8

Conditional Expectations

If there is partial information on the outcome of a random experiment, the probabilities for the possible events may change. The concept of conditional probabilities and conditional expectations formalises the corresponding calculus.

8.1 Elementary Conditional Probabilities

Example 8.1. We throw a die and consider the events

 $A := \{ \text{the face shows three or smaller} \},\$ $B := \{ \text{the face shows an odd number} \}.$

Clearly, $\mathbf{P}[A] = \frac{1}{2}$ and $\mathbf{P}[B] = \frac{1}{2}$. However, what is the probability that *B* occurs if we already know that *A* occurs?

We model the experiment on the probability space $(\Omega, \mathcal{A}, \mathbf{P})$, where $\Omega = \{1, \ldots, 6\}$, $\mathcal{A} = 2^{\Omega}$ and \mathbf{P} is the uniform distribution on Ω . Then

$$A = \{1, 2, 3\}$$
 and $B = \{1, 3, 5\}.$

If we know that A has occurred, it is plausible to assume the uniform distribution on the remaining possible outcomes; that is, on $\{1, 2, 3\}$. Thus we define a new probability measure \mathbf{P}_A on $(A, 2^A)$ by

$$\mathbf{P}_A[C] = \frac{\#C}{\#A} \quad \text{for } C \subset A$$

By assigning the points in $\Omega \setminus A$ probability zero (since they are impossible if A has occurred), we can extend \mathbf{P}_A to a measure on Ω :

$$\mathbf{P}[C|A] := \mathbf{P}_A[C \cap A] = \frac{\#(C \cap A)}{\#A} \quad \text{for } C \subset \Omega.$$

170 8 Conditional Expectations

In this way, we get
$$\mathbf{P}[B|A] = \frac{\#\{1,3\}}{\#\{1,2,3\}} = \frac{2}{3}$$
.

Motivated by this example, we make the following definition.

Definition 8.2 (Conditional probability). Let $(\Omega, \mathcal{A}, \mathbf{P})$ be a probability space and $A \in \mathcal{A}$. We define the **conditional probability given** A for any $B \in \mathcal{A}$ by

$$\mathbf{P}[B|A] = \begin{cases} \frac{\mathbf{P}[A \cap B]}{\mathbf{P}[A]}, & \text{if } \mathbf{P}[A] > 0, \\ 0, & \text{else.} \end{cases}$$
(8.1)

Remark 8.3. The specification in (8.1) for the case $\mathbf{P}[A] = 0$ is arbitrary and is of no importance.

Theorem 8.4. If $\mathbf{P}[A] > 0$, then $\mathbf{P}[\cdot | A]$ is a probability measure on (Ω, \mathcal{A}) .

Theorem 8.5. Let $A, B \in \mathcal{A}$ with $\mathbf{P}[A], \mathbf{P}[B] > 0$. Then

 $A, B \text{ are independent } \iff \mathbf{P}[B|A] = \mathbf{P}[B] \iff \mathbf{P}[A|B] = \mathbf{P}[A].$

Proof. This is trivial!

Theorem 8.6 (Summation formula). Let I be a countable set and let $(B_i)_{i \in I}$ be pairwise disjoint sets with $\mathbf{P}\left[\biguplus_{i \in I} B_i\right] = 1$. Then, for any $A \in \mathcal{A}$,

$$\mathbf{P}[A] = \sum_{i \in I} \mathbf{P}[A | B_i] \mathbf{P}[B_i].$$
(8.2)

Proof. Due to the σ -additivity of **P**, we have

$$\mathbf{P}[A] = \mathbf{P}\left[\biguplus_{i \in I} (A \cap B_i)\right] = \sum_{i \in I} \mathbf{P}[A \cap B_i] = \sum_{i \in I} \mathbf{P}[A|B_i]\mathbf{P}[B_i].$$

Theorem 8.7 (Bayes' formula). Let I be a countable set and let $(B_i)_{i \in I}$ be pairwise disjoint sets with $\mathbf{P}[\bigcup_{i \in I} B_i] = 1$. Then, for any $A \in \mathcal{A}$ with $\mathbf{P}[A] > 0$ and any $k \in I$,

$$\mathbf{P}[B_k|A] = \frac{\mathbf{P}[A|B_k]\mathbf{P}[B_k]}{\sum_{i \in I} \mathbf{P}[A|B_i]\mathbf{P}[B_i]}.$$
(8.3)