
the unlabeled examples, adding it to the training set with a
sample of its possible labels, and estimating the resulting
future error rate as just described. This seemingly daunt-
ing sampling and re-training can be made efficient through
a number of rearrangements of computation, careful sam-
pling choices, and efficient incremental training procedures
for the underlying learner.

We show experimental results on two real-world document
classification tasks, where, in comparison with density-
weighted Query-by-Committee we reach 85% of full per-
formance in one-quarter the number of training examples.

2. Optimal Active Learning and Sampling
Estimation

The optimal active learner is one that asks for labels on the
examples that, once incorporated into training, will result
in the lowest expected error on the test set.

Let
������� �	�

be an unknown conditional distribution over
inputs,

�
, and output classes,

��
�����������������������	�
, and

let
�������

be the marginal “input” distribution. The learner
is given a labeled training set, � , consisting of IID in-
put/output pairs drawn from

��������������� �	�
, and estimates a

classification function that, given an input
�

, produces an
estimated output distribution ��! "����� �	� . We can then write
the expected error of the learner as follows:#%$&('*),+�-/. �0������� �	�1� ��! "����� �	�2�3�������1� (1)

where . is some loss function that measures the degree
of our disappointment in any differences between the true
distribution,

������� ���
and the learner’s prediction, ��  ����� ��� .

Two common loss functions are:
log loss: .4)6587�9�: ������� �	�<;>=�?�� ��@ A����� �����
and 0/1 loss:.B),587�9�: ������� �	����CEDGF������2H�I2?3J�HLK 7NM�9�: ��@ "����OP� �	�2� .
First-order Markov active learning thus aims to select a
query,

�RQ
, such that when the query is given label

�SQ
and

added to the training set, the learner trained on the resulting
set

� �6T ���RQ<���<QU�2�
has lower error than any other

�
,V ���!�2���W#%$& 'SX<Y[Z]\�^ _�\N`ba #4$& 'SX<Y[ZN^ _2` � (2)

We concern ourselves here with pool-based active learn-
ing, in which the learner has available a large pool, c , of
unlabeled examples sampled from

�������
, and the queries

may be chosen only from this pool. The pool thus not only
provides us with a finite set of queries, but also an estimate
of
�����	�

.

This paper takes a sampling approach to error estimation
and the choice of query. Rather than estimating expected
error over the full distribution,

�����	�
, we measure it over

the sample in the pool. Furthermore, the true output distri-
bution

������� ���
is unknown for each sample

�
, so we esti-

mate it using the current learner.1 (For log loss this results
in estimating the error by the entropy of the learner’s pos-
terior distribution).

Writing the labeled documents �dT ��� Q ��� Q �
as � Q , for log

loss we havee#4$& ' \ ) C� c ��f- 9Lg f7U9�: ��@ \ ����� �	�<;>=�?�� ��@ \ ����� �����N� (3)

and for 0/1 losse#4$& ' \ ) C� c ��f- 9Lg4h CEDiJ�HLK7U9�: ��@ \ ����� �	��j4�
(4)

Of course, before we make the query, the true label for
��Q

is also unknown. Again, the current learned classifier gives
us an estimate of the distribution from which the

�	Q
’s true

label would be chosen, ��  ����� �RQL� , and we can use this in an
expectation calculation by calculating the estimated error
for each possible label,

�k
l�m�<�m�2���L�������2���R�
, and taking

an average weighted by the current classifier’s posterior,��@ "����� � Q � of
e#%$& 'S\ .

In the above formulation, we are using the current learner
to estimate the true label probabilities, which may seem
counter-intuitive. Using these loss functions will cause
the learner to select those examples which maximizes the
sharpness of learner’s posterior belief about the unlabeled
examples. An example will be selected if it dramatically re-
inforces the learner’s existing belief over unlabeled exam-
ples for which it is currently unsure. In practice, selecting
these instances for labeling is reasonable because the most
useful (or informative) labelings are usually consistent with
the learner’s prior belief over the majority (but not all) of
unlabeled examples.

Our algorithm thus consists of the following steps:
1. train a classifier using the current labeled examples

(a) consider each unlabeled example, n , in the pool as a can-
didate for the next labeling request

i. consider each possible label, o , for n , and add the pairp n	qrots to the training set
ii. re-train the classifier with the enlarged training set,u4v p n	qwots

iii. estimate the resulting expected loss as in equation (3)
or equation (4).

(b) Assign to n the average expected losses for each possible
labeling, o , weighted according to the current classifier’s
posterior, xy	z p o|{ nSs

2. Select for labeling the unlabeled example n that generated the
lowest expected error on all other examples.

If implemented naively, the above algorithm would be
hopelessly inefficient. However, with some thought and

1In order to reduce variance of this estimate we create several
training sets by sampling with replacement from the labeled set
(bagging), and averaging the resulting posterior class distribution.
See section 3.2 for more details.


