Conditional Expectations

If there is partial information on the outcome of a random experiment, the probabilities for the possible events may change. The concept of conditional probabilities and conditional expectations formalises the corresponding calculus.

8.1 Elementary Conditional Probabilities

Example 8.1. We throw a die and consider the events

$$
\begin{aligned}
A & :=\{\text { the face shows three or smaller }\} \\
B & :=\{\text { the face shows an odd number }\} .
\end{aligned}
$$

Clearly, $\mathbf{P}[A]=\frac{1}{2}$ and $\mathbf{P}[B]=\frac{1}{2}$. However, what is the probability that B occurs if we already know that A occurs?
We model the experiment on the probability space $(\Omega, \mathcal{A}, \mathbf{P})$, where $\Omega=\{1, \ldots, 6\}$, $\mathcal{A}=2^{\Omega}$ and \mathbf{P} is the uniform distribution on Ω. Then

$$
A=\{1,2,3\} \quad \text { and } \quad B=\{1,3,5\}
$$

If we know that A has occurred, it is plausible to assume the uniform distribution on the remaining possible outcomes; that is, on $\{1,2,3\}$. Thus we define a new probability measure \mathbf{P}_{A} on $\left(A, 2^{A}\right)$ by

$$
\mathbf{P}_{A}[C]=\frac{\# C}{\# A} \quad \text { for } C \subset A
$$

By assigning the points in $\Omega \backslash A$ probability zero (since they are impossible if A has occurred), we can extend \mathbf{P}_{A} to a measure on Ω :

$$
\mathbf{P}[C \mid A]:=\mathbf{P}_{A}[C \cap A]=\frac{\#(C \cap A)}{\# A} \quad \text { for } C \subset \Omega
$$

In this way, we get $\mathbf{P}[B \mid A]=\frac{\#\{1,3\}}{\#\{1,2,3\}}=\frac{2}{3}$.
Motivated by this example, we make the following definition.
Definition 8.2 (Conditional probability). Let $(\Omega, \mathcal{A}, \mathbf{P})$ be a probability space and $A \in \mathcal{A}$. We define the conditional probability given A for any $B \in \mathcal{A}$ by

$$
\mathbf{P}[B \mid A]=\left\{\begin{aligned}
\frac{\mathbf{P}[A \cap B]}{\mathbf{P}[A]}, & \text { if } \mathbf{P}[A]>0 \\
0, & \text { else }
\end{aligned}\right.
$$

Remark 8.3. The specification in (8.1) for the case $\mathbf{P}[A]=0$ is arbitrary and is of no importance.

Theorem 8.4. If $\mathbf{P}[A]>0$, then $\mathbf{P}[\cdot \mid A]$ is a probability measure on (Ω, \mathcal{A}).
Proof. This is obvious.
Theorem 8.5. Let $A, B \in \mathcal{A}$ with $\mathbf{P}[A], \mathbf{P}[B]>0$. Then
A, B are independent $\Longleftrightarrow \mathbf{P}[B \mid A]=\mathbf{P}[B] \Longleftrightarrow \mathbf{P}[A \mid B]=\mathbf{P}[A]$.
Proof. This is trivial!
\square

Theorem 8.6 (Summation formula). Let I be a countable set and let $\left(B_{i}\right)_{i \in I}$ be pairwise disjoint sets with $\mathbf{P}\left[\biguplus_{i \in I} B_{i}\right]=1$. Then, for any $A \in \mathcal{A}$,

$$
\begin{equation*}
\mathbf{P}[A]=\sum_{i \in I} \mathbf{P}\left[A \mid B_{i}\right] \mathbf{P}\left[B_{i}\right] \tag{8.2}
\end{equation*}
$$

Proof. Due to the σ-additivity of \mathbf{P}, we have

$$
\mathbf{P}[A]=\mathbf{P}\left[\biguplus_{i \in I}\left(A \cap B_{i}\right)\right]=\sum_{i \in I} \mathbf{P}\left[A \cap B_{i}\right]=\sum_{i \in I} \mathbf{P}\left[A \mid B_{i}\right] \mathbf{P}\left[B_{i}\right] .
$$

Theorem 8.7 (Bayes' formula). Let I be a countable set and let $\left(B_{i}\right)_{i \in I}$ be pairwise disjoint sets with $\mathbf{P}\left[\biguplus_{i \in I} B_{i}\right]=1$. Then, for any $A \in \mathcal{A}$ with $\mathbf{P}[A]>0$ and any $k \in I$,

$$
\mathbf{P}\left[B_{k} \mid A\right]=\frac{\mathbf{P}\left[A \mid B_{k}\right] \mathbf{P}\left[B_{k}\right]}{\sum_{i \in I} \mathbf{P}\left[A \mid B_{i}\right] \mathbf{P}\left[B_{i}\right]}
$$

