A rigorous proof mean-ergodicity implying a condition on the covariance
sequence is given below.

Theorem: A WSS process x[n| is mean-squared ergodic in the mean if and
only if its covariance sequence satisfies
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Proof: Without loss of generality we can assume that the process has zero

mean. Define
Wy = 2N+1 Z

We will first assume that the process is MS ergodic in the mean and show
that Eq. (1) is true. From the assumption it follows that

limy o E{WZ} = 0. To prove Eq. (1), using the Cauchy-Schwartz
inequality, we get
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Hence Eq. (1) follows.
To show the converse, compute E{W3%} as follows:
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Since we are interested in the limit as N — oo, the second term is
immaterial, and we consider only the first term.



Choose € > 0 and let M be such that
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The existence of M follows from Eq. (1), which we have assumed to be
true. Now, for N > M we have
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Now let N — oo. Since M is fixed, the RHS is smaller than 2e for large
enough N. Hence the LHS approaches 0 as N — oo, proving that
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