
A rigorous proof mean-ergodicity implying a condition on the covariance
sequence is given below.

Theorem: A WSS process x[n] is mean-squared ergodic in the mean if and
only if its covariance sequence satisfies

lim
N→∞
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rxx[n] = 0 (1)

Proof : Without loss of generality we can assume that the process has zero
mean. Define

WN =
1
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N
∑
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x[n]

We will first assume that the process is MS ergodic in the mean and show
that Eq. (1) is true. From the assumption it follows that
limN→∞

E{W 2
N
} = 0. To prove Eq. (1), using the Cauchy-Schwartz

inequality, we get
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Hence Eq. (1) follows.
To show the converse, compute E{W 2

N
} as follows:
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Since we are interested in the limit as N → ∞, the second term is
immaterial, and we consider only the first term.



Choose ǫ > 0 and let M be such that
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The existence of M follows from Eq. (1), which we have assumed to be
true. Now, for N > M we have
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Now let N → ∞. Since M is fixed, the RHS is smaller than 2ǫ for large
enough N . Hence the LHS approaches 0 as N → ∞, proving that
limN→∞

E{W 2
N
} = 0


