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Conditional Expectations

If there is partial information on the outcome of a random experiment, the probabili-
ties for the possible events may change. The concept of conditional probabilities and
conditional expectations formalises the corresponding calculus.

8.1 Elementary Conditional Probabilities

Example 8.1. We throw a die and consider the events

A := {the face shows three or smaller},
B := {the face shows an odd number}.

Clearly, P[A] = 1
2 and P[B] = 1

2 . However, what is the probability that B occurs if
we already know that A occurs?

We model the experiment on the probability space (Ω,A,P), whereΩ = {1, . . . , 6},
A = 2Ω and P is the uniform distribution on Ω. Then

A = {1, 2, 3} and B = {1, 3, 5}.

If we know that A has occurred, it is plausible to assume the uniform distribution
on the remaining possible outcomes; that is, on {1, 2, 3}. Thus we define a new
probability measure PA on (A, 2A) by

PA[C] =
#C
#A

for C ⊂ A.

By assigning the points in Ω \A probability zero (since they are impossible if A has
occurred), we can extend PA to a measure on Ω:

P[C |A] := PA[C ∩A] =
#(C ∩A)

#A
for C ⊂ Ω.
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In this way, we get P[B |A] =
#{1, 3}

#{1, 2, 3} =
2
3

. �

Motivated by this example, we make the following definition.

Definition 8.2 (Conditional probability). Let (Ω,A,P) be a probability space
and A ∈ A. We define the conditional probability given A for any B ∈ A by

P[B |A] =

⎧⎨⎩
P[A ∩B]

P[A]
, if P[A] > 0,

0, else.
(8.1)

Remark 8.3. The specification in (8.1) for the case P[A] = 0 is arbitrary and is of
no importance. �

Theorem 8.4. If P[A] > 0, then P[ · |A] is a probability measure on (Ω,A).

Proof. This is obvious. �

Theorem 8.5. Let A,B ∈ A with P[A], P[B] > 0. Then

A,B are independent ⇐⇒ P[B |A] = P[B] ⇐⇒ P[A|B] = P[A].

Proof. This is trivial! �

Theorem 8.6 (Summation formula). Let I be a countable set and let (Bi)i∈I be
pairwise disjoint sets with P

[⊎
i∈I Bi

]
= 1. Then, for any A ∈ A,

P[A] =
∑
i∈I

P[A|Bi]P[Bi]. (8.2)

Proof. Due to the σ-additivity of P, we have

P[A] = P

[⊎
i∈I

(A ∩Bi)

]
=
∑
i∈I

P[A ∩Bi] =
∑
i∈I

P[A|Bi]P[Bi]. �

Theorem 8.7 (Bayes’ formula). Let I be a countable set and let (Bi)i∈I be pair-
wise disjoint sets with P

[⊎
i∈I Bi

]
= 1. Then, for any A ∈ A with P[A] > 0 and

any k ∈ I ,

P[Bk |A] =
P[A|Bk]P[Bk]∑
i∈I P[A|Bi]P[Bi]

. (8.3)
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Proof. We have

P[Bk |A] =
P[Bk ∩A]

P[A]
=

P[A|Bk]P[Bk]
P[A]

.

Now use the expression in (8.2) for P[A]. �

Example 8.8. In the production of certain electronic devices, a fraction of 2% of the
production is defective. A quick test detects a defective device with probability 95%;
however, with probability 10% it gives a false alarm for an intact device.

If the test gives an alarm, what is the probability that the device just tested is indeed
defective?

We formalise the description given above. Let

A := {device is declared as defective},
B := {device is defective},

and
P[B] = 0.02, P[Bc] = 0.98,

P[A|B] = 0.95, P[A|Bc] = 0.1.

Bayes’ formula yields

P[B |A] =
P[A|B]P[B]

P[A|B]P[B] + P[A|Bc]P[Bc]

=
0.95 · 0.02

0.95 · 0.02 + 0.1 · 0.98
=

19
117

≈ 0.162.

On the other hand, the probability that a device that was not classified as defective is
in fact defective is

P[B |Ac] =
0.05 · 0.02

0.05 · 0.02 + 0.9 · 0.98
=

1
883

≈ 0.00113. �

Now let X ∈ L1(P). If A ∈ A, then clearly also 1AX ∈ L1(P). We define

E[X; A] := E[1AX]. (8.4)

If P[A] > 0, then P[ · |A] is a probability measure. Since 1AX ∈ L1(P), we
have X ∈ L1(P[ · |A]). Hence we can define the expectation of X with respect to
P[ · |A].

Definition 8.9. Let X ∈ L1(P) and A ∈ A. Then we define

E[X |A] :=
∫
X(ω)P[dω |A] =

⎧⎨⎩
E[1AX]
P[A]

, if P[A] > 0,

0, else.
(8.5)
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Clearly, P[B |A] = E[1B |A] for all B ∈ A.

Consider now the situation that we studied with the summation formula for con-
ditional probabilities. Hence, let I be a countable set and let (Bi)i∈I be pairwise

disjoint events with
⊎
i∈I

Bi = Ω. We define F := σ(Bi, i ∈ I). ForX ∈ L1(P), we

define a map E[X |F ] : Ω → R by

E[X |F ](ω) = E[X |Bi] ⇐⇒ Bi � ω. (8.6)

Lemma 8.10. The map E[X |F ] has the following properties.

(i) E[X |F ] is F-measurable.

(ii) E[X |F ] ∈ L1(P), and for any A ∈ F , we have
∫

A

E[X |F ] dP =
∫

A

X dP.

Proof. (i) Let f be the map f : Ω → I with

f(ω) = i ⇐⇒ Bi � ω.

Further, let g : I → R, i �→ E[X |Bi]. Since I is discrete, g is measurable. Since f
is F-measurable, E[X |F ] = g ◦ f is also F-measurable.

(ii) Let A ∈ F and J ⊂ I with A =
⊎

j∈J Bj . Let J ′ := {i ∈ J : P[Bi] > 0}.
Hence∫

A

E[X |F ] dP =
∑
i∈J ′

P[Bi]E[X |Bi] =
∑
i∈J ′

E[1Bi
X] =

∫
A

X dP. �

Exercise 8.1.1 (Lack of memory of the exponential distribution). LetX be a non-
negative random variable and let θ > 0. Show that X is exponentially distributed if
and only if

P[X > t+ s|X > s] = P[X > t] for all s, t ≥ 0.

In particular, X ∼ expθ if and only if P[X > t+ s|X > s] = e−θt for all s, t ≥ 0.
♣

Exercise 8.1.2. Consider a theatre with n seats that is fully booked for this evening.
Each of the n people entering the theatre (one by one) has a seat reservation. How-
ever, the first person is absent-minded and takes a seat at random. Any subsequent
person takes his or her reserved seat if it is free and otherwise picks a free seat at
random.

(i) What is the probability that the last person gets his or her reserved seat?

(ii) What is the probability that the kth person gets his or her reserved seat? ♣
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8.2 Conditional Expectations

LetX be a random variable that is uniformly distributed on [0, 1]. Assume that if we
know the value X = x, the random variables Y1, . . . , Yn are independent and Berx-
distributed. So far, with our machinery we can only deal with conditional probabil-
ities of the type P[ · |X ∈ [a, b]], a < b (since X ∈ [a, b] has positive probability).
How about P[Y1 = . . . = Yn = 1

∣∣X = x]? Intuitively, this should be xn. We thus
need a notion of conditional probabilities that allows us to deal with conditioning on
events with probability zero and that is consistent with our intuition. In the next sec-
tion, we will see that in the current example this can be done using transition kernels.
First, however, we have to consider a more general situation.

In the following, F ⊂ A will be a sub-σ-algebra and X ∈ L1(Ω,A,P). In analogy
with Lemma 8.10, we make the following definition.

Definition 8.11 (Conditional expectation). A random variable Y is called a con-
ditional expectation of X given F , symbolically E[X |F ] := Y , if:

(i) Y is F-measurable.

(ii) For any A ∈ F , we have E[X1A] = E[Y 1A].

For B ∈ A, P[B |F ] := E[1B |F ] is called a conditional probability of B given
the σ-algebra F .

Theorem 8.12. E[X |F ] exists and is unique (up to equality almost surely).

Since conditional expectations are defined only up to equality a.s., all equalities with
conditional expectations are understood as equalities a.s., even if we do not say so
explicitly.

Proof. Uniqueness. Let Y and Y ′ be random variables that fulfil (i) and (ii). Let
A = {Y > Y ′} ∈ F . Then, by (ii),

0 = E[Y 1A] − E[Y ′ 1A] = E[(Y − Y ′) 1A].

Since (Y −Y ′) 1A ≥ 0, we have P[A] = 0; hence Y ≤ Y ′ almost surely. Similarly,
we get Y ≥ Y ′ almost surely.

Existence. Let X+ = X ∨ 0 and X− = X+ −X . By

Q±(A) := E[X± 1A] for all A ∈ F ,

we define two finite measures on (Ω,F). Clearly, Q± $ P; hence the Radon-
Nikodym theorem (Corollary 7.34) yields the existence of densities Y ± such that
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Q±(A) =
∫

A

Y ± dP = E[Y ± 1A].

Now define Y = Y + − Y −. �

Definition 8.13. If Y is a random variable and X ∈ L1(P), then we define
E[X |Y ] := E[X |σ(Y )].

Theorem 8.14 (Properties of the conditional expectation). Let (Ω,A,P) and let
X be as above. Let G ⊂ F ⊂ A be σ-algebras and let Y ∈ L1(Ω,A,P). Then:

(i) (Linearity) E[λX + Y |F ] = λE[X |F ] + E[Y |F ].

(ii) (Monotonicity) If X ≥ Y a.s., then E[X |F ] ≥ E[Y |F ].

(iii) If E[|XY |] <∞ and Y is measurable with respect to F , then

E[XY |F ] = Y E[X |F ] and E[Y |F ] = E[Y |Y ] = Y.

(iv) (Tower property) E[E[X |F ]|G] = E[E[X |G]|F ] = E[X |G].

(v) (Triangle inequality) E[|X|
∣∣F ] ≥

∣∣E[X |F ]
∣∣.

(vi) (Independence) If σ(X) and F are independent, then E[X |F ] = E[X].

(vii) If P[A] ∈ {0, 1} for any A ∈ F , then E[X |F ] = E[X].

(viii) (Dominated convergence) Assume Y ∈ L1(P), Y ≥ 0 and (Xn)n∈N is a
sequence of random variables with |Xn| ≤ Y for n ∈ N and such that
Xn

n→∞−→ X a.s. Then

lim
n→∞E[Xn |F ] = E[X |F ] a.s. and in L1(P). (8.7)

Proof. (i) The right hand side is F-measurable; hence, for A ∈ F ,

E
[
1A

(
λE[X |F ] + E[Y |F ]

)]
= λE

[
1A E[X |F ]

]
+ E
[
1A E[Y |F ]

]
= λE[1AX] + E[1A Y ]

= E
[
1A (λX + Y )

]
.

(ii) Let A = {E[X |F ] < E[Y |F ]} ∈ F . Since we have X ≥ Y , we get
E[1A (X − Y )] ≥ 0 and thus P[A] = 0.

(iii) First assume X ≥ 0 and Y ≥ 0. For n ∈ N, define Yn = 2−n�2nY �. Then
Yn ↑ Y and Yn E[X |F ] ↑ Y E[X |F ] (since E[X |F ] ≥ 0 by (ii)). By the monotone
convergence theorem (Lemma 4.6(ii)),

E
[
1A Yn E[X |F ]

] n→∞−→ E
[
1A Y E[X |F ]

]
.

On the other hand,
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E
[
1A Yn E[X |F ]

]
=

∞∑
k=1

E
[
1A 1{Yn=k 2−n} k 2−n E[X |F ]

]
=

∞∑
k=1

E
[
1A 1{Yn=k 2−n} k 2−n X

]
= E

[
1A YnX

] n→∞−→ E[1A Y X].

Hence E[1A Y E[X |F ]] = E[1A Y X]. In the general case, write X = X+ −X−

and Y = Y + − Y − and exploit the linearity of the conditional expectation.

(iv) The second equality follows from (iii) with Y = E[X |G] andX = 1. Now let
A ∈ G. Then, in particular, A ∈ F ; hence

E
[
1AE[E[X |F ]|G]

]
= E

[
1AE[X |F ]

]
= E[1AX] = E

[
1A E[X |G]

]
.

(v) This follows from (i) and (ii) with X = X+ −X−.

(vi) Trivially, E[X] is measurable with respect to F . Let A ∈ F . Then X and 1A

are independent; hence E[E[X |F ] 1A] = E[X 1A] = E[X]E[1A].

(vii) For any A ∈ F and B ∈ A, we have P[A ∩ B] = 0 if P[A] = 0, and
P[A ∩ B] = P[B] if P[A] = 1. Hence F and A are independent and thus F is
independent of any sub-σ-algebra of A. In particular, F and σ(X) are independent.
Hence the claim follows from (vi).

(viii) Let |Xn| ≤ Y for any n ∈ N and Xn
n→∞−→ X almost surely. Define

Zn := supk≥n |Xk − X|. Then 0 ≤ Zn ≤ 2Y and Zn
a.s.−→ 0. By Corollary 6.26

(dominated convergence), we have E[Zn] n→∞−→ 0; hence, by the triangle inequality,

E
[∣∣E[Xn |F ]−E[X |F ]

∣∣]≤ E[E[|Xn−X|
∣∣F ]] = E[|Xn−X|] ≤ E[Zn] n→∞−→ 0.

However, this is the L1(P)-convergence in (8.7). Let Z := lim supn→∞ E[Zn

∣∣F ].
By Fatou’s lemma,

E[Z] ≤ lim
n→∞E[Zn] = 0.

Hence Z = 0 and thus E[Zn

∣∣F ] n→∞−→ 0 almost surely. However, by (v),∣∣E[Xn

∣∣F ] − E[X
∣∣F ]
∣∣ ≤ E[Zn]. �

Remark 8.15. Intuitively, E[X |F ] is the best prediction we can make for the value
ofX if we only have the information of the σ-algebra F . For example, if σ(X) ⊂ F
(that is, if we know X already), then E[X |F ] = X , as shown in (iii). At the other
end of the spectrum is the case where X and F are independent; that is, where
knowledge of F does not give any information onX . Here the best prediction forX
is its mean; hence E[X] = E[X |F ], as shown in (vii).

What exactly do we mean by “best prediction”? For square integrable random vari-
ables X , by the best prediction for X we will understand the F-measurable random
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variable that minimises the L2-distance from X . The next corollary shows that the
conditional expectation is in fact this minimiser. �

Corollary 8.16 (Conditional expectation as projection). Let F ⊂ A be a σ-
algebra and let X be a random variable with E[X2] < ∞. Then E[X |F ] is the
orthogonal projection of X on L2(Ω,F ,P). That is, for any F-measurable Y with
E[Y 2] <∞,

E
[
(X − Y )2

]
≥ E

[
(X − E[X |F ])2

]
with equality if and only if Y = E[X |F ].

Proof. First assume that E[E[X |F ]2] < ∞. (In Theorem 8.19, we will see that we
have E[E[X |F ]2] ≤ E[X2], but here we want to keep the proof self-contained.)
Let Y be F-measurable and assume E[Y 2] < ∞. Then, by the Cauchy-Schwarz in-
equality, we have E[|XY |] <∞. Thus, using the tower property, we infer E[XY ] =
E[E[X |F ]Y ] and E

[
XE[X |F ]

]
= E

[
E[XE[X |F ]

∣∣F ]
]

= E
[
E[X |F ]2

]
. Sum-

ming up, we have

E
[
(X − Y )2

]
− E
[(
X − E[X |F ]

)2]
= E

[
X2 − 2XY + Y 2 −X2 + 2XE[X |F ] − E[X |F ]2

]
= E

[
Y 2 − 2Y E[X |F ] + E[X |F ]2

]
= E

[(
Y − E[X |F ]

)2] ≥ 0.

For the case E[E[X |F ]2] < ∞, we are done. Hence, it suffices to show that this
condition follows from the assumption E[X2] <∞. ForN ∈ N, define the truncated
random variables |X| ∧N . Clearly, we have E[E[|X| ∧N |F ]2] ≤ N2. By what we
have shown already (withX replaced by |X| ∧N and with Y = 0 ∈ L2(Ω,F ,P)),
and using the elementary inequality a2 ≤ 2(a− b)2 + 2b2, a, b ∈ R, we infer

E
[
E
[
|X| ∧N

∣∣F]2] ≤ 2E
[(

(|X| ∧N) − E[|X| ∧N
∣∣F ]
)2]+ 2E

[
(|X| ∧N)2

]
≤ 4E

[
(|X| ∧N)2

]
≤ 4E[X2].

By Theorem 8.14(ii) and (viii), we get E[|X| ∧N
∣∣F ] ↑ E[|X|

∣∣F ] for N → ∞. By
the triangle inequality (Theorem 8.14(v)) and the monotone convergence theorem
(Theorem 4.20), we conclude

E
[
E[X |F ]2

]
≤ E

[
E[|X|

∣∣F ]2
]

= lim
N→∞

E
[
E[|X| ∧N

∣∣F ]2
]
≤ 4E[X2] <∞.

This completes the proof. �

Example 8.17. Let X,Y ∈ L1(P) be independent. Then

E[X + Y |Y ] = E[X |Y ] + E[Y |Y ] = E[X] + Y. �
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Example 8.18. Let X1, . . . , XN be independent with E[Xi] = 0, i = 1, . . . , N . For
n = 1, . . . , N , define Fn := σ(X1, . . . , Xn) and Sn := X1 + . . . +Xn. Then, for
n ≥ m,

E[Sn

∣∣Fm] = E[X1

∣∣Fm] + . . .+ E[Xn

∣∣Fm]
= X1 + . . .+Xm + E[Xm+1] + . . .+ E[Xn]
= Sm.

By Theorem 8.14(iv), since σ(Sm) ⊂ Fm, we have

E[Sn |Sm] = E
[
E[Sn |Fm]

∣∣Sm

]
= E[Sm |Sm] = Sm. �

Next we show Jensen’s inequality for conditional expectations.

Theorem 8.19 (Jensen’s inequality). Let I ⊂ R be an interval, let ϕ : I → R
be convex and let X be an I-valued random variable on (Ω,A,P). Further, let
E[|X|] <∞ and let F ⊂ A be a σ-algebra. Then

∞ ≥ E[ϕ(X)|F ] ≥ ϕ(E[X |F ]).

Proof. (Recall from Definition 1.68 the jargon words “almost surely on A”.) Note
that X = E[X |F ] on the event {E[X |F ] is a boundary point of I}; hence here
the claim is trivial. Indeed, without loss of generality, assume 0 is the left boundary
of I and A := {E[X |F ] = 0}. As X assumes values in I ⊂ [0,∞), we have
0 ≤ E[X 1A] = E[E[X |F ] 1A] = 0; henceX1A = 0. The case of a right boundary
point is similar.

Hence now consider the event B := {E[X |F ] is an interior point of I}. For every
interior point x ∈ I , let D+ϕ(x) be the maximal slope of a tangent of ϕ at x; i.e.,
the maximal number t with ϕ(y) ≥ (y−x)t+ϕ(x) for all y ∈ I (see Theorem 7.7).

For each x ∈ I◦, there exists a P-null set Nx such that, for every ω ∈ B \ Nx, we
have

E
[
ϕ(X)|F

]
(ω) ≥ ϕ(x) + E

[
D+ϕ(x) (X − x)

∣∣F](ω)

= ϕ(x) +D+ϕ(x)
(
E[X |F ](ω) − x

)
=: ψω(x).

(8.8)

Let V := Q ∩ I◦. Then N :=
⋃

x∈V Nx is a P-null set and (8.8) holds for every
ω ∈ B \N and every x ∈ V .

The map x �→ D+ϕ(x) is right continuous (by Theorem 7.7(iv)). Therefore x �→
ψω(x) is also right continuous. Hence, for every ω ∈ B \N , we have

ϕ
(
E[X |F ](ω)

)
= ψω

(
E[X |F ](ω)

)
≤ sup

x∈I◦
ψω(x) = sup

x∈V
ψω(x) ≤ E

[
ϕ(X)|F

]
(ω). �
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Corollary 8.20. Let p ∈ [1,∞] and let F ⊂ A be a sub-σ-algebra. Then the map

Lp(Ω,A,P) → Lp(Ω,F ,P), X �→ E[X |F ],

is a contraction (that is, ‖E[X |F ]‖p ≤ ‖X‖p) and thus continuous. Hence, for
X,X1, X2, . . . ∈ Lp(Ω,A,P) with ‖Xn −X‖p

n→∞−→ 0,∥∥E[Xn |F ] − E[X |F ]
∥∥

p

n→∞−→ 0.

Proof. For p ∈ [1,∞), use Jensen’s inequality with ϕ(x) = |x|p. For p = ∞, note
that |E[X |F ]| ≤ E[|X||F ] ≤ E[‖X‖∞

∣∣F ] = ‖X‖∞. �

Corollary 8.21. Let (Xi, i ∈ I) be uniformly integrable and let (Fj , j ∈ J) be a
family of sub-σ-algebras of A. DefineXi,j := E[Xi

∣∣Fj ]. Then (Xi,j , (i, j) ∈ I×J)
is uniformly integrable. In particular, forX ∈ L1(P), the family (E[X |Fj ], j ∈ J)
is uniformly integrable.

Proof. By Theorem 6.19, there exists a monotone increasing convex function f with
the property that f(x)/x → ∞, x → ∞ and L := supi∈I E[f(|Xi|)] < ∞. Then
x �→ f(|x|) is convex; hence, by Jensen’s inequality,

E
[
f(|Xi,j |)

]
= E

[
f
(∣∣E[Xi |Fj ]

∣∣)] ≤ L < ∞.

Thus (Xi,j , (i, j) ∈ I × J) is uniformly integrable by Theorem 6.19. �

Example 8.22. Let µ and ν be finite measures with ν $ µ. Let f = dν
/
dµ be the

Radon-Nikodym derivative and let I = {F ⊂ A : F is a σ-algebra}. Consider the
measures µ

∣∣
F and ν

∣∣
F that are restricted to F . Then ν

∣∣
F $ µ

∣∣
F (since in F there are

fewer µ-null sets); hence the Radon-Nikodym derivative fF := dν
∣∣
F
/
dµ
∣∣
F exists.

Then (fF : F ∈ I) is uniformly integrable (with respect to µ). (For finite σ-algebras
F , this was shown in Example 7.39.) Indeed, let P = µ/µ(Ω) and Q = ν/µ(Ω).
Then fF = dQ

∣∣
F
/
dP
∣∣
F . For any F ∈ F , we thus have E[fF 1F ] =

∫
F
fF dP =

Q(F ) =
∫

F
f dP = E[f 1F ]; hence fF = E[f |F ]. By the preceding corollary,

(fF : F ∈ I) is uniformly integrable with respect to P and thus also with respect
to µ. �

Exercise 8.2.1 (Bayes’ formula). Let A ∈ A and B ∈ F . Show that

P[B |A] =

∫
B

P[A|F ] dP∫
P[A|F ] dP

.

If F is generated by pairwise disjoint sets B1, B2, . . ., then this is exactly Bayes’
formula of Theorem 8.7. ♣

Exercise 8.2.2. Give an example for E[E[X |F ]|G] �= E[E[X |G]|F ]. ♣
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Exercise 8.2.3. Show the conditional Markov inequality: For monotone increasing
f : [0,∞) → [0,∞) and ε > 0 with f(ε) > 0,

P
[
|X| ≥ ε|F

]
≤

E
[
f(|X|)

∣∣F]
f(ε)

. ♣

Exercise 8.2.4. Show the conditional Cauchy-Schwarz inequality: For square inte-
grable random variables X,Y ,

E[XY |F ]2 ≤ E[X2 |F ] E[Y 2 |F ]. ♣

Exercise 8.2.5. Let X1, . . . , Xn be integrable i.i.d. random variables. Let Sn =
X1 + . . .+Xn. Show that

E[Xi |Sn] =
1
n
Sn for every i = 1, . . . , n. ♣

Exercise 8.2.6. Let X1 and X2 be independent and exponentially distributed with
parameter θ > 0. Compute E[X1 ∧X2 |X1]. ♣

Exercise 8.2.7. Let X and Y be real random variables with joint density f and let
h : R → R be measurable with E[|h(X)|] <∞. Denote by λ the Lebesgue measure
on R.

(i) Show that almost surely

E[h(X)|Y ] =
∫
h(x)f(x, Y )λ(dx)∫
f(x, Y )λ(dx)

.

(ii) Let X and Y be independent and expθ-distributed for some θ > 0. Compute
E[X |X + Y ] and P[X ≤ x|X + Y ] for x ≥ 0. ♣

8.3 Regular Conditional Distribution

Let X be a random variable with values in a measurable space (E, E). With our
machinery, so far we can define the conditional probability P[A|X] for fixed A ∈
A only. However, we would like to define for every x ∈ E a probability measure
P[ · |X = x] such that for any A ∈ A, we have P[A|X] = P[A|X = x] on
{X = x}. In this section, we show how to do this.

For example, we are interested in a two-stage random experiment. At the first stage,
we manipulate a coin at random such that the probability of a success (i.e., “head”)
is X . At the second stage, we toss the coin n times independently with outcomes
Y1, . . . , Yn. Hence the “conditional distribution of (Y1, . . . , Yn) given {X = x}”
should be (Berx)⊗n.
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Let X be as above and let Z be a σ(X)-measurable real random variable. By the
factorisation lemma (Corollary 1.97 with f = X and g = Z), there is a map ϕ :
E → R such that

ϕ is E – B(R)-measurable and ϕ(X) = Z. (8.9)

IfX is surjective, then ϕ is determined uniquely. In this case, we denote Z ◦X−1 :=
ϕ (even if the inverse map X−1 itself does not exist).

Definition 8.23. Let Y ∈ L1(P) and X : (Ω,A) → (E, E). We define the condi-
tional expectation of Y given X = x by E[Y |X = x] := ϕ(x), where ϕ is the
function from (8.9) with Z = E[Y |X].

Analogously, define P[A|X = x] = E[1A

∣∣X = x] for A ∈ A.

For a fixed set B ∈ A with P[B] > 0, the conditional probability P[ · |B] is a
probability measure. Is this true also for P[ · |X = x]? The question is a bit tricky
since for every given A ∈ A, the expression P[A|X = x] is defined for almost all
x only; that is, up to x in a null set that may, however, depend on A. Since there are
uncountably many A ∈ A in general, we could not simply unite all the exceptional
sets for any A. However, if the σ-algebra A can be approximated by countably many
A sufficiently well, then there is hope.

Our first task is to give precise definitions. Then we present the theorem that justifies
our hope.

Definition 8.24 (Transition kernel, Markov kernel). Let (Ω1,A1), (Ω2,A2) be
measurable spaces. A map κ : Ω1 × A2 → [0,∞] is called a (σ-)finite transition
kernel (from Ω1 to Ω2) if:

(i) ω1 �→ κ(ω1, A2) is A1-measurable for any A2 ∈ A2.

(ii) A2 �→ κ(ω1, A2) is a (σ-)finite measure on (Ω2,A2) for any ω1 ∈ Ω1.

If in (ii) the measure is a probability measure for all ω1 ∈ Ω1, then κ is called a
stochastic kernel or a Markov kernel. If in (ii) we also have κ(ω1, Ω2) ≤ 1 for any
ω1 ∈ Ω1, then κ is called sub-Markov or substochastic.

Remark 8.25. It is sufficient to check property (i) in Definition 8.24 for setsA2 from
a π-system E that generates A2 and that either contains Ω2 or a sequence En ↑ Ω2.
Indeed, in this case,

D :=
{
A2 ∈ A2 : ω1 �→ κ(ω1, A2) is A1-measurable

}
is a λ-system (exercise!). Since E ⊂ D, by the π–λ theorem (Theorem 1.19), D =
σ(E) = A2. �
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Example 8.26. (i) Let (Ω1,A1) and (Ω2,A2) be discrete measurable spaces and
let (Kij) i∈Ω1

j∈Ω2
be a matrix with nonnegative entries and finite row sums

Ki :=
∑

j∈Ω2

Kij < ∞ for i ∈ Ω1.

Then we can define a finite transition kernel from Ω1 to Ω2 by κ(i, A) =
∑
j∈A

Kij .

This kernel is stochastic ifKi = 1 for all i ∈ Ω1. It is substochastic ifKi ≤ 1 for all
i ∈ Ω1.

(ii) If µ2 is a finite measure on Ω2, then κ(ω1, · ) ≡ µ2 is a finite transition kernel.

(iii) κ(x, · ) = Poix is a stochastic kernel from [0,∞) to N0 (note that x �→
Poix(A) is continuous and hence measurable for all A ⊂ N0).

(iv) Let µ be a distribution on Rn and let X be a random variable with PX = µ.
Then κ(x, · ) = P[X + x ∈ · ] = δx ∗ µ defines a stochastic kernel from Rn to
Rn. Indeed, the sets (−∞, y], y ∈ Rn form an ∩-stable generator of B(Rn) and
x �→ κ(x, (−∞, y]) = µ((−∞, y − x]) is left continuous and hence measurable.
Hence, by Remark 8.25, x �→ κ(x,A) is measurable for all A ∈ B(Rn). �

Definition 8.27. Let Y be a random variable with values in a measurable space
(E, E) and let F ⊂ A be a sub-σ-algebra. A stochastic kernel κY,F from (Ω,F) to
(E, E) is called a regular conditional distribution of Y given F if

κY,F (ω,B) = P[{Y ∈ B}|F ](ω)

for P-almost all ω ∈ Ω and for all B ∈ E .

Consider the special case where F = σ(X) for a random variable X (with values
in an arbitrary measurable space (E′, E ′)). Then the stochastic kernel

(x,A) �→ κY,X(x,A) = P[{Y ∈ A}|X = x] = κY,σ(X)

(
X−1(x), A

)
(the function from the factorisation lemma with an arbitrary value for x �∈ X(Ω)) is
called a regular conditional distribution of Y given X .

Theorem 8.28 (Regular conditional distributions in R). Let Y : (Ω,A) →(
R,B(R)

)
be real-valued. Then there exists a regular conditional distribution κY,F

of Y given F .

Proof. The strategy of the proof consists in constructing a measurable version of
the distribution function of the conditional distribution of Y by first defining it for
rational values (up to a null set) and then extending it to the real numbers.

For r ∈ Q, letF (r, · ) be a version of the conditional probability P[Y ∈ (−∞, r]|F ].
For r ≤ s, clearly 1{Y ∈(−∞,r]} ≤ 1{Y ∈(−∞,s]}. Hence, by Theorem 8.14(ii)
(monotonicity of the conditional expectation), there is a null set Ar,s ∈ F with
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F (r, ω) ≤ F (s, ω) for all ω ∈ Ω \Ar,s. (8.10)

By Theorem 8.14(viii) (dominated convergence), there are null sets (Br)r∈Q ∈ F
and C ∈ F such that

lim
n→∞F

(
r +

1
n
, ω

)
= F (r, ω) for all ω ∈ Ω \Br (8.11)

as well as

inf
n∈N

F (−n, ω) = 0 and sup
n∈N

F (n, ω) = 1 for all ω ∈ Ω \ C. (8.12)

Let N :=
(⋃

r,s∈QAr,s

)
∪
(⋃

r∈QBr

)
∪ C. For ω ∈ Ω \N , define

F̃ (z, ω) := inf
{
F (r, ω) : r ∈ Q, r > z

}
for all z ∈ R.

By construction, F̃ ( · , ω) is monotone increasing and right continuous. By (8.10)
and (8.11), we have

F̃ (z, ω) = F (z, ω) for all z ∈ Q and ω ∈ Ω \N. (8.13)

Therefore, by (8.12), F̃ ( · , ω) is a distribution function for any ω ∈ Ω \ N . For
ω ∈ N , define F̃ ( · , ω) = F0, whereF0 is an arbitrary but fixed distribution function.

For any ω ∈ Ω, let κ(ω, · ) be the probability measure on (Ω,A) with distribution
function F̃ ( · , ω). Then, for r ∈ Q and B = (−∞, r],

ω �→ κ(ω,B) = F (r, ω) 1Nc(ω) + F0(r) 1N (ω) (8.14)

is F-measurable. Now {(−∞, r], r ∈ Q} is a π-system that generates B(R). By
Remark 8.25, measurability holds for all B ∈ B(R) and hence κ is identified as a
stochastic kernel.

We still have to show that κ is a version of the conditional distribution. For A ∈ F ,
r ∈ Q and B = (−∞, r], by (8.14),∫

A

κ(ω,B)P[dω] =
∫

A

P
[
Y ∈ B |F

]
dP = P

[
A ∩ {Y ∈ B}

]
.

As functions of B, both sides are finite measures on B(R) that coincide on the ∩-
stable generator

{
(−∞, r], r ∈ Q

}
. By the uniqueness theorem (Lemma 1.42), we

thus have equality for all B ∈ B(R). Hence P-a.s. κ( · , B) = P[Y ∈ B |F ] and
thus κ = κY,F . �

Example 8.29. Let Z1, Z2 be independent Poisson random variables with parame-
ters λ1, λ2 ≥ 0. One can show (exercise!) that (with Y = Z1 and X = Z1 + Z2)

P[Z1 = k
∣∣Z1 + Z2 = n] = bn,p(k) for k = 0, . . . , n,

where p = λ1
λ1+λ2

. �
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This example could still be treated by elementary means. The full strength of the
result is displayed in the following examples.

Example 8.30. Let X and Y be real random variables with joint density f (with
respect to Lebesgue measure λ2 on R2). For x ∈ R, define

fX(x) =
∫

R

f(x, y)λ(dy).

Clearly, fX(x) > 0 for PX -a.a. x ∈ R and f−1
X is the density of the absolutely con-

tinuous part of the Lebesgue measure λ with respect to PX . The regular conditional
distribution of Y given X has density

P[Y ∈ dy |X = x]
dy

= fY |X(x, y) :=
f(x, y)
fX(x)

for PX [dx]-a.a. x ∈ R. (8.15)

Indeed, by Fubini’s theorem (Theorem 14.16), the map x �→
∫

B
fY |X(x, y)λ(dy) is

measurable for all B ∈ B(R) and for A,B ∈ B(R), we have∫
A

P[X ∈ dx]
∫

B

fY |X(x, y)λ(dy)

=
∫

A

P[X ∈ dx] fX(x)−1

∫
B

f(x, y)λ(dy)

=
∫

A

λ(dx)
∫

B

f(x, y)λ(dy)

=
∫

A×B

f dλ2 = P[X ∈ A, Y ∈ B]. �

Example 8.31. Let µ1, µ2 ∈ R, σ1, σ2 > 0 and let Z1, Z2 be independent and
Nµi,σ2

i
-distributed (i = 1, 2). Then there exists a regular conditional distribution

P[Z1 ∈ · |Z1 + Z2 = x] for x ∈ R.

If we define X = Z1 + Z2 and Y = Z1, then (X,Y ) ∼ Nµ,Σ is bivari-

ate normally distributed with covariance matrix Σ :=
(
σ2

1 + σ2
2 σ2

1

σ2
1 σ2

1

)
and with

µ :=
(
µ1 + µ2

µ1

)
. Note that

Σ−1 =
(
σ2

1σ
2
2

)−1
(
σ2

1 −σ2
1

−σ2
1 σ2

1 + σ2
2

)
= (σ2

1σ
2
2)−1BTB,

where B =
(
σ1 −σ1

0 σ2

)
. Hence (X,Y ) has the density (see Example 1.105(ix))
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f(x, y) = det(2π Σ)−1/2 exp

(
− 1

2σ2
1σ

2
2

∥∥∥∥B(x− (µ1 + µ2)
y − µ1

)∥∥∥∥2
)

=
(
4π2σ2

1σ
2
2

)−1/2 exp
(
−σ

2
1(y − (x− µ1))2 + σ2

2(y − µ2)2

2σ2
1σ

2
2

)
= Cx exp

(
− (y − µx)2/2σ2

x

)
.

Here Cx is a normalising constant and

µx = µ1 +
σ2

1

σ2
1 + σ2

2

(x− µ1 − µ2) and σ2
x =

σ2
1σ

2
2

σ2
1 + σ2

2

.

By (8.15), P[Z1 ∈ · |Z1 + Z2 = x] has the density

y �→ fY |X(x, y) =
Cx

fX(x)
exp
(

− (y − µx)2

2σ2
x

)
,

hence
P[Z1 ∈ · |Z1 + Z2 = x] = Nµx,σ2

x
for almost all x ∈ R. �

Example 8.32. If X and Y are independent real random variables, then for PX -
almost all x ∈ R

P[X + Y ∈ · |X = x] = δx ∗ PY . �

The situation is not completely satisfying as we have made the very restrictive as-
sumption that Y is real-valued. Originally we were also interested in the situation
where Y takes values in Rn or in even more general spaces. We now extend the
result to a larger class of ranges for Y .

Definition 8.33. Two measurable spaces (E, E) and (E′, E ′) are called isomorphic
if there exists a bijective map ϕ : E → E′ such that ϕ is E – E ′-measurable and
the inverse map ϕ−1 is E ′ – E-measurable. Then we say that ϕ is an isomorphism
of measurable spaces. If in addition µ and µ′ are measures on (E, E) and (E′, E ′)
and if µ′ = µ ◦ ϕ−1, then ϕ is an isomorphism of measure spaces, and the measure
spaces (E, E , µ) and (E′, E ′, µ′) are called isomorphic.

Definition 8.34. A measurable space (E, E) is called a Borel space if there exists a
Borel set B ∈ B(R) such that (E, E) and (B,B(B)) are isomorphic.

A separable topological space whose topology is induced by a complete metric is
called a Polish space. In particular, Rd, Zd, RN, (C([0, 1]), ‖ · ‖∞) and so forth
are Polish. Closed subsets of Polish spaces are again Polish. We come back to Polish
spaces in the context of convergence of measures in Chapter 13. Without proof, we
present the following topological result (see, e.g., [35, Theorem 13.1.1]).

Theorem 8.35. Let E be a Polish space with Borel σ-algebra E . Then (E, E) is a
Borel space.
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Theorem 8.36 (Regular conditional distribution). Let F ⊂ A be a sub-σ-
algebra. Let Y be a random variable with values in a Borel space (E, E) (hence,
for example, E Polish, E = Rd, E = R∞, E = C([0, 1]), etc.). Then there exists
a regular conditional distribution κY,F of Y given F .

Proof. Let B ∈ B(R) and let ϕ : E → B be an isomorphism of measurable spaces.
By Theorem 8.28, we obtain the regular conditional distribution κY ′,F of the real
random variable Y ′ = ϕ◦Y . Now define κY,F (ω,A) = κY ′,F (ω, ϕ(A)) for A ∈ E .

�

To conclude, we pick up again the example with which we started. Now we can drop
the quotation marks from the statement and write it down formally. Hence, let X be
uniformly distributed on [0, 1]. Given X = x, let (Y1, . . . , Yn) be independent and
Berx-distributed. Define Y = (Y1, . . . , Yn). By Theorem 8.36 (with E = {0, 1}n ⊂
Rn), a regular conditional distribution exists:

κY,X(x, · ) = P[Y ∈ · |X = x] for x ∈ [0, 1].

Indeed, for almost all x ∈ [0, 1],

P[Y ∈ · |X = x] = (Berx)⊗n.

Theorem 8.37. Let X be a random variable on (Ω,A,P) with values in a Borel
space (E, E). Let F ⊂ A be a σ-algebra and let κX,F be a regular conditional dis-
tribution ofX given F . Further, let f : E → R be measurable and E[|f(X)|] <∞.
Then

E[f(X)|F ](ω) =
∫
f(x)κY,F (ω, dx) for P-almost all ω. (8.16)

Proof. We check that the right hand side in (8.16) has the properties of the condi-
tional expectation.

It is enough to consider the case f ≥ 0. By approximating f by simple functions, we
see that the right hand side in (8.16) is F-measurable (see Lemma 14.20 for a formal
argument). Hence, by Theorem 1.96, there exist sets A1, A2, . . . ∈ E and numbers
α1, α2, . . . ≥ 0 such that

gn :=
n∑

i=1

αi 1Ai

n→∞−→ f.
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Now, for any n ∈ N and B ∈ F ,

E[gn(X) 1B ] =
n∑

i=1

αi P[{X ∈ Ai} ∩B]

=
n∑

i=1

αi

∫
B

P[{X ∈ Ai}|F ]P[dω]

=
n∑

i=1

αi

∫
B

κX,F (ω,Ai)P[dω]

=
∫

B

n∑
i=1

αi κX,F (ω,Ai)P[dω]

=
∫

B

(∫
gn(x)κX,F (ω, dx)

)
P[dω].

By the monotone convergence theorem, for almost all ω, the inner integral converges
to
∫
f(x)κX,F (ω, dx). Applying the monotone convergence theorem once more, we

get

E[f(X) 1B ] = lim
n→∞E[gn(X) 1B ] =

∫
B

∫
f(x)κX,F (ω, dx)P[dω]. �

Exercise 8.3.1. Let (E, E) be a Borel space and let µ be an atom-free measure (that
is, µ({x}) = 0 for any x ∈ E). Show that for any A ∈ E and any n ∈ N, there exist
pairwise disjoint sets A1, . . . , An ∈ E with

⊎n
k=1Ak = A and µ(Ak) = µ(A)/n

for any k = 1, . . . , n. ♣

Exercise 8.3.2. Let p, q ∈ (1,∞) with 1
p + 1

q = 1 and let X ∈ Lp(P) and
Y ∈ Lq(µ). Let F ⊂ A be a σ-algebra. Use the preceding theorem to show the
conditional version of Hölder’s inequality:

E
[
|XY |

∣∣F] ≤ E
[
|X|p

∣∣F]1/p
E
[
|Y |q

∣∣F]1/q
almost surely. ♣

Exercise 8.3.3. Assume the random variable (X,Y ) is uniformly distributed on the
disc B := {(x, y) ∈ R2 : x2 + y2 ≤ 1} and on [−1, 1]2, respectively.

(i) In both cases, determine the conditional distribution of Y given X = x.

(ii) Let R :=
√
X2 + Y 2 and Θ = arctan(Y/X). In both cases, determine the

conditional distribution of Θ given R = r. ♣

Exercise 8.3.4. Let A ⊂ Rn be a Borel measurable set of finite Lebesgue measure
λ(A) ∈ (0,∞) and let X be uniformly distributed on A (see Example 1.75). Let
B ⊂ A be measurable with λ(B) > 0. Show that the conditional distribution of X
given {X ∈ B} is the uniform distribution on B. ♣
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Exercise 8.3.5 (Borel’s paradox). Consider the earth as a ball (as widely accepted
nowadays). Let X be a random point that is uniformly distributed on the surface.
Let Θ be the longitude and let Φ be the latitude of X . A little differently from the
usual convention, assume that Θ takes values in [0, π) and Φ in [−π, π). Hence, for
fixed Θ, a complete great circle is described when Φ runs through its domain. Now,
given Θ, is Φ uniformly distributed on [−π, π)? One could conjecture that any point
on the great circle is equally likely. However, this is not the case! If we thicken the
great circle slightly such that its longitudes range from Θ to Θ + ε (for a small ε),
on the equator it is thicker (measured in metres) than at the poles. If we let ε → 0,
intuitively we should get the conditional probabilities as proportional to the thickness
(in metres).

(i) Show that P[{Φ ∈ · }|Θ = θ] for almost all θ has the density 1
4 | cos(φ)| for

φ ∈ [−π, π).

(ii) Show that P[{Θ ∈ · }|Φ = φ] = U[0,π) for almost all φ.

Hint: Show thatΘ and Φ are independent, and compute the distributions of Θ and Φ.
♣

Exercise 8.3.6 (Rejection sampling for generating random variables). Let E be
a countable set and let P and Q be probability measures on E. Assume there is a
c > 0 with

f(e) :=
Q({e})
P ({e}) ≤ c for all e ∈ E with P ({e}) > 0.

LetX1, X2, . . . be independent random variables with distribution P . Let U1, U2, . . .
be i.i.d. random variables that are independent ofX1, X2, . . . and that are uniformly
distributed on [0, 1]. Let N be the smallest (random) nonnegative integer n such that
Un ≤ f(Xn)/c and define Y := XN .

Show that Y has distribution Q.

Remark. This method for generating random variables with a given distribution Q
is called rejection sampling, as it can also be described as follows. The random vari-
able X1 is a proposal for the value of Y . This proposal is accepted with probability
f(X1)/c and is rejected otherwise. If the first proposal is rejected, the game starts
afresh with proposal X2 and so on. ♣

Exercise 8.3.7. Let E be a Polish space and let P,Q ∈ M1(R). Let c > 0 with
f := dQ

dP ≤ c P -almost surely. Show the statement analogous to Exercise 8.3.6. ♣

Exercise 8.3.8. Show that (R,B(R)) and
(
Rn,B(Rn)

)
are isomorphic. Conclude

that every Borel set B ∈ B(Rn) is a Borel space. ♣


