 66 of 70

Multiple Volume Options Test

TEST DESCRIPTION: The following example shows using the multiple volume options for us

with removable media. Yea, this option is mainly for testing tapes, but testing with floppies was

faster :-)

tru64% dt of=/dev/rfd0c bs=32k volumes=2 enable=lbdata vrecords=5 aios=4

Please insert volume #2 in drive /dev/rfd0c, press ENTER when ready to proceed:

 [Continuing at record #46, bytes written so far 1474560...]

Write Statistics:

 Total records processed: 50 @ 32768 bytes/record (32.000 Kbytes)

 Total bytes transferred: 1638400 (1600.000 Kbytes, 1.562 Mbytes)

 Average transfer rates: 8004 bytes/sec, 7.816 Kbytes/sec

 Number I/O's per second: 0.244

 Total volumes completed: 2/2

 Total passes completed: 0/1

 Total errors detected: 0/1

 Total elapsed time: 03m24.70s

 Total system time: 00m00.00s

 Total user time: 00m00.01s

Please insert volume #1 in drive /dev/rfd0c, press ENTER when ready to proceed:

Please insert volume #2 in drive /dev/rfd0c, press ENTER when ready to proceed:

 [Continuing at record #46, bytes read so far 1474560...]

Read Statistics:

 Total records processed: 50 @ 32768 bytes/record (32.000 Kbytes)

 Total bytes transferred: 1638400 (1600.000 Kbytes, 1.562 Mbytes)

 Average transfer rates: 13859 bytes/sec, 13.534 Kbytes/sec

 Number I/O's per second: 0.423

 Total volumes completed: 2/2

 Total passes completed: 1/1

 Total errors detected: 0/1

 Total elapsed time: 01m58.21s

 Total system time: 00m00.01s

 Total user time: 00m00.16s

Total Statistics:

 Output device/file name: /dev/rfd0c (Device: floppy, type=disk)

 Type of I/O's performed: sequential

 Data pattern read/written: 0x39c39c39 (w/lbdata, lba 0, size 512 bytes)

 Total records processed: 100 @ 32768 bytes/record (32.000 Kbytes)

 Total bytes transferred: 3276800 (3200.000 Kbytes, 3.125 Mbytes)

 Average transfer rates: 9373 bytes/sec, 9.153 Kbytes/sec

 Asynchronous I/O's used: 4

 Number I/O's per second: 0.286

 Total volumes completed: 2/2

 Total passes completed: 1/1

 Total errors detected: 0/1

 Total elapsed time: 05m49.61s

 Total system time: 00m00.01s

 Total user time: 00m00.18s

 Starting time: Mon Jan 15 13:56:41 2001

 Ending time: Mon Jan 15 14:02:30 2001

tru64%

 Data Test Program

 Page 67 of 70

Data Corruption w/Timestamp Option

TEST DESCRIPTION: Forcing a data compare failure to show block timestamps. This option

can be useful to determine when this data was written. With file systems, the data is oftentimes

flushed from the buffer cache much later from when it was originally written. Unless Direct I/O

(DIO) other open *SYNC flags are specified, dt only flushes data at the end of the write pass.

roanoke% ./dt of=dt.data count=3 dispose=keep disable=stats bs=64k enable=timestamp

pattern=iot

Force a miscompare by enabling lbdata option.

roanoke% ./dt if=dt.data count=3 dispose=keep disable=stats bs=64k enable=timestamp

enable=lbdata enable=Debug

dt: Attempting to open input file 'dt.data', open flags = 0 (0)...

dt: Input file 'dt.data' successfully opened, fd = 3

dt: Allocated buffer at address 0x52000 of 65540 bytes, using offset 0

dt: Record #1 - Reading 65536 bytes (128 blocks) into buffer 0x52000, lba's 0 - 127

(pos 0)

dt: Error number 1 occurred on Mon Oct 16 17:45:46 2006

dt: Elapsed time since beginning of pass: 00m00.00s

dt: Elapsed time since beginning of test: 00m00.00s

dt: Data compare error at byte 4 in record number 1

dt: Relative block number where the error occurred is 0, position 4 (offset 0)

dt: Data expected = 0x39, data found = 0x1, byte count = 65536

dt: The correct data starts at address 0x50360 (marked by asterisk '*')

dt: Dumping Pattern Buffer (base = 0x50360, offset = 0, limit = 4 bytes):

0x50360 *39 9c c3 39

dt: The data block was written on Mon Oct 16 17:45:20 2006

dt: The incorrect data starts at address 0x52004 (marked by asterisk '*')

dt: Dumping Data Buffer (base = 0x52000, offset = 4, limit = 512 bytes):

0x52000 45 33 fd 70*01 01 01 01 02 02 02 02 03 03 03 03

0x52010 04 04 04 04 05 05 05 05 06 06 06 06 07 07 07 07

0x52020 08 08 08 08 09 09 09 09 0a 0a 0a 0a 0b 0b 0b 0b

0x52030 0c 0c 0c 0c 0d 0d 0d 0d 0e 0e 0e 0e 0f 0f 0f 0f

0x52040 10 10 10 10 11 11 11 11 12 12 12 12 13 13 13 13

0x52050 14 14 14 14 15 15 15 15 16 16 16 16 17 17 17 17

0x52060 18 18 18 18 19 19 19 19 1a 1a 1a 1a 1b 1b 1b 1b

0x52070 1c 1c 1c 1c 1d 1d 1d 1d 1e 1e 1e 1e 1f 1f 1f 1f

0x52080 20 20 20 20 21 21 21 21 22 22 22 22 23 23 23 23

0x52090 24 24 24 24 25 25 25 25 26 26 26 26 27 27 27 27

0x520a0 28 28 28 28 29 29 29 29 2a 2a 2a 2a 2b 2b 2b 2b

0x520b0 2c 2c 2c 2c 2d 2d 2d 2d 2e 2e 2e 2e 2f 2f 2f 2f

0x520c0 30 30 30 30 31 31 31 31 32 32 32 32 33 33 33 33

0x520d0 34 34 34 34 35 35 35 35 36 36 36 36 37 37 37 37

0x520e0 38 38 38 38 39 39 39 39 3a 3a 3a 3a 3b 3b 3b 3b

0x520f0 3c 3c 3c 3c 3d 3d 3d 3d 3e 3e 3e 3e 3f 3f 3f 3f

0x52100 40 40 40 40 41 41 41 41 42 42 42 42 43 43 43 43

0x52110 44 44 44 44 45 45 45 45 46 46 46 46 47 47 47 47

0x52120 48 48 48 48 49 49 49 49 4a 4a 4a 4a 4b 4b 4b 4b

0x52130 4c 4c 4c 4c 4d 4d 4d 4d 4e 4e 4e 4e 4f 4f 4f 4f

0x52140 50 50 50 50 51 51 51 51 52 52 52 52 53 53 53 53

0x52150 54 54 54 54 55 55 55 55 56 56 56 56 57 57 57 57

0x52160 58 58 58 58 59 59 59 59 5a 5a 5a 5a 5b 5b 5b 5b

0x52170 5c 5c 5c 5c 5d 5d 5d 5d 5e 5e 5e 5e 5f 5f 5f 5f

0x52180 60 60 60 60 61 61 61 61 62 62 62 62 63 63 63 63

 Data Test Program

 Page 68 of 70

0x52190 64 64 64 64 65 65 65 65 66 66 66 66 67 67 67 67

0x521a0 68 68 68 68 69 69 69 69 6a 6a 6a 6a 6b 6b 6b 6b

0x521b0 6c 6c 6c 6c 6d 6d 6d 6d 6e 6e 6e 6e 6f 6f 6f 6f

0x521c0 70 70 70 70 71 71 71 71 72 72 72 72 73 73 73 73

0x521d0 74 74 74 74 75 75 75 75 76 76 76 76 77 77 77 77

0x521e0 78 78 78 78 79 79 79 79 7a 7a 7a 7a 7b 7b 7b 7b

0x521f0 7c 7c 7c 7c 7d 7d 7d 7d 7e 7e 7e 7e 7f 7f 7f 7f

dt: Closing file 'dt.data', fd = 3...

dt: Exiting with status code -1...

roanoke%

Large Capacity Disk Testing

TEST DESCRIPTION: This test shows a method to verify large TB sized disks. A number of

options are used, here are the key ones:

 slices=16 to divide the capacity into 16 sections, each with their own process

 aios=16 to queue 16 requests at a time for improved performance.

 step=4g to seek after every record, thefore avoid writing every block.

 iodir=reverse to start at the end of sections then work forward.

 other options are left as an exercise to the reader!

shaix11# ./dt \

 of=/dev/rhdisk12 \

 capacity=15t \

 slices=16 \

 step=4g \

 disable=pstats \

 aios=16 \

 oncerr=abort \

 min=b \

 max=256k \

 incr=var \

 align=rotate \

 pattern=iot \

 iodir=reverse \

 prefix='%d@%h' \

 alarm=5s \

 noprogt=10s \

 runtime=1h

 Data Test Program

 Page 69 of 70

Appendix D Trigger Script

The trigger= option allows and external program or script to get control when errors
occurs and/or when the no-progress time noprogt= option is used. Note, the no-
progress trigger time noprogtt= option can also be used. This allows you to monitor the
no-progess time, then trigger the script at a different (higher) time value.

Below is an example trigger script (thanks AIX team!). Observe the exit status which
controls dt’s action when this script exits.

#!/usr/bin/ksh

/x/eng/locals/powerpc-ibm-aix5.1/test/bin #

We get called with these parameters #

dname op dsize offset position lba errno noprogtime #

Where: #

$1 dname = The device/file name. #

$2 op = open/close/read/write/miscompare/noprog #

$3 dsize = The device block size. #

$4 offset = The current file offset. #

$5 position = The failing offset within block. #

$6 lba = The logical block address (relative for FS). #

$7 errno = The error number on syscall errors. #

$8 noprogtime = The no progress time #

Capture and display these parameters #

my_name="dt_io_timeout.ksh"

dev_name=$1

operation=$2

dev_bk_sz=$3

off_set=$4

pos=$5

log_blk=$6

err_num=$7

no_prog_time=$8

echo "$my_name *#"

echo "The device name is $dev_name."

echo "The operation is $operation."

echo "The device block size is $dev_bk_sz."

echo "The offset, position and lba are $off_set, $pos, $log_blk."

echo "The errno is $err_num."

echo "The no progress time is $no_prog_time."

echo "$my_name *#"

if [[$operation = "noprog"]]; then

return code meanings #

CONTINUE = 0, TERMINATE = 1, SLEEP = 2, or ABORT = 3 #

 dt_io_timeout_rc=3

 echo "*#"

 echo "$my_name: I/O has exceeded the limit."

 echo "*#"

 # Now run something useful to display information - like host_info #

 echo "*#"

 Data Test Program

 Page 70 of 70

 echo "$my_name: Running host_info"

 echo "*#"

 /x/eng/locals/powerpc-ibm-aix5.1/test/bin/host_info

else

 dt_io_timeout_rc=0

fi

echo "*#"

echo "The return code that $my_name is sending to dt is $dt_io_timeout_rc."

echo "*#"

Set the return code and exit #

exit $dt_io_timeout_rc

