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Notice
This is a “lecture note” style textbook, designed to support my personal

teaching activities at Duke University, in particular teaching its Physics

41/42 series (Introductory Physics for potential physics majors). It is freely

available in its entirety in a downloadable PDF form or to be read online at:

http://www.phy.duke.edu/∼rgb/Class/intro physics 2.php

and will be made available in an inexpensive print version via Lulu press as

soon as it is in a sufficiently polished and complete state.

In this way the text can be used by students all over the world, where

each student can pay (or not) according to their means. Nevertheless, I am

hoping that students who truly find this work useful will purchase a copy

through Lulu or Amazon when that option becomes available, if only to

help subsidize me while I continue to write more inexpensive textbooks in

physics or other subjects.

Although I no longer use notes to lecture from (having taught the class

for decades now, they are hardly necessary) these are ‘real’ lecture notes

and are organized for ease of presentation and ease of learning. They do not

try to say every single thing that can be said about each and every topic

covered, and are hierarchically organized in a way that directly supports

efficient learning.

As a “live” document, these notes have errors great and small, missing

figures (that I usually draw from memory in class and will add to the notes

themselves as I have time or energy to draw them in a publishable form),

and they cover and omit topics according to my own view of what is or isn’t

important to cover in a one-semester course. Expect them to change without

warning as I add content or correct errors. Purchasers of any eventual paper

version should be aware of its probable imperfection and be prepared to

either live with it or mark up their own copies with corrections or additions

as need be (in the lecture note spirit) as I do mine. The text has generous

margins, is widely spaced, and contains scattered blank pages for students’

or instructors’ own use to facilitate this.

I cherish good-hearted communication from students or other instructors

pointing out errors or suggesting new content (and have in the past done

my best to implement many such corrections or suggestions).

http://www.phy.duke.edu/~rgb/Class/intro_physics_2.php
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Preface

This introductory electromagnetism and optics text is intended to be used in

the second semester of a two-semester series of courses teaching introductory

physics at the college level, following a first semester course in (Newtonian)

mechanics and thermodynamics. The text is intended to support teaching

the material at a rapid, but advanced level – it was developed to support

teaching introductory calculus-based physics to potential physics majors,

engineers, and other natural science majors at Duke University over a period

of more than twenty-five years.

Students who hope to succeed in learning physics from this text will need,

as a minimum prerequisite, a solid grasp of mathematics. It is strongly rec-

ommended that all students have mastered mathematics at least through

single-variable differential calculus (typified by the AB advanced placement

test or a first-semester college calculus course). Students should also be tak-

ing (or have completed) single variable integral calculus (typified by the BC

advanced placement test or a second-semester college calculus course). In the

text it is presumed that students are competent in geometry, trigonometry,

algebra, and single variable calculus; more advanced multivariate calculus is

used in a number of places but it is taught in context as it is needed and is

always “separable” into two or three independent one-dimensional integrals.

Note that the Preliminaries, Mathematics and Introduction are not part

of the course per se and are not intended to be lectured on. However, it is

strongly suggested that all students read these three chapters right away as

their first assignment! Or, (if you’re a student reading these words) you can

always decide to read them without it being an assignment, as this book is

all about self-actualization in the learning process...

The Preliminaries chapter covers not physics but how to learn physics (or

ix



x CONTENTS

anything else). Even if you think that you are an excellent student and learn

things totally effortlessly, I strongly suggest reading it. It describes a new

perspective on the teaching and learning process supported by very recent

research in neuroscience and psychology, and makes very specific suggestions

as to the best way to proceed to learn physics.

It is equally strongly suggested that all students skim read and review the

Mathematics chapter right away, reading it sufficiently carefully that they

see what is there so that they can use it as a working reference as they need

to while working on the actual course material.

Finally, the Introduction is a rapid summary of the entire course! If you

read it and look at the pictures before beginning the course proper you can

get a good conceptual overview of everything you’re going to learn. If you

begin by learning in a quick pass the broad strokes for the whole course,

when you go through each chapter in all of its detail, all those facts and

ideas have a place to live in your mind.

That’s the primary idea behind this textbook – in order to be easy to

remember, ideas need a house, a place to live. Most courses try to build you

that house by giving you one nail and piece of wood at a time, and force

you to build it in complete detail from the ground up.

Real houses aren’t built that way at all! First a foundation is established,

then the frame of the whole house is erected, and then, slowly but surely,

the frame is wired and plumbed and drywalled and finished with all of those

picky little details. It works better that way. So it is with learning.

Textbook Layout and Design

This textbook has a design that is just about perfectly backwards compared

to most textbooks that currently cover the subject. Here are its primary

design features:

• All mathematics required by the student is reviewed at the beginning

of the book rather than in an appendix that many students never find.

• There are only twelve chapters. The book is organized so that it can

be sanely taught in a single college semester with at most a chapter a
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week.

• It begins each chapter with an “abstract” and chapter summary. De-

tail, especially lecture-note style mathematical detail, follows the sum-

mary rather than the other way around.

• This text does not spend page after page trying to explain in English

how physics works (prose which to my experience nobody reads any-

way). Instead, a terse “lecture note” style presentation outlines the

main points and presents considerable mathematical detail to support

solving problems.

• Verbal and conceptual understanding is, of course, very important.

It is expected to come from verbal instruction and discussion in the

classroom and recitation and lab. This textbook relies on having a

committed and competent instructor and a sensible learning process.

• Each chapter ends with a short (by modern standards) selection of

challenging homework problems. A good student might well get through

all of the problems in the book, rather than at most 10% of them as

is the general rule for other texts.

• One to three problems per chapter are typically “starred” to indicate

to the student that these are problems they must know how to solve

if they wish to do well. These are problems that directly illustrate the

relevant concepts and problem solving strategies.

• The textbook is entirely algebraic in its presentation and problem solv-

ing requirements – no calculators should be required to solve problems.

This layout provides considerable benefits to both instructor and student.

This textbook supports a top-down style of learning, where one learns each

distinct chapter topic by quickly getting the main points onboard via the

summary, then deriving them or exploring them in detail and applying them

to example problems, and finally asking the students to use what they have

started to learn in highly challenging problems that cannot be solved without

a deeper level of understanding than that presented in the text.
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Part I

Getting Ready

1





Chapter 1

Preliminaries

1.1 See, Do, Teach

If you are reading this, I assume that you are either taking a course in physics

or wish to learn physics. If this is the case, I want to begin by teaching you

the importance of your personal engagement in the learning process. If it

comes right down to it, how well you learn physics, how good a grade you

get, and how much fun you have all depend on how enthusiastically you

tackle the learning process. If you remain disengaged, detatched from the

learning process, you almost certainly will do poorly and be miserable while

doing it. If you can find any degree of engagement – or open enthusiasm –

with the learning process you will very likely do well, or at least as well as

possible.

Note that I use the term learning, not teaching – this is to emphasize

from the beginning that learning is a choice and that you are in control.

Learning is active; being taught is passive. It is up to you to seize control

of your own educational process and fully participate, not sit back and wait

for knowledge to be forcibly injected into your brain.

You may find yourself stuck in a course that is taught in a traditional

way, by an instructor that lectures, assigns some readings, and maybe on

a good day puts on a little dog-and-pony show in the classroom with some

audiovisual aids or some demonstrations. The standard expectation in this

class is to sit in your chair and watch, passive, taking notes. No real engage-

3



4 CHAPTER 1. PRELIMINARIES

ment is “required” by the instructor, and lacking activities or a structure

that encourages it, you lapse into becoming a lecture transcription machine,

recording all kinds of things that make no immediate sense to you and telling

yourself that you’ll sort it all out later.

You may find yourself floundering in such a class – for good reason. The

instructor presents an ocean of material in each lecture, and you’re going

to actually retain at most a few cupfuls of it functioning as a scribe and

passively copying his pictures and symbols without first extracting their

sense. And the lecture makes little sense, at least at first, and reading (if

you do any reading at all) does little to help. Demonstrations can sometimes

make one or two ideas come clear, but only at the expense of twenty other

things that the instructor now has no time to cover and expects you to get

from the readings alone. You continually postpone going over the lectures

and readings to understand the material any more than is strictly required

to do the homework, until one day a big test draws nigh and you realize that

you really don’t understand anything and have forgotten most of what you

did, briefly, understand. Doom and destruction loom.

Sound familiar?

On the other hand, you may be in a course where the instructor has

structured the course with a balanced mix of open lecture (held as a freeform

discussion where questions aren’t just encouraged but required) and group

interactive learning situations such as a carefully structured recitation and

lab where discussion and doing blend together, where students teach each

other and use what they have learned in many ways and contexts. If so,

you’re lucky, but luck only goes so far.

Even in a course like this you may still be floundering because you may

not understand why it is important for you to participate with your whole

spirit in the quest to learn anything you ever choose to study. In a word,

you simply may not give a rodent’s furry behind about learning the material

so that studying is always a fight with yourself to “make” yourself do it – so

that no matter what happens, you lose. This too may sound very familiar

to some.

The importance of engagement and participation in “active learning” (as

opposed to passively being taught) is not really a new idea. Medical schools

were four year programs in the year 1900. They are four year programs
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today, where the amount of information that a physician must now master

in those four years is probably ten times greater today than it was back then.

Medical students are necessarily among the most efficient learners on earth,

or they simply cannot survive.

In medical schools, the optimal learning strategy is compressed to a

three-step adage: See one, do one, teach one.

See a procedure (done by a trained expert).

Do the procedure yourself, with the direct supervision and guidance of

a trained expert.

Teach a student to do the procedure.

See, do, teach. Now you are a trained expert (of sorts), or at least so we

devoutly hope, because that’s all the training you are likely to get until you

start doing the procedure over and over again with real humans and with

limited oversight from an attending physician with too many other things to

do. So you practice and study on your own until you achieve real mastery,

because a mistake can kill somebody.

This recipe is quite general, and can be used to increase your own learn-

ing in almost any class. In fact, lifelong success in learning with or without

the guidance of a good teacher is a matter of discovering the importance of

active engagement and participation that this recipe (non-uniquely) encodes.

Let us rank learning methodologies in terms of “probable degree of active

engagement of the student”. By probable I mean the degree of active en-

gagement that I as an instructor have observed in students over many years

and which is significantly reinforced by research in teaching methodology,

especially in physics and mathematics.

Listening to a lecture as a transcription machine with your brain in “copy

machine” mode is almost entirely passive and is for most students probably a

nearly complete waste of time. That’s not to say that “lecture” in the form

of an organized presentation and review of the material to be learned isn’t

important or is completely useless! It serves one very important purpose in

the grand scheme of learning, but by being passive during lecture you cause

it to fail in its purpose. Its purpose is not to give you a complete, line by

line transcription of the words of your instructor to ponder later and alone.

It is to convey, for a brief shining moment, the sense of the concepts so that
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you understand them.

It is difficult to sufficiently emphasize this point. If lecture doesn’t make

sense to you when the instructor presents it, you will have to work much

harder to achieve the sense of the material “later”, if later ever comes at all.

If you fail to identify the important concepts during the presentation and see

the lecture as a string of disconnected facts, you will have to remember each

fact as if it were an abstract string of symbols, placing impossible demands

on your memory even if you are extraordinarily bright. If you fail to achieve

some degree of understanding (or synthesis of the material, if you prefer) in

lecture by asking questions and getting expert explanations on the spot, you

will have to build it later out of your notes on a set of abstract symbols that

made no sense to you at the time. You might as well be trying to translate

Egyption hieroglyphs without a Rosetta Stone, and the best of luck to you

on that.

Reading is a bit more active – at the very least your brain is more likely to

be somewhat engaged if you aren’t “just” transcribing the book onto a piece

of paper or letting the words and symbols happen in your mind – but is still

pretty passive. Even watching nifty movies or cool-ee-oh demonstrations

is basically sedentary – you’re still just sitting there while somebody or

something else makes it all happen in your brain while you aren’t doing

much of anything. At best it grabs your attention a bit better (on average)

than lecture, but you are mentally passive.

In all of these forms of learning, the single active thing you are likely to

be doing is taking notes or moving an eye muscle from time to time. For

better or worse, the human brain isn’t designed to learn well in passive mode.

Parts of your brain are likely to take charge and pull your eyes irresistably

to the window to look outside where active things are going on, things that

might not be so damn boring!

With your active engagement, with your taking charge of and participat-

ing in the learning process, things change dramatically. Instead of passively

listening in lecture, you can at least try to ask questions and initiate dis-

cussions whenever an idea is presented that makes no intial sense to you.

Discussion is an active process even if you aren’t the one talking at the time.

You participate! Even a tiny bit of participation in a classroom setting where

students are constantly asking questions, where the instructor is constantly
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answering them and asking the students questions in turn makes a huge

difference. Humans being social creatures, it also makes the class a lot more

fun!

In summary, sitting on your ass and writing meaningless (to you, so far)

things down as somebody says them in the hopes of being able to “study”

them and discover their meaning on your own later is boring and for most

students, later never comes because you are busy with many classes, because

you haven’t discovered anything beautiful or exciting (which is the reward

for figuring it all out – if you ever get there) and then there is partying and

hanging out with friends and having fun. Even if you do find the time and

really want to succeed, in a complicated subject like physics you are less

likely to be able to discover the meaning on your own (unless you are so

bright that learning methodology is irrelevant and you learn in a single pass

no matter what). Most introductory students are swamped by the details,

and have small chance of discovering the patterns within those details that

constitute “making sense” and make the detailed information much, much

easier to learn by enabling a compression of the detail into a much smaller

set of connected ideas.

Articulation of ideas, whether it is to yourself or to others in a discussion

setting, requires you to create tentative patterns that might describe and or-

ganize all the details you are being presented with. Using those patterns and

applying them to the details as they are presented, you naturally encounter

places where your tentative patterns are wrong, or don’t quite work, where

something “doesn’t make sense”. In an “active” lecture students participate

in the process, and can ask questions and kick ideas around until they do

make sense. Participation is also fun and helps you pay far more attention

to what’s going on than when you are in passive mode. It may be that this

increased attention, this consideration of many alternatives and rejecting

some while retaining others with social reinforcement, is what makes all the

difference. To learn optimally, even “seeing” must be an active process, one

where you are not a vessel waiting to be filled through your eyes but rather

part of a team studying a puzzle and looking for the patterns together that

will help you eventually solve it.

Learning is increased still further by doing, the very essence of activity

and engagement. “Doing” varies from course to course, depending on just

what there is for you to do, but it always is the application of what you
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are learning to some sort of activity, exercise, problem. It is not just a

recapitulation of symbols: “looking over your notes” or “(re)reading the

text”. The symbols (in a physics class, they very likely will be algebraic

symbols for real although I’m speaking more generally here) do not, initially,

mean a lot to you. If I write F = q(v × B) on the board, it means a great

deal to me, but if you are taking this course for the first time it probably

means zilch to you, and yet I pop it up there, draw some pictures, make

some noises that hopefully make sense to you at the time, and blow on by.

Later you read it in your notes to try to recreate that sense, but you’ve

forgotten most of it. Am I describing the income I expect to make selling B

tons of barley with a market value of v and a profit margin of q?

To learn this expression (for yes, this is a force law of nature and one that

we very much must learn this semester) we have to learn what the symbols

stand for – q is the charge of a point-like object in motion at velocity v

in a magnetic field B, and F is the resulting force acting on the particle.

We have to learn that the × symbol is the cross product of evil (to most

students at any rate, at least at first). In order to get a gut feeling for

what this equation represents, for the directions associated with the cross

product, for the trajectories it implies for charged particles moving in a

magnetic field in a variety of contexts one has to use this expression to solve

problems, see this expression in action in laboratory experiments that let

you prove to yourself that it isn’t bullshit and that the world really does

have cross product force laws in it. You have to do your homework that

involves this law, and be fully engaged.

The learning process isn’t exactly linear, so if you participate fully in the

discussion and the doing while going to even the most traditional of lectures,

you have an excellent chance of getting to the point where you can score

anywhere from a 75% to an 85% in the course. In most schools, say a C+

to B+ performance. Not bad, but not really excellent. A few students will

still get A’s – they either work extra hard, or really like the subject, or they

have some sort of secret, some way of getting over that barrier at the 90’s

that is only crossed by those that really do understand the material quite

well.

Here is the secret for getting yourself over that 90% hump, even in a

physics class (arguably one of the most difficult courses you can take in

college), even if you’re not a super-genius (or have never managed in the
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past to learn like one, a glance and you’re done): Work in groups!

That’s it. Nothing really complex or horrible, just get together with your

friends who are also taking the course and do your homework together. In a

well designed physics course (and many courses in mathematics, economics,

and other subjects these days) you’ll have some aspects of the class, such as

a recitation or lab, where you are required to work in groups, and the groups

and group activities may be highly structured or freeform. “Studio” meth-

ods for teaching physics have even wrapped the lecture itself into a group-

structured setting, so everything is done in groups, and (probably by making

it nearly impossible to be disengaged and sit passively in class waiting for

learning to “happen”) this approach yields measureable improvements (all

things being equal) on at least some objective instruments for measurement

of learning.

If you take charge of your own learning, though, you will quickly see

that in any course, however taught, you can study in a group! This is true

even in a course where “the homework” is to be done alone by fiat of the

(unfortunately ignorant and misguided) instructor. Just study “around” the

actual assignment – assign yourselves problems “like” the actual assignment

– most textbooks have plenty of extra problems and then there is the Internet

and other textbooks – and do them in a group, then (afterwards!) break

up and do your actual assignment alone. Note that if you use a completely

different textbook to pick your group problems from and do them together

before looking at your assignment in your textbook, you can’t even be blamed

if some of the ones you pick turn out to be ones your instructor happened

to assign.

Oh, and not-so-subtly – give the instructor a PDF copy of this book (it’s

free for instructors, after all, and a click away on the Internet) and point to

this page and paragraph containing the following little message from me to

them:

Yo! Teacher! Let’s wake up and smell the coffee! Don’t prevent

your students from doing homework in groups – require it! Make

the homework correspondingly more difficult! Give them quite

a lot of course credit for doing it well! Construct a recitation or

review session where students – in groups – who still cannot get

the most difficult problems can get socratic tutorial help after
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working hard on the problems on their own! Integrate discussion

and deliberately teach to increase active engagement (instead of

passive wandering attention) in lecture1. Then watch as stu-

dent performance and engagement spirals into the stratosphere

compared to what it was before...

Then pray. Some instructors have their egos tied up in things to the

point where they cannot learn, and then what can you do? If an instructor

lets ego or politics obstruct their search for functional methodology, you’re

screwed anyway, and you might as well just tackle the material on your

own. Or heck, maybe their expertise and teaching experience vastly exceeds

my own so that their naked words are sufficiently golden that any student

should be able to learn by just hearing them and doing homework all alone

in isolation from any peer-interaction process that might be of use to help

them make sense of it all – all data to the contrary.

My own words and lecture – in spite of my 28 years of experience in

the classroom, in spite of the fact that it has been twenty years since I

actually used lecture notes to teach the course, in spite of the fact I never,

ever prepare for recitation because solving the homework problems with the

students “cold” as a peer member of their groups is useful where copying my

privately worked out solutions onto a blackboard for them to passively copy

on their papers in turn is useless, in spite of the fact that I wrote this book

similarly without the use of any outside resource – my words and lecture

are not. On the other hand, students who work effectively in groups and

learn to use this book (and other resources) and do all of the homework “to

perfection” might well learn physics quite well without my involvement at

all!

Let’s understand why working in groups has such a dramatic effect on

learning. What happens in a group? Well, a lot of discussion happens,

1Perhaps by using Studio methods, but I’ve found that in mid-sized classes and smaller

(less than around fifty students) one can get very good results without a specially designed

classroom by the Chocolate Method – I lecture without notes and offer a piece of chocolate

or cheap toy or nifty pencil to any student who catches me making a mistake on the

board before I catch it myself, who asks a particularly good question, who looks like

they are nodding off to sleep (seriously, chocolate works wonders here, especially when

ceremoniously offered). Anything that keeps students focussed during lecture by making

it into a game, by allowing/encouraging them to speak out without raising their hands,

by praising them and rewarding them for engagement makes a huge difference.
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because humans working on a common problem like to talk. There is plenty

of doing going on, presuming that the group has a common task list to work

through, like a small mountain of really difficult problems that nobody can

possibly solve working on their own and are barely within their abilities

working as a group backed up by the course instructor! Finally, in a group

everybody has the opportunity to teach!

The importance of teaching – not only seeing the lecture presentation

with your whole brain actively engaged and participating in an ongoing

discussion so that it makes sense at the time, not only doing lots of homework

problems and exercises that apply the material in some way, but articulating

what you have discovered in this process and answering questions that force

you to consider and reject alternative solutions or pathways (or not) cannot

be overemphasized. Teaching each other in a peer setting (ideally with

mentorship and oversight to keep you from teaching each other mistakes) is

essential!

This problem you “get”, and teach others (and actually learn it better

from teaching it than they do from your presentation – never begrudge the

effort required to teach your group peers even if some of them are very

slow to understand). The next problem you don’t get but some other group

member does – they get to teach you. In the end you all learn far more

about every problem as a consequence of the struggle, the exploration of

false paths, the discovery and articulation of the correct path, the process of

discussion, resolution and agreement in teaching whereby everybody in the

group reaches full understanding.

I would assert that it is all but impossible for someone to become a

(halfway decent) teacher of anything without learning along the way that

the absolute best way to learn any set of material deeply is to teach it – it

is the very foundation of Academe and has been for two or three thousand

years. It is, as we have noted, built right into the intensive learning process

of medical school and graduate school in general. For some reason, however,

we don’t incorporate a teaching component in most undergraduate classes,

which is a shame, and it is basically nonexistent in nearly all K-12 schools,

which is an open tragedy.

As an engaged student you don’t have to live with that! Put it there

yourself, by incorporating group study and mutual teaching into your learn-



12 CHAPTER 1. PRELIMINARIES

ing process with or without the help or permission of your teachers! A really

smart and effective group soon learns to iterate the teaching – I teach you,

and to make sure you got it you immediately use the material I taught you

and try to articulate it back to me. Eventually everybody in the group

understands, everybody in the group benefits, everybody in the group gets

the best possible grade on the material. This process will actually make you

(quite literally) more intelligent. You may or may not become smart enough

to lock down an A, but you will get the best grade you are capable of getting,

for your given investment of effort.

This is close to the ultimate in engagement – highly active learning,

with all cylinders of your brain firing away on the process. You can see

why learning is enhanced. It is simply a bonus, a sign of a just and caring

God, that it is also a lot more fun to work in a group, especially in a

relaxed context with food and drink present. Yes, I’m encouraging you to

have “physics study parties” (or history study parties, or psychology study

parties). Hold contests. Give silly prizes. See. Do. Teach.

1.2 Other Conditions for Learning

Learning isn’t only dependent on the engagement pattern implicit in the

See, Do, Teach rule. Let’s absorb a few more True Facts about learning, in

particular let’s come up with a handful of things that can act as “switches”

and turn your ability to learn on and off quite independent of how your in-

structor structures your courses. Most of these things aren’t binary switches

– they are more like dimmer switches that can be slid up between dim (but

not off) and bright (but not fully on). Some of these switches, or environ-

mental parameters, act together more powerfully than they act alone. We’ll

start with the most important pair, a pair that research has shown work

together to potentiate or block learning.

Instead of just telling you what they are, arguing that they are important

for a paragraph or six, and moving on, I’m going to give you an early

opportunity to practice active learning in the context of reading a chapter on

active learning. That is, I want you to participate in a tiny mini-experiment.

It works a little bit better if it is done verbally in a one-on-one meeting, but

it should still work well enough even if it is done in this text that you are
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reading.

I going to give you a string of ten or so digits and ask you to glance at

it one time for a count of three and then look away. No fair peeking once

your three seconds are up! Then I want you to do something else for at

least a minute – anything else that uses your whole attention and interrupts

your ability to rehearse the numbers in your mind in the way that you’ve

doubtless learned permits you to learn other strings of digits, such as holding

your mind blank, thinking of the phone numbers of friends or your social

security number. Even rereading this paragraph will do.

At the end of the minute, try to recall the number I gave you and write

down what you remember. Then turn back to right here and compare what

you wrote down with the actual number.

Ready? (No peeking yet...) Set? Go!

Ok, here it is, in a footnote at the bottom of the page to keep your

eye from naturally reading ahead to catch a glimpse of it while reading the

instructions above2.

How did you do?

If you are like most people, this string of numbers is a bit too long to get

into your immediate memory or visual memory in only three seconds. There

was very little time for rehearsal, and then you went and did something else

for a bit right away that was supposed to keep you from rehearsing whatever

of the string you did manage to verbalize in three seconds. Most people will

get anywhere from the first three to as many as seven or eight of the digits

right, but probably not in the correct order, unless...

...they are particularly smart or lucky and in that brief three second

glance have time to notice that the number consists of all the digits used

exactly once! Folks that happened to “see” this at a glance probably did

better than average, getting all of the correct digits but maybe in not quite

the correct order.

People who are downright brilliant (and equally lucky) realized in only

three seconds (without cheating an extra second or three, you know who you

are) that it consisted of the string of odd digits in ascending order followed

by the even digits in descending order. Those people probably got it all

21357986420 (one, two, three, quit and do something else for one minute...)
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perfectly right even without time to rehearse and “memorize” the string!

Look again at the string, see the pattern now?

The moral of this little mini-demonstration is that it is easy to overwhelm

the mind’s capacity for processing and remembering “meaningless” or “ran-

dom” information. A string of ten measely (apparently) random digits is

too much to remember for one lousy minute, especially if you aren’t given

time to do rehearsal and all of the other things we have to make ourselves

do to “memorize” meaningless information.

Of course things changed radically the instant I pointed out the pattern!

At this point you could very likely go away and come back to this point in

the text tomorrow or even a year from now and have an excellent chance of

remembering this particular digit string, because it makes sense of a sort,

and there are plenty of cues in the text to trigger recall of the particular

pattern that “compresses and encodes” the actual string. You don’t have to

remember ten random things at all – only two and a half – odd ascending

digits followed by the opposite (of both). Patterns rock!

This example has obvious connections to lecture and class time, and is

one reason retention from lecture is so lousy. For most students, lecture in

any nontrivial college-level course is a long-running litany of stuff they don’t

know yet. Since it is all new to them, it might as well be random digits as

far as their cognitive abilities are concerned, at least at first. Sure, there is

pattern there, but you have to discover the pattern, which requires time and

a certain amount of meditation on all of the information. Basically, you have

to have a chance for the pattern to jump out of the stream of information

and punch the switch of the damn light bulb we all carry around inside

our heads, the one that is endlessly portrayed in cartoons. That light bulb

is real – it actually exists, in more than just a metaphorical sense – and

if you study long enough and hard enough to obtain a sudden, epiphinaic

realization in any topic you are studying, however trivial or complex (like

the pattern exposed above) it is quite likely to be accompanied by a purely

mental flash of “light”. You’ll know it when it happens to you, in other

words, and it feels great.

Unfortunately, the instructor doesn’t usually give students a chance to

experience this in lecture. No sooner is one seemingly random factoid laid

out on the table than along comes a new, apparently disconnected one that
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pushes it out of place long before we can either memorize it the hard way

or make sense out of it so we can remember it with a lot less work. This

isn’t really anybody’s fault, of course; the light bulb is quite unlikely to go

off in lecture just from lecture no matter what you or the lecturer do – it is

something that happens to the prepared mind at the end of a process, not

something that just fires away every time you hear a new idea.

The humble and unsurprising conclusion I want you to draw from this

silly little mini-experiment is that things are easier to learn when they make

sense! A lot easier. In fact, things that don’t make sense to you are never

“learned” – they are at best memorized. Information can almost always be

compressed when you discover the patterns that run through it, especially

when the patterns all fit together into the marvelously complex and beautiful

and mysterious process we call “deep understanding” of some subject.

There is one more example I like to use to illustrate how important this

information compression is to memory and intelligence. I play chess, badly.

That is, I know the legal moves of the game, and have no idea at all how to

use them effectively to improve my position and eventually win. Ten moves

into a typical chess game I can’t recall how I got myself into the mess I’m

typically in, and at the end of the game I probably can’t remember any of

what went on except that I got trounced, again.

A chess master, on the other hand, can play umpty games at once, blind-

folded, against pitiful fools like myself and when they’ve finished winning

them all they can go back and recontruct each one move by move, criticizing

each move as they go. Often they can remember the games in their entirety

days or even years later.

This isn’t just because they are smarter – they might be completely

unable to derive the Lorentz group from first principles, and I can, and this

doesn’t automatically make me smarter than them either. It is because

chess makes sense to them – they’ve achieved a deep understanding of the

game, as it were – and they’ve built a complex meta-structure memory

in their brains into which they can poke chess moves so that they can be

retrieved extremely efficiently. This gives them the attendant capability of

searching vast portions of the game tree at a glance, where I have to tediously

work through each branch, one step at a time, usually omitting some really

important possibility because I don’t realize that that knight on the far side
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of the board can affect things on this side where we are both moving pieces.

This sort of “deep” (synthetic) understanding of physics is very much

the goal of this course (the one in the textbook you are reading, since I

use this intro in many textbooks), and to achieve it you must not memo-

rize things as if they are random factoids, you must work to abstract the

beautiful intertwining of patterns that compress all of those apparently ran-

dom factoids into things that you can easily remember offhand, that you

can easily reconstruct from the pattern even if you forget the details, and

that you can search through at a glance. But the process I describe can be

applied to learning pretty much anything, as patterns and structure exist

in abundance in all subjects of interest. There are even sensible rules that

govern or describe the anti-pattern of pure randomness!

There’s one more important thing you can learn from thinking over the

digit experiment. Some of you reading this very likely didn’t do what I

asked, you didn’t play along with the game. Perhaps it was too much of

a bother – you didn’t want to waste a whole minute learning something

by actually doing it, just wanted to read the damn chapter and get it over

with so you could do, well, whatever the hell else it is you were planning

to do today that’s more important to you than physics or learning in other

courses.

If you’re one of these people, you probably don’t remember any of the

digit string at this point from actually seeing it – you never even tried to

memorize it. A very few of you may actually be so terribly jaded that you

don’t even remember the little mnemonic formula I gave above for the digit

string (although frankly, people that are that disengaged are probably not

about to do things like actually read a textbook in the first place, so possibly

not). After all, either way the string is pretty damn meaningless, pattern or

not.

Pattern and meaning aren’t exactly the same thing. There are all sorts

of patterns one can find in random number strings, they just aren’t “real”

(where we could wax poetic at this point about information entropy and

randomness and monkeys typing Shakespeare if this were a different course).

So why bother wasting brain energy on even the easy way to remember this

string when doing so is utterly unimportant to you in the grand scheme of

all things?
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From this we can learn the second humble and unsurprising conclusion I

want you to draw from this one elementary thought experiment. Things are

easier to learn when you care about learning them! In fact, they are damn

near impossible to learn if you really don’t care about learning them.

Let’s put the two observations together and plot them as a graph, just

for fun (and because graphs help one learn for reasons we will explore just

a bit in a minute). If you care about learning what you are studying, and

the information you are trying to learn makes sense (if only for a moment,

perhaps during lecture), the chances of your learning it are quite good. This

alone isn’t enough to guarantee that you’ll learn it, but it they are basically

both necessary conditions, and one of them is directly connected to degree

of engagement.

Figure 1.1: Relation between sense, care and learning
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On the other hand, if you care but the information you want to learn

makes no sense, or if it makes sense but you hate the subject, the instructor,

your school, your life and just don’t care, your chances of learning it aren’t

so good, probably a bit better in the first case than in the second as if you

care you have a chance of finding someone or some way that will help you

make sense of whatever it is you wish to learn, where the person who doesn’t

cares, well, they don’t care. Why should they remember it?

If you don’t give a rat’s ass about the material and it makes no sense to

you, go home. Leaves school. Do something else. You basically have almost

no chance of learning the material unless you are gifted with a transcendent

intelligence, wasted on a dilettante who lives in a state of perpetual ennui,

and are miraculously gifted with the ability learn things effortlessly even

when they make no sense to you and you don’t really care about them. All

the learning tricks and study patterns in the world won’t help a student who

doesn’t try, doesn’t care, and for whom the material never makes sense.

If we worked at it, we could probably find other “logistic” controlling

parameters to associate with learning – things that increase your probability

of learning monotonically as they vary. Some of them are already apparent

from the discussion above. Let’s list a few more of them with explanations

just so that you can see how easy it is to sit down to study and try to learn

and have “something wrong” that decreases your ability to learn in that

particular place and time.

Learning is actual work and involves a fair bit of biological stress, just

like working out. Your brain needs food – it burns a whopping 20-30% of

your daily calorie intake all by itself just living day to day, even more when

you are really using it or are somewhat sedentary in your physical habits.

Note that your brain runs on pure, energy-rich glucose, so when your blood

sugar drops your brain activity drops right along with it. This can happen

(paradoxically) because you just ate a carbohydrate rich meal. A balanced

diet containing foods with a lower glycemic index 3 tends to be harder

to digest and provides a longer period of sustained energy for your brain.

A daily multivitamin (and various antioxidant supplements such as alpha

lipoic acid) can also help maintain your body’s energy release mechanisms

at the cellular level.

3Wikipedia: http://www.wikipedia.org/wiki/glycemic index.

http://www.wikipedia.org/wiki/glycemic_index
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Blood sugar is typically lowest first thing in the morning, so this is a

lousy time to actively study. On the other hand, a good hearty breakfast,

eaten at least an hour before plunging in to your studies, is a great idea and

is a far better habit to develop for a lifetime than eating no breakfast and

instead eating a huge meal right before bed.

Learning requires adequate sleep. Sure this is tough to manage at college

– there are no parents to tell you to go to bed, lots of things to do, and of

course you’re in class during the day and then you study, so late night is when

you have fun. Unfortunately, learning is clearly correlated with engagement,

activity, and mental alertness, and all of these tend to shut down when you’re

tired. Furthermore, the formation of long term memory of any kind from

a day’s experiences has been shown in both animal and human studies to

depend on the brain undergoing at least a few natural sleep cycles of deep

sleep alternating with REM (Rapid Eye Movement) sleep, dreaming sleep.

Rats taught a maze and then deprived of REM sleep cannot run the maze

well the next day; rats that are taught the same maze but that get a good

night’s of rat sleep with plenty of rat dreaming can run the maze well the

next day. People conked on the head who remain unconscious for hours and

are thereby deprived of normal sleep often have permanent amnesia of the

previous day – it never gets turned into long term memory.

This is hardly surprising. Pure common sense and experience tell you

that your brain won’t work too well if it is hungry and tired. Common sense

(and yes, experience) will rapidly convince you that learning generally works

better if you’re not stoned or drunk when you study. Learning works much

better when you have time to learn and haven’t put everything off to the

last minute. In fact, all of Maslow’s hierarchy of needs 4 are important

parameters that contribute to the probability of success in learning.

There is one more set of very important variables that strongly affect our

ability to learn, and they are in some ways the least well understood. These

are variables that describe you as an individual, that describe your particular

4Wikipedia: http://www.wikipedia.org/wiki/Maslow’s hierarchy of needs. In a nut-

shell, in order to become self-actualized and realize your full potential in activities such

as learning you need to have your physiological needs met, you need to be safe, you need

to be loved and secure in the world, you need to have good self-esteem and the esteem of

others. Only then is it particularly likely that you can become self-actualized and become

a great learner and problem solver.

http://www.wikipedia.org/wiki/Maslow's_hierarchy_of_needs
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brain and how it works. Pretty much everybody will learn better if they are

self-actualized and fully and actively engaged, if the material they are trying

to learn is available in a form that makes sense and clearly communicates the

implicit patterns that enable efficient information compression and storage,

and above all if they care about what they are studying and learning, if it

has value to them.

But everybody is not the same, and the optimal learning strategy for

one person is not going to be what works well, or even at all, for another.

This is one of the things that confounds “simple” empirical research that

attempts to find benefit in one teaching/learning methodology over another.

Some students do improve, even dramatically improve – when this or that

teaching/learning methodology is introduced. In others there is no change.

Still others actually do worse. In the end, the effect may be lost in the

statistical noise of the study.

The point is that finding an optimal teaching and learning strategy is

technically an optimization problem on a high dimensional space. We’ve

discussed some of the important dimensions above, isolating a few that

appear to have a monotonic effect on the desired outcome in at least some

range (relying on common sense to cut off that range or suggest trade-offs

– one cannot learn better by simply discussing one idea for weeks at the

expense of participating in lecture or discussing many other ideas of equal

and coordinated importance; sleeping for twenty hours a day leaves little

time for experience to fix into long term memory with all of that sleep).

We’ve omitted one that is crucial, however. That is your brain!

1.3 Your Brain and Learning

Your brain is more than just a unique instrument. In some sense it is you.

You could imagine having your brain removed from your body and being

hooked up to machinary that provided it with sight, sound, and touch in

such a way that ”you” remain5. It is difficult to imagine that you still exist

in any meaningful sense if your brain is taken out of your body and destroyed

while your body is artificially kept alive.

5Imagine very easily if you’ve ever seen The Matrix movie trilogy...
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Your brain, however, is an instrument. It has internal structure. It

uses energy. It does “work”. It is, in fact, a biological machine of sublime

complexity and subtlety, one of the true wonders of the world! Note that

this statement can be made quite independent of whether “you” are your

brain per se or a spiritual being who happens to be using it (a debate that

need not concern us at this time, however much fun it might be to get into

it) – either way the brain itself is quite marvelous.

For all of that, few indeed are the people who bother to learn to actually

use their brain effectively as an instrument. It just works, after all, whether

or not we do this. Which is fine. If you want to get the most mileage out of

it, however, it helps to read the manual.

So here’s at least one user manual for your brain. It is by no means

complete or authoritative, but it should be enough to get you started, to

help you discover that you are actually a lot smarter than you think, or that

you’ve been in the past, once you realize that you can change the way you

think and learn and experience life and gradually improve it.

In the spirit of learning methodology that we eventually hope to adopt,

let’s simply itemize, in no particular order, the various features of the brain
6 that bear on the process of learning. Bear in mind that such a mini-

mal presentation is more of a metaphor than anything else because simple

(and extremely common) generalizations such as “creativity is a right-brain

function” are not strictly true as the brain is far more complex than that.

• The brain has two cerebral hemispheres 7 , right and left, with brain

functions asymmetrically split up between them.

• The brain’s hemispheres are connected by a networked membrane

called the corpus callosum that is how the two halves talk to each

other.

• The human brain consists of layers with a structure that recapitulates

evolutionary phylogeny; that is, the core structures are found in very

primitive animals and common to nearly all vertebrate animals, with

new layers (apparently) added by evolution on top of this core as

the various phyla differentiated, fish, amphibian, reptile, mammal,

6Wikipedia: http://www.wikipedia.org/wiki/brain.
7Wikipedia: http://www.wikipedia.org/wiki/cerebral hemisphere.

http://www.wikipedia.org/wiki/brain
http://www.wikipedia.org/wiki/cerebral_hemisphere
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primate, human. The outermost layer where most actual thinking

occurs (in animals that think) is known as the cerebral cortex.

• The cerebral cortex 8 – especially the outermost layer of it called

the neocortex – is where “higher thought” activities associated with

learning and problem solving take place, although the brain is a very

complex instrument with functions spread out over many regions.

• An important brain model is a neural network 9 . Computer simu-

lated neural networks provide us with insight into how the brain can

remember past events and process new information.

• The fundamental operational units of the brain’s information process-

ing functionality are called neurons 10 . Neurons receive electrochemi-

cal signals from other neurons that are transmitted through long fibers

called axons 11 Neurotransmitters 12 are the actual chemicals respon-

sible for the triggered functioning of neurons and hence the neural

network in the cortex that spans the halves of the brain.

• Parts of the cortex are devoted to the senses. These parts often contain

a map of sorts of the world as seen by the associated sense mechanism.

For example, there exists a topographic map in the brain that roughly

corresponds to points in the retina, which in turn are stimulated by an

image of the outside world that is projected onto the retina by your

eye’s lens in a way we will learn about later in this course! There is

thus a representation of your visual field laid out inside your brain!

• Similar maps exist for the other senses, although sensations from the

right side of your body are generally processed in a laterally inverted

way by the opposite hemisphere of the brain. What your right eye sees,

what your right hand touches, is ultimately transmitted to a sensory

area in your left brain hemisphere and vice versa, and volitional muscle

control flows from these brain halves the other way.

8Wikipedia: http://www.wikipedia.org/wiki/Cerebral cortex.
9Wikipedia: http://www.wikipedia.org/wiki/Neural network.

10Wikipedia: http://www.wikipedia.org/wiki/Neurons.
11Wikipedia: http://www.wikipedia.org/wiki/axon. .
12Wikipedia: http://www.wikipedia.org/wiki/neurotransmitters.

http://www.wikipedia.org/wiki/Cerebral_cortex
http://www.wikipedia.org/wiki/Neural_network
http://www.wikipedia.org/wiki/Neurons
http://www.wikipedia.org/wiki/axon
http://www.wikipedia.org/wiki/neurotransmitters
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• Neurotransmitters require biological resources to produce and consume

bioenergy (provided as glucose) in their operation. You can exhaust the

resources, and saturate the receptors for the various neurotransmitters

on the neurons by overstimulation.

• You can also block neurotransmitters by chemical means, put neuro-

transmitter analogues into your system, and alter the chemical trigger

potentials of your neurons by taking various drugs, poisons, or hor-

mones. The biochemistry of your brain is extremely important to its

function, and (unfortunately) is not infrequently a bit “out of whack”

for many individuals, resulting in e.g. attention deficit or mood disor-

ders that can greatly affect one’s ability to easily learn while leaving

one otherwise highly functional.

• Intelligence 13 , learning ability, and problem solving capabilities are

not fixed; they can vary (often improving) over your whole lifetime!

Your brain is highly plastic and can sometimes even reprogram itself

to full functionality when it is e.g. damaged by a stroke or accident.

On the other hand neither is it infinitely plastic – any given brain

has a range of accessible capabilities and can be improved only to a

certain point. However, for people of supposedly “normal” intelligence

and above, it is by no means clear what that point is! Note well that

intelligence is an extremely controversial subject and you should not

take things like your own measured “IQ” too seriously.

• Intelligence is not even fixed within a population over time. A phe-

nomenon known as “the Flynn effect” 14 (after its discoverer) suggests

that IQ tests have increased almost six points a decade, on average,

over a timescale of tens of years, with most of the increases coming

from the lower half of the distribution of intelligence. This is an active

area of research (as one might well imagine) and some of that research

has demonstrated fairly conclusively that individual intelligences can

be improved by five to ten points (a significant amount) by environ-

mentally correlated factors such as nutrition, education, complexity of

environment.

13Wikipedia: http://www.wikipedia.org/wiki/intelligence.
14Wikipedia: http://www.wikipedia.org/wiki/flynn effect.

http://www.wikipedia.org/wiki/intelligence
http://www.wikipedia.org/wiki/flynn_effect
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• The best time for the brain to learn is right before sleep. The process of

sleep appears to “fix” long term memories in the brain and things one

studies right before going to bed are retained much better than things

studied first thing in the morning. Note that this conflicts directly

with the party/entertainment schedule of many students, who tend to

study early in the evening and then amuse themselves until bedtime.

It works much better the other way around.

• Sensory memory 15 corresponds to the roughly 0.5 second (for most

people) that a sensory impression remains in the brain’s “active sen-

sory register”, the sensory cortex. It can typically hold less than 12

“objects” that can be retrieved. It quickly decays and cannot be im-

proved by rehearsal, although there is some evidence that its object

capacity can be improved over a longer term by practice.

• Short term memory is where some of the information that comes into

sensory memory is transferred. Just which information is transferred

depends on where one’s “attention” is, and the mechanics of the atten-

tion process are not well understood and are an area of active research.

Attention acts like a filtering process, as there is a wealth of parallel

information in our sensory memory at any given instant in time but

the thread of our awareness and experience of time is serial. We tend

to “pay attention” to one thing at a time. Short term memory lasts

from a few seconds to as long as a minute without rehearsal, and for

nearly all people it holds 4 − 5 objects16. However, its capacity can

be increased by a process called “chunking” that is basically the infor-

mation compression mechanism demonstrated in the earlier example

with numbers – grouping of the data to be recalled into “objects” that

permit a larger set to still fit in short term memory.

• Studies of chunking show that the ideal size for data chunking is three.

That is, if you try to remember the string of letters:

FBINSACIAIBMATTMSN

15Wikipedia: http://www.wikipedia.org/wiki/memory. Several items in a row are con-

nected to this page.
16From this you can see why I used ten digits, gave you only a few seconds to look, and

blocked rehearsal in our earlier exercise.

http://www.wikipedia.org/wiki/memory
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with the usual three second look you’ll almost certainly find it impos-

sible. If, however, I insert the following spaces:

FBI NSA CIA IBM ATT MSN

It is suddenly much easier to get at least the first four. If I parenthesize:

(FBI NSA CIA) (IBM ATT MSN)

so that you can recognize the first three are all government agencies

in the general category of “intelligence and law enforcement” and the

last three are all market symbols for information technology mega-

corporations, you can once again recall the information a day later

with only the most cursory of rehearsals. You’ve taken eighteen ”ran-

dom” objects that were meaningless and could hence be recalled only

through the most arduous of rehearsal processes, converted them to

six “chunks” of three that can be easily tagged by the brain’s existing

long term memory (note that you are not learning the string FBI, you

are building an association to the already existing memory of what

the string FBI means, which is much easier for the brain to do), and

chunking the chunks into two objects.

Eighteen objects without meaning – difficult indeed! Those same eigh-

teen objects with meaning – umm, looks pretty easy, doesn’t it...

Short term memory is still that – short term. It typically decays on

a time scale that ranges from minutes for nearly everything to order

of a day for a few things unless the information can be transferred to

long term memory. Long term memory is the big payoff – learning is

associated with formation of long term memory.

• Now we get to the really good stuff. Long term is memory that you

form that lasts a long time in human terms. A “long time” can be days,

weeks, months, years, or a lifetime. Long term memory is encoded

completely differently from short term or sensory/immediate memory

– it appears to be encoded semantically 17 , that is to say, associatively

in terms of its meaning. There is considerable evidence for this, and it

is one reason we focus so much on the importance of meaning in the

previous sections.

17Wikipedia: http://www.wikipedia.org/wiki/semantics.

http://www.wikipedia.org/wiki/semantics
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To miraculously transform things we try to remember from “difficult”

to learn random factoids that have to be brute-force stuffed into dis-

connected semantic storage units created as it were one at a time for

the task at hand into “easy” to learn factoids, all we have to do is dis-

cover meaning associations with things we already know, or create a

strong memory of the global meaning or conceptualization of a subject

that serves as an associative home for all those little factoids.

A characteristic of this as a successful process is that when one works

systematically to learn by means of the latter process, learning gets

easier as time goes on. Every factoid you add to the semantic struc-

ture of the global conceptualization strengthens it, and makes it even

easier to add new factoids. In fact, the mind’s extraordinary rational

capacity permits it to interpolate and extrapolate, to fill in parts of

the structure on its own without effort and in many cases without even

being exposed to the information that needs to be “learned”.

• One area where this extrapolation is particularly evident and powerful

is in mathematics. Any time we can learn, or discover from experience

a formula for some phenomenon, a mathematical pattern, we don’t

have to actually see something to be able to “remember” it. Once

again, it is easy to find examples. If I give you data from sales figures

over a year such as January = $1000, October = $10,000, December =

$12,000, March=$3000, May = $5000, February = $2000, September

= $9000, June = $6000, November = $11,000, July = $7000, August

= $8000, April = $4000, at first glance they look quite difficult to

remember. If you organize them temporally by month and look at

them for a moment, you recognize that sales increased linearly by

month, starting at $1000 in January, and suddenly you can reduce the

whole series to a simple mental formula (straight line) and a couple

pieces of initial data (slope and starting point). One amazing thing

about this is that if I asked you to “remember” something that you

have not seen, such as sales in February in the next year, you could

make a very plausible guess that they will be $14,000!

Note that this isn’t a memory, it is a guess. Guessing is what the mind

is designed to do, as it is part of the process by which it “predicts the

future” even in the most mundane of ways. When I put ten dollars in

my pocket and reach in my pocket for it later, I’m basically guessing,
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on the basis of my memory and experience, that I’ll find ten dollars

there. Maybe my guess is wrong – my pocket could have been picked18,

maybe it fell out through a hole. My concept of object permanence

plus my memory of an initial state permit me to make a predictive

guess about the Universe!

This is, in fact, physics! This is what physics is all about – coming

up with a set of rules (like conservation of matter) that encode obser-

vations of object permanence, more rules (equations of motion) that

dictate how objects move around, and allow me to conclude that “I

put a ten dollar bill, at rest, into my pocket, and objects at rest remain

at rest. The matter the bill is made of cannot be created or destroyed

and is bound together in a way that is unlikely to come apart over

a period of days. Therefore the ten dollar bill is still there!” Nearly

anything that you do or that happens in your everyday life can be

formulated as a predictive physics problem.

• The hippocampus 19 appears to be partly responsible for both forming

spatial maps or visualizations of your environment and also for forming

the cognitive map that organizes what you know and transforms short

term memory into long term memory, and it appears to do its job (as

noted above) in your sleep. Sleep deprivation prevents the formation of

long term memory. Being rendered unconscious for a long period often

produces short term amnesia as the brain loses short term memory

before it gets put into long term memory. The hippocampus shows

evidence of plasticity – taxi drivers who have to learn to navigate

large cities actually have larger than normal hippocampi, with a size

proportional to the length of time they’ve been driving. This suggests

(once again) that it is possible to deliberately increase the capacity

of your own hippocampus through the exercise of its functions, and

consequently increase your ability to store and retrieve information,

which is an important component (although not the only component)

of intelligence!

• Memory is improved by increasing the supply of oxygen to the brain,

which is best accomplished by exercise. Unsurprisingly. Indeed, as

18With three sons constantly looking for funds to attend movies and the like, it isn’t

as unlikely as you might think!
19Wikipedia: http://www.wikipedia.org/wiki/hippocampus.

http://www.wikipedia.org/wiki/hippocampus
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noted above, having good general health, good nutrition, good oxy-

genation and perfusion – having all the biomechanism in tip-top run-

ning order – is perfectly reasonably linked to being able to perform at

your best in anything, mental activity included.

• Finally, the amygdala 20 is a brain organ in our limbic system (part

of our “old”, reptile brain). The amygdala is an important part of our

emotional system. It is associated with primitive survival responses,

with sexual response, and appears to play a key role in modulating

(filtering) the process of turning short term memory into long term

memory. Basically, any sort term memory associated with a powerful

emotion is much more likely to make it into long term memory.

There are clear evolutionary advantages to this. If you narrowly escape

being killed by a saber-toothed tiger at a particular pool in the forest,

and then forget that this happened by the next day and return again

to drink there, chances are decent that the saber-tooth is still there

and you’ll get eaten. On the other hand, if you come upon a particular

fruit tree in that same forest and get a free meal of high quality food

and forget about the tree a day later, you might starve.

We see that both negative and positive emotional experiences are

strongly correlated with learning! Powerful experiences, especially,

are correlated with learning. This translates into learning strategies

in two ways, one for the instructor and one for the student. For the

instructor, there are two general strategies open to helping students

learn. One is to create an atmosphere of fear, hatred, disgust, anger

– powerful negative emotions. The other is to create an atmosphere

of love, security, humor, joy – powerful positive emotions. In between

there is a great wasteland of bo-ring, bo-ring, bo-ring where students

plod along, struggling to form memories because there is nothing “ex-

citing” about the course in either a positive or negative way and so

their amygdala degrades the memory formation process in favor of

other more “interesting” experiences.

Now, in my opinion, negative experiences in the classroom do indeed

promote the formation of long term memories, but they aren’t the

memories the instructor intended. The student is likely to remember,

20Wikipedia: http://www.wikipedia.org/wiki/amygdala.

http://www.wikipedia.org/wiki/amygdala
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and loath, the instructor for the rest of their life but is not more

likely to remember the material except sporadically in association with

particularly traumatic episodes. They may well be less likely, as we

naturally avoid negative experiences and will study less and work less

hard on things we can’t stand doing.

For the instructor, then, positive is the way to go. Creating a warm,

nurturing classroom environment, ensuring that the students know

that you care about their learning and about them as individuals helps

to promote learning. Making your lectures and teaching processes

fun – and funny – helps as well. Many successful lecturers make a

powerful positive impression on the students, creating an atmosphere

of amazement or surprise. A classroom experience should really be a

joy to optimize learning, in so many ways.

For the student, be aware that your attitude matters! As noted in pre-

vious sections, caring is an essential component of successful learning

because you have to attach value to the process in order to get your

amygdala to do its job. However, you can do much more. You can see

how many aspects of learning can be enhanced through the simple ex-

pedient of making it a positive experience! Working in groups is fun,

and you learn more when you’re having fun (or quavering in abject

fear, or in an interesting mix of the two). Attending an interesting lec-

ture is fun, and you’ll retain more than average. Participation is fun,

especially if you are “rewarded” in some way that makes a moment or

two special to you, and you’ll remember more of what goes on.

From all of these little factoids (presented in a way that I’m hoping

helps you to build at least the beginnings of a working conceptual model

of your own brain) I’m hoping that you are coming to realize that all of

this is at least partially under your control! Even if your instructor is scary

or boring, the material at first glance seems dry and meaningless, and so

on – all the negative-neutral things that make learning difficult, you can

decide to make it fun and exciting, you can ferret out the meaning, you can

adopt study strategies that focus on the formation of cognitive maps and

organizing structures first and then on applications, rehearsal, factoids, and

so on, you can learn to study right before bed, get enough sleep, become

aware of your brain’s learning biorhythms.
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Finally, you can learn to increase your functional learning capabilities by

a significant amount. Solving puzzles, playing mental games, doing cross-

word puzzles or sudoku, working homework problems, writing papers, argu-

ing and discussing, just plain thinking about difficult subjects and problems

even when you don’t have to all increase your active intelligence in initially

small but cumulative ways. You too can increase the size of your hippocam-

pus, learn to engage your amygdala by choosing in a self-actualized way

what you value and learning to discipline your emotions accordingly, and

create more conceptual maps within your brain that can be shared as com-

ponents across the various things you wish to learn. The more you know

about anything, the easier it is to learn everything – this is the pure biology

underlying the value of the liberal arts education.

Use your whole brain, exercise it often, don’t think that you “just” need

math and not spatial relations, visualization, verbal skills, a knowledge of

history, a memory of performing experiments with your hands or mind or

both – you need it all! Remember, just as is the case with physical exer-

cise (which you should get plenty of), mental exercise gradually makes you

mentally stronger, so that you can eventually do easily things that at first

appear insurmountably difficult. You can learn to learn three to ten times

as fast as you did in high school, to have more fun while doing it, and to

gain tremendous reasoning capabilities along the way just by trying to learn

to learn more efficiently instead of continuing to use learning strategies that

worked (possibly indifferently) back in elementary and high school.

The next section, at long last, will make a very specific set of suggestions

for one very good way to study physics (or nearly anything else) in a way that

maximally takes advantage of your own volitional biology to make learning

as efficient and pleasant as it is possible to be.

1.4 How to Do Your Homework Effectively

By now in your academic career (and given the information above) it should

be very apparent just where homework exists in the grand scheme of (learn-

ing) things. Ideally, you attend a class where a warm and attentive professor

clearly explains some abstruse concept and a whole raft of facts in some mod-

erately interactive way that encourages engagement and “being earnest”.
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Alas, there are too many facts to fit in short term/immediate memory and

too little time to move most of them through into long term/working memory

before finishing with one and moving on to the next one. The material may

appear to be boring and random so that it is difficult to pay full attention

to the patterns being communicated and remain emotionally enthusiastic

all the while to help the process along. As a consequence, by the end of

lecture you’ve already forgotten many if not most of the facts, but if you

were paying attention, asked questions as needed, and really cared about

learning the material you would remember a handful of the most important

ones, the ones that made your brief understanding of the material hang (for

a brief shining moment) together.

This conceptual overview, however initially tenuous, is the skeleton you

will eventually clothe with facts and experiences to transform it into an

entire system of associative memory and reasoning where you can work

intellectually at a high level with little effort and usually with a great deal

of pleasure associated with the very act of thinking. But you aren’t there

yet.

You now know that you are not terribly likely to retain a lot of what you

are shown in lecture without engagement. In order to actually learn it, you

must stop being a passive recipient of facts. You must actively develop your

understanding, by means of discussing the material and kicking it around

with others, by using the material in some way, by teaching the material to

peers as you come to understand it.

To help facilitate this process, associated with lecture your professor

almost certainly gave you an assignment. Amazingly enough, its purpose is

not to torment you or to be the basis of your grade (although it may well do

both). It is to give you some concrete stuff to do while thinking about the

material to be learned, while discussing the material to be learned, while

using the material to be learned to accomplish specific goals, while teaching

some of what you figure out to others who are sharing this whole experience

while being taught by them in turn. The assignment is much more important

than lecture, as it is entirely participatory, where real learning is far more

likely to occur. You could, once you learn the trick of it, blow off lecture and

do fine in a course in all other respects. If you fail to do the assignments

with your entire spirit engaged, you are doomed.
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In other words, to learn you must do your homework, ideally at least

partly in a group setting. The only question is: how should you do it to

both finish learning all that stuff you sort-of-got in lecture and to re-attain

the moment(s) of clarity that you then experienced, until eventually it be-

comes a permanent characteristic of your awareness and you know and fully

understand it all on your own?

There are two general steps that need to be iterated to finish learning

anything at all. They are a lot of work. In fact, they are far more work

than (passively) attending lecture, and are more important than attending

lecture. You can learn the material with these steps without ever attending

lecture, as long as you have access to what you need to learn in some media

or human form. You in all probability will never learn it, lecture or not,

without making a few passes through these steps. They are:

1. Review the whole (typically textbooks and/or notes)

2. Work on the parts (do homework, use it for something)

(iterate until you thoroughly understand whatever it is you are trying to

learn).

Let’s examine these steps.

The first is pretty obvious. You didn’t “get it” from one lecture. There

was too much material. If you were lucky and well prepared and blessed

with a good instructor, perhaps you grasped some of it for a moment (and if

your instructor was poor or you were particularly poorly prepared you may

not have managed even that) but what you did momentarily understand

is fading, flitting further and further away with every moment that passes.

You need to review the entire topic, as a whole, as well as all its parts. A

set of good summary notes might contain all the relative factoids, but there

are relations between those factoids – a temporal sequencing, mathematical

derviations connecting them to other things you know, a topical association

with other things that you know. They tell a story, or part of a story, and

you need to know that story in broad terms, not try to memorize it word for

word.

Reviewing the material should be done in layers, skimming the textbook

and your notes, creating a new set of notes out of the text in combination
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with your lecture notes, maybe reading in more detail to understand some

particular point that puzzles you, reworking a few of the examples presented.

Lots of increasingly deep passes through it (starting with the merest skim-

reading or reading a summary of the whole thing) are much better than

trying to work through the whole text one line at a time and not moving

on until you understand it. Many things you might want to understand will

only come clear from things you are exposed to later, as it is not the case

that all knowledge is ordinal, hierarchical, and derivatory.

You especially do not have to work on memorizing the content. In fact,

it is not desireable to try to memorize content at this point – you want the

big picture first so that facts have a place to live in your brain. If you build

them a house, they’ll move right in without a fuss, where if you try to grasp

them one at a time with no place to put them, they’ll (metaphorically) slip

away again as fast as you try to take up the next one. Let’s understand this

a bit.

As we’ve seen, your brain is fabulously efficient at storing information

in a compressed associative form. It also tends to remember things that are

important – whatever that means – and forget things that aren’t important

to make room for more important stuff, as your brain structures work to-

gether in understandable ways on the process. Building the cognitive map,

the “house”, is what it’s all about. But as it turns out, building this house

takes time.

This is the goal of your iterated review process. At first you are memo-

rizing things the hard way, trying to connect what you learn to very simple

hierarchical concepts such as this step comes before that step. As you do

this over and over again, though, you find that absorbing new information

takes you less and less time, and you remember it much more easily and

for a longer time without additional rehearsal. Sometimes your brain even

outruns the learning process and “discovers” a missing part of the struc-

ture before you even read about it! By reviewing the whole, well-organized

structure over and over again, you gradually build a greatly compressed

representation of it in your brain and tremendously reduce the amount of

work required to flesh out that structure with increasing levels of detail and

remember them and be able to work with them for a long, long time.

Now let’s understand the second part of doing homework – working prob-
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lems. As you can probably guess on your own at this point, there are good

ways and bad ways to do homework problems. The worst way to do home-

work (aside from not doing it at all, which is far too common a practice and

a bad idea if you have any intention of learning the material) is to do it all

in one sitting, right before it is due, and to never again look at it.

Doing your homework in a single sitting, working on it just one time fails

to repeat and rehearse the material (essential for turning short term memory

into long term in nearly all cases). It exhausts the neurons in your brain

(quite literally – there is metabolic energy consumed in thinking) as one

often ends up working on a problem far too long in one sitting just to get

done. It fails to incrementally build up in your brain’s long term memory the

structures upon which the more complex solutions are based, so you have

to constantly go back to the book to get them into short term memory long

enough to get through a problem. Even this simple bit of repetition does

initiate a learning process. Unfortunately, by not repeating them after this

one sitting they soon fade, often without a discernable trace in long term

memory.

Just as was the case in our experiment with memorizing the number

above, the problems almost invariably are not going to be a matter of ran-

dom noise. They have certain key facts and ideas that are the basis of their

solution, and those ideas are used over and over again. There is plenty of

pattern and meaning there for your brain to exploit in information com-

pression, and it may well be very cool stuff to know and hence important

to you once learned, but it takes time and repetition and a certain amount

of meditation for the “gestalt” of it to spring into your awareness and burn

itself into your conceptual memory as “high order understanding”.

You have to give it this time, and perform the repetitions, while main-

taining an optimistic, philosophical attitude towards the process. You have

to do your best to have fun with it. You don’t get strong by lifting light

weights a single time. You get strong lifting weights repeatedly, starting

with light weights to be sure, but then working up to the heaviest weights

you can manage. When you do build up to where you’re lifting hundreds of

pounds, the fifty pounds you started with seems light as a feather to you.

As with the body, so with the brain. Repeat broad strokes for the big

picture with increasingly deep and “heavy” excursions into the material to
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explore it in detail as the overall picture emerges. Intersperse this with

sessions where you work on problems and try to use the material you’ve

figured out so far. Be sure to discuss it and teach it to others as you go

as much as possible, as articulating what you’ve figured out to others both

uses a different part of your brain than taking it in (and hence solidifies the

memory) and it helps you articulate the ideas to yourself ! This process will

help you learn more, better, faster than you ever have before, and to have

fun doing it!

Your brain is more complicated than you think. You are very likely used

to working hard to try to make it figure things out, but you’ve probably

observed that this doesn’t work very well. A lot of times you simply cannot

“figure things out” because your brain doesn’t yet know the key things

required to do this, or doesn’t “see” how those parts you do know fit together.

Learning and discovery is not, alas, “intentional” – it is more like trying to

get a bird to light on your hand that flits away the moment you try to grasp

it.

People who do really hard crossword puzzles (one form of great brain

exercise) have learned the following. After making a pass through the puzzle

and filling in all the words they can “get”, and maybe making a couple of

extra passes through thinking hard about ones they can’t get right away,

looking for patterns, trying partial guesses, they arrive at an impasse. If they

continue working hard on it, they are unlikely to make further progress, no

matter how long they stare at it.

On the other hand, if they put the puzzle down and do something else for

a while – especially if the something else is go to bed and sleep – when they

come back to the puzzle they often can immediately see a dozen or more

words that the day before were absolutely invisible to them. Sometimes one

of the long theme answers (perhaps 25 characters long) where they have

no more than two letters just “gives up” – they can simply “see” what the

answer must be.

Where do these answers come from? The person has not “figured them

out”, they have “recognized” them. They come all at once, and they don’t

come about as the result of a logical sequential process.

Often they come from the person’s right brain21. The left brain tries to

21Note that this description is at least partly metaphor, for while there is some hemi-
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use logic and simple memory when it works on crosswork puzzles. This is

usually good for some words, but for many of the words there are many

possible answers and without any insight one can’t even recall one of the

possibilities. The clues don’t suffice to connect you up to a word. Even as

letters get filled in this continues to be the case, not because you don’t know

the word (although in really hard puzzles this can sometimes be the case)

but because you don’t know how to recognize the word “all at once” from a

cleverly nonlinear clue and a few letters in this context.

The right brain is (to some extent) responsible for insight and non-linear

thinking. It sees patterns, and wholes, not sequential relations between the

parts. It isn’t intentional – we can’t “make” our right brains figure something

out, it is often the other way around! Working hard on a problem, then

“sleeping on it” (to get that all important hippocampal involvement going)

is actually a great way to develop “insight” that lets you solve it without really

working terribly hard after a few tries. It also utilizes more of your brain –

left and right brain, sequential reasoning and insight, and if you articulate it,

or use it, or make something with your hands, then it exercieses these parts

of your brain as well, strengthening the memory and your understanding still

more. The learning that is associated with this process, and the problem

solving power of the method, is much greater than just working on a problem

linearly the night before it is due until you hack your way through it using

information assembled a part at a time from the book.

The following “Method of Three Passes” is a specific strategy that im-

plements many of the tricks discussed above. It is known to be effective

for learning by means of doing homework (or in a generalized way, learn-

ing anything at all). It is ideal for “problem oriented homework”, and will

pay off big in learning dividends should you adopt it, especially when sup-

ported by a group oriented recitation with strong tutorial support and many

opportunities for peer discussion and teaching.

spherical specialization of some of these functions, it isn’t always sharp. I’m retaining

them here (oh you brain specialists who might be reading this) because they are a valuable

metaphor.
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1.4.1 The Method of Three Passes

Pass 1 Three or more nights before recitation (or when the homework is

due), make a fast pass through all problems. Plan to spend 1-1.5 hours

on this pass. With roughly 10-12 problems, this gives you around 6-8

minutes per problem. Spend no more than this much time per problem

and if you can solve them in this much time fine, otherwise move on to

the next. Try to do this the last thing before bed at night (seriously)

and then go to sleep.

Pass 2 After at least one night’s sleep, make a medium speed pass through

all problems. Plan to spend 1-1.5 hours on this pass as well. Some of

the problems will already be solved from the first pass or nearly so.

Quickly review their solution and then move on to concentrate on the

still unsolved problems. If you solved 1/4 to 1/3 of the problems in the

first pass, you should be able to spend 10 minutes or so per problem in

the second pass. Again, do this right before bed if possible and then

go immediately to sleep.

Pass 3 After at least one night’s sleep, make a final pass through all the

problems. Begin as before by quickly reviewing all the problems you

solved in the previous two passes. Then spend fifteen minutes or more

(as needed) to solve the remaining unsolved problems. Leave any

“impossible” problems for recitation – there should be no more than

three from any given assignment, as a general rule. Go immediately

to bed.

This is an extremely powerful prescription for deeply learning nearly any-

thing. Here is the motivation. Memory is formed by repetition, and this

obviously contains a lot of that. Permanent (long term) memory is actually

formed in your sleep, and studies have shown that whatever you study right

before sleep is most likely to be retained. Physics is actually a “whole brain”

subject – it requires a synthesis of both right brain visualization and con-

ceptualization and left brain verbal/analytical processing – both geometry

and algebra, if you like, and you’ll often find that problems that stumped

you the night before just solve themselves “like magic” on the second or

third pass if you work hard on them for a short, intense, session and then
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sleep on it. This is your right (nonverbal) brain participating as it develops

intuition to guide your left brain algebraic engine.

Other suggestions to improve learning include working in a study group

for that third pass (the first one or two are best done alone to “prepare” for

the third pass). Teaching is one of the best ways to learn, and by working

in a group you’ll have opportunities to both teach and learn more deeply

than you would otherwise as you have to articulate your solutions.

Make the learning fun – the right brain is the key to forming long term

memory and it is the seat of your emotions. If you are happy studying and

make it a positive experience, you will increase retention, it is that simple.

Order pizza, play music, make it a “physics homework party night”.

Use your whole brain on the problems – draw lots of pictures and figures

(right brain) to go with the algebra (left brain). Listen to quiet music (right

brain) while thinking through the sequences of events in the problem (left

brain). Build little ”demos” of problems where possible – even using your

hands in this way helps strengthen memory.

Avoid “memorization”. You will learn physics far better if you learn to

solve problems and understand the concepts rather than attempt to memo-

rize the umpty-zillion formulas, factoids, and specific problems or examples

covered at one time or another in the class.

Be sure to review the problems one last time when you get your graded

homework back. Learn from your mistakes or you will, as they say, be

doomed to repeat them.

If you follow this prescription, you will have seen every assigned home-

work problem a minimum of five or six times – three original passes, recita-

tion itself, a final write up pass after recitation, and a review pass when you

get it back. At least three of these should occur after you have solved all of

the problems correctly, since recitation is devoted to ensuring this. When

the time comes to study for exams, it should really be (for once) a review

process, not a cram. Every problem will be like an old friend, and a very

brief review will form a seventh pass or eighth pass through the assigned

homework.

With this methodology (enhanced as required by the physics resource

rooms, tutors, and help from your instructors) there is no reason for you do



1.4. HOW TO DO YOUR HOMEWORK EFFECTIVELY 39

poorly in the course and every reason to expect that you will do well, perhaps

very well indeed! And you’ll still be spending only the 3-6 hours/week on

homework that is expected of you in any course of this level of difficulty!

This ends our discussion of course preliminaries (for nearly any course

you might take) and it is time to get on with actual material.

The next chapter is on mathematics. It is not actually a part of this

text; it is a reference of sorts for you to use to refresh your memory of (or

learn, as the case may be) things that you need to know to make learning the

physics easy. I suggest quickly reviewing it so you know what is there, then

coming back to this chapter for help as you need it when working through

the physics. Periodically skim it again to refresh it in your mind and build

even better associative maps to what is there, and gradually, painlessly, you

can build up the critical skills as you work through something else entirely,

without even realizing that this is what you are doing.
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Chapter 2

Mathematics

This isn’t really a math textbook, but math is an extremely important

part of physics. Physics textbooks usually at least attempt to include math

support for key ideas, reviewing e.g. how to do a cross product. The problem

with this is that this topical review tends to be scattered throughout the

text or collected in an appendix that students rarely find when they most

need it (either way).

I don’t really like either of these solutions. My own solution is eventually

going to be to write a short lecture-note style math textbook that contains

just precisely what is needed in order to really get going with physics at

least through the undergraduate level, including stuff needed in the intro-

ductory classes one takes as a freshman. Most mathematical physics or

physical mathematics books concentrate on differential equations or really

abstract stuff like group theory. Most intro physics students struggle, on the

other hand, with simple things like decomposing vectors into components

and adding them componentwise, with the quadratic formula, with complex

numbers, with simple calculus techniques. Until these things are mastered,

differential equations are just a cruel joke.

Math texts tend to be useless for this kind of thing, alas. One would

need three or four of them – one for vectors, one for calculus, one for algebra,

one for complex numbers. It is rare to find a single book that treats all of

this and does so simply and without giving the student a dozen examples

or exercises per equation or relation covered in the book. What is needed is

a comprehensive review of material that is shallow and fast enough to let a

41
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student quickly recall it if they’ve seen it before well enough to use, yet deep

and complete enough that they can get to where they can work with the

math even if they have not had a full course in it, or if they can’t remember

three words about e.g. complex variables from the two weeks three years

ago when they covered them.

In the meantime (until I complete this fairly monumental process of

splitting off a whole other book on intro math for physics) I’m putting a

math review chapter first in the book, right here where you are reading

these words. I recommend skimming it to learn what it contains, then

making a slightly slower pass to review it, then go ahead and move on the

the physics and come back anytime you are stumped by not remembering

how to integrate something like (for example):

∫ ∞

0
x2e−axdx (2.1)

Here are some of the things you should be able to find help for in this

chapter:

• Numbers

Integers, real numbers, complex numbers, prime numbers, important

numbers, the algebraic representation of numbers. Physics is all about

numbers.

• Algebra

Algebra is the symbolic manipulation of numbers according to certain

rules to (for example) solve for a particular desired physical quantity

in terms of others. We also review various well-known functions and

certain expansions.

• Coordinate Systems and Vectors

Cartesian, Cylindrical and Spherical coordinate systems in 2 and 3

dimensions, vectors, vector addition, subtraction, inner (dot) product

of vectors, outer (cross) product of vectors.

• Trigonometric Functions and Complex Exponentials

There is a beautiful relationship between the complex numbers and

trig functions such as sine, cosine and tangent. This relationship is
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encoded in the “complex exponential” eiθ, which turns out to be a

very important and useful relationship. We review this in a way that

hopefully will make working with these complex numbers and trig

functions both easy.

• Differentiation

We quickly review what differentiation is, and then present, sometimes

with a quick proof, a table of derivatives of functions that you should

know to make learning physics at this level straightforward.

• Integration

Integration is basically antidifferentiation or summation. Since many

physical relations involve summing, or integrating, over extended dis-

tributions of mass, of charge, of current, of fields, we present a table

of integrals (some of them worked out for you in detail so you can see

how it goes).

2.1 Numbers

2.1.1 Natural, or Counting Numbers

This is the set of numbers 1 :

1, 2, 3, 4 . . .

that is pretty much the first piece of mathematics any student learns.

They are used to count, initially to count things, concrete objects such

as pennies or marbles. This is in some respects surprising, since pennies

and marbles are never really identical. In physics, however, one encounters

particles that are – electrons, for example, differ only in their position.

The natural numbers are usually defined along with a set of operations

known as arithmetic 2 . The well-known operations of arithmetic are addi-

tion, subtraction, multiplication, and division. One rapidly sees that the set

of natural numbers is not closed with respect to them.

1Wikipedia: http://www.wikipedia.org/wiki/number.
2Wikipedia: http://www.wikipedia.org/wiki/arithmetic.

http://www.wikipedia.org/wiki/number
http://www.wikipedia.org/wiki/arithmetic
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Natural numbers greater than 1 in general can be factored into a repre-

sentation in prime numbers. For example:

45 = 20325170... (2.2)

or

56 = 23305071110... (2.3)

2.1.2 Infinity

It is easy to see that there is no largest natural number. Suppose there

was one, call it L. Now add one to it, forming M = L + 1. We know that

L + 1 = M > L, contradicting our assertion that L was the largest. This

lack of a largest object, lack of a boundary, lack of termination in series, is

of enormous importance in mathematics and physics. If there is no largest

number, if there is no “edge” to space or time, then it in some sense they

run on forever, without termination.

Still, there are a number of properties of numbers that we can only un-

derstand if we imagine a very large number used as a boundary or limit

in some computation, and then let that number mentally increase without

bound. Note well that this is a mental trick, encoding the observation that

there is no largest number and so we can increase a number parameter with-

out bound, no more. However, we use this mental trick all of the time – it

becomes a way for our finite minds to encompass the idea of unboundedness.

To facilitate this process, we invent a symbol for this unreachable limit to

the counting process and give it a name.

We call this unboundedness infinity 3 – the lack of a finite boundary –

and give it the symbol ∞ in mathematics.

In many contexts we will treat ∞ as a number in all of the number

systems mentioned below. We will talk blithely about “infinite numbers of

digits” in number representations, which means that the digits simply keep

on going without bound. However, it is very important to bear in mind

that ∞ is not a number, it is a concept. Or at the very least, it is a highly

special number, one that doesn’t satisfy the axioms or participate in the

3Wikipedia: http://www.wikipedia.org/wiki/Infinity.

http://www.wikipedia.org/wiki/Infinity
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usual operations of ordinary arithmetic. For example:

∞ + ∞ = ∞ (2.4)

∞ + N = ∞ (2.5)

∞−∞ = undefined (2.6)

∞∗ N = ∞ (2.7)

These are certainly “odd” rules compared to ordinary arithmetic!

For a bit longer than a century now (since Cantor organized set theory

and discussed the various ways sets could become infinite and set theory

was subsequently axiomatized) there has been an axiom of infinity in math-

ematics postulating its formal existence as a “number” with these and other

odd properties.

Our principle use for infinity will be as a limit in calculus and in series

expansion. We will use infinity to name the process of taking a small quantity

and making it “infinitely small” (but nonzero) – the idea of the infinitesimal,

or the complementary operation of taking a large (finite) quantity (such as

a limit in a finite sum) and making it “infinitely large”. These operations

do not always make arithmetical sense, but when they do they are extremely

valuable as they are at the heart of both series expansions and calculus.

2.1.3 Integers

To achieve closure in addition, subtraction, and multiplication one intro-

duces negative whole numbers and zero to construct the set of integers. To-

day we take these things for granted, but in fact the idea of negative numbers

in particular is quite recent. Although they were used earlier, mathemati-

cians only accepted the idea that negative numbers were legitimate numbers

by the latter 19th century! After all, if you are counting cows, how can you

add negative cows to an already empty field? Numbers were thought of

as being concrete properties of things, tools for bookkeeping, rather than

strictly abstract entities about which one could axiomatically reason until

well into the Enlightenment4.

4Interested readers might want to look at Morris Kline’s Mathematics: The Loss of

Certainty, a book that tells the rather exciting story of the development of mathematical

reasoning from the Greeks to the present, in particular the discovery that mathematical
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In physics, integers or natural numbers are often represented by the

letters i, j, k, l,m, n, although of course in algebra one does have a range of

choice in letters used, and some of these symbols are “overloaded” (used for

more than one thing) in different formulas.

Integers can in general also be factored into primes, but problems begin

to emerge when one does this. First, negative integers will always carry

a factor of -1 times the prime factorization of its absolute value. But the

introduction of a form of “1” into the factorization means that one has to

deal with the fact that −1 ∗ −1 = 1 and 1 ∗ −1 = −1. This possibility of

permuting negative factors through all of the positive and negative halves of

the integers has to be generally ignored because there is a complete symme-

try between the positive and negative half-number line; one simply appends

a single -1 to the prime factorization to serve as a reminder of the sign. Sec-

ond, 0 times anything is 0, so it (and the number ±1) are generally excluded

from the factorization process.

Integer arithmetic is associative, commutative, is closed under addi-

tion/subtraction and multiplication, and has lots of nice properties you can

learn about on e.g. Wikipedia. However, it is still not closed under division!

If one divides two integers, one gets a number that is not, in general, an

integer!

This forming of the ratio between two integer or natural number quan-

tities leads to the next logical extension of our system of numbers: The

rationals.

2.1.4 Rational Numbers

If one takes two integers a and b and divides a by b to form a
b
, the result

will often not be an integer. For example, 1/2 is not an integer, nor is

1/3, 1/4, 1/5..., nor 2/3, 4/(−7) = −4/7, 129/37 and so on. These numbers

are all the ratios of two integers and are hence called rational numbers 5 .

Rational numbers when expressed in a base6 e.g. base 10 have an inter-

reasoning does not lead to “pure knowledge”, a priori truth, but rather to contingent

knowledge that may or may not apply to or be relevant to the real world.
5Wikipedia: http://www.wikipedia.org/wiki/rational number.
6The base of a number is the range over which each digit position in the number

http://www.wikipedia.org/wiki/rational number
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esting property. Dividing one out produces a finite number of non-repeating

digits, followed by a finite sequence of digits that repeats cyclically forever.

For example:
1

3
= 0.3333... (2.8)

or
11

7
= 1.571428571428571428... (2.9)

Note that finite precision decimal numbers are precisely those that are

terminated with an infinite string of the digit 0. If we keep numbers only to

the hundredths place, e.g. 4.17, -17.01, 3.14, the assumption is that all the

rest of the digits in the rational number are 0 – 3.14000...

It may not be the case that those digits really are zero. We will often

be multiplying by 1/3 ≈ 0.33 to get an approximate answer to all of the

precision we need in a problem. In any event, we generally cannot handle an

infinite number of digits, repeating or not, in our arithmetical operations,

so truncated, base two or base ten, rational numbers are the special class of

numbers over which we do much of our arithmetic, whether it be done with

paper and pencil, slide rule, calculator, or computer.

If all rational numbers have digit strings that eventually cyclically repeat,

what about all numbers whose digit strings do not cyclically repeat? These

numbers are not rational.

2.1.5 Irrational Numbers

An irrational number 7 is one that cannot be written as a ratio of two

integers e.g. a/b. It is not immediately obvious that numbers like this exist

at all. When rational numbers were discovered (or invented, as you prefer)

by the Pythagoreans, they were thought to have nearly mystical properties

– the Pythagoreans quite literally worshipped numbers and thought that

everything in the Universe could be understood in terms of the ratios of

natural numbers. Then Hippasus, one of their members, demonstrated that

cycles. We generally work and think in base ten because our ten fingers are amount the

first things we count! Hence digit, which refers to a positional number or a finger or toe.

However, base two (binary), base eight (octal) and base sixteen (hexadecimal) are all

useful in computation, if not physics.
7Wikipedia: http://www.wikipedia.org/wiki/irrational number.

http://www.wikipedia.org/wiki/irrational number
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for an isoceles right triangle, if one assumes that the hypotenuse and arm

are commensurable (one can be expressed as an integer ratio of the other)

that the hypotenuse had to be even, but the legs had to be both even and

odd, a contradiction. Consequently, it was certain that they could not be

placed in a commensurable ratio – the lengths are related by an irrational

number.

According to the (possibly apocryphal) story, Hippasus made this dis-

covery on a long sea voyage he was making, accompanied by a group of fellow

Pythagoreans, and they were so annoyed at his blasphemous discovery that

their religious beliefs in the rationality of the Universe (so to speak) were

false that they threw him overboard to drown! Folks took their mathematics

quite seriously, back then...

As we’ve seen, all digital representation of finite precision or digital repre-

sentations where the digits eventually cycle correspond to rational numbers.

Consequently its digits in a decimal representation of an irrational number

never reach a point where they cyclically repeat or truncate (are terminated

by an infinite sequence of 0’s).

Many numbers that are of great importance in physics, especially e =

2.718281828... and π = 3.141592654... are irrational, and we’ll spend some

time discussing both of them below. When working in coordinate systems,

many of the trigonometric ratios for “simple” right triangles (such as an

isoceles right triangle) involve numbers such as
√

2, which are also irrational

– this was the basis for the earliest proofs of the existence of irrational

numbers, and
√

2 was arguably the first irrational number discovered.

Whenever we compute a number answer we must use rational numbers to

do it, most generally a finite-precision decimal representation. For example,

3.14159 may look like π, an irrational number, but it is really 314159
100000

, a rational

number that approximates π to six significant figures.

Because we cannot precisely represent them in digital form, in physics

(and mathematics and other disciplines where precision matters) we will

often carry important irrationals along with us in computations as symbols

and only evaluate them numerically at the end. It is important to do this

because we work quite often with functions that yield a rational number

or even an integer when an irrational number is used as an argument, e.g.

cos(π) = −1. If we did finite-precision arithmetic prematurely (on computer
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or calculator) we might well end up with an approximation of -1, such as

-0.999998 and could not be sure if it was supposed to be -1 or really was

supposed to be a bit less.

There are lots of nifty truths regarding irrational and irrational numbers.

For example, in between any two rational numbers lie an infinite number

of irrational numbers. This is a “bigger infinity” 8 than just the countably

infinite number of integers or rational numbers, which actually has some

important consequences in physics – it is one of the origins of the theory of

deterministic chaos.

2.1.6 Real Numbers

The union of the irrational and rational numbers forms the real number

line. 9 Real numbers are of great importance in physics. They are closed

under the arithmetical operations of addition, subtraction, multiplication

and division, where one must exclude only division by zero. Real exponential

functions such as ab or ex (where a, b, e, x are all presumed to be real) will

have real values, as will algebraic functions such as (a + b)n where n is an

integer.

However, as before we can discover arithmetical operations such as the

square root operation that lead to problems with closure. For positive real

arguments x ≥ 0, y =
√

x is real, but probably irrational (irrational for most

possible values of x). But what happens when we try to form the square

root of negative real numbers? In fact, what happens when we try to form

the square root of −1?

This is a bit of a problem. All real numbers, squared, are positive. There

is no real number that can be squared to make −1. All we can do is imagine

such a number, and then make our system of numbers bigger to accomodate

it. This process leads us to the imaginary unit i such that i2 = −1, and

thereby to numbers with both real and imaginary parts: Complex numbers.

8Wikipedia: http://www.wikipedia.org/wiki/infinity.
9Wikipedia: http://www.wikipedia.org/wiki/real line.

http://www.wikipedia.org/wiki/infinity
http://www.wikipedia.org/wiki/real line
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2.1.7 Complex Numbers

At this point you should begin to have the feeling that this process of gen-

erating supersets of the numbers we already have figured out will never end.

You would be right, and some of the extensions (ones we will not cover here)

are actually very useful in more advanced physics. However, we have a finite

amount of time to review numbers here, and complex numbers are the most

we will need in this course (or even “most” undergraduate physics courses

even at a somewhat more advanced level). They are important enough that

we’ll spend a whole section discussing them below; for the moment we’ll just

define them.

We start with the unit imaginary number 10 , i. You might be familiar

with the naive definition of i as the square root of −1:

i = +
√
−1 (2.10)

This definition is common but slightly unfortunate. If we adopt it, we have

to be careful using this definition in algebra or we will end up proving any

of the many variants of the following:

− 1 = i · i =
√
−1 ·

√
−1 =

√
−1 · −1 =

√
1 = 1 (2.11)

Oops.

A better definition for i that it is just the algebraic number such that:

i2 = −1 (2.12)

and to leave the square root bit out. Thus we have the following cycle:

i0 = 1

i1 = i

i2 = −1

i3 = (i2)i = −1 · i = −i

i4 = (i2)(i2) = −1 · −1 = 1

i5 = (i4)i = i

... (2.13)

10Wikipedia: http://www.wikipedia.org/wiki/imaginary unit.

http://www.wikipedia.org/wiki/imaginary unit
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where we can use these rules to do the following sort of simplification:

+
√
−πb = +

√
i2πb = +i

√
πb (2.14)

but where we never actually write i =
√
−1.

We can make all the purely imaginary numbers by simply scaling i with

a real number. For example, 14i is a purely imaginary number of magni-

tude 14. iπ is a purely imaginary number of magnitude π. All the purely

imaginary numbers therefore form an imaginary line that is basically the

real line, times i.

With this definition, we can define an arbitrary complex number z as

the sum of an arbitrary real number plus an arbitrary imaginary number:

z = x + iy (2.15)

where x and y are both real numbers. It can be shown that the roots of

any polynomial function can always be written as complex numbers, making

complex numbers of great importance in physics. However, their real power

in physics comes from their relation to exponential functions and trigono-

metric functions.

Complex numbers (like real numbers) form a division algebra 11 – that

is, they are closed under addition, subtraction, multiplication, and division.

Division algebras permit the factorization of expressions, something that is

obviously very important if you wish to algebraically solve for quantities.

Hmmmm, seems like we ought to look at this “algebra” thing. Just what

is an algebra? How does algebra work?

2.2 Algebra

Algebra 12 is a reasoning process that is one of the fundamental cornerstones

of mathematical reasoning. As far as we are concerned, it consists of two

things:

• Representing numbers of one sort or another (where we could with-

out loss of generality assume that they are complex numbers, since

11Wikipedia: http://www.wikipedia.org/wiki/division algebra.
12Wikipedia: http://www.wikipedia.org/wiki/algebra.

http://www.wikipedia.org/wiki/division algebra
http://www.wikipedia.org/wiki/algebra
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real numbers are complex, rational and irrational numbers are real,

integers are rational, and natural numbers are integer) with symbols.

In physics this representation isn’t only a matter of knowns and un-

knowns – we will often use algebraic symbols for numbers we know or

for parameters in problems even when their value is actually given as

part of the problem. In fact, with only a relatively few exceptions, we

will prefer to use symbols as much as we can to permit our algebraic

manipulations to eliminate as much eventual arithmetic (computation

involving actual numbers) as possible.

• Performing a sequence of algebraic transformations of a set of equations

or inequalities to convert it from one form to another (desired) form.

These transformations are generally based on the set of arithmetic

operations defined (and permitted!) over the field(s) of the number

type(s) being manipulated.

That’s it.

Note well that it isn’t always a matter of solving for some unknown

variable. Algebra is just as often used to derive relations and hence gain

insight into a system being studied. Algebra is in some sense the language

of physics.

The transformations of algebra applied to equalities (the most common

case) can be summarized as follows (non-exhaustively). If one is given one

or more equations involving a set of variables a, b, c, ...x, y, z one can:

1. Add any scalar number or well defined and consistent symbol to both

sides of any equation. Note that in physics problems, symbols carry

units and it is necessary to add only symbols that have the same units

as we cannot, for example, add seconds to to kilograms and end up

with a result that makes any sense!

2. Subtract any scalar number or consistent symbol ditto. This isn’t

really a separate rule, as subtraction is just adding a negative quantity.

3. Multiplying both sides of an equation by any scalar number or consis-

tent symbol. In physics one can multiply symbols with different units,

such an equation with (net) units of meters times symbols given in

seconds.
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4. Dividing both sides of an equation ditto, save that one has to be careful

when performing symbolic divisions to avoid points where division is

not permitted or defined (e.g. dividing by zero or a variable that might

take on the value of zero). Note that dividing one unit by another in

physics is also permitted, so that one can sensibly divide length in

meters by time in seconds.

5. Taking both sides of an equation to any power. Again some care must

be exercised, especially if the equation can take on negative or complex

values or has any sort of domain restrictions. For fractional powers,

one may well have to specify the branch of the result (which of many

possible roots one intends to use) as well.

6. Placing the two sides of any equality into almost any functional or alge-

braic form, either given or known, as if they are variables of that func-

tion. Here there are some serious caveats in both math and physics.

In physics, the most important one is that if the functional form has

a power-series expansion then the equality one substitutes in must be

dimensionless. This is easy to understand. Supposed I know that x is

a length in meters. I could try to form the exponential of x: ex, but

if I expand this expression, ex = 1 + x + x2/2! + ... which is nonsense!

How can I add meters to meters-squared? I can only exponentiate

x if it is dimensionless. In mathematics one has to worry about the

domain and range. Suppose I have the relation y = 2 + x2 where x is

a real (dimensionless) expression, and I wish to take the cos−1 of both

sides. Well, the range of cosine is only −1 to 1, and my function y is

clearly strictly larger than 2 and cannot have an inverse cosine! This

is obviously a powerful, but dangerous tool.
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2.3 Coordinate Systems, Points, Vectors

2.4 Review of Vectors

x̂
ŷ

ẑ

A

x

y

z

A

A

Ax

y

z

(2.16)

Most motion is not along a straight line. If fact, almost no motion is

along a line. We therefore need to be able to describe motion along multiple

dimensions (usually 2 or 3). That is, we need to be able to consider and

evaluate vector trajectories, velocities, and accelerations. To do this, we

must first learn about what vectors are, how to add, subtract or decompose

a given vector in its cartesian coordinates (or equivalently how to convert

between the cartesian, polar/cylindrical, and spherical coordinate systems),

and what scalars are. We will also learn a couple of products that can be

constructed from vectors.

A bf vector in a coordinate system is a directed line between two points.

It has magnitude and direction. Once we define a coordinate origin, each

particle in a system has a position vector (e.g. – ~A) associated with its

location in space drawn from the origin to the physical coordinates of the

particle (e.g. – (Ax, Ay, Az)):

~A = Axx̂ + Ayŷ + Az ẑ (2.17)
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2.4.1 Coordinate Systems and Vectors
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A

B

C = A+B

(A)

(B)
A

B

-B

    = A + (-B)

C = A-B

The position vectors clearly depend on the choice of coordinate origin.

However, the difference vector or displacement vector between two

position vectors does not depend on the coordinate origin. To see this, let

us consider the addition of two vectors:

~A + ~B = ~C (2.18)

Note that vector addition proceeds by putting the tail of one at the head

of the other, and constructing the vector that completes the triangle. To

numerically evaluate the sum of two vectors, we determine their components

and add them componentwise, and then reconstruct the total vector:

Cx = Ax + Bx (2.19)

Cy = Ay + By (2.20)

Cz = Az + Bz (2.21)

If we are given a vector in terms of its length (magnitude) and orien-

tation (direction angle(s)) then we must evaluate its cartesian components

before we can add them (for example, in 2D):

Ax =
∣∣∣ ~A

∣∣∣ cos(θA) Bx =
∣∣∣ ~B

∣∣∣ cos θB (2.22)

Ay =
∣∣∣ ~A

∣∣∣ sin(θA) By =
∣∣∣ ~B

∣∣∣ sin θB (2.23)

This process is called decomposing the vector into its cartesian compo-

nents.
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The difference between two vectors is defined by the addition law. Sub-

traction is just adding the negative of the vector in question, that is, the

vector with the same magnitude but the opposite direction. This is con-

sistent with the notion of adding or subtracting its components. Note well:

Although the vectors themselves may depend upon coordinate system, the

difference between two vectors (also called the displacement if the two

vectors are, for example, the postion vectors of some particle evaluated at

two different times) does not.

When we reconstruct a vector from its components, we are just using

the law of vector addition itself, by scaling some special vectors called unit

vectors and then adding them. Unit vectors are (typically perpendicular)

vectors that define the essential directions and orientations of a coordinate

system and have unit length. Scaling them involves multiplying these unit

vectors by a number that represents the magnitude of the vector component.

This scaling number has no direction and is called a scalar. Note that the

product of a vector and a scalar is always a vector:

~B = C ~A (2.24)

where C is a scalar (number) and ~A is a vector. In this case, ~A|| ~B.

Finally, we aside from multiplying a scalar and a vector together, we can

define products that multiply two vectors together. By “multiply” we mean

that if we double the magnitude of either vector, we double the resulting

product – the product is proportional to the magnitude of either vector.

There are two such products for the ordinary vectors we use in this course,

and both play extremely important roles in physics.

The first product creates a scalar (ordinary number with magnitude but

no direction) out of two vectors and is therefore called a scalar product

or (because of the multiplication symbol chosen) a dot product. A scalar

is often thought of as being a “length” (magnitude) on a single line. Multi-

plying two scalars on that line creates a number that has the units of length

squared but is geometrically not an area. By selecting as a direction for

that line the direction of the vector itself, we can use the scalar product

to define the length of a vector as the square root of the vector magnitude

times itself: ∣∣∣ ~A
∣∣∣ = +

√
~A · ~A (2.25)
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C

θ

BA

From this usage it is clear that a scalar product of two vectors can never

be thought of as an area. If we generalize this idea (preserving the need for

our product to be symmetrically proportional to both vectors, we obtain the

following definition for the general scalar product:

~A · ~B = Ax ∗ Bx + Ay ∗ By . . . (2.26)

=
∣∣∣ ~A

∣∣∣
∣∣∣ ~B

∣∣∣ cos(θAB) (2.27)

This definition can be put into words – a scalar product is the length

of one vector (either one, say | ~A|) times the component of the other vector

(| ~B| cos(θAB) that points in the same direction as the vector ~A. Alternatively

it is the length | ~B| times the component of ~A parallel to ~B, | ~A| cos(θAB).

This product is symmetric and commutative ( ~A and ~B can appear in either

order or role).

The other product multiplies two vectors in a way that creates a third

vector. It is called a vector product or (because of the multiplication

symbol chosen) a cross product. Because a vector has magnitude and

direction, we have to specify the product in such a way that both are defined,

which makes the cross product more complicated than the dot product.

As far as magnitude is concerned, we already used the non-areal combi-

nation of vectors in the scalar product, so what is left is the product of two

vectors that makes an area and not just a “scalar length squared”. The area

of the parallelogram defined by two vectors is just:

Area in ~A × ~B parallelogram =
∣∣∣ ~A

∣∣∣
∣∣∣ ~B

∣∣∣ sin(θAB) (2.28)

which we can interpret as “the magnitude of ~A times the component of ~B

perpendicular to ~A” or vice versa. Let us accept this as the magnitude of

the cross product (since it clearly has the proportional property required)

and look at the direction.

The area is nonzero only if the two vectors do not point along the same

line. Since two non-colinear vectors always lie in (or define) a plane (in

which the area of the parallelogram itself lies), and since we want the result-

ing product to be independent of the coordinate system used, one sensible
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direction available for the product is along the line perpendicular to this

plane. This still leaves us with two possible directions, though, as the plane

has two sides. We have to pick one of the two possibilities by convention so

that we can communicate with people far away, who might otherwise use a

counterclockwise convention to build screws when we used a clockwise con-

vention to order them, whereupon they send us left handed screws for our

right handed holes and everybody gets all irritated and everything.

We therefore define the direction of the cross product using the right

hand rule:

Let the fingers of your right hand lie along the direction of the

first vector in a cross product (say ~A below). Let them curl

naturally through the small angle (observe that there are two,

one of which is larger than π and one of which is less than π)

into the direction of ~B. The erect thumb of your right hand then

points in the general direction of the cross product vector – it

at least indicates which of the two perpendicular lines should be

used as a direction, unless your thumb and fingers are all double

jointed or your bones are missing or you used your left-handed

right hand or something.

Putting this all together mathematically, one can show that the following

are two equivalent ways to write the cross product of two three dimensional

vectors. In components:

~A× ~B = (Ax∗By−Ay∗Bx)ẑ+(Ay∗Bz−Az∗By)x̂+(Az∗Bx−Ax∗Bz)ŷ (2.29)

where you should note that x, y, z appear in cyclic order (xyz, yzx, zxy)

in the positive terms and have a minus sign when the order is anticyclic

(zyx, yxz, xzy). The product is antisymmetric and non-commutative. In

particular

~A × ~B = − ~B × ~A (2.30)

or the product changes sign when the order of the vectors is reversed.

Alternatively in many problems it is easier to just use the form:

∣∣∣ ~A × ~B
∣∣∣ =

∣∣∣ ~A
∣∣∣
∣∣∣ ~B

∣∣∣ sin(θAB) (2.31)
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to compute the magnitude and assign the direction literally by (right) “hand”,

along the right-handed normal to the AB plane according to the right-hand

rule above.

Note that this axial property of cross products is realized in nature by

things that twist or rotate around an axis. A screw advances into wood when

twisted clockwise, and comes out of wood when twisted counterclockwise. If

you let the fingers of your right hand curl around the screw in the direction

of the twist your thumb points in the direction the screw moves, whether it

is in or out of the wood. Screws are therefore by convention right handed.

One final remark before leaving vector products. We noted above that

scalar products and vector products are closely connected to the notions of

length and area, but mathematics per se need not specify the units of the

quantities multiplied in a product (that is the province of physics, as we shall

see). We have numerous examples where two different kinds of vectors (with

different units but referred to a common coordinate system for direction)

are multiplied together with one or the other of these products. In actual

fact, there often is a buried squared length or area (which we now agree

are different kinds of numbers) in those products, but it won’t always be

obvious in the dimensions of the result.

Two of the most important uses of the scalar and vector product are to

define the work done as the force through a distance (using a scalar product

as work is a scalar quantity) and the torque exerted by a force applied at

some distance from a center of rotation (using a vector product as torque

is an axial vector). These two quantities (work and torque) have the same

units and yet are very different kinds of things. This is just one example of

the ways geometry, algebra, and units all get mixed together in physics.

At first this will be very confusing, but remember, back when you where

in third grade multiplying integer numbers was very confusing and yet ra-

tional numbers, irrational numbers, general real numbers, and even complex

numbers were all waiting in the wings. This is more of the same, but all of

the additions will mean something and have a compelling beauty that comes

out as you study them. Eventually it all makes very, very good sense.
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2.5 Functions

One of the most important concepts in algebra is that of the function. The

formal mathematical definition of the term function 13 is beyond the scope

of this short review, but the summary below should be more than enough

to work with.

A function is a mapping between a set of coordinates (which is why we

put this section after the section on coordinates) and a single value. Note

well that the “coordinates” in question do not have to be space and/or time,

they can be any set of parameters that are relevant to a problem. In physics,

coordinates can be any or all of:

• Spatial coordinates, x, y, z

• Time t

• Momentum px, py, pz

• Mass m

• Charge q

• Angular momentum, spin, energy, isospin, flavor, color, and much

more, including “spatial” coordinates we cannot see in exotica such

as string theories or supersymmetric theories.

Note well that many of these things can equally well be functions them-

selves – a potential energy function, for example, will usually return the

value of the potential energy as a function of some mix of spatial coordi-

nates, mass, charge, and time. Note that the coordinates can be continuous

(as most of the ones above are classically) or discrete – charge, for example,

comes only multiples of e and color can only take on three values.

One formally denotes functions in the notation e.g. F (x) where F is

the function name represented symbolically and x is the entire vector of

coordinates of all sorts. In physics we often learn or derive functional forms

for important quantities, and may or may not express them as functions in

13Wikipedia: http://www.wikipedia.org/wiki/Function (mathematics).

http://www.wikipedia.org/wiki/Function (mathematics)
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this form. For example, the kinetic energy of a particle can be written either

of the two following ways:

K(m, v) =
1

2
mv2 (2.32)

K =
1

2
mv2 (2.33)

These two forms are equivalent in physics, where it is usually “obvious”

(at least when a student has studied adequately and accumulated some

practical experience solving problems) when we write an expression just

what the variable parameters are. Note well that we not infrequently use

non-variable parameters – in particular constants of nature – in our algebraic

expressions in physics as well, so that:

U = −Gm1m2

r
(2.34)

is a function of m1,m2, and r but includes the gravitational constant G =

6.67× 10−11 N-m2/kg2 in symbolic form. Not all symbols in physics expres-

sions are variable parameters, in other words.

One important property of the mapping required for something to be a

true “function” is that there must be only a single value of the function for

any given set of the coordinates. Two other important definitions are:

Domain The domain of a function is the set of all of the coordinates of the

function that give rise to unique non-infinite values for the function.

That is, for function f(x) it is all of the x’s for which f is well defined.

Range The range of a function is the set of all values of the function f that

arise when its coordinates vary across the entire domain.

For example, for the function f(x) = sin(x), the domain is the entire real

line x ∈ (−∞,∞) and the range is f ∈ [−1, 1].

Two last ideas that are of great use in solving physics problems alge-

braically are the notion of composition of functions and the inverse of a

function.

Suppose you are given two functions: one for the potential energy of a

mass on a spring:

U(x) =
1

2
kx2 (2.35)
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where x is the distance of the mass from its equilibrium position and:

x(t) = x0 cos(ωt) (2.36)

which is the position as a function of time. We can form the composition of

these two functions by substituting the second into the first to obtain:

U(t) =
1

2
kx2

0 cos2(ωt) (2.37)

This sort of “substitution operation” (which we will rarely refer to by name)

is an extremely important part of solving problems in physics, so keep it in

mind at all times!

With the composition operation in mind, we can define the inverse. Not

all functions have a unique inverse function, as we shall see, but most of

them have an inverse function that we can use with some restrictions to

solve problems.

Given a function f(x), if every value in the range of f corresponds to

one and only one value in its domain x, then f−1 = x(f) is also a function,

called the inverse of f . When this condition is satisfied, the range of f(x)

is the domain of x(f) and vice versa. In terms of composition:

x0 = x(f(x0)) (2.38)

and

f0 = f(x(f0)) (2.39)

for any x0 in the domain of f(x) and f0 in the range of f(x) are both true;

the composition of f and the inverse function for some value f0 yields f0

again and is hence an “identity” operation on the range of f(x).

Many functions do not have a unique inverse, however. For example, the

function:

f(x) = cos(x) (2.40)

does not. If we look for values xm in the domain of this function such that

f(xm) = 1, we find an infinite number:

xm = 2πm (2.41)

for m = 0,±1,±2,±3... The mapping is then one value in the range to many

in the domain and the inverse of f(x) is not a function (although we can
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still write down an expression for all of the values that each point in the

range maps into when inverted).

We can get around this problem by restricting the domain to a region

where the inverse mapping is unique. In this particular case, we can define

a function g(x) = sin−1(x) where the domain of g is only x ∈ [−1, 1] and

the range of g is restricted to be g ∈ [−π/2, π/2). If this is done, then

x = f(g(x)) for all x ∈ [−1, 1] and x = g(f(x)) for all x ∈ [−π/2, π/2). The

inverse function for many of the functions of interest in physics have these

sorts of restrictions on the range and domain in order to make the problem

well-defined, and in many cases we have some degree of choice in the best

definition for any given problem, for example, we could use any domain

of width π that begins or ends on an odd half-integral multiple of π, say

x ∈ (π/2, 3π/2] or x ∈ [9π/2, 11π/2) if it suited the needs of our problem to

do so when computing the inverse of sin(x) (or similar but different ranges

for cos(x) or tan(x)) in physics.

In a related vein, if we examine:

f(x) = x2 (2.42)

and try to construct an inverse function we discover two interesting things.

First, there are two values in the domain that correspond to each value in

the range because:

f(x) = f(−x) (2.43)

for all x. This causes us to define the inverse function:

g(x) = ±x1/2 = ±
√

x (2.44)

where the sign in this expression selects one of the two possibilities.

The second is that once we have defined the inverse functions for either

trig functions or the quadratic function in this way so that they have re-

stricted domains, it is natural to ask: Do these functions have any meaning

for the unrestricted domain? In other words, if we have defined:

g(x) = +
√

x (2.45)

for x ≥ 0, does g(x) exist for all x? And if so, what kind of number is g?

This leads us naturally enough into our next section (so keep it in mind)

but first we have to deal with several important ideas.
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2.5.1 Polynomial Functions

A polynomial function is a sum of monomials:

f(x) = a0 + a1x + a2x
2 + a3x

3 + . . . + anx
n + . . . (2.46)

The numbers a0, a1, . . . , an, . . . are called the coefficients of the polynomial.

This sum can be finite and terminate at some n (called the degree of the

polynomial) or can (for certain series of coefficients with “nice” properties)

be infinite and converge to a well defined functional value. Everybody should

be familiar with at least the following forms:

f(x) = a0 (0th degree, constant) (2.47)

f(x) = a0 + a1x (1st degree, linear) (2.48)

f(x) = a0 + a1x + a2x
2 (2nd degree, quadratic) (2.49)

f(x) = a0 + a1x + a2x
2 + a3x

3 (3rd degree, cubic) (2.50)

where the first form is clearly independent of x altogether.

Polynomial functions are a simple key to a huge amount of mathematics.

For example, differential calculus. It is easy to derive:

dxn

dx
= nxn−1 (2.51)

It is similarly simple to derive

∫
xndx =

1

n + 1
xn+1 + constant (2.52)

and we will derive both below to illustrate methodology and help students

remember these two fundamental rules.

Next we note that many continuous functions can be defined in terms

of their power series expansion. In fact any continuous function can be

expanded in the vicinity of a point as a power series, and many of our favorite

functions have well known power series that serve as an alternative definition

of the function. Although we will not derive it here, one extremely general

and powerful way to compute this expansion is via the Taylor series. Let

us define the Taylor series and its close friend and companion, the binomial

expansion.
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2.5.2 The Taylor Series and Binomial Expansion

Suppose f(x) is a continuous and infinitely differentiable function. Let x =

x0 + ∆x for some ∆x that is “small”. Then the following is true:

f(x0 + ∆x) = f(x)
∣∣∣∣
x=x0

+
df

dx

∣∣∣∣
x=x0

∆x +
1

2!

d2f

dx2

∣∣∣∣
x=x0

∆x2

+
1

3!

d3f

dx3

∣∣∣∣
x=x0

∆x3 + . . . (2.53)

This sum will always converge to the function value (for smooth functions

and small enough ∆x) if carried out to a high enough degree. Note well that

the Taylor series can be rearranged to become the definition of the derivative

of a function:

df

dx

∣∣∣∣
x=x0

= lim
∆x→0

f(x0 + ∆x) − f(x0)

∆x
+ O(∆x) (2.54)

where the latter symbols stands for “terms of order ∆x or smaller” and van-

ishes in the limit. It can similarly be rearranged to form formal definitions

for the second or higher order derivatives of a function, which turns out to

be very useful in computational mathematics and physics.

We will find many uses for the Taylor series as we learn physics, because

we will frequently be interested in the value of a function “near” some known

value, or in the limit of very large or very small arguments. Note well that

the Taylor series expansion for any polynomial is that polynomial, possibly

re-expressed around the new “origin” represented by x0.

To this end we will find it very convenient to define the following binomial

expansion. Suppose we have a function that can be written in the form:

f(x) = (c + x)n (2.55)

where n can be any real or complex number. We’d like expand this using

the Taylor series in terms of a “small” parameter. We therefore factor out

the larger of x and c from this expression. Suppose it is c. Then:

f(x) = (c + x)n = cn(1 +
x

c
)n (2.56)

where x/c < 1. x/c is now a suitable “small parameter” and we can expand

this expression around x = 0:
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f(x) = cn

(
1 + n

x

c
+

1

2!
n(n − 1)

(
x

c

)2

+
1

3!
n(n − 1)(n − 2)

(
x

c

)3

+ . . .

)
(2.57)

Evaluate the derivatives around x = 0 to verify this expansion. Similarly, if

x were the larger we could factor out the x and expand in powers of c/x as

our small parameter around c = 0. In that case we’d get:

f(x) = xn

(
1 + n

c

x
+

1

2!
n(n − 1)

(
c

x

)2

+
1

3!
n(n − 1)(n − 2)

(
c

x

)3

+ . . .

)
(2.58)

Remember, n is arbitrary in this expression but you should also verify

that if n is any positive integer, the series terminates and you recover (c+x)n

exactly. In this case the “small” requirement is no longer necessary.

We summarize both of these forms of the expansion by the part in the

brackets. Let y < 1 and n be an arbitrary real or complex number (although

in this class we will use only n real). Then:

(1 + y)n = 1 + ny +
1

2!
n(n − 1)y2 +

1

3!
n(n − 1)(n − 2)y3 + . . . (2.59)

This is the binomial expansion, and is very useful in physics.

2.5.3 Quadratics and Polynomial Roots

As noted above, the purpose of using algebra in physics is so that we can

take known expressions that e.g. describe laws of nature and a particular

problem and transform these “truths” into a “true” statement of the answer

by isolating the symbol for that answer on one side of an equation.

For linear problems that is usually either straightforward or impossible.

For “simple” linear problems (a single linear equation) it is always possible

and usually easy. For sets of simultaneous linear equations in a small num-

ber of variables (like the ones represented in the course) one can “always”



68 CHAPTER 2. MATHEMATICS

use a mix of composition (substitution) and elimination to find the answer

desired14.

What about solving polynomials of higher degree to find values of their

variables that represent answers to physics (or other) questions? In general

one tries to arrange the polynomial into a standard form like the one above,

and then finds the roots of the polynomial. How easy or difficult this may

be depends on many things. In the case of a quadratic (second degree poly-

nomial involving at most the square) one can – and we will, below – derive

an algebraic expression for the roots of an arbitrary quadratic.

For third and higher degrees, our ability to solve for the roots is not

trivially general. Sometimes we will be able to “see” how to go about it.

Other times we won’t. There exist computational methodologies that work

for most relatively low degree polynomials but for very high degree general

polynomials the problem of factorization (finding the roots) is hard. We will

therefore work through quadratic forms in detail below and then make a

couple of observations that will help us factor a few e.g. cubic or quartic

polynomials should we encounter ones with one of the “easy” forms.

In physics, quadratic forms are quite common. Motion in one dimension

with constant acceleration (for example) quite often requires the solution of

a quadratic in time. For the purposes of deriving the quadratic formula, we

begin with the “standard form” of a quadratic equation:

ax2 + bx + c = 0 (2.60)

(where you should note well that c = a0, b = a1, c = a2 in the general

polynomial formula given above).

We wish to find the (two) values of x such that this equation is true,

given a, b, c. To do so we must rearrange this equation and complete the

square.

14This is not true in the general case, however. One can, and should, if you are

contemplating a physics major, take an entire college level course in the methodology of

linear algebra in multidimensional systems.
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ax2 + bx + c = 0

ax2 + bx = −c

x2 +
b

a
x = − c

a

x2 +
b

a
x +

b2

4a2
=

b2

4a2
− c

a

(x +
b

2a
)2 =

b2

4a2
− c

a

(x +
b

2a
) = ±

√
b2

4a2
− c

a

x = − b

2a
±

√
b2

4a2
− c

a

x± =
−b ±

√
b2 − 4ac

2a
(2.61)

This last result is the well-known quadratic formula and its general so-

lutions are complex numbers (because the argument of the square root can

easily be negative if 4ac > b2). In some cases the complex solution is desired

as it leads one to e.g. a complex exponential solution and hence a trigono-

metric oscillatory function as we shall see in the next section. In other cases

we insist on the solution being real, because if it isn’t there is no real solution

to the problem posed! Experience solving problems of both types is needed

so that a student can learn to recognize both situations and use complex

numbers to their advantage.

Before we move on, let us note two cases where we can “easily” solve

cubic or quartic polynomials (or higher order polynomials) for their roots

algebraically. One is when we take the quadratic formula and multiply it by

any power of x, so that it can be factored, e.g.

ax3 + bx2 + cx = 0

(ax2 + bx + c)x = 0 (2.62)

This equation clearly has the two quadratic roots given above plus one (or

more, if the power of x is higher) root x = 0. In some cases one can factor

a solvable term of the form (x + d) by inspection, but this is generally not

easy if it is possible at all without solving for the roots some other way first.
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The other ”tricky” case follows from the observation that:

x2 − a2 = (x + a)(x − a) (2.63)

so that the two roots x = ±a are solutions. We can generalize this and solve

e.g.

x4 − a4 = (x2 − a2)(x2 + a2) = (x − a)(x + a)(x − ia)(x + ia) (2.64)

and find the four roots x = ±a,±ia. One can imagine doing this for still

higher powers on occasion.

In this course we will almost never have a problem that cannot be solved

using “just” the quadratic formula, perhaps augmented by one or the other

of these two tricks, although naturally a diligent and motivated student

contemplating a math or physics major will prepare for the more difficult

future by reviewing the various factorization tricks for “fortunate” integer

coefficient polynomials, such as synthetic division. However, such a student

should also be aware that the general problem of finding all the roots of

a polynomial of arbitrary degree is difficult 15 . So difficult, in fact, that

it is known that no simple solution involving only arithmetical operations

and square roots exists for degree 5 or greater. However it is generally fairly

easy to factor arbitrary polynomials to a high degree of accuracy numerically

using well-known algorithms and a computer.

Now that we understand both inverse functions and Taylor series expan-

sions and quadratics and roots, let us return to the question asked earlier.

What happens if we extend the domain of an inverse function outside of the

range of the original function? In general we find that the inverse function

has no real solutions. Or, we can find as noted above when factoring poly-

nomials that like as not there are no real solutions. But that does not mean

that solutions do not exist!

15Wikipedia: http://www.wikipedia.org/wiki/Polynomial.

http://www.wikipedia.org/wiki/Polynomial
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2.6 Complex Numbers and Harmonic Trigono-

metric Functions

We already reviewed very briefly the definition of the unit imaginary number

i = +
√
−1. This definition, plus the usual rules for algebra, is enough for

us to define both the imaginary numbers and a new kind of number called

a complex number z that is the sum of real and imaginary parts, z = x + iy.

If we plot the real part of z (x) on the one axis and the imaginary part

(y) on another, we note that the complex numbers map into a plane that

looks just like the x − y plane in ordinary plane geometry. Every complex

number can be represented as an ordered pair of real numbers, one real and

one the magnitude of the imaginary. A picture of this is drawn above.

From this picture and our knowledge of the definitions of the trigono-

metric functions we can quickly and easily deduce some extremely useful and

important True Facts about:

2.6.1 Complex Numbers

This is a very terse review of their most important properties. From the

figure above, we can see that an arbitrary complex number z can always be

written as:
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z = x + iy (2.65)

= |z| (cos(θ) + i|z| sin(θ)) (2.66)

= |z|eiθ (2.67)

where x = |z| cos(θ), y = |z| sin(θ), and |z| =
√

x2 + y2. All complex num-

bers can be written as a real amplitude |z| times a complex exponential form

involving a phase angle. Again, it is difficult to convey how incredibly useful

this result is without further study, but I commend it to your attention.

There are a variety of ways of deriving or justifying the exponential form.

Let’s examine just one. If we differentiate z with respect to θ we get:

dz

dθ
= |z| (− sin(θ) + i cos(θ)) = i|z| (cos(θ) + i sin(θ)) = iz (2.68)

This gives us a differential equation that is an identity of complex num-

bers. If we multiply both sides by dθ and divide both sizes by z and integrate,

we get:

ln z = iθ + constant (2.69)

If we use the inverse function of the natural log (exponentiation of both

sides of the equation:

eln z = e(iθ+constant) = econstanteiθ

z = |z|eiθ (2.70)

where |z| is basically a constant of integration that is set to be the magnitude

of the complex number (or its modulus) where the complex exponential piece

determines its complex phase.

There are a number of really interesting properties that follow from the

exponential form. For example, consider multiplying two complex numbers

a and b:

a = |a|eiθa = |a| cos(θa) + i|a| sin(θa) (2.71)

b = |b|eiθb = |b| cos(θb) + i|b| sin(θb) (2.72)

ab = |a||b|ei(θa+θb) (2.73)

and we see that multiplying two complex numbers multiplies their ampli-

tudes and adds their phase angles. Complex multiplication thus rotates and

rescales numbers in the complex plane.
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2.6.2 Trigonometric and Exponential Relations

e±iθ = cos(θ) ± i sin(θ) (2.74)

cos(θ) =
1

2

(
e+iθ + e−iθ

)
(2.75)

sin(θ) =
1

2i

(
e+iθ − e−iθ

)
(2.76)

From these relations and the properties of exponential multiplication you

can painlessly prove all sorts of trigonometric identities that were immensely

painful to prove back in high school

2.6.3 Power Series Expansions

These can easily be evaluated using the Taylor series discussed in the last

section, expanded around the origin z = 0, and are an alternative way

of seeing that z = eiθ. In the case of exponential and trig functions, the

expansions converge for all z, not just small ones (although they of course

converge faster for small ones).

ex = 1 + x +
x2

2!
+

x3

3!
+ . . . (2.77)

cos(x) = 1 − x2

2!
+

x4

4!
+ . . . (2.78)

sin(x) = x − x3

3!
+

x5

5!
+ . . . (2.79)

Depending on where you start, these can be used to prove the relations

above. They are most useful for getting expansions for small values of their

parameters. For small x (to leading order):

ex ≈ 1 + x (2.80)

cos(x) ≈ 1 − x2

2!
(2.81)

sin(x) ≈ x (2.82)

tan(x) ≈ x (2.83)

We will use these fairly often in this course, so learn them.
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2.6.4 An Important Relation

A relation I will state without proof that is very important to this course is

that the real part of the x(t) derived above:

ℜ(x(t)) = ℜ(x0+e+iωt + x0−e−iωt) (2.84)

= X0 cos(ωt + φ) (2.85)

where φ is an arbitrary phase. You can prove this in a few minutes or

relaxing, enjoyable algebra from the relations outlined above – remember

that x0+ and x0− are arbitrary complex numbers and so can be written in

complex exponential form!

2.7 Calculus

In this section we present a lightning fast review of calculus. It is most of

what you need to do well in this course.

2.7.1 Differential Calculus

The slope of a line is defined to be the rise divided by the run. For a

curved line, however, the slope has to be defined at a point. Lines (curved

or straight, but not infinitely steep) can always be thought of as functions

of a single variable. We call the slope of a line evaluated at any given point

its derivative, and call the process of finding that slope taking the derivative

of the function.

Later we’ll say a few words about multivariate (vector) differential cal-

culus, but that is mostly beyond the scope of this course.

The definition of the derivative of a function is:

df

dx
= lim

∆x→0

f(x + ∆x) − f(x)

∆x
(2.86)

This is the slope of the function at the point x.

First, note that:
d(af)

dx
= a

df

dx
(2.87)
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for any constant a. The constant simply factors out of the definition above.

Second, differentiation is linear. That is:

d

dx
(f(x) + g(x)) =

df(x)

dx
+

dg(x)

dx
(2.88)

Third, suppose that f = gh (the product of two functions). Then

df

dx
=

d(gh)

dx
= lim

∆x→0

g(x + ∆x)h(x + ∆x) − g(x)h(x)

∆x

= lim
∆x→0

(
g(x) + dg

dx
∆x)(h(x) + dh

dx
∆x) − g(x)h(x)

)

∆x

= lim
∆x→0

(
g(x)dh

dx
∆x + dg

dx
h(x)∆x + dg

dx
dh
dx

(∆x)2)
)

∆x

= g(x)
dh

dx
+

dg

dx
h(x) (2.89)

where we used the definition above twice and multiplied everything out. If

we multiply this rule by dx we obtain the following rule for the differential

of a product:

d(gh) = g dh + h dg (2.90)

This is a very important result and leads us shortly to integration by parts

and later in physics to things like Green’s theorem in vector calculus.

We can easily and directly compute the derivative of a mononomial:

dxn

dx
= lim

∆x→0

xn + nxn−1∆x + n(n − 1)xn−2(∆x)2 . . . + (∆x)n) − x2

∆x

= lim
∆x→0

(
nxn−1 + n(n − 1)xn−2(∆x) . . . + (∆x)n−1

)

= nxn−1 (2.91)

or we can derive this result by noting that dx
dx

= 1, the product rule above,

and using induction. If one assumes dxn

dx
= nxn−1, then

dxn+1

dx
=

d(xn · x)

dx
= nxn−1 · x + xn · 1
= nxn + xn = (n + 1)xn (2.92)

and we’re done.
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Again it is beyond the scope of this short review to completely rederive all

of the results of a calculus class, but from what has been presented already

one can see how one can systematically proceed. We conclude, therefore,

with a simple table of useful derivatives and results in summary (including

those above):

da

dx
= 0 a constant (2.93)

d(af(x)

dx
= a

df(x)

dx
a constant (2.94)

dxn

dx
= nxn−1 (2.95)

d

dx
(f(x) + g(x)) =

df(x)

dx
+

dg(x)

dx
(2.96)

df

dx
=

df

du

du

dx
chain rule (2.97)

d(gh)

dx
= g

dh

dx
+

dg

dx
h product rule (2.98)

d(g/h)

dx
=

dg
dx

h − g dh
dx

h2
(2.99)

dex

dx
= ex (2.100)

de(ax)

dx
= aex from chain rule, u = ax (2.101)

d sin(ax)

dx
= a cos(x) (2.102)

d cos(ax)

dx
= −a sin(x) (2.103)

d tan(ax)

dx
=

a

cos2(ax)
= a sec2(ax) (2.104)

d cot(ax)

dx
= − a

sin2(ax)
= −a csc2(ax) (2.105)

d ln(x)

dx
=

1

x
(2.106)

(2.107)

There are a few more integration rules that can be useful in this course, but

nearly all of them can be derived in place using these rules, especially the

chain rule and product rule.
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2.7.2 Integral Calculus

With differentiation under our belt, we need only a few definitions and we’ll

get integral calculus for free. That’s because integration is antidifferentia-

tion, the inverse process to differentiation. As we’ll see, the derivative of a

function is unique but its integral has one free choice that must be made.

We’ll also see that the (definite) integral of a function in one dimension is

the area underneath the curve.

There are lots of ways to facilitate derivations of integral calculus. Most

calculus books begin (appropriately) by drawing pictures of curves and show-

ing that the area beneath them can be evaluated by summing small discrete

sections and that by means of a limiting process that area is equivalent to

the integral of the functional curve. That is, if f(x) is some curve and we

wish to find the area beneath a segment of it (from x = x1 to x = x2 for

example), one small piece of that area can be written:

∆A = f(x)∆x (2.108)

The total area can then be approximately evaluated by piecewise summing

N rectangular strips of width ∆x = (x2 − x1)/N :

A ≈
N∑

n=1

f(x1 + n · ∆x)∆x (2.109)

(Note that one can get slightly different results if one centers the rectangles

or begins them on the low side, but we don’t care.)

In the limit that N → ∞ and ∆x → 0, two things happen. First we

note that:

f(x) =
dA

dx
(2.110)

by the definition of derivative from the previous section. The function f(x)

is the formal derivative of the function representing the area beneath it

(independent of the limits as long as x is in the domain of the function.)

The second is that we’ll get tired adding teensy-weensy rectangles in infinite

numbers. We therefore make up a special symbol for this infinite limit sum.

Σ clearly stands for sum, so we change to another stylized “ess”,
∫
, to also

stand for sum, but now a continuous and infinite sum of all the infinitesimal

pieces of area within the range. We now write:

A =
∫ x2

x1

f(x)dx (2.111)
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as an exact result in this limit.

The beauty of this simple approach is that we now can do the following

algebra, over and over again, to formulate integrals (sums) of some quantity.

dA

dx
= f(x)

dA = f(x)dx∫
dA =

∫
f(x)dx

A =
∫ x2

x1

f(x)dx (2.112)

This areal integral is called a definite integral because it has definite upper

and lower bounds. However, we can also do the integral with a variable upper

bound:

A(x) =
∫ x

x0

f(x′)dx′ (2.113)

where we indicate how A varies as we change x, its upper bound.

We now make a clever observation. f(x) is clearly the function that we

get by differentiating this integrated area with a fixed lower bound (which

is still arbitrary) with respect to the variable in its upper bound. That is

f(x) =
dA(x)

dx
(2.114)

This slope must be the same for all possible values of x0 or this relation

would not be correct and unique! We therefore conclude that all the various

functions A(x) that can stand for the area differ only by a constant (called

the constant of integration):

A′(x) = A(x) + C (2.115)

so that

f(x) =
dA′(x)

dx
=

dA(x

dx
+

dC

dx
=

dA(x)

dx
(2.116)

From this we can conclude that the indefinite integral of f(x) can be

written:

A(x) =
∫ x

f(x)dx + A0 (2.117)

where A0 is the constant of integration. In physics problems the constant of

integration must usually be evaluated algebraically from information given

in the problem, such as initial conditions.
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From this simple definition, we can transform our existing table of deriva-

tives into a table of (indefinite) integrals. Let us compute the integral of xn

as an example. We wish to find:

g(x) =
∫

xndx (2.118)

where we will ignore the constant of integration as being irrelevant to this

process (we can and should always add it to one side or the other of any

formal indefinite integral unless we can see that it is zero). If we differentiate

both sides, the differential and integral are inverse operations and we know:

dg(x)

dx
= xn (2.119)

Looking on our table of derivatives, we see that:

dxn+1

dx
= (n + 1)xn (2.120)

or
dg(x)

dx
= xn =

1

n + 1

dxn+1

dx
(2.121)

and hence:

g(x) =
∫ x

xndx =
1

n + 1
xn+1 (2.122)

by inspection.

Similarly we can match up the other rules with integral equivalents.

d(af(x))

dx
= a

df(x)

dx
(2.123)

leads to: ∫
af(x)dx = a

∫
f(x)dx (2.124)

A very important rule follows from the rule for differentiating a product.

If we integrate both sides this becomes:

∫
d(gh) = gh =

∫
gdh +

∫
hdg (2.125)

which we often rearrange as:

∫
gdh =

∫
d(gh) −

∫
hdg = gh −

∫
hdg (2.126)
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the rule for integration by parts which permits us to throw a derivative from

one term to another in an integral we are trying to do. This turns out to be

very, very useful in evaluating many otherwise extremely difficult integrals.

If we assemble the complete list of (indefinite) integrals that correspond

to our list of derivatives, we get something like:

∫
0 dx = 0 + c = c with c constant (2.127)

∫
af(x)dx = a

∫
f(x)dx (2.128)

∫
xndx =

1

n + 1
xn+1 + c (2.129)

∫
(f + g)dx =

∫
f dx +

∫
g dx (2.130)

∫
f(x)dx =

∫
f(u)

dx

du
du change variables (2.131)

∫
d(gh) = gh =

∫
gdh +

∫
hdg or (2.132)

∫
gdh = gh −

∫
hdg integration by parts (2.133)

∫
exdx = ex + a or change variables to (2.134)

∫
eaxdx =

1

a

∫
eaxd(ax) =

1

a
eax + c (2.135)

∫
sin(ax)dx =

1

a

∫
sin(ax)d(ax) =

1

a
cos(ax) + c (2.136)

∫
cos(ax)dx =

1

a

∫
cos(ax)d(ax) = −1

a
sin(ax) + c (2.137)

∫ dx

x
= ln(x) + c (2.138)

(2.139)

It’s worth doing a couple of examples to show how to do integrals using

these rules. One integral that appears in many physics problems in E&M

is: ∫ R

0

r dr

(z2 + r2)3/2
(2.140)

This integral is done using u substitution – the chain rule used backwards.

We look at it for a second or two and note that if we let

u = (z2 + r2) (2.141)
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then

du = 2rdr (2.142)

and we can rewrite this integral as:

∫ R

0

r dr

(z2 + r2)3/2
=

1

2

∫ R

0

2r dr

(z2 + r2)3/2

=
1

2

∫ (z2+R2)

z2

u−3/2 du

= −u−1/2

∣∣∣∣
(z2+R2)

z2

=
1

z
− 1

(z2 + R2)1/2
(2.143)

The lesson is that we can often do complicated looking integrals by making

a suitable u-substitution that reduces them to a simple integral we know off

of our table.

The next one illustrates both integration by parts and doing integrals

with infinite upper bounds. Let us evaluate:

∫ ∞

0
x2e−axdx (2.144)

Here we identify two pieces. Let:

h(x) = x2 (2.145)

and

d(g(x)) = e−axdx = −1

a
e−axd(−ax) = −1

a
d(e−ax) (2.146)

or g(x) = −(1/a)e−ax. Then our rule for integration by parts becomes:

∫ ∞

0
x2e−axdx =

∫ ∞

0
h(x)dg

= h(x)g(x)
∣∣∣∣
∞

0
−

∫ ∞

0
g(x)dh

= −1

a
x2e−ax

∣∣∣∣
∞

0
+

1

a

∫ ∞

0
e−ax2xdx

=
2

a

∫ ∞

0
xe−axdx

(2.147)
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We repeat this process with h(x) = x and with g(x) unchanged:
∫ ∞

0
x2e−axdx =

2

a

∫ ∞

0
xe−axdx

= − 2

a2
xe−ax

∣∣∣∣
∞

0
+

2

a2

∫ ∞

0
e−axdx

=
2

a2

∫ ∞

0
e−axdx

= − 2

a3

∫ ∞

0
e−axd(−ax)

= − 2

a3
e−ax

∣∣∣∣
∞

0
=

2

a3
(2.148)

If we work a little more generally, we can show that:
∫ ∞

0
xne−axdx =

(n + 1)!

an
(2.149)

This is just one illustration of the power of integration by parts to help us

do integrals that on the surface appear to be quite difficult.

2.7.3 Vector Calculus

This book will not use a great deal of vector or multivariate calculus, but

a little general familiarity with it will greatly help the student with e.g.

multiple integrals or the idea of the force being the negative gradient of

the potential energy. We will content ourselves with a few definitions and

examples.

The first definition is that of the partial derivative. Given a function

of many variables f(x, y, z...), the partial derivative of the function with

respect to (say) x is written:
∂f

∂x
(2.150)

and is just the regular derivative of the variable form of f as a function of all

its coordinates with respect to the x coordinate only, holding all the other

variables constant even if they are not independent and vary in some known

way with respect to x.

In many problems, the variables are independent and the partial deriva-

tive is equal to the regular derivative:

df

dx
=

∂f

∂x
(2.151)
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In other problems, the variable y might depend on the variable x. So

might z. In that case we can form the total derivative of f with respect to x

by including the variation of f caused by the variation of the other variables

as well (basically using the chain rule and composition):

df

dx
=

∂f

∂x
+

∂f

∂y

∂y

∂x
+

∂f

∂z

∂z

∂x
+ ... (2.152)

Note the different full derivative symbol on the left. This is called the “total

derivative” with respect to x. Note also that the independent form follows

from this second form because ∂y
∂x

= 0 and so on are the algebraic way of

saying that the coordinates are independent.

There are several ways to form vector derivatives of functions, especially

vector functions. We begin by defining the gradient operator, the basic

vector differential form:

∇ =
∂

∂x
x̂ +

∂

∂y
ŷ +

∂

∂z
ẑ (2.153)

This operator can be applied to a scalar multivariate function f to form its

gradient:

∇f =
∂f

∂x
x̂ +

∂f

∂y
ŷ +

∂f

∂z
ẑ (2.154)

The gradient of a function has a magnitude equal to its maximum slope at

the point in any possible direction, pointing in the direction in which that

slope is maximal. It is the “uphill slope” of a curved surface, basically – the

word “gradient” means slope. In physics this directed slope is very useful.

If we wish to take the vector derivative of a vector function there are two

common ways to go about it. Suppose E is a vector function of the spatial

coordinates. We can form its divergence:

∇ · E =
∂Ex

∂x
+

∂Ey

∂y
+

∂Ez

∂z
(2.155)

or its curl:

∇ × E = (
∂Ey

∂z
− ∂Ez

∂y
)x̂ + (

∂Ez

∂x
− ∂Ex

∂z
)ŷ + (

∂Ex

∂y
− ∂Ey

∂x
)ẑ (2.156)

These operations are extremely important in physics courses, especially the

more advanced study of electromagnetics, where they are part of the dif-

ferential formulation of Maxwell’s equations, but we will not use them in
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a required way in this course. We’ll introduce and discuss them and work

a rare problem or two, just enough to get the flavor of what they mean

onboard to front-load a more detailed study later (for majors and possibly

engineers or other advanced students only).

2.7.4 Multiple Integrals

The last bit of multivariate calculus we need to address is integration over

multiple dimensions. We will have many occasions in this text to integrate

over lines, over surfaces, and over volumes of space in order to obtain quan-

tities. The integrals themselves are not difficult – in this course they can

always be done as a series of one, two or three ordinary, independent inte-

grals over each coordinate one at a time with the others held ”fixed”. This

is not always possible and multiple integration can get much more difficult,

but we deliberately choose problems that illustrate the general idea of in-

tegrating over a volume while still remaining accessible to a student with

fairly modest calculus skills, no more than is required and reviewed in the

sections above.

[Note: This section is not yet finished, but there are examples of all of

these in context in the relevant sections below. Check back for later revisions

of the book PDF (possibly after contacting the author) if you would like this

section to be filled in urgently.]
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Chapter 3

Introduction

The previous two parts, as one can easily see, are not actual physics. The

first is a very important review of how to efficiently learn physics (or anything

else), intended for you (the student) to read like a novel, one time, at the

very beginning of the course and then refer back to as needed.

The second is a general review of pretty much all of the actual mathe-

matics required for the course – I assume that if you’re taking physics in

college or high school you’ve have had algebra, geometry, trigonometry, and

differential and integral calculus (all required prerequisites for any sensible

calculus-based physics course) but (being no fool) I also assume that most

students, including ones that got A’s in those classes and/or high scores on

the relevant advanced placement tests have forgotten a lot of it, at least to

the point where they are very shaky when it comes to knowing what things

mean, how to derive them, or how to apply them to even quite simple prob-

lems where the variables all means something. If nothing else, putting all the

math you might need here in one impossible-to-miss place means you don’t

have to keep four or five math books handy to get through the problems if

you do forget (or never learned) something that turns out to be important.

We now depart this “general review” layout (which is obviously not in-

tended to be lectured on, although I usually review the content of the Pre-

liminaries on the first day of class at the same time I review the syllabus

and set down the class rules and grading scheme that I will use) and em-

bark upon the actual week by week, day by day progress through the course

material. For maximal ease of use for you the student and (one hopes) your

87
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instructor, the course is designed to cover one chapter per week-equivalent,

whether or not the chapter is broken up into a day and a half of lecture

(summer school), an hour a day (MWF), or an hour and a half a day (TTh)

in a semester based scheme. To emphasize this preferred rhythm, each chap-

ter will be referred to by the week it would normally be covered in my own

semester-long course.

A week’s work in all cases covers just about exactly one “topic” in the

course. A very few are spread out over two weeks; one or two compress two

related topics into one week, but in all cases the homework is assigned on

a weekly rhythm to give you ample opportunity to use the method of three

passes described in the first part of the book, culminating in an expected 2-3

hour recitation where you should go over the assigned homework in a group

of three to six students, with a mentor handy to help you where you get

stuck, with a goal of getting all of the homework perfectly correct by the end

of recitation. That is, at the end of a week plus its recitation, you should be

able to do all of the week’s homework, perfectly, and without looking. You

will usually need all three passes, the last one working in a group, plus the

mentored recitation to achieve this degree of competence!

However, if you do this, you are almost certain to do well on a quiz that

terminates the recitation period, and you will be very likely to retain the

material and not have to “cram” it in again for the hour exams and/or final

exam later in the course. Once you achieve understanding and reinforce

it with a fair bit of repetition and practice, most students will naturally

transform this experience into remarkably deep and permanent learning.

Note well that each week is organized for maximal ease of learning with

the week/chapter review first. Try to always look at this review before lecture

even if you skip reading the chapter itself until later, when you start your

homework. Skimming the whole thing before lecture is, of course, better still.

It is a “first pass” that can often make lecture much easier to follow and help

free you from the tyranny of note-taking as you only need to note differences

in the presentation from this text and perhaps the answers to questions that

helped you understand something during the discussion. Then read or skim

it again right before each homework pass.



Week 1: Discrete Charge and

the Electrostatic Field

• Charge

Objects can carry a (net) charge q when “electrified” various ways.

This charge comes in two flavors, + and -. Like charges exert a long

range (action at a distance) repulsive force on one another. Unlike

charges attract. The SI unit of charge is called the Coulomb (C).

• Charge Quantization

Charge is discrete and quantized in units of e/3, where e = 1.6×10−19

C, but we can never directly observe bare particles with the thirds

(quarks). All charges we can directly measure on independent particles

come in units of e, the charge of the electron or proton.

• Approximate Continuous Charge Distributions

When we study charge distributions in actual matter (with many many

charged atoms in even a tiny chunk) we will often be able to approx-

imate the average distribution of charge as being continuous, so that

we can use calculus and integration instead of discrete summations

over absurdly large numbers of charges. To facilitate the treatment of

continuous charge distributions next week, we will go ahead and define

the following charge densities:

ρ =
dq

dV

σ =
dq

dA

89
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λ =
dq

dx

• Charge Conservation

Net charge is a conserved quantity in nature. Later we will learn to

write the conservation law mathematically in terms of the flux of the

current density, but we don’t yet have the mathematical tools to do

this with.

• Mobility of Charge in Matter

Matter comes in three distinct forms:

– Insulators

– Conductors

– Semiconductors

• Coulomb’s Law

From performing many careful experiments directly measuring the

forces between static charges and from the consistent observations of

many other things such as the electric structure of atoms, the con-

ductivity of metals, the motion of charged particles, and much, much

more, we infer that for any two stationary charges, the experimentally

verified electrostatic force acting on charge 1 due to charge 2 is:

F 12 = keq1q2
(r1 − r2)

|r1 − r2|3

Note that it acts on a line from charge 2 to charge 1, is proportional

to both charges, and is inversely proportional to the distance that

separates them squared.

• The Electrostatic Constant ke

The electrostatic constant ke sets the scale; it is a very important

number (as we shall see) – a genuine constant of nature as was G

for the gravitational field. It is often expressed in terms of a related

quantity called the permittivity of free space, ǫ0, which is more useful

for advanced treatments of electrodynamics. We will often/generally

use ke instead in this course (because it is very easy to remember), but
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I would like you to know the relationship between this quantity and

ǫ0 so that you can easily calculate the latter if you should ever need it

or care.

ke =
1

4πǫ0

= 9 × 109 N − m2

C2

This is accurate to something like 3 significant figures, which is plenty

for our purposes. Note also that you don’t have to remember the units

of ke per se, you can figure them out by just remembering Coulomb’s

Law (which you have to know anyway). Newtons on the left, coulombs

squared on top and meters squared on the bottom on the right.

• Electrostatic Field

The fundamental definition of electrostatic field produced by a charge

q at position r is that it is the electrostatic force per unit charge on a

small test charge q0 placed at each point in space r0 in the limit that

the test charge vanishes:

E = lim
q0→0

F

q0

or

E(r0) = keq
(r0 − r)

|r0 − r|3

If we locate the charge q at the origin and relabel r0 → r, we obtain

the following simple expression for the electrostatic field of a point

charge:

E(r) =
keq

r2
r̂

• Superposition Principle

Given a collection of charges located at various points in space, the

total electric field at a point is the sum of the electric fields of the

individual charges:
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E(r) =
∑

i

keqi(r − ri)

|r − ri|3

To find the electrostatic field produced by a charge density distribu-

tion, we use the superposition principle in integral form:

E(r) = ke

∫ ρ(r0)(r − r0)d
3r0

|r − r0|3

Because one has to integrate over the vectors, this integral is remark-

ably difficult. We’ll revisit it in a much more similar form when we

get to electrostatic potential, a scalar quantity.

• Electric Dipoles

When two electric charges of equal magnitude and opposite sign are

bound together, they form an electric dipole. The dipole moment of

this arrangement is the source of a characteristic electrostatic field,

the dipole field. The dipole moment of the two charges is defined to

be:

p = ql

where q is the magnitude of the charge and l is the vector that points

from the negative charge to the positive charge.

When an electric dipole p is placed in a uniform electric field E, the

following expressions describe the force and torque acting on the dipole

(which tries to align itself with the applied field):

F = 0

τ = p × E

Associated with this torque is the following potential energy:

U = −p · E
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and from this, we can see that the force on the dipole in a more general

(non-uniform) field should be:

F = −∇U = ∇(p · E)

which is actually nontrivial to compute.

This completes the chapter/week summary. The sections below illumi-

nate these basic facts and illustrate them with examples.
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1.1 Charge

In nature we can readily observe electromagnetic forces. In fact, we can

do little else. In a very fundamental sense, we are electromagnetism. Elec-

tromagnetic forces bind electrons to atomic nuclei, bond atoms together to

form molecules, mediate the interactions between molecules that allow them

to change and organize and, eventually, live. The energy that is used to sup-

port life processes is electromagnetic energy. The objects that we touch, or

hear, or taste, or smell, the light that we see, the organized pattern of neu-

ral impulses that we use to think about the input from our senses – all are

electromagnetic.

Given its ubiquity, it should come as no surprise that the directed obser-

vation and study of electricity is quite ancient. It was studied, and written

about, at least 3000 years ago, and artifacts that may have been primitive

electrical batteries have been discovered in the Middle East that date back to

perhaps 250 BCE. However, it took until the Enlightenment (roughly 1600)

and the invention of physics and calculus for the scientific method to develop

to where systematic studies of the phenomenon could occur, and it wasn’t

until the middle 1700s that the correct model for electrical charge 1 was

proposed. From that point rapid progress was made over a period of 250

years, culminating in our contemporary understanding of electromagnetic

forces as one aspect of a unified field theory.

Charge, as we shall see, is the fundamental quantity that permits objects

to “couple” – affect one another – via the electromagnetic interaction. It

therefore will serve use well to know a some of the most important True

Facts about charge.

Experimentally, objects can carry a (net) charge q when “electrified”

various ways (for example by rubbing materials together). Charge comes in

two flavors, + and -, but most matter is approximately charge-neutral most

of the time. Consequently, as Benjamin Franklin observed, most charged

objects end up that way by adding or taking away charge from this neutral

base. The SI unit of charge is called the Coulomb (C).

“Like” charges exert a long range (action at a distance) repulsive force

on one another. “Unlike” charges attract. The force varies with the inverse

1Wikipedia: http://www.wikipedia.org/wiki/electric charge.

http://www.wikipedia.org/wiki/electric charge
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square of the distance between the charges and acts along a line connecting

them. Coulomb’s Law (covered next) describes this attraction or repulsion

in extremely precise terms.

A quantity that is a constant througout all known interactions, neither

created nor destroyed, is said (in physics) to be “conserved”. In the first

semester of this course, you learned of a number of quantities that were con-

ditionally conserved – momentum or angular momentum, conserved when

the net force or torque acting on a system is zero – or unconditionally con-

served, such as net energy (or more properly, mass-energy). Net charge is

an unconditionally conserved quantity in nature – we have never observed

an interaction that led to the creation or destruction of net charge2. Later

we will learn to write this conservation law mathematically in terms of the

flux of the current density, but since we do haven’t yet covered the mathe-

matical tools to do this with, we will for now learn the experimental result

that charge cannot be created nor destroyed; we can only move charge that

already exists from one place to another.

Experimentally, we can readily see that charge can be moved around in

very large to extremely small quantities. A natural question is then: Can

we continue dividing charge indefinitely, and move an infinitesimal amount

of charge? Is charge a continuous quantity, the way we classically imagine

space and time to be? In Franklin’s time it appeared so, and he spoke of it

as being a “fluid” that could be moved around in arbitrary amounts.

However, just as a fluid is itself microscopically particulate, composed

of quantized elementary particles, the “elementary” charge (associated with

these elementary particles that are the building blocks of all matter) has

experimentally turned out to be discrete and essentially indivisible. Indeed,

we characterize elementary particles by a unique signature consisting of their

(rest) mass, their charge, and other measurable properties.

There are two kinds of elementary particles observed in nature that form

2Later in the study of physics you may learn of interactions that lead to e.g. pair pro-

duction (or anihillation) – the simultaneous creation (destruction) of a positron-electron

pair, for example. Note well that while charges are indeed produced (destroyed) in this

sort of interaction, the total charge of a produced (destroyed) pair is zero, justifying the

careful use of the term “net” in the law. At the “everyday” energies of normal matter

at normal temperatures and absent antimatter, one pretty much can ignore this sort of

thing and charge is individually conserved at the discrete particle level.
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Particle Symbol Charge Mass-energy (m0c
2)

Quarks

Up quark u +2/3 ∼ 3 MeV

Up antiquark ū -2/3 ∼ 3 MeV

Down quark d -1/3 ∼ 6 MeV

Down antiquark d̄ +1/3 ∼ 6 MeV

Leptons

Electron e− -1 511 keV

Positron e+ +1 511 keV

Electron neutrino νe 0 < 2 eV

Table 1.1: Charge and Mass of First Generation Fermions

the massive building blocks of nearly everything we see, usually grouped into

families. One family consists of the quarks 3 , which carry a charge that is

quantized in units of e/3, where e = 1.6 × 10−19 C. The other family are

called leptons 4 which carry a charge that is quantized in units of e itself.

Table 1.1 summarizes the names and charge properties of the first gen-

eration of the quarks and leptons. Note that quarks come in units of 2e/3

and −e/3, but we can never directly observe the thirds. In ordinary matter,

these quarks are found in the bound state (bound together by nuclear forces

we will not discuss here) into the nucleons: the proton (charge +e) and neu-

tron (charge 0). In fact, a proton is made up of three quarks: uud – where

the neutron is also made up of three quarks: udd. We only see particles

with a net charge quantized in units of ±e outside of a nucleon.

Protons are quite massive – they have a rest mass around 938.3 MeV/c2

(1.67×10−27 kg), almost 2000 times larger than that of an electron at 0.511

MeV/c2 (9.11×10−31 kg). Neutrons are just a hair more massive than a pro-

ton (939.6 MeV/c2). Protons and neutrons are bound together by the strong

interaction into an atomic nucleus on the order of 10−15 meters in diameter.

This (positively charged) nucleus strongly attracts negatively charged elec-

trons via the electrostatic force that is the first object of our study, which

then arrange themselves around the nucleus to create a structured, electri-

cally neutral object – the atom. Finally, atoms in turn are “glued” together

3Wikipedia: http://www.wikipedia.org/wiki/quark.
4Wikipedia: http://www.wikipedia.org/wiki/lepton. ,

http://www.wikipedia.org/wiki/quark
http://www.wikipedia.org/wiki/lepton
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by electrostatic forces to form molecules, and molecules often stick together

to form bulk matter.

As you proceed in your studies in this course, you should keep a simple

picture of an atom in your mind – a very massive and tiny nucleus sur-

rounded more or less symmetrically surrounded by a much larger “cloud”

of light, relatively mobile electrons to the point of electrical neutrality, with

clusters of atoms bound together into molecules (the object of the study of

chemistry). This picture will turn out to be enormously useful to us as we

seek to understand electronic properties of matter.

Nearly all matter is made up of atoms and hence nothing but protons,

neutrons, and electrons. Nearly all the mobile charge in solid matter is made

up of electrons, as the nucleus of any given atom is much more massive and

likely to be surrounded by charge or locked in solids into a rigid structure

in such a way that it isn’t terribly mobile, although in fluids ionic charge

can move around with either sign. In semiconductors the mobile charge can

also be electron “holes” – de facto positive charge carriers consisting of re-

gions of electron deficit that move against an otherwise stationary electronic

background.

Franklin, unfortunately, thought that the flavor of mobile charge in or-

dinary conductors was positive. In fact, as noted, it is negative – associated

with moving electrons. This is “Franklin’s mistake” – the bane of physics

students for over two hundred years, where the current in a wire generally

points in the opposite direction to the actual motion of the (negative) elec-

trons in the wire. This will – rarely – matter in particular problems, so keep

it in mind.

Note that all of these elementary charges are quite tiny in terms of their

mass and physical extent compared to bulk matter. There is therefore a

lot of charge in nearly any macroscopic piece of matter. We can easily esti-

mate how much within a factor of two or three by assuming that anywhere

from nearly 100% (in the case of hydrogen) to roughly 40% (in the case of

Uranium) of the mass of matter consists of the protons in the nuclei of the

atoms that make it up, and note that for every proton there is generally an

electron. The inverse of the mass of a proton is thus a good (approximate)

measure of the number of charges per unit mass – around 5 × 1026 charges

per kilogram of matter! Even a microgram (a billionth of a kilogram) of
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matter thus has well over ten million billion charges.

This makes precisely summing up fields produced by all of these charges

in chunks of matter much bigger than atoms all but impossible, even with

computers. It is also unnecessary – with so many objects, surely an average

would do for most purposes! We will therefore have frequent cause to “coarse

grain” our description of matter – to ignore the discrete particulate nature

of charge and average out the total charge ∆Q in a finite but very small

volume of matter ∆V . By choosing ∆V small enough that we can treat it

like a volume differential but large enough that it contains a lot of charge,

we can define a charge density. Similarly, we can associate charge densities

with two dimensional sheets of matter (for example, a charged piece of paper

or metal plate) or one dimensional lines of matter (for example, a wire or

piece of fishing line). We summarize this (and define the symbols most often

used to represent charge) as:

ρ =
dq

dV

σ =
dq

dA

λ =
dq

dx

In all of these forms, it is better indeed to think of charge as being the

“fluid” that Franklin imagined it to be!

The last property associated with charge that we wish to mention early

(although we’ll examine it in more detail later) is that various materials can

often be categorized, broadly speaking, into one of three types with quite

distinct properties:

• Insulators. The charge in the atoms and molecules from which an

insulating material is built tends to not be mobile – electrons tend to

stick to their associated molecules tightly enough that ordinary electric

fields cannot remove them. Surplus charge placed on an insulator tends

to remain where you put it. Vacuum is an insulator, as is air, although

neither is a perfect insulator. Insulators still respond measurably to an

applied field, however – the charges in the atoms or molecules distort

as the molecules polarize, and the resulting microscopic dipoles modify

the applied field inside the material. Since we live in air (a material) we



1.1. CHARGE 99

do not generally see the true electric field produced by a charge but one

that is very slightly reduced by the polarization of the air molecules

through which the field travels. This is called dielectric response and

we’ll discuss it extensively later.

• Conductors. For many materials, notably metals but also ionic solu-

tions, at least one electron per atom or molecules is only weakly bound

to its parent and can easily be pushed from one molecule to the next

by small electric fields. We say that these conduction electrons are

free to move in response to applied field and that the material con-

ducts electricity. Conductors also have some special properties when

they respond to applied fields beyond this that we’ll learn about later.

Since electrons are bound to atoms by forces with a finite magni-

tude, all matter is a conductor in a strong enough field. Dielectric

insulators that are placed in such a strong field experience something

called dielectric breakdown and shift suddenly from an insulating to

a conducting state. Lightning is a spectacular example of dielectric

breakdown.

• Semiconductors. These are materials that can be shifted between

being a conductor or an insulator depending on the potential difference

at the interfaces between different “kinds” of semiconducting materi-

als. This is an entirely quantum mechanical effect and his hence a

bit beyond the classical bounds of this course, but it certainly doesn’t

hurt to know that they exist, as semiconductors are extremely impor-

tant to our society. In particular, semiconductors are used in three

critical ways: they are used to make diodes (which we will indeed

study when we talk of rectification in AM radios), as amplifiers (tran-

sistors) (used to make the music adjustably loud enough to listen to),

and as switches from which the digital information processing devices

are built that dominate modern existence. This list is far from exhaus-

tive – see Wikipedia: http://www.wikipedia.org/wiki/semiconductors

for a more complete discussion.

From this you can see that charge is indeed ubiquitous. We (and every-

thing around us) are made up of charged particles – even the neutral neu-

trons in the nuclei that make up most of our mass are made up of charged

particles. What holds atoms together? What keeps atoms apart? It is time

http://www.wikipedia.org/wiki/semiconductors
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to learn about one of the most important force laws in the Universe, the one

that is perhaps most responsible for chemistry and biology.

1.2 Coulomb’s Law

Coulomb’s Law is very simple. If one charges various objects (for example,

two conducting balls suspended from an insulating string so that they are

near to one another but not touching) and measures the deflection of the

string when the balls are in force equilibrium, one can verify that:

• The force between the charges is proportional to each charge sepa-

rately. The force is bilinear in the charge.

• The force acts along the line connecting the two charges.

• The force is repulsive if the charges have the same sign, attractive if

they have different signs.

• The force is inversely proportional to the square of the distance be-

tween them.

These four experimental observations are summarized as Coulomb’s Law.

They are a law of nature, on a par with Newton’s Law of Gravitation

(which it greatly resembles), although we will actually use an equivalent

(and slightly more fundamental) version of this law, Gauss’s Law for Elec-

trostatics, as the version we will spend most of our time studying.

In general, while we like to understand laws like this verbally, they are

more useful to us if we can formulate them algebraically. We therefore write

the force acting on charge 1 due to charge 2 as:

F 12 = keq1q2
(r1 − r2)

|r1 − r2|3
(1.1)

Note that it acts on a line from charge 2 to charge 1, is proportional to

both charges, is inversely proportional to the distance that separates them

squared, and is repulsive if both charges have the same sign. A perfect

rendition of the verbal statement, but now we can compute the force in a

specific set of coordinates.
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The constant ke = 9 × 109 N-m2/C2 = 1
4πǫ0

effectively defines the “size”

of the unit of charge in terms of the already known SI units of force and

length, and obviously will vary if we change to a different set of units. It

may be simple, but this law is very, very powerful.

However, it is also not in a terribly convenient form. We note that

Coulomb’s law describes action at a distance. We’d like there to be a cause

for the observed force that is present where the force is exerted, and lacking

anything better to do we’ll invent the cause and call it the electrostatic field

just as we similarly defined the gravitational field last semester.

Using fields is, as we will see, highly advantageous compared to always

computing forces between two charges.

1.3 Electrostatic Field

The electrostatic field is the supposed cause of the electrostatic force between

two charged objects. Each charged object produces a field that emanates

from the charge and is the cause of the force the other charge experiences

at any given point in space. This field is supposed to be present everywhere

in space whether or not we measure it.

The fundamental definition of electrostatic field produced by a charge q

at position r is that it is the electrostatic force per unit charge on a small

test charge q0 placed at each point in space r0 in the limit that the test

charge vanishes:

E = lim
q0→0

F

q0

(1.2)

or

E(r0) = kq
(r0 − r)

|r0 − r|3 (1.3)

If we locate the charge q at the origin and relabel r0 → r, we obtain the

following simple expression for the electrostatic field of a point charge:

E(r) =
kq

r2
r̂ (1.4)
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In general, we’ll work the other way around. First we’ll be given a dis-

tribution of charges, from which we must determine the field. With the field

known, we can then evaluate the force these charges will exert on another

(e.g. test) charge placed placed on the field by means of the following rule:

F = qE (1.5)

A common question that students often ask is: “Why all of the hassle

with letting test charges go to zero if you’re just going to divide it out

anyway?” The reason is that – as we will see later – the presence of the

test charge exerts a force in turn on the source distribution of charge. If

that charge is not nailed down and can move at all in response to the test

charge, it would rearrange and thereby change the field one is trying to

measure. By letting it go to zero, one also causes any disturbance caused

by the measurement to go to zero, leaving you with the field that is there

in the absence of all charges.

So much for a single charge, but as we noted above, there are lots of

charges in even tiny chunks of matter. We need a way of finding the total

field produced by many charges, not just one. Furthermore, that way needs

to work for charges counted “one at a time” (when there are only a few and

they are enumerable) and it also needs to be useful in the limit of so many

charges that a coarse-grained average yields an approximately continuous

charge distribution in bulk matter.

Fortunately for all concerned, the fields of many charges simply add

right up! This too is a principle of nature (and is related to the linearity

of the underlying equations that are the laws of nature). We call it the

Superposition Principle.

1.4 Superposition Principle

Given a collection of charges located at various points in space, the total

electric field at a point is the sum of the electric fields of the individual

charges:

E(r) =
∑

i

kqi(r − ri)

|r − ri|3
(1.6)
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Figure 1.1: Field of Many Charges

Simple as it is, the superposition principle is extremely important in

physics. It tells us that the electrostatic field results from a linear field

theory and later in a study of physics you will learn that this means that the

differential equations that describe the field are linear differential equations.

Note that it doesn’t have to be that way. There is nothing inherently

contradictory about two charges producing a field at a point in space that is

less than their sum or more than their sum. There are examples in physics

of interactions that do just that (although this sort of complication, like the

“three body forces” that are also excluded by linearity, makes the theories

much more difficult to solve).

In pure classical physics the field is strictly linear, but in quantum the-

ory the electromagnetic field becomes (in a sense) nonlinear at very short

distances from elementary charges due to vacuum polarization and in just

the right way to “soften” the singularity in certain interactions and be uni-

fied with other forces of nature in a single field “theory of everything”. In

this course, however, we will never ever explore the quantum distance or

interaction scales where this sort of thing is an issue, so for us superposition

will be a fundamental principle.

As noted above charge, while discrete, comes in very tiny packages of

magnitude e such that matter contains order of 1027 charges per kilogram,
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with roughly equal amounts of positive and negative charge so that most

matter is approximately electrically neutral most of the time. When we

consider macroscopic objects – ones composed of these enormous numbers

of atoms and charges – it therefore makes sense to treat the distribution and

motion of charge as if it is continuously distributed.

In order to find the electrostatic field produced by a charge density dis-

tribution, we use the superposition principle in integral form. Note that the

result of this sort of computation will fail if we examine r inside the ma-

terial itself very close to one of the consituent discrete charges (where the

1/r2 nature of the force guarantees that if you are close enough to a charge,

its field will overwhelm the field of all more distant charges) but in general

the resulting numbers are both useful an remarkably accurate, accurate as

an “average value” even within a material.

r − r

r
r

dq

dE

0

0

Figure 1.2: Field of Continuous Charge Distribution

To write down the integral (and help us remember it) we begin by using

the basic equation obtained above for the field of a point charge and apply

it to a tiny “chunk” of the charge distribution dq – one small enough to be

considered a point-like charge. We write this as the differential contribution

of the charge to the overall field as follows:

dE(r) =
ke dq (r − r0)

|r − r0|3
(1.7)



1.4. SUPERPOSITION PRINCIPLE 105

We then use one of the definitions of charge density to convert dq into

e.g. dq = ρ dV0 = ρ(r0) d3r0:

dE(r) =
ke ρ(r0) (r − r0)d

3r0

|r − r0|3
(1.8)

Finally, we integrate both sides of this equation over the entire volume

V where ρ(r0) is supported. The resulting integral form is:

E(r) = ke

∫

V

ρ(r0)(r − r0)dV0

|r − r0|3
(1.9)

for a 3-dimensional (volume) charge distribution,

E(r) = ke

∫

S

σ(r0)(r − r0)dS0

|r − r0|3
(1.10)

for a surface charge distribution on a surface S, and

E(r) = ke

∫

L

λ(r0)(r − r0)dL0

|r − r0|3
(1.11)

for a linear charge distribution on a particular line L.

Because one has to integrate the vector components independently, and

since their contribution and geometry can vary as one moves r about in

space, this integral is remarkably difficult to integrate in the general case for

most charge density distributions. We will manage to find a few examples

(below) where the difficulty of the integration process is reduced due to the

symmetry of the charge distribution, which may allow us to cancel (and

hence avoid having to do) particular parts of the integrals from symmetry

alone, but the methodology overall will be very cumbersome and is rarely

used in real physics problems.

Instead in a few chapters we’ll derive a similar form, but far more

tractable integral form for the electrostatic potential, a scalar quantity, and

obtain the field (if it is desired at all) by taking the negative gradient of the

potential, since vector calculus differentiation is often easier algebraically

than vector calculus integration. Even here, however, from a purely practi-

cal point of view only very simple and symmetric charge distributions can

be solved algebraically, and for most “real world” problems one must resort

to using a computer to numerically integrate the expressions above, by (for

example) computing a direct sum of the fields or potentials in the
∑

i form

where each qi = ρ∆Vi for some suitable partitioning of the distribution into

a finite number of indexed chunks of size ∆Vi.



106 Week 1: Discrete Charge and the Electrostatic Field

1.4.1 Example: Field of Two Point Charges

r

Etot

E
E

−a

+a

−q

+q

y

x x
θ

θ

Figure 1.3: Charges ±q on the y-axis

Suppose two point charges of magnitude −q and +q are located on the

y-axis at y = −a and y = +a, respectively. Find the electric field at an

arbitrary point on the x and y axis.

The y-axis is quite simple. The field due to the positive charge points

directly away from it, hence in the positive y direction at a point y > a and

is equal to:

E+(0, y) =
keq

|y − a| ŷ (1.12)

The field of the negative charge points towards it and is equal to:

E−(0, y) = − keq

|y + a| ŷ (1.13)

Hence the total field on the y axis is just:

Etot(0, y) = keq

(
1

|y − a| −
1

|y + a|

)
ŷ (1.14)

The field on the x-axis is a bit more difficult. Here the field produced

by each charge has both components. To find the vector field, we must first

find the magnitude of the field, then use the geometry of the picture to find

its x and y components.
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Note that the distance from the charge to the point of observation drawn

above is r = (x2 + a2)1/2. Then the magnitude of the electric field vector of

either charge is just:

|E(x, 0)| =
keq

r2
=

keq

(x2 + a2)
(1.15)

Look at the right triangle formed by x, a and r. By definition:

cos(θ) =
x

r
=

x

(x2 + a2)1/2
(1.16)

sin(θ) =
a

r
=

a

(x2 + a2)1/2
(1.17)

(where we are writing down the positive quadrant 1 values and will handle

the signs needed from the picture). Using these, we can find the compo-

nents:

Ex = |E| cos(θ) =
keq

(x2 + a2)
· x

(x2 + a2)1/2

=
keqx

(x2 + a2)3/2
(1.18)

and

Ey = −|E| sin(θ) = − keq

(x2 + a2)
· a

(x2 + a2)1/2

= − keqa

(x2 + a2)3/2
(1.19)

This is for a single charge (+q). The other charge has components that

are the same magnitude but its Ex obviously cancels while its Ey obviously

adds. The total field is thus:

Etot(x, 0) = −2
keqa

(x2 + a2)3/2
ŷ (1.20)

In terms of the electric dipole moment for this arrangement of charges:

p = 2qaŷ (1.21)

the field can be expressed as:

Etot(x, 0) = − ke|p|
(x2 + a2)3/2

ŷ (1.22)
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The electric field and electric potential of a dipole will be of great interest

to us over the course the next few weeks. In many cases, the physical

dimensions of the dipole (2a in this case) will be small compared to x, the

distance of the point of observation to the dipole. In this limit, the field

or potential produced is that of an ideal dipole, or a point dipole. We can

find the field in the limit that x ≫ a very easily by factoring out the larger

of the two quantities from the denominator, expressing the denominator on

top (with a negative exponent) in the numerator, and then performing a

binomial expansion and keeping terms to any desired degree of precision. In

this case the process yields:

Etot(x, 0) = − ke|p|
(x2 + a2)3/2

ŷ

= −ke|p|
x3

(1 +
(

a

x

)2

)−3/2ŷ

≈ −ke|p|
x3

(
1 − 3

2

(
a

x

)2

+ . . .

)
ŷ

≈ −ke|p|
x3

ŷ + O
(

1

x5

)
(1.23)

(where the last term is read “plus neglected terms of order 1/x5”).

As we will see later the field of a point dipole scales like 1/r3 where r

is the distance from the dipole to the point of observation. It thus vanishes

more rapidly than the electric monopolar moment (the field of a single bare

charge, which goes like 1/r2) with distance, but that does not mean the field

is negligible because the electric force is very powerful, far stronger than

gravity, and the strongest force of nature outside of the nucleus of an atom.

Indeed, for most problems in physics that don’t involve planet-sized masses,

the electromagnetic forces – whatever form or magnitude they might have

– are by far the largest forces acting within a system. To decide whether or

not any algebraic expression for the field can be neglected requires specific

numbers; for that reason many problems will have you find the leading order

term(s) in a binomial or taylor series expansion of the field or potential.

Please go back to the section on math and review both the binomial and

taylor series expansions, as they will be very useful to us as we solve problems

and work examples. The binomial expansion in particular is a wonderful way

to do “in your head” estimates of quantities that would otherwise require a

calculator to evaluate.
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1.5 Electric Dipoles

As we just noted, the arrangement of two equal but opposite charges above

is called an electric dipole 5 , and dipole fields play an enormously important

role in physics. That is because dipolar arrangements of charge are common

in nature. Let’s see why.

+e

−e
+e

−e

E

Figure 1.4: Atom with a displaced nucleus forms a dipole

A simple model for an atom has a nucleus symmetrically surrounded by

a spherical ball of charge in such a way that the result is electrically neutral

and produces (as we shall see) no electric field outside the atom. If such

an atom is placed in an electric field, the nucleus is pulled one way and the

electron cloud is pushed the other way, and while the atom remains electri-

cally neutral the vector fields produced by the positive and negative charges

are symmetric about different centers and no longer precisely cancel. We

can model the resulting charge distribution as an electric dipole constructed

directly out of two pointlike charges of opposite sign.

When two electric charges of equal magnitude and opposite sign are

bound together, they form an electric dipole. To understand the properties

of dipoles as “objects”, we will initially presume them to be bound together

with a “rigid rod” of some sort so the dipole moment itself doesn’t change

in response to any field one might put them in, although this is clearly

only a model and not the reality for most real dipoles bound together by a

non-rigid force. The dipole moment of this arrangement is the source of a

characteristic electrostatic field, the dipole field. The dipole moment of the

5Wikipedia: http://www.wikipedia.org/wiki/dipole.

http://www.wikipedia.org/wiki/dipole
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F = −qE

F = qE

El

+q

−q

Figure 1.5: A Basic Dipole

two charges is defined to be:

p = ql (1.24)

where q is the magnitude of the charge and l is the vector that points from

the negative charge to the positive charge.

In the example above and the homework, we algebraically evaluate the

field produced by a dipole along lines of symmetry where the field has a

simple form, and qualitatively draw out the general form of the field at

arbitrary points in space. The electric field of a “point like” dipole has an

extremely characteristic shape and a precisely defined functional form in

terms of p, although we will find it far simpler to evaluate the electrostatic

potential of a dipole at an arbitrary point when we get to the appropriate

chapter.

At this point, let us consider the force and the torgue exerted by an

electric field on a dipole. If an electric dipole is placed in a uniform electrical

field, the forces on the two poles are equal in magnitude and opposite in

direction. The net force on the dipole is therefore zero. Algebraically:

F = −qE + qE

= 0 (1.25)

If the dipole is not aligned or antialigned with the uniform field, however,

the field clearly exerts a torque on the dipole. The forces form a “couple”

(two opposite forces that do not act along the same line), and therefore this

torque is independent of our choice of pivot (see Introductory Physics I if

necessary to review this and other aspects of torque).
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If we pick (say) the negative charge as the pivot, then the torque is due

to the force exerted on the positive charge only, at position vl relative to

the pivot. The torque is therefore:

τ = r × F

= l × qE

= ql × E

= p × E (1.26)

(noting that charge is a scalar quantity). This is a very important result;

learn this picture and mini-derivation well so you can easily remember and

apply it. Since this is the first time this semester that you have seen a cross

product, if you have started to forget it needless to say it is a very good idea

to backtrack to the math section of this textbook and review its pictorial

representation, its algebra and geometry, and of course the good old right

hand rule!

Associated with this torque is the following potential energy which is

clearly minimized when the dipole moment aligns with the applied field.

We look at the picture above, and consider the amount of work done by

only the component of the force perpendicular to the arc of motion as we

twist the dipole from a position at right angles to the field (where we define

the potential energy to be zero) to an arbitrary angle. A bit of consideration

and a good picture (see homework) should convince you that:

U = −
∫

Ft ds

= −
∫ θ

π/2
qE sin(θ) ℓdθ

= −pE cos(θ)

or

U = −p · E (1.27)

Note that U(θ) is minimum (negative) when the dipole is aligned with the

field, maximum (positive) when antialigned.

This expression is only generally exact if p is a “point dipole”, since

it assumes that E is at least approximately the same at the two ends of

the dipole so the forces form a couple and the energy is strictly due to the
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torque. More practically, however, it is usable (and quite accurate) whenever

the dipole is short relative to the scale over which E varies, so that the value

of E “at the position of the dipole” is a well-defined quantity. From this and

our general knowledge of intro-level mechanics, we can see that the force on

the dipole in a more general non-uniform field should be:

F = −∇U = ∇(p · E) (1.28)

which can be difficult to compute but is easy to understand. In our simple

model for the dipole above, if the field is not uniform then it will in general

not be equal at the locations of the two charges. In fact, if we let E be the

field at (say) the location of the negative charge and E′ = E + ∆E at the

location of the positive charge, we have:

F = −qE + qE′

= −qE + qE + q∆E

= q∆E

= ∇(p · E) (1.29)

where the last step, in very rough terms, results from letting p = q∆l (a

very short point-like dipole) then ∆E ≈ ∆l ·∇E is basically the first term

of a Taylor series expansion of E, where the gradient has to be applied to

each component of the field separately. This will be explored further in

homework problems.
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1.6 Homework for Week 1

Note well that there are “no numbers” in the following problems. Most prob-

lems are for “all students of physics”. Some problems are marked with a * as

“advanced” and are intended to be assigned primarily to physics majors or

engineering students, who are expected to know and use a bit more calculus

than life science students, but note well that there is plenty of calculus in the

general problems! It is impossible to learn and understand physics without

calculus; Newton invented calculus just so he could formulate physics and

this course teaches the correct use of algebra, geometry, trigonometry, cal-

culus in general including simple differential equations (e.g. the harmonic

oscillator, the wave equation) in the solving of problems.

Problem 1.

Two equal positive charges +q sit at y = −a and y = +a. (a) Find the

electric field at an arbitrary point on the x axis, and find its asymptotic

form when x ≪ a (near the origin) and x ≫ a (far from the pair of charges).

Explain the latter result intuitively. (b) Repeat for a positive charge +q at

y = +a and a negative charge −q at y = −a. (c) Repeat for two equal

positive charges +q sitting at y = −a and y = +a, and a third charge of

−2q at the origin. Note that in this arrangement, the net charge is zero

(so we expect no monopolar field far away). The two visible dipoles also

cancel, so we expect no dipolar field far away. What might we call the first

surviving term in the distant field? (Note that there are four monopoles in

this distribution.)

Problem 2.

Two equal positive charges are on the y axis, one at y = +a and the other

at y = −a. The electric field at the origin is zero. A test charge q0 placed

at the origin will therefore be in equilibrium. (a) Discuss the stability of the

equilibrium for a positive test charge by considering small displacements

from equilibrium along the x axis and small displacements along the y axis.

(b) Repeat part (a) for a negative test charge. (c) Find the magnitude and
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sign of a charge q0 that when placed at the origin results in a net force of

zero on each of the three charges. What will happen if any of the charges are

displaced slightly from equilibrium in different directions (is the equilibrium

stable, unstable, metastable)?

Problem 3.

An electron moves to the right with speed v along the axis of a cathode ray

tube. There is an electric field E = E0ĵ in the region between the deflection

plates, which are of length l, and everywhere else E = 0. The flat screen is

a distance L from the end of the plates. Assume that the electron is moving

fast enough that it will not “fall” into the deflection plates while crossing

the deflection zone, and ignore effect of the gravitional force on the electron

as it is negligible across the entire distance. Find ∆y, the deflection from

the center point where the electron hits the screen.

Problem 4.

x1

−q +q

E = Cx

y

Figure 1.6: Find the force on a diple in a variable field

An electric dipole consists of two charges +q and −q separated by a

very small distance 2a. Its center is on the x axis at x = x1, and it points

along the x axis in the positive x direction. The dipole is in a nonuniform

electric field which is also in the x direction, given by E = Cxî, where C is a

constant. (a) Find the force on the positive charge and that on the negative
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charge, and show that the net force on the dipole is Cpî. (b) Show that in

general, if a dipole of moment p lies along the x axis in an electric field in

the x direction, the net force on the dipole is given approximately by dEx

dx
pî.

Problem 5.

+Q

−q
+q

l

r

Figure 1.7: Dipole aligned with the field of a point charge.

A positive point charge +Q is at the origin, and a dipole of moment p

is at a distance r away and pointing in the radial direction (where r ≫ L,

the physical length of the dipole) as shown. (1) Show that the force exerted

on the dipole by the point charge is attractive and has a magnitude ≈ 2kQp
r3 .

(b) Now assume that the dipole is centered at the origin and that a point

charge Q is a distance r along the line of the dipole. Using Newton’s third

law and your result for part (a), show that at the location of the positive

point charge the electric field due to the dipole is toward the dipole and has

a magnitude of ≈ 2kp
r3 .

Problem 6.

A ball of known charge q and unknown mass m, initially at rest, falls freely

from a height h in a uniform electric field E that is directed vertically

downward. The ball hits the ground at a speed v = 2
√

gh. Find m in terms

of E, q and g.
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Problem 7.

Q,m

Θ

L L

Figure 1.8: An apparatus for verifying Coulomb’s Law

Two small spheres of mass m are suspended from a common point by

threads of length L. When each sphere carries a charge q, each thread makes

an angle θ with the vertical as shown. (a) Show that the charge q is given

by:

q = 2L sin θ

√
mg tan θ

k

where k is the electrostatic constant. (b) Find q if m = 10 grams, L = 50

cm, and θ = 10◦. You may use g = 10 m/sec2. Note that numbers are

given in this problem primarily to just once force you to confront what a

reasonable “size” is for macroscopic electric charges in the laboratory. Note

well that it is much, much smaller than a Coulomb!
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Problem 8.

−q

+q

E

−q

+q
E

top view

side view

θ

Figure 1.9: Torque on dumbbell-shaped dipole

Suppose you have a dumbbell consisting of two identical masses m at-

tached to the ends of a thin (massless) rod of length a that is pivoted at its

center so that it can swing freely in a plane. The masses carry a charge of

+q and −q, and the system is located in an uniform electric field E. Show

that for small values of of the angle θ between the direction of the dipole and

the electric field, the system displays simple harmonic motion, and obtain

an expression for the period of that motion.

Problem 9.

An electron (charge −e, mass m) and a positron (charge +e, mass m) revolve

around their common center of mass under the influence of their attractive

coulomb force. Find the speed of each particle v in terms of e, m, k and

their separation d. Note well that the circle of their motion has a radius

r = d/2!.
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* Problem 10.

+Q

+q,m

Figure 1.10: Oscillating charge in a vertical tube

A small (point) mass m, which carries a charge q, is constrained to move

vertically inside a narrow, frictionless cylinder. At the bottom of the cylinder

is a point mass of charge Q having the same sign as q. (a) Show that the

mass m will be in equilibrium at a height

y0 =

√
kqQ

mg

(b) Show that if the mass m is displaced by a small amount ∆y from its

equilibrium position and released, it will exhibit simple harmonic motion

with angular frequency ω = (2g/y0)
1/2.
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* Problem 11.

+Q

−q,m

L

x

Figure 1.11: Oscillating charge on a frictionless rod

A small bead of mass m and carrying a negative charge −q is constrained

to move along a long, thin, frictionless rod. A distance L from the center of

this rod is a positive charge Q. Show that if the bead is displaced a distance x

from the center (where x ≪ L) and released, it will exhibit simple harmonic

motion. Obtain an expression for the period of this motion in terms of the

parameters L, Q, q, and m.
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Week 2: Continuous Charge

and Gauss’s Law

• Continuous Charge

Charge distributions can often be continuous. We therefore define the

following charge densities:

ρ =
dq

dV

σ =
dq

dA

λ =
dq

dL

for the charge per unit volume, per unit area, and per unit length

respectively.

• Superposition Principle

To find the electrostatic field produced by a continuous charge density

distribution, we use the superposition principle in integral form:

E(r) = k
∫ ρ(r0) · (r − r0)d

3r0

|r − r0|3

where dV0 = d3r0 is the “volume element” – the volume of an in-

finitesimal chunk of the charge in the charge distribution located at

~r0.

Because one has to integrate over the differential vectors, this integral

is remarkably difficult to perform. We’ll revisit it in a much simpler

121
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form when we get to electrostatic potential, a scalar quantity that one

can usually integrate more easily without this complication.

There are two more ways of writing this for the other two kinds of

charge distribution:

E(r) = k
∫ σ(r0) · (r − r0)d

2r0

|r − r0|3

E(r) = k
∫ λ(r0) · (r − r0)dr0

|r − r0|3

where in all cases the integral is over the entire charge distribution

in question. Note that dA0 = d2r0 and dL0 = dr0 are the “area

element” and “length element” one uses in an infinitesimal chunk of

the distribution in the last two expressions.

• Gauss’s Law for the Electric Field

Gauss’s Law is written:

∮

S/V
E · n̂ dA = 4πk

∫

V
ρ dV =

Qin S

ǫ0

or in words, the flux of the electric field through a closed surface S

equals the total charge inside S divided by ǫ0, the permittivity of the

electric field.

Gauss’s law can be used to easily evaluate the electric field for charge

density distributions that have the symmetry of a coordinate system,

but its real importance is that it is one of Maxwell’s Equations, the

fundamental laws of nature that govern charge and the electromagnetic

field.

• Gauss’s Law and Properties of Conductors

One can easily use Gauss’s Law to prove the following properties of

conductors in electrostatic equilibrium. Note well that these properties

only apply in equilibrium when no charge is actually moving.
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– The electric field vanishes inside a conductor in electrostatic equi-

librium (really vanishes across the first few layers of atoms, not

at a mathematical surface, but we will consider changes on the

scale of a few angstroms as being “instantly” and treat it as a

perfect surface).

– All non-neutral charge distributed on a conductor in electrostatic

equilibrium must reside on the surface.

– The electric field at the surface of a conductor in electrostatic

equilibrium must begin or terminate on the conductor perpendic-

ular to the surface. There can be no field component parallel to

the surface of a conductor.

– Since the field at the surface of a conductor is E⊥ only and zero

inside, if we consider an infinitesimally thin Gaussian pillbox with

inner surface in the conductor and outer surface just outside, we

can easily show that:

E⊥ = 4πkeσ =
σ

ǫ0

The field at the surface is directly proportional to the surface

charge density!

2.1 The Field of Continuous Charge Distri-

butions

In natural matter, charges are very, very small compared to the length scales

we can directly perceive. An atom is order of 1 Å (10−10 meters) in size where

a nucleus is order of 1 fermi (10−15 meters) in size. An electron is a pointlike

particle with no physical extent at all. In a tiny piece of solid matter – one

only 10−6 meters cubed, say – there are around (104)3 = 1012 atoms, and

each atom is made up of 2 to 200 electric charges in its electron cloud and

nucleus, and this is still only a chunk one micron in size!

Clearly, if we want to evaluate the electric field produced by a macro-

scopic piece of matter, we’re going to have to do something other than just

sum over the Ei fields produced by all of these charges. Instead we average

over the amount of charge inside all of the tiny micron-scale blocks that
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might make up a large object. For each block there is a certain net charge

∆Q, in the block of size (volume) ∆V . We can use this to define the average

charge density of the object:

ρ =
∆Q

∆V
(2.1)

Now we can sum over a lot fewer objects. There aren’t as many blocks a

micron in size as there were charges, but there are still way, way too many

blocks in an object even the size of a centimeter – 1012 of them, in fact –

too many for us to actually sum up with a calculator. Generally, however,

ρ varies only a little from block to block. Also, on a centimeter-plus scale,

those micron sized blocks are infinitesimal, small enough to treat as if they

are differential in size. We can then consider using calculus to do our sums.

Here’s how it works:

r

r − r

r

P

i

i

Figure 2.1: Coarse grained average leading to an integral.

In the amoebic blob shaped object above, we’ve chopped the whole vol-

ume up into little chunks ∆V in size (highly exaggerated in the picture so

you can see them). We’ve tallied up the charge in each block ∆Q, and la-

belled (in our minds) each block with an index i at position ri. We can then

compute the field using the superposition principle at the point P (position

r) as:

Etot(r) =
∑

i

k∆Qi

|r − ri|2
̂(r − ri) (2.2)

As noted, there are too many chunks in the blob for us to sum over. So

we pretend that the charge is continuously distributed according to:

ρ = lim
∆V →0

∆Q

∆V
=

dQ

dV
(2.3)
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and turn the summation into an integral (remember both σ and
∫

stand

for S(um), they are both summation symbols, the latter the one we use for

continuous things):

Etot(r) =
∑

i

k∆Qi

|r − ri|2
̂(r − ri) =

∫

V

kρ(r′)dV ′

|r − r′|2
̂(r − r′) (2.4)

where we’ve used dQ = ρdV (in the primed coordinates we use to replace

the ri’s). This is just the field of every little differential sized chunk that

makes up the entire object, summed over all the chunks!

This is a lot to remember, so we’ll create a little mnemonic to help

you. Just as we found the electric field last week by using the field of a

single point charge in its simplest form and then putting it into suitable

coordinates, we’ll find it this week the exact same way, but the point charge

in question will be dq and not q. That is:

E =
kq

r2
r̂ ⇐⇒ dE =

k dq

r2
r̂ (2.5)

To use the latter, we just have to find dq for the particular kind of distribu-

tion, and be able to do the final integrals.

We used charge per unit volume in this discussion, but we will find that

charge often distributes itself on surfaces, and we’ll often need to find the

field produced by lines as well. We therefore define all of the charge densities

we might need to handle these cases as:

ρ =
dq

dV
⇐⇒ dq = ρ dV (2.6)

σ =
dq

dA
⇐⇒ dq = ρ dA (2.7)

λ =
dq

dℓ
⇐⇒ dq = ρ dℓ (2.8)

the charge per unit volume, per unit area, and per unit length respectively.

In each equation I put the way we will need to use it – to find dq – after the

defining expression.

There are thus three steps associated with solving an actual problem:

1. Draw a picture, add a suitable coordinate system, identify the right

differential chunk (one you can integrate over) and draw in the vectors

needed to express dE as given above.
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2. Put down an expression for dE (or rather, usually |dE|) in terms of

the coordinates, and find its vector components in terms of those same

coordinates, using symmetry to eliminate unnecessary work.

3. Do the integral(s), find the field E at the desired point.

The first two are pretty simple, and are worth most of the credit. The last

will be easy enough if you’ve done the homework and are working hard to

relearn all the calculus you need to do the integrals required in this course,

and especially at the beginning if you can’t do the integral you won’t be

heavily penalized if you do the first two steps correctly. It’s still something

you need to work on to get the most possible credit.

Let’s try some examples.
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2.1.1 Example: Circular Loop of Charge

θd

dE

r

dEz

z

a

dl = a d θ

φ
λ

x
y

z

Figure 2.2: A charged ring with charge per unit length λ.

In figure 2.2 above we see a circular ring of charge of radius a and uniform

charge per unit length:

λ =
Q

L
=

Q

2πa
(2.9)

Our job is to find the electric field at an arbitrary point on the z-axis, a point

with sufficient symmetry to make the evaluation fairly straightforward1.

We begin by finding a small chunk of charge on the ring expressed in

some coordinate we can integrate over. In this case the best possible co-

ordinate system to use is (fairly obviously) cylindrical coordinates, so that

we can locate a small chunk on the ring at an angle θ swung around in the

counterclockwise direction from the positive x-axis. The angular width of

the chunk is then dθ, and the length of the arc subtended is dℓ = a dθ.

From the previous section we recall that we need to find the charge of

this little chunk of arc, repeating the litany: “the charge in the chunk is the

charge per unit length, times the length of the chunk”. That is:

dq = λ dℓ = λa dθ = Q
dθ

2π
(2.10)

where the last form is clearly the fraction of the total charge that lies inside

the tiny subtended arc. The magnitude of the field produced by this little

1We could use the same general approach to find the field at an arbitrary point in space,

but the calculus and geometry required to get an actual would become very difficult – so

difficult that in real life one would be very likely to concede finding an analytic solution

as too difficult and resort to the use of a computer instead.
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chunk of charge at the point z on the axis is:

|dE| =
kedq

r2
=

keλadθ

z2 + a2
(2.11)

where we have used the pythagorean theorem to evaluate r =
√

z2 + a2 as

drawn in the figure.

This vector has three components. All we need to worry about is the

z-component from the symmetry of the ring. The field at a point on the axis

cannot change as we rotate the coordinate system around the z-axis because

the ring of charge looks the same as we do. Therefore it cannot have x or

y components as these would change as we rotated the coordinate system.

However, for the sake of completeness (and to give you something to figure

out on the picture) I’ll put down the x and y components as well:

dEx = −|dE| sin φ cos θ (2.12)

dEy = −|dE| sin φ sin θ (2.13)

dEz = |dE| cos φ (2.14)

In these equations, we must evaluate sin φ and cos φ using the right

triangle azr:

sin φ =
a

r
=

a

(z2 + a2)1/2
(2.15)

cos φ =
z

r
=

z

(z2 + a2)1/2
(2.16)

so that:

Ez =
∫ 2π

0

keλz adθ

(z2 + a2)3/2
=

ke λ(2πa) z

(z2 + a2)3/2
=

keQ z

(z2 + a2)3/2
(2.17)

Although Ex = Ey = 0 from symmetry as noted, it is pretty easy to actually

evaluate them:

Ex = −
∫ 2π

0

keλa2 cos θdθ

(z2 + a2)3/2
= − keλa2

(z2 + a2)3/2
· sin θ|2π

0 = 0 (2.18)

(and ditto, of course, for Ey)!
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2.1.2 Example: Long Straight Line of Charge

dx

θ

dEx

dEy
dE

ry

x

λ

x

y

P
θ

Figure 2.3: A straight line of charge with uniform charge per unit length λ.

In figure 2.3 we see a long straight line of charge. As before, we have to

choose a coordinate system in terms of which to do the integral to add up

the field components produced by all the little chunks of charge that make

up the line.

At first glance, it seems as though cartesian components are a natural

choice for the problem, so we start by using them. We want to find the field

at an arbitrary point P in space, so we pick one and draw a y-axis through

it such that P is a (shortest) distance y from the line. We pick a chunk of

charge of length dx, a distance x out from the origin. The charge of our

chunk is again given by our magic spell: “The charge of the chunk is the

charge per unit length of the chunk times the length of the chunk”, or:

dq = λ dx (2.19)

Finally, the magnitude of the field is given by:

|dE| =
kedq

r2
=

keλ dx

(x2 + y2)
(2.20)

We need in this case to evaluate both dEx and dEy, as Ex and Ey will in

general both be nonzero (unless P happens to be in the middle of the line,

in which case we expect Ex = 0. From the triangles in the figure it is pretty

obvious that:

dEx = −|dE| sin θ (2.21)

dEy = |dE| cos θ (2.22)
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where we will assume that the θ we have drawn is positive when swung out

to the right in the positive x direction, and negative when it swings out in

the direction of negative x. Noting that cos θ = y/r we get:

dEy =
keλ dx

r2
cos θ =

keλ dx

(x2 + y2)
cos θ = keλy

dx

(x2 + y2)3/2
(2.23)

(for example). This, unfortunately, doesn’t look terribly easy to integrate!

In fact, this is one of the most difficult integrals we have to do in this

course, not because it is particularly difficult but because it is one of the

few times we have to integrate something other than xndx, a simple trig

function, or an exponential function. The problem is that as we vary x,

both r and θ vary as well! It turns out that this problem is easier to do if

we convert it into a trigonometric form using nothing but y (which is fixed)

and θ as our one variable. Thus:

x = y tan θ (2.24)

so

dx =
y dθ

cos2 θ
(2.25)

and

r =
y

cos θ
(2.26)

If we substitute these into the expressions above we get:

dEy =
keλ dx

r2
cos θ = keλ

(
y dθ

cos2 θ

) (
cos2 θ

y2

)
cos θ =

keλ

y
cos θdθ (2.27)

which looks easy to integrate! The limits of integration are the angles to the

dotted lines that point at the ends of the line, which we will call θ1 on the

left, theta2 on the right. Thus:

Ey =
keλ

y

∫ θ2

θ1

cos θdθ =
keλ

y
(sin θ2 − sin θ1) (2.28)

(where we should carefully note that θ1 in the figure above is negative as

drawn).

If we evaluate Ex everything is the same except that there is an overall

minus sign and we integrate over sin θ dθ instead, to get:

Ex = −keλ

y

∫ θ2

θ1

sin θdθ =
keλ

y
(cos θ2 − cos θ1) (2.29)
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An interesting consequence of this result is that we can easily evaluate

the field a distance y away from an infinite line of charge (that still has a

uniform charge per unit length λ. In that case, θ1 = −π/2 and θ2 = π/2.

We get:

Ex(∞) = 0 (2.30)

Ey(∞) =
2keλ

y
(2.31)

where we should recall that every point P has an x-coordinate in the middle

of an infinite line of charge! Remember this result for later, where we will

obtain it again using Gauss’s Law.

2.1.3 Example: Circular Disk of Charge

dE dE

z (z  + r  )
2 2 1/2

θ

φ

θ r

x

y

z

z

dr

r d dA = r dr dθ

σ

R

P

Figure 2.4: A charged disk with charge per unit area σ.

In figure 2.4 above we see a disk of charge with a uniform charge density:

σ =
Q

πR2
(2.32)

As before with a ring, we can only easily evaluate the field on the z-axis

where we know from symmetry that Ex = Ey = 0. As before, we find the

field of a tiny chunk of charge in suitable coordinates and sum it up using

integration.

The coordinate system we choose locates the differential chunk of charge

at (r, θ) inside the disk. There we mark out a small chunk of arc length r dθ
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as before for the ring, and of width dr, so its differential area is dA = r dθ dr.

As an exercise:

A =
∫

dA =
∫ R

0

∫ 2π

0
rdrdθ =

(∫ R

0
rdr

) (∫ 2π

0
dθ

)
=

R2

2
(2π) = πR2

(2.33)

and we’ve evaluated the area of a disk using calculus!

This is an important exercise, as it shows that the integral can be grouped

so that it separates. That is, the r integration and θ integration are inde-

pendent. We will only do integrals over more than one coordinate in this

course when they separate, so that a student can easily master physics if

they have mastered (a rather small subset of) one-dimensional integration

methods. They are trivially multivariate, so to speak.

At any rate, we can easily find dq from our mantra: “The charge of the

chunk is the charge per unit area times the area of the chunk”, or:

dq = σdA = σrdrdθ =
Q

πR2
rdrdθ (2.34)

As before, we find

|dE| =
kedq

(r2 + z2)
=

keσ rdr dθ

(r2 + z2)
(2.35)

and

dEz = |dE| cos φ =
keσz rdr dθ

(r2 + z2)3/2
(2.36)

Finally:

Ez =
∫

dEz = keσz
∫ R

0

∫ 2π

0

rdr dθ

(r2 + z2)3/2
(2.37)

The θ integral is trivial and yields 2π. What’s left is:

Ez = 2πkeσz
∫ R

0

rdr

(r2 + z2)3/2

= πkeσz
∫ R

0
(r2 + z2)−3/2(2rdr)

= −2πkeσz(r2 + z2)−1/2
∣∣∣
R

0

= 2πkeσ

(
1 − z

(R2 + z2)1/2

)

= 2πkeσ (1 − cos Φ) (2.38)
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where (as was pointed out to me by one of my many clever students)

cos Phi = z/
√

R2 + z2 where the angle Φ points from P to the edge of

the disk.

There are two useful limits for us to explore for this problem. One is the

limit that R → ∞ (which we can also interpret as Φ → π/2). In this limit,

the disk of charge is infinite in extent – it is an infinite plane of uniform

charge. The field is obviously:

Ez(∞) = 2πkeσ (2.39)

and doesn’t depend on the distance from the plane. Again, every point is in

the middle of an infinite plane of charge, so the field of an infinite plane (or

any large sheet of charge where P is close enough to the sheet so that the

angles from it to the edges of the sheet are close to π/2) is uniform and has

this magnitude, away from the (presumed positive) sheet of charge.

The other is when z ≫ R. This limit is a bit tricky. We have to use the

binomial expansion to evaluate the field to leading order. We get:

Ez = 2πkeσ

(
1 − z

(R2 + z2)1/2

)

= 2πkeσ

(
1 − z

z(1 + R2

z2 )1/2

)

= 2πkeσ

(
1 − (1 +

R2

z2
)−1/2

)

≈ 2πkeσ

(
1 − (1 − 1

2

R2

z2
+ ...)

)

≈ πkeσ

(
R2

z2

)

≈ ke(πR2σ)

z2

≈ keQ

z2
(2.40)

or the field far away from the disk is the field of a point charge of the same

magnitude as the disk.

As we saw in the previous chapter, when we are far away from a charge

distribution the details of that distribution are averaged away and we are

left with a field whose leading order behavior is determined by its multipolar
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moment – if the distribution has a net charge it is monopolar; if it has no

net charge but has a +/− asymmetry it is dipolar; and so on. This means

that we can often guess or very simply calculate what field of a charge

distribution will look like far away from the distribution; all we need to

know (or calculate) are the total charge and/or the total separated charge

and distance and direction of separation.

2.1.4 Example: Sphere of Charge

At some point I will show how you can find the field of a uniform spherical

ball (or spherical shell) of charge by direct integration, but the integrals in

this case are not easy to set up (although they are easy enough to do once

they are set up). One has to choose a spherical polar coordinate system,

choose a point P on the z-axis, and do some clever changes of variables to

reduce the integral to something that can reasonably easily be done. This

is more of interest to physics majors or other students who are seeking to

develop mad skills in mathematics than it is to general physics students, so

it is pretty safe to skip it here.

Besides, we’ll get this result trivially simply in the next section on Gauss’s

Law!

2.2 Gauss’s Law for the Electrostatic Field

Gauss’s Law for the electrostatic field is, as we shall see, one of Maxwell’s

Equations 2 . Maxwell’s equations are, in turn, the equations of motion for

the unified dynamic electromagnetic field, laws of nature, and one of the

most beautiful things (mathematically and conceptually speaking) in all of

physics. It is therefore of critical importance that you work hard developing

a conceptual understanding of this law that permits you to visualize the

relationship between the mathematics of its expression and the geometry of

the field in addition to “just” learning to solve problems with it.

For that reason we will begin this chapter with a derivation of this

law from the field equation of the point charge (which in turn is basically

2Wikipedia: http://www.wikipedia.org/wiki/Maxwell’s Equations.

http://www.wikipedia.org/wiki/Maxwell's Equations
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Coulomb’s Law in disguise) and the superposition principle. Derivations, of

course, work both ways and physicists today generally consider Gauss’s Law

the fundamental law of nature and the field of a point charge and Coulomb’s

law are rather consequences to be derived from it instead of the other way

around. You will not be responsible for being able to “do” the derivation

yourself in a problem or on an exam, but it is strongly advised that you

work through it a couple of times anyway and get to where you intuitively

understand the relationship between flux integrals and conservation, as we’ll

use this idea in a critical way later when we add the Maxwell Displacement

Current to Ampere’s Law in order to be able to show that light is an elec-

tromagnetic wave!

a

θ

b

a a’

S’

∆S

∆

θ
n’

n
a’

E

Figure 2.5: Geometry of the flux integral over a small surface area

We begin our derivation of Gauss’s Law by considering the flux of the

electrostatic vector field through a small rectangular patch of surface ∆S.

To compute this, we first must understand what the flux of an arbitrary

vector field F through a surface S is. Mathematically, the flux of a vector
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field through some surface is defined to be:

φf =
∫

∆S
F · n̂ dS (2.41)

Note that the word flux means flow, and this integral measures the flow of

the field through the surface. It’s mathematical purpose is to detect the con-

servation of flow in the vector field. Basically it takes the magnitude of the

field F at all points on the surface, computes the component of F that goes

through the surface at right angles (instead of tangent to the surface, which

doesn’t really go “through”), multiplies it times a tiny differential chunk of

the area, and then adds up all the differential chunks thus computed.

Let’s look at this in more detail, specializing to the case of the electric

field. Consider figure 2.5, where we show electric field lines flowing through

a small ∆S = ab at right angles to the field lines (so that a unit vector n̂

normal to the surface is parallel to the electric field). ∆S is small enough that

the continuous field is approximately uniform across it (we will eventually

make it differentially small, of course, so this is no problem).

Since the field is uniform and at right angles to the field, the flux through

just this little chunk is easy to evaluate. It is just:

∆φe = |E|∆S = |E|ab (2.42)

That was easy enough! Let’s make things a little more complicated.

Suppose that we consider a rectangular surface ∆S ′ = a′b that is tipped

with respect to the first surface at an angle θ, that shares the length b of the

first surface, and that has a length a′ that is long enough that it precisely

subtends the same “stream” of the vector field E as shown. Basically, all

the field lines that pass through the first surface pass through the second

surface, and again we are assuming that the field is continuous and we can

make the picture as small as we like (differentially small in the limit) so that

a conserved E doesn’t change its magnitude or direction in between the two

surfaces.

Note that a = a′ cos(θ), so that:

∆S ′ = a′b =
ab

cos(θ)
(2.43)

If we just multiply |E| by ∆S ′, we see that we’ll get ∆φ′
e = ∆φe/ cos(θ),

right? And we’d like to get the same thing, as we’d like the flux integral
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to measure the continuity and conservation of the electric field across the

tiny region between the two surfaces. So we multiply by cos(θ) on top to

compensate and get:

∆φ′
e = |vE| cos(θ)a′b

= |vE| cos(θ)
ab

cos(θ)

= |vE|ab

= ∆φe (2.44)

We can interpret this as meaning (in words) “If E is a continuous, con-

stant vector field in the region between ∆S and ∆S ′, then ∆φ′
e = ∆φe and

the flux through the two surfaces is conserved.”

Note that |E| = E · n̂ and |E| cos(θ) = E · n̂′, so that we can write:

lim
∆S→0

∆φe = E · n̂∆S

dφe = E · n̂dS (2.45)

which does not vary for any possible tipping of the surface dS. The dot

product precisely compensates for the increase in the area of dS as it tips

relative to the direction of E.

n
n

q

S

E
S’∆

Ωd

θ

r

S∆

Figure 2.6: Point charge inside a closed surface S. Note that the flux through

the tipped differential piece of the surface ∆S ′ = r2 dΩ/ cos θ is equal to

that through the untipped spherical piece of the surface ∆S = r2 dΩ that is

subtended by the same solid angle dΩ and osculates the tipped surface.
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Now suppose that we have a point charge surrounded by a closed surface

S. This basically means that S is a topological deformation of a soap bubble

– it contains a volume V with no openings. We can then imagine that the

electric field of this charge is “radiated” away in all directions according to

the point charge rule:

E =
keqr̂

r2
(2.46)

This situation is pictured in figure 2.6.

From the above, we know that if we evaluate the flux across the small

patch ∆S of the spherical surface indicated (an osculating distance r from

the charge) the field E will be exactly constant and exactly perpendicular

to that patch. In fact, the flux through that surface patch is:

∆φe = E · n̂∆S = |E|r2∆Ω (2.47)

where ∆Ω is the solid angle subtended by the cone formed by the charge

and the boundary of ∆S = r2∆Ω on the surface.

We’ve just shown that if we consider the tipped patch ∆S ′ that osculates

(kisses) ∆S one end, is tipped up through an angle θ so it is actually a part

of the blob shaped “arbitrary” closed surface S ′, and which subtends the

same solid angle and hence the same “stream of flow” of the field from the

charge, that the flux through it is the same:

∆φ′
e = E · n̂′∆S ′ = |E| cos θ

r2∆Ω

cos θ
= |E|r2∆Ω = ∆φe (2.48)

In the differential limit, then, we can compute the flux through a small

chunk of the arbitrary surface S ′ as:

dφe = E · n̂dS ′

= |E|r2dΩ

=
keq

r2
r2dΩ

= keq dΩ (2.49)

which is independent of the shape of S ′ and involves only the differential solid

angle swept out from the charge as one does the integral. If we integrate

both sides, noting that the complete solid angle (in, say, spherical polar

coordinates) is:
∫

dΩ =
∫ π

0

∫ 2π

0
sin(θ)dθ dφ = 4π steradians (2.50)
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we get:

φe =
∮

S′

E · n̂ dS = 4πke q (2.51)

independent of the shape of the closed surface that we integrate over that

encloses the charge q!

This is almost Gauss’s Law. To complete our statement, we have to note

first, that if the charge q is outside the closed surface S ′, the net flux through

S ′ is zero. There are a variety of ways to see this, but the easiest one is to

consider S ′ itself to be part of a larger surface that incloses q. This creates

two surfaces: one that includes the “outside” of S ′ and one that includes

the “inside” of S ′. The net flux through the two must be the same, and

by changing only the sign of n̂ on the inner surface we can immediately see

that the net flux through S ′ must vanish.

Second, we have to use the superposition principle. If we enclose more

than one charge by S ′, we just add up the fluxes so that the total flux is

produced by the total charge in S ′, no matter how it is distributed! Putting

all this together, and getting rid of the prime on S (because it is no longer

needed – the flux is the same for all closed surfaces that inclose a certain

amount of charge) we get:

Gauss’s Law for the Electric Field
∮

S/V
E · n̂ dA = 4πke

∫

V
ρ dV =

Qin S

ǫ0

(2.52)

or in words, the flux of the electric field through a closed surface S equals

the total charge inside S divided by ǫ0, the permittivity of the electric field.

This is the first one of Maxwell Equation’s that we’ve covered so far. Only

three more to go!

I used integration to compute the total charge of a continuous distri-

bution, but of course I could equally well have summed over a bunch of

discrete charges instead. The integral form will be very useful later on if

you continue in physics, as it helps to transform this integral expression of

Gauss’s Law into a differential expression that is more useful still.

So, what’s it good for? Lots! But for the moment, we’ll start but using

Gauss’s law to easily evaluate the electric field for charge density distribu-

tions that have the symmetry of a coordinate system that we’d otherwise

have to evaluate using painful direct integration. We will also use it to help
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us reason about things like the distribution of charge on a conductor in elec-

trostatic equilibrium. And don’t forget, we consider it to be the actual Law

of Nature for the electrostatic field, so things like the field of a point charge

and Coulomb’s Law and so on are actually consequences of Gauss’s Law (or

consistently equivalent to Gauss’s Law) rather than the other way around.

So basically, everything else we do with the electrostatic field this semester

will be a “use” of Gauss’s Law.

2.3 Using Gauss’s Law to Evaluate the Elec-

tric Field

One of the first and most important applications of Gauss’s law for our cur-

rent purposes will be to easily evaluate the electric field for certain symmet-

ric charge distributions that we’d otherwise have to integrate over, painfully.

There are precisely three symmetries we can manage in this way:

• point (spherical symmetry)

• infinite line (cylindrical symmetry)

• infinite plane (planar symmetry)

That’s it! No more. For charge distributions that are spherically sym-

metric, cylindrically symmetric, or planarly symmetric, we can do the flux

integral in Gauss’s law once and for all for the symmetry. As we’ll see,

all that remains for us to be able to easily obtain the field from algebra is

for us to evaluate the total charge inside a Gaussian surface for any given

symmetric distribution. Here’s the recipe:

1. Draw a closed Gaussian Surface that has the symmetry of the charge

distribution. The various pieces that make up the closed surface should

either be perpendicular to the field (which should also be constant on

those pieces) or parallel to the field (which may then vary but which

produces no flux through the surface).

2. Evaluate the flux through this surface. The flux integral will have

exactly the same form for every problem with each given symmetry,
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so we will do this once and for all for each surface type and be done

with it!

3. Compute the total charge inside this surface. This is the only part of

the solution that is “work”, or that might be different from problem

to problem. Sometimes it will be easy, adding it up on fingers and

toes. Sometimes it will be fairly easy, multiplying a constant charge

per unit volume times a volume to obtain the charge, say. At worst it

will be a problem in integration if the associated density of charge is

a function of position.

4. Set the (once and for all) flux integral equal to the (computed per

problem) charge inside the surface and solve for |E|. That’s all there

is to it!

Now, you don’t want to be memorizing these steps, you want to be

learning them, so please use exactly these steps and show all of your work

doing them in every homework problem that requires using them. If you use

them five or six times in a row, in slightly different contexts, it will get quite

easy! At the very least, even if you get a problem where you can’t “do”

(say) an integral to find the charge inside a given surface, you’ll get most of

the credit for laying out the precisely correct method except for an integral

you can’t quite do.

Note Well: You cannot use Gauss’s Law to e.g. evaluate the field of

a ring of charge, or a disk over charge, or a line segment of charge or any

other continuous distribution that does not have the symmetry of sphere,

infinite cylinder, or infinite plane. Sorry, that’s just the way it is. It isn’t

that it isn’t true for these distributions, it is that we cannot compute the

flux integral. Let’s do some examples, at least one for each symmetry.

2.3.1 Spherical: A spherical shell of charge

Suppose you are given a spherical shell of charge with a uniform

charge per unit area σ0 and radius a. Find the field everywhere

in space.

As you can see in figure 2.7, there are two distinct regions where we

must find the field: inside the shell and outside the shell. Draw a spherical
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Figure 2.7: A spherical shell of radius a, carrying a uniform charge per unit

area σ0. Two spherical concentric Gaussian surfaces S1 (with radius r < a

and S2 (with radius r > a) are shown.

Gaussian surface S1 inside the sphere (for r < a). From the symmetry of

the distribution we know that the field E must point in the direction of r

and (hence) be perpendicular and constant in magnitude at all points on

the Gaussian surface S1. Hence:

φe =
∮

S1

E · r̂ dA = Er

∮

S1

dA = Er(4πr2) (2.53)

where it is presumed that everybody knows how to integrate to evalute the

area of a sphere and knows the result.

The total charge QS inside this sphere is zero by inspection – the fingers

and toes thing. That was easy! Now we write Gauss’s law:

φe =
∮

S1

E · r̂ dA = Er(4πr2) =
QS1

ǫ0

= 0 (2.54)

and solve for Er:

Er(4πr2) = 0

=
0

4πr2

Er = 0 for r < a (2.55)

We’ve just shown that in general the electric field of a spherical shell of

charge (like the gravitational field of a spherical shell of mass last semester)

vanishes inside, but using Gauss’s law the derivation was trivial!
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Outside the shell we draw a second spherical Gaussian surface S2 at

r > a. Again, the field must be constant and normal to all points on this

surface from symmetry. The flux integral is algebraically identical:

φe =
∮

S2

E · r̂ dA = Er

∮

S2

dA = Er(4πr2) (2.56)

and in fact it will always have this algebraic form for a spherical problem, to

the point where we will get bored writing this line out umpty times doing

homework. Don’t let that stop you! Do it every time, as when you know

something well enough to be slightly bored writing it out, that’s just about

perfect, isn’t it?

Again we can count up the charge inside S2 on the thumbs of one hand.

It is the total charge on the shell! Which is, in fact (noting that dA for a

spherical shell of radius a is a2 sin(θ) dθ dφ):

QS =
∫

S
σ0 dA =

∫ 2π

0
dφ

∫ π

0
sin θdθ a2σ0 = 2πa2σ0

∫ 1

−1
d(cos θ)

= 4πa2σ0 (2.57)

which we could have done using our heads instead of calculus, but there is

a clever trick in this example (using sin θdθ = −d(cos θ) to change variables

and limits on the θ integral) which we’ll have occasion to use again in other

problems.

Finally, we write out Gauss’s law and solve for Er:

φe = Er(4πr2) =
QS

ǫ0

(2.58)

or

Er =
Qs

4πǫ0 r2
=

keQs

r2
(2.59)

where once again Gauss’s law gets us extremely simply something we prob-

ably should remember from last semester, which is that the field of a spher-

ically symmetric charge distribution outside that distribution is the same as

that of a point charge with the same net charge located the origin.

In lecture your instructor will probably do a few more difficult problems

– perhaps a solid sphere of charge, or multiple spherical shells, or even a

solid sphere with a charge distribution like ρ(r) = Ar where A is a constant!

You should be able to do any problem with a spherical distribution of charge
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that you can integrate or sum inside any given Gaussian sphere using this

method.

Also note that once one has done a single spherical shell, one can easily

do as many concentric shells as you might have on your fingers and toes

using the superposition principle. Simply add the field produced by each

shell at the point in question (which might be inside or outside the given

shell) to that produced by all the other shells! There’s a homework problem

to help you learn that – do it!

2.3.2 Electric Field of a Solid Sphere of Charge

Q

r r

R

S(outer)

S(inner)

Figure 2.8: A solid sphere of uniform charge density ρ and radius R.

Find the electric field at all points in space of a solid insulating

sphere with uniform charge density ρ and radius R

Just for grins, let’s do a teensy bit of your homework together. Note

well that you don’t get to just copy this onto your paper! In order to learn

this and get it right three weeks from now on an exam, you have to be

able to do it without looking, or copying. So by all means, go through the

example, study it, figure it out, then close this book or put aside your digital

interface, get out paper, and do it on your own without looking – as many

times as necessary to make the steps, and reasoning, easy to you. Go over it

in multiple passes, work on it in your groups, review it in your notes (your
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teacher/professor probably did this example in class), discuss it in recitation.

Learn it.

We begin by writing Gauss’s Law for the outer surface in the figure 2.8:
∮

Souter

E · n̂dA = 4πke

∫

V/S
ρdV

Er4πr2 = 4πke

{∫ R

0

∫ 2π

0

∫ π

0
ρr2 sin(θ) dθ dφ dr

+
∫ r

R
0 dV

}

= 4πke(2πρ)
∫ R

0
r2dr

∫ 1

−1
d(cos(θ))

= 4πke(
4πR3

3
ρ)

= 4πkeQtotal (2.60)

We divide both sides by 4πr2 and get:

Er =
keQ

r2
r > R (2.61)

or (as by now you should come to expect) the spherical distribution of charge

creates a field outside of the sphere that is identical to that of a point charge

of the same total value at the origin.

Note that we did a bunch of stuff that we didn’t really “have” to do –

in an actual solution you’d be tempted to skip those steps or do them by

inspection, which is fine, but that risks confusing at least some of you who

don’t just see what we are skipping and why it is OK to do so. So note

well – to find the total charge inside Souter, we integrated over the charge

distribution from 0 to r including the region where it was zero – getting, of

course, a zero value for that value. Zero regions drop out, and we’d usually

just integrate over the support of ρ (the volume where it is nonzero) without

thinking about it. Note also that this integral explicitly illustrates doing

multiple integrals of a symmetric function – we just do the integrals over

each coordinate independently (which is then really easy).

Finally, note the clever trick for integrating θ in spherical coordinates.

sin(θ)dθ = −d(cos(θ)), so we change variables from θ → cos(θ) (and change

and swap order of the limits to get rid of the minus sign). It is very often

much easier to integrate with cos(θ) as the variable instead of θ in spherical
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coordinates – in this case one can just look at it and see that one gets “2”

from the integral in your head, for example.

Now we redo the whole thing for the interior integral:

∮

Sinner

E · n̂dA = 4πke

∫

V/S
ρdV

Er4πr2 = 4πke

∫ r

0

∫ 2π

0

∫ π

0
ρr′2 sin(θ) dθ dφ dr′

= 4πke(2πρ)
∫ r

0
r′2dr′

∫ 1

−1
d(cos(θ))

= 4πke(
4πr3

3
ρ) (2.62)

We divide both sides by 4πr2 and get:

Er = ke

(
4πρr

3

)
r < R (2.63)

This is a common, and important, example – so let’s plot it to make

it easier to remember: Things to note and remember: The field increases

Er

r

R2

k  Qe

R

Figure 2.9: Electric field produced by a uniform sphere of charge both inside

and outside, as a function of r.

linearly inside the sphere and is zero at the origin, not infinite! Outside,

the field drops off like 1/r2 – as you do more and more of these, you’ll

come to expect this to the point where you don’t think twice about it. Any

charge distribution with compact support and a net charge (spherical or

not) produces a field that is dominantly monopolar and drops off like 1/r2

far away from the distribution.
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This is very cool! The fact that the field is bounded at the origin means

that the singularity that appears implicitly in the electrostatic field of a

point charge need not trouble us if the charge isn’t really a point charge but

is rather a small ball of charge. However, if charge is bound up in a small

finite size ball it produces other problems – such as the need for a force

to hold it all together, as electrostatic charge of a single sign repels itself.

In the case of a proton, there is such a binding force – the strong nuclear

force. In the case of electrons, quarks, elementary particles, there is (as far

as we can tell experimentally or predict theoretically) no such force, and

hence those particles “should” be, and experimentally appear to be, truly

pointlike. Which leads to a whole new set of problems (oops, that nasty

infinity is back and has to be dealt with), the invention of renormalizable

quantum field theories that soften or throw away the infinity – and in the

process, makes physics an enormously interesting discipline! Much as we

do understand at this point, the problem of understanding our Universe,

especially at the smallest length and time scales, is far from solved.

The uniform ball of charge is the basis for a model of the neutral atom – a

positive nucleus surrounded by a uniform ball of negative charge – that helps

us understand polarization in a few weeks. This model is still used (dressed

up with damping and a time dependent driving field) in physics graduate

school where the model is called the Lorentz model for the atom and where

the result of analyzing the model is understanding of dispersion – basically

time dependent dielectric response and the absorption of electromagnetic

energy by matter! It sounds complicated, but it isn’t, not really. It is

almost within your reach at the end of taking this introductory course – all

that separates you is a bit more work with the damped driven harmonic

oscillator. Afterwards, you understand microscopically why, e.g. rainbows

happen, why the sky is blue, how light from the sun warms the earth, and

much more. So keep it in mind for later.
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2.3.3 Cylindrical: A cylindrical shell of charge

L

L

r2

a

S

S
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σ

n

E
E n

r1

Figure 2.10: A cylindrical shell of radius a, carrying a uniform charge per

unit area σ0. Two cylindrical concentric Gaussian surfaces S1 (with radius

r < a and S2 (with radius r > a) are shown.

Suppose you are given an infinite cylindrical shell of charge with

a uniform charge per unit area σ0 and radius a. Find the field

everywhere in space.

We solve this problem exactly like we did the sphere. In fact, I block-

copied the solution from above to write this and changed only a few minimal

things.

There are two distinct regions, inside the cylinder and outside the cylin-

der. Draw a cylindrical Gaussian surface S1 of length L inside the cylinder

(for r < a). We don’t know that the field is on this surface yet, but we

do know that on the cylinder part it must lie along r and be constant in

magnitude and perpendicular to the surface at all points on our Gaussian

surface from the symmetry of the distribution. On the end caps the field

may well vary with r, but it is parallel to those surfaces and therefore there

is no net flux through the caps. Hence:

φe =
∮

S1

E · r̂ dA
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= φcaps + Er

∫

Cyl
dA

= 0 + Er(2πr)L (2.64)

where it is presumed that everybody knows how to integrate to evalute the

area of a cylindrical surface of radius r and length L and knows the result3.

Note that I indicate explicitly that the flux through the end caps is zero

even though the field there may not be.

The total charge QS1
inside this cylinder is zero by inspection – the

fingers and toes thing. That was easy! Now we write Gauss’s law:

φe =
∮

S1

E · r̂ dA = Er(2πrL) =
QS1

ǫ0

= 0 (2.65)

and solve for Er:

Er(2πrL) = 0

=
0

2πrL
Er = 0 for r < a (2.66)

We’ve just shown that in general the electric field of a cylindrical shell of

charge vanishes inside.

Outside the shell we draw a second cylindrical Gaussian surface S2 with

length L at r > a. Again, the field must be constant and normal to all

points on this surface from symmetry, again the flux through the end caps

must be zero even though the field on the end caps may not be. The flux

integral is identical:

φe =
∮

S2

E · r̂ dA

= φcaps + Er

∫

C
dA

= Er(2πr)L (2.67)

and in fact it will always be this algebraic form for a cylindrical problem, to

the point where we will get bored writing this line out umpty times doing

homework. Don’t let that stop you! Do it every time, as when you know

3Think of the label of a soup can. Use mental scissors to snip, snip, snip it off. Unroll

it in your mind. It is 2πr long and L wide.
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something well enough to be slightly bored writing it out, that’s just about

perfect, isn’t it?

Again we can count up the charge inside S2 on the thumbs of one hand.

It is the total charge on the shell inside the Gaussian surface of length L!

Which is, in fact (noting that dA for a cylindrical shell of radius a is adθ dz):

QS2
=

∫

S
σ0 dA =

∫ 2π

0
dθ

∫ L/2

−L/2
aσ0 dz

= 2πaLσ0 (2.68)

which we could have done using our heads instead of calculus, but again this

way you get to see how to do a two dimensional integral that separates into

two trivial one dimensional integrals.

Finally, we write out Gauss’s law and solve for Er:

φe = Er(2πrL) =
QS2

ǫ0

Er =
2πaLσ0

2πLǫ0

1

r

=
σ0

ǫ0

a

r

=
2kλ0

r
(2.69)

where I’ve used the fact that λ0 = QS/L = 2πaσ0 to help show that the field

of a cylindrically symmetric charge distribution outside that distribution is

the same as that of a line of charge with the same net charge per unit length

on its axis.

Note well: The parameter L (which you made up when you drew your

Gaussian surface) cancels from the problem. Of course it does! And a good

thing, too!

In lecture your instructor will probably do a few more difficult problems

– perhaps a solid cylinder of charge, or multiple cylindrical shells, or even a

solid cylinder with a charge distribution like ρ(r) = Ar where A is a constant!

You should be able to do any problem with a cylindrical distribution of

charge that you can integrate or sum inside any given Gaussian cylinder

using this method.
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2.3.4 Planar: A sheet of charge
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Figure 2.11: An (infinite) plane sheet of uniform charge per unit area σ0.

The Gaussian surface in this case is a simple “pillbox” symmetrically drawn

so it intersects the sheet as drawn.

Suppose you are given an infinite sheet of charge with a uniform

charge per unit area σ0. Find the field everywhere in space.

We solve this problem exactly like we did the two above. You (by now)

should know the drill.

Here we only need to draw a single Gaussian surface as indicated in figure

2.11 above. We will again draw a cylindrical Gaussian surface of length z,

but this time it must be symmetrically located so that it symmetrically

intersects the plane of charge with z/2 of its length above and below the

plane. This cylinder has an end-cap area of A which (like L in the previous

problem) will cancel when we go to evaluate the field. We don’t know that

the field is on this surface yet, but we do know that on the end-caps it must

lie parallel to z and be constant in magnitude and perpendicular to the end

caps at all points. On the side of the cylinder the field may well vary with

r, but it is parallel to this surface and therefore there is no net flux through

it. Hence:

φe =
∮

S
E · ẑ dA

= φside + 2EzA

= 2EzA (2.70)

where you should note that we have two end caps, each of which contributes

EzA to the flux.
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The total charge inside this Gaussian surface is trivial:

QS =
∫

A
σ0 dA = σ0A (2.71)

where there really isn’t much of anything to integrate or evaluate.

Finally, we write out Gauss’s law and solve for Ez:

φe = 2EzA =
QS

ǫ0

=
σ0A

ǫ0

Ez =
σ0

2ǫ0

= 2πkσ0 (2.72)

where we note that the field is uniform – it doesn’t depend on z, and of

course it cannot depend on x and y either as every point is in the middle of

an infinite plane! This last result is very important.

Note well: The parameter A (which you made up when you drew your

Gaussian surface) cancels from the problem. Also note that this is exactly

the result we got for the field on the axis of a disk of charge when we let the

radius go to ∞. This gives us confidence that Gauss’s Law works!

As before, in lecture your instructor will probably do a few more prob-

lems, perhaps a slab of charge of finite thickness or the field produced by

two infinite sheets of charge, one with charge σ0 and the other with charge

−σ0 (a model for a parallel plate capacitor that we will study in great detail

shortly).

2.4 Gauss’s Law and Conductors

2.4.1 Properties of Conductors

A conductor is a material that contains many “free” charges that are bound

to the material so that they cannot easily jump from the conductor into a

surrounding insulating material (where a vacuum is considered an insulator

for the time being, as is air) but free to move within the material itself if

any e.g. electrical field exerts a force on them.

In a typical conductor – for example a metal such as silver or copper –

there is on average roughly one free electron per atom in the material. That
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is order of 1024 electrons per mole of metal, which in turn is somewhere

between 104 and 105 Coulombs! As we discussed in class, two charges of one

Coulomb each separated by one meter exert a force of 9 × 109 Newtons on

each other, more than enough to rip apart any material known to mankind.

Consequently we have no hope of either removing all of the free electrons

from a piece of metal, or adding enough electrons so that every atom had

two. The material would come apart long before we succeeded.

This means that we can consider the free charge in a conductor to be

inexhaustible. As far as we’re concerned, we can always add charge to a

conductor, or take it away, or rearrange it as we please with fields and

forces, and never run a risk of “saturating” the conductor’s ability to supply

still more free charge.

Now let’s think a moment about the “free” bit. If we exert a force on the

charges in a conductor (with, say, an electric field), they are free to move

and hence will accelerate in the direction of the force. They will continue

to move, speeding up, until they encounter an insulated boundary of the

material, where they must stop. There they build up until they create a

field of their own that cancels the applied external field, at least inside the

conductor. Eventually the conductor can reach a state of static equilibrium

where all the forces on all of the charges, including a “surface force” that

holds the mobile charges inside the conductor at the surface, cancel.

When the conductor is in static equilibrium, we can then conclude the

following:

• The electric field inside a conductor in static equilibrium van-

ishes. If the field were not zero, it would exert a force on the free

charges inside the conductor. Since they’re free, they’d move. If they

move, they’re not in equilibrium. So the field must be zero.

• The electric field parallel to the surface of the conductor in

static equilibrium vanishes. The same argument. If there were

a field component parallel to the surface, it would exert a force on

charges on the surface, they can move (parallel to the surface) and

hence would move, contradicting the assumption of equilibrium. Note

that this does not restrict the field perpendicular to the surface of the

conductor!
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• The electric field just outside of the surface of a conductor

in electrostatic equilibrium is perpendicular to the surface.

Furthermore, from Gauss’s Law we can see that it must be true that:

E⊥ = 4πkeσ (2.73)

where σ is the charge per unit area on the surface of the conductor.

To prove this, consider a Gaussian pillbox that barely encloses the

surface. Inside, the field is zero so the flux through the inside pillbox

lid vanishes. The flux through the sides is zero because there is no

field parallel to the sides. The flux through the outer pillbox surface

only must therefore equal the charge inside:

E⊥A = 4πkeQS = 4πkeσA (2.74)

and the result is proven.

• There can be no surplus charge inside a conductor in electrostatic equi-

librium. This follows from Gauss’s Law in reverse. We noted above

that the field must vanish inside a conductor in equilibrium. This

means that the flux through any closed surface drawn completely in-

side the conductor must vanish. This means in turn that the net charge

inside that surface must vanish for all possible surfaces, which suffices

to prove that there can be no net charge inside the conductor.

As a corollary, any unbalanced charge on a conductor in equilibrium

must be found on the surface and must, of course, be related to E⊥ at

the surface.

Note well that all of these properties are for equilibrium only! As we will

shortly learn, conductors that carry current are not in equilibrium and do

have nonzero electric fields inside that are parallel to the surfaces. I often

ask questions that test whether or not you understand this on exams, so be

careful!
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2.5 Homework for Week 2

Problem 1.

A uniform line of charge λ0 runs from x1 to x2 (where x1 < x2 by convention)

on the x axis. Find both components of the electric field at an arbitrary point

y on the y axis. Note that x1 and x2 are arbitrary aside from their ordering,

so your answer should make sense for e.g x1 < 0 and x1 > 0.

Problem 2.

An arc of linear charge density λ0 and radius a is centered on the origin and

subtends an angle θ0 (which might as well start at the positive x axis and

sweep counterclockwise as usual). Find the electric field at the origin.

Problem 3.

A point dipole p is located a distance r from an infinitely long line of charge

with a uniform linear charge density +λ0. Assume that the dipole is aligned

with the field produced by the line charge. Determine the force acting on

the dipole. Is it attracted to or repelled by the line?

Problem 4.

A thick, nonconducting spherical shell of inner radius (a) and outer radius

b has a uniform volume charge density ρ(r) = ρ0. (a) Find the total charge

of the shell. (b) Find the electric field everywhere.

Problem 5.

An infinitely long nonconducting cylindrical shell of inner radius a and outer

radius b carries a uniform volume charge density ρ(r) = ρ0. (a) Find the
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electric field everywhere. (b) Let a = 0. Find the electric field (now that of

a uniform cylinder of charge) everywhere.

Problem 6.

A spherical conducting shell with zero net charge has inner radius a and

outer radius b. A point charge q is placed at the center of the shell. (a)

Use Gauss’s Law and the properties of conductors in equilibrium to find the

electric field in the regions r < a, a < r < b, b < r. (b) Find the charge

density on the inner and outer surfaces of the shell.

Problem 7.

A conducting neutral sphere of radius R is placed in a uniform electric

field E = E0ẑ. Using Gauss’s Law and the properties of conductors in

equilibrium, draw a representation of the electric field that results. Also

indicate on the figure the qualitative distribution of charge on the surface of

the conductor one expects as its charge polarizes in response to the external

field.

Problem 8.

Consider three “thin” concentric conducting spherical shells with radii R1 <

R2 < R3 respectively. Initially all three shells are neutral. Then a negative

charge −Q0 is placed on the innermost sphere, a matching positive charge

+Q0 is placed on the outermost sphere, and the arrangement allowed to

come to equilibrium. (a) Find the electric field everywhere and plot it. (b)

Make a table showing the net charge on the inner and outer surfaces of each

conducting shell.

Problem 9.

The electric field vanishes inside a uniform spherical shell of charge because

the shell has exactly the right geometry to make the 1/r2 field produced by
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opposite sides of the shell cancel according to the intuition we developed

from our derivation of Gauss’s Law. It isn’t a general result for arbitrary

symmetries, however.

Consider a ring of charge of radius R and linear charge density +λ. Pick

a point P that is in the plane of the ring but not at the center. (a) Write

an expression the field produced by the small pieces of arc subtended by

opposed small angles with vertex P , along the line that bisects this small

angle. (b) Does this field point towards the nearest arc of the ring or the

farthest arc of the ring? (c) Suppose a charge −q is placed at the center

of the ring (at equilibrium). Is this equilibrium stable4? d) Suppose the

electric field dropped off like 1/r instead of 1/r2. Would you expect the

electric field to vanish in the plane inside of the ring?

Problem 10.

A uniformly charged nonconducting sphere of radius a is centered on the

origin and has a uniform charge density ρ(r) = ρ0. (a) Show that at a point

within the sphere a distance r from the center the electric field is given by:

E =
ρ0r

3ǫ0

=
4πkρ0r

3

(b) Material is removed from the sphere to create a spherical cavity of radius

b = a/2 with center at x = b on the x axis. Show that the electric field inside

the cavity is uniform and equal to:

E =
ρ0b

3ǫ0

=
4πkρ0b

3

in magnitude (where b = bx̂). (c) Find the electric field at an arbitrary point

on the x axis outside both spheres. Expand the result for large x ≫ a and

keep the first 2 terms. Interpret them in terms of the expected monopolar

and dipolar field of this arrangement.

Hint: By far the easiest way to attack this problem is to imagine that

the “hole” is made up of a sphere of uniform charge density −ρ0 and radius

4As a parenthetical aside, note that this is the problem with the ringworld described in

Larry Niven’s famous Ringworld series of science fiction novels, as gravitational attraction

has the same form as the electrostatic attraction discussed in this problem.
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b that is superposed on the uniform sphere of charge density ρ0 and radius a.

In that way the two charge densities cancel and leave “the cavity”, while you

can easily find the fields using the results of part (a) with a bit of algebra.

Also, draw big pictures of the spheres. You have to add vectors in the hole!

If you don’t make a big sphere with a hole large enough to draw vectors in,

it’s going to be really hard to visualize what’s going on accurately enough

to guide you when you try to add up the field. If you do a really good

picture, you may see the trivial way to do the addition that actually makes

this problem rather easy (given (a)) instead of a matter of adding up vector

components the hard way!

* Problem 11.

(A) Consider a small gaussian surface in the shape of a cube with faces

parallel to the xy, xz, and yz planes sitting in region where there is a

continuous electric field. Let the corner nearest the origin be located at

r0 = (x0, y0, z0) and the cube edge lengths be ∆x = ∆y = ∆z in the

directions parallel to the different axes.

Since the electric field is continuous, each component of the field can be

expanded in a Taylor series:

E(r0 + ∆r) = (
Ex(r0) + ∆x

∂Ex

∂x

∣∣∣∣∣
r0

+ ∆y
∂Ex

∂y

∣∣∣∣∣
r0

+

∆z
∂Ex

∂z

∣∣∣∣∣
r0

+ ...

)
x̂ +

(
Ey(r0) + ∆x

∂Ey

∂x

∣∣∣∣∣
r0

+ ∆y
∂Ey

∂y

∣∣∣∣∣
r0

+

∆z
∂Ey

∂z

∣∣∣∣∣
r0

+ ...

)
ŷ +

(
Ey(r0) + ∆x

∂Ez

∂x

∣∣∣∣∣
r0

+ ∆y
∂Ez

∂y

∣∣∣∣∣
r0

+

∆z
∂Ez

∂z

∣∣∣∣∣
r0

+ ...

)
ẑ +

(2.75)
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where we only keep first order terms.

Noting that ∆A = ∆x∆y = ∆x∆z = ∆z∆y and that ∆V = ∆x∆y∆z,

show that the net electric flux out of this box is:

∑

sides

E · n̂ ∆A = φnet =

(
∂Ex

∂x
+

∂Ey

∂y
+

∂Ez

∂z

)
∆V = ÷E ∆V

If we then take the differential limit and use Gauss’s Law as we have

thus far learned it, this becomes:

∑

sides

E · n̂ dA = ∇ · E dV =
ρ

ǫ0

dV

or

∇ · E =
ρ

ǫ0

(2.76)

Congratulations! You’ve just derived Gauss’s Law in its differential form

(and, incidentally, have derived the divergence theorem for vector fields if

we extend the sums above back to integrals by summing over all the little

differential cubes in an extended volume). We won’t use this this semester,

but it is very important to start to think about how the one (integral) form

is equivalent to the other (differential) form, as the latter turns out to be

very useful!
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Week 3: Potential Energy and

Potential

• The change in electrostatic potential energy moving a charge between

two points in the field of other charges is:

∆U(x0 → x1) = −
∫ x1

x0

F · dx (3.1)

where F is the total force due to all other charges.

• The vector electrostatic force can be found from the the potential

energy function by taking its negative gradient:

F = −∇U (3.2)

• For charge density distributions with “compact support” (ones we can

draw a ball around, basically) we by convention define the zero of the

potential energy function to be at ∞:

U(x) = −
∫ x

∞
F · dx (3.3)

For point charges q1 and q2, it is just:

U(x1,x2) =
kq1q2

|x1 − x2|
(3.4)

• Since the potential energy is just a scalar and satisfies the superpo-

sition principle, we can evalute the total energy of a system of point

charges as:

Utot =
1

2

∑

i6=j

kqiqj

|xi − xj|
(3.5)

161
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(there is a similar integral expression for continuous charge distribu-

tions we will address later) where the 1/2 is to compensate for double

counting in the sum.

• The electrostatic potential produced by a charge q is a one-body scalar

field defined by:

V (x) = lim
q0→0

U(x)

q0

(3.6)

so that the potential of a point charge in coordinates centered on the

charge is just:

V (r) =
kq

r
(3.7)

• The potential is to the field as the potential energy is to the force, so:

V (x) = −
∫

E · dx + V0 (3.8)

with V0 and arbitrary constant of integration, used to set a suitable

zero of the potential energy. For compact charge distributions:

V (x) = −
∫ x

∞
E · dx (3.9)

and

E = −∇V (3.10)

• The potential of a charge distribution can obviously be evaluated by

superposition:

Vtot(x) =
∑

i

kqi

|x − xi|
(3.11)

or

Vtot(x) =
∫ kdq0

|x − x0|
=

∫ kρ(x0)d
3r0

|x − x0|
(3.12)

• Conductors at electrostatic equilibrium are equipotential. We can

therefore speak of the potential difference between two conductors in

electrostatic equilibrium where it doesn’t matter what path we use to

go from one conductor to the other. This also means that if we charge

one isolated conductor to some potential and then connect it to an-

other isolated conductor, charge will flow until the two conductors

(now one) are at the same potential, a process called charge sharing.
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• In a strong enough electric field, dielectric breakdown occurs and in-

sulators “suddenly” become conductors (e.g. lightning in air). Strong

fields are often induced in the vicinity of a sharp conducting point,

causing a slower corona effect discharge that is the basis for lightning

rods.

This completes the chapter/week summary. The sections below illumi-

nate these basic facts and illustrate them with examples.

3.1 Electrostatic Potential Energy

The electrostatic force is conservative. That is, the work done moving a

charge between any two points in an electrostatic field is independent of the

path taken. For conservative forces we can define the change in potential en-

ergy to be the negative work done by the electrostatic force moving between

two points:

∆U(x0 → x1) = −
∫ x1

x0

F · dx (3.13)

The corresponding relation between the potential energy thus defined

and the force is (as usual):

F = −∇U (3.14)

Consequently we see that we could equally well define the electrostatic po-

tential energy in terms of an indefinite integral and an arbitrary constant of

integration:

∆U(x) = −
∫

F · dx + U0 (3.15)

that effectively sets the point where the potential energy is zero.

By convention, for charge densities that have compact support – ones that

one can draw a ball of finite radius (however large that radius might be) so

that it completely contains all of the charge – we define the potential energy

to be zero at ∞, just as we did for the gravitational potential energy:

∆U(x) = −
∫ x

∞
F · dx (3.16)

(so that U0 is zero, if you prefer). We remain free to choose a different zero,

however, in any problem where doing so is computationally convenient.
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Using the relations above, it is easy to show that the potential energy of

two point charges is:

U =
kq1q2

|x1 − x2|
(3.17)

which again looks very much like that for gravity as might be expected.

One important advantage of working with the potential energy is that it

is a scalar. To find the total potential energy of a collection of charges, we

just add it up pairwise:

Utot =
1

2

∑

i6=j

kqiqj

|xi − xj|
(3.18)

Note that in this sum the 1 → 2 interaction is counted twice, once as q1q2

and once as q2q1. We only wish to count it once, so we divide the result

by 1/2. Another way to deal with this issue is to order the sum so that we

simply never do a pair twice:

Utot =
∑

i<j

kqiqj

|xi − xj|
(3.19)

This stands for “sum over all qj and all qi such that i < j” which excludes

all the self-energy i = j terms. Good thing, too, since they are all infinite!

3.2 Potential

The good thing about potential energy is that it is a scalar and easier to

evaluate than the vector force or field. However, it isn’t terribly easy! It

is still a two-body interaction term and requires us to do a nasty double

sum (that becomes an even nastier double integral) when we have a large

collection of charges.

A couple of weeks ago we introduced the idea of the field to eliminate

two body computations for electric force and to give us the comfort of an

apparent action-at-a-distance cause of the electric force. Let us do exactly

the same thing here. We will define the electrostatic potential to be a scalar

field of “potential energy per unit charge” that is the cause of a charged

particle placed in it having a potential energy.

The formal definition of the potential is that it is the potential energy

of a small test charge q0 interacting with all the other charges that create
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the potential, per unit test charge, in the limit that this small test charge

vanishes:

V (x) = lim
q0→0

U(x)

q0

(3.20)

Note that this strange-seeming condition ensures that the test charge itself

doesn’t perturb the charge distribution that produces the potential.

The SI units for potential are:

1 Volt =
1 Joule

1 Coulomb
(3.21)

If we apply this rule compute the potential at x produced by a point

charge q at the origin of coordinates, we get:

V (x) = lim
q0→0

1

q0

kqq0

|x − 0| =
kq

r
(3.22)

where r = |x|. Alternatively we could use the definition of the field relative

to the force to define:

V (x) = −
∫

E · dx + V0 (3.23)

For charge distributions with compact support, we by convention pick the

zero of potential at ∞ so that:

V (x) = −
∫ x

∞
E · dx (3.24)

In many cases (especially when we start to treat conductors more thor-

oughly in later chapters) we will be interested in potential differences. If the

field is known and well behaved, they can be easily computed by means of:

∆V (x1 → x2) = −
∫ x2

x1

E · dx (3.25)

We can invert these relations to obtain:

E = −∇V (3.26)

which in some cases will give us a relatively easy path to find the field. If

the potential is relatively easy to find by (say) superposition (because it is

a straight scalar sum or integral over the potentials of all the contributing
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charges) then one can find the field by doing relatively easy derivatives

instead of sums or integrals over vector components.

Note that this relation gives us a new way to write the strength of a

field in SI units as volts per meter. Note also that there is a precise analogy

between force and potential energy and field and potential. Finally, note

that once we know the potential produced by a collection of fixed charges,

we can compute the potential energy of a charge q placed in the potential

subject to the condition that the presence of the charge in the potential does

not cause significant rearrangement of the charges that create that potential

as:

U = qV (3.27)

This will not always be the case! In fact, if we were picky we’d say

that it is almost never the case in nature, because atoms aren’t “solid”

objects and inevitably distort in the presence of the field of the perturbing

charge. However, that doesn’t really stop us from using this expression; we

merely have to compute the potential energy in the self-consistent perturbed

potential of the other charges. It does make it a bit more difficult, though.

3.3 Superposition

As we noted in the previous section, a major motivation for introducing

potential is that it is a scalar quantity that we can evaluate by doing sums

that don’t involve the complexity of vector components or charge-charge

interactions. The rule for finding the potential of a collection of charges

is simple: We just add up the scalar potential of each (point-like) charge

independent of all the rest!

This is once again the superposition principle for electrostatics, now ap-

plied to the scalar potential:

Vtot(x) =
∑

i

kqi

|x − xi|
(3.28)

In words, the potential at a point in space is the simple (scalar) sum of the

individual potentials of all the charges that contribute to that total potential.

As before, when we are working at scales where there are many many

elementary point charges contributing to the potential, we can coarse grain
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average. That is, we can look at a volume ∆V that is large enough to

contain sufficient charge for a smooth average charge density to result that

is also small enough that we can sum over it as if it is the integration volume

element dV (or ditto for surface or linear distributions with elements dA and

dx respectively).

Then the sum becomes:

Vtot(x) =
∫ k dq0

|x − x0|

=
∫ k ρ(x0) d3r0

|x − x0|
volume (3.29)

=
∫ k σ(x0) d2r0

|x − x0|
area (3.30)

=
∫ k λ(x0) dr0

|x − x0|
line (3.31)

3.3.1 Deriving or Computing the Potential

The rules above give us two distinct ways to evaluate the potential in any

given problem, and we must look at the problem carefully to assess which

one is best.

1. If the field is known, varies only in one dimension, and is integrable in

some system of coordinates, we can integrate

−
∫

Exdx

to find the potential. For all practical purposes in this course, problems

involving the symmetric distributions of charge whose fields we can

find using Gauss’s Law are precisely the ones where it is likely to be

most convenient to evaluate the potential in this way.

It is necessary to use this approach to find the potential differences of

a non-compact charge density distribution such as an infinite line or

infinite sheet. This is because the sum of the potential of an infinite

amount of charge (however it is distributed) is infinite, which is in turn

why we restrict the use of the superposition forms of the potential that

vanish at ∞ to compact charge distributions.
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2. If the field is not known or discoverable from Gauss’s Law and/or is

not “one dimensional” in the sense that we can easily find a line to

integrate over where the vector components of the field don’t enter in

a non-trivial way, we will probably be better off computing the field

directly from the superposition principle – summing or integrating all

of the contributions to the potential from all the point charges or

point-like elements of a charge distribution to find the total.

Note that both of these approaches will yield the same answer for charge

distributions with compact support within the inevitable constant V0 for

all problems to which they are consistently applied. In fact, even for non-

compact distributions they will yield the same answer for the part that varies

with the coordinates of the point once one “renormalizes” the limiting form

of the superposition answer by subtracting the appropriate infinite constant.

That’s because the negative gradient of the two forms must, of course, return

the same field!
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3.4 Examples of Computing the Potential

3.4.1 Potential of a Dipole on the x-axis

−a

+a
+q

x

−q

x

z

r

Figure 3.1: A simple dipole aligned with the z-axis.

This is the same dipole studied in the the chapter on field. Find

the potential at an arbitrary point on the x-axis.

This problem is deceptively simple. We know from the superposition

principle that the potential is:

V (x) =
2∑

i=1

keqi

ri

=
keq

(x2 + a2)1/2
− keq

(x2 + a2)1/2
= 0 (3.32)

This is absolutely correct – the potential of a dipole vanishes on the entire

plane that symmetrically bisects the line connecting the charges.

The “deception” occurs when we try to compute the field by using E =

−∇V . We are ever so tempted to go e.g.:

Ez = −dV

dz
= −d0

dz
= 0 (3.33)

which is simple, easy, and wrong! The problem is that even though the

function V (x, y, z) is zero at a point that does not mean that its slope is
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zero at the point! We have to use L’Hopital’s Rule to evaluate a derivative

at a point where its lower order derivatives or value are zero.

What this means is that we have to evaluate the function for V (x, y, z)

near but not on the point where the function is zero, take the desired deriva-

tive, and then let the parameter that describes that nearness go to zero. In

this case, we need to find V (x, z) for some small z (near zero), take the

derivative, and let the value of z in the derivative go to zero. See if you can

draw pictures to verify the following algebra, for a point z ≪ a ≪ x above

the point on the x-axis.

V (x, z) =
keq

(x2 + (a − z)2)1/2
− keq

(x2 + (a + z)2)1/2
(3.34)

Now we can differentiate:

Ez = − d

dz

keq

(x2 + (a − z)2)1/2
+

d

dz

keq

(x2 + (a + z)2)1/2

= − keq(a − z)

(x2 + (a − z)2)3/2
− keq(a + z)

(x2 + (a + z)2)1/2
(3.35)

NOW we can let z → 0 to find out what the field is on the x-axis (adding and

cancelling terms as necessary, and substituting pz = 2qa in for the dipole

moment):

Ez = − 2keqa

(x2 + a2)3/2

= − kepz

(x2 + a2)3/2
(3.36)

Compare this to equation (1.22)! Hmmm, looks the same1! And it wasn’t

that difficult, although it was certainly more difficult than we might have

expected. To see how really easy it was, consider. We actually just obtained

the exact Ez field for all points in space, since the answer is azimuthally

symmetric and we could rotate the answer to tell us the field in planes other

than the xz plane! And the Ex field is equally easy to find.

It will turn out that Cartesian coordinates suck in so many ways when

doing physics problems. Physics is if anything naturally spherical or cylin-

drical – nature is only rarely rectilinear. Let’s redo the potential problem

1Allowing, of course, for the change in the name of the vertical axis...
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above, but not let’s find the potential at an arbitrary point in space in spher-

ical polar coordinates. Remember, the math section has a lovely little review

of Cartesian, Cylindrical and Spherical coordinate systems – the big three

one needs to work with in this course – in case you have never seen spherical

coordinates before (or don’t remember them, effectively the same thing).
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3.4.2 Potential of a Dipole at an Arbitrary Point in

Space

+q

−q

z

x

+a

−a

r

r

1r

2θ

Figure 3.2: A simple dipole aligned with the z-axis, in a spherical coordinate

system.

Find the potential of this dipole at an arbitrary point P =

(r, φ, θ). Because the problem is manifestly azimuthally sym-

metric the answer cannot depend in any way on φ (the az-

imuthal/longitude coordinate), so we might as well label the

point P = (r, θ) in the plane of the figure, where the answer

can be azimuthally rotated by φ about the z-axis to any other

plane without changing the form of the answer.

The potential in this problem is extremely easy to find if you can re-

member the law of cosines:

r1 = r2 + a2 − 2ar cos(θ) (3.37)

r2 = r2 + a2 + 2ar cos(θ) (3.38)

so that the potential can be read off by inspection:

V (r, θ) =
keq

(r2 + a2 − 2ar cos(θ))1/2
− keq

(r2 + a2 + 2ar cos(θ))1/2
(3.39)
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Of course, if you don’t remember the law of cosines, you should visit the

math chapter and learn to derive it in two or three lines so you don’t ever

forget it again, as we will use it fairly often and you don’t want this to be

an obstacle to your learning!

To find the field now, one can take the gradient of this exact result. How-

ever, actually taking gradients is beyond the immediate scope of this course,

so just bear in mind that you can (and if you are a physics major, almost

certainly sooner or later will) and otherwise forget it. Doing so isn’t partic-

ularly simple in any event because of the fairly complicated denominators

(although it is still much easier than finding the field directly).

Consider what happens, though, when one looks at the potential at a

point r ≫ a, so far away that the dipole looks like a “point object”. To

find the potential then, we must use the binomial expansion to factor out

the leading r dependence and to move the complicated stuff from the de-

nominator to the numerator (losing the square roots in the process). That

is:

lim
r≫a

V (r, θ) =
keq

(r2 + a2 − 2ar cos(θ))1/2
− keq

(r2 + a2 + 2ar cos(θ))1/2

=
keq

r

{
(1 − 2

a

r
cos(θ) +

a2

r2
)−1/2 − (1 + 2

a

r
cos(θ) +

a2

r2
)−1/2

}

=
keq

r

{
(1 +

a

r
cos(θ) − a2

2r2
+ ...) − (1 − a

r
cos(θ) − a2

2r2
+ ...)

}

=
keq

r

{
2
a

r
cos(θ) + O

(
a3

r3

)}

≈ ke2qa

r2
cos(θ)

≈ kepz

r2
cos(θ)

(3.40)

This is a very simple form and is a very important one as well! It is the

potential of a point dipole at a point P = (r, θ, φ) measured relative to the

dipole center (and with θ measured from the dipole axis). Note that the

answer is azimuthally symmetric and doesn’t depend on φ, as one expects.

Taking the gradient of this to find the field (when you eventually try it) is

actually pretty easy.
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We dwell so much on dipoles because they are the most common and

important microscopic configuration of charge that produces fields outside of

atoms. Atoms are roughly spherically symmetric and tend to be electrically

neutral in isolation. However, atoms are easily polarized by any applied field,

including molecular fields. There are molecules (such as the ubiquitous water

molecule) that have permanent electric dipole moments. Speaking as one big

bag of (mostly) water to another, those little electric dipoles can organize in

some pretty amazing ways! We will continue to explore dipole models until

we wrap the whole notion up as a macroscopic property of matter called its

dielectric permittivity in the next chapter.

From these two examples it should be simple enough to find the potential

at a point due to any reasonable number of discrete charges provided only

that you can do the coordinate geometry needed to find the distance(s)

from the charges to the point of observation. The pythagorean theorem, the

(more general) law of cosines: things like that are thus your best friends in

evaluating potentials of point charges because once you know the distances

you just sum keq/r for all of those charges.

It’s a bit harder to do a continuous distribution of charge. Let’s look at a

couple of continuous problems and move on to using the field itself (evaluated

with Gauss’s Law) to integrate to the potential or potential difference.
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3.4.3 A ring of charge

θd

rz

a

dl = a d θ

λ

x
y

Figure 3.3: A ring of charge in the xy-plane, concentric with the z-axis.

Suppose you are given a ring of charge with charge per unit

length λ and radius a on the xy-plane concentric with the z-

axis. Find the potential at an arbitrary point on the z axis.

Although there is a quick and easy answer to this problem (that will

be apparent at the end, if not at the beginning) we will work through this

problem in detail to illustrate the general methodology of finding a potential

by integrating over a continuous distribution of charge. The steps are:

1. In suitable coordinates, define a differential “chunk” of the charge. In

this problem, that would be a differential-size arc segment of the ring.

2. Determine the differential charge of the chunk as “the charge of the

chunk is the charge per unit whatever times the differential whatever

of the chunk” where ‘whatever’ might be length, area or volume (in

this case length).

3. Write a simple expression in suitable coordinates for the differential

potential produced at the point of interest by the differential (point-

like) chunk of charge:

dV =
ke dq

r
where r is the distance from the chunk to the point of observation.

Note well that this is a scalar integral, making it relatively simple!
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4. Integrate both sides. The left hand side becomes V (~r) at the point

of observation (in suitable coordinates). The right hand side becomes

the algebraic expression of the potential (the answer).

5. Simplify, if appropriate or required.

6. If one wishes to find the field from the potential, remember e.g.

Ez = −dV

dz

Beware L’Hopital’s Rule! That is, if differentiating someplace that

the function itself vanishes (or its functional dependence on certain

coordinates vanishes) be sure that you differentiate at a general point

near the limit point and then take the limit!

Let’s step through this.

dl = a dθ (3.41)

defines a differential chunk of the ring. Its charge is:

dq = λ dl (3.42)

The differential potential of this chunk at a point on the z-axis is:

dV (z) =
ke dq

r
=

keλa dθ

(z2 + a2)1/2
(3.43)

We integrate over all of the chunks of charge that make up the ring by

integrating θ from 0 to 2π:

V (z) =
∫

dV =
∫ 2π

0

keλa dθ

(z2 + a2)1/2

=
ke(2πa)λ

(z2 + a2)1/2

=
keQ

r
(3.44)

where we used the fact that 2πaλ = Q, the total charge of the ring!

This final answer we can easily understand and might have even guessed

without doing an integral. All of the charge of the ring is the same distance

r from the point of observation, and potential depends only on this distance
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(not on direction) so the potential is just ke times the total charge divided

by that distance.

If we do indeed try to find the electric field by differentiating this last

result:

Ez = − d

dz

ke(2πa)λ

(z2 + a2)1/2

=
ke(2πa)λz

(z2 + a2)3/2

=
keQz

(z2 + a2)3/2
(3.45)

Compare this to equation (2.17) above. Hmmm, looks like they are the same!

However, evaluating the potential integral and then taking its derivative

seems (to me, at any rate) to be much easier than doing the integral to find

the field directly, with all of its components, and that’s before we evaluated

the Ex and Ey fields explicitly.

Note that we can exploit the insight we gained from this problem in a

variety of ways to answer certain questions concerning the potential “by

inspection”. For example:

• A ring of charge Q a distance R = (a2 + z2)1/2 from the point of

observation;

• An arc of charge Q that has angular width θ and radius R, at the

center of curvature;

• A hemispherical shell of charge Q with a radius R, at the center of the

(hemi)sphere;

• Six charges each with charge Q/6 arranged in a hexagon that has a

distance 2R between opposing corners, at the center;

• A single charge Q a distance R from the point of observation;

all produce a potential keQ/R at the point of observation indicated! In all

these cases a total charge of Q is arranged in various ways a distance R from

the point of observation. In potential direction doesn’t matter, so all of the

potentials of all of the charges that make up these systems add to the one

simple result.
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3.4.4 Potential of a Spherical Shell of Charge

Q

r r

R

S(outer)

S(inner)

Figure 3.4: A spherical shell of charge of radius R.

Suppose you are given a spherical shell of radius R of uniformly

distributed charge Q. Find the field and the potential at all

points in space.

If we want to find the potential produced by a spherical shell (or other

spherical distribution of charge) and try to find it by direct integration of

the potential of all the charges that make up the shell, we’ll quickly discover

that while it is easy to write down the integral we need to solve in some

system of coordinates, it isn’t so easy to do the integral. It’s still possible –

good students of calculus or students who just want a challenge can tackle

it with a reasonable chance of success – but it isn’t terribly easy.

On the other hand, finding the electric field from Gauss’s Law is very

easy (and is done in detail in Week 2 above, so we won’t repeat the steps

here). Try it on your own to make sure that you get:

E = 0 (r < R)

E =
keQ

r2
r̂ (r > R)

in sphere-centered spherical coordinates. We recall that the potential of any

charge distribution with compact support can be found from the field by

directly integrating the field according to:

V (r) = −
∫ r

∞
E · dl (3.46)
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In this case, we integrate piecewise from the outside in to find the field

outside and inside of the sphere, accordingly. Outside:

V (r) = −
∫ r

∞

keQ

r2
dr =

keQ

r
(3.47)

for all r > R. Inside:

V (r) = −
∫ R

∞

keQ

r2
dr −

∫ r

R
0 dr =

keQ

R
(3.48)

which is constant everywhere inside the sphere! This not only makes sense,

we’ll make this into a rule. Any volume where the electrical field vanishes has

a constant potential – we call such a region equipotential. We’ll talk about

equipotential regions below when discussing conductors in electrostatic equi-

librium (which are, as you can probably already see, equipotential).

A spherical shell of charge thus produces a potential outside that looks

like the potential of a point charge at the origin to match its field that looks

like that of a point charge at the origin. Inside, its potential is constant, the

value it had on the shell itself coming in from the outside.

Now, a bit of warning based on my many years of teaching this class.

For some of you, the first time you see a problem like this on a quiz with

a region where the field is zero, the Devil is going to whisper into your ear

“C’mon, dude. The field in these is zero, so the potential in there must be

zero too. Put down zero and let’s move on.” Unfortunately, if you listen

to the Devil, you’ll be condemned to Physics Quiz Hell, because this would

be wrong! Remember that the electrical field is basically the derivative of

the potential. The derivative of any constant is zero, not just the particular

constant whose value is zero.

Think of it in terms of the tops of mesas, flat mountains. Anyplace that

is “flat” in potential has no field. A charge placed there doesn’t gain energy

moving around. But that doesn’t mean that the height of the mesa is sea-

level, or that one doesn’t have to climb a steep slope from sea-level to reach

the flat part. Similarly, we may have to do quite a bit of work to push a test

charge from infinity to the edge of a spherical shell of charge, but once we go

inside the field vanishes and we can move it anywhere without doing work.

The potential inside is constant, but that constant has to reflect the total

work done coming in from infinity (per unit charge) and is not particularly

likely to be zero.
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3.4.5 Potential of a Spherical Shell of Charge

Q

r r

R

S(outer)

S(inner)

Figure 3.5: A solid sphere of uniform charge density ρ and radius R.

Find the field and the potential at all points in space of a solid

insulating sphere with uniform charge density ρ and radius R.

If you will recall, finding the field of a solid sphere of charge is both an

example in the text above and was a homework assignment a couple of weeks

ago – so by now you should have gone over it repeatedly and made it your

own. The result was:

Er =
ke

(
4πR3ρ

3

)

r2
=

keQ

r2
r > R

and

Er = ke

(
4πρ

3

)
r =

ρr

3ǫ0

r < R

for the exterior and interior of the sphere (where we used 4πke = 1/ǫ0 in the

last equation just so you don’t completely forget this relation as we prefer

to work with ke but one day you’ll need to be able to work with ǫ0). So just

to humor me, get out paper and prove (to yourself, if nobody else) that you

can still get this result, starting with Gauss’s Law and without looking.

With the field(s) in hand, we now recapitulate the reasoning of the pre-

vious example. The distribution of charge has compact support, so we can
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integrate in from infinity to find the potential (relative to infinity):

V (r) = −
∫ r

∞
E · dl = −

∫ r

∞
Er > Rdr

= −
∫ r

∞
keQ r′ −2dr′

=
keQ

r
r > R (3.49)

and we find, as hopefully you had already anticipated, that the potential

of the solid sphere outside was that of a point charge with the same total

charge at the origin, in perfect correspondance with the field.

The place things get more interesting is when we try to evaluate the

potential inside the sphere. The potential is defined as an integral in from

∞, but the field changes functional form at r = R. We therefore have to do

the integral piecewise, doing first the integral from ∞ to R, then from R to

r. This is why we wrote out both terms in the spherical shell example above,

even though the field inside was zero (and so was that part of the integral)

– we want to get in the habit of always doing the integral piecewise and

simply being happy when one or another piece is zero, rather than either

expecting it or forgetting that this is what we are really doing. Thus:

V (r) = −
∫ r

∞
E · dl = −

∫ R

∞
Er > Rdr −

∫ r

R
Er < Rdr

= −
∫ R

∞
ke

(
4πR3ρ

3

)
r′ −2dr′ −

∫ r

R
ke

(
4πρ

3

)
r′dr′

= ke

(
4πR2ρ

3

)
+ ke

(
2πρ

3

) {
R2 − r2

}

= 2πkeρR2 − ke

(
2πρ

3

)
r2 r < R (3.50)

Let’s think a teensy bit about this result, and then plot it (as we did

for the field) to help us remember it, as (recall) the uniform ball of charge

is the basis of the simplest model for an atom and hence the key to easily

understanding lots of things such as polarization, ionization, and more. First

of all, note that the potential is (by the meaning of integrals in the first place)

the area under the Er(r) curve from r to ∞. E is continuous but not smooth

(look back at figure ?? and note the cusp at r = R), but V (r) is continuous

and smooth at r = R – the function and its first derivative match at the

point, although the second derivatives differ. Outside the potential drops
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off like 1/r, a monopolar potential that corresponds to the monopolar field.

Inside, the potential increases like an upside down quadratic all the way to

the origin, where it has its maximum value!

r

k  Qe

R

R

V(r)

Figure 3.6: The potential produced by a uniform sphere of charge both

inside and outside, as a function of r.

There is one more thing that we need to do before abandoning the ball of

charge. Suppose we are handed such a ball. A perfectly reasonable question

for any physics groupie is “How much work did it take to assemble all of this

charge?” After all, the charge is mutually repulsive – every bit of charge

we put into the ball had to be brought in “from infinity” against the field

of the charge that is already there. This latter insight is the key to writing

down a simple integral to tell us how much work was done, and hence what

the potential energy of a uniform ball of charge is.

Suppose we have built a ball of radius r and total charge:

Q(r) =
4π

3
ρr3 (3.51)

(so far). We know (or can figure out easily given the results just above) that

the potential on its surface is just:

V (r) =
keQ(r)

r
=

4πke

3
ρr2. (3.52)

Now imagine bringing in a differential chunk of charge dQ and spreading it

around on the surface, increasing the radius of the ball just a bit. The work
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we have to do bringing the charge from ∞ to the surface of the ball (which

is also the increase in the potential energy of the ball) is:

dW(us) = dU(ball) = V (r)dQ = V (r)ρ4πr2dr (3.53)

where we use the fact that the charge of a thin shell of radius r and thickness

dr is just the volume of the shell times the charge per unit volume. We can

now add up this increment of energy by integrating to “build a ball”:

U =
∫ R

0
V (r)ρ4πr2dr

=
∫ R

0

4πke

3
ρr2ρ4πr2dr

= ke
16π2ρ2

3

∫ R

0
r4dr

= ke
16π2ρ2

3

R5

5

=
3

5

ke

(
4πR3

3
ρ
)2

R
=

3

5

keQ
2

R
=

3

5
V (R)Q (3.54)

This is an extremely interesting result. Note first that if we knew nothing

about how the charge was distributed and were asked to estimate its energy,

the only sensible answer we can give (that makes dimensional sense) is U =

V × Q. Charge times potential equals potential energy. Of course we don’t

expect the energy to be exactly this – we expect it to be less, because we

can bring in the first bits of charge “for free” and do ever more work as we

build up the ball – we expect it to be something less than this estimate.

Later we’ll do more examples of this sort of integral when we discuss

capacitance, and will find that the form of this result is quite general, but

(as one might expect) the leading fraction will vary depending on the details

of how the charge we assemble is distributed. For a conducting sphere (where

all the charge resides on the outside) or spherical shell of charge, for example,

it will be 1/2. See if you can show this.

As a final note of interest, observe how the potential energy of the ball of

charge scales with its radius! As any fixed amount of charge is compressed

into smaller and smaller balls so that R → 0, we see that U(R → 0) → ∞! If

we forget the factor of 3/5, or 1/2 (which depends on the details of the charge

distribution) and focus on the rest, we can compute a couple of extremely
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interesting quantities that give us insight into nuclear physics and certain

properties of electrons.

To compute the first, assume that Q = +e and R = 10−15 meters (one

fermi) – a model for the proton as a ball of charge. If one computes kee/R

for this in SI units (Volts) and multiplies by the remaining +e to get kee
2/R

in eV, one gets +1.44 MeV – the order of magnitude of the energy bound

up in the electrostatic field of the charge of a proton. Nuclear forces that

glue all of this charge together (with gluons) must be much stronger than

electrostatic forces to make the total energy negative or a proton would not

be a stable bound state, and they are. Electronic energy levels in atoms are

scale eV, nuclear energy levels are scale MeV (and higher) which explains

why stars burn slowly and release far, far more energy than can be explained

by “atomic” electronic bonding (conventional burning). Nuclear fusion re-

leases order of ten million times as much energy per interaction than does

e.g. burning one carbon atom into carbon dioxide.

The second requires a “true fact” (that is, fortunately, fairly common

knowledge): Mass and energy are interchangeable, and the “rest mass” of an

object corresponds to a “rest energy” of mc2 where c = 3×108 meters/second

is the speed of light. Now we suppose that an electron’s rest mass is all due

to its electrostatic energy of confinement, the energy tied up in the charge

e confined to some radius, and we seek that radius, which we will call “the

classical radius of the electron” 2 . This is the same computation as above,

only backwards – we know the energy already, we know ke and the charge

−e, we solve for re. If you do this, using U = 0.5 MeV for an electron,

one gets 2.8 × 10−15 meters. Note well that this is somewhat larger than

the size of a proton (as the electron has less energy). The classical radius

of the electron turns out to be an important quantity in determining the

properties of electromagnetic radiation from point charges.

2Wikipedia: http://www.wikipedia.org/wiki/Classical Electron Radius.

http://www.wikipedia.org/wiki/Classical Electron Radius
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3.4.6 Potential of an Infinite Line of Charge

r

r

λ

0

Figure 3.7: An “infinitely long” line of uniform charge density λ.

Find the field and the potential relative to the reference radius r0

at all points in space around an infinite line of charge. Explore

the necessity of a reference point (because the indefinite integral

is infinite at 0 and ∞).

As before, we will assume that you already know and can easily show that

the field of an infinite straight line of charge is:

E =
2keλ

r
r̂

in cylindrical coordinates, so that r̂ points directly away from the line. In

fact, you should be able to show this two ways – using Gauss’s Law (very

easy) and by direct integration (much harder).

We can thus equally easily write down an expression for the potential at

a distance r from the line:

V (r) = −
∫ r

∞

2keλ

r′
dr′ = −2keλ (ln(r) − ln(∞)) = ∞− 2keλ ln(r) (3.55)

Oops. Looks like our potential is infinite. That’s a problem...

To solve it, we compute the potential not relative to infinity but to some

particular radius r0:

V (r) = −
∫ r

r0

2keλ

r′
dr′ = −2keλ (ln(r) − ln(r0)) = −2keλ ln

(
r

r0

)
(3.56)

where we use the convenient property of natural logs: ln(a) + ln(b) = ln(ab)

to simplify the final expression. If we let r0 = 1 (in whatever units we are

considering this can be further simplified to:

V (r) = −2keλ ln(r) (3.57)
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but this obscures the units – recall that the argument of any function with a

power series expansion e.g. ln must be dimensionless, so the “r” in this is the

ratio of r in the units of choice to “1” in the unit of choice. Note well that

this does not matter whenever we compute potential difference, which is the

quantity that will be the most important one in the next chapter/week:

∆V (r1 → r2) = −
∫ r2

r1

2keλ

r′
dr′ = 2keλ ln

(
r1

r2

)
(3.58)

where the natural log is negative (recall) when r1 < r2 so r1/r2 < 1. This

makes sense! Note well that the potential decreases when we move away

from the line in the direction of the field (as the potential energy decreases

when we move in the direction of its associated conservative force).

On your own, show that we also get this expression if we form ∆V (r1 →
r2) = V (r2) − V (r1) using any of the forms for V (r) given above (even the

one with ∞ in it, as long as we are permitted to subtract ∞−∞ = 0, which

of course is not necessarily or generally true but which can be true as the

setting of the zero of the potential).

3.4.7 Potential of an Infinite Plane of Charge

z
σ

Figure 3.8: An “infinite” plane of uniform charge density σ.

Find the field and the potential relative to the plane itself at all

points in space around an infinite plane of charge. Explore the

necessity of a finite reference point (where e.g. z = 0 is the most

convenient) because the potential integrated in from ∞ is clearly

infinite.

Using Gauss’s Law (or taking the limit of e.g. a disk on its axis) you

can easily show that the electric field a distance z above an infinite plane of

charge with charge density σ is:

Ez = 2πkeσ
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(pointing away from the plane symmetrically on both sides) independent of

z. That is, the plane of charge creates a uniform electric field that reaches

from the plane to (in principle) ∞ without change.

If we try to evaluate the potential at a finite point z relative to ∞ we get

into trouble once again because the charge distribution is non-compact:

V (z) = −
∫ z

∞
2πkeσ dz = ∞− 2πkeσz (3.59)

We feel uncomfortable with infinite quantities, so we either subtract away

the infinity with a new (infinite) constant of integration, or just measure the

potential difference relative to some other zero. A common, and convenient

one (that leads to the same result as throwing away the infinity is z = 0, on

the plane itself. Interestingly, this is still well defined!

V (z) = −
∫ z

0
2πkeσ dz = 0 − 2πkeσz = −2πkeσz (3.60)

Again we will most often be interested in computing potential differ-

ences rather than potentials in the subsequent chapters, especially for non-

compact charge distributions. We note that the functional variation with z

is such that the potential decreases when one moves away from the plane;

this is the most important thing to keep in mind when trying to assign or

check the sign of the potential (or potential difference). The field always

points in the direction of decreasing potential.

3.5 Conductors in Electrostatic Equilibrium

Last week we learned together, Gauss’s Law and the notion of equilibrium

combine to give us important information about conductors – material with

an “inexhaustible” supply of charged particles such as electrons that are

free to move within the conductor and behave like an “electrical fluid”. In

particular, we determined that E = 0 inside a conductor in electrostatic

equilibrium and that E|| = 0 at the surface, so that any electrical field

immediately outside its surface must be perpendicular to the surface.

This suffices to show that conductors are equipotential – the potential

difference between any two points in the conductor or on its surface is:

∆V = −
∫ x1

x0

E · dx = 0 (3.61)
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Note that this doesn’t mean that the potential of the conductor is zero, only

that it is a constant. That is consistent:

E = −∇V0 = 0 (3.62)

when V0 is any constant.

This also permits us to make an important observation. For any ar-

rangement of (say two) isolated conductors with sufficient symmetry that

we can put an arbitrary charge on either of them and not have their inter-

action break the symmetry of the charge’s redistribution, we can compute

the potential difference between the conducting pair as a function of the

charge difference between them. This potential difference will turn out to

be proportional to the charge transferred and will only otherwise depend on

the geometry of their arrangment. In the next chapter this will be the basis

of the notion of capacitance.

3.5.1 Charge Sharing

b
a

+Q

Figure 3.9: Charge sharing between two distant conductors connected by a

wire. They become equipotential, with charge transferred (shared) between

them to make it so.

Here is an important example of equipotentiality. Suppose one has two

conducting spheres, one with radius a and one with radius b such that a ≪ b

(as seen in figure 3.9 above. Let us further suppose that the spheres are very

distant from one another so that the field of one is very weak in the vicinity

of the other (so that very little charge redistribution occurs if one or the

other is charged up). We begin by imagining that we have put a charge Q

on sphere b.

In that case it is easy to see or show that:

Vb = −
∫ b

∞
Erdr =

kQ

b
(3.63)
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everwhere inside sphere b while

Va = 0 (3.64)

on the other sphere. There is clearly a potential difference between the two

spheres. Now imagine that we connect the two with a thin conducting wire.

They form a single conductor and therefore quickly equalize their potentials

as charge flows from b to a.

Charge is conserved. They will reach equilibrium when:

k(Q − q)

b
=

kq′

b
=

kq

a
(3.65)

where q is the net charge transferred from b to a and q′ is the remaining

charge on b. This can be rewritten as:

q

q′
=

a

b
(3.66)

The smaller the sphere the smaller the fraction of charge on it, which makes

sense since the ratio of charge to radius must be the same.

Now, however, we compute the radial field at the surface of the two

conductors. It is:

Ea =
kq

a2
(3.67)

Eb =
kq′

b2
(3.68)

If we take the ratio of the field strengths we get:

Ea

Eb

=
q

q′
b2

a2
=

b

a
(3.69)

and conclude that the field is much stronger on the surface of the smaller

conductor. In fact, it becomes infinite in the limit that a → 0 relative to a

finite b.

What this tells us is that the field in the vicinity of a conductor in elec-

trostatic equilibrium at some non-zero potential is much stronger at sharp

points than it is on smooth surfaces with a large radius of curvature. This

has important consequences, as we shall see!
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3.6 Dielectric Breakdown

Insulators are not ever perfect, because electrons as charge carriers are not

bound to the conducting substrate by an infinite potential energy barrier. In

a sufficiently large field electrons are torn from their parent atoms and insu-

lators “suddenly” become conductors, a process called dielectric breakdown.

Lightning is a spectacular example of dielectric breakdown in nature.

The way lightning (or any sort of arc discharge) works is that charge

builds up on clouds and/or the ground to create a large potential difference.

At some point the field strength associated with this potential difference

becomes great enough that the force it exerts on electrons exceeds the force

binding the electrons to their parent atoms in the insulator (or alternatively,

they get enough potential energy to overcome the potential energy barrier

that confines them). At first only a few electrons get away, and are quickly

accelerated by the field as they get over the confining potential barrier.

These electrons in turn collide with other nearby atoms, tranferring mo-

mentum to them and knocking still more electrons loose. A cascading chain

reaction occurs that heats the atoms in the path of the ever increasing flow

of charge and knocks still more charge loose to join that flow. In a fraction

of a second, the superheated air becomes a white-hot plasma that conducts

electricity quite well and the enormous charge difference between ground

and cloud or cloud and cloud neutralizes in a burst of millions of ampere’s

of current. Bang! Zap! Ouch!

It is important to remember whenever working with high voltages that

few materials are terribly good insulators against the strong fields associated

with large potential differences over a short distance. That is, if you get close

enough to a high voltage line it will simply arc over and electrocute you. It

may well arc through a piece of glass or plastic and kill you. Wood is an

insulator for ordinary voltages but conducts more than enough to kill you if

you try to touch a high voltage power line with a stick.

Note also that if one approaches a conductor with a charge, one induces a

charge on the part of the conductor nearest the charge. If that part happens

to be a sharp point, the properties of charge sharing on an equipotential

conductor create an extremely strong field in the immediate vicinity of the

point. The field at a sharp point can easily be strong enough to ionize air
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molecules in the immediate vicinity of the tip and make them conduct! The

ionized air molecules recover electrons from their surroundings, which emit

light as they rebind. This light (visible in the dark as a faint blue-violet

glow on a thumbtack point attached to an electrostatic generator) is called

the corona.

−q
strong (point−charge−like) field!

glow (corona)

weak field at sides

E

+Q

ground

Figure 3.10: External charge +Q induces a charge -q on the sharp tip of a

nearby conductor. Electric fields lines leave the tip at right angles, producing

a field that looks like that of a very large point charge which is extremely

strong very close to the tip. This in turn ionizes nearby air molecules,

creating the corona (and spraying/repelling negatively charged ions out into

the air where they are attracted to +Q and eventually neutralize it).

Those molecules quickly pick up charge from the tip and are then repelled

by it. They literally spray away from it, carrying charge and momentum

and flowing towards the inducing charge. This is a process called corona dis-

charge and is how lightning works. A lightning rod does not attract lightning

(you never want to attract lightning) it neutralizes it by allowing charge to

gradually be pulled up from the ground and sprayed onto an approaching

strongly charged cloud and slowly neutralize it.
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3.7 Homework for Week 3

Problem 1.

Suppose you have charge +q at position z = a on the z-axis and charge +q

at z = −a. a) Write an exact expression for the eletrostatic potential of this

charge arrangement at an arbitrary point (in spherical polar coordinates)

r = (r, θ, φ). Note that the potential must be φ-independent because of

azimuthal symmetry. You will need to recall the “law of cosines” (see the

chapter on Math) to do this. b) Expand your answer to a) for r ≫ a and

keep the lowest order surviving term. What kind of potential is this?

Problem 2.

Suppose you have charge q at position z = a on the z-axis and charge −q at

z = −a – an electric dipole as studied in the first chapter. a) Write an exact

expression for the eletrostatic potential of the dipole at r = (r, θ, φ). Note

that the potential must be φ-independent because of azimuthal symmetry.

b) Expand your answer to a) for r ≫ a to leading surviving order and

express the answer in terms of the magnitude of the (z-directed) dipole

moment, pz = 2qa.

Bonus: Where is the potential of this arrangement identically zero?

Right, the xy-plane. Suppose one slides an (infinite) thin grounded con-

ducting plane in between the two charges. This costs no work (right?) and

does not alter the fields or potentials in either half-space above or below it.

Now imagine removing the charge below this plane. Does doing so change

the fields or potentials in the upper half space (recall that the conductor

screens the two spaces). Using the insight gained from thinking about this,

do you expect a bare charge of either sign to be attracted to or repelled by

a nearby grounded conducting sheet?
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Problem 3.

Now let’s assume a charge −q at both positions z = ±a on the z-axis and a

charge +2q at the origin. Note that this is a pair of opposed electric dipoles.

a) Write an exact expression for the eletrostatic potential of the dipole at

r = (r, θ, φ). Note that the potential must be φ-independent because of

azimuthal symmetry. b) Expand your answer to a) for r ≫ a to leading

(surviving) order. c) What might we call this term? (Hint: Count the

poles.)

Problem 4.

Find by direct integration the potential on the axis of a thin disk of charge

with surface charge density σ and radius R. Then expand the result to

leading order in the two limits R ≫ z and z ≫ R and interpret the potentials

in both of these cases.

Problem 5.

How much work is required to assemble a uniform ball of charge with total

(final) charge Q and radius R? Hint: This is the same as the potential

energy of the sphere, so use dU = V dq and imagine “building” the sphere a

layer of thickness dr at a time. Alternatively, compute the work directly by

bringing a charge dq in from infinity against the electric field of the charge

already there (and distributed as a sphere of radius r).

Problem 6.

Compute the potential difference ∆V between: a) Two conducting spheres

of radius a and b with a charge +Q on the inner one and charge −Q on

the outer one. b) Two (infinitely long) conducting cylinders of radius a and

b with a charge per unit length +λ on the inner one and charge per unit

length −λ on the outer one. c) Two (infinite) conducting sheets of charge,

one with charge +σ on the xy plane and with with charge −σ parallel to the

first one but at z = d. Great! Now you’ve done almost all the work required
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to understand Capacitance!

Problem 7.

Three thin conducting spherical shells have radii a < b < c respectively.

Initially the shell with radius a has a charge +Q and the shell with radius b

has a charge −Q. You connect the shells with radii a and c using a thin wire

that passes through a tiny (insulated!) hole through the middle shell and

wait for the charge to come to a new equilibrium. What is: a) The charge

on all three shells? b) The potential at all points in space (this is quite a bit

of work, but when you’re done you’ll really have the hang of this down)?

Problem 8.

Two rings of charge Q and radius R (uniformly distributed) are located at

z = ±R and have the same (z) axis. A small bead with charge q is threaded

on a frictionless string along the z axis. If the bead is displaced a small

distance +z0 ≪ R from the origin, describe the subsequent motion of the

bead in detail. (Hint: That means find z(t) and the approximate period

T or angular frequency ω of harmonic oscillation for the bead, in case that

wasn’t clear.)

Problem 9.

Suppose you have a solid sphere with a radius R and a uniform charge

density ρ. Find the potential at all points in space. Now repeat this for

a non-uniform charge density of the form ρ(r) = ρ0
r
R

(starting by using

Gauss’s Law to find the field). Note that this is right on the edge of being

an “advanced” problem as it requires you to do an integral to evaluate the

total charge inside a Gaussian surface. To keep it from being “just” an

exercise in calculus, note the following:

The volume of a differentially thin spherical shell is its area 4πr′2 times

its thickness dr′:

dV = 4πr′2dr′
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The charge in this shell is therefore:

dQ = ρ(r′)4πr′2dr′ =
4πρ0

R
r′3dr′

So integrate both sides between sensible limits to find the charge inside

a Gaussian sphere of a given radius inside or outside of the sphere. You can

do it! (BTW, I use r′ instead of r so you can make r a limit of integration

– remember how that works?)

* Problem 10.

Let’s try to use this to understand a little bit about nuclear fission. Suppose

that the charge Q in the previous problem is distributed uniformly in an

incompressible fluid. Now imagine that sphere splitting into two identical,

smaller spheres. Find the radius R′ of these two spheres. Obviously, each

sphere has a charge of Q/2. Find the total electrostatic energy of these

two spheres once they have stabilized and are separated by a large distance.

Compare the answer to the answer from the previous problem. Was energy

released? What form would you expect this energy to take?
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Week 4: Capacitance and

Resistance

• Conductors store charge and as they do so, their potential (difference)

increases relative to ground.

• If we arrange two conductors in a symmetric way and do work to

transfer charge from one to the other (leaving behind an equal charge

of the opposite sign) we call the arrangement a capacitor – a device

for storing energy in the electrostatic field.

• The capacitance of the arrangement is defined to be:

C =
|∆Q|
|∆V | (4.1)

or, the capacitance iS the amount of charge we can store that creates

a potential difference of one volt between the conductors. Note the

absolute value bars – capacitance is given as a positive quantity. The

SI units of capacitance are called farads where:

1F =
1 Coulomb

1 Volt
(4.2)

A farad is an enormous capacitance. Typical values for capacitors in

devices range from picofarads to microfarads.

You should be able to derive the following quantities (from Gauss’s

Law, integration of potential difference, dividing into the presumed

total charge):

• Parallel plate capacitor:

C =
ǫ0A

d
(4.3)

197
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where A is its cross sectional area and d is the separation of the plates.

• Cylindrical capacitor:

C =
2πLǫ0

lnb/a
(4.4)

where a is the outer radius of the inner conductor, b the inner radius of

the outer conductor, and L is its length (where we assume L ≫ (b−a)).

• Spherical capacitor:

C = 4πǫ0
(b − a)

ab
(4.5)

where a is the outer radius of the inner conductor and b the inner

radius of the outer conductor.

• Energy stored in a capacitor:

U =
1

2
QV =

1

2
CV 2 =

1

2

Q2

C
(4.6)

where the first form is the simplest to understand.

One question that is very important is where is all this energy stored

in the capacitor? The “best” answer will be: in the electric field! If we

write the energy in terms of the electric field, we find that the energy

density of the electric field is given by:

ηe =
1

2
ǫ0E

2 (4.7)

• Adding capacitors in parallel:

Ctot = C1 + C2 + ... (4.8)

• Adding capacitors in series:

1

Ctot

=
1

C1

+
1

C2

+ ... (4.9)

• Dielectrics are insulators that polarize when placed in an electric field.

This builds up a surface charge that reduces the electric field inside

the material – it displaces it from its usual value. For “weak fields”

this reduced field is:

E =
E0

ǫr

(4.10)
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where E0 is the external field, E is the field inside the dielectric, and

ǫr ≥ 1 is the relative permeability (also called the dielectric constant

κ) and is characteristic of the material.

One can also describe dielectrics by shifting the permittivity relative to

the vacuum permittivity ǫ0 we’ve used so far and using it to compute

the electric field inside the material:

ǫ = ǫrǫ0 (4.11)

• Dielectrics perform three important functions in the engineering of

capacitors:

1. They physically separate the plates (which, recall, experience a

possibly strong force of attraction).

2. They reduce the field in between the plates, which reduces the

potential difference, which increases the amount of charge one can

store per volt – the capacitance. If the material fills the space

between the plates you should be able to (easily) show that:

C = κC0 (4.12)

where C0 is the capacitance without the dielectric.

3. They prevent dielectric breakdown, so the physical separation of

the plates d can be much smaller (and the capacitance much

larger) at some design voltage.

• A battery is a chemical device that functions as a “persistent capac-

itor” that can deliver charge at a given voltage for a very long time.

In a sense, it is made up of a vast number of tiny molecular-scale

capacitors in parallel, each one of which is “neutralized” as charge is

transferred. Batteries store and deliver energy as they function as a

source of electric current.

• Current is defined as:

I =
∆Q

∆t
=

dQ

dt
(4.13)

This is the charge per unit time flowing (for example) from one ter-

minal of a battery to the other or from one plate of a capacitor to the

other through a conducting pathway.
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• Ohm’s Law is:

∆V = IR (4.14)

which can be modelled from:

R =
ρL

A
=

L

σA
(4.15)

where L is the length of the material, A is its cross-sectional area,

ρ = 1/σ is its resistivity where σ is its conductivity. Since ∆V = EL

(the potential difference across it is the uniform field inside times the

length) we can also write Ohm’s Law as:

J =
∆Q

A∆t
n̂ = σE (4.16)

where J is the vector current density. From this we can see that

electric fields are not zero in a conductor carrying a current!

• The power dissipated by a resistance carrying a current is:

P = V I =
V 2

R
= I2R (4.17)

where the first form is the easiest to understand.

• Adding resistors in series:

Rtot = R1 + R2 + ... (4.18)

• Adding resistors in parallel:

1

Rtot

=
1

R1

+
1

R2

+ ... (4.19)

• Kirchhoff’s Rules:

1. Loop Rule: The sum of the voltage changes around a circuit

loop must be zero (conservation of energy).

2. Junction Rule: The sum of the currents flowing into a circuit

junction must be zero (conservation of charge).
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• RC circuits are simple loops where a capacitor is charged or dis-

charged through a resistance. You should be able to derive that this

charge/discharge is exponential, e.g.

VC = V0e
−t/RC (4.20)

for the simplest case, with time constant τ = RC. This usually follows

from applying Kirchhoff’s voltage law around a loop and converting it

into a first order, linear, ordinary differential equation of motion that

can be directly integrated.

4.1 Capacitance

In the previous chapter we noted that conductors in electrostatic equilibrium

are equipotential. If you imagine charging up any given conductor, every new

bit of charge we add to it spreads itself out the same way. One expects the

field produced at its surface to scale up or down proportional to the amount

of charge on the conductor but not change its basic shape. As a consequence,

one expects the potential produced by the conductor to be proportional to

its total charge at all points in space, in particular inside the equipotential

conductor itself.

This has been apparent in all of our Gauss’s Law examples up to now.

For example, a conducting sphere of radius R, charged with a total charge

Q, has a field:

Er =
keQ

r2
(r > R) (4.21)

= 0 (r < R inside the conductor) (4.22)

If we integrate this to find the potential everywhere in space we get:

V = −
∫ r

∞

kQ

r2
dr

= 0
keQ

r
(r ≥ R) (4.23)

The conductor is equipotential, so the potential inside is the same as at its

surface:

V =
keQ

R
(r < R) (4.24)
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We have seen how just knowing this solution for spherical shells, or the

equivalent solution for cylindrical shells, can greatly improve our ability to

solve problems quickly and easily by using superposition of these once-and-

for-all solutions instead of trying to explicitly integrate the fields across all

the different forms it might take in a problem with several conducting shells,

although of course one will get the same answer either way.

Our discussion of capacitance begins with the observation that in this

case (and the others we can solve, and other ”odd” shaped conductors that

we cannot) the potential of the conductor is directly proportional to the total

charge on the conductor, and that the parameters in the potential besides

the charge are ke and things that describe its geometry, such as its physical

dimensions and shape.

We could thus define a quantity we might call the “volticitance” of the

conductor V so that (in the case of this example):

V = VQ (4.25)

with

V =
ke

R
=

1

4πǫ0R
(4.26)

However, we often use conductors in particular arrangements to store

charge. In general, we would like to be able to store a lot of charge on them

with only a small potential difference. We thus seek instead a measure of

the capacity of the conductor to store charge at any given voltage:

Q = CV =
(

1

V

)
V = (4πǫ0R)V (4.27)

where we have introduced the capacitance, the constant of proportionality

that depends only on the geometry of the conductor.

To be specific, we define the capacitance of an arrangement of conductors

used to store charge to be:

C =
Q

V
(4.28)

where V is the potential difference across the arrangement as a function of

the common charge Q used to create it. In the case of our example, the

capacitance of an isolated conducting sphere is:

C = 4πǫ0R (4.29)
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In general the SI units of capacitance are easily remembered (as always)

from the defining relation:

1 Farad = 1Coulomb
1Volt

which we should also recognize as being the natural units of ǫ0 (or 1/ke)

times a length.

Although we might have occasion to refer to the capacitance of an iso-

lated conductor used (for example) as the storage ball on a VandeGraff

generator, we will almost always use capacitance in the context of specific

arrangements of two conductors that are designed and intended just to store

charge in this way. Those three arrangements are:

• A parallel plate capacitor. This is our template model, and you

should thoroughly learn it as it is quite simple and informative.

• A cylindrical shell capacitor.

• A spherical shell capacitor.

The latter two are primarily useful as teaching models, as you know every-

thing you need to know in order to compute their capacitance from Gauss’s

Law and the definition of potential difference. Let’s examine these three

cases in some detail.

4.1.1 Parallel Plate Capacitor

In figure 4.1 you can see the archetype for all capacitor problems. Two

parallel conducting plates are arranged so that they are separated by a small

insulating gap d (which may or may not be filled with a dielectric material,

see section on dielectrics below). A metaphorical “blue devil” armed with

a metaphorical micro-pitchfork (that is, a still undefined process we will

discuss later) forks up charge from one plate and shoves it, working against

an ever increasing electric field, over to the other plate, eventually creating

(after doing an amount of work that we will of course calculate shortly) the

situation portrayed, with a charge +Q on the lower plate and −Q on the

upper plate. We will invariably assume that a charged capacitor has the
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+Q

−Q

d

A

Figure 4.1: An “ideal” parallel plate capacitor of cross-sectional area A and

plate separation d.

same magnitude of opposing charges on the two plates – in the static limit

this is an exact result1.

We wish to compute the capacitance, showing all the steps. We proceed

as follows:

1. Compute the electric field at all points in space, but in particular in

between the plates, using a mix of Gauss’s Law and the superposition

principle. The field will, of course, be directly proportional to Q. We

will idealize the field at the edges of the plates, something that is

permissible if d ≪
√

A and that in any event will not substatively

affect their potential difference.

2. Compute the potential difference between the plates. Like the field,

this will depend on the charge Q transferred from one plate to the

other. Note well that we will always be computing a potential differ-

ence but we will often be lazy and write it as V , not bothering to add

the ∆ as in ∆V . It just makes the algebra a bit simpler, and keeps us

from having to do the same thing for Q vs ∆Q.

3. Form the capacitance, C = Q/V . Note that the Q will always cancel

out and leave us with something that depends on ǫ0 and the geometric

parameters of the plate. Pay close attention to the dimensions and

1Why? Consider the properties of a conductor in electrostatic equilibrium, which

requires perfect cancellation of the fields inside the conductors just inside the opposing

surfaces...
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units, as you will need to be able to tell if your answers to problems

“make dimensional sense” on the fly!

So here are the steps. First we note that the charges distribute them-

selves (approximately) uniformly on the facing surfaces of the two plates,

getting as close together as they can. This forms two equal and opposite

sheets of charge with charge per unit area ±σ = ±Q/A. Applying Gauss’s

Law to either one of them, say the lower, we get:
∮

S
E · n̂dA = 4πkeQinS

|Ez|2A =
σA

ǫ0

Ez =
σ

2ǫ0

= 2πkeσ (4.30)

(pointing away from the sheet of charge above and below it). We get exactly

the same for the upper plate, except that the field points toward the negative

sheet of charge.

We then apply the superposition principle. Above and below both sheets,

the fields produced by the upper and lower charges cancel, as e.g. field from

the upper one points down and the field from the lower one points up, and

the fields have equal magnitudes. In between the plates, the field from the

upper plate points up and so does the field from the lower one – the two

fields add. This we obtain a total field of:

Ez = 4πkeσ =
sigma

ǫ0

(4.31)

directed upwards between the plates, as drawn, and Ez = 0 above and

below the plates. Note well that this field is automagically zero inside the

conducting metal of the plates themselves and in the wires above and below

the plates! Our assumption of charge distributing itself in two uniform sheets

is consistent as it leads to the field vanishing inside the conductor, as we

expect.

At the edges of the plate, the field “bulges” out from between the plates

and forms curved field lines that resemble those of an electric dipole (because

after all, the plates do form a sort of dipole). This “fringing field” rapidly

falls off in magnitude compared to its strength between the plates, and in

this course we will always idealize this by asserting that the field “vanishes”
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Actual Ideal

Figure 4.2: Fringe fields at the edge of an actual pair of parallel plates carry-

ing opposite charge compared to the idealized field that vanishes sharply at

the edge and is uniform in between the plates. Note that the field, and hence

the potential difference, is almost identical in most of the volume between

the plates.

at and outside of the edges of the plates and is perfectly uniform in between,

even though this isn’t precisely true. This situation is portrayed in figure

4.2

With the fields in hand, it is but the work of a moment to compute the

potential difference of the upper plate relative to the lower (or vice versa):

V = ∆V = −
∫ d

0
Ez dz = −4πkeσd = − Qd

ǫ0A
(4.32)

Note that the integral we computed is negative, which simply means that

the upper plate is at a lower potential than the lower plate (consistent with

the field pointing from the lower to the upper plate).

We are ready to form the capacitance. Our potential difference is nega-

tive, but when we form the capacitance we by convention make it a positive

number – obviously the capacitance is symmetric and we can charge the

plates in either direction, so there is no point in giving it a sign. We corre-

spondingly form:

C =
|Q|
|V | =

Q
Qd
ǫ0A

=
ǫ0A

d
(4.33)

Note well the dependence of this archtypical capacitance on the dimensions

of the capacitor. The dielectric permittivity of free space ǫ0 appears on top

and clearly has SI units (above others) of farads per meter. The capacitance

varies with the cross-sectional area of the facing plates and inversely with

their separation. Bigger plates (more area) means bigger capacitance; closer

plates (smaller separation) also means bigger capacitance.
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This is an important enough result that you should probably try to

remember it as well as being able to derive it in detail, following all three

steps outlined above. Note that this is a great problem to practice because

this one problem requires you to use Gauss’s Law for the electric field, the

superposition principle, the definition of potential (difference) in terms of an

integral of the field, the definition of capacitance, and a certain amount of

common sense as far as idealization of the plate fields and the self-consistent

distribution of charge in static equilibrium.

We’ll now quickly indicate the key step for cylindrical and spherical ca-

pacitors, but without presenting all of the steps. Your very first homework

problem is to fill in the missing steps yourself, creating “perfect” deriva-

tions of the capacitance for conducting plates with all three Gauss’s Law

geometries. Don’t forget to draw your own figures!

4.1.2 Cylindrical Capacitor

Given two concentric cylindrical conducting shells of length L and radii a

and b such that δ = b − a ≪ L, find their capacitance.

As before, assume that they are charged up to +Q on the inner and −Q

on the outer by means of our little blue devil dude and his charged-particle

pitchfork. This puts a charge per unit length of ±λ = ±Q/L on the inner

and outer shell, respectively. From Gauss’s Law it is easy to show that:

Er =
2keλ

r
a < r < b

and Er = 0 otherwise (idealizing by neglecting the fringing fiends that might

exist at the ends of the cylinders). Then:

V = ∆V = −
∫ b

a
Er dr = −2keλ ln

(
b

a

)
= − 1

2πǫ0

Q

L
ln

(
b

a

)
(4.34)

This is negative because we integrated from inside out (in the direction of

the field). We could just as easily have integrated from outside in and gotten

a positive potential difference. As always, the only thing that matters is that

the potential must decrease when moving in the direction of the field.

The capacitance is now easy:

C =
Q

V
=

2πǫ0L

ln
(

b
a

) (4.35)
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which has the right units – ǫ0 times a length. Still, it isn’t at all obvious

that this has the limiting form of ǫ0A/d. You are asked to show that it does,

after all, have this form for homework. You might want to remember that

ln(1 + x) ≈ x for x ≪ 1 is the limiting form of the power series expansion

for the natural log function when you get to this part of the first problem.

4.1.3 Spherical Capacitor

Similarly, we can do two concentric spherical conducting shells of radius a

and b, charged to ±Q on inner and outer shell respectively by our intrepid

devil. From Gauss’s Law:

Er =
keQ

r2
a < r < b

and Er = 0 otherwise, with no idealization or fringing fields. From this we

trivially find:

V = ∆V = −
∫ a

b
Erdr

= keQ
{

1

a
− 1

b

}

= keQ

{
b − a

ab

}

=
1

4πǫ0

Q

{
b − a

ab

}
(4.36)

This time I cleverly integrated from the outside in, recognizing that this

would give me a positive potential difference as I integrate against the di-

rection of the field. Now finding the capacitance is easy:

C = ǫ0
4πab

b − a
(4.37)

where I’ve deliberately arranged it this way as a hint as to how to proceed

to answer the “limiting form” part of the first homework problem.

4.2 Energy of a Charged Capacitor

It’s time to compute how much work our little devil dude does shovelling

charge from one plate over to the other. Imagine that he starts with the
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plates uncharged. The first pitchfork full of charge ∆Q that he moves over

is “free”. There is no field to push against yet. The second one, however,

he must push against the field of the first one. The third one he must push

against the field of the total charge of the first two. And so on.

Suppose he has been shovelling for a while on a capacitor C (where the

particular geometry of the capacitor does not matter as long as we know the

capacitance) and at this moment the total charge on capacitor plates is ±Q,

so that:

V =
Q

C
(4.38)

is the potential difference between the plates. Then the next fork full of

charge that he moves over, he will have to do work:

∆W = V ∆Q (4.39)

The work the blue devil does charging up the plates is equal to the change

in the potential energy of the charged plates2. We make the chunk of charge

being moved differentially small, and write:

dU = V dQ =
Q

C
dQ (4.40)

and can easily integrate both sides to find the total energy stored on the

capacitor when we begin with no charge and charge it up to a total charge

Q0:

U =
∫

dU =
1

C

∫ Q0

0
QdQ =

1

2

Q2
0

C
(4.41)

We can thus easily write the total energy stored three ways:

U =
1

2

Q2
0

C
=

1

2
CV 2

0 =
1

2
V0Q0 (4.42)

(where note, we use Q0 = CV0 to go from the first to the second, then use

it again to go to the third).

Of these, the third form is perhaps the most revealing and convenient.

If we plot V (Q) = Q/C, we get a straight line of slope 1/C. The integral of

2Think of the work you do lifting a book over your head being equal to the increase in

its gravitational potential energy – the work done by gravity, or the electric field in the

case of the capacitor, is the opposite of the work done by you or the devil.
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Q Q
dU = VdQ

Slope 1/C

V(Q)

V0

0

0U = Area = 1/2 Q V0

Figure 4.3: The energy as the area underneath the curve V (Q) = Q/C.

dU = V dQ is just the area under this straight line at the particular values

Q0 and V0 = Q0/C. This, in turn, is just the area of a triangle – one half the

base times the height. Which is, as you can easily see in figure 4.3, 1/2Q0V0.

It’s also a good time to remind you that we did an integral of this sort in the

chapter on potential and energy, except this time we didn’t distribute the

charge Q in a ball, we left it in a thin layer on the surface of the capacitor

plate(s) so that it is even easier (and gives us the promised factor of 1/2

instead of 3/5).

4.2.1 Energy Density

A very important question to ask is: just where is all of this energy in the

capacitor stored? We did a lot of work charging up the capacitor, and all

of the work we can get back comes from charge we’ve stored in this way

being driven by the electric field of the charge itself back into equilibrium

as the separated charges neutralize and the field collapses. It is therefore

reasonable to guess that the energy is stored in the electric field we create

as we rearrange the charge in the first place.

Can we write the energy of the capacitor in terms of the field strength?

Yes we can! For simplicity, we’ll as usual in this chapter consider the parallel

plate capacitor to see how, and then note that the result can be shown

to hold in the more general case of varying fields using more calculus in

a later course. In this course, we will limit ourselves to verifying that the

result is consistent with the energy computed for e.g. spherical or cylindrical

capacitors, or with just the energy stored creating a ball of charge like the

one above. This isn’t quite a proof that it is general, but it certainly seems

as though it makes it more likely.
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Consider, then, the energy stored in a parallel plate capacitor and write

it in terms of the electric field strength:

U =
1

2
CV 2 =

1

2

ǫ0A

d
(Ed)2

=
1

2
ǫ0E

2(Ad) =
1

2
ǫ0E

2(Vol) (4.43)

where Ad is the volume of the region in between the plates where the field

is nonzero in our idealized picture (neglecting fringing fields). If we divide

both sides of this equation by the volume, we obtain:

ηe =
dU

dV
=

1

2
ǫ0E

2 (4.44)

the energy density of the electromagnetic field.

Now, as noted, we have no good reason yet to think that this is general

and holds for varying electric fields, but it certainly might, so we try it to

see if it does. Let’s apply it to the case we just solved, the energy of a ball

of uniform charge. We write:

dU = ηedV =
1

2
ǫ0E(r)24πr2dr

U =
∫

dU =
∫

ηedV =
1

2
ǫ0

∫ ∞

0
E(r)24πr2dr

=
1

2
(4πǫ0)





∫ R

0

(
keQ

R3
r

)2

r2dr +
∫ ∞

R

(
keQ

r2

)2

r2dr





=
1

2

1

ke

k2
eQ

2

{∫ R

0

r4

R6
dr +

∫ ∞

R

1

r2
dr

}

=
1

2
keQ

2
{

1

5R
+

1

R

}
=

1

2
keQ

2 6

5R

=
3

5

keQ
2

R
(4.45)

exactly as we obtained at the end of Week/Chapter 3! This is a rather

complicated variation in E, and yet it gives us exactly the right answer.

This is strong evidence that our form is general (although as noted this

evidence is not proof and a proper derivation of this expression is beyond

the scope of this course). You will obtain still more evidence by verifying

this expression for some other arrangements of charge in your homework.
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4.3 Adding Capacitors in Series and Parallel

At this point, we know how to compute the capacitance of our three “simple”

geometries, and know in principle how to proceed for more complicated

cases (although the integrals and so on may be very difficult in the general

case, as always). Once we’ve either computed or, even better, measured the

capacitance of a capacitor, we won’t really care much what the geometry is.

We can start to treat a capacitor as an “object” in its own right, and give it

a symbol to use in designing e.g. electrical circuits. Our “standard symbol”

for a capacitor will be a pair of stylized “plates” viewed edgewise, with a

wire running into each plate.

Let’s use this symbol (and our knowledge that C = Q/V ) and compute

the total capacitance of series and parallel arrangements of capacitors. We’ll

start with series.

+Q −Q

C1 C C32

Ctot

Vtot

1

+Q −Q+Q −Q

V V2 V3

+Q −Q

Figure 4.4: Find the total capacitance of a much of capacitors in series.

In figure 4.4 we see two arrangements. The top arrangement consists

of three capacitors, labelled C1, C2, C3, in a line, so that the tail of each is

connected to the head of the next one by a conducting wire (which appears

as a simple straight line in the figure). This arrangement is called series

as each capacitor “follows” the next. Underneath this is a single capacitor

labelled Ctot.

We need to find what Ctot has to be for these two arrangements to behave

identically in an electrical circuit. That is, when our devil-dude moves a

charge Q from one end to the other end, we want the potential difference

between the ends to be exactly the same. Here’s how you can understand

what goes on.
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Suppose you have a charge +Q on the leftmost plate as shown (which

came from the rightmost plate in either arrangment, leaving behind a charge

of −Q). This pair of charges creates a field in between. However, there can

be no field in the conducting plates and wires in the middle of the top row

– they are in equilibrium! To cancel the field produced by the first plate, a

charge −Q is attracted to the plate facing it. But it cannot come from any

part of the conducting plates or wires in between, it has to come from the

surface of the next plate (leftmost of capacitor C2) charging it up to +Q.

This in turn attracts −Q to the right plate of C2, leaving a charge +Q on

the left plate of C3. At this point (and you should check this) the capacitors

should all be happy. Each one has a charge ±Q on it, with a field confined

to live only between its plates. The field is zero inside the plates themselves

and in the connecting wires. Note that all we really used in this reasoning

is charge conservation – we couldn’t create charges anywhere, only move

charges around – and the idea that conductors in equilbrium can have no

field inside.

Now consider the potential differences across each capacitor on top.

Clearly the potential difference across C1 is V1 = Q/C1, the potential dif-

ference across C2 is V2 = Q/C2, across C3 is V3 = Q/C3. Similarly the

potential difference across our desired total capacitance is Vtot = Q/Ctot,

since it has to have the same charge on its left plate as the arrangement on

top.

Each wire between the capacitors is equipotential, because conductors in

electrostatic equilibrium have no field inside and are thus equipotential. If

we want to find the total potential difference across the top row of capacitors,

we just have to add up the potential difference across each capacitor. You

can think of this as doing a piecewise continuous integral across the wire at

one end (get zero), the gap (pick up potential difference V1), across the next

wire (get zero), across the next capacitor’s gap, (get V2) etc. We end up

with the two equations for the upper and lower arrangements:

Vtot = V1 + V2 + V3 + ... =
Q

C2

+
Q

C2

+
Q

C3

+ ... (4.46)

Vtot =
Q

Ctot

(4.47)

where the dots indicate that there was nothing special about three capacitors

in a row – there could have been any number! We just add the potentials
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across as many as we have (with the same charge on each capacitor) to get

the total potential difference for the series row.

These two forms must be equal for equal Q on the two arrangements.

That’s the definition of the total capacitance of the upper arrangement –

the equivalent single capacitor one could replace the row with and get the

same potential difference for the given Q. Equating them and cancelling the

common Q, we get:

1

Ctot

=
1

C1

+
1

C2

+
1

C3

+ ... =
∑

i

1

Ci

(4.48)

where again the ... and final summation indicates that we just sum over as

many capacitors as there are in the series row. For capacitors in series, the

reciprocal of the total capacitance equals the sum of the reciprocals of the

individual capacitors in series.

Why is this rule so odd? Because in series, we would get a more intu-

itive result by thinking of adding capacitors as if they were volticitors, and

“volticitance” is the reciprocal of the capacitance!

Why is series addition of capacitors important and useful? Putting ca-

pacitors in series reduces the total capacitance (check this for yourself!) and

isn’t a big capacitor better than a small one? Well, yes and no. It turns out

that most capacitors can only support a finite voltage across them before

dielectric breakdown occurs across the intervening gap, shorting them out

and burning them out. If you want to put more voltage than that maxi-

mum across a capacitor in a circuit (and don’t have any rated at the desired

voltage) you can put a bunch of capacitors rated at a lower voltage in series

until you can put the desired voltage across them without exceeding the

maximum for any single capacitor in the series leg. Or, you might have a

bunch of big capacitors in your box and need a smaller one that wasn’t in

your box – adding several up in series can let you save a trip to radio shack!

So how about parallel? When several circuit elements are connected on

both sides by a common conductor, the conductor on each side is equipoten-

tial. That means that all of the elements have the same potential difference

across them. Note that this time I am not bothering to explicitly indicate

the charge −Q1 etc on the other plate of each capacitor. Recall, a capacitor

is presumed to always have equal and opposite charges on its plates unless

someone goes far out of their way to make up a problem with something
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C3C2C1
1

Q Q2 Q3

Ctot
tot

Q
V

V

Figure 4.5: Find the total capacitance of a much of capacitors in parallel.

different.

In figure 4.5 each capacitor in the top arrangement has a potential V

across it. Therefore the first capacitor has a charge Q1 = C1V , the second

has a charge Q2 = C2V , the third Q3 = C3V . The equivalent total capaci-

tance Ctot with the same voltage V across it has a charge Qtot = CtotV on

it. For them to be the same, the total charge store on the top arrangement

has to equal that on the bottom.

This makes the problem of finding the total capacitance really easy!

Qtot = Q1 + Q2 + Q3 + ...

CtotV = C1V + C2V + C3V + ...

Ctot = C1 + C2 + C3 + ... =
∑

i

Ci (4.49)

where we note that our rule works for any number of capacitors in series

and write the final rule accordingly. Capacitors in parallel add!

We can understand these two rules intuitively in the following way. Ca-

pacitors in parallel increase the effective area where charge is stored, and

hence just add. Capacitors in series increases the effective separation of the

plates for a given area, and hence reduce the capacitance, adding recipro-

cally.

Before moving on, it is important to make one final observation. Capac-

itors (as we shall see) behave in electrical circuits the way springs behave

in mechanical systems – they store energy and exert a restoring force on

the charges that are stored that is proportional to the charge. Note well the

analogy:

Fx = −ksx (4.50)
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V = − 1

C
Q (4.51)

where 1/C behaves like a “spring constant” and where the minus sign in-

dicates that the potential created opposes the addition of more charge (we

ignore this in the definition of C, but used it in the computation of U). If

one computes the effective spring constant of springs in parallel or in series,

one obtains very similar results. Springs in parallel add, with a total spring

constant equal to the sum of the spring constants. Springs in series add as

reciprocals, where the total spring constant is less than the smallest constant

of the springs in the series.

Later we will learn that this analogy is nearly exact, after we discover

the quantities which behave like “friction” or “drag forces” in circuits and

even discover a quantity that behaves like a “mass”. In the end we will find

ourselves solving an equation that is identical in form to the damped, driven

harmonic oscillator studied last semester, only this equation will yield the

currents flowing in the circuit as a function of time. At that time it will

be very fruitful to be thinking “the capacitor is like a spring” to help us

understand what is going on.

4.4 Dielectrics

We have taken some care to study electric dipoles as the most common

arrangement of matter that leads to an electric field, given the generally

neutral character of matter. Indeed, all of the capacitors studied above

can be thought of as stylized “dipoles” storing energy by separating charge.

We have also observed that conductors placed in an electric field polarize

and create a (mostly dipolar) arrangement of surface charge that completely

cancels the electric field inside. But what of insulators? They too are made

up of neutral atoms and molecules, but lack the “free charges” that carry

current, as the electrons associated with each molecule prefer to stay home

instead of wandering off long distances under the influence of any vagrant

electric field.

To understand what a neutral atom does in the presence of an electric

field, it will be very useful to have a model of an atom. We know that

an atom consists of a tiny, massive nucleus with a charge +Ze where Z is
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the atomic number of the atom. Surrounding this nucleus is a “cloud” of

Z electrons (for a total charge of −Ze resulting in an electrically neutral

atom), bound to the nucleus by the electrostatic force. We rather expect

the neutral atom to be spherically symmetric in its distribution of charge so

that there is little or no electric field outside of the charge cloud.

We still don’t know all of Maxwell’s equations, but when we do, we

will be forced to confront the unpleasant truth that it is impossible for the

electrons to be moving in “convenient” planetary-style classical orbits and

for Maxwell’s equations to be true. Of course we also don’t know how to

solve the associated quantum problem. Se we might as well construct the

simplest possible model and hope that it provides us with some insight.

4.4.1 The Lorentz Model for an Atom

The model we will build is a to imagine the atom to consist of a pointlike

nucleus surrounded by a uniform ball of negative charge with a total charge

of −Ze and a radius a (where a is around one angstrom). This is called

the Lorentz model for the atom, and works surprisingly well – so much so

that physics graduate students still use a dynamical version to understand

dielectric polarization and dispersion! See figure 4.6:

+Ze

−Ze

a

electron cloud

Figure 4.6: An “atom” consisting of a tiny massive nucleus surrounded by

a uniform ball of negative charge modelling the “electron cloud”.

Now we can easily compute what will happen when we place this atom

into a “weak” electric field! We imagine that the field doesn’t change the

shape or size of the electron cloud but simply diplaces the nucleus away from

its equilibrium position in the center to a new equilibrium where the force
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exerted on it by the external electric field E0 balances the force on it due

to the electron cloud:

+Ze

−Ze
electron cloud

E

−ZeE

+ZeE
0

atom

Figure 4.7: An “atom” polarized by an external electric field.

The upward field is E0 in the +z direction. The electric field of a uniform

distribution of −Ze in a ball of radius a is (see above or better yet, use

Gauss’s Law to derive it again for yourself):

Eatom =
−3ke(Ze)z

4πa3
(4.52)

(down). Thus the forces balance when:

+ ZeE0 −
3ke(Ze)2z0

4πa3
= 0 (4.53)

We can then solve for the dipole moment of the polarized atom:

pz = (Ze)z0 =
4πa3

3ke

E0 (4.54)

There are two very important things to note about this. One is that

the polarization of the model atom is directly proportional to the applied

field. Second, since each atom has a dipole moment of this magnitude,

one can compute the average dipole moment per unit volume by dividing

this estimate by the approximate volume occupied by each polarized atom

in a solid or liquid or gas. We call this “dipole moment per unit volume
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the polarization of the material and give it the (vector) symbol P . If (for

example) we imagine a simple cubic lattice of spherical atoms, there is one

atom per cube of side 2a, with volume 8a3. Thus:

Pz =
pz

8a3
=

16π2ǫ0

24
E0 =

2π2ǫ0

3
E0 (4.55)

where E0 is the field in the immediate vicinity of the atom.

There was nothing special about our guestimate of a volume of 8a3 per

atom, and of course the actual field will probably not be exactly what we

compute above in the model, but we nevertheless expect that the restoring

force will be linear in the charge displacement for weak fields because of the

usual argument, a Taylor series expansion of the energy about the equilib-

rium position gets a leading possible contribution from the quadratic piece,

corresponding to a linear restoring force.

Overall, we expect quite generally that an insulating material will polar-

ize, that the polarization for weak to moderate field strengths will be linear

in the field, and that the order of the polarization density will be some pure

number times ǫ0E. We give that dimensionless number a special name and

its own symbol – we call it the electric susceptibility χ such that:

P = χǫ0E (4.56)

Note well that the units of polarization are coulombs per square meter – those

of charge density. It remains to find a surface for which the polarization tells

us a surface charge density.

χ will, in general, be characteristic of the material; it will depend on

whether the material is solid or liquid or gas (gases usually have a very

weak polarization response because of the large volume occupied per atom)

and of course upon the neglected details of the material in our model – the

quantum structure and/or molecular structure of the material. We are only

interested in the static limit of the susceptibility in an intro course, but

it really depends on the time dependent behavior of the electric field, on

temperature, and much more. It takes the charge in a real material time

to respond to changes in the applied field and response times depend on

the natural frequencies of the charges that are responding. Many physicists

have spent their entire careers studying quantities that amount to general

susceptibilities for various materials (which can have very odd properties

indeed!)
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4.4.2 Dielectric Response of an Insulator in an Elec-

tric Field

Now that we understand what each atom in an insulating material does when

the material is placed in an external field, let’s try to understand what the

material as a whole does – in particular, what happens to the electric field

inside, which is now the sum of the external field and the field produced by

all of those dipoles!
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Figure 4.8: A lattice of atoms polarized by an external electric field.

In figure 4.8, we see an imaginary lattice of atoms, all polarized by an

external field in the direction indicated. Note well that we’ve erased the

details of even our simple model – we represent each atom as a neutral

object with a small dipole moment where “some” charge is split by “some”

distance by the general process derived and discussed in the previous section.

We’ve drawn several possible Gaussian Surfaces inside the material.

Now let use Gauss’s Law. On the inside, if we draw any Gaussian Surface

S large enough to contain “many atoms”, since the atoms are neutral the

average charge inside will be zero3. Note that even where it contains an

3If it contained an integer number of whole atoms, it would be exactly zero. If the

surface cuts through atoms to include or exclude some of their charge, the surplus charge

is limited to be some fraction of the charge on the atoms on the surface. But the number

of atoms on the surface scales with the characteristic length scale of the volume D like D
2

where the volume inside the surface scales like D
3, so the average charge scales smoothly



4.4. DIELECTRICS 221

extra charge or two of either sign by splitting an atom, those charges are

almost always paired with charges above or below on the neighboring atoms

and the bulk remains neutral, with an average charge density ρ ≈ 0. The

interior atoms, then, do not directly modify the average field.

This is not true on the surface. If we draw a Gaussian surface Stop so

that it just contains the upper half of the polarized atoms we see that it

contains a nonzero positive charge; inside a similar surface Sbottom on the

lower surface there is an equal and opposite negative charge. These charges

make up a surface charge layer with a surface charge density ±σ that is

directly proportional to E, the net field in the medium.

Let us understand this in this particularly simple case, where the up-

per and lower surfaces are conveniently perpendicular to the field and the

cross-section of the material is rectangular. The total dipole moment of the

system is given by the total charge on the upper or lower surface, times that

thickness (recall that all the charges in between sum to zero). That is:

psystem = Qsurfacet = (σA)t = PV = P (At) (4.57)

(all in the direction of the field) or clearly:

σ = P (4.58)

This argument is actually more general than one might suspect – if you

think about it in terms of calculus you can see why it would be true for less

conveniently shaped objects in a uniform field and how it might be changed

to accomodate an angle between the polarization density direction at a sur-

face and the normal to the surface there. In any event, the modifications

of the field we deduce from this below are completely general and hold for

arbitrary objects in nearly arbitrary fields.

Now let’s imagine this figure redrawn on a length scale where atoms are

tiny – too small to be seen in the figure (as they are in any macroscopic

chunk of matter large enough to be seen with the naked eye). When we

consider the field between the surface charge layers, the block of matter

starts to look like, and behave like, a capacitor internally, with a reaction

field Er that flows from the positive to the negative charge layers in the

opposite direction to the applied external field. This situation is portrayed

in figure 4.9.

to zero as the volume gets larger.
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+σ

−σ

E = E0/εr

Figure 4.9: The polarized material generates a reaction field Er that opposes

the applied field and partially cancels it, making the total field in the ma-

terial smaller. A dielectric material thus reduces the applied electric field

inside the material.

Applying Gauss’s Law to the induced surface charge layers in this simple

rectangular geometry, we expect:

Er =
σ

ǫ0

(4.59)

The total field is then:

E = E0 −
σ

ǫ0

= E0 −
P

ǫ0

= E0 − χE (4.60)

We can rearrange this into:

E(1 + χ) = E0 (4.61)

and solve for E, the field inside the material, in terms of E0, the applied

external field:

E =
E0

1 + χ
=

E0

ǫr

(4.62)

where we have introduced the relative permittivity

ǫr = (1 + χ) (4.63)
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as a dimensionless constant characteristic of the material. Note that E ≤ E0

because χ ≥ 0. This also means that ǫr ≥ 1! The electric field is reduced

inside a dielectric – this is what the term “dielectric” means!

Note Well! Most introductory physics books written for college or high

school physics courses omit any explicit mention of the susceptibility (leaving

students with quite a chore later if they go on in physics and have never seen

it the next time they take electricity and magnetism) and use κ to represent

1 + χ and call it the dielectric constant for the material but this usage is

deprecated because in general neither ǫr nor κ are constant and because it

encourages confusion with the permittivity of the material:

ǫ = ǫrǫ0 = (1 + χ)ǫ0 (4.64)

(or equivalently, ǫr = ǫ/ǫ0 = 1 + χ). The proper use of the permittivity in

defining the electric displacement is beyond the scope of this course. We

will therefore use ǫr in this book.

This may seem very confusing to you, so let me review. ǫ0 is functionally

equivalent to ke, a constant of nature that connects the units of charge and

length to those of field and force at the microscopic scale of elementary

particles (or in a vacuum), where of course ke = 1/(4πǫ0). The presence of

bulk neutral matter modifies the electric field E0 produced by bare/isolated

charges qi that would be there in a vacuum; the field polarizes the material,

which creates a reaction field that strictly reduces the applied field inside

the material. The polarization density (dipole moment per unit volume) of

the medium is related to the net field in the medium E by P = χǫ0E. The

net field itself is related to the applied field by E = E0/ǫr where ǫr = 1+χ.

Finally, one can equally well forget about χ and ǫr altogether and define

the permittivity of the medium directly such that ǫE = ǫ0E0, which can be

true only if ǫr = ǫ/ǫ0 (which is, come to think of it, pretty simple). This last

form suggests that the product of the field in a material and its permittivity

should be constant as a field produced by any source propagates from one

material to another! Perhaps we should define the electric displacement:

D = ǫE (4.65)

This form proves to be most useful in more advanced treatments of electricity

and magnetism, but is beyond the scope of this course except for being
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mentioned in passing for “culture”, to plant a seed or two that might flower

later if you continue studying physics.

All clear now? Good...

4.4.3 Dielectrics, Bound Charge, and Capacitance

At this point you hopefully understand how a dielectric insulator is polarized

by a field, how the polarization appears as a surface charge layer, how the

surface charge creates a reaction field that opposes the applied field and

reduces it inside the dielectric so that we can wrap all of that up in the

simple relation:

Ematerial =
E0

ǫr

(4.66)

where ǫr is the relative dielectric permittivity of the material. It seems like

a good time to list a few useful relative permittivities in a table:

Material ǫr Dielectric Strength (MV/m)

Vacuum 1 20 - 40

Air 1.00006 0.4 to 3.0

Paper 3.5

Silicon Dioxide (Quartz) 3.9

Glass 3.7 to 10 9.8 to 13.8

Water 80 30 (Ultra-pure)

Polyethylene 2.25

Ethylene Glycol 37

Strontium titanate 310

Barium strontium titanate 500

Barium titanate 1250

Table 4.1: Table of relative dielectric permittivities at room temperature

(20◦ C) and some associated dielectric strenths.

So fine, so what are dielectrics good for? Dielectric insulators are often

inserted between the plates of capacitors! Dielectrics have three purposes in

capacitor design:

1. They mechanically separate the plates.
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2. They increase the capacitance.

3. They prevent dielectric breakdown (most dielectrics have a dielectric

strength greater and more reliable than that of air, which is relatively

small and varies with pressure and humidity).

You can easily experience all three benefits by building your own capac-

itor. Take a roll of aluminum foil, and cut two square pieces 10 cm by 10

cm. Use tape to fasten an unbent paper clip to each one. Cut a piece of

white printer paper 12 cm by 12 cm.

For grins, try setting up the two pieces of foil so they are separated by

a perfect 0.01 mm air gap. Don’t worry, if you wreck the foil you can cut

new pieces. Can’t do it, right? And if you did, somehow, manage it, the

first time you put an equal and opposite charge on the ”plates” they would

attract, and being as how they are made out of foil, they’d bend until they

touched, pop, end of capacitor.

Now just lay down one sheet of foil on the table. Cover it (symmetrically)

with the paper. Top it with the second piece of foil. Tape the foil to the

paper on both sides. Congratulations! You’ve made a capacitor! When

the foil is pressed tight to the paper, the gap d is roughly 0.01 mm (a

ream of 500 sheets of printer paper is roughly 5 cm thick) and has an area

A = 0.12 = 0.01 square meters. The paper prevents the paper from touching

and is more resistant to arcing than 0.01 mm of air!

To compute the capacitance, we have to solve the parallel plate capacitor

problem all over again. Suppose you put a charge ±Q on your capacitor.

It has an area A, so σ = Q/A and Gauss’s Law tells you that the field in

between the plates if there were no paper there would be:

E0 = 4πǫ0σ =
σ

ǫ0

(4.67)

However, now there is a dielectric in that space. The field is modified to

become:

E =
E0

ǫr

=
σ

ǫrǫ0

=
σ

ǫ
(4.68)

Hmmm, seems as though the dielectric permittivity might be useful in this

context, but we will restrain ourselves. Instead we will compute as usual

the potential difference:

V = −
∫ 0

d

Q

Aǫrǫ0

dz =
Qd

Aǫrǫ0

(4.69)
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and the capacitance:

C =
Q

V
= ǫr

ǫ0A

d
= ǫrC0 (4.70)

where C0 is the capacitance of the same geometry without the dielectric!

Recall that ǫr > 1. We see that the presence of a dielectric between

the plates increases the capacitance compare to a vacuum, or air, between

the plates, in addition to mechanically separating the strongly attracting

plates and prevenint dielectric breakdown. So what (approximately) is the

capacitance of our homemade capacitor?

That’s left as an exercise, a few seconds work with a calculator.

Before we move on, we need to do one final thing: relate the free surface

charge that we put on the actual conducting plates of our parallel plate

capacitor with a dielectric to the bound surface charge that appears on the

polarized dielectric in the resulting field. We can easily do this with Gauss’s

Law or equivalently with our knowledge of the free field and the reaction

field in terms of the surface charges.

+ + + + + + + + + + + + + + ++

+ + ++ + + + +

+σ

−σ

−σb

+σb
f

f

rE = E  /ε0

Figure 4.10: Bound and free charge in a capacitor filled with a dielectric.

In figure 4.10 we can write the field in the dielectric in two ways:

E =
E0

ǫr

= E0 − Er (4.71)

where recall that Er is the reaction field generated by the surface charge σb,

which is also equal to the local polarization density at the surface. If we

write out the fields E0 and Er in terms of the charges that produce them

(basically using Gauss’s law on the two surface charges), we get:

4πkeσf

ǫr

= 4πkeσf − 4πkeσb (4.72)

If we cancel out the common factor of 4πke, we get:

σf

ǫr

= σf − σb (4.73)
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or

σb =
(
1 − 1

ǫr

)
σf

=
(

ǫr − 1

ǫr

)
σf

=

(
−χ

1 + χ

)
σf (4.74)

where the last form is in terms of the material’s susceptibility instead of the

more commonly used ǫr.

We see that the bound surface charge on the dielectric σb is closely related

to the free surface charge σf on the actual plate of the conductor. Note well

that Qf = σfA is the actual charge stored on the conductor, but the presence

of the bound charge layer reduces the field that charge produces across the

dielectric and therefore reduces the potential difference between the plates of

the capacitor for any given charge. This is, by definition, an increase in the

capacitance of the arrangement – more charge stored per volt of potential

difference.

Although we’ve done all of our derivation and examples in the cases

above in the context of a parallel plate capacitor, they hold in the general

case for fields in materials, even where the fields vary. The electric field in

a medium is always given by E = E0/ǫr, even where the field is varying as

a function of coordinates. We could show this (if our lives depended on it)

by considering the derivation above as valid for differentially small volumes

and using some calculus to deal with the variation, or you can take my word

for it for now and (possibly) prove it later, in a more advanced class. You’ll

have homework problems that require you to deal with e.g. dielectrics in the

space between the shells of a cylindrical or spherical capacitor, and you’ll

need to know this then.

As a last remark, consider field energy density inside a dielectric. If

we recapitulate the argument for field energy density for a parallel plate

capacitor filled with a dielectric, we get:

U =
1

2
CV 2 =

1

2

ǫrǫ0A

d
(Ed)2 (4.75)

where E is still the field between the plates, in this case the field inside the

dielectric. Hence

ηe =
dU

dV
=

1

2
ǫE2 (4.76)
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where ǫ = ǫrǫ0 is the dielectric permittivity of the material. This is the

correct form of the energy density to use inside a dielectric material.

This is all we need to know about dielectrics, although the problems

will challenge you with half-filled capacitors and the like to make sure you

understand it will enough to be able to use it.

4.5 Batteries and Voltage Sources

Up to now, we haven’t really considered how the capacitors in the sections

above got charged up. Our model of matter is electrically neutral atoms and

molecules, and while conductors have lots of mobile charge we don’t know

how to grab that charge and push it around yet. Or rather, we do – one way

to push it around is to use the electric field itself to do the pushing!

This is how one charges things like amber and glass or clouds by rubbing

them. The fields of the atoms rub together and knock off charges and

transfer them preferentially in one direction or the other. But another way

of grabbing things with fields is to exploit the electrostatic field that holds

atoms and molecules together in chemistry – a battery4.

4.5.1 Chemical Batteries

It is probably instructive to look at the actual chemical reaction associated

with at least one specific kind of battery, even though one can make a cell

out two different kinds of almost any metal stuck into an electrolyte solution

(e.g. an acid). So let’s look at the two reactions associated with a lead-acid

battery, the kind you probably have in your car.

A lead-acid battery consists of two plates. The anode (positive pole) is

made out of ordinary lead. The cathode (negative pole) is made of lead

coated with lead oxide. Both are immersed in a solution of water and sul-

4Technically, a single device that generates a voltage in this way is called a cell – a

battery is composed of several cells – but we’ll just call anything that generates electricity

a battery because nobody speaks of “flashlight cells” when they go to the store to get a

pack of D’s, they say “I’m going to get some batteries for the flashlight”.
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phuric acid. At the anode 5 :

Pb + HSO4 → PbSO4 + H+ + 2e−

while at the cathode:

PbO2 + HSO4 + 3H+ + 2e− → PbSO4 + 2H2O

The electrolyte provides both the (ionized) sulphuric acid required at both

ends and a conducting pathway for the electrons to be transported from the

anode to the cathode. Energy is released by this reaction; the end products

are more stable than the original ones so the reaction is favored.

However, once a few atoms in the anode have given up their electrons and

they’ve been pulled over to the cathode, the reaction stops! The poles are

then charged up and it costs too much work to remove any more electrons,

more than one gains in the chemical reaction. The anode is then charged up

positively (as an electron donor to the reaction in the battery itself) while

the cathode is charged up negatively (having received the electrons). The

top and bottom plates behave just like the plates of a capacitor and maintain

an electrical potential difference of around 2 volts (per cell in a battery of

six cells, in a typical twelve volt battery in a car) between them that just

balances the chemical potential of the arrangement.

There is, however, an important difference. If one provides a conducting

pathway between the anode and the cathode outside of the solution, then

the negative charge surplus on the cathode can flow back over to the anode

and participate in another reaction, then another, then another. Charge

continues to be driven in this way until all of the lead and lead oxide is

converted into lead sulphate and water. For every mole of lead converted

into lead sulphate, two moles of electrons have to move from cathode to

anode. That is 1.2 × 1024/1.6 × 1019 = 0.75 × 105 Coulombs of charge,

enough to drive an Ampere of current (one Coulomb/second) for around a

day. A mole of lead is around 207 grams, which weighs around a half a

pound. Allowing for the electrolyte and sulphuric acid, roughly a pound of

battery will drive a load of two watts (one ampere at two volts) for just

5Wikipedia: http://www.wikipedia.org/wiki/Lead-acid battery. There are more com-

plete ways of writing out the chemical reaction that show more of what is going on with

the water in all of this, but this is sufficient. Either way, you are of course encouraged to

visit the link and read more about it.

http://www.wikipedia.org/wiki/Lead-acid battery
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under a day (where we’ll work out energy relations below to justify this in

a moment).

A second advantage of this particular battery is that it is rechargable. If

one simply places a voltage across the cell that exceeds its terminal voltage,

charge flows the other way, reversing the reaction and turning lead sulphate

back into lead or lead oxide. By careful design, one can charge and dis-

charge the battery many times before too much lead sulphate falls off of the

electrodes or crystalizes out across the space in between the terminals and

shorts out the batter, at which time the battery must be remanufactured

(to avoid dumping toxic lead into the environment).

Vehicle batteries, of course, weight many pounds – as many as fifty or

sixty – and have six cells, and therefore can drive bigger currents at higher

voltages, currents that can easily be large enough to be dangerous. In fact,

a car battery 6 , and can easily kill you if you handle it carelessly by the

poles with e.g. wet hands or cuts on your fingers! I’ve gotten “hit” this

way myself handling a car battery by the poles in a rainstorm, and it hurts!

This kind of battery can (multiplying out the coulombs, volts, and seconds)

do around 150,000 joules of work per pound in the ideal case, probably less

than half this in the real world case.

However, all batteries have a finite rate at which they can do work,

determined by the physical limitations on the rate at which the chemical

reaction can proceed. So even if one shorts out a battery with a perfect

conductor, one won’t get an infinite current at a constant voltage. As the

current goes up, the voltage goes down, until at some point all of the energy

is released as the heat of reaction in the electrolyte and none to the battery

load. Some batteries are designed to provide a fixed voltage and low current

for a long time; others are designed to produce a fixed voltage and a large

current for a short time. Car batteries in particular are usually pretty good

at both.

6Internet: http://www.darwinawards.com/darwin/darwin1999-50.html Not just a car

battery. You can kill yourself with a nine volt transistor radio battery, and one of my

favorite Darwin awards went to a Navy officer who demonstrated this the hard way after

being warned about the danger.

http://www.darwinawards.com/darwin/darwin1999-50.html 
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4.5.2 The Symbol for a Battery

All of this is too complicated for intro physics, of course. We want to start

by idealizing a battery and replacing it in all circuits we consider with a

single simple symbol. The symbol we will use is
V

+

, where V is the

nominal potential difference maintained by the battery between its terminals

(its “pole voltage”) and where the + sign (and longer plate) indicate the

anode, the side of the battery from which positive current flows (where we are

suffering from Franklin’s Mistake, because the actual motion of charge in the

chemical reaction above is negative electrons flowing the other way). Again,

the battery behaves like an “inexhaustible capacitor” in an electrical circuit,

increasing the potential by V as one moves from the cathode (small plate)

to the anode (large plate) in any circuit diagram containing this symbol.

Our ideal battery never runs out of power, has no limitations on the

amount of current it can provide at its rated voltage, and its voltage is

rigorously constant. None of these is going to be true in practice for real

batteries, and after we define resistance and work out Ohm’s Law below,

we’ll revisit the battery and see how we can compensate for these features

by assigning an internal resistance r to the battery itself. This internal resis-

tance will quite naturally cap the power and current the battery can provide

as one cranks up the load on it. It still doesn’t indicate the way voltage and

current depend on things like temperature, the degree to which the battery

is discharged already, and how old the battery is – all of these things and

more affect real batteries. But we will do quite well with our idealized bat-

tery, and even better with our idealized battery with an internal resistance

– the rest is a mix of more advanced physics and associated engineering and

doesn’t change the idea, only the details.

Before we move on to resistance, it is worth pointing out that battery

physics and engineering are important in our society, and becoming more

important as we move in the direction of renewable energy sources, hybrid

or flat-out electric cars, rechargable electronic devices galore and more. One

of the biggest obstacles to solar or wind generated power is the difficulty of

storing power generated when the sun is high and bright or when the wind

blows for use at night or on a calm day. It could easily require hundreds of

pounds of lead-acid batteries per person just to store the power needed for a
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single night from sunlight collected during the say. The inventor of a really,

really compact and efficient way of storing energy would both make a well-

deserved fortune from the idea and would enable any number of beneficial

changes to our energy hungry society. In the meantime, batteries have many

problems: They are bulkly, massive, they get hot while operating, they are

made with toxic materials, they are difficult to dispose of, they wear out,

they can explode if overdriven and they tend to be expensive!

4.6 Resistance and Ohm’s Law

Fine, so now we have a battery. We place a chunk of conducting matter be-

tween the poles/terminals of the battery, and what happens? Well, current

flows, that’s what happens! We have created a situation where a conductor

is not in electrostatic equilibrium, and charge moves in time through the

conductor in response to the force created by the battery, with energy re-

leased in the process. This is actuall fine, and we might even say, it’s about

time that we got out of statics (which are kind of boring, as not much hap-

pens, right?) and into dynamics, where things happen. All we need, then,

is to come up with a model for what goes on inside the conductor as the

current flows, and we can start to analyze dynamical electrical systems once

again, which has to be more interesting than just thinking about a charged

capacitor sitting around all do doing nothing much but just storing charge.

A microscopic picture, of course, begins with atoms, each with a heavy

nucleus and surrounded by electrons, arranged in some sort of solid lattice,

with some of the electrons “free” to move within the lattice. Free to move,

however, is not the same thing as non-interacting. Electrons that move

through the lattice interact with the lattice and transfer their momentum to

the lattice so that (in equilibrium) their average velocity is zero. The lattice

therefore exerts a kind of drag force on the electrons that brings them back

to equilibrium.

The simplest model for conduction of electrons through a material that

“resists” their motion via a drag force caused by the collision of the moving

electrons with each other and the underlying atoms in the lattice is one

with a linear drag force – one that is proportional to the average velocity of

transport of the electrons through the resistive lattice. If the electrons are



4.6. RESISTANCE AND OHM’S LAW 233

being pushed through the conductor by some constant force, then, they’ll

arrive quickly at a terminal velocity that is proportional to that force, where

the forces balance.

4.6.1 A Simple Linear Conduction Model

vd

vd

vd

vd

vd

vd

vd

∆ t

Aq
q

q

F = b F = qE

q

Figure 4.11: The simple linear model for conduction in a resistive lattice.

In figure (4.11) we see a model for a conducting wire. This wire has a

cross-sectional area of A and contains n charges per unit volume, each with

charge q. An electric field is created within the wire by a battery (not shown)

that exerts a force to the right of F = qE. The wire resists the flow with

a “drag force” bvd to the left, where vd is the so-called “drift velocity” that

is the average terminal velocity of charges in the conductor. Mind you, in a

typical normal metal our charge carriers are electrons and all of the vectors

are reversed for a current and field that still go from left to right.

We are interested in computing the current: the charge per unit time

that passes any point on the wire under the influence of the force created by

the battery (or other source of potential difference across the wire). From

the picture we can see that all of the charge ∆Q in the volume between the

dashed circle and the circle at the right passes through the cross-sectional

area A perpendicular to the direction of motion in a time ∆t. So how much

is that?

∆Q = nqvdA∆t (4.77)

which we read as “the number of charge carriers per unit volume times the

charge per carrier times the volume”. This means that the total charge per

unit time is:

I =
∆Q

∆t
≈ dQ

dt
= nqvdA (4.78)
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In passing we note that the SI units of current are Amperes (or Amps

for short) where

1 Ampere =
1 Coulomb

1 Second
(4.79)

The result I = nqvdA will occur again and again when we pass from a

microscopic description of e.g. magnetic forces on charges to macroscopic

forces on current carrying wires, so keep it in mind! It isn’t just a transient

“use once” result; it is the key to understanding many things.

4.6.2 Current Density and Charge Conservation

Note well that in the picture above, we determine the current that passes a

point in the wire by evaluating how much charge passes through the surface

perpendicular to the charge flow that passes through the point! This picture

should remind you of something – it is very similar to the pictures we used

to talk about electric flux.

The problem we face is that there are many surfaces that pass through

any given point, so talking about how much charge passes a point on the wire

isn’t very well defined. Using arguments identical to those we worked out

in our discussion of electric flux, if we want the current through a surface

perpendicular to the direction of motion of the charge to be the same as

the current through a second surface cut through the wire that touches the

same point but is tipped at an angle θ relative to the direction of the current,

the area A increases to the area A′ = A/ cos(θ). In order to get the same

current I from these two surfaces, we need to compensate for the cosine on

the bottom with one on the top:

I = nqAvd = nq
A

cos(θ)
cos(θ) = nqA′ cos(θ) (4.80)

We can get the cosine out of a dot product between the local direction of ~vd

and n̂, a normal to the surface A or A′:

I = nqAvd · n̂ = nqA′vd · n̂′ (4.81)

Finally, to make this more general we can allow curved surfaces and

flows of charge that are not all parallel, and add up the current that flows
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through each tiny differential chunk of area on a completely arbitrary surface

cut through the conductor:

IC =
∫

S/C
nqvd · n̂dA =

∫

S/C
J · n̂dA (4.82)

where S/C is read “through the surface S bounded by the closed curve C

J = nqvd (4.83)

is called the current density. In other words, the current through an open

surface S bounded by a closed curve C is the flux of the current density

through that surface.

Now suppose that one has a single curve C and two open surfaces that

are bounded by it, say S1 that cuts straight across the wire and S2 that is

ballooned out so that it resembles a fishing net, where S1 +S2 between them

form a closed surface S containing a volume V in between them. If current

is flowing in a “steady state” way, the current through these two surfaces

must be equal – the current through the first must equal the current through

the second. However, if we put e.g. a capacitor plate in between the two

surfaces, current may not be flowing in a steady state way – current may be

building up inside the closed surface S. In that case the difference between

the current through S1 and the current throught S2 is the rate at which

charge builds up inside V :
∫

S1

J · n̂dA −
∫

S2

J · n̂dA =
d

dt

∫

V/S
ρedV (4.84)

We can get rid of the relative minus sign by changing one of the two normal’s

so that it doesn’t point in the left-to-right direction through the surface. If

we make the normal the outward directed normal for the closed surface

S = S1 + S2, that swaps the direction of the normal through S1, so:

−
∫

S
J · n̂dA =

d

dt

∫

V/S
ρedV (4.85)

which we rearrange as:
∫

S
J · n̂dA +

d

dt

∫

V/S
ρedV = 0 (4.86)

This equation is very important! It is, in fact, a law of nature, based on

substantial empirical evidence. It is the law of charge conservation written
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in mathematical form. Basically, it says that the amount of charge inside any

volume bounded by a closed surface can only decrease (increase) if charge

flows out (or in) through the surface! The net charge inside cannot just poof

into or out of existence, it has to get there by coming in from outside7.

If/when you take a more advanced course in electromagnetism, one of

the very first things you will do is apply the divergence theorem to this law

and Gauss’s Law and convert them to vector differential form. We leave

the algebra for the conversion to then (although you may have done it in

the starred homework problem in the Gauss’s Law chapter earlier) but put

down the result here for completeness. The law of charge conservation in

differential form is:

∇ · J +
∂ρe

∂t
= 0. (4.87)

Again, this section is enormously important for things we will learn later.

In fact, we will discover that Maxwell’s equations are called Maxwell’s equa-

tions because Maxwell more or less discovered an inconsistency in the treat-

ment of current in the original form of one of the laws that could only

be made consistent by adding a term to it to account for the implica-

tions of charge conservation and the arbitrariness of the infinity of surfaces

“through” which charge can flow that are all bounded by a single closed

curve C.

Students are encouraged to “play Maxwell” as they go along, and see if

they can discover and fix this inconsistency all by themselves without looking

ahead to see how it is done. You now have all the information you need to

do so but, of course, the equation that needs to be repaired. When you

cover it, your instructor may point it out and suggest that you give it a try.

4.6.3 Ohm’s Law

At last we are set to deduce Ohm’s Law. In our simple conduction model

with its linear resistive “drag” force, we noted that the (terminal) drift

7There is another way charges can appear inside the box that doesn’t violate this law –

they can be created or destroyed a pair at a time in such a way that the net charge of the

pairs remains zero. This actually happens in high energy quantum mechanical collisions

– making it beyond the scope of this course – but the creation of a positron-electron pair

does not violate net charge conservation.
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velocity vd had to be proportional to the applied electric field E. We have

just seen that the magnitude of the current density is proportional in turn

to vd. We can wrap all the constants of proportionality – which include

b, n, q – into a single parameter called the resistivity. Unfortunately the

common symbol for resistivity is ρ, which you can easily confuse with the

charge density. I’ve tried pretty hard to label the latter ρe, read “the density

of ELECTRIC charge” and will continue to do so whereever there is any

chance of confusing the two. We expect the velocity/current density to go

down when the resistivity of the material goes up, so:

J =
1

ρ
E (4.88)

This equation is sometimes written in terms of the reciprocal of the resis-

tivity, the conductivity σ (which once again collides with prior usage for the

surface charge density, sorry):

J = σE (4.89)

with σ = 1/ρ.

The resistivity is a characteristic of the material of the conductor in

question, and depends on many things. Its most important dependence is

probably upon temperature – resistivities of most materials vary approx-

imately linearly with temperature, increasing as the (absolute) tempera-

ture increases, but the variation is typically slow and can be considered

nearly constant over the small range of temperatures we typically live in,

but this will definitely matter if one is designing circuits that have to func-

tion across a wide range of temperatures. It also varies with pressure and

other related paramters. In this class we won’t spend a lot of time or en-

ergy thinking about this weak variation – I will simply link in Wikipedia:

http://www.wikipedia.org/wiki/resistivity so you can read about it in far

more detail than I can easily fit in here, complete with a nice table of tem-

perature coefficients and a bit of theoretical explanation.

Consider a uniform conductor with resistivity ρ, length L, and cross-

sectional area A. We can rearrange the equation above as:

E = ρJ (4.90)

The electric field and current density inside of this volume are uniform (all

of the charges must move to the right at the same speed or charge would

http://www.wikipedia.org/wiki/resistivity
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build up somewhere in the volume). If we take the flux through a normal

cross-section of both sides we get:

EA = ρJA = ρI (4.91)

which we can rearrange as:

E =
ρ

A
I (4.92)

If we integrate both sides a second time in the direction dl from one end of

the conductor to the other in the direction of the current, we get:

∆V = EL =
ρL

A
I (4.93)

where ∆V is the amount the electric potential decreases going from one side

of the conductor to the other in the direction of the field/current.

Finally, we drop the ∆ – it is still there, but will always be assumed to

be the potential difference across any resistor, to simplify the algebra a tiny

bit as we did when discussing capacitors – and define a new quantity, the

resistance of this particular geometry of conducting material, R:

V = RI (4.94)

where

R = ρ
L

A
(4.95)

This is known as Ohm’s Law and we will use it extensively in the weeks to

come.

The SI units of the resistance are known as Ohms (volts per ampere,

obviously) and given the symbol Ω in most literature. Since a volt is a joule

per coulomb, and an ampere is a coulomb per second,

1 Ohm = fracJoule − SecondCoulomb2 (4.96)

Note well that the units of capacitance were coulombs squared per joule, so

the units of R times C are seconds – this will be important to us later.

Just from the simple relation R = ρL/A we can tell many things about

the ways resistances will add in various configurations. If we put two iden-

tical resistances one right after another in a circuit, that’s the same as one

resistance twice as long, so we expect resistances in series to add, increasing
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the total resistance. If we put two identical resistances in parallel, that’s the

same as one resistance with twice the area, which will decrease the resistance

by a factor of two. We therefore expect that parallel resistance will obey

a reciprocal addition rule. We will derive these two results more carefully

below.

Before going on, it is worthwhile to point out the analogy between current

flowing in a wire with finite resistance and water flowing in a pipe packed

with something e.g. sand that similarly resists the flow of water. The flow

of water through a sand-filled pipe is proportional to the pressure difference

across the pipe, so pressure difference is analogous to voltage difference.

The current of water is analagous to the current of charge. The resistance

of the pipe is analagous to the resistance of the sand-filled pipe. A pipe

twice as long will let half the water through at the same pressure difference.

A pipe twice as wide will let twice the water through at the same pressure

difference. There is even a “current density” for the water in motion that is

the analogue of the current density of the charge.

It is really a rather compelling analogy, and since students are some-

times more comfortable visualizing the flow of water in pipes than they are

imagining electrons flowing in wires, it is offered up to help you build up

your conceptual understanding of the latter using your prior knowledge and

experience of the former, where a day doesn’t pass where you don’t “switch

on and off” the flow of water by means of increasing or decreasing the area

of a pipe using a tap and where the flow of water out against the resistance

of all of the plumbing isn’t determined by the water pressure.

In this anology, a capacitor can also be visualized as a wide section of

pipe containing a piston on a spring. The piston blocks water flow, but

if one applies a pressure difference then water flows into the pipe section,

compressing the spring, until the back-force of the spring balances the force

on the piston due to the pressure difference. At that point this “capaci-

tor” has stored some water on one side and has had an equivalent amount

pushed off the other side, just like a regular capacitor. Note well that this

suggests correctly that capacitors will dynamically behave like springs in an

electrical circuit, storing potential energy and charge and releasing it back

to the circuit, causing current and charge to oscillate. Later we’ll discover a

quantity and associated electrical device that behaves just like mass in such

an analogous arrangement, and our work will be complete.
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For the moment, though, let’s figure out how to add resistances and then

study an actual dynamical problem: the RC circuit.

4.7 Resistances in Series and Parallel

I

R

R

RR
II

R
I

b

I
R

b
a

a
I

RR

a b

a b
I

tot
tot

1 2 3

tot

tot

tot
tot

321
321

(a) (b)

Figure 4.12: Three resistors R1, R2, R3 arranged in series (left, (a)) and

parallel (right, (b)), along with the equivalent/total resistances of each one

portrayed below. In both cases the total resistance is “equivalent” when

applying a voltage Vab across the a and b contacts produces the same total

current Itot in the top and bottom figure.

In this section we indicate how to add resistances in series or in parallel

in order to determine a single equivalent resistance that would permit the

same current to flow given the same voltage across the arrangement. The

algebra is simple.

4.7.1 Series

Suppose we apply a fixed voltage Vab across the contacts in the upper (a)

diagram. This produces some current Itot in the single (serial) line of resis-

tors. Since charge is conserved and there is nowhere for it to go but through

the resistors, this same current passes through each resistor in turn. We can
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thus use Ohm’s Law to determine the voltage drop across each resistor in

terms of this total current:

V1 = ItotR1 (4.97)

V2 = ItotR2 (4.98)

V3 = ItotR3 (4.99)

Obviously the total voltage Vab is given by:

Vab = V1 + V2 + V3 = Itot(R1 + R2 + R3) (4.100)

If we look at the lower (a) diagram, Ohm’s Law yields:

Vab = ItotRtot (4.101)

Equating and cancelling the common Itot, we get:

Rtot = R1 + R2 + R3 (4.102)

There was nothing “special” about having only three resistors. We could

have had, four, five, or N resistors in series and we’d simply have more terms

in a general equation:

Vab =
N∑

i=1

ItotRi = Itot

N∑

i=1

Ri = ItotRtot (4.103)

so that in general the rule for the addition of N resistors in series is:

Rtot = R1 + R2 + ... + RN =
N∑

i=1

Ri (4.104)

4.7.2 Parallel

In the case of resistances in parallel, we have the same voltage Vab applied

across all of the resistors in parallel. If we look at the upper (b) figure, we

can use Ohm’s Law to evaluate the current through each resistor, given a

common voltage Vab across them:

I1 =
Vab

R1

(4.105)

I2 =
Vab

R2

(4.106)

I3 =
Vab

R3

(4.107)



242 Week 4: Capacitance and Resistance

Now, consider the total current Itot flowing into the arrangement from

point a. Charge is conserved, so that all of the charge that flows into the first

junction connecting the three independent conducting pathways through

the resistors must flow out of it and into the three resistors. From this we

conclude that:

Itot = I1 + I2 + I3 =
Vab

R1

+
Vab

R2

+
Vab

R3

= Vab

(
1

R1

+
1

R2

+
1

R3

)
(4.108)

As before in the lower (b) figure we have:

Itot =
Vab

Rtot

(4.109)

and when we equate these two forms and cancel the common Vab we get:

1

Rtot

=
1

R1

+
1

R2

+
1

R3

(4.110)

There is nothing special about three resistors, and once again we can

easily generalize this argument to N resistors as:

1

Rtot

=
1

R1

+
1

R2

+ ... +
1

RN

=
N∑

i=1

1

Ri

(4.111)

We conclude that the total resistance of several resistors in series is the

simple sum of the individual resistances, while the reciprocal of the total

resistance of serveral resistors in parallel is the sum of the reciprocals of the

individual resistances. This is the exact opposite of the rules for summing

capacitances in seris and parallel.

4.8 Kirchhoff’s Rules and Multiloop Circuits

In the previous sections we used two rules implicitly that we should make

explicit so that we can use them in the more complicated circuits we will

study over the next few weeks. In studying series capacitors and series

resistors, we used the idea that we could add the changes in voltage across

objects in a common wire carrying a steady state current (including no

current at all) to find the voltage changes between any two points in the
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Figure 4.13: (a) A single “generic” circuit loop; (b) A single “generic” circuit

junction.

wire. This is an idea related to energy conservation. In studying parallel

capacitors and and parallel resistors, we used the idea that the total charge

moving around in these circuits must be conserved to track its distribution

over time whether or not it is actually moving.

These two rules (which we will derive and discuss below) are known as

Kirchhoff’s Rules 8 .

4.8.1 Kirchhoff’s Loop Rule

Consider the generic circuit loop in figure 4.13 (a) above. The particular

devices in this loop are not too important – I drew a fairly arbitrary mix

of the three devices we are aware of so far, but later we will learn about

still more devices we might want to put into a circuit to do some startlingly

useful things.

Let us imagine that we watch a charge +q moving around this circuit loop

in the direction of the current beginning at the (arbtrary) point “start”. As

it goes across each potential V1, V2, ... the energy of the charge goes up, goes

down, goes up, goes down. By the time it gets back to the start position,

8Wikipedia: http://www.wikipedia.org/wiki/Kirchhoff’s Circuit Laws.

http://www.wikipedia.org/wiki/Kirchhoff's Circuit Laws
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its potential energy has changed by:

∆U = qV1 + qV2 + qV3 + qV4 + qV5 = q
∑

i

Vi (4.112)

If ∆U 6= 0, then the charge gets back to its starting point with a different

energy than the one it started with! Its kinetic energy will have changed!

However this is almost impossible. Electrons in particular, as fermions,

are nearly completely incompressible in a wire. This means that the current

in any line segment is the same at all points in the segment. Changes in the

electric field that produces the current at all points in the conductor prop-

agate nearly instantaneously throughout the entire loop, because the speed

of light is very large compared to the size of the loop. As potentials across

the elements in the circuit vary, the current adjusts almost instantaneously.

Consequently within a very tiny margin associated with this propagation

time, the net energy gain or loss of a charge in a pass around the circuit

loop must be zero!

This means that:
loop∑

i

Vi = 0 (4.113)

is a simple statement of energy conservation for the charges as they progress

around the loop. This equation is known as Kirchhoff’s Loop Rule, and

we will use it repeatedly to write down equations that lead to equations of

motion for dynamical circuit loops or conditions that must be satisfied for

loops that carry steady state currents.

4.8.2 Kirchhoff’s Junction Rule

4.9 RC Circuits
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4.10 Homework for Week 4

Problem 1.

Derive the capacitance for a) A parallel plate capacitor with cross-sectional

area A and plate separation d; b) A cylindrical capacitor with inner con-

ductor radius a, outer conductor radius b, and length L (where L ≫ b− a);

c) A spherical capacitor with inner conductor radius a and outer conductor

radius b.

Show in the latter two cases that the capacitance is approximately C =
ǫ0A
d

where A is the area of the cylinder/sphere and d = b − a ≪ a (“small”

separation).

Problem 2.

Prove that: a) The energy stored on the capacitor can be written as either

side of:

U =
1

2
QV =

∫

V

1

2
ǫ0E

2dV

for all three geometries (where the integral is over the volume V between

the plates); and b) C ≈ ǫ0A
d

for the spherical and the cylindrical capacitor,

where A is the area of the plates and d is their separation. You will need to

use ln(1 + x) ≈ x + O(x2)... to do the cylinder.

Problem 3.

A conducting sphere of radius a has a charge Q on it. It is surrounded by

a spherical insulating dielectric shell of inner radius a, outer radius b and

dielectric constant κ. Find the field in all space, the potential in all space,

and the bound surface charge on both surfaces of the dielectric in terms of

the givens.
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Problem 4.

Find the capacitance of the following arrangements:

ab
c

AA
d d

where the first two are parallel plate capacitors half-filled with a diectric

material with dielectric constant κ as shown, and the third is a spherical

capacitor patially-filled with the same dielectric as shown.

Problem 5.

Derive the rules for adding parallel and series capacitance:

1

Ctot

=
1

C1

+
1

C2

+
1

C3

+ ... (series)

and

Ctot = C1 + C2 + C3 + ... (parallel)

Then derive the rules for adding parallel and series resistance:

1

Rtot

=
1

R1

+
1

R2

+
1

R3

+ ... (parallel)

and

Rtot = R1 + R2 + R3 + ... (series)

Compare and contrast the two results.
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Problem 6.

V

R

R

RR

R

R

R

Find the current through each resistor with a voltage

V is placed across the resistance network as shown to

the left. Note that all of the resistances R are equal.

You’ll basically need to use the series and parallel rules

for adding resistances several times, as well as Ohm’s

Law and Kirchhoff’s junction rule. (Hint: You may find

it useful to imagine V = 18 volts and R = 1 ohm. This

makes the numbers easy.)

Problem 7.

5Ω

1Ω

1Ω

2V10V

Find the currents I1, I2, and I3 in the circuit above.
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Problem 8.

+Qo

S

C
R

Suppose switch S is closed at time t = 0 when the charge on the capacitor

is Q0. Find Q(t), I(t), VC(t) and VR(t) in the circuit above. Find the power

delivered to the resistor as a function of time and show that its integral from

0 to ∞ equals the initial energy stored on the capacitor (verifying energy

conservation for this circuit).

Problem 9.

Vo

S

R

C

Suppose switch S is closed at time t = 0 when the charge on the capacitor

is Q0 = 0. Find QC(t), I(t), VC(t) and VR(t) in the circuit above. Find the

power delivered to the circuit as a function of time and show that it equals

the sum of the power being burned in the resistor plus the power that is

charging the capacitor (verifying energy conservation for this circuit).
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* Problem 10.

Suppose you have an infinite network of identical resistors R, arranged in

a square 2d lattice. Find the total resistance between two adjacent nodes

as shown. Note well that there is a trick to this one – your hint is to think

about current flowing into and out of this network through probes placed

at the junctions and superposition and symmetry. Once you get the square

lattice, think about infinite triangular lattices or infinite cubic lattices in 3d.
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Week 5: Moving Charges and

Magnetic Force

(Est 2/13-2/18)

• A charge moving through space is observed to deflect according to the

rule:

F = q(v × B) (5.1)

which we use to define the magnetic field B much as we defined the

electric field in terms of the force observed and described by Coulomb’s

Law.

For the moment we will ignore just how vB got there, as we live in a

locally uniform magnetic field due to the Earth all the time and can

discover magnetic materials in nature so natural sources of magnetism

are ubiquitous.

• This translates into:

F = I(dℓ × B) (5.2)

for a small (differential) segment of wire carrying a current I in a

magnetic field vB. Magnetic fields exert forces on current carrying

wires.

• Motion of a point charge in the plane perpendicular to a uniform

magnetic field is therefore circular:

|F | = qvB =
mv2

r
(5.3)

253



254 Week 5: Moving Charges and Magnetic Force

(Newton’s second law plus definition of centripetal acceleration). It

has an angular velocity given by:

ωcyclotron =
qB

m
(5.4)

independent of its speed. This is called the cyclotron frequency.

• You should be able to derive/explain:

– A velocity selector (region of crossed fields).

– A cyclotron.

– Thomson’s apparatus for measuring e
m

.

– A mass spectrometer

– The Hall effect (region of crossed fields in a conductor).

• The magnetic dipole moment of a plane current loop is:

m = NIAn̂ (5.5)

where N is the number of turns, I is the current, A is the area, and n̂

is the right-handed normal to the plane of the loop.

• The torque on a magnetic dipole in a uniform magnetic field is:

τ = m × B (5.6)

Associated with this are its potential energy:

U = −m · B (5.7)

and its force in a non-uniform magnetic field:

F = −∇U = ∇(m · B) (5.8)

Magnetic dipoles align with the field due to the torque, and then follow

the field back to where it is stronger, just as do electric dipoles. Stu-

dents have experienced this with toy magnets and refrigerator magnets

from when they were very small – this is why bar magnets attract one

another.

You should be able to compute the magnetic moment of simple cur-

rent loops, although we’ll get more practice at this in the next chap-

ter/week.



5.1. HOMEWORK FOR WEEK 5 255

5.1 Homework for Week 5

(Due 2/18/09)

Problem 1.

A particle with mass m and charge q a has a velocity v perpendicular to a

uniform magnetic field B (with magnitude B = |B|). Find: a) the radius

R of its orbit; b) the period of the orbit; c) the momentum of the particle;

d) the kinetic energy of the particle. All answers but the first should be in

terms of q, m, B and R – no v should appear in b-d.

Problem 2.

A rigid circular loop of wire with mass m, N turns and radius R carries a

current I in each turn and is sitting on a rough table. There is a horizontal

magnetic field V that is parallel to the surface of the table in some direction

(call it x). What is the minimum value of B sufficient to lift on edge of

the loop off of the table? On your figure, clearly indicate which edge lifts

relative to the directions you select for I and B.

Problem 3.

A nonconducting rod of total mass M and length L has a charge Q uniformly

distributed along it. It is pivoted around one end and is rotating in the x−y

plane around the z-axis at angular frequency ω.

a) Consider a small bit of charge dq a distance r from the pivot and

compute its average magnetic moment in the z-direction, dmz.

b) Intgrate this result and find the total magnetic (dipole) moment of

the rotating rod mz

c) Show that the result can be expressed as mz = Q
2M

Lz where Lz is

the angular momentum of the rod about the pivot (that is to say, in the

z-direction).
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Problem 4.

Using the insight gained from the previous problem, show that the magnetic

moment of a uniform nonconducting disk of charge Q, mass M , and radius

R revolving at angular velocity about the z-axis is mz = Q
2M

Lz.

* Problem 5.

Using the insight gained from the previous two problems, consider any of

the symmetric distributions of charge and mass, where the mass distribution

is the same as the charge distribution and where both are “balanced” rota-

tionally. Find a relationship between dI (the moment of inertia of a small

chunk of mass dm at a radius r) and dmz (the magnetic moment of the same

small chunk of charge dq at the radius r) to show that for all distributions

with sufficient (balanced) symmetry that Lz = Iω, mz = Q
2M

Lz. This result

therefore holds for spheres, cylinders, disks, rods (in a plane), spherical or

cylindrical shells, etc.

Problem 6.

A disk of uniformly distributed mass M , charge Q, and radius R is spinning

at angular frequency ω about its axis. Its axis, in turn, makes an angle θ

with a powerful uniform magnetic field B = B0ẑ. Find the frequency ωp

with which the magnetic moment precesses around the magnetic field.
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* Problem 7.

A semi-infinite thin solenoid aligned with (say) the negative z-axis so that

the “+” end is at the origin creates a magnetic field that looks like that of

a point magnetic charge qm at the origin:

B =
kmqmr̂

r2

at points “near” the end and outside of the solenoid itself. Note that km =

µ0/4π = 10−7 N-m/A2 is the magnetic field constant, analogous to ke for the

electric field, and that µ0 is called the magnetic permeability, none of which

matters more than algebraically for this problem but which is important

next week!

Suppose you take a small bar magnet and place it at r = rr̂ so its

magnetic moment m is aligned with r̂. Find the force acting on it (if any).

What would you expect its motion to be if you placed it at the same

point so that its moment was not initially aligned with the magnetic field?

Problem 8.

B
m

R

N turns, carrying I

θ

A circular loop of wire with radius R, N turns, and total mass M carries a

current I. It is pivoted about a line that passes through the loop as shown,

then placed in a uniform magnetic field B = B0ẑ so that its magnetic

moment makes an initial angle of θ ≪ π with the z-axis at time t = 0, and

is then released.

Describe its small-angle motion quantitatively. Note well that this ar-

rangement has no angular momentum to speak of and will not precess.
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Week 6: Sources of the

Magnetic Field

(Est 2/18-2/25)

• No isolated magnetic monopoles have been experimentally observed,

in spite of an electromagnetic theory that “begs” for them, a quan-

tum theory that can explain charge quantization if a single magnetic

monopole exists in the Universe, in spite of an intense experimental

search for them. It is probably safe to say that magnetic monopoles

are at the very least rare.

• We express this (lack of monopoles) by means of Gauss’s Law for

Magnetism:

∮

S
B · n̂dA = 4πkmQm,in S = µ0

∫

V/S
ρmdV = 0 (6.1)

where the magnetic field constant km = 10−7 tesla-meter/ampere

exactly (exactly because it defines the coulomb, not the other way

around).

• The actual source for magnetic fields (in the absence of monopoles) is

moving charge. The field produced by a point charge is given by:

B = km
qv × r̂

r2
=

µ0

4π

qv × r̂

r2
(6.2)

where µ0 = 4π × 10−7 tesla-meter/ampere is called the magnetic per-

meability of free space and is the magnetic constant analoguous to ǫ0,

the dielectric permittivity of free space.
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• If we consider a wire carrying a current I = nqvdA (where recall vd is

the average drift speed of the charge carriers q), the amount of charge

in a small length of wire dℓ is dq = nqAdℓ. The field it produces is

therefore:

dB = km
dqvd × r̂

r2

dB = km
nqAdℓvd × r̂

r2

dB = km
nqvdAdℓ × r̂

r2

dB = km
Idℓ × r̂

r2

where dℓ is a differential length of the wire with a direction pointing

in the direction of the current. This:

dB = km
Idℓ × r̂

r2
(6.3)

is known as the Biot-Savart Law for the magnetic field, and (one way

or another) is the way most of the electrostatic fields we observe in

nature come into being.

• The field of a long straight wire carrying a current I is:

B =
2kmI

r
φ̂ (6.4)

where φ̂ curls around the wire in the direction given by the right hand

rule.

• Learn to use the Biot-Savart law to find the field of a long straight

wire, a current carrying loop, and a rotating disk of charge. From

either of the latter two (far from the disk or ring) you should be able

to guess the general magnetic field of a magnetic dipole in terms of

its dipole moment in analogy with the field of an electric dipole. (See

homework)

• With more work than we can do in this course the Biot-Savart Law

can be used to prove Ampere’s Law:
∮

C
B · dℓ = µ0Ithru C = µ0

∫

S/C
J · n̂dA (6.5)

This is our third Maxwell equation.
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• There is a conceptual error in Ampere’s Law. The current I through

an open surface S bounded by a closed curve C is not invariant as we

vary all possible such surfaces! From this one observation, plus your

knowledge that charge is conserved (so that the net flow of charge out

of any closed volume must equal the rate at which the charge inside

that volume decreases in time:

dQ

dt
= −

∮

S
J · n̂dA (6.6)

you should be able to deduce the necessity for Maxwell’s Displacement

Current (which makes the total current invariant). If you can do this

on your own without looking and show me the algebra, you get a piece

of candy! Sorry, you’re just a bit late for a Nobel prize, but this is the

general idea for how you will eventually go about winning one. Find

an inconsistency and solve it. Unify a field. You too can have your

name on something!

• Learn to use Ampere’s Law to find the magnetic field of any cylindri-

cally symmetric current distribution, a (long) solenoid, and a toroidal

solenoid. (See homework)

• Useful true fact: We do not usually deduce a scalar magnetic potential

analogous to the electric potential. Instead you will eventually learn

about a vector potential that leads to the magnetic field by virtue of

differentiation (the curl). Because it is a vector, it is not much easier

to evaluate directly than the Biot-Savart law above (it involves doing

a very similar but slightly simpler integral). We will therefore skip it

altogether in this course.
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6.1 Homework for week 6

(Due 2/25/09)

Problem 1.

I

I

1

2

d

b

a

An infinitely long straight wire carries a current I1 in the +z direction.

At x = d there is a rectangular loop of current I2 in the x − z plane, with

two sides of length a parallel to the long wire and two sides of length b

perpendicular to the long wire. The current in the wire segment nearest the

long wire is parallel to the current I1 in the +z direction. Find the net force

acting on the rectangular loop.

Problem 2.

Using Ampere’s Law, find the magnetic field in all space produced by:

1. A solid conducting cylinder carrying a total current I.

2. Two cylindrical conductings shells carrying opposite currents (each

equal to I in magnitude). The inner one has radius a, the outer one b.

3. A solenoid with N turns and length L carrying current I in each turn

(inside only, far from the ends).

4. A toroidal solenoid with N turns, inner radius a, outer radius b.

5. An infinite plane sheet of current into the paper (above and below the

sheet).
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This more or less exhausts the kinds of possible problems where one can find

the magnetic field using Ampere’s Law. Most were examples in lecture, so

this forces you to recapitulate on your own what you saw presented there.
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Problem 3.

Jin

R/2

R

A cylindrical conductor of radius R aligned with the z direction has a

cylindrical hole of radius R/2 centered at x = R/2 also aligned with the z

direction. The conductor carries a current density J = J ẑ (and obviously

J = 0 in the hole). Find the magnetic field at all points inside the hole.

Problem 4.

Using the Biot-Savart law:

1. Find the B-field on the z axis of a circular current loop of radius a

and N turns carrying a current I in the x − y plane (centered on the

origin).

2. Set up the integral to be done to find the vB-field on the z axis of a

disk in the x − y plane of uniform charge density σ and radius a that

is rotating with angular frequence ω around the z axis. (A) Do this

integral (requires integration by parts a couple of times).

Problem 5.

Based on the analogy between electric and magnetic dipoles, deduce the

probable form of the magnetic field of a spherical ball of charge Q, mass M ,

and radius R that is rotating at angular velocity ω on a) its axis of rotation;

b) at a point in the plane that passes through the ball perpendicular to the

axis of rotation; in both cases far from the ball of charge, that is, for z ≫ R

and x ≫ R for a ball spinning around the z axis. Note that it is quite a bit

of work to actually derive this result (though it can be done). This is part

of the point of multipolar expansions – once one knows the form of the field
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for any given multipolar moment, one merely has to compute that moment

for a give charge-current density to discover the (far) field “for free”.
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Problem 6.

B field

Show that a uniform magnetic field that has no fringing field violates

Ampere’s law. Use a rectangular closed curve C that lies partly inside, and

partly outside, the region of confined field. Then explain why this does not

apply to the uniform field inside a solenoid, which goes “sharply” to zero as

one crosses the current in the solenoid loops inside to outside.

Problem 7.

x

y

z

L

L

I

A square loop of wire lies in the x − y plane centered on the z axis and

carries a current I. It has side length L. Find the magnetic field at an

arbitrary point on the z axis, and show that in the limit z ≫ L it gives an

expected result in terms of the magnetic moment mz of the loop.

Note that this problem is “simple” – just a repeated use of the field of

a straight segment of wire – but visualizing the geometry in terms of the

givens is not simple and is the object of the exercise. So draw a very good,

very large picture! Or several! Visualize!
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Problem 8.

I R/2

R
R

I R/2
z

x

y

(A) A pair of Helmholtz coils is made up of two loops of wire with N

turns and radius R carrying a current I per turn. They both are concentric

with the z axis with centers at z = ±R/2. Show that at z = 0: dBz

dz
= 0 and

d2Bz

dz2 = 0. This means that the magnetic field is quite “flat” in the middle

of a Helmholtz coil.
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Part IV

Electrodynamics
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Week 7: Faraday’s Law and

Induction

(Est 2/25-3/4)

• Suppose a conducting bar moves through a field at right angles to the

field lines and the alignment of the bar. Magnetic forces quickly push

charges to the two ends until an electric field is created that balances

the electric force. The integral of this field is called a motional potential

difference.

• Suppose now that a rectangular wire loop is pushed into (or pulled out

of) a uniform field that terminates at an edge (perhaps generated by a

solenoid with a slot in it). We note that the field now pushes charges

around the loop in agreement with the motional potential difference

and that the net magnetic force on the current carrying wire resists

the push into (or pull out of) the field.

• We consider a conducting rod on rails as it slides through such a field.

We can see that the induced/motional potential difference is equal to

the time rate of change of the field times the area the field occupies

within the rectangle.

• Time for our final Maxwell equation. If the magnetic field flux through

an open surface S bounded by a closed curve C varies in time it

induces an electric field dynamically around the closed curve according

to Faraday’s Law:
∮

C
E · dℓ = − d

dt

∫

S/C
B · n̂dA (7.1)

The integral on the left is the induced voltage around the curve C.
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• In this equation the minus sign is called Lenz’s Law and tells us that the

induced voltage decreases around the loop in the direction such that a

flow of positive charge in that direction (the induced current if the loop

is a conducting pathway) will oppose the change in the varying flux. If

the flux is decreasing it will generate a magnetic moment that points

in the direction that will increase it. If it is increasing it will generate

a magnetic moment that points in the direction that will decrease it.

This causes the opposition to motion noted in the motional voltage

problems above.

• The flux through a conducting loop is directly proportional to the cur-

rent through the loop itself or to the current through nearby sources of

magnetic field that produce the flux. The constant of proportionality

in either case depends solely on the geometry of the loop and source(s).

That is, given a bunch of loops:

φi =
∑

j 6=i

MijIj + LiIi (7.2)

where the Mij are called the mutual inductances between the ith and

jth loops and Li is the self inductance of the ith loop.

• From this we can compute the self-induced (loop) voltages for simple

current-carrying loops, in particular solenoids. To compute the self-

inductance of a solenoid we begin with the result for the magnetic field

inside an ideal solenoid from Ampere’s Law:

B =
µ0NI

L
(7.3)

(parallel to the solenoid axis). The current I creates a flux per turn

that is equal to:

φt = BA =
µ0NAI

L
(7.4)

where A is the cross-sectional area of the solenoid. The total flux is

thus:

φ = NBA =
µ0N

2AI

L
= LsI (7.5)

where Ls is the self-inductance of the solenoid. Clearly:

Ls =
µ0N

2A

L
(7.6)
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which depends only on the geometry of the solenoid just as the ca-

pacitance of an arrangement of conductors depended only on their

geometry.

• The self-inductance of solenoids can be altered by wrapping them

around suitable magnetic materials that enhance (para) or reduce (dia)

the magnetic fields inside. Solenoids so constructed are ubiquitous in

circuit design, where they are known as inductors; they are labelled

with their inductance L in Henries, the SI unit of inductance:

1 Henry =
1 Volt − Second

Ampere
= 1 Ohm − Second (7.7)

• In terms of inductance:

VL = −L
dI

dt
(7.8)

is a statement of the voltage across an inductor using Faraday’s Law.

• Mutual inductance is the basis of a number of devices, in particular a

center-tap full-wave rectifier commonly used in e.g. DC power supplies

or AM radios and in transformers, an essential component of the power

distribution grid. If one imagines two solenoids, one with N1 turns and

cross sectional area A and a second one with N2 turns wrapped around

the first (so all of the flux (per turn) in the first passes through the

loops of the second:

φt =
µ0N1AI1

L
(7.9)

for the first solenoid, so:

φ2 = N2
µ0N1AI1

L
(7.10)

is the total flux through the second solenoid due to the current in the

first. Thus:

M21 =
φ2

I1

=
µ0N1N2A

L
= M12 = M (7.11)
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7.1 Homework for week 7

(Due 3/11/09)

Problem 1.

I

d

b

a

A switch is closed and a long straight wire builds up a current I(t) =

I0(1 − e−
t
τ ). A rectangular loop of wire with resistance R and dimensions

a× b is a distance d away as shown. Find: a) the flux through the loop due

to the wire; b) the induced voltage in the loop; c) the induced current in

the loop; d) the force between the loop and the wire (remember homework

problem 6.1).

Problem 2.

V

R BL

S

A rod of length L and mass m sits at rest on two frictionless conducting

rails that sit in a plane perpendicular to a magnetic field as shown. At

time t = 0 a switch S is closed connecting a voltage V that goes through a

resistance R and the rod. The rod begins to move from a x = 0. Find: a)

the current in the loop as a function of time; b) the velocity of the rod as a

function of time.
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Problem 3.

R

L

B

mg

A rod of length L and mass m rides on frictionless vertical conducting

rails that sit in a plane perpendicular to a magnetic field as shown. A

resistance R at the top completes a circuit. At time t = 0 the rod is released

from rest and falls. Find: a) the current in the loop as a function of time;

b) the velocity of the rod as a function of time.

Problem 4.

L

I

A

N

S

V

Find the self-inductance of the solenoid above that has N turns, length

L, resistance R, and cross sectional are A. Then find the current I(t) in the

circuit assuming that the switch S is closed at time t = 0.
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Problem 5.

A toroidal solenoid with a square cross section, that has inner radius R and

square side a ≪ R and N turns. Begin with Ampere’s Law to find the field

given I, compute the flux, and from that find the self-inductance.

Problem 6.

R

N turns

A

ω

A magnetic braking system is drawn above. A wheel has M powerful

permanent magnets mounted around the rim. Each magnet produces a

uniform field B across a cross-sectional area A. As the wheel spins at angular

velocity ω, the magnets cross in front of a coil with N turns in a circuit with

a resistance R. Estimate the braking power of the system as follows:

• Assume that each magnet produces a total flux φ = BA.

• Assume that the flux of each magnet ramps up linearly from zero to

φ and back down to zero in the time required for the magnet to swing

past a loop.

• From this, estimate the induced voltage and current during the ramp

up and ramp down phases.

• Compute the power during the ramp up and ramp down phases.

• Using this power as the average power, compute the total energy dis-

sipated as heat in the resistor as a function of ω.

In a car with magnetic brakes the loop would recharge a battery. In the next

chapter we’ll learn to treat oscillating voltages and power more accurately,

but this estimate should suffice for the moment.
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Problem 7.

V

R

L
R

1

S2

1

1. In the circuit above, switch S is closed in position 1 at time t = 0.

Using Kirchhoff’s voltage rule, find (derive) and solve the differential

equation for I(t), the current in the circuit loop. Plot this function

“generically” in units of τ (the exponential time constant for this cir-

cuit), a few τ out from t = 0. What is τ?

2. At time t = τ , the switch is quickly moved from position 1 to position

2 (so fast that the current is uninterrupted during the transition). As

before, derive I(t) and plot it a few τ out. (Hint: You can “restart

the clock” in terms of t′ = t − τ , right? And you can start at t′ = 0

at current I0 = I(τ) from the first part. That makes this problem

relatively simple.)
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Week 8: Alternative Current

Circuits

(Est 3/4-3/18)

• AC Generator: If one spins a coil with N turns and cross-sectional

area A at angular velocity ω in a uniform magnetic field B oriented

so that it passes straight through the coil at one point in its rotation,

one generates an alternating voltage according to:

φm = B · NAn̂ = NBA cos(ωt) (8.1)

V (t) = −dφm

dt
= NBAω sin(ωt) (8.2)

We will from now on treat “arbitrary” harmonic alternating voltage

sources as having the form:

V (t) = V0 sin(ωt) (8.3)

where of course we can introduce an arbitrary phase (corresponding

to the choice of when we start our clock).

• The most common models for household electrical distribution are

represented in the following table (note well that ω = 2πf where f is

the frequency of the source in Hertz): 209 is the potential difference

between any two phases of a three-phase “Wye” main supply in the

US where the pole voltages are 120 relative to ground:

V = 120 sin(ωt) + 120 sin(ωt ± 2π/3)

= 240 sin(π/3) sin(ωt ± π/3)

= 208 sin(ωt ± π/3) (8.4)
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Volts Hz Purpose Continent

120 60 lighting, small appliances, N. and S. America

electronics

208 or 240 60 heating, cooling, large N. and S. America

appliances, 3 phase motors

230 50 all household use Everywhere else

Table 8.1: Common alternating voltages and frequencies in use around the

world. There is a dazzling array of plug types in use around the world as

well.

and 240 is similarly the difference between two 120 volt lines that are

completely out of phase. Do not use this table as an authoritative

guide to electrical main supplies around the world; there are many

such authoritative guides and tables available on the internet 1 .

It is worth mentioning that (unfortunately) 60 Hz is a particularly un-

fortunate choice for distribution frequency because it is in “resonance”

with certain cardiac frequencies and hence unusually likely to defibril-

late the human heart. As little as 10 mA of 60 Hz AC across the heart

can kill a person. It requires roughly five times as much DC (50 mA)

to be equivalently dangerous!

• The reason for using such low frequencies is that AC does not flow uni-

formly through a conductor – it is lies within an exponential distance

of the outer surface of a conductor, a length called the skin depth.

At 60 Hz this length is roughly 8.5 mm in copper; copper conductors

“an inch in diameter” or more have relatively little current transmit-

ted along their axis, where at 10 kHz (an arguably safer frequency)

it is 0.66 mm in copper. Thicknesses comparable to the skin depth

increase the resistance of a wire by effectively decreasing its cross-

sectional area. 50 or 60 Hz are thus compromises between the need to

use AC to transmit energy long distances and the need to minimize

the resistance of the transmission wires along the way.

• It is no exaggeration to state that this is the fundamental basis for

modern civilization. Power distributed over long distances using step-

1Wikipedia: http://www.wikipedia.org/wiki/Mains electricity. See also the many

links in this article.

http://www.wikipedia.org/wiki/Mains_electricity
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up and step-down transformers has created the highest global standard

of living in human history. Some 2/3 of the world’s population uses

nearly ubiquitous electricity to light, heat and cool their homes, to re-

frigerate and cook their food, to fuel devices that provide increasingly

universal access to information in many of its sensory forms – musical,

textual, visual, to provide transportation, to fuel industry and com-

merce and agriculture. If the electrical grid for any reason ceased to

function we would regress to a medieval existence in a matter of weeks

(as I have personally experienced as both hurricanes and ice storms

have caused weeklong power outages in North Carolina on more than

one occasion).

• There are two critical aspects of so-called alternating current (AC) that

we will study in this course. The first is transformers and the electrical

grid that delivers power to points distant from the generators with

minimal loss. The second is the basis for signal processing electronics:

the LRC band-pass circuit (or tank circuit) that can be used with

rectifiers to build a simple amplitude-modulation (AM) radio. This

circuit and its variants is ubiquitous in non-digital (and most digital)

information processing devices.

• The Transformer: The transformer is basically a pair of flux-coupled

coils, one (the primary) with Np turns connected to the source of alter-

nating voltage, the other (the secondary) with Ns turns connected to

the load that actually consumes the energy delivered from the source.

All of the flux that passes through any turn in the primary or sec-

ondary coils passes (with as little loss as it is possible to arrange)

through all of the turns in both coils. The flux is usually coupled by

wrapping the coils around e.g. a torus of soft iron that traps flux,

laminated to prevent eddy currents (called the transformer core).

• If we let φm be the flux trapped in the core that passes through a

single turn, then:

Vs = Ns
dφm

dt
(8.5)

Vp = Np
dφm

dt
(8.6)
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or (taking the ratios of these two equations, in order)

Vs

Vp

=
Ns

Np

(8.7)

Note that we omit Lenz’s law in this expression because we can wrap

either coil either way around the core so that the voltages on primary

or secondary side can be “in phase” or “exactly out of phase” as we

wish.

• A transformer can thus step voltage up to higher levels or step it down

to lower ones, depending on whether Np < Ns or vice versa.

• Here’s the trick of the power grid. The resistance of a wire is (recall)

R = ρL
A

(where A is the effective cross section at a given frequency). A

copper wire just under a quarter inch thick has a resistance of roughly

1 Ohm/mile (rule of thumb). A wire a third of an inch thick has a

resistance of roughly 0.1 Ohms/mile. Wires this thick are heavy and

expensive and have to carry a lot of energy. Now, suppose we have a

power station a mere ten miles from your home. The total resistance

of all the wires between that power station and your home is easily

order of an ohm. Now imagine that you turn on a single 100 Watt bulb

(drawing roughly 1 A in current. The power station must provide 101

Watts for your bulb to burn – 100 Watts used by the bulb and I2R ≈ 1

Watt used in the supply line.

However, you then turn on the rest of your lights, your refrigerator

kicks on, your AC starts up. Your house is now drawing more like 100

Amperes (delivered in parallel to the many appliances) and is using

order of 10000 Watts. So is the supply line! Half of the energy being

delivered to your home is wasted as heat along the way. A second

consequence is that the voltage at your house is reduced to a fraction

of the nominal voltage as you turn on more appliances and more of

the voltage drop occurs across the supply resistance!

The solution is to transmit at high voltage and low current and use at

low voltage and high current. If we step up the voltage by (say) 10,000

Volts (real long distance transmission is at much higher voltages than

this) then in order to deliver the same power at the far end, instead

of delivering 100 Amps at 100 volts one can deliver 1 Amp at 10,000
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Volts! The resistive heating of the supply line is back to 1 Watt out

of 10,000 delivered. Here the square in I2R becomes your friend –

delivering 10 kW at 100,000 V requires only 0.1 A and uses only 0.01

W heating the wire.

This is good for transmission, but bad for utilization. 100,000 volts

can arc an appreciable distance through even dry air; that’s why the

insulators on high voltage transmission towers are so long! We’d hate

to get electrocuted every time we changed a light bulb as power arced

out of the socket through our bodies on the way to ground. With an

entire power plant delivering the energy, even the (mere) 16,000 volt

lines that run down the streets can literally make your body explode

if you should stray within a few cm of a supply line. Remember the

crispy-fried squirrel story!

• Consequently, there is always a step-down transformer at the very end

of the line, that drops the voltage in our houses to the much safer

but still dangerous 120 volts (relative to ground). We use currents on

the order of 1-20 Amps within the house, which is low enough that

the resistive heating of the order of 30-50 meter long household supply

lines remains low. Even “low” can waste a lot of heat! 12 gauge copper

wire has a resistance of a bit less than 0.25 Ohms in 50 meters, wasting

around 100 watts heating the wire all along its length when one draws

20 Amps of current (and reducing the line voltage available to the

∼2000 watt appliance at the end that is drawing all of that power

by roughly 5%). Personally, I prefer to do primary runs in household

wiring with the even thick 10 gauge wire (and not to use the thinner

14 gauge wire at all to minimize heat loss in the household wiring. As

you can see, though, you can easily waste anywhere from 1% to 5% of

your energy bill simply heating the space inside your walls!

• Non-driven LC circuit: In the figure above, the capacitor C on the

left is initially charged up to charge Q0. At time t = 0 the switch is

closed and current begins to flow. If we apply Kirchhoff’s voltage/loop

rule to the circuit, we get:

Q

C
− L

dI

dt
= 0 (8.8)
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+Q

C

S

L

Figure 8.1: Undriven LC circuit

where

I = −dQ

dt
(8.9)

If we substitute this relation in for the I’s and divide by L, we get

the following second order, linear, homogeneous ordinary differential

equation:
d2Q

dt2
+

Q

LC
= 0 (8.10)

We recognize this as the differential equation for a harmonic oscillator!

To solve it, we “guess”2:

Q(t) = Q0e
αt (8.11)

and substitute this into the ODE to get the characteristic:

α2 +
1

LC
= 0 (8.12)

We solve for:

α = ±i

√
1

LC
= ±iω0 (8.13)

and get:

Q(t) = Q0+e+iω0t + Q0−e−iω0t (8.14)

or (taking the real part and using the initial conditions):

Q(t) = Q0 cos(ω0t) (8.15)

• Non-driven LRC circuit: In the figure above, the capacitor C on

the left is initially charged up to charge Q0. At time t = 0 the switch is

2Not really.
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+Q

C

S

L

R

Figure 8.2: Undriven LRC circuit

closed and current begins to flow. If we apply Kirchhoff’s voltage/loop

rule to the circuit, we get:

Q

C
− L

dI

dt
− IR = 0 (8.16)

where

I = −dQ

dt
(8.17)

If we substitute this relation in for the I’s and divide by L, we get

the following second order, linear, homogeneous ordinary differential

equation:
d2Q

dt2
+

R

L

dQ

dt
+

Q

LC
= 0 (8.18)

We recognize this as the differential equation for a damped harmonic

oscillator. To solve it, we “guess”3:

Q(t) = Q0e
αt (8.19)

and substitute this into the ODE to get the characteristic:

α2 +
R

L
α +

1

LC
= 0 (8.20)

We solve for:

α = − R

2L
±

√(
R
L

)2 − 4
LC

2

= − R

2L
± iω0

√

1 − R2C

4L

3Not really.
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= − R

2L
± iω0

√
1 − τL

4τR

= − R

2L
± iω′

(8.21)

where τL = R/L τC = 1/RC, ω′ =0

√
1 − τL

4τR
, and our final solution

looks like:

Q(t) = Q0e
Rt
2L cos(ω′t) (8.22)

(after we choose the real part of the complex exponential and use the

initial conditions).

From this we can easily find the current through and voltage across all

of the elements of the circuit. Finally, given the current and voltages it

is easy to show that energy is conserved, that the initial energy stored

in the capacitor exactly balances the energy consumed in the resistor

as t → ∞.

• Resistance R across an AC voltage:

V(t) R

I(t)

Figure 8.3: AC voltage across R

We use Kirchhoff’s voltage rule and Ohm’s Law to get:

V0 sin(ωt) − IR = 0 (8.23)

or

IR(t) =
V0

R
sin(ωt) (8.24)

and we see that the current is in phase with the voltage drop across a

resistor.



Week 8: Alternative Current Circuits 287

• Capacitance C across an AC voltage:

V(t) R

I(t)

Figure 8.4: AC voltage across CR

We use Kirchhoff’s voltage rule and the definition of capacitance to

get:

V0 sin(ωt) − Q

C
= 0 (8.25)

We can solve for Q(t):

Q(t) = CV0 sin(ωt) (8.26)

Finally, we note that:

IC(t) =
dQ(t)

dt
= (ωC)V0 cos(ωt)

= (ωC)V0 sin(ωt + π/2) = I0 sin(ωt + π/2) (8.27)

where

I0 = (ωC)V0 =
V0

χC

(8.28)

We see that the current is π/2 ahead in phase of the voltage drop across

the capacitor. We will actually usually use this the other way around

and note that the voltage drop across the capacitor is π/2 behind the

current through it. We call the quantity χC = 1
ωC

(which clearly has

the units of Ohms) the capacitative reactance, the “resistance” of a

capacitor to alternating voltages.



288 Week 8: Alternative Current Circuits

• Inductance L across an AC voltage:

V(t) R

I(t)

Figure 8.5: AC voltage across L

We use Kirchhoff’s voltage rule and the definition of capacitance to

get:

V0 sin(ωt) − L
dI

dt
= 0 (8.29)

We can solve for dI(t):

dI =
V0

L
sin(ωt)dt (8.30)

We integrate both sides to get:

IL(t) =
∫ V0

L
sin(ωt)dt

=
∫ V0

ωL
sin(ωt) ωdt

=
V0

ωL
cos(ωt) (8.31)

=
V0

ωL
sin(ωt − π/2) (8.32)

= I0 sin(ωt − π/2) (8.33)

(8.34)

where

I0 =
V0

ωL
=

V0

χL

(8.35)

We see that the current is π/2 behind in phase of the voltage drop

across the inductor. We will actually usually use this the other way

around and note that the voltage drop across the inductor is π/2 ahead

of the current through it. We call the quantity χL = ωL (which clearly

has the units of Ohms) the inductive reactance, the “resistance” of an

inductor to alternating voltages.
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• The Series LRC Circuit: We apply Kirchhoff’s voltage/loop rule

V  sin(  t)

I(t)

0 ω

C

R

L

Figure 8.6: A LRC (tank) circuit.

to this circuit and get:

V0 sin(ωt) − L
dI

dt
− RI − Q

C
= 0 (8.36)

or

VL + VR + VC = V0 sin(ωt) (8.37)

or
d2Q

dt2
+

R

L

dQ

dt
+

1

LC
Q =

V0

L
sin(ωt) (8.38)

There are a number of way to solve this second order, linear, inho-

mogeneous ordinary differential equation. We will first show a simple

one that relies on a “guess”, then we will show how if we use complex

exponentials we really don’t have to guess.

Our goal will be to solve for all voltage drops, the current in the circuit,

the power delivered to each circuit element and the entire circuit as a

whole – pretty much everything.

The first thing to note that if we find at least one “particular” solution

Qp(t) to the inhomogeneous ODE, we can construct a new solution

by adding any solution to the homogeneous ODE (the undriven LRC

circuit solved above) and still get a solution. That is, a general solution

can be written:

Q(t) = Qp(t) + Qh(t) (8.39)

Note that the solution to the homogeneous ODE decays in time ex-

ponentially. It is a transient contribution to the overall solution and

after many lifetimes τL = R/L it will generally be negligible.
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The remaining particular part is therefore called the steady state part

of the solution, and it persists indefinitely, as long as the driving volt-

age remains turned on. We expect that the time dependence of the

steady state solution be harmonic (like the applied voltage) and to

have the same frequency as the applied voltage. However, there is

no particular reason to expect the charge Q to be in phase with the

applied voltage.

We will find it slightly more convenient to work at first with the current

I than the charge Q – we can always find Q(t) (or VC) by integration

and VL by differentiation – although when we go to a complex formu-

lation it won’t matter. If we make the guess:

I(t) = I0 sin(ωt − φ) (8.40)

then solving the problem is easy4. We begin by noting the voltage

drops across all three circuit elements in terms of I(t):

VR = I0R sin(ωt − φ) (8.41)

VL = I0χL sin(ωt − φ + π/2) (8.42)

VC = I0χC sin(ωt − φ − π/2) (8.43)

or

I0R sin(ωt − φ) + I0χL sin(ωt − φ + π/2)

+ I0χC sin(ωt − φ − π/2) = V0 sin(ωt) (8.44)

Our goal, then, is to find values of I0 and φ for which this equation is

true. This is quite simple. Suppose I use a phasor diagram to add the

trig functions graphically: The y-components of the phasors on the di-

agram that are proportional to I0 must add up to produce V0 sin(ωt),

and this must be true if we add up the phasors as shown, taking ad-

vantage of our knowledge of the phase of the voltage drop across the

various elements relative to the current through those elements.

4This isn’t really a guess. If we were to solve the differential equation ”properly” using

fourier transforms and using a complex exponential source V0e
iωt we would discover that

the complex solution for the current has a complex amplitude and phase determined from

an algebraic equation. We are simply making the guess here because many students don’t

know enough math yet to handle this approach, although this may change in some future

edition of this book.
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tω

tωoV sin(    )

oV

I χ
L

I  χ
C

o

o

oφ I  R

Figure 8.7: A phasor diagram for the LRC circuit.

If we let V0 = I0Z where Z is called the impedance of the circuit, we

can cancel the I0 and get the following triangle for the impedance:

From this triangle we can easily see that:

R

Z

φ
χ

L C
− χ

Figure 8.8: The impedance diagram for the LRC circuit.

Z =
√

R2 + (χL − χC)2 (8.45)

so that

I0 =
V0

Z
(8.46)

and

φ = tan−1
(

χL − χC

R

)
(8.47)

• The Parallel LRC Circuit:

The parallel LRC circuit is actually much simpler than the series as

far as understanding the solution is concerned. This is because the

same voltage drop V0 sin(ωt) occurs across all three components, and

so we can just write down the currents through each component using

the elementary single-component rules above:

IR =
V0

R
sin(ωt) (8.48)
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IL =
V0

χL

sin(ωt − π/2) (8.49)

IC =
V0

χC

sin(ωt + π/2) (8.50)

Note well that we use the rules we derived where the current through

the inductor is π/2 behind the voltage (which is therefore π/2 ahead

of the current) and vice versa for the capacitor. To find the total

current provided by the voltage, we simply add these three currents

according to Kirchhoff’s junction rule. Of course, we are adding three

trig functions with different relative phases, so we once again must

accomplish this with suitable phasors:

Itot =
V0

R
sin(ωt) +

V0

χL

sin(ωt − π/2) +
V0

χC

sin(ωt + π/2)

=
V0

Z
sin(ωt − φ)

= I0 sin(ωt − φ) (8.51)

In this expression, a bit of contemplation should convince you that the

impedance Z for this circuit is given by the entirely reasonable:

1

Z
=

√√√√
(

1

R2
+ (

1

χC

− 1

χL

)2

)
(8.52)

which we recognize as the phasor equivalent of the familiar rule for

reciprocal addition of resistances in parallel, and:

φ = tan−1




1
χC

− 1
χL

1
R




= tan−1

(
RC(ω2 − ω2

0)

ω

)
(8.53)

for the phase.

Resonance for this circuit is a bit unusual – it is the frequency ω = ω0 =
1√
LC

as before, but now frac1Z is largest at resonance and the current

increases away from resonance. The power delivered to the resistance

no longer depends on L or C and only depends on the frequency as:

PR =
V 2

0 sin2(ωt)

R
(8.54)
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so that the average power delivered to the circuit is:

< P >=< PR >=
V 2

0

2R
(8.55)

independent of frequency altogether. Away from resonance, one simply

generates a large (but irrelevant) current in either L (for low frequen-

cies) or C (for high frequencies) that is out of phase with the voltage

and hence dissipates zero average power per cycle.
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8.1 Homework for week 8

(Due 3/18/09)

Problem 1.

R

+Q0C L

At time t = 0 the capacitor in the LRC circuit above has a charge Q0

and the current in the wire is I0 = 0 (there is no current in the wire). Derive

Q(t), and draw a qualitatively correct picture of Q(t) in the case that the

oscillation is only weakly damped. Show all your work.

Problem 2.

R
V

V
C

C

R

In the circuit above, the AC voltage is V0 cos(ωt). Find:

1. The current I(t) through the resistor and capacitor, assuming no cur-

rent is diverted into the branches on the right. Clearly identify the

relative phase shift δ between the applied voltage and the current.

2. The voltage VR(t) across the resistor. Factor your answer out so that

it is in terms of the dimensionless ωRC.

3. The voltage VC(t) across the capacitor.

This circuit is called a high-pass filter, one that delivers the maximum

current in the circuit only when ωRC ≫ 1 (so that the capacitor behaves

like a “short” with very low reactance).
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When the frequency is low, the capacitor acts like a gap, with very high

reactance, and does not permit current to flow. At this point the applied

voltage drop across the capacitor is maximal, and this pair of tap points

is sometimes used to help clean up a DC power supply by “shorting out”

high frequency pulses while maintaining a steady DC voltage across the fully

charged capacitor. In this configuration, the capacitor can also serve as a

reservoir of charge and can maintain the voltage even if the load imposes

a transient peak in demand that is higher than the supply voltage source

could otherwise handle.

Problem 3.

V

V
C

C

LL

Repeat the previous problem for the LR circuit above, evaluating I(t),

δ, VR(t), VL(t) in terms of the dimensionless ωL
R

. This circuit is used as

a low pass filter, with peak current through and voltage across R at low

frequencies, while high frequencies are blocked by the inductor.

When might one wish to use the LR versus the LC filters, respectively?

Think about this: Not all loads are resistive...

Problem 4.

R

C L

This problem is in two parts. First, for your own enduring benefit I

want you to derive the full solution to the driven LRC circuit problem.

In particular, start with Kirchhoff’s rule for the loop and either assume a

complex V (t) = V0e
iωt and I(t) = I0e

iωt (where by convention V0 is real,

I0 = |I0|e−iδ, and where one gets physical answers at the end by taking
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the real part of the complex answers, or assume V (t) = V0 cos(ωt) and

I(t) = I0 cos(ωt − δ). Find an algebraic expression that expresses the sum

of the voltages. Solve this expression using either phasors (which will work

in both cases, one in the complex plane and one in a ”real” x-y plane) or in

the complex case directly using algebra, no pictures really required.

Factor out the solution to obtain |I0| and δ, Z (the impedance), and the

voltages across each element as a function of time.

Problem 5.

Second, derive the expression:

Pav(ω) = I2
avR =

V 2
rmsRω2

L2(ω2 − ω2
0) + ω2R2

(noting carefully and proving along the way that the average power delivered

to the inductor and capacitor is zero). In this expression ω0 = 1/LC as you

should fully understand at this point.

Then show that for a sharply peaked resonance (one with large Q)

∆ω ≈ R

L

so that

Q =
ω0

∆ω
≈ ω0L

R

where ∆ω is the full width at half maximum of the power curve you derive

in the first part.

You may find the following factorization useful:

ω2 − ω2
0 = (ω − ω0)(ω + ω0)

Problem 6.
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V
0

V
0

V
0

R

R

Rt

Rt

load

load

V1

In this problem you must analyze the problem of power transmission that

dominated the famous Edison vs Tesla “war” that took place some hundred

years ago. Above you can see two alterntives for transmitting power long

distances. The first circuit is Tesla’s – generate AC power at a relatively

low voltage V0 (which is easy). Step the power up to a very high voltage

V1 ≫ V0 and transmit it at high voltage across a long transmission wire of

fixed resistance Rt. Step it back down to voltage V0 and then place the load

Rload across it.

The second circuit is Edison’s. Generate a DC voltage V0. Transmit it

down identical transmission lines and place it across an identical load.

Your job is to compute the way the power is divided up between Pload

(which is fixed – the power we need to light a light bulb, for example) and

Pt, the power wasted heating up the transmission lines. The better solution

has Pt ≪ Pload. Find a relationship between the ratios:

V0

V1

and
Pt

Pload

that proves that Tesla’s solution wins (and by how much it wins, given

“reasonable” estimates for Rt/Rload).
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and Light

• Ampere’s Law has a bit of a problem. The current through C is not

consistently defined so that it gives the same value for all surfaces S

that are bounded by the closed curve C (through which we evaluate

the flux of the current density to find the current “through C”). This

means that two people can evaluate the integral to find the current

through C and get different answers without either of them making a

mistake. One can prove anything from a theory with an inconsistency,

so this is a bad thing.

• James Clerk Maxwell noted this problem, and sat down to invent the

mathematical tools and concepts to resolve it. We will proceed far

more elegantly than he was able to, using the gift of hindsight. Either

way, we will all arrive at the following consistent form for Ampere’s

Law, one to which we have added Maxwell’s Displacement Current:

∮

C
B · dℓ = µ0

(∫

S/C
J · n̂dA +

d

dt
ǫ0

∫

S/C
E · n̂dA

)

Both of these latter two integrals must be evaluated with the same

surface S, but given this they sum together to give the same invariant

current for all the surfaces S that are bounded by the closed curve C.

• In this new, correct version of Ampere’s Law, you can see Maxwell’s

contribution: the Maxwell Displacement Current produced by a time

varying electric field:

IMDC =
d

dt
ǫ0

∫

S/C
E · n̂dA

299
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• It is worth writing down the complete set of trading cards, suitable for

engraving:
∮

S
E · n̂dA =

1

ǫ0

∫

V/S
ρedV (9.1)

∮

S
B · n̂dA = µ0

∫

V/S
ρmdV = 0 (9.2)

∮

C
B · dℓ = µ0

(∫

S/C
J · n̂dA +

d

dt
ǫ0

∫

S/C
E · n̂dA

)
(9.3)

∮

C
E · dℓ = − d

dt

∫

S/C
B · n̂dA (9.4)

• Physicists usually rearrange them to make the equations connecting

fields to sources stand out from the equations that have no source

terms (because we have yet to see a magnetic monopole):

∮

S
E · n̂dA =

1

ǫ0

∫

V/S
ρedV (9.5)

∮

C
B · dℓ − d

dt
µ0ǫ0

∫

S/C
E · n̂dA = µ0

∫

S/C
J · n̂dA (9.6)

∮

S
B · n̂dA = 0 (9.7)

∮

C
E · dℓ +

d

dt

∫

S/C
B · n̂dA = 0 (9.8)

This way, the symmetry is compelling! Two inhomogeneous equa-

tions have source terms connected to electric charge, two homogeneous

equations have the same form but lack the source terms, at least until

monopoles are discovered.

• If one applies these equations to a source-free volume of space where

electric and magnetic fields are varying, one can show that they lead to

the following wave equations for the electromagnetic field propagating

in (say) the z-direction:

∂2E

∂z2
− 1

c2

∂2E

∂t2
= 0 (9.9)

∂2B

∂z2
− 1

c2

∂2B

∂t2
= 0 (9.10)

The ∂2

∂z2 symbol in this expression, let me remind you, just means to

take the derivative of the functions E(x, t) and B(x, t) with respect
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to the z-coordinate only, pretending that the other coordinates are

constants. In this equation,

c =

√
ke

km

=
1√
ǫ0µ0

= 3 × 108meters per second (9.11)

is the speed of light in a vacuum, which we can see is completely de-

termined from Maxwell’s equations.

Since Maxwell’s equations are laws of nature and expected to hold in

all inertial reference frames, it is entirely reasonable to expect the speed

of light to be constant in all reference frames! This postulate, together

with some very simple assumptions about coordinate transformations,

suffices to derive the theory of relativity!

• We will study the details of at least certain simple solutions to these

wave equations over the next few weeks. For the moment, the most

important solution for you to learn is:

Ex(z, t) = E0x sin(kz − ωt) (9.12)

By(z, t) = B0y sin(kz − ωt) (9.13)

known as a harmonic plane wave travelling in the z-direction. Note

that Ex and By are in phase and do not have independent amplitudes

– their amplitudes are connected by Maxwell’s equations (Faraday or

Ampere’s law) and Ex = cBy. There is an identical pair of solutions

with a different polarization:

Ey(z, t) = E0y sin(kz − ωt) (9.14)

Bx(z, t) = −B0x sin(kz − ωt) (9.15)

that also propagate in the z-direction, as determined from the deriva-

tion of the wave equations above.

In these equations, note well that:

k =
2π

λ
(9.16)

is the wave number of the wave, where λ is the wavelength of the

harmonic wave, while:

ω =
2π

T
(9.17)
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is the angular frequency of the wave. The wavelength is thus the

“spatial period” of the wave, where T is the “temporal period” of

the wave that harmonically oscillates in space and time. This wave

propagates in the positive z-direction as can be seen by considering

kz − ωt = k(z − ω
k
t) = k(z − ct). Note well that this uses the result

that:

c =
λ

T
=

ω

k
(9.18)

for a harmonic wave.

• The flow of energy in an electromagnetic wave (and field in general)

can be determined from the Poynting vector:

S =
1

µ0

(E × B) (9.19)

The magnitude of the Poynting vector is called the intensity of the

electromagnetic wave – the energy per unit area per unit time or power

per unit area being transported by the wave in the direction of its

motion:

I =
dP

dA
=

d

dA

dU

dt
= |S| (9.20)

where U is the energy in the wave. To speak more mathematically

precisely to communicate the transport of power (energy per unit time,

in watts) across some given surface A, one evaluates the flux of the

Poynting vector through the surface:

PA =
∫

A
S · n̂ dA (9.21)

As you can see one just cannot get away from flux integrals as a way

of representing the “flow” of energy, current, fluid, or E or B field

through a surface! As such, it is a very important idea to conceptually

master.

• The Poynting vector can be understood and almost derived by adding

up the total energy in the electric and magnetic fields in a volume of

space being transported perpendicular to a surface A. In a time ∆t,

all of the energy in a volume ∆V = A c∆t goes through the surface

at the end. This is:

∆U = (
1

2
ǫ0E

2
x +

1

2µ0

B2
y)A c∆t (9.22)
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If we use |Ex| = c|By| (see above) for a wave travelling in the z-

direction and do a bit of algebra, we can see that:

∆U

A∆t
=

1

µ0

|Ex||By| (9.23)

which is just the Poynting vector magnitude in the z-direction for these

two field components.

• The electromagnetic field also carries momentum, solving the dilemma

of the “missing momentum” left over from our consideration of the

magnetic force and the failure of Newton’s third law. The field momen-

tum is rather difficult to derive in a simple way, but it can somewhat

be understood by assuming that the field electrically polarizes atoms

that it sweeps over in such a way that it exerts a magnetic force along

the direction of motion of the electromagnetic wave. We’ll explore this

with a problem later. The momentum density of the electromagnetic

field is:

|pf | =
U

c
(9.24)

and we can consider the net momentum transported per unit area per

unit time by the electromagnetic field perpendicular to a surface A to

be:

Pr =
Ithru A

c
(9.25)

This quantity is called the radiation pressure and it is partially respon-

sible for the solar wind, created as sunlight pushes gas molecules away

from the sun. Light “sails” have also been proposed as a propulsion

for getting around inside the solar system without rocket fuel. We will

explore both of these ideas with homework problems.

To use radiation pressure properly, one has to compute the force it

exerts on a surface. This force will depend on certain things, such

as whether or not the radiation is perfectly absorbed or perfectly re-

flected and (eventually) the relative velocity of source and target (as

the incident and reflected waves can be doppler shifted, affecting the

momentum transfer). In the simplest cases (perfect absorption or re-

flection) the force is best computed by using an expression such as:

FS =
1

c

∫

A
S · n̂ dA (9.26)
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that is, the flux of the Poynting vector yields the power transferred to

a (perfectly absorbing) surface, and 1/c of the power is the effective

force exerted along the line of the original Poynting vector. If the

radiation is reflected, one has to construct a such quantity evaluated

(with the same power) with respect to the direction of the angle of

reflection, and vector sum the forces. In the simplest case of normal

absorption or reflection:

FS =
SA

c
(9.27)

or

FS =
2SA

c
(9.28)

respectively.

• Electromagnetic radiation is produced when electrical charges acceler-

ate (this follows from construction the inhomogeneous wave equations

for the electromagnetic fields directly from Maxwell’s equations, where

moving charge and current terms become the sources of the time vary-

ing fields). This has two important consequences you should be aware

of.

The first is that oscillating electrical dipoles (a very reasonable model

for any atom or molecule that has been “kicked” one way or another)

act as antennae and radiate away electromagnetic radiation. The in-

tensity of the radiation field of a z-oriented dipole antenna located at

the origin of a spherical polar coordinate system is usually given by:

I(θ) =
I0

r2
sin(θ) (9.29)

(and is azimuthally symmetric about the z-axis). Note well that the

radiation is most strongly emitted perpendicular to the dipole moment,

and that no energy at all is radiated along the dipole moment.

The second is that it becomes impossible to build a simple classical

model for a bound atom that looks, as one might reasonably expect,

like a heavy positive nucleus being orbited by negative light electrons

in “planetary” orbits. Or any other e.g. harmonic oscillator model for

bound atoms. Atoms (and ordinary matter) becomes unstable under

any classical physical model, radiating away all of of their energy in
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an extraordinarily short period of time in model calculations and col-

lapsing. Maxwell’s equations and Newton’s Laws are inconsistent and

cannot both be correct. Experimentally, it has been determined that

Maxwell’s equations are indeed correct (although they are part of a

bigger theory we are still working on) but Newton’s Laws are not!

The discovery that accelerated charges radiate electromagnetic energy

was thus the death knell of classical physics! It took some twenty or

thirty years, but physicists invented the theory of quantum mechanics

to explain a wide variety of otherwise puzzing phenomena and re-

solve the conflict between Maxwell’s equations and classical dynamics.

Classical physics (Newton’s laws) hold in a particular limit of quantum

theory but break down at small (atomic) length and time scales where

Planck’s Constant h becomes important.
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9.1 Homework for week 9

Problem 1.

As always, we need to rederive the principle results of the week on our

own for homework (has it occurred to you yet that this is one of the things

we are doing?). So let’s start by using Maxwell’s equations to show for a

z-directed plane wave (where E and B are independent of x and y) that:

∂Ex

∂z
=

∂By

∂t
(9.30)

∂By

∂z
= µ0ǫ0

∂Ex

∂t
(9.31)

and

∂Ey

∂z
=

∂Bx

∂t
(9.32)

∂Bx

∂z
= µ0ǫ0

∂Ey

∂t
(9.33)

and from this show that (Ex, By) and (Ey, Bx) both satisfy the wave equation

for a z-directed wave.

Problem 2.

Show that f(z ± vt) satisfies the wave equation:

∂2f

∂x2
− 1

v2

∂2f

∂t2
(9.34)

Show (by drawing appropriate pictures that convince you that it is true

so that you understand it) that these are left and right propagating waves

respectively.

Finally show that F0 cos(kz ± ωt) is a function that has this form, so

that harmonic travelling waves manifestly satisfy the wave equation!
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Problem 3.

A

R

Sun

Payload Light Sail

Some science fiction stories, notably ones by Larry Niven, portray space

travel around the solar system occurring with no expenditure of reaction fuel

using a light sail. A light sail is an enormous, extremely thin, perfectly re-

flecting mirror arranged like a parachute so that it can ”lift” a payload/space

capsule attached to the sail by shroud lines. Radiation pressure from sun-

light exerts a force on the sail sufficient to lift the mass directly out from

the sun, and by altering the angle of the sail one can ”tack” in arbitrary

directions.

This problem analyzes the plausibility of this proposal. Start by com-

puting the force exerted by sunlight on a perfectly reflecting sail at normal

incidence a distance R away from the center of the sun. Note well that a

reflecting sail will exert twice the force that an absorptive sail would (why?).

Next, make a reasonable assumption for the density of the sail material and

compute the maximum thickness of a sheet of it that is capable of lifting its

own weight against the gravitational pull of the sun. Using this information,

you decide if the idea of sailing directly away from the sun (with or without

a payload) is plausible. Does your answer depend on how far away from the

sun you are?

Of course, this simple no-orbit radial model is naive. In reality, the

starting and ending point of any journey are orbits around the sun; a payload

won’t fall into the sun even if it has no light sail at all as long as it is in a

solar orbit, and one has to do a lot of work on a mass to take it out of a

solar orbit if it starts in one.

In general, to go from one orbit to another, it suffices to add energy (and

angular momentum in the proper measure) to the orbiting object (or take

them away, of course) in the correct direction using an angled light sail.

Making any assumptions that you like, make an argument for or against

light sails as a means of moving a significant payload mass between earth

orbit and a lunar orbit, or between earth orbit and an orbit around/near

mars without the expenditure of fuel.



308 Week 9: Maxwell’s Equations and Light

In a nutshell, what is the maximum plausible transverse acceleration one

can expect to achieve using a light sail of reasonable thickness angled at θ

with respect to the sun, for a payload of of (say) 1 metric ton (2000 kg)?

How large a light sail do you need to achieve that result?

The power output of the sun is 3.8×1026 watts, and its mass is 2.0×1030

kilograms. If you need it, the mean radius of earth’s orbit is R = 1.5× 1011

meters.

Problem 4.

Consider a resistor capped with perfectly conducting ends. The resistor is

a cylinder of radius a and length L and is filled with a material of resistivity

ρ. A voltage V is hooked up across the resistor so that current flows.

1. Find the net resistance R of the resistor.

2. Find the current I through the resistor.

3. Find the electric field inside the resistive material.

4. Find the magnetic field as a function of distance from the cylinder axis

inside the resistive material (assume that its permeability is µ0).

5. Evaluate the Poynting vector S at an arbitrary point on the cylindrical

surface of the resistor.

6. Evaluate the flux of the Poynting vector through that surface. Simplify

it so that is given in terms of I and R. Surprise! The Poynting vector

precisely predicts Joule heating!



9.1. HOMEWORK FOR WEEK 9 309

Problem 5.

Let’s work out an interesting fact about the solar wind. Consider a spherical

grain of dust of radius R with a “reasonable” mass density of 1000 kg per

cubic meter (the density of water). Given the mass of the sun (see problem

above), your knowledge of G (the gravitational constant) and the insight

that the radiation pressure from sunlight is approximately exerted on the

transverse cross-sectional area of the sphere πR2, determine the radius Rc for

which the force exerted by light pressure away from the sun exactly balances

the gravitational force towards the sun.

Will particles larger than this (smaller than this) fall into or be pushed

away from the sun? Note well that this differential force is exerted no

matter how far away from the sun one travels, so particles pushed away are

accelarated all the way! This explains why small particles (gas molecules,

dust particles) are accelerated away from stars, forming a constant “wind”

of microparticle radiation.

Problem 6.

Suppose you have a long solenoid (of length L, with n = N/L turns per

unit length and radius R) carrying a time varying current I(t) = I0(1−e−t/τ ).

1. Find Bz(t) inside the solenoid.

2. Find the induced electrical field at an arbitrary point inside the solenoid

(say, at a distance r from its axis).

3. Find the magnitude and direction of the Poynting vector on an imag-

ined surface of constant radius just inside the windings at radius R.

4. Compute the flux of the Poynting vector into the volume of the solenoid.

5. Compute the total magnetic energy of the solenoid, and show that

the flux of the Poynting vector equals the rate at which this energy

changes.
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Problem 7.

A vertical cell phone radio tower acts as a dipole antenna. Suppose such

a tower is located 1 km away from your cell phone. It radiates a power

of 1 kilowatt. What is the approximate intensity of this radation when it

reaches your phone? Now consider your phone. It’s dipole antenna radiates

roughly one watt when it operates. What is the radiation intensity of your

cell phone back at the tower?

Problem 8.

A capacitor consisting of two circular conducting disks of radius R is be-

ing charged by a steady current I. Find the magnetic and electric fields

at an arbitrary point inside the volume of empty space between the two

plates (using Gauss’s Law and Ampere’s Law with the Maxwell Displace-

ment Current, respectively). Form the Poynting vector at a point on the

“boundary” of the E field, assuming no fringing fields, and integrates the

flux of the Poynting vector into the volume of the solenoid. Show that the re-

sult equals PC = VCI, the power being delivered to the solenoid. (Note this

problem, the resistance problem, and the inductance problem are all very

similar and have the same purpose – for you to convince yourself that the

electromagnetic field carries field energy and is consistent with the work-

energy theorem implicit in P = V I, the rate we do work pushing charge

across the potential difference of any device.)
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• The speed of light in a medium is:

vmedium =
c

n
(10.1)

n is called the index of refraction of the medium. You need to know

the following approximate indices of refraction to work problems: Air:

na ≈ 1. Water: nw ≈ 4/3. Glass: ng ≈ 3/2. Any others needed will

be given in the problem in context.

• The index of refraction is not constant – it varies with the frequency

of the light: n(ω), a phenomena known as dispersion.

• The Law of Reflection:

The angle of incidence equals the angle of reflection,

θi = θℓ (10.2)

• Snell’s Law:

n1 sin(θ1) = n2 sin(θ2) (10.3)

• Fermat’s Principle:

Light takes the path that minimizes the time of flight between any two

points. Both the law of reflection and Snell’s law can be derived from

Fermat’s principle.

• Critical Angle, Total Internal Reflection:

Light passing from a dense medium n2 to a less dense medium n1 < n2

is totally internally reflected if the angle of incidence is greater than:

θc = sin−1
(

n1

n2

)
(10.4)

311
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• Polarization:

We describe the orientation and phase of the two components of the

electric field component for a given fixed harmonic frequency as the

polarization of the harmonic wave.

• Unpolarized Light:

Unpolarized light is light for which the polarization vector is con-

stantly shifting its direction around. On average, unpolarized light

has its energy/intensity equally distributed between the two indepen-

dent directions of polarization.

• Linear Polarization:

Linear polarization occurs whenever the electric field vector oscillates

consistently in a single vector direction in the plane perpendicular to

propagation.

• Circularly Polarized Light:

Circularly polarized light has the same electric field magnitude in the

two independent polarization directions but the waves in these direc-

tions are π/2 out of phase:

E(z, t) =

√
2

2
E0x̂ sin(kz − ωt ± π/2) +

√
2

2
E0ŷ sin(kz − ωt)

E(z, t) =

√
2

2
E0 (±x̂ cos(kz − ωt) + ŷ sin(kz − ωt)) (10.5)

There are two independent helicities of circularly polarized light: right

(clockwise/+) and left (anticlockwise/-) when facing in the direction

of propagation).

• Elliptically Polarized Light:

If the amplitudes of the two waves are (potentially) different and the

two waves are (potentially) out of phase, the most general polarization

state is that of elliptical polarization:

E(z, t) = E0xx̂ sin(kz − ωt + δx) + E0yŷ sin(kz − ωt + δy) (10.6)

In this expression, E0x and E0y may or may not be equal, and the

phases δx and δy may or may not be zero or equal.
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• Polarization by Absorption (Malus’s Law):

For an ideal polaroid filter that is otherwise fully transparent:

Itransmitted =
Iincident

2
(10.7)

The transmitted light is fully linearly polarized in the direction of the

transmission axis of the filter.

If the light that is incident on the filter is already polarized, then

only the component of the electric field vector that is parallel to the

transmission axis is transmitted:

Etransmitted = E · t̂ = Eincident cos(θ) (10.8)

where θ is the angle between the direction of linear polarization of

the incident light and a unit vector along the transmission axis. This

implies that the transmitted intensity is given by:

Itransmitted = Iincident cos2(θ) (10.9)

This result is known as Malus’s law.

• Polarization by Scattering:

Rays scattered more or less at right angles to an atom, molecule, or

speck of dust are linearly polarized perpendicular to the plane of

scattering.

• Polarization by Reflection:

Light that is reflected at a non-normal angle from a dielectric surface

is (partially or completely) polarized parallel to the surface, which

is also perpendicular to the plane of reflection. Light transmit-

ted into the new medium is partially polarized the opposite way (by

subtraction).

The reflected light is completely polarized when the light is incident at

the Brewster angle, where the reflected and refracted rays are perpen-

dicular to each other, given by:

tan(θb) =
n2

n1

(10.10)
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• Polaroid Sunglasses:

Reflected glare from any smooth surface and scattered glare at midday

are both likely to be at least partially polarized parallel to the ground.

Both are thus blocked by a pair of polaroid sunglasses with a vertical

transmission axis.

• Doppler Shift, Moving Source:

In a non-relativistic setting (vs ≪ c):

f ′ =
f(

1 ∓ vs

c

) (10.11)

for an approaching (-) or receding (+) source describes the general

moving source doppler shift in the frequency/color detected by the

receiver.

• Doppler Shift, Moving Receiver:

Again in a non-relativistic setting (vr ≪ c):

f ′ = f(1 ± vr

c
) (10.12)

for a receiver moving towards (+) or away from (-) the source.

• Moving Source and Moving Receiver:

Ditto:

f ′ = f
(1 ± vr

c
)

(1 ∓ vs

c
)

(10.13)

• Cerenkov Radiation:

The ”light boom” given off by a charged particle moving faster than

the speed of light in a medium is called Cerenkov radiation.
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10.1 The Speed of Light

We just learned that the speed of light in a vacuum, derived from Maxwell’s

Equations, is c = 1/
√

ǫ0µ0 = 3× 108 meters/second. However, we have also

learned that the permittivity and permeability of bulk polarizable matter

are not equal to their vacuum equivalents. The conclusion is inescapable.

The speed of light is not c in a medium.

We expect it to be v = 1/
√

ǫµ where e.g. ǫ = κǫ0 (scaled by the dielectric

and diamagnetic constants of the material). It turns out for many reasons

that the polarization of the medium always slows down the wave – in free

space it just sweeps along, but in the medium it has to move all of that

bulk charge too, which has mass and cannot respond as quickly. For most

transparent materials, µ ≈ µ0 so:

v ≈ 1√
κǫ0µ0

=
c√
κ

(10.14)

To keep life simple, we take all of the contributing properties of the

material and roll them into a single relation:

vmedium =
c

n
(10.15)

n is called the index of refraction of the medium and is roughly equal to
√

κ.

However, there is a problem with this. κ is defined in the static limit of

ω = 0. Visible light has a frequency of 4.3×1014 Hz to 7.5×1014 Hz, and the

charges in a dielectric material simply don’t have time to reach their peak

polarization before the wave points the other way! Indeed, it turns out that

the index of refraction is a function of frequency: n(ω). This means (as we

shall see) that different frequencies are bent by different amounts via Snell’s

law at an interface between two dispersive media, splitting white light up

into a spectrum of colors, with the highest frequency (shortest wavelength)

light usually getting bent the most although this is very much dependent on

the particular medium in question.

This is why water droplets break up light into a rainbow. Note well that

this means that – as far as we can tell examining the world around us or

looking back into the remote past as we look up at the stars – water droplets

have always broken up light into rainbows when backlit by a local source of
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light, just as they do if you spray water in a fine mist away from the sun in

your back yard.

This has profound religious and philosophical consequences. At one time

there was a rather extensive argument concerning the “frangibility of light”

where Biblical literalists argued that this process could not have occurred

before the Flood in Genesis, as it clearly states therein that the rainbow was

first created at a specific antediluvian time as a sign that God wouldn’t try

to drown the world ever again.

It is worth noting that if light wasn’t “frangible” before this (mythical)

Flood, there would have been no light as the processes that produce it are

the same as the processes that break it up in interaction with matter into

colors in rainbows and everywhere else. Nor would there have been any

normal matter – as we have just learned in considerable detail, the electro-

magnetic forces that hold atoms and molecules together are the forces that

are responsible for polarizability, which in turn is responsible for dispersion.

10.2 The Law of Reflection

iθ θ

incident reflected

cancelled

phase shift of πl

Figure 10.1: When light is incident on a perfectly reflecting surface, it creates

little antennas/sources that radiate the opposite field in the direction of the

incident field. These antennas cause the light to be reflected at the same

angle and with the opposite phase from the surface.



10.2. THE LAW OF REFLECTION 317

A perfect conductor in electrostatic equilibrium, we recall, cancels the

electric field inside by arranging charges on its surface to effect the cancella-

tion. Similarly, it creates surface currents that oppose and cancel magnetic

fields. In the dynamical case this is still true for good conductors and optical

frequencies. An incoming light wave strikes the conductor, and its electric

field polarizes the surface atoms so that they become little antennae that

oscillate along with the electric and magnetic field of the light. However, the

fields produced flip over (the way a dipole field does) and hence propagate in

the leading direction with the opposite phase, cancelling the forward directed

field quite rapidly at the surface (often within a few layers of atoms).

Since the conductor is good, very little energy is lost to eddy current

heating during this cancellation. The oscillating surface currents must rera-

diate their energy, and the only direction they can do so that conserves

energy and momentum is to reflect the incident energy. However, the re-

flected wave (in order to achieve the cancellation at the surface) must have

the opposite phase from the incoming wave. The situation is very much like

the reflection of a wave pulse on a string from a fixed point on the wall –

the reflected wave flips so it is upside down for precisely the same reasons

(energy and momentum conservation).

In an elastic collision with the conductor, the component of the mo-

mentum of the light along the surface is unchanged, but the perpedicular

component inverts (becomes minus itself). The only way this can be true

is for the light to bounce off of the surface, with its phase inverted, at an

angle of reflection θr (measured relative to the normal at the surface at that

point) equal to the angle of incidence θi as drawn above.

So that’s it:

θi = θℓ (10.16)

is the Law of Reflection. The polarization properties of the reflected light

will be discussed later below.

Note well that for this to be strictly true requires that the surface in

question be extremely smooth – “shiny” as it were. Otherwise neighboring

rays would be reflected at different angles because of small differences in

the direction of a normal at different point on a rough surface. Many (even

most) surfaces of real materials are indeed rough on a microscopic scale

(compared to the wavelengths of the incoming light) and hence are diffusely
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illuminated ty light instead of perfectly reflecting it according to this rule.

Many materials also differentially absorb light and only “reflect” particular

wavelengths and hence colors.

We will assume that the law of reflection holds, more or less perfectly,

for shiny smooth good conducting (e.g. metal) surfaces, such as a polished

piece of silver or aluminum. This in turn will help us understand how mirrors

work to form images of objects next week.

10.3 Snell’s Law

D

2

θ1

λ

1λ
1θ

2θ

Figure 10.2: When light is incident on a transparent dielectric surface, it is

partially transmitted and partially reflected. Since its speed changes, how-

ever, the light must change direction at the surface as shown.

Light is incident on a surface that separates two transparent media with

different indices of refraction n1 and n2 (where we assume for the moment

that n1 < n2 although that isn’t necessary in the end).

It should be fairly obvious that the frequency of light in the two media

cannot change. If the same number of wavefronts per second do not pass

each point in either medium, wavefronts must be building up in between.

This in turn means that energy (associated with the wavefronts) must be

building up. This simply does not happen.

It should also be less obvious that the wavefronts themselves – the places

where the waves reach their maximum amplitudes – should be the same just

inside and just outside the media interface. For it to be otherwise would

require a very strange charge distribution on the surface itself, one that one

cannot easily imagine arising.
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Since the wave must change speed across the media interface, and since

the speed of the wave is given by:

v =
c

n
= fλ (10.17)

with the same frequency on both sides, it is clear that the wavelength

λ =
c

nf
(10.18)

must also change, being longer where the speed of light is greater (and n is

smaller).

Simple geometry based on these simple ideas requires that the wave will

also change direction. We can compute this change and direction from the

figure above. If we look at the top triangle with angle θ1 and hypotenuse D

and the bottom triangle with angle θ2 and the same hypotenuse (the distance

between wavefronts on the interface between media), we note that:

D =
λ1

sin(θ1)
=

λ2

sin(θ2)
(10.19)

or (substituting from above and cancelling c/f):

1

n1 sin(θ1)
=

1

n2 sin(θ2)
(10.20)

Inverting, we obtain Snell’s Law:

n1 sin(θ1) = n2 sin(θ2) (10.21)

Since the geometry is exactly the same going from n2 to n1, we conclude

that it doesn’t matter which medium has the greater or the lesser index of

refraction.

10.3.1 Fermat’s Principle

Fermat noted that a straight line is the path along which it takes the least

time to travel between two points A and B at constant speed in ordinary

space. Any other path is longer in distance than the straight line path, and

hence takes longer to traverse at the same speed.
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Thus when we say that light travels a constant speed (the speed of light)

in a straight line between A and B, it is also true that the path that it

follows is the one that takes the least time.

Now consider the Law of Reflection above. It is equally easy to see that

any reflective path between A and B that doesn’t have θi = θl is longer, and

hence takes more time. We will examine and prove this below.

What happens when the speed is not constant? In that case, one has

to solve an optimization problem, a problem in economy. It seems that one

might be able to obtain some benefit from going further where the speed

is greater and thereby reduce the amount of distance one has to travel at

the slower speed, and actually go between A and B in less time than the

straight line trajectory.

Fermat, observing that light must speed up or slow down as it passes

between distinct physical media, hypothesized that the trajectory followed

by light between point A in medium 1 and point B in medium 2 would not

be a straight line; it would instead be the path that takes the minimum time.

This, as we shall see, is another way to get Snell’s law, but this time in a

ray description of the light that is altogether independent of the wavelength

or wave properties of the light.

Although Fermat was not the first person to propose a variational/minimum

principle for optics (that honor belongs to Ibn al-Haytham in 1021, over 600

years earlier) he was the first to do so post Descartes, with an analytic ge-

ometry capable of fully exploiting the idea. Although Fermat’s principle

puts the cart a bit in front of the horse by making it the cause of the tra-

jectory followed by light instead of a feature of the trajectory followed by

light (that can be derived from other principles) variational principles based

on his original statement proved to be essential to a formulation of classical

mechanics that would translate, with minimal changes, into a formulation

of quantum mechanics. It is therefore worth looking at in a bit of detail,

especially for physics majors or minors.

In figure 10.3, we note that any curved path such as S1 is longer than

the path S0 (something that can be proven using the calculus of variations,

which we will not introduce here). The time required to traverse S1 is

t1 = S1/v while t0 = S0/v. The minimal time path is therefore clearly the

minimal distance path, the straight line. Fermat’s principle thus correctly
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S

S1

0

Figure 10.3: For constant speed, the straight line path between A and B

takes the least time.

describes this case.

H

D

x D−x

1y
H1

2 y2
θi

lθ

A

B

Figure 10.4: The path with θi = θl is the one with the minimal time when

the entire trajectory is otherwise in a single medium with a constant speed.

In the figure above we consider reflection. From the result above we

can ignore all trajectories that are not straight except where they strike the

reflecting surface. The total distance between the two points A and B is

therefore the sum of the two hypotenuses:

H = H1 + H2

=
√

y2
1 + x2 +

√
y2

2 + (D − x)2 (10.22)

We need to find a condition that produces the minimum of this function.

We therefore differentiate with respect to x, set the result to zero, and solve

for (say) x or θ1. y1, y2 and D are all constant, so:

dH

dx
=

2x√
y2

1 + x2
− 2(D − x)√

y2
2 + (D − x)2

= 0 (10.23)
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or

sin(θi) =
2x√

y2
1 + x2

=
2(D − x)√

y2
2 + (D − x)2

= sin(θl) (10.24)

If the speed of light is a constant, this condition minimizes both distance

and hence time t = H/v. Thus θi = θl, and we see that the Law of Reflection

is consistent with Fermat’s principle as well.

y

y

H

x

D−x

2

θ

θ

1

1
1

2

2H

Figure 10.5: The path with n1 sin(θ1) = n2 sin(θ2) is the one with the min-

imal time when the trajectory goes between media n1 and n2 where light

has distinct speeds. As suggested, one minimizes the time by choosing a

trajectory that trades off more distance in the faster medium against less

distance in the slower one.

As before, we only need consider straight line trajectories in a given

medium, and so the figure above is all we need to consider.

This time, since the speeds in the two media are different, we have to

directly optimize the time. We form:

t1 =

√
y2

1 + x2

v1

=
n1

√
y2

1 + x2

c
(10.25)

and

t2 =

√
y2

1 + (D − x)2

v2

=
n2

√
y2

1 + (D − x)2

c
(10.26)

as the time taken for the light to travel in a straight line from A to x and

from x to B.

The total time is thus:

t = t1 + t2 ==
n1

√
y2

1 + x2

c
+

n2

√
y2

2 + (D − x)2

c
(10.27)
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Differentiating and setting the result equal to zero is the same algebra

as above, except that there is an extra factor of n1 and n2 on each side. The

details are left as a (simple) exercise; the result is:

n1 sin(θ1) = n2 sin(θ2) (10.28)

and we see that Snell’s law is consistent with Fermat’s principle as well!

Variational principles prove to be of great use in more advanced physics,

as nature appears to be intrinsically “economical” and choose extremal

paths, usually ones that minimize a quantity called the action. Newton’s

laws themselves can be derived in a generalized form from a suitable varia-

tional principle of the action!

10.3.2 Total Internal Reflection, Critical Angle

θ

incident reflected

θc θc

r = π/2
refracted (does not escape medium)

Figure 10.6: Light travelling from a denser medium to a lighter one is to-

tally internally reflected if θi ≥ θc = sin(n1

n2

), corresponding to an angle of

refraction of π/2, where the refracted ray fails to escape the medium.

If a ray is travelling from a denser medium to a lighter one, one quickly

observes a curious thing. Since the ray is bent away from the normal, there

exist angles for which Snell’s law has no solution!

In fact, it is easy to identify an angle of incidence such that the angle of

refraction is θr = π/2. If we assume that n2 > n1 and we are going from

medium n2 (the heavier/denser) to medium n1 (the lighter/less dense):

n2 sin(θ2) = n2 sin(θc) = n1 sin(π/2) = n1 (10.29)

or

θc = sin−1
(

n1

n2

)
(10.30)
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If we increase θ2 > θc, we make the left hand side of Snell’s law bigger than

n1 but we cannot find any angle θr for which sin(θr) > 1!. We conclude that

at all angles θc and greater the ray fails to escape the medium!

Since it is not absorbed by the interface, and is not transmitted into

medium n1, the only place the energy in this ray can go is into the reflected

ray. The ray is thus totally internally reflected.

Total internal reflection is extremely useful in our modern society. It is

the basis of fiber optics where (laser) light signals are “trapped” inside a

“light pipe” that transmits the light down the fiber and around sufficiently

gentle bends without allowing the light to escape through the sides of the

optical fibers that have an index of refraction greater than that of the sur-

rounding air or other media.

It is also pretty! Diamonds and the diamond-like compound C3 (Moissonite)

have extremely large indices of refraction, roughly nd = 2.4. This makes its

critical angle:

θcd = sin−1
(

1

2.4

)
= 24.6◦ (10.31)

Light incident on the facet of a diamond at any angle greater than this

(rather small) angle is trapped by the diamond. Diamonds are cut so that

light entering through any given facet is reflected many times without escap-

ing, so that dispersion splits the light up into many colors until it escapes

either through the sides or at corners or edges. This gives diamond (or

Moissanite) its “bright and sparkly” appearance. Cut crystal prisms and

lesser clear gemstones have much the same properties on a lesser scale, trap-

ping light and splitting it up into a rainbow of colors to brighten an otherwise

drab existence.

10.4 Polarization

As we saw in the last chapter, the electric and magnetic field vectors can

point in two independent directions perpendicular to the direction of propa-

gation (the Poynting vector direction). We describe the behavior of the two

components of the electric field component for a given fixed harmonic fre-

quency as the polarization of the harmonic wave. There are several ways to

describe the polarization, and several physical processes produce polaraized
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light.

10.4.1 Unpolarized Light

Unpolarized light is light for which the polarization vector is constantly

shifting its direction around. For a few tens to thousands of wavelengths

the electric field vector points in some direction. Then it suddenly shifts into

a new direction, as its source gets randomly interrupted. Unpolarized light

is typically produced by “hot” or “random” sources such as the Sun, a hot

lightbulb filament, the gas in a fluorescent bulb, a candle flame. On average,

unpolarized light has its energy/intensity equally distributed between the

two independent directions of polarization.

10.4.2 Linear Polarization

Linear polarization occurs whenever the electric field vector oscillates consis-

tently in a single vector direction in the plane perpendicular to propagation.

The following are all examples of linearly polarized light propagating in the

z-direction with frequency ω:

Light linearly polarized in the x-direction:

E(z, t) = E0xx̂ sin(kz − ωt) (10.32)

(The associated magnetic field must be:

B(z, t) = B0yŷ sin(kz − ωt) =
E0x

c
ŷ sin(kz − ωt) (10.33)

according to the rules derived in the previous chapter, because

|B| =
|E|
c

(10.34)

and because

x̂ × ŷ = ẑ (10.35)

in the Poynting vector.)

Light linearly polarized in the y-direction:

E(z, t) = E0yŷ sin(kz − ωt) (10.36)
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(The associated magnetic field must be:

B(z, t) = −B0xx̂ sin(kz − ωt) = −E0y

c
x̂ sin(kz − ωt) (10.37)

according to the rules derived in the previous chapter, because

ŷ ×−x̂ = ẑ (10.38)

in the Poynting vector.)

Finally, light linearly polarized along the line at π/4 above the x-axis

is::

E(z, t) =

√
2

2
E0x̂ sin(kz − ωt) +

√
2

2
E0ŷ sin(kz − ωt) (10.39)

The amplitude of the electric field is E0 (why?). What must the direction

and magnitude of the associated magnetic field?

10.4.3 Circularly Polarized Light

There is no reason that the magnitudes of the electric polarization com-

ponents in the two independent directions have to be the same or to be in

phase. We start by considering the case where they have the same magnitude

but are π/2 out of phase:

E(z, t) =

√
2

2
E0x̂ sin(kz − ωt ± π/2) +

√
2

2
E0ŷ sin(kz − ωt)

E(z, t) =

√
2

2
E0 (±x̂ cos(kz − ωt) + ŷ sin(kz − ωt)) (10.40)

These two components describe a vector of constant length that sweeps

around in a circle, either counterclockwise (-) or clockwise (+). We call this

circularly polarized light. Note that the two components must have equal am-

plitudes and must be π/2 out of phase to be circularly polarized. There are

two independent helicities of circularly polarized light: right (clockwise/+)

and left (anticlockwise/-) when facing in the direction of propagation).

10.4.4 Elliptically Polarized Light

If the amplitudes of the two waves are (potentially) different and the two

waves are (potentially) out of phase, the most general polarization state is
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that of elliptical polarization:

E(z, t) = E0xx̂ sin(kz − ωt + δx) + E0yŷ sin(kz − ωt + δy) (10.41)

In this expression, E0x and E0y may or may not be equal, and the phases

δx and δy may or may not be zero or equal. The amplitudes of the x and y

limits define a rectangular box. The electric field vector rotates within that

box wit the box tipped at an angle relative determined by the relative phase

difference δ = δx − δy (where if δ = 0 or δ = π one has linear polarization).

To see a lovely animation of the electric field vector for various flavors

of polarization, visit:

http://www.nsm.buffalo.edu/∼jochena/research/opticalactivity.html

10.4.5 Polarization by Absorption (Malus’s Law)

A polaroid filter is made by putting oriented conducting threads into a trans-

parent medium in such a way that long currents in those threads created by

the polarization component of light parallel to the thread heats the threads,

absorbing and attenuating only that component of the incident polarized or

unpolarized light and passing the component perpendicular to the threads

(the transmission axis of the filter).

The rules for transmission are simple. If the incident light is unpolar-

ized, on average half its energy is polarized in either polarization direction.

Therefore (assuming that the filter is “ideal” and otherwise fully transpar-

ent):

Itransmitted =
Iincident

2
(10.42)

The transmitted light is fully linearly polarized in the direction of the trans-

mission axis of the filter.

If the light that is incident on the filter is already polarized, then only

the component of the electric field vector that is parallel to the transmission

axis is transmitted. That is:

Etransmitted = E · t̂ = Eincident cos(θ) (10.43)

where θ is the angle between the direction of linear polarization of the inci-

dent light and a unit vector along the transmission axis.

http://www.nsm.buffalo.edu/~jochena/research/opticalactivity.html
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To find the transmitted intensity, we need just remember the relation

between the electric field strength and the intensity that follows from the

intensity being the time-average magnitude of the Poynting vector:

I =

∣∣∣∣∣
1

2µ0

E × B

∣∣∣∣∣ =
1

2µ0c
E2 (10.44)

The intensity is directly proportional to the electric field amplitude, squared,

so that:

Itransmitted = Iincident cos2(θ) (10.45)

This result is known as Malus’s law.

10.4.6 Polarization by Scattering

incident ray

scattered rays

Figure 10.7: The scattering of initially unpolarized light by a molecule or

dust particle. Note that the polarization is perpendicular to the plane of

scattering for each of the possible outgoing directions.

When unpolarized light passes across an atom or molecule, it polarizes

it in the instantaneous direction of the electric field vector (which, recall,

has a definite direction at any time but which jumps around to a new di-

rection every 10-1000 optical periods). The oscillating molecule acts like a

dipole antenna and reradiates the incident electromagnetic wave. However,

the reradiated electric field must be parallel to the dipole moment of the

molecule, and there is no radiation along the dipole (with a clear maximum

at right angles to the dipole. As a consequence we can easily see that the
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rule for polarization of rays scattered more or less at right angles is that

they must be polarized perpendicular to the plane of scattering!

10.4.7 Polarization by Reflection

φ

θ

n1

n2

Figure 10.8: The scattering of initially unpolarized light by reflection off

of a plane surface between two dielectric media at the Brewster angle that

produces complete polarization of the reflected ray. Note that the polariza-

tion of all reflected rays incident on the surface at an angle is parallel to the

ground even at angles other than the Brewster angle.

When light strikes a surface between two regions with differing indices

of refraction, it is partially transmitted and partially reflected (with the

amount of each determined by the angle of incidence and the two indices of

refraction). The reflection is caused by the polarization of surface molecules

in such a way that the light scattered by them adds up coherently into the

reflected wave; similarly those polarized molecules create a forward prop-

agating wave into the medium (although at a different angle according to

Snell’s law). As before, the polarized surface molecules (dipoles) cannot ra-

diate along their own axis so that light that is reflected parallel to one of the

polarization directions cannot contain that polarization.

This state of affairs occurs when the reflected ray is perpendicular to the

refracted ray, pictured above. In this case:

n1 sin(θ) = n2 sin(φ) (10.46)

is Snell’s law, but clearly:

φ =
π

2
− θ (10.47)
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so that:

sin(φ) = sin(π/2 − θ) = cos(θ) (10.48)

and Brewster’s formula:

tan(θb) =
n2

n1

(10.49)

is the condition for θb, the so-called Brewster angle of incidence (and hence

reflection) where the reflected ray is completely polarized parallel to the

surface (and perpendicular to the plane of reflection, just as was the case

with scattered light above).

However, the polarization component in the plane of reflection is always

reduced at angles other than θ = 0 as the component of the polarization

gradually lines up with the reflected ray so reflected light is at least partially

polarized in the plane at all angles other than 0. Note that the transmitted

light is partially polarized in the plane of transmission – this is not complete

because all of the perpendicularly polarized light is not reflected at the

surface, some is still transmitted into the medium.

10.4.8 Polaroid Sunglasses

As we have just seen, reflected glare from any smooth surface is likely to be at

least partially polarized parallel to the ground. It is thus blocked by a pair of

polaroid sunglasses with a vertical transmission axis. Similarly, (scattered)

light from the blue sky viewed near the horizon at midday is predominantly

polarized parallel to the ground and is also blocked by a vertical transmission

axis, which can make e.g. driving safer and less stressful on the eye.

10.5 Doppler Shift

Since light is a wave, the frequencies picked up by a frequency sensitive re-

ceiver (e.g. the human eye) depend on the original frequency (color) emitted

by the source and Doppler shifted by the motion of the source and/or the

receiver. A complete treatment of the Doppler shift requires relativity and

is beyond the scope of this course, but an elementary treatment suffices to

understand the Doppler shift at velocities that are small compared to the

speed of light.
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The idea underlying the Doppler shift is very simple. If the source is

moving towards the receiver, its motion foreshortens the normal wavelength,

increasing the frequency observed by the stationary receiver. If the receiver

is moving towards the source, its motion reduces the time between the wave-

fronts it receives, increasing the frequency it observes. If both motions are

occurring, both shifts occur as a product. We show the picture and quick

derivation of each possibility below.

10.5.1 Moving Source

v Ts λ’

λ

Source Receiver

sv

Figure 10.9: Wave geometry for Doppler shift of moving source.

The source emits light waves that travel a distance λ = cT in a single

period T . However, in the time T between wavefronts, the source moving at

speed vs towards the receiver travels in to the wave it has emitted a distance

vsT , reducing the distance at the time of the next front to λ′ = λ − vsT .

This in turn reduces the time T ′ between wavefronts that cross the receiver

(e.g. an eye or camera) and hence we can solve for the frequency shift thus:

λ′ = λ − vsT

cT ′ = cT − vsT

T ′ = T
(
1 − vs

c

)

1

T ′ =
1

T

1(
1 − vs

c

)

f ′ =
f(

1 − vs

c

) (10.50)

For a source moving away from the receiver the algebra and picture is the

same, but the wavelength λ′ = λ + vsT is increased, so that:

f ′ =
f(

1 ∓ vs

c

) (10.51)
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for an approaching (-) or receding (+) source describes the general moving

source doppler shift in the frequency/color detected by the receiver.

Note well that visible light sources moving away from the receiver are

shifted towards the red end of the spectrum, while sources moving towards

the receiver are shifted towards the violet end of the spectrum. Since spec-

tral lines produced by atoms have sharp and well-defined frequencies, this

permits us to ascertain that the visible Universe is expanding (as all distant

stars and galaxies are red-shifted). Since the velocity with which distant

stars are receding from the Earth increases with distance, the red shift be-

comes a meter stick permitting us to measure the size of the visible Cosmos.

This is a small but significant part of the physical evidence for the Big Bang

cosmological model that so far seems best to fit the data, and that suggests

that the Big Bang occurred approximately 13.5 billion years ago (give or

take a billion years) so that the visible Cosmos is a sphere roughly 27 billion

light years across, containing roughly a trillion galaxies containing order of

a trillion stars apiece. This is around Avogadro’s number of stars.

With no boundaries visible in any direction, there is no particular reason

for us to think that we are in the exact center of the cosmos, save in the

sense that every point is in the middle of an infinite line. Sometimes small

pieces of physics (such as the Doppler shift of light) can have enormous

consequences.

10.5.2 Moving Receiver

Source Receiver

λ

vr

v T’rcT’

Figure 10.10: Wave geometry for Doppler shift of a moving receiver.

If a frequency-sensitive detector of light (such as the eye or a camera)

is moving towards a fixed source at speed vr, it moves into a wave that

is travelling at the speed of light and “meets the oncoming wavefront half

way” (not literally half way) sooner than it would have if it were at rest.
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This shortened period T ′ can easily be determined from the geometry above,

where λ = cT = (c + vr)T
′:

cT = (c + vr)T
′

T = (1 +
vr

c
)T ′

1

T ′ =
1

T
(1 +

vr

c
)

f ′ = f(1 +
vr

c
) (10.52)

As before, if the receiver is moving away, it decreases f ′ instead of increasing

it, so that the general rule is:

f ′ = f(1 ± vr

c
) (10.53)

for a receiver moving towards (+) or away from (-) the source.

10.5.3 Moving Source and Moving Receiver

The rule is just the product of the two rules:

f ′ = f
(1 ± vr

c
)

(1 ∓ vs

c
)

(10.54)

It is interesting to note that if a source is moving at the speed of light

(where these expressions are no longer valid, alas, although they still capture

part of the shift) the frequency f ′ goes to infinity. This divergence occurs

in the relativistic expression as well, and is the moral equivalent of a sonic

boom only with light.

Although particles cannot go faster than light in a vacuum, this is actu-

ally a physical possibility inside a medium. Consider an electron travelling

at 0.99c and entering a piece of glass where the speed of light is only approx-

imately 0.67c. The ”light boom” given off by the superluminal particle in

the glass is clearly visible (experimentally) and is called Cerenkov radiation.

Cerenkov radiation is the basis of some of the high-energy particle detec-

tors used in many of the big accelerator laboratories in high energy nuclear

physics.
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10.6 Homework for week 10

Problem 1.

Derive Snell’s Law. You may use any method you like (there are several)

but the way it was done in class is probably the easiest).

Problem 2.

Derive the Doppler Shift:

f ′ = f0

(
1 ± vr

c

1 ∓ vs

c

)

for light sources or receivers moving in a vacuum, where the upper signs in

both case refer to approach and the lower signs recession. Note well that

this is how the radar guns police use to trap speeder work, how “doppler

radar” used by weather forecasters works that measure the wind speed of

storms and can detect the occurence of tornados, and is a technology used

in a variety of medical imaging techniques including e.g. ultrasound.

Problem 3.

Derive Malus’ Law It = I0 cos2(θ) where I0 is the intensity of polarized light

incident on a polarizing filter at an angle θ relative to the transmission axis

of the filter. I’d suggest going back to the Poynting vector and expressing the

intensity I0 in terms of E0, the E-field amplitude of the incident polarized

wave.

Problem 4.

Derive Brewster’s Formula (the expression for the angle of incidence for

which reflected light is completely polarized parallel to the surface).
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Problem 5.

Draw pictures representing:

• Polarization by scattering

• Polarization by absorption

• Polarization by reflection

These are a mnemonic device for the formulas and help you understand why

the transmission axis of polarizing sunglasses is vertical (to block reflected

glare and scattered skylight, both predominantly polarized parallel to the

ground).

Problem 6.

Derive the expression for the critical angle leading to total internal reflection

for rays moving from a dense medium (high n) to a lighter one (with lower

n).

Problem 7.

Suppose a layer of oil no = 5/4 is floating on water nw = 4/3, that in turn is

on a piece of glass ng = 3/2. Show that the critical angle for the glass is not

changed by the combined system of layers of water and oil; that rays incident

on the glass-water interface at or above the critical angle for glass-air alone

do not escape the final layer of oil.

Problem 8.

Show that in spite of the occurrence of total internal reflection, one can

in principle still see all of bottom in a shallow lake stretched out before

your feet. That is, although some rays of light from a fish on the bottom

are trapped and escape, there are others that will reach your eye no matter

where your eye is located. (Other factors – ripples, reflections off of the
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surface, murkiness in the water – may limit your vision, but it isn’t that any

part of the bottom is theoretically invisible because light from there cannot

escape to reach your eye, it is that the light that does reach them may be

very faint and difficult to resolve from other things going on.)

Problem 9.

Until I have time to absorb them in this book, do problems 78 and 84 out

of Tipler and Mosca (chapter 31).
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• The distance from a mirror (or lens) to an object one is viewing in (or

through) it is s, the object distance. Object distances are positive

if the object is on the side of the mirror (or lens) that the light is

coming from. Object distances are obviously ‘always’ positive, unless

the object is a virtual object formed out of the image of a previous

mirror or lens, which can be either positive or negative.

• The distance from a lens or mirror to the image one is viewing is s′,

the image distance. Image distances are positive if the image is on

the side of the mirror (or lens) that the light is going to.

• The focal length f of a mirror (or lens) is the point where incident

parallel rays are focused to (for positive focal lengths) or appear to be

defocused from (for negative focal lengths). f is typically measured

in meters (SI) or centimeters (for convenience). However, the strength

of lenses is usually given in diopters, where:

d =
1

f
(11.1)

with f in meters. This a one diopter (1.00d) lens has a focal length

of 1 meter. A 10.00d lens has a focal length of 0.1 meter. A diverging

lens with a focal length of one centimeter is -100.00d.

• The mirror (or thin lens) equation relating s, s′, and f is:

1

s
+

1

s′
=

1

f
(11.2)

• The transverse magnification of a simple mirror (or lens) is defined by

the ratio of the image height y′ to the object height y:

m =
y′

y
= −s′

s
(11.3)

337
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• A real image is one where the rays of light that appear to the eye to

diverge from a point on the image actually pass through that point.

A virtual image is one where the rays of light that appear to the eye

to diverge from a point on the image do not actually pass through the

image.

• In addition to being real or virtual, an image can be erect (oriented

the same way as the object) or inverted (oriented the opposite way

from the object.

• For a spherical mirror, the focal length is given by:

f =
r

2
(11.4)

where r is positive when it is on the side of the mirror reflected light

is going to.

• For a thin lens, the focal length is given by the lensmaker’s formula:

1

f
= (n2 − n1)

(
1

r1

− 1

r2

)
(11.5)

In this expression, n1 is the index of the surrounding medium (typically

air, n1 = 1) and n2 is the index of refraction of the lens itself. r1 (r2)

is the radius of curvature of the first (second) surface struck by the

ray, with the sign convention that it is positive (negative) on the side

of the lens refracted light is going to (coming from).

The advantage of using diopters as a measure of lens strength is inher-

ent in this expression, as you can see that the combined strength of the

two lensing surfaces (in diopters) is equal to the sum of the strength

of each surface, in diopters. This extends to any pair of lenses placed

close together – the effective strength of two lenses closely placed (rel-

ative to their focal lengths) in front of one another is the sum of their

strength in diopters.

• True Facts about the Eye:

The eye is approximately one inch in diameter. A lens in front casts

a real image of objects being viewed onto its retina, where rods and

cones transform the light into neural impulses which are then conveyed

to the brain for processing by the optic nerve. Rods and cones are very
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sensitive to light (and easily damaged) – the light content is regulated

by the iris of the eye, which expands and contracts the pupil – the

aperture through which light passes as it enters the lens.

The focal length of a relaxed lens of an eye with normal vision is

on the retina, so distant objects are automatically in focus. Given

the diameter of the eye, this means that the strength of the lens of

a normal eye is approximately 40.00d. The focal length of a relaxed

farsighted eye is behind the retina (too long, strength less than 40.00d)

and is corrected with a converging lens to make up the difference. The

focal length of a relaxed nearsighted eye is in front of the retina (too

short, strength greater than 40.00d) and is corrected with a diverging

lens to take away some of its strength.

There are muscles that surround the lens of the eye in a ring that

contract, making the lens bulge (to a greater radius of curvature) and

thereby shortening the focal length (a process called accommodation)

to bring nearby objects into focus. The nearest point one can bring an

object to the eye and still bring it into focus on the retina is called the

near point of the eye and is also the distance of most distinct vision,

represented xnp. In most adults, this distance is around 25 cm (less

for small children, longer for the elderly).

A nearsighted person’s lens already has too short a focal length to be

able to focus distant objects on the retina, and accommodation only

shortens the focal length still farther. A nearsighted person cannot see

anything clearly at distances greater than some point, called the far

point for that person’s eyes. A nearsighted person is one for whom the

far point xfp is less than infinity.

• The simple magnifier is a converging (f > 0) lens placed immediately

in front of the eye. An object placed at its focal point therefore forms

a virtual image at infinity that is automatically brought into focus by

the relaxed normal (or vision corrected) eye. The magnification of the

object occurs because one can bring the object closer to the eye than

xnp and still see it clearly, where it subtends a greater angle on the

retina (angular magnification). Its magnification is given by:

M =
xnp

f
(11.6)



340 Week 11: Lenses and Mirrors

It is very important to understand the simple magnifier, as it forms

the eyepiece of both the microscope and the telescope.

• A telescope is used to view a distant object by making the angle its

image subtends on the retina larger. Two lenses are situated at ends of

a tube such that their focal points are coincident. The first lens (with

a long focal length) forms a real image of the distant object more or

less at its focal point. The second lens (with a short focal length) is

used to view this real image as a simple magnifier. This produces a

virtual image at infinity that subtends a greater angle than the original

object did, viewable with the relaxed normal eye.

The overall angular magnification of a telescope is given by:

M = −fo

fe

(11.7)

The eyepiece lens can be converging (regular) or diverging (Galilean).

In both cases this formula for the magnification works (provided that

one uses a negative fe for the diverging lens and place the focal point

fo at the focal point on the far side of the diverging lens). A regular

telescope inverts the image, which is inconvenient and undesireable.

A Galilean telescope does not invert the image.

• A compound microscope is used to view a very small, but nearby

object. It accomplishes this in two stages. Two short focal length

lenses are situated at ends of a tube much longer tube. The tube

length ℓ of the microscope is by definition the distance between the

focal point of the first, or objective lens (which must be converging)

and the second, or eyepiece lens. The object is placed just outside

of the focal length of the objective lens in such a way that it forms

a magnified, real image of the object more or less at the end of the

tube length. The eyepiece lens is used as a simple magnifier to view

this real image, and can be converging or diverging as was the case for

the telescope. It produces a virtual image at infinity that subtends a

greater angle than the real image formed by the objective lens alone

would if viewed at the near point of the relaxed normal eye.

The magnification of the objective is:

Mo = − ℓ

fo

(11.8)
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The magnification of the eyepiece (simple magnifier) is:

Me =
xnp

fe

(11.9)

The overall magnification is therefore:

Mtot = −ℓ xnp

fofe

(11.10)

where as before, this formula for the magnification works provided that

one uses a negative fe for the diverging lens and place the real image

formed by the objective on the far side of the diverging lens. A regular

microscope inverts the image, which is inconvenient and undesireable.

A “Galilean” microscope does not invert the image.

11.1 Vision and Plane Mirrors

eye

lamp

Figure 11.1: How the eye sees an object. Light diverging from points on

the surface of the object are focused onto the retina of the eye, where they

form an image of the object that the retina converts into neural impulses

and your brain converts into perception.

Objects in the real world that are illuminated by diffuse light absorb

the light at every point on their surface and then reradiate (selected col-

ors/frequencies) from each point in all directions. This is why you can see

something that is illuminated from all angles – every point on its surface

emits light reradiated from the illuminating source in all directions so no

matter where you look at it from, some of the light reaches your eye.
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To completely understand how your eye can see the object, we have to get

halfway through this week’s work. On the other hand, we can’t understand

enough about how mirrors and lenses work to understand the eye without

understanding the eye well enough to understand how lenses and mirrors

work.

Hmmm, a bit of a dilemma. We have to bootstrap just a bit and draw

a few pictures now that you won’t completely understand later to help you

understand what you need to understand what you need to understand later.

Or something like that.

So meditate on the picture above, which shows light diffusely scattered

from from a couple of points on a common object. The light goes in all

directions from all of the points on the surface of the object. Some of these

rays reach your eye. There the lens of your eye does its thing, and forms

a nice sharp image of the object cast upon the retina of the eye. Vision

occurs.

s s’

Figure 11.2: The geometry of forming an image in a plane mirror.

Now consider looking at an object in a plane mirror. Lamps are too hard

to draw, so we consider an arrow, which we will use as a “generic object” in

our diagrams.

Rays radiated from the object radiate out in all directions as shown in

the figure above. When they strike the mirror they are reflected with the

angle of incidence equal to the angle of reflection. As we look at the mirror,

we see the rays that originated on a single point on the object as if they
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were diverging from a single point in space. That point is the image of the

point on the object. Since every (visible) point on the object corresponds

to an apparent point of divergence in space from the image, we can see the

image exactly as if we were looking at an object.

In the case of a plane mirror (above) the image is always behind the

mirror. The light rays you see do not actually pass through the image, they

simply appear to diverge from it. We call such an image a virtual image.

We need to define several quantities that will be essential in our analysis

of how lenses and mirrors work. The distance from a mirror (or lens) to

an object one is viewing in (or through) it is s, the object distance. Object

distances are positive if the object is on the side of the mirror (or lens) that

the light is coming from. Object distances are obviously ‘always’ positive,

unless the object is a virtual object formed out of the image of a previous

mirror or lens, which can be either positive or negative.

The distance from a lens or mirror to the image one is viewing is s′, the

image distance. Image distances are positive if the image is on the side of

the mirror (or lens) that the light is going to.

Multiple mirrors can be used to create images of images, or images of

images of images (used as “virtual objects” for the second mirror). Most

of us have experienced the “infinite tunnel” of images that results from

standing directly in between two plane mirrors.

image P’

image P’
object P

image P" of image P’

Figure 11.3: Two mirrors create an image of an image. Only a few of the

many rays are drawn – copy the picture and fill in more yourself.
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11.2 Curved Mirrors

Plane mirrors simply create a perfect image of everything that is in the real

space reflected in the mirror. Things get more interesting if the mirrors are

curved. Curved mirrors can create images that are systematically larger or

smaller than the object, and can create a new kind of image from the one

seen in figure (11.2).

In figure (11.4) we see a concave spherical mirror, which we will also

call a converging mirror or a positive mirror1. The horizontal line running

through the center of the mirror is very important and is called the axis of

the mirror, which is rotationally symmetric about this axis. Even imaging

an arrow is too complicated for our purpose (which is to figure out how

spherical mirrors can make images at all) so we look for the image of a

single point P, which we locate for convenience on the axis of the mirror.

The image P’ occurs where two reflected rays cross. The two rays in

question are the one that strikes a distance l up the mirror (with angle of

incidence equal to the angle of reflection) and a ray that goes along the axis

and is reflected directly back the way it came. This is a new kind of image –

the rays don’t just appear to come from a point in space (a point that is really

in the dark of your closet or medicine cabinet, back behind the mirror) as

they do with a virtual image, they really reach the eye after passing through

a point in space. You could reach out and put your finger through the point

in space they appear to be coming from. We call this kind of image a real

image, and we need to be able to determine whether an image is real (the

kind of image that can be projected on a retina, piece of film, wall, projector

screen) or virtual (which cannot be projected at all, since no light actually

passes through the image), so be sure you understand the distinction and

can categorize images you determine from e.g. ray diagrams.

We begin by making an essential approximation. We will later talk about

aberrations of lenses and mirrors – things that prevent rays from a single

point on the object from d. One of the most important ones will be spherical

aberration – spheres have this annoying habit of not focussing parallel rays

from an object point far from the axis or rays that are near the axis but

that are not approximately parallel to the axis down to a single point in the

1For those who have concave/convex dyslexia, remember that concave is like a cave,

and curves inward, while convex is nothing at all like a vex. What is a vex, anyway?
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image. We can’t have that, so we insist that the rays we will deal with be

paraxial – close to the axis and close to parallel. The former means that

we strike the mirror close enough to its center for us to be able to pretend

that the deflection occurs in a (slightly) curved plane; the latter means that

small angle approximations will all work quite well.

s’

r
s

α β γ

θ

l

P’P

Figure 11.4: The geometry of forming an image in a concave mirror.

Three important lengths are drawn onto the figure: s, s′, and r, as well

as the distance l itself. Note well also the four angles: α, β, γ and the angle

of incidence/reflection θ. Since the angles are all small and l is close to a

straight line:

α ≈ l

s
(11.11)

β =
l

s
(11.12)

γ ≈ l

s′
(11.13)

(where the result for β, note well, is exact because l really is the length of a

circular arc that is subtended by the angle β).

We now play games with the triangles in the picture. We use the follow-

ing rule several times: Consider the triangle with α, θ and the angle δ (filled

in to figure (11.5)). We can easily see that α + θ + δ = π. But we can also

see that δ + β = π. Therefore:

α + θ = β (11.14)
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α β

θ

δ

Figure 11.5: α + θ = β.

and similarly (considering the other triangle involving β and θ)

β + θ = γ (11.15)

If we eliminate θ, we get:

α + γ = 2β (11.16)

Finally, if we substitute in all of the small angle approximations and

cancel l, we get:
1

s
+

1

s
=

2

r
(11.17)

As we move the object back farther and farther from the mirror (let s → ∞)

we note that the image distance approaches r/2. Rays coming from an

infinitely distant object arrive at the mirror parallel and converge at s′ = r/2.

We define the point where a lens or mirror focuses parallel, paraxial rays to

be the focal point of the lens or mirror. Thus:

f =
r

2
(11.18)

and
1

s
+

1

s
=

1

f
(11.19)

This is a very important result! It is the equation we will use to analyze all

images formed by curved mirrors and thin lenses (after we derive the same

formula for the latter) so be sure that you have learned it and understand

it.

The focal length f of a mirror (or lens) is the point where incident parallel

rays are focused to (for positive focal lengths) or appear to be defocused

from (for negative focal lengths). f is typically measured in meters (SI)

or centimeters (for convenience). However, the strength of lenses is usually

given in diopters, where:

d =
1

f
(11.20)



11.3. RAY DIAGRAMS FOR IDEAL MIRRORS 347

with f in meters. This a one diopter (1.00d) lens has a focal length of 1

meter. A 10.00d lens has a focal length of 0.1 meter. A diverging lens with

a focal length of one centimeter is -100.00d.

It is possible to use the same inverse length units to write the thin

lens/mirror equation above. If we define x = 1/s, x′ = 1/s′, then:

x + x′ = d (11.21)

is the direct (instead of reciprocal) rule. Note well that the ranges of x, x′,

and d have a very different meaning. d = 0 means a focal length of ±∞,

a flat mirror (or non-focusing lens). x = 0 is similarly s = ±∞, generally

+∞. Here it is quite easy to see how and when x and x′ change sign if either

one of them is larger than d.

However, this is not necessarily easier to use for the purposes of com-

putation, as one still (ultimately) has to do the same algebra to actually

compute s and/or s′.

At this point we have derived a simple equation relating s, s′ and f . The

only rule we have used so far in deriving that equation (which you can easily

see holds for plane mirrors as well) is the law of reflection. We have deduced

as a theorem of this the rule that parallel paraxial rays are diverted by a

converging mirror to an image at the focal distance from the mirror. We

now need to take these two rules (and a third that is a restatement of the

second) and use them to construct ray diagrams that permit us to visualize

how a converging or diverging mirror forms an image out of rays diverging

from an object. Constructing such diagrams, and answering a more or less

standard set of questions, will constitute most of the problems associated

with this chapter.

11.3 Ray Diagrams for Ideal Mirrors

To construct our ray diagrams, we need to begin by idealizing spherical mir-

rors in a way that “hides” things like the fact that many rays we might wish

to image with are not paraxial. Later in this chapter we’ll deal with many

of the aberrations that are features of real lenses and mirrors as deviations

from ideal behavior in the focussing elements themselves or the light that
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goes through them, but these will be “corrections” that should not cloud

our perception of how things basically work.

First, when drawing rays in a ray diagram, one always assumes that

all deflection by the lens or mirror occurs in a single plane. This is an

idealization, to be sure – the reason mirrors and lenses focus light is because

they are curved, not planar. But paraxial rays by definition strike close

enough to the center that the deviation from planar can be ignored, and we

idealize this to the entire plane.

Given this, the following three rays have rules that can be used to locate

images and compute magnification for any mirror (and eventually, lens):

1. The Parallel Ray: A ray from the object that is parallel to the axis

of the mirror is reflected by the mirror through the focal point.

2. The Focal Ray: A ray from the object that strikes the mirror either

through the focal point or along a line that comes from the focal point

is reflected parallel to the axis of the mirror.

3. The Central Ray: A ray from the object that strikes the mirror in

the center is reflected by the mirror with angle of incidence equal

to the angle of reflection which means that the reflected ray is

symmetric across the axis from the incident one.

Now consider the following ray diagrams for various positions of our

archetypical arrow object for converging (+) and diverging (-) ideal mirrors.

1

3

2

object

image

s
s’

f

Figure 11.6: Converging mirror with s = 25 > f = 10.

In this figure, f = 10 cm, s = 25 cm. Therefore:

1

25
+

1

s′
=

1

10
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1

s′
=

1

10
− 1

25
1

s′
=

1.5

25

s′ =
25

1.5
= 16.7 cm (11.22)

α
α

y’

y

s’

s

Figure 11.7: Transverse magnification can be determined from the two right

triangles formed with the central ray as a hypoteneuse.

To compute the magnification of the image formed above, we note that:

tan(α) = −y

s
=

y′

s
(11.23)

(where we rigorously follow the convention that counterclockwise rotation is

positive to assign the signs). We define the transverse magnification m of a

simple mirror (or lens) is defined by the ratio of the image height y′ to the

object height y. If we rearrange the terms in this expression, we obtain:

m =
y′

y
= −s′

s
(11.24)

This expression is valid for all images obtained for any ideal lens or mirror.

Note that in this case, the image formed is real (because the light rays

pass through the actual object), inverted, and that the image formed is

smaller than the original object.

Let’s look at two more possibilities for converging/concave mirrors. In

figure (11.8), we see an (upside down) object at a position between f and

2f . This range is the second possibility for this kind of mirror, one that

leads to a magnified real image larger than the object.
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3

f
1

2

s’
s

image

object

Figure 11.8: Converging mirror with 2f = 20 > s = 15 > f = 10.

As before, 1/s′ = 1/10−1/15 = 1/30 so s′ = 30 cm. The magnification is

m = −′s/s = −30/10 = −3. The image is again real and inverted (relative

to the object), but in this case the image is larger than the object.

Note that for s > f there is a symmetry between solutions with s >

2f > s′ and solutions with s′ > 2f > s, emphasized in the figure above

by deliberately drawing the object upside down so that it looks very much

like figure (11.8). In fact any ray diagram involving real images can work

both ways, with s and s′ (and the role of the object and image) interchanged

because 1/s and 1/s′ appear symmetrically in the mirror/thin lens equation.

object

1

3

2

f

image

s
s’

Figure 11.9: Converging mirror with s = 5 < f = 10.

In figure (11.9) the third and last distinct possibility for a converging

mirror is drawn. In this case, the object is located inside the focal length at

s = 5 cm (for f = 10 cm). Thus 1/s′ = 1/10−1/5 = −1/10 or s′ = −10 cm.

The magnification is m = −(−10)/5 = 2. The final image is virtual, erect,

and larger than the object. This is the common way converging mirrors are

used as “makeup mirrors” that present a magnified image of the user’s face
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when viewed from inside their focal length.

We only need to present one diagram for diverging/convex mirrors, as

they all have the same general diagram independent of the relative size of

s and f . Note that the first and second rules are “backwards” compared

object
1

2

3
image

f
s’

s

Figure 11.10: Converging mirror with s = 20 < f = 10.

to converging lenses. A ray parallel to the axis is deflected so it appears to

be coming from the far side focal length. A ray headed to the far side focal

length is deflected back parallel to the axis. The central ray is drawn as

before.

We apply as always the mirror/thin lens formula: 1/s′ = −1/10−1/20 =

−3/20 so s′ = −6.7 cm. The magnification is m = −(−6.67)/20 = 0.33.

The image is erect, virtual, and smaller than the object. All of these general

properties will apply (with different numbers) to any diverging mirror.

If you master drawing these generic diagrams (and can manage the very

simple algebra associated with evaluating e.g. s′ and m given s and f , you

can with patience analyze any combination of mirrors (and later) lenses)

you are presented with.

11.4 Lenses

A spherical lensing surface between two different media with different indices

of refraction are drawn in figure (11.11).

As was the case for the mirror, the three angles α, β, and γ in the small
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α β γ

1θ 2θn
n2

1

P P’

l

s
r

s’

Figure 11.11: Diagram that shows how a spherical lens creates an image via

refraction.

angle approximation can be written as:

α ≈ l

s
(11.25)

β =
1

r
(11.26)

γ ≈ 1

s′
(11.27)

We also have Snell’s law for the (small) angles θ1 and θ2:

n1θ1 ≈ n1 sin(θ1) = n2 sin(θ2) ≈ n2θ2 (11.28)

so

θ2 =
n1

n2

θ1. (11.29)

Using triangle rules like the ones above, we also get:

θ1 = α + β (11.30)

and

β = θ2 + γ (11.31)

Eliminating theta2, this becomes:

β =
n1

n2

θ1 + γ (11.32)

If we multiply both sides by n2 and substitute θ1 from the first equation,

this becomes:

n2β = n1α + n1β + n2γ (11.33)
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or

n1α + n2γ = (n2 − n1)β (11.34)

We substitute in the small angle formulas and cancel l to get:

n1

s
+

n2

s′
= (n2 − n1)

1

r
(11.35)

In most cases of interest to us, the lenses in question will be made out of

glass, plastic, or collagen (in the case of the eye) surrounded or faced by air,

in which case this will simplify to:

1

s
+

n

s′
= (n − 1)

1

r
(11.36)

If there are two lensing surfaces separated by a very small distance, we

have a so-called thin lens. The relevant geometry of a thin lens surrounded

by air is shown in (11.12). The first surface struck by light from an object

r2

1r

Figure 11.12: Geometry of a thin lens surrounded by air.

(presumed coming in from the left) has positive radius of curvature r1. The

second surface has a negative radius of curvature r2. The index of refraction

of the lens is n.

Suppose we have an object on the left hand side of this lens at distance

s. From the formula above, we have:

1

s
+

n

s′
= (n − 1)

1

r1

(11.37)

The image of the first lensing surface is a virtual object for the second lensing

surface. Because it is virtual (located to the right of the second surface, on

the side light is going to) and because we are going from the material with

index of refraction n into air, the formula for the second lensing surface is:

−n

s′
+

1

s′′
= (1 − n)

1

r2

(11.38)
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If we add these two formulae, the s′ term cancels and, we get:

1

s
+

1

s′′
= (n − 1)

(
1

r1

− 1

r2

)
=

1

f
(11.39)

This is the thin lens formula where s′′ is the final location of the image of

the entire lens. Note that this is identical to the formula for the mirror. The

focal length is given by the lensmaker’s formula:

1

f
= (n − 1)

(
1

r1

− 1

r2

)
(11.40)

1

3

2
f

s’s

Figure 11.13: A converging lens with focal length of 10 cm and an object at

s = 30 cm.

With the thin lens formula in hand, we can easily adapt exactly the same

rules for drawing ray diagrams for locating images. Let’s draw a simple

ray diagram for a converging and a diverging lens that are similar to the

ray diagrams above for mirrors. We do the usual algebra and arithmetic:
1
s′

= 1
10

− 1
30

= 2
30

so s′ = 15.0 cm, m = −1
2
. The final image is inverted,

real, and smaller than the object.

As before, if one puts an object inside the focal length it will make a

magnified, erect, virtual image, if one exchanges the position of object and

image in the example above, one will obtain an inverted, real image that is

larger than the object.

A diverging lens, on the other hand, has only one generic diagram to

be learned. It is basically the same as for the mirror, except that rays are

transmitted through the thin lens (with all bending occurring at the thin
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s

s’
f

Figure 11.14: A diverging lens with focal length of −10 cm and an object

at s = 20 cm.

plane representing the center plane of the lens) instead of reflected from it.

In the situation represented in figure (11.14), the image is virtual, erect,

and smaller than the original object. Show (from the numbers and thin lens

formula) that s′ = −6.67 cm and that m = 1/3.

11.5 The Eye

Figure 11.15: A simplified anatomical diagram of the human eye.

The eye is roughly spherical and approximately one inch in diameter.

Figure (11.15) show is essential anatomy. Here is a brief review of the

components of the eye.

• Cornea: The cornea of the eye is the rounded, transparent structure

at the front of the eye. It is strongly curved, and is responsible for

most of the bending of light required to focus images onto the...
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• Retina: The retina is the “film” of the eye. It consists of tight bundles

of photosensitive nerves called rods (sensitive to light intensity) and

cones (sensitive to intensity in specific colors. In the center of the

retina is the...

• Macula: The macula is the most sensitive part of the retina and is

where one ”sees” the object of one’s attention. It is more or less in

front of the...

• Optic Nerve: which pipes all of the information transduced from the

light image cast on the retina to the brain. The retina (especially the

macula) is very sensitive to light and easily damaged. To control the

amount of light entering the eye, the...

• Iris: The iris is a ring of pigmented tissue that can open or contract

to let more or less light into the...

• Pupil: The pupil is the aperture for light into the eye. When it

is dark, the iris opens and lets all the light possible into the retina

(which is very sensitive and capable of seeing with remarkably little

light). When it is very bright, the iris closes down to a pinpoint. This

actually increases visual acuity – see the pinhole camera – independent

of the action of the...

• Lens: The lens of the eye is normally in a state of tension main-

tained by suspensory ligaments called zonules that keep it flattened

out, with a maximally long focal length. A ring of ciliary muscles

surrounding the lens can be contracted, which removes a part of this

tension, predictably bulging the lens and thereby reducing its focal

length. This process is called accommodation.

It is important to understand that accommodation can only reduce the

focal length of the lens, not increase it, as well as the fact that the cornea is

responsible for most of the focal length of the combined system – the actual

lens is more of a “correction” to the overall focal length already achieved by

the cornea alone. We now need to understand the three common conditions

that describe the eye.

The focal length of a relaxed lens of an eye with normal vision is on the

retina, so distant objects (at “infinity” compared to the size of the eye) are
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farsighted eyenormal eye nearsighted eye

corrected corrected
nearsighted eyefarsighted eye

Figure 11.16: The focal length of the relaxed (combined) lensing acting of

the eye for a normal eye, a farsighted eye (hyperopia), and a nearsighted eye

(myopia).

automatically in focus (as a real image cast upon) on the retina. Given a

distance from the cornea to the retina of roughly 2.5 cm, this means that

the strength of the lens of a normal eye is approximately 1
0.025

= 40.00d.

When viewing less distant objects, accomodation shortens the focal length

to bring them into focus on the retina.

The focal length of a relaxed farsighted eye is behind the retina (too long,

strength less than 40.00d) and is corrected with a converging lens to make

up the difference. If one expresses strength in diopters, one can simply add

a converging lens with a strength in diopters to the strength of the the eye

to get the “right strength” to make the combination focus distant objects on

the retina with the eye’s lens relaxed. Note that a hyperopic person can see

in focus all the way out to infinity, but they have to use accommodation to

shorten their lens’s “too long” relaxed focal length see even distant objects,

which can lead to eye fatigue and headaches.

The focal length of a relaxed nearsighted eye is in front of the retina (too

short, strength greater than 40.00d) and is corrected with a diverging lens

to take away some of its strength. A myopic individual simply cannot see

distant objects in focus without a corrective lens because accommodation

cannot increase the focal length of the eye’s lens, it can only further decrease

it.
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Accommodation can shorten the focal length only so far, which limits

how close an object can be and still be focused on the retina. The nearest

point one can bring an object to the eye and still bring it into focus on the

retina is called the near point of the eye and is also the distance of most

distinct vision, represented xnp. In most adults, this distance is around 25

cm (less for small children, longer for the elderly).

A nearsighted person’s lens already has too short a focal length to be able

to focus distant objects on the retina, and accommodation only shortens the

focal length still farther. A nearsighted person cannot see anything clearly

at distances greater than some point, called the far point for that person’s

eyes. A nearsighted person is one for whom the far point xfp is less than

infinity.

A common aberration of human eyes is a condition called astigmatism.

Astigmatism is what happens when the eye’s lens is no cylindrically sym-

metric. That is, the focal length of the lens in the horizontal plane is not

the same as the focal length in the vertical plane. One can then bring things

into focus in one dimension with accommodation, but only at the expense

of blurring them in the other. The solution is to wear lenses that are astig-

matic in the opposite direction to add up to neutral (or to person’s otherwise

necessary correction).

As a person’s eyes age, their ability to focus changes. People with once

normal vision can become nearsighted or farsighted. After the age of roughly

50 a new condition often emerges – that of presbyopism. The collagen of

the lens hardens over time. Its flexibility decreases, making it more difficult

for the eye to accommodate and increasing the near point. This kind of

“farsightedness” can occur even for nearsighted individuals. The solution is

to correct with “reading glasses” – positive lenses that permit a presbyopic

individual to read at normal distances. They can be combined into “bifocals”

– reading glasses for short distances plus diverging lenses to correct myopia

at long distances – for people with the latter condition.
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11.6 Optical Instruments

11.6.1 The Simple Magnifier

The “size” of an object to the human eye is determined by three distinct

things. Humans have binocular vision, and use parallax – the apparent

displacement of an object seen from two slightly different positions – to get

a sense of an object’s distance. This is reinforced by the physiological sense

of accommodation, which gives one a sense of relative nearness. Finally,

given the distance, it is determined by the angle the image subtends on the

retina.

x

f

np

β

αy

y

Figure 11.17: A converging lens used as a simple magnifier.

To see a small thing as clearly as possible, we naturally bring it to the

closest point we can, so its details subtend the largest possible angle when

our eyes are maximally accommodating. In figure (11.17) the top picture

shows an object of height y viewed at the near point. When the image is

focused on the retina by the maximally accomodating eye, it subtends an

angle of α, where:

α ≈ tan(α) =
y

xnp
(11.41)

in the small angle approximation (which is entirely justified because we only

“see” detail with the macula, which in turn only occupies around 0.2 radians

in the center of the visual field. Even if we are examining a larger object,
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we do so by redirecting the eye to look at it in patches that cover it in small

angle chunks.

To use a simple magnifier we place a converging (f > 0) lens immediately

in front of the eye. The object is placed at its focal point. It therefore forms a

virtual image at −∞ that is automatically brought into focus by the relaxed

normal (or vision corrected) eye. It now subtends an angle β on the retina

given by:

β ≈ tan(β) =
y

f
(11.42)

The magnification is therefore the ratio of the new angle (with the mag-

nifier) to the angle without it, when the object is seen at the near point. The

magnification of the object occurs because one can bring the object closer

to the eye than xnp and still see it clearly (more clearly, even, than before

given that one does not have to accommodate). Its magnification is given

by:

M =
β

α
=

xnp

f
(11.43)

It is very important to understand the simple magnifier, as it forms

the eyepiece of both the microscope and the telescope, our next two optical

instruments.

11.6.2 Telescope

α

Figure 11.18: An regular (inverting) telescope.

A telescope is an optical instrument used to bring distant objects closer

so that you can see them magnified and much more clearly. In figure (11.18)

you can see what a ray diagram looks like for light from a very distant object

entering the naked human eye. The rays from the originating point, after

travelling a long distance, necessarily enter the eye more or less parallel and
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are focused by the relaxed normal lens onto the single point on the retina

determined by the central ray entering at angle α.

y

fo
α

y

fo
α β

ef

y

fo
α β

ef

Figure 11.19: An regular (inverting) telescope.

To magnify our view of this object, we begin by inserting a lens with

a long focal length fo into the optical path. This takes light from the (in-

finitely) distant object and creates an inverted real image of it at the focal

point as shown in the first panel in figure (11.19) above. We draw many

parallel rays and show them as if they were deflected by the ideal lens at its

plane of refraction. This shows how we can use rays from the image the same

way we would use rays from the original object when this image becomes a

virtual object for the second lens, and pick any ray that is convenient for

our purposes of analyzing the magnification.

This image (virtual object) is “infinitely” smaller than the original object

but it has the advantage of being right there in space in front of the eye, not
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infinitely distant. We can therefore examine it quite closely. To do so, we

use a second lens as a simple magnifier, placing it so that the virtual object

is at its focal point. This is shown in the second panel.

Since the virtual object is at the focal point fe, rays diverging from the

virtual object exit the second lens parallel to the central ray, shown entering

at angle β. This bundle of parallel rays corresponds to a virtual image at

(negative) infinity but deflected so that their angle relative to the central

axis if much steeper. We can easily compute the angular magnification of

this telescope by noting that:

α ≈ tan(α) = − y

fo

(11.44)

and

β ≈ tan(β) =
y

fe

(11.45)

so that

M =
β

α
= −fo

fe

(11.46)

In the final panel, we show what happens when this final image at infinity

coming in at angle β looks like when closely viewed by a human eye. Since

the image is infinitely distant (the rays enter the eye parallel) it can be

comfortably viewed with the relaxed normal lens, which will focus the bundle

down to a single point on the retina determined by the central ray at angle

β. Obviously the total angle subtended on the retina is much larger – the

object being viewed appears much larger to the eye and senses. The major

disadvantage of this telescope is that it inverts the image – everything viewed

is upside down and backwards. This makes it a bit tricky to find objects as

they move the opposite way one thinks that they should when viewing them

through the telescope.

Interestingly, this final disadvantage can easily be eliminated by using a

diverging lense for the eyepiece. Ordinarily one thinks of a diverging lens

as making something smaller, but because we can place the image from

the first lens anywhere we wish, we can turn it into a virtual object at

the far focal point of a diverging lens. One obtains the same formula for

the magnification, but now fe < 0 and the overall angular magnification is

positive.
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α β
ef

y

fo

Figure 11.20: A “Galilean” telescope uses a diverging lens for the eyepiece.

This does not affect the formula for the magnification, but it ensures that

the eye sees the distant objects erect instead of inverted.

This kind of telescope is called a Galilean telescope and is much more

convenient to look through than a regular telescope. As you can see from

figure (11.20), the angular magnification of a Galilean telescope is still:

M =
β

α
= −fo

fe

(11.47)

(where now fe < 0 is negative) but parallel rays from the distant object

enter the eye after passing through the telescope in the same angular sense

that they enter it when viewed without the telescope. As before, note that

we used a ray that would have passed through the center of the second lens

(and the eye, if the eye were drawn into the figure) in order to determine

the angle all of the parallel rays leave the eyepiece lens before entering the

(normal) eye and being focused on the retina.

Telescopes (in the hands of Galileo and others) were an instrument that

ushered in the Enlightenment in the seventeenth century, putting an end

to several thousand years of human history where mythology and inexact

observations prevented the systematic development of a consistent theory of

physics. Let’s look at another instrument that had a revolutionary impact

on human society, the microscope.



364 Week 11: Lenses and Mirrors

fofo l

α
y

y’

s’s

Figure 11.21: The first magnification stage of a compound microscope brings

a small object just outside of the focal point of the objective lens into focus as

a real, magnified image at the end of the tube length l. By comparing the

two dashed similar triangles, one can see that the first stage magnification

is − l
fo

.

11.6.3 Microscope

A compound microscope is used to view a very small, but nearby object. It

accomplishes this in two stages. Two short focal length lenses are situated

at ends of a tube much longer tube. The tube length l of the microscope

is by definition the distance between the focal point of the first, or objective

lens (which must be converging) and the second, or eyepiece lens.

The objective stage of the magnification occurs as the the object is placed

on a movable platform just outside of the focal length of the objective lens

of the microscope. The platform is raised or lowered (altering s, the object

distance) until the objective lens forms a magnified, real image of the object

at the end of the tube length as shown in figure (11.21).

The magnification of the objective stage is:

Mo = − ℓ

fo

= −fo + l

s
(11.48)

where the first relation is the one actually used, but the second one (based
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on the observation that s′ = fo + l) can be used to find the correct object

distance s that will accomplish this.

fofo l

α
y

y’

s’s

β

fe

Figure 11.22: The second magnification stage of a compound microscope

brings the highly magnified image from the objective stage close to the eye

by functioning as a simple magnifier. By bringing the virtual image in from

xnp to fe it magnifies it by an addtional factor of xnp

fe
.

This real, magnified image can be viewed with the naked eye, but of

course the naked eye can view it no closer than xnp. The second stage

of a compound microscope consists of an eyepiece lens is used as a simple

magnifier to view this real image in precisely the same way we used it for

the telescope, and can be converging or diverging as was the case for the

telescope. It produces a virtual image at infinity that subtends a greater

angle than the real image formed by the objective lens alone would if viewed

at the near point of the relaxed normal eye.

The magnification of the eyepiece used as a simple magnifier is therefore:

Me =
xnp

fe

(11.49)

which yields an overall magnification for the two stages working together

of:

Mtot = −ℓ xnp

fofe

(11.50)
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Figure 11.23: A “Galilean” microscope uses a diverging lens for the eyepiece.

This does not affect the formula for the magnification, but it ensures that

the eye sees the tiny objects erect instead of inverted. As always, we use a

“central” ray for the second lens that is deflected at the plane of the first

lens as if it passes through both lenses to find the location and size of the

final image.

As we noted and can see in figure (11.23) above, one can use a diverging

lens for the eyepiece by placing the real image formed by the objective on the

far side of the diverging lens to form a “Galilean” microscope. As before

(for the telescope) this microscope does not invert the image (inversion is

inconvenient and undesireable) but otherwise the same formula works for the

magnification provided that one uses a negative fe for the diverging lens. It

has the further advantage of having a slightly shorter overall length.

Typical numbers for a compound microscope this might be fo = fe = 1

cm, l = 10 cm, for a total magnification of 250 (inverting or non-inverting).

250x microscopes are more than adequate to observe e.g. blood cells, bacte-

ria, the cellular structure of plant an animal tissue, amoeba, paramecium,

and a host of microorganisms and cellular structures. For example, amoeba

can range in size from 10-1000 µm (where the latter, note well, is roughly
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a millimeter and barely visible to the naked eye). A 250 power microscope

can make an amoeba appear to the eye as large as a 25 cm object, clearly re-

vealing its nucleus and vacuoles. Even small amoeba or bacteria will appear

several millimeters in size at this magnification.

Just as the telescope caused a revolution in our vision of cosmology

and the structure of the Universe at large distances and over long times,

the microscope caused a revolution in our vision of the world of biology.

Disease, which had long been thought of as being caused by demons or by a

curse afflicted on sinners by God, was seen to be caused by living organisms

too small to be seen by the naked eye. Where before the only possible cure

for most diseases was believed to be divine intervention, miracles brought

about by repentance and prayer, the microscope enabled the discovery of

antiseptic medicine – that heat, soap and water, alcohol, and eventually

antibiotics kill off disease-causing microorganisms to prevent or cure disease

quite independent of “magic” such as miracles or prayer. The two together

brought about the Enlightenment, a time of intense discovery and invention

that ultimately ushered in the rational modern world of today.
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11.7 Homework for week 11

Problem 1.

Derive the equation

1

s
+

1

s′
=

1

f
=

2

r

for a spherical concave mirror as seen in class. Remember, this involves

drawing a picture of an object that is a point on the axis of the mirror and

the rays that local its point-image, then doing some work with triangles and

the small angle approximation.

Problem 2.

Produce ray diagrams for both lenses and mirrors for all permutations

of the following data: f = 10 cm. f = −10 cm. s = 10, 20, 40, 60 cm. In

all cases locate the image (give s′), find the magnification m, and indicate

whether the image is erect or virtual.

Problem 3.

Prove that the lateral magnification or an object is:

ml =
∆s′

∆s
=

s′2

s2
(11.51)

I’d “suggest” that you think about your friend, the binomial expansion,

when solving this problem. Is the image “inverted”?

Problem 4.
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The human eye is the primary optical instrument. Draw a normal eye,

a nearsighted eye, and a farsighted eye, showing the location of the relaxed-

eye focal length in all three cases. Draw them a second time with the

appropriate corrective lenses, showing with simple rays how they work to

fix the problem(s).

Problem 5.

A fish’s eye has a focal length of 1 cm in water (which is just the distance

from the lens to the fish’s retina, of course). Is its focal length in air longer

or shorter? Don’t just answer with a guess – you need to make a complete

argument based on the lens-maker’s formula or Snell’s law directly, sup-

ported by pictures. Is the fish nearsighted or farsighted in air? Conversely,

if you open your eyes underwater (and have normal vision in air) are you

nearsighted or farsighted?

Problem 6.

Draw a ray diagram for the simple magnifier, deriving its (angular) mag-

nification in the standard picture. Then derive where one has to locate the

object to form a virtual erect image at the near point of the eye as viewed

through the magnifier. What is the overall (angular) magnification of the

image now?

Problem 7.

Draw ray diagrams and derive the magnification for: The standard tele-

scope and the Galilean telescope (one with an eyepiece lens with a negative

focal length). Show that the latter permits one to view the final image at

infinity erect instead of inverted.
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Problem 8.

Draw ray diagrams and derive the magnification for: The standard mi-

croscope (with tube length ℓ) and the “Galilean” microscope (one with an

eyepiece lens with a negative focal length). Show that the latter permits

one to view the final image at infinity erect instead of inverted.

Problem 9.

From the first problem, you saw that if one places the object viewed with

a simple magnifier at a position that isn’t exactly at focal point of the lens,

one can achieve a slightly greater angular magnification (at the expense of

having to use accomodation in order to view the final image at the near

point of the eye instead of at infinity). Both the microscope and telescope

above use the eyepiece lens as a simple magnifier to view a real image. Based

on your result, by roughly what fraction do you think you can increase their

effective magnification if you locate the final image at the near point of the

eye?



Week 12: Interference and

Diffraction

• Coherence: A wave is said to be coherent if it has a single frequency

over a long enough distance (time)) that path difference (time differ-

ence) equals phase difference. The coherence time of a wave is the

largest such time where this is true, and the coherence length is sim-

ilarly the largest such path difference, typically c times the coherence

time.

• The coherence time/length of a typical hot source (such as a light

bulb) is a few tens of periods or wavelengths.

• The coherence length of a laser can be as long as meters.

12.1 Harmonic Waves and Superposition

Several weeks ago we learned about harmonic waves, solutions to the wave

equation of the general form (in one dimension):

E(x, t) = E0ǫ̂ sin(kx − ωt) (12.1)

where ǫ̂ is a unit vector in the direction of the wave’s polarization. Waves

spreading out spherically symmetrically in three dimensions from a source

with radius a have a similar form:

E(r, t) = E0
a

r
ǫ̂ sin(kr − ωt) (12.2)

(where |E(a, t)| = E0 is the field strength at the surface of the source for this

component of the polarization). Recall also that we only need to write the

371
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electric field strength because the associated magnetic field has an amplitude

of B0 = E0/c, is in phase, and is perpendicular to the electric field so that

the Poynting vector:

S =
1

µ0

E × B (12.3)

points in the direction of propagation. Finally, don’t forget that the (time

averaged) intensity of the wave is:

I0 =< |S| >av=
1

2µ0

E0B0 =
1

2µ0c
E2

0 (12.4)

We also learned about Huygen’s principle, which states that each

point on a wavefront of a propagating harmonic wave acts like a spherical

source for the future propagation of the wave. This will prove to be a

key idea in understanding interference and diffraction of waves that pass

through slits, the superposition principle, which says that to find the

total field strength at a point in space produced by waves from several

sources we simply add the field strengths from all the sources up, and one

of the ideas underlying Snell’s law, that the wavelength of a wave of a given

fixed frequency depends on the index of refraction of the medium through

which it propagates according to:

λ′ =
λ

n
(12.5)

where λ is the wavelength in free space; the wavelength of a wave is shorter

in a medium with an index of refraction greater than 1 so that the wave slows

down. All of these things that we have already learned will be important in

our development of interference and diffraction.

In addition to these old concepts, we will require one or two new ones.

One is the idea of a hot source. A hot source is something like the hot

filament of a light bulb, the hot flame of a candle, the hot gasses on the

surface of the sun, all so hot that they glow and give off light. Even the

gasses in a relatively cool fluorescent tube are “hot” in the sense we wish

to establish, as the atomes that are giving off the light are very weakly

correlated with one another.

Hot sources have certain important properties. The ones that are im-

portant to us are:
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• Atoms (or molecules) emitting light of any given wavelength in one

part of the hot source are not correlated with atoms in other parts that

are emitting light at the same wavelength. Even though they have

a common wavelength, the light from different regions have random

phases with respect to one another.

• Atoms (or molecules) emitting light of any given wavelength from one

part of the hot source are not self-correlated for long times. After a

certain amount of time, the source picks up a random phase relative

to its phase at a previous time.

One can think of the atoms as being little charged resonant oscillators

that give off light at particular frequencies (and thereby damp their own

oscillation) as they bounce. The “hot” part means that thermal energy

from the lattice constantly “kicks” the atoms to add back energy that is

radiating away and thereby cooling the atoms, but it kicks them at random

times and places and thereby introduces a random phase as it does so.

In order to observe intereference or diffraction, we will need (as we will

see) for there to be a fixed phase difference between the light fields we add

up from different sources. We call light with this sort of fixed, reliable phase

difference (at a given frequency) coherent light. We can characterize the

coherence of the source by either how long it remains coherent (coherence

time) or by the length of a harmonic train that remains coherent (coher-

ence length).

Hot sources are generally quite incoherent – they remain coherent for

(typically) a few tens to hundreds of periods of the wave, or equivalently

for tens to hundreds of wavelengths. This means that one will generally not

be able to observe interference or diffraction in light being recombined from

several hot sources (slits or surfaces of reflection) unless the path difference

is smaller than the coherence length of the light. We can see swirling colors in

a soap bubble (a very thin film) from thin film interference in the reflected

light because the bubble is thinner than the coherence length of the hot-

source light illuminating it. We do not see similar colors in light reflected

from a drinking glass because the glass is much thicker than the coherence

length of the light.

As we will later prove, when light from two incoherent sources is added,

one simply adds the intensities to find the final intensity. The proof involves
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adding the light from two sources with an arbitrary phase difference, then

averaging over all possible phase differences. When light is added from two

coherent sources, the field strengths are added (accounting for any fixed

phase difference due to e.g. path differences) and the result squared to

obtain the final additive intensity.

We have examples of sources of light that are not “hot sources” and that

have little randomness in the phase of the emitters giving off the light. First

and foremost of these is the laser, which is an extremely coherent source.

Lasers have coherence lengths measured in meters, not microns. They are

so coherent that two different laser sources will still interfere – even though

the sources have a random phase in between them it is a fixed random phase.

Pay careful attention to coherence as you work through interference and

diffraction below. Remember, hot sources will usually produce interference

when the light being summed is within the mutual coherence time/length

of the light source in question.

12.2 Interference from Two Narrow Slits

The first, and simplest, example of interference is monochromatic (constant

wavelength) light falling upon two extremely narrow (slit width less than

the wavelength of the light) separated by a distance d that is order of a few

wavelengths in size. Because the slits are so close together, they are within

the correlation length even of most (monochromatic) hot sources, so that

two slit interference patterns can easily be produced.

To compute the interference pattern produced by two slits, we begin by

examining figure (12.1), wherein light of fixed wavelength λ falls normally

onto a blocking screen through which two narrow slits have been cut. Each

slit is so narrow that it acts like a “point” Huygens radiator. Light from one

slit (the upper) travels a long distance and falls on a distant screen. Light

from the lower slit travels this distance plus the additional distance d sin(θ)

to arrive at the same point.

As long as the distance D between the two slits and the screen is much

larger than d the distance between the slits themselves then the angle θ be-

tween the horizontal line shown and both paths to the point of observation
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P is the same (although this is not visibly the case in the figure, where D

is not sufficiently large compared to d). The condition d ≪ D is called the

Fraunhofer condition and must be compared to the Fresnel condition

which evaluates interference patterns “close to” the slits where the simpli-

fying Fraunhofer condition does not hold. Fresnel patterns can “easily” be

evaluated as well, but the evaluation requires methodology that is beyond

the scope of this course.

d sin θ

d sin θ
d

D

P

θ

θ
θ

θ

θ

λ

r +

r

Figure 12.1: Two narrow slits act as Huygens radiators when indident plane

wavefronts fall upon them. Light from the two slits is coherent and in phase

as it leaves the slits, but arrives at P with a phase difference that depends

on the path difference.

Light from the top slit travels a distance r to arrive at point P . Light

from the bottom slit travels a distance r + ∆r = r + d sin(θ) to arrive at

the point P . r ≥ D and d sin(θ) ≤ d, so r ≫ ∆r. We can therefore find the

total electric field at P by adding the electric fields produced by each slit.

Let us call the amplitude of the electric field at point P E0. Then the total

field at point P is:

Etot(P ) = E0
a

r
sin(kr − ωt) + E0

a

r + ∆r
sin(kr + k∆r − ωt)

= E0
a

r
sin(kr − ωt) + E0

a

r

(
1 +

∆r

r

)−1

sin(kr + k∆r − ωt)
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= E0
a

r
sin(kr − ωt) + E0

a

r

(
1 − ∆r

r
+ ...

)
sin(kr + k∆r − ωt)

= E0
a

r
sin(kr − ωt) + E0

a

r
sin(kr + k∆r − ωt) + O

(
∆r

r

)

≈ E0 sin(kr − ωt) + E0 sin(kr − ωt + δ) (12.6)

where in the end we set a = r (so the field amplitude of a single slit is E0 as

defined above), we neglect terms of order ∆r/r in the last expression, and

we introduce the phase shift produced by the path difference:

δ = kd sin(θ) =
2πd

λ
sin(θ) (12.7)

To add these two waves, we could use a trigonometric identity for sin A+

sin B. Unfortunately, nobody can ever remember the trig identities for

things like this supposedly memorized back in high school, including me.

For those of us who find it impossible to remember arbitrary things we

memorized out of any context where they would be useful to us for more

than busy work, it behooves us to learn how to derive the answer in sim-

ple ways from things we can remember and that make sense in context.

We therefore eschew the use of a trig identity and derive the result from

a geometric picture, a phasor diagram just as we did before for e.g. LRC

circuits.

kr −    tω

EoE tot

kr −    tω
Eo

δ

δ/2

δ/2

Figure 12.2: Phasor diagram for the addition of the electric field components

of two slits.

In figure (12.2) we see the requisite phasor geometry. The light from the

first slit has a field amplitude of the y-component of a “vector” (phasor) of
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length E0 at angle kr − ωt with respect to the x-axis. The light from the

second slit is the y-component of a phasor of length E0 at angle kr−ωt+ δ.

The field amplitude of the sum is the y-component of the phasor that is the

vector sum of these two phasors, added by putting the tail of the second at

the head of the first. Since the triangle representing this sum is isoceles it is

easy to see that the two acute angles must both be δ/2. The total amplitude

is thus the sum of the adjacent side lengths of the two right triangles formed

by dropping a normal as shown:

|Etot| = 2E0 cos(δ/2) (12.8)

and the full time dependent electric field is given by:

Etot = 2E0 cos(δ/2) sin(kr − ωt + δ/2) (12.9)

We don’t actually care about the field strength, of course – we care about

the intensity. The time-averaged intensity of light from a single slit at the

point P is:

I0 =
1

2µ0c
|E0|2 (12.10)

(from the Poynting vector, as we have seen many times at this point). The

total intensity from the pair of slits is therefore:

Itot = 4I0 cos2(δ/2) (12.11)

as you should show, filling in the missing steps.

While this is the completely general solution for the two slit problem

(within the approximations made above) we are often most interested in

finding the specific angles θ where the interference is maximum and/or min-

imum. Clearly the minima occur where cos2(δ/2) = 0, which are the phase

angles:

δ/2 = ±π/2,±3π/2,±5π/2, ... (12.12)

or

δ =
2πd

λ
sin(θ) = ±(2m + 1)π (12.13)

or the actual angles θ where:

d sin(θ) = ±2m + 1

2
λ (12.14)
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The intensity is zero at the minima.

The maxima occur at the angles where:

δ/2 = 0,±π,±2π... (12.15)

or

δ =
2πd

λ
sin(θ) = m2π (12.16)

or the actual angles θ where:

d sin(θ) = ±mλ (12.17)

The intensity is 4I0 at the maxima.

12.3 Interference from Three Narrow Slits

In the case of three slits, each separated by the same distance d, we can

follow a more or less identical procedure to find the overall amplitude from

a phasor diagram. Consider the general phasor diagram above. We wish to

add:

Etot = E0 sin(kr − ωt) + E0 sin(kr − ωt + δ) + E0 sin(kr − ωt + 2δ) (12.18)

with δ = kd sin(θ) is the phase angle produced by the path difference be-

tween any two adjacent slits. Examining figure (12.3) we see that the general

kr −    tω

Eo

kr −    tω

kr −    tω

Eo

E tot

Eo

δ

δ

δ

δ δ

Figure 12.3: Phasor diagram for general solution for three slits.
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result is:

Etot = E0(1 + 2 cos(δ)) (12.19)

and we rather expect that the interference pattern intensity will be:

Itot =
1

2µ0c
|Etot|2 = I0

(
1 + 4 cos(δ) + 4 cos2(δ)

)
(12.20)

which equals 9I0 when δ = 0, 2π, 4π... and equals I0 when δ = π, 3π, 5π....

It seems as though it will equal zero for certain values of the phase angle as

well, but how can we determine which ones?

To answer this last question and find a more general way of determining

the pattern of maxima and minima for 3 slits (and later for more) we turn

back to the phasor diagram. Consider the four diagrams draw in figure

(12.4):

π2
3

π4
3

π4
3

π2
3

E 0

E 0

E 0

E 0

E 0 E 0

E 0E 0

E 0

E 0

π

π

δ =

a

cb

d

Figure 12.4: Phasor diagram illustrating (a) principle maxima; (b) first

minimum; (c) second minimum; (d) secondary maximum.

The first arrangement in (a) shows three phasors lined up (for simplicity

the figures are shown at a time that kr − ωt = 0) for a total field amplitude

of 3E0. This obviously occurs when δ = 0, but it can also correspond to

δ = 2π, 4π, 6π... – rotating any field phasor through 2π puts it back where it

started. We conclude that this arrangement leads to a maximum in intensity

with Ip = 9I0 called the principle maxima of the interference pattern, when

the condition:

2π

λ
d sin(θ) = δ = 0,±2π,±4π... = ±2π m m = 0, 1, 2... (12.21)
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If we divide by 2π and multiply by λ, we see that this corresponds to:

d sin(θ) = ±mλ (12.22)

just as before for two slits separated by d. This is important: the location

of the principle maxima of N slits is determined by the slit sepa-

ration d, not by N ! The two signs just mean that the pattern obtained is

symmetric, with maxima at the same angles above and below the horizontal

θ = 0 line.

When we wish to find the minimal we note that the intensity is non-

negative. The smallest it can possibly be is zero. It will be zero when the

phasors for the field add up to zero, which, given three equal field strengths,

occurs when the phasors form a closed three sided figure, that is, a triangle.

The two triangles starting at (b) and (c) in the figure above thus represent

minima. We observe that we close the triangle when δ = ±2π/3,±4π/3, or

these angles with any integer multiple of 2π added (or subtracted). If we

multiply this out and turn it into a rule, it becomes:

d sin(θ) =
±mλ

3
m =, 1, 2, , 4, 5, , 7, 8... (12.23)
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12.4 Homework for week 12

(Due 4/22/09)

Problem 1.

Derive the intensity as a function of θ for the two-slit problem (where the

slits are assumed to be a ≪ λ in width). For d = 4λ, find the angles where

the intensity is maximum and minimum. Sketch the interference pattern

from θ ∈ [−π/2, π/2].

Problem 2.

Derive the intensity as a function of θ for the single slit problem. For a = 3λ,

find the angles where the intensity is a minimum. Sketch the diffraction

pattern from θ ∈ [−π/2, π/2].

Problem 3.

From your algebraic answer to the previous problem, obtain an expression

for the angles where diffraction maxima occur. You might find the following

useful:
d f 2

dx
= 2f

df

dx

which has zeros both where f = 0 and where df
dx

= 0 independently. Also

recall that:

lim x → 0
sin(x)

x
= 0

(and is not undefined).

Problem 4.

Redo problem 1, but this time assume that the slits have a finite width of

a = 3λ and that d = 6λ. Determine all of the interference and diffraction
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minima and maxima (the latter can be approximate for diffraction) and

sketch a qualitatively correct picture of the interference pattern underneath

the diffraction envelope.

Problem 5.

There are four permutations of results for thin film interference based on the

relative sizes of n1, n2 and n3 where n2 is the index of refraction of the thin

film itself and the others are the index of refraction of the first (originating

medium) and third layers. Derive the condition (relation between t the

thickness of the film and λ0 the wavelength of the incident light in a vacuum)

for interference maxima and minima for all four orders. Be sure to circle on

your figures the reflections at surfaces that are accompanied by a discrete

phase shift of π.

Problem 6.

Draw the phasor diagrams from which the angles at which primary and

secondary maxima and minima occur for five small (a ≪ λ slits separated

by a distance d. From these diagrams write the conditions on δ = kd sin θ

such that maxima and minima occur. Find the actual angles theta for

d = 4λ, graph the intensity, and compare it to the answer to problem 1

above.

Problem 7.

Joe Braggart claims to have really, really good vision. “Why,” he says.

“My vision is so good I can make out the Galilean moons of Jupiter with

my naked eyes on a really clear night. If I’d been around at the time of

Galileo we wouldn’t have had to invent the telescope in order to confirm the

Copernican theory.”

Callisto is the moon with the largest orbit and has a maximum distance

from Jupiter of just under 2 × 106 kilometers. At its closest point to the

earth, it is around 600 × 106 kilometers away. Assuming that he is using
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visible light, is there any chance that he’s telling the truth? (Note well: This

is a problem on resolution, not lenses or the sensitivity of the retina.)

Problem 8.

Derive the expression R = mN = λ
∆λ

for resolution for a diffraction grating

with N slits of separation d. This proceeds as follows: First use a phasor

diagram to determine the angle(s) where the principle maxima occur. Then

use it to find the angles where the first minimum following such a maximum

occurs for any given order m. This tells you the angular half-width of the

maximum for a given λ. Use Raleigh’s criterion for resolution to determine

the minimum ∆λ that can be resolved (consider λ′ = λ + ∆λ), and verify

the expression above.
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