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What is Java PathFinder
The answer used to be simple: "JPF is an explicit state software model checker for Java bytecode". Today, 
JPF is a swiss army knife for all sort of runtime based verification purposes.

If you are not familiar with formal methods, this basically means JPF is a Java virtual machine that exe-
cutes your program not just once (like a normal VM), but theoretically in all possible ways, checking for 
property violations like deadlocks or unhandled exceptions along all potential execution paths. If it finds 
an error, JPF reports the whole execution that leads to it. Unlike a normal debugger, JPF keeps track of 
every step how it got to the defect.
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Step #11 Thread #0

  oldclassic.java:65           event1.wait_for_event();

  oldclassic.java:37         wait();

..

Step #14 Thread #1

  oldclassic.java:95           event2.wait_for_event();

  oldclassic.java:37         wait();

------------------------------------ thread stacks

Thread: Thread-0

        at java.lang.Object.wait(java/lang/Object.java:429)

        at Event.wait_for_event(oldclassic.java:37)

         ..

Thread: Thread-1

        at java.lang.Object.wait(java/lang/Object.java:429)

        at Event.wait_for_event(oldclassic.java:37)

        ..

========================
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What can be checked by JPF
Which defects can be found by JPF? Out of the box, JPF can search for deadlocks and unhandled excep-
tions (e.g. NullPointerExceptions and AssertionErrors), but the user can provide own property classes, or 
write listener-extensions to implement other property checks (like race conditions).

What programs can be checked by JPF? In general, JPF is capable of checking every Java program that 
does not depend on unsupported native methods. The JPF VM cannot execute platform specific, native 
code. This especially imposes a restriction as to what standard libraries can be used from within the appli-
cation under test. While it is possible to write these library versions, especially by using the Model Java 
Interface (MJI) mechanism of JPF, there is currently no support for java.awt, java.net, and only limited 
support for java.io. Another restriction is given by JPF's state storage requirements, which effectively lim-
its the size of checkable applications to ~10kloc (depending on their internal structure) if no application 
and property specific abstractions are used. Because of these library and size limitations, JPF so far has 
been mainly used for applications that are models, but require a full procedural programming language. 
JPF is especially useful to verify concurrent Java programs, due to its systematic exploration of schedul-
ing sequences.

Model Checking vs Testing
What can JPF do that cannot be achieved with normal testing? JPF can simulate non-determinism. Certain 
aspects like scheduling sequences cannot be controlled by a test driver, and require help from the execu-



tion environment (VM). Other sources of non-determinism like random input data are supported with 
special APIs which can significantly ease the creation of test drivers. Simulating non-determinism re-
quires more than just the systematic generation of all non-deterministic choices. Two capabilities come 
into play to make this work: backtracking and state matching.

(1) Backtracking means that JPF can restore previous execution states, to see if there are unexplored 
choices left. For instance, if JPF reaches a program end state, it can walk backwards to find different pos-
sible scheduling sequences that have not been executed yet. While this theoretically can be achieved by 
re-executing the program from the beginning, backtracking is a much more efficient mechanism if state 
storage is optimized.

(2) State Matching is another key mechanism to avoid unnecessary work. The execution state of a pro-
gram mainly consists of heap and thread-stack snapshots. While JPF executes, it checks every new state if 
it already has seen an equal one, in which case there is no use to continue along the current execution 
path, and JPF can backtrack to the nearest non-explored non-deterministic choice.

In theory, explicit state model checking is a rigorous method - all choices are explored, if there is any de-
fect, it will be found. Unfortunately, software model checking can only provide this rigor for reasonably 
small programs (usually <10,000 loc), since the number of states rapidly exceeds computational limits for 
complex programs. This problem is known as state space explosion, and can be easily illustrated by the 
number of possible scheduling sequences for a given number of processes consisting of atomic sections.
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JPF addresses this scalability problem in three ways: (1) configurable search strategies, (2) reducing the 
number of states, and (3) reducing state storage costs.

(1) Configurable search strategies try to solve the problem that the whole state space cannot be searched 
by directing the search so that defects are found quicker, i.e. with less computational resources. This basi-
cally means to use the model checker not as a 'proof-', but as a 'debugging-' tool, which is mostly achieved 
by using heuristics to order and filter the set of potential follow-on states according to some property re-
lated relevance. Computation of heuristic values is delegated to a user configured class, i.e. is not hard-
coded in the JPF core.

(2) Reducing the number of states that have to be stored is the preferred way to improve scalability, and 
is supported by a number of mechanisms:

• Heuristic Choice Generators means the set of choices in a certain state does not have to be complete. 
Consider a non-deterministic input float value with a threshold behavior. The float type makes it impos-
sible to generate all possible values anyways, but in terms of checking the system behavior it might be 



sufficient to try only three choices: less than, equal, and greater than the threshold. The important capa-
bility is to make these heuristics configurable so that they can be easily extended or adapted to specific 
application needs.

• Partial Order Reduction is the most important mechanism to reduce the state space in concurrent pro-
grams. The goal is to only consider context switches at operations that can have effects across thread 
boundaries, like PUTFIELD instructions on objects that are accessible from different threads. The chal-
lenge is to do this on-the-fly, without requiring error-prone user instrumentation. JPFs partial order re-
duction makes use of the Java bytecodes, and reachability information obtained from the garbage col-
lector, to achieve this.

• Host VM Execution - JPF is a JVM that is written in Java, i.e. it runs on top of a host VM. For compo-
nents that are not property-relevant, it makes sense to delegate the execution from the state-tracked JPF 
into the non-state tracked host VM. The corresponding Model Java Interface (MJI) mechanism is espe-
cially suitable to handle IO simulaion and other standard library functionality.

• State Abstraction - per default, JPF stores all heap, stack and thread changes, which is sometimes a 
huge overhead if it comes to deciding whether two execution states differ from the perspective of a cer-
tain application. For example, state matching based on shape analysis of data structures can yield sig-
nificant state reduction, and has been successfully used in recent JPF applications

(3) Reducing state storage costs refers mainly to implementation features of the JPF core. While not be-
ing the primary measure to deal with state space explosion, efficient state storage is mandatory for a soft-
ware model checker. Since state transitions usually result in a small amount of changes (e.g. a single stack 
frame), JPF uses a technique called state collapsing to bring down the per-state memory requirements by 
storing indexes into state-component specific pools (hash tables) instead of directly storing changed val-
ues.

To compare states, JPF extends the state collapsing mechanism by hashing the resulting pool-index vec-
tors, using a single, consecutive number as a unique state-id, thus reducing state equality checks to single 
integer comparisons. The hash mechanism (state set implementation instead of hash table) is configur-
able, using MD5 as default. The 128 bit hash values make it much more likely to run out of state memory 
before ever encountering a hash collision.

Extensibility
From the list of JPF features mentioned above, it should be clear that the system is not a classical model 
checker anymore. One can think of JPF as an execution system framework for all kinds of dynamic, run-
time oriented verification purposes. JPF tries to overcome the systematic scalability problem of software 
model checking by application- and property- specific adaptation. As a consequence, the major design 
force driving it's further development is extensibility. This document includes descriptions of two major 
extension mechanisms: (1) Search-/VMListeners and (2) Model Java Interface (MJI).

(1) Search-/VMListeners provide a convenient way to to extend JPFs internal state model, add more 
complex property checks, direct searches, or simply gather execution statistics. This is achieved by an 
Observer pattern that lets concrete observers (listeners) subscribe to certain events inside JPF, like byte-
code instruction execution or forward/backtrack steps.

(2) The Model Java Interface (MJI) is a mechanism to separate and communicate between state-tracked 
execution inside the JPF JVM, and non-state tracked execution inside the underlying host VM (executing 
JPF itself). This can be used to build standard library abstractions that significantly reduce the application 
state space.



The State of Affairs
JPF is now in its fourth year of active development, but is still a moving target. There are a number of 
ongoing and planned areas of work:

(1) Structural cleanup - JPF started as a research tool, and has seen many contributors with different goals 
over time. As a result, its internal structure still needs to be re-factored, especially with respect to encap-
sulation of core classes that are related to state management. There are still too many remaining direct 
field accesses.

(2) Enhanced extensibility - while two major extension mechanisms (Listeners and MJI) are already in 
place, the configurable choice generators still need to be implemented. This might even include turning 
Scheduler instances into ordinary choice generators - a step that might help to adapt JPF to specific 
scheduling needs like Realtime Java. 

A second branch of extension mechanisms are application- and property- specific state abstractions. In 
many cases, state hashing based on complete heap and thread information is too expensive or not even 
suitable (over-approximation) to identify property relevant execution paths. The complete state is only 
required for backtracking purposes, but not to prune "visited" parts of the state graph. Implementing a 
suitable interface to generate state abstractions (e.g. based on data structure shapes) still waits to be done.

(3) Library abstractions - JPF executes bytecode, i.e. analyses not only the application under test, but also 
all library code used by it, which often significantly exceeds the application size. For many properties, 
library code is not of interest, and should not be state tracked. The Model Java Interface (MJI) provides a 
suitable mechanism to replace real library code with abstractions that can be executed outside of the JPF 
VM, e.g. to model IO operations. Using MJI to abstract standard Java libraries is a major step towards 
applying JPF to real Java production code.

(4) Execution cost and time model - in its current state, JPF does not model time, which is a prerequisite 
to adapt JPF to Realtime Java. In order to introduce time, execution costs need to be approximated. This 
can be done in various degrees of fidelity (interpreter, JIT, AOT), and needs to be adaptable to different 
target platforms (architectures, OSes), and hence should be kept outside of the JPF kernel, using VM lis-
teners that monitor bytecode execution to compute and store time as a state-extension. First prototypes of 
corresponding listeners have already been implemented.

History and Credits
JPF has come a long way from it's beginnings in 1999. Four major phases stand out

• 1999 Java-to-Promela translator (using Spin as the model checker)

• 2000 JVM / standalone checker

• 2003 design and implementation of extension structure

• 2005 opensourcing of JPF

During this time, many people and institutions have worked on and with JPF. The majority of work is still 
done by the Robust Software Engineering (RSE) group at the NASA Ames Research Center. The incom-
plete list of key contributors (in random order) includes:

Klaus Havelund who had the orignal idea to create a software model checker based on Java.



Willem Visser is (together with Corina) the driving force behind the research part of JPF. He continues to 
drive it into exciting new places like symbolic model checking and test case generation.

Flavio Lerda did most of the work for phase 2, turning JPF from a translator into a VM

Corina Pasareanu continues to tweak JPF as a testbed for symbiosis of symbolic and explicit state model 
checking

John Penix fought hard through the NASA ranks to make the JPF opensourcing happen, not at least succ-
ceeding based on his reputation as one of the few people who actually have been able to find real defects 
with software model checking 

Masoud Mansouri-Samani shielded the developers from configuration and distribution management in the 
dark ages of closed JPF sources

Owen O'Malley showed his programming skills by implementing the MD5 based state hashing (with an 
interesting red-black tree), a huge win in terms of state storage. Owen also added some java.io library 
support based on MJI.

Dimitra Giannakopoulou happily uses JPF to distribute her famous LTL-to-Buechi-automaton translator 
(e.g. used in the LTSA system), which is so good that it remains in the JPF distribution even while JPF's 
LTL search is currently defunct. The translator can be built and used independently from the rest of JPF. 

Peter Mehlitz the "refactorator", trying to fill the Java holes, coming up with extension mechanisms, and 
getting all this into a manageable package

Prerequisites
JPF is a pure Java application that requires at least a Java 1.4.1 runtime. The following third party librar-
ies are used to run JPF:

• BCEL (the Bytecode Engineering Library from <http://jakarta.apache.org/bcel>, usually in bcel.jar), to 
load classfiles

• Xerces (the XML parsing library from <http://xml.apache.org/xerces2-j>, usually in xercesImpl.jar), to 
parse eexecution paths stored as XML

• the MD5 libary from Timothy W. Macinta <http://www.twmacinta.com/myjava/fast_md5.php>, usually 
in fast-md5-version.zip), to efficiently build MD5 state hash codes

All these libraries have to be in the CLASSPATH, but can reside outside the JPF directory tree. To build 
JPF, the following tools have to be installed:

• Ant <http://ant.apache.org>, to resolve dependencies and compile JPF sources

• JUnit <http://www.junit.org>, to run unit tests

For convenience reasons, there is a build-tools module in JPF that contains unmodified, tested, but not 
necessarily up-to-date versions of these tools.

Installing JPF
fetch from CVS or distrib, get libs, set CLASSPATH, run



Configuring JPF Runtime Options
Since JPF is an open system that can be parameterized and extended in a variety of ways, there is a strong 
need for a general configuration mechanism. The challenge for this mechanism is that many of the parts 
which are subject to parameterization are configured themselves (i.e. classes instantiated via classname 
parameters). This effectively prohibits the use of a configuration object that contains concrete fields to 
hold configuration data, since this class would be a central "design bottleneck" for a potentially open 
number of concrete JPF components like Search, Heuristic and Scheduler implementations. The goal is to 
have a configuration object that (1) is based on symbolic values, (2) can be extended at will, and (3) is 
passed down in a hierarchical initialization process so that every component extracts only its own parame-
ters.

java {-vm-arg..} gov.nasa.jpf.JPF [-c config-file] {+key=value..} [-show] main-class {app-arg..}

# section 1: general properties

log = warning

..

# section 2: Search properties

search.class = gov.nasa.jpf.search.DFSearch

..

# section 3: JVM properties

vm.class = gov.nasa.jpf.jvm.JVM

..

# breadth first JPF configuration

search.class = \

  gov.nasa.jpf.search.heuristic.HeuristicSearch

search.heuristic.class = \

  gov.nasa.jpf.search.heuristic.BFSHeuristic

> java gov.nasa.jpf.JPF  -c bfs.properties

     +search.heuristic.class=MyHeuristic

     +myheuristic.some_value=42

        MyTestApp

+

+

=

command line

  properties 

mode properties

default properties

..

myheuristic.some_value=42

search.class=..HeuristicSearch

search.heuristic.class=MyHeuristic

vm.class=..JVM

..

JPF

Search

VM

Heuristic

...

Scheduler

...

fixed type
fixed+configured types

Config object

initialization
class: init(config)
inst: ctor(config)

Config.Exception

- default.properties in JPF root dir
- or default.properties resource in jar
    (loaded via gov.nasa.jpf.JPF)

- command-line specified file
- or  jpf.properties in JPF root dir
- or  jpf.properties resource in jar
   (loaded via gov.nasa.jpf.JPF)

- missing entry
- wrong type
- general exception

location

class gov.nasa.jpf.Config {

  Object getInstance(key,type) throws Config.Exception

  Object getEssentialInstance(key,type)..

  boolean getBoolean(key) ..

}

The JPF configuration process uses a java.util.Property subclass to achieve this. This property instance is 
initialized in three steps:

1. Default Properties are taken from a default.properties file residing in the JPF root directory, or - if 
there is no such file - from a resource loaded via the gov.nasa.jpf.JPF class itself. This is usually the 
biggest file/resource, and contains many settings that are seldom changed for normal usage

2. Mode Properties are taken from a jpf.properties file in the JPF root directory, or a correspoding re-
source loaded via gov.nsas.jpf.JPF if the file is non-existent. A mode property file can also be explic-



itly specified via the -c <config-file> command line option. Mode properties are usually small, mainly 
containing the classnames of specialized Search and Heuristics classes and their respective parame-
ters

3. Command Line Properties are overlayed on top of the mode properties, to conveniently modify single 
parameters without the need to change default or mode property files. Command line properties are 
specified using a +<key>=<value> notation, and are mostly used during development and testing of 
new components

The resulting property object only holds key/value pairs with String values. It is an instance of 
gov.nasa.jpf.Config, a utility class that especially contains methods to conveniently instantiate objects 
from String values, and has separate accessors for optional and mandatory entries. In case of instantiation 
errors or missing mandatory entries, a gov.nasa.jpf.Config.Exception is thrown.

The Config object instantiates configured classes with the following constructor lookup scheme

• using parameter types and values that were explicitly specified in the instance request

• if no such constructor is found, or no parameters were specified, it looks up a <classname>(Config) 
constructor, and passes itself as parameter

• if no such constructor is found, it uses a default constructor

• if no default constructor is found, a Config.Exception is raised

The method to request a configured instance can also use an optional type parameter to guarantee type 
conformance of the created instance, and raise a Config.Exception in case the instance does not satisfy 
this type constraint.

The Config object itself is created by gov.nasa.jpf.JPF (the main application class), and - by using its API 
to instantiate configured classes - is passed down in a hierarchical initialization process so that every class 
that is instantiated has access to it. Instantiated objects can then retrieve their corresponding parameters, 
and optionally transform and store them in more specialized representations (e.g. int or boolean fields).

For a detailed description of standard properties, see the comments in jpf.properties. The following keys 
stand out as being application and program property specific:

vm.classpath - colon separated list of directories that are used by JPF to load classes required by the ap-
plication under test. If a class is not found there, the standard CLASSPATH is searched too.

vm.sourcepath - corresponding list of directories that are searched for sources (in case JPF reports an 
error)

search.class - fully qualified class name of the Search class to use

listener - colon separated list of classnames that are used to instantiate Search- and VMListeners

Running JPF
Executing JPF from the command line is easy - the jpf script (residing in the jpf/bin directory) acts as a 
drop in replacement for the normal 'java' executable. In case you don't have specific initialization needs 
(see [sec:Lots-of-Options]), all you need to do is to call the bin/jpf script with the class name of the main 
application class to check, and append any arguments the application is expecting. The formal syntax is:

> bin/jpf [-c config-file] [-show] {+key=value ..} app-class {app-args ..}



-c config-file optionally specifies the java.util.Properties file that should be used for JPF configuration 
(default is 'jpf.properties')

-show directs JPF to print out the configuration key/value pairs prior to running the application

+key=value is a convenient way to override configuration properties via the commandline

In case you don't want to use the bin/jpf script, you have to setup the classpath and specify 
gov.nasa.jpf.JPF as the main class to be executed by java

> java {vm-args..} gov.nasa.jpf.JPF jpf-args

When executing java directly, it is a wise idea to increase the maximum heap space with the -Xmx VM 
argument (e.g. -Xmx1024m) 

To setup the classpath, make sure the following code is reachable, either by setting the CLASSPATH en-
vironment variable, or by using the -classpath VM command line argument

• JPF classes (either explicitly from the jpf/build/jpf/ directory, or implicitly via jpf.jar)

• library abstractions to use by JPF (per default in the jpf/build/env/jvm/ directory, or in jpf.jar)

• BCEL (the Bytecode Engineering Library from <http://jakarta.apache.org/bcel/>, usually in bcel.jar)

• Xerces (the XML parsing library from <http://xml.apache.org/xerces2-j/>, usually in xercesImpl.jar)

• the MD5 libary from <http://www.twmacinta.com/myjava/fast_md5.php>, usually in 
fast-md5-version.zip)

• optionally - constraint resolver library if you use JPF with its symbolic execution extension

• optionally - your additional JPF extension classes (listeners, properties etc.)

JPF can also be used embedded (e.g. an IDE), i.e. called from another Java application. The jpf/src/gov/
nasa/jpf/tools/ directory contains various examples, e.g. the ExecTracker application that logs various as-
pects of JPF execution. A basic code sequence to start JPF looks like this:

import gov.nasa.jpf.JPF;
import gov.nasa.jpf.Config;
import gov.nasa.jpf.SearchListener;
import gov.nasa.jpf.VMListener;
..
void runJPF (String[] args) {
  ..
  MyListener listener = new MyListener(..);
  listener.filterArgs( args);  // 'null' any consumed args not to be  JPF-processed
  ..
  Config config = JPF.createConfig( args);
  // set special config key/value pairs here..
  JPF jpf = new JPF( config);
  jpf.addVMListener( listener); // or addSearchListener
  jpf.run();
  ..
}



How to Implement Properties
There are two general types of property checks that can be performed with JPF: (1) gov.nasa.jpf.Property 
based, and (2) gov.nasa.jpf.SearchListener or gov.nasa.jpf.VMListener based.

(1) gov.nasa.jpf.Property instances are used to encapsulate property checks. These instances can be con-
figured statically (via the search.properties setting) or dynamically (via jpf.getSearch().addProperty()), 
and are checked by the Search object after each transition. In case a Property.check(..) method implemen-
tation returns false, and termination has been requested, the search process is ended, and all violated 
properties are printed (which potentially includes error traces)

JPF comes with the following generic Property classes:

• gov.nasa.jpf.jvm.NotDeadlockedProperty - for every non-end state, test if there is any runnable thread-
left

• gov.nasa.jpf.jvm.NoAssertionViolatedProperty - test if any assertion expression has been violated

• gov.nasa.jpf.jvm.NoUncaughtExceptionsProperty - test if any exception was not handled inside the ap-
plication

New properties can be added by providing additional implementors of the gov.nasa.jpf.Property interface

public interface Property extends Printable {
  boolean check (VM vm, Object arg);
  String getErrorMessage();
}

or, to save some efforts mostly associated with printing out error traces, by deriving classes from 
gov.nasa.jpf.GenericProperty, which requires only the check(..) method to be overriden. To configure 
these new checks, add them to the colon separated list of classnames specified under search.properties in 
a JPF configuration file (either default or mode specific):

search.properties=\
  gov.nasa.jpf.jvm.NotDeadlockedProperty:\
  gov.nasa.jpf.jvm.NoAssertionViolatedProperty:\
  gov.nasa.jpf.jvm.NoUncaughtExceptionsProperty:\
  x.y.z.MyNewProperty

(2) gov.nasa.jpf.SearchListener and gov.nasa.jpf.VMListener instances can be used to implement 
more complex checks that do require more information than what is available after a transition got exe-
cuted. The rich set of callbacks enables listeners to monitor almost all JPF operations and translate them 
into internal state. JPF execution control can be achieved in two ways:

(a) by implementing both the appropriate listener interface and the gov.nasa.jpf.Property interface, then 
registering with Search.addProperty(..), to let JPF automatically check for violated property termination 
between states.

(b) by calling Search.terminate() to stop searching for new states. This can be done from anywhere within 
the listener, but does not automatically create error reports, which have to be done explicitly by the the 
listener. 



Instrumenting Applications with Verify
Ideally, JPF can be used to verify arbitrary Java applications, but often, these applications are Java models 
of other systems. In this case, it can be helpful to call JPF APIs from within the application, to obtain in-
formation from JPF or direct its further execution. The JPF API is centralized in the 
gov.nasa.jpf.jvm.Verify class, which includes methods from the following major categories:

(1) random data generators - this is about to become the major API category, which is suitable for writ-
ing test drivers that are model checker aware. The idea is to obtain non-deterministic input data values 
from JPF in a way that it can systematically analyze all relevant values. Currently, this is restricted to 
complete enumerations, and hence is only avaliable for boolean and int values via the following methods:

public static boolean randomBool ();
public static int (random (int max);

but this will be extended towards heuristics that can be chosen application specific, i.e. generators that do 
only produce certain values based on the associated heuristic (e.g. threshold values for floats and dou-
bles). These APIs are used to initialize test driver data like

import gov.nasa.jpf.jvm.Verify;
..
void test (..) {
  ..
  int data = Verify.random(3); // JPF will execute for values [0,1,2,3]
  ..
}

(2) search constraints - this category can be used to control the JPF search process. While this is prob-
lematic in terms of missing potential defects, it is often the only way to constrain the state space so that 
JPF can verify a given application. There are currently two instances in this category: atomicity control 
and search pruning

Verify.beginAtomic();
... // all code in here is executed by JPF in one transition
Verify.endAtomic();

Direct atomicity control was mainly used before the automatic, on-the-fly partial order reduction (POR) 
was implemented, and only remains relevant for applications that are (still) problematic with respect to 
POR. This especially includes frequent access to reachable, but not visible fields in concurrent programs 
(i.e. there is a reference chain that makes the object reachable from different threads, but the correspond-
ing fields are private or protected, hence not visible for all threads). In general, the role of explicit atomic-
ity control will be further reduced by future POR extensions.

Search pruning is useful for highly application specific properties, where it is obvious that certain values 
are not of interest with respect to the property.

// ..compute some data..
Verify.ignoreIf(data > someValue); // if true, JPF will not further analyze, but 
backtrack
// ..do some stuff with data..

If the provided expression evaluates to true, JPF does not continue to execute the current path, and back-
tracks to the previous non-deterministic choice point.



(3) state annotation - based on certain value combinations, an application might give JPF hints about the 
relevance of an program state that can be subsequently used by Search and/or Heuristic implementations.

// ..compute some data
Verify.interesting( data < someValue );
// ..do some stuff with data

This does not stop execution by JPF, but stores an 'interesting' attribute for the current state. It's more gen-
eral version is used to attach arbitrary strings to states:

// ..compute some data
if (data < someValue) {
  Verify.setAnnotation("critical data value");
  // ..do some stuff with dat

Again, this category is about to become less important since Search- and VMListeners are superior 
mechanisms to store not just strings, but arbitrary objects that refer to specific states. 

(4) verification log output - this is the most simple category, which is used to differentiate between nor-
mal program output (that is executed and analyzed by JPF), and output that is strictly verification rele-
vant, i.e. should not appear when executing a program outside JPF. Not very surprising, it contains a 
number of print(..) methods.

Other, more exotic Verify methods support collecting information during JPF execution, which is persis-
tent and can be later-on queried by JPF embedding code (programs that execute JPF). This uses an MJI 
trick where the native peer class (JPF_gov_nasa_jpf_jvm_Verify) is used to set some data during JPF 
execution, which can be later-on retrieved by model class (gov.nasa.jpf.jvm.Verify) code that is executed 
outside of JPF. This is currently used to implement counters, which in turn are used to verify JPF itself.

It should be noted that while most of the Verify APIs have alternative implementations that enable execu-
tion outside of JPF, applications using imp2 /Gs2 u3. 8a(o421 0 0259.081 411 Tm (erify )
Tj 11 0 0 -11 281.9880 -1
2ie80lassironGs1 uses an MJI ) Tj ET80.794 u3. 8a(oTheir1 0 0 -11 72 387 Tm /F2.0 1 Tf 
tion outside of JPF) 3e later



jpf3/

  src/ ............. root dir for all JPF sources (build.xml,jpf.properties..)
    gov/nasa/jpf/ .. common types, abstraction interfaces (JPF,Search,VM..)
      jvm .......... core VM classes (JVM..)
      search/ ...... search classes (AbstractSearch,DFSearch..)
        heuristic .. heuristics classes
      tools ........ various JPF  listeners (ExecTracker,HeapTracker..) 
      uti .......... auxiliary classes

  env/ ............. MJI standard library sources
    jpf ............ model classes (java.lang.Class..)
    jvm ............ native peer classes (JPF_java_lang_Class..)

  test/ ............ JPF regression test suite
    jvm ............ core VM tests
    mc ............. model checking tests

  doc .............. documentation (JPF.pdf)

  extensions/ ...... root dir for optional JPF extensions
    LTL2Buchi ...... extension example (same dir structure like JPF)
      src/* ........ extension source root
      doc/ ......... optional  extension documentation
      lib/ ......... optional extension libraries (required for build&run)
      bin/ ......... optional run scripts etc.
    ...

  build-tools/ ..... JPF build environment
    bin ............ applications and scripts (ant..)
    lib ............ build-tool libraries (junit.jar,ant.jar..)

  build/ ........... JPF classfiles (binaries)
    jpf ............ core JPF
    env ............ standard libraries
    test ........... regression tests

  lib .............. libraries required to run JPF (bcel.jar,fast-md5.zip..)

  bin .............. scripts to run JPF (jpf..)  
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To enable builds of JPF outside an integrated development environment, the JPF distribution contains an 
optional directory tree that contains everything that is required to compile JPF sources from a command 
line. Using these tools, a build directory is created that holds the class files for the three major source di-
rectories. 

The lib directory contents are required to run JPF, and need to be in the CLASSPATH if JPF is started di-
rectly, i.e. without the provided scripts.

To ease JPF execution, the bin directory contains scripts to automatically set the CLASSPATH. The script 
bin/jpf can be used to start JPF from the command line like a normal Java VM (i.e. is a java drop-in re-
placement).



Building JPF from the Command Line
The apache.org Ant system is used to manually build JPF. The toplevel JPF directory contains a build.xml 
file with all required configuration. Either the ant provided in the optional build-tools module or any re-
cent external version obtained from ant.apache.org (1.6.2 as of this writing) can be used. To list supported 
targets, type

$ build-tools/bin/ant -projecthelp
Buildfile: build.xml
Main targets:
 compile           compile JPF and its specific (modeled) environment libraries
 compile-env-jpf   compile MJI model classes
 compile-env-jvm   compile MJI native peer classes
 compile-examples  compile examples
 compile-ext       compile optional extension classes
 compile-jpf       compile JPF core classes
 compile-tests     compile all the tests for JPF
 dist              generate the compressed distribution tar files
 docs-javadoc      create javadoc documentation
 init              common task/target initialization
 jar               create jar archives for JPF, its JVM and their environment models
 run-tests         run all JPF tests
Default target: compile

This target set might change in the future. To erase the jpf/build directory, and start from a clean directory 
structure, type

$ build-tools/bin/ant clean

If junit is installed, the preferred way to build from scratch is

$ build-tools/bin/ant run-tests
Buildfile: build.xml
init:
    [echo] ****************** JPF build system ********************
    [echo] current dir:      /Users/pcmehlitz/projects/jpf3
    [echo] user home dir:    /Users/pcmehlitz
    [echo] classpath: :build-tools/bin/../lib/ant.jar: ...
    [echo]
    [echo] java version:     1.4.2_05
    [echo] OS:               Mac OS X-ppc-10.3.8
    ...
compile-jpf: ...
compile-env-jvm: ...
compile-env-jpf: ...
compile: ...
compile-tests: ...
   [javac] Compiling 34 source files to /Users/pcmehlitz/projects/jpf3/build/..
run-tests:
    [echo] --- running Junit tests from build/test
   [junit] Running gov.nasa.jpf.jvm.TestArrayJPF
   [junit]   running jpf with args: gov.nasa.jpf.jvm.TestArray test2DArray
   ...
   [junit] Tests run: 6, Failures: 0, Errors: 0, Time elapsed: 6.126 sec
   ...
BUILD SUCCESSFUL
Total time: 1 minute 25 seconds



This should compile all sources (except of examples) and then run the regression test suite.

JPF and Eclipse
JPF compiles and runs inside of the Eclipse IDE. To import, create a new Eclipse Java project from CVS 
or an external location, and make sure all libraries from jpf/lib are in the Eclipse build path of the project 
Properties dialog (they should appear under the "Libraries" tab). The default output folder should be set to 
build/jpf

Please note that the above example includes libraries of optional JPF extensions (LTL and symbolic exe-
cution).

The Compiler settings in either the project or the workspace Properties dialog should have the "JDK 
Compliance" (tab "Compliance and Classfiles", settings "compiler compliance level" "generated class 
files compatibility" and "source compatibility") set to "1.4".

Beyond this, the only caveat for building JPF is the inclusion of the env/jpf source directory. Classes 
compiled from this location are MJI model classes of standard Java library components, that are only 
meant to be seen by JPF, not the host VM. If this directory appears in the Eclipse source path, Eclipse will 
automatically compile and use it for the rest its build process, which might create problems if the relevant 
classes (e.g. java.lang.Class, java.lang.Thread) do not support certain features found in the real library 
class. There are two solutions to this problem:

(a) don't include env/jpf in the source path (but this makes the model class sources unavailable when 
editing/compiling their native peer counterparts in env/jvm).

(b) add missing model class methods and fields, so that Eclipse can build the JPF classes using these fea-
tures. Keep in mind that all JPF classes other than env/jpf will be executed by the host VM, and not JPF.

To run JPF from inside Eclipse, specify gov.nasa.jpf.JPF as the Main class inside the Run dialog (tab 
"Main"), use the default working directory (tab "Arguments"), specify the target application main class as 
the program argument, and make sure to include the jpf default classpath under user entries (tab "Class-
path"). If the application under test resides outside the jpf directory tree, its class files of course have to be 
added to the user entries of the Classpath dialog tab.

The JPF Toplevel Structure
JPF was designed around two major abstractions: (1) the VM, and (2) the Search object.

(1) The VM is the execution environment specific state generator. By executing Java bytecode instruc-
tions, the VM generates state representations that can be

• checked for equality (has a state been visited before) 

• queried (thread states, data values etc.) 

• stored 

• restored

Since Java is a inherently multithreaded execution environment, the main VM parameterization is the 
Scheduler type, which constitutes a strategy object to select and systematically explore valid thread 
scheduling sequences. There are three major VM methods in the context of the VM-Search collaboration 



• forward - generate the next state, report if the generated state has a successor. If yes, store on a back-
track stack for efficient restoration. 

• backtrack - restore the last state on the backtrack stack 

• restoreState - restore a arbitrary state (not necessarily on the backtrack stack)

ConcreteSearch

VM vm
search () {..}

<VM>

forward ()
backtrack ()
restoreState ()

ConcreteVM

forward () {..}
backtrack () {..}
restoreState () {..}

gov.nasa.jpf

while (notDone) {

 ..vm.forward();

 ..vm.backtrack();

 if (!properties.check()){

  reportError(); break;

 }

}

gov.nasa.jpf.search.*

gov.nasa.jpf.*vm

<Search>

search ()

JPF

search, vm
run ()

common JPF package

VM implementation package

Search implementation package

(2) The Search object is responsible for selecting the state from which the VM should proceed, either by 
directing the VM to generate the next state (forward), or by telling it to backtrack to a previously gener-
ated one. Search objects can be thought of as drivers for VM objects. 

Search objects also configure and evaluate property objects (e.g. NotDeadlockedProperty, NoAssertions-
ViolatedProperty). The main Search implementations include a simple depth-first search (DFSearch), and 
a priority-queue based search that can be parameterized to do various search types based on selecting the 
most interesting state out of the collection of all successors of a given state (HeuristicSearch). A Search 
implementation mainly provides a single search method, which includes the main loop that iterates 
through the relevant state space until it has been completely explored, or the search found a property vio-
lation.

On-the-fly Partial Order Reduction
The number of different scheduling combinations is the prevalent factor for the state space size of concur-
rent programs. Fortunately, for most practical purposes it is not necessary to explore all possible instruc-
tion interleavings for all threads. The number of scheduling induced states can be significantly reduced by 
grouping all instruction sequences in a thread that cannot have effects outside this thread itself, collapsing 
them into a single transition. This technique is called Partial Order Reduction (POR), and typically results 
in more than 70% reduction of state spaces.

JPF employs an on-the-fly POR that does not rely on user instrumentation or static analysis. JPF auto-
matically determines at runtime which instructions have to be treated as state transition boundaries. If 
POR is enabled (configured via vm.por property), a forward request to the VM executes all instructions in 
the current thread until one of the following conditions is met:

1. the next instruction is scheduling relevant



2. the current thread is not runnable anymore (e.g. waiting for a signal)

3. the next instruction is nondeterministic

Detection of scheduling relevance is delegated to the instruction object itself, passing down information 
about the current VM execution state and threading context.

executeStep () {
  while (true) {
    Instruction nextInsn = executeInstruction();
    ..
    if (nextInsn.isSchedulingRelevant(<threading-context>)  // (1)
         || !currentThread.isRunnable()                     // (2)
         || nextInsn.isNonDeterministic())                  // (3)
      break;
    ..
  }
}

Each bytecode instruction type corresponds to a concrete gov.nasa.jpf.Instruction subclass, that returns 
scheduling relevance based on the following factors:

Instruction Type - due to the stack based nature of the JVM, only about 10% of the Java bytecode in-
structions are scheduling relevant, i.e. can have effects across thread boundaries. The interesting instruc-
tions include direct synchronization (monitorEnter, monitorexit, invokeX on synchronized methods), field 
access (putX, getX), array element access (Xaload, Xastore), and invoke calls of certain Thread (start(), 
sleep(), yield(), join()) and Object methods (wait(), notify()). 

Object Reachability - besides direct synchronization instructions, field access is the major type of inter-
action between threads. However, not all putX / getX instructions have to be considered, only the ones 
referring to objects that are reachable by at least two threads can cause data races. While reachability 
analysis is an expensive operation, the VM already performs a similiar task during garbage collection, 
which is extended to support POR.

Thread and Lock Information - even if the instruction type and the object reachability suggest schedul-
ing relevance, there is no need to break the current transition in case there is no other runnable thread. In 
addition, lock acquisition and release (monitorenter, monitorexit) do not have to be considered as transi-
tion boundaries if there they happen recursively - only the first and the last lock operation can lead to re-
scheduling.
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While JPF uses these informations to automatically deduce scheduling relevance, there exist three mecha-
nisms to explicitly control transition boundaries (i.e. potential thread interleavings)

Attributor - a configurable concrete class of this type is used by JPF during class loading to determine 
object, method and field attributes of selected classes and class sets. The most important attributes with 
respect to POR are method atomicity and scheduling relevance levels: (a) never relevant, (b) always 
scheduling relevant, (c) only relevant in the context of other runnables. (d) only relevant of toplevel lock.

VMListener - a listener can explicitly request a reschedule by calling ThreadInfo.yield() in response of a 
instruction execution notification

Verify - the Verify class serves as an API to communicate between the test application and JPF, and con-
tains beginAtomic(), endAtomic() functions to control thread interleaving

The main effort of JPFs POR support relates to extending its precise mark and sweep collector. POR 
reachability is a subset of collector reachability, hence the mechanism piggybacks on the mark phase ob-
ject traversal. It is complicated by the fact that certain reference chains exist only in the (hidden) VM im-
plementatiion layer. For instance, every thread has a reference to its ThreadGroup, and the ThreadGroup 
objects in turn have references to all included threads, hence - from a garbage collection perspective - all 
threads within a group are mutually reachable. If the application under test does not use Java reflection 
and runtime queries like thread enumeration, POR reachability should follow accessibility rules as closely 
as possible. While JPF's POR does not yet support protected and private access modifiers, it includes a 
mechanism to specify that certain fields should not be used to promote POR reachability. This attribute is 
set via the configured Attributor at class load time.



With this mechanism, calculating POR reachability becomes a straight forward approach that is divided 
into two phases. Phase 1 non-recursively marks all ob-
jects of the root set (mostly static fields and thread 
stacks), recording the id of the referencing thread. In 
case an object is reachable from a static field, or from 
two threads, it's status is set to shared. Phase 2 recur-
sively traverses all heap objects, propagating either a 
set shared status or the referencing thread id through 
all reference fields that are not marked as reachability 
firewalls. Again, if the traversal hits an object that is 
already marked as referenced by another thread, it 
promotes the object status to shared, and from there 
propagates the shared status instead of the thread id.

Search- and VMListeners
Purpose
Beyond this basic Search-VM collaboration, there are numerous potential variations, e.g. to gather statis-
tics, to monitor the state exploration progress, or to query details of states like field values. These are 
typical tasks for programs that use JPF, and add certain functionality on top of it (e.g. a graphical user 
interface). The goal is to provide an extension mechanism in JPF that enables adding such functionality 
without modifying Search or VM implementations

<Listener>
subjectChangedX ()
subjectChangedY ()

Subject
listener
addListener (nlistener) {.}
notifyListenerOfX () {.}
notifyListenerOfY () {.}
querySubject (); 

ConcreteListener
subjectChangedX (s) {.}
subjectChangedY (s) {.}
..
<init> () {.}

ConcreteSubject
internalState
changeX () {.}
changeY () {.}

Multicaster
head, tail
Multicaster (h,t) {.}
subjectChangedX (s) {.}
subjectChangedY (s) {.}

0..n *

if (listener == null)

  listener = nlistener;

else

  listener = new

   Multicaster(nlistener,

               listener);

if (listener == null)

  listener.subjectChangedX(this);

notifyListenerOfX();

head = h;

tail = t;

head.subjectChangedX(s);

tail.subjectChanged(s);
sub.addListener(this);

s.querySubject();

..

The required extensibility is achieved by means of a Listener pattern (a Observer variant with a wide, 
change-topic specific notification interface), i.e. Listener instances register themselves either with the 
Search and/or the VM object (Subject), get notified when their corresponding Subjects perform certain 
operations, and can then interact with the Subject to query additional information, or even control the suc-
cessive Subject behavior.
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Changed facets of the Subjects are mapped into separate Observer methods, passing in the corresponding 
Subject instance as a parameter. As a implementation detail, Subjects keep track of registered listeners via 
so called MultiCasters (linked lists consisting of nodes implementing the listener interface), to avoid run-
time costs for container traversal, which is suitable for high frequent notifications with small numbers of 
listeners. 

Both interfaces reside in the general gov.nasa.jpf directory, hence we avoid using parameters which ex-
pose underlying Search or VM implementation constructs (like ThreadInfo etc.), and rely on Listeners 
residing in the right package to access detailed information by casting the Subject to its implementation 
class. In general, we avoid interface methods with varying degrees of specialization, i.e. don't provide 
several notifications based on the same event if 

• the specialization can be detected / queried by the Listener (e.g. method call and instruction execution) 

• there is no non-observable symmetric notification, e.g. visible object creation (NEW instruction exe-
cuted), but invisible object destruction (garbage collection) 

There are three different levels of Subject information retrieval by listener implementations: 

1. Generic - listener resides outside any JPF package and just uses the information that is publicly avail-
able via gov.nasa.jpf.Search / VM (potentially using other gov.nasa.jpf classes and interfaces) 

2. Search-specific - listener resides outside JPF packages but casts Subject notification parameter 
(Search or VM) to concrete implementation (e.g. gov.nasa.jpf.search.heuristic.BFSHeuristic), using 
its public API to retrieve implementation-specific information 

3. Internal - listener resides in concrete Subject implementation package (e.g. gov.nasa.jpf.jvm), access-
ing package private information

SearchListener
SearchListener instances are used to monitor the state space search process, e.g. to create graphical repre-
sentations of the state-graph. They provide notification methods for all major Search actions.

public interface SearchListener {
 
 /* got the next state */
 void stateAdvanced (Search search);
 
 /* state was backtracked one step */
 void stateBacktracked (Search search);
 
 /* a previously generated state was restored
    (can be on a completely different path) */
 void stateRestored (Search search);
 
 /* JPF encountered a property violation */
 void propertyViolated (Search search);
 
 /* we get this after we enter the search loop, but BEFORE the
    first forward */
 void searchStarted (Search search);
 
 /* there was some contraint hit in the search, we back out



    could have been turned into a property, but usually is an attribute of
    the search, not the application */
 void searchConstraintHit (Search search);
 
 /* we're done, either with or without a preceeding error */
 void searchFinished (Search search);
}

For the standard depth first search (gov.nasa.jpf.search.DFSearch), listener implementations can assume 
the following notification model:

E xample
Using this interface, a sample application to log a generic search progress can be programmed like this

import gov.nasa.jpf.JPF;
import gov.nasa.jpf.Transition;
import gov.nasa.jpf.SearchListener;
import gov.nasa.jpf.Search;
 
public class TestClient implements SearchListener {
 
  /***************************************** main entry: driver ***************/
 
  public static void main (String[] args) {
 
    TestClient listener = new TestClient();
    
    Config conf = JPF.createConfig(args);
    // add your own args
    conf.setProperty(“jpf.print_exception_stack”, “true”); //..
 
    JPF jpf = new JPF(conf);
    jpf.addSearchListener(listener);
 
    System.out.println("---------------- JPF started”);
    jpf.run();
    System.out.println("---------------- JPF terminated");
  }
 
 
  /****************************************** SearchListener notifications *****/



 
  public void stateRestored(Search search) {
    log( "restore ", search);
  }
 
  public void stateBacktracked (Search search) {
    log( "back ", search);
  }
 
  public void searchStarted (Search search) {
    System.out.println(? search started");
  }
 
  public void searchFinished (Search search) {
    System.out.println(" search finished");
  }
 
  public void propertyViolated (Search search) {
    ErrorList errors = search.getErrors();
    for (int i=0; i <errors.size(); i++) {
      System.out.println(?property violated: ? + errors.getError(i));
    }
  }
 
  public void searchConstraintHit(Search search) {
    System.out.println(?constraint hit ? + search.getConstraint();
  }
 
  public void stateAdvanced (Search search) {
    log( search.hasNextState() ? "> " : "* ", search);
  }
 
  /************************************************* helper methods *************/
 
  private void log (String prefix, Search search) {
    Transition trans = search.getTransition();     // acquire last transition
                                                   // (list of executed insns)
    if (trans != null) {
      System.out.print(prefix);
      System.out.print( trans.getThread());        // get current thread number
      System.out.print(" ");
      System.out.print( search.getStateNumber());  // get unique state id
      System.out.print(" ");
      System.out.print( search.getSearchDepth());  // get current search depth
      System.out.print("  : ");
      System.out.println( trans.getLabel());
    }
  }
}

More elaborate examples of SearchListeners can be found in test/gov/nasa/jpf/tools, which also includes 
StateSpaceDot, a generator for GraphViz specific graph descriptions (Dot files) to generate state graph 
images.



VMListener
VMListeners are used to follow the detailed VM processing, e.g. to monitor certain execution environ-
ment specific instructions (like Java IF instructions for coverage analysis, or PUTFIELD, GETFIELD 
instructions for potential race detections).

 public interface VMListener {
 /* VM has executed next instruction
     (can be used to analyze branches, monitor PUTFIELD / GETFIELD and
     INVOKExx / RETURN instructions) */
  void instructionExecuted (VM vm);
 
  /* new Thread entered run() method */
  void threadStarted (VM vm);
 
  /* Thread exited run() method */
  void threadTerminated (VM vm);
 
  /* new class was loaded */
  void classLoaded (VM vm);
 
  /* new object was created */
  void objectCreated (VM vm);
 
  /* object was garbage collected (after potential finalization) */
  void objectReleased (VM vm);
 
  /* garbage collection mark phase started */
  void gcBegin (VM vm);
 
  /* garbage collection sweep phase terminated */
  void gcEnd (VM vm);
 
  /* exception was thrown */
  void exceptionThrown (VM vm);
}

VMListeners usually do reside in JPF implementation packages, and are mainly intended to be a internal, 
non-intrusive JPF extension mechanism, e.g. to provide additional information for specific Search imple-
mentations. The reason for this restriction is that VM is a very coarse abstraction of its potential imple-
mentors, and we do not want to ?bubble up? abstration types of execution environment specific classes 
into the common gov.nasa.jpf package. 

Configuration
Listener configuration can be done in two ways: (a) per configuration file, and (b) dynamic. In both cases, 
we have to distinguish between separate and combined listener instances.

(a) configuration file - there are three property entries that can be used to set listeners

• listener - for instances that are both VM and SearchListeners

• search.listener - SearchListener instances only

• vm.listener - VMListener instances only

All entries contain optional lists of colon separated,fully qualified listener class names, e.g. 



listener=x.y.MyFirstListener:x.z.MySecondListener

(b) dynamic configuration - is usually done by applications that run JPF embedded

MyListener listener= new MyListener(..);
..
Config config = JPF.createConfig( args);
 
JPF jpf = new JPF( config);
jpf.addSearchListener(listener);
jpf.addVMListener( listener);
jpf.run();
..

Most listeners tend to fall into three major categories: (a) system class (e.g. for logging), (b) complex 
properties, and (c) JPF debugging. The first category (a) is usually configured via the default.properties, 
(b) is configured with an application specific mode property file, (c) is specified via the command line 
('+key=value' overrides).

The Model Java Interface
Purpose
Even if it is just a Java application (i.e. solely consists of Java classes), JPF can be viewed as a Java Vir-
tual Machine (JVM) in itself. The consequence is that (*.class) classfiles, and even the same files at times, 
are processed in two different ways in a JVM running JPF 

• as ordinary Java classes managed and executed by the host JVM (standard Java library classes, JPF im-
plementation classes) 

• as "modeled" classes managed and processed (verified) by JPF 

Class lookup in both layers is based on the CLASSPATH environment variable / command line parameter, 
but this should not obfuscate the fact that we have to clearly distinguish between these two modes. In par-
ticular, JPF (i.e. the "Model" layer) has its own class and object model, which is completely different and 
incompatible to the (hidden) class and object models of the underlying host JVM executing JPF
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Each standard JVM supports a so called "Java Native Interface" (JNI), that is used to delegate execution 
from the Java level (i.e. JVM controlled bytecode) down into the (platform dependent) native layer (ma-
chine code). This is normally used to interface certain functionalities to the platform OS / architecture 
(e.g. I/O or graphics).

Interestingly enough, there exists a analogous need to lower the "execution" level in JPF, from JPF con-
trolled bytecode into JVM controlled bytecode. According to this analogy, the JPF specific interface is 
called "Model Java interface" (MJI).

Even though MJI offers a wide range of applications, there are three major usages for delegating bytecode 
execution into the host JVM 

(1) Interception of native methods - without a abstraction lowering mechanism, JPF would be forced to 
completely ignore native methods, i.e. would fail on applications relying on the side effects of such meth-
ods, which is not acceptable (even if  many native methods indeed can be ignored if we restrict the set of 
verification targets) 

(2) Interfacing of JPF system level functionality - some system level functions of standard library 
classes (esp. java.lang.Class, java.lang.Thread) have to be intercepted even if they are not native because 
they have to affect the JPF internal class, object and thread model (etc. loading classes, creating / starting 
threads). It should be noted that MJI can also be used to extend the functionality of JPF without changing 
its implementation. 

(3) State space reduction - by delegating bytecode execution into the non-state-tracked host JVM, we 
can cut off large parts of the state space, provided that we know the corresponding method side effects are 
not relevant for property verification (e.g. System.out.println(..))

Besided these standard usages, there exist more exotic applications like collecting information about JPF 
state space exploration and making it available both to JPF and the verification target.

MJI Components
The basic functionality of MJI consists of a mechanism to intercept method invocations, and delegate 
them by means of Java reflection calls to dedicated classes. There are two types of classes involved, resid-
ing in different layers:

• Model Class - this is the class executed by JPF, which might be completely unknown to the host JVM 

• Native Peer Class - this is the class containing the implementations of the methods to intercept, and to 
execute in the host JVM 

As part of the JPF implementation, MJI automatically takes care of determining which method invoca-
tions have to be intercepted, looking up the corresponding



class JPF_x_y_z_MyClass {

  public static

      int foo__ILjava_lang_String__2 (MJIEnv env, int objRef,

                                      int i, int sRef) {

    String s = env.getStringObject(sRef);

    ..

    int ref = env.newString(..);

    return ref;

  }

}

package x.y.z;

class MyClass {

  ..

  native String foo (int i, String s);

}

MJIEnv
JPF objects

Java objects
NativePeer

JPF Class

Java Class

- method lookup
- parameter conversion
- invocation

- field access
- object conversion
- JPF intrinsics access

"Model" Class

"NativePeer" Class

MJI - "Model Java Interface"

But this would be not very useful without being able to access the JPF object model (or other JPF intrin-
sics), from inside the NativePeer methods. Instead of requiring all NativePeer implementations to reside 
in a JPF internal package, there exists a interface class MJIEnv that can be used to get back to JPF in a 
controlled way. NativePeers residing in gov.nasa.jpf.jvm (i.e. the same package like MJIEnv) can basi-
cally reach all internal JPF features. Outside this package, the available API in MJIEnv is mostly re-
stricted to the access JPF object (getting and setting values).

package x.y.z;

class C {

  ...

  native int foo (int p);

}

class JPF_x_y_z_C {

  ...

  public static int foo__I (MJIEnv env, int thisRef, int p) {

    int d = env.getIntField(thisRef, "data");

    ..

  }

}

...

int a = c.foo(3);
...

aload_1

icont_3

invokevirtual ..

executeMethod (ThreadInfo ti..){

  MJIEnv env = ti.getMJIEnv();

  Object[] args = getArguments();

  ..

  mth.invoke(peerCls, args);

  ..

}

ClassInfo (..){

  peerCls = loadNativePeer(..);

  ..

}

ClassInfo

peerCls
executeMethod()

NativePeer

methods
executeMethod()

MJIEnv

threadInfo
getXField(..)
setXField(..)
...

ThreadInfo

env

JPF
class

loadingJPF
method

invocation

JPF
object
access

JPF (model) class

JVM (Java) class

Java reflection call
Java class 
reflection



Before a NativePeer method can be used, JPF has to establish the correspondence between the Model 
Class and the NativePeer. This takes place at load time of the Model Class. MJI uses a special name man-
gling scheme to lookup NativePeers, using the Model Class package name and class name to deduce the 
NativePeer class name.

package x.y;

class MyClass {
  native int 
     foo (int i, String s);
}

class JPF_x_y_MyClass {

  public static int 
    foo__ILjava_lang_String_2 
     (MJIEnv env, int objref,
      int i, int sRef)
    {..}
}

Model Class Native Peer Class

model parameters
(refs become 'int')

MJI parameters

JNI conformant mangling

boolean
byte
char
short

int
long
float

double

Z
B
C
S
I
J
F
D

'_'
';'
'['

_1
_2
_3

<type> [] [<type>
x.y.Z Lx_y_Z_2

<func> (..) <func>__<signature>

Since the model class package is encoded in the NativePeer class name, the package of the NativePeer 
can be choosen freely. In analogy to JNI, NativePeer method names include the signature of the model 
method by encoding its parameter types. If there is no potential ambiguity, i.e. mapping from NativePeer 
to model class methods is unique, signature encoding is not required.

All native methods in a NativePeer have to be "public static" - there is no correspondence between JPF 
and JVM objects. Instead, MJI automatically adds two parameters: MJIEnv and objRef (classRef in case 
of static Model Class methods). The MJIEnv object can be used to get back to JPF, the objRef is a handle 
for the corresponding JPF "this" object (or the java.lang.Class object in case of a static method).

Going beyond the JNI analogy, MJI can also be used to intercept

• non-native methods (i.e. the lookup process is driven by the methods found in the NativePeer, not the 
"native" attributes in the Model Class. This can be particularly useful in case the class is used from both 
as a Model Class and a JVM class (e.g. gov.nasa.jpf.jvm.Verify), using a method body that directly re-
fers to the NativePeer class 

• class initialization (the corresponding NativePeer method has to be named
$clinit (MJIEnv env, int clsRef)

• constructors (the corresponding method name stem has to be
$init__<sig>(MJIEnv env,int objRef, <ctor-params>)
(normal signature mangling rules apply)

It is important to note that type correspondence does NOT include references. All references (object 
types) on the JPF side are transformed in handles (int values) on the JVM side. The passed in MJIEnv 
parameter has to be used to convert/analyze the JPF object. Since MJI per default uses the standad Java 



reflection call mechanism, there is a significant speed penalty (lookup, parameter conversion etc.), which 
again is a analogy to JNI.

Even if it is not directly related to MJI, it should be mentioned that some JPF specific Model Classes can-
not be loaded via the CLASSPATH (e.g. java.lang.Class), since they contain JPF based code that is not 
compatible with the host JVM (e.g. relying on native methods that refer to JPF functionality). Such 
classes should be kept in separate directories / jars that are specified with the JPF command line option 
"-jpf-bootclasspath" or "-jpf-classpath". This is mostly the case for system classes. On the other hand, 
Model Classes don't have to be JPF specific. It is perfectly fine to provide a NativePeer for a standard 
Java class (e.g. java.lang.Character), if only certain methods from that standard class needs to be inter-
cepted. NativePeer classes can contain any number of non-"native" methods and fields, but those should 
not be "public static" to avoid problems lookup problems. 

Tools
To ease the tedious process of manually mangle method names, MJI includes a tool to automatically cre-
ate skeletons of NativePeer classes from a given Model class, called "GenPeer". The translation process 
uses Java reflection, i.e. the Model Class needs to be in the CLASSPATH and is specified in normal dot 
notation (i.e. not as a file).

GenPeer

package x.y.z;

class MyClass {

  ...

  native String foo (int i, String s);

}

class JPF_x_y_z_MyClass {

  ...

  public static

      int foo__ILjava_lang_String__2 (MJIEnv env, int objRef,

                                      int i, int sRef) {

    int ref = MJIEnv.NULL;

    // <2do> fill in body

    return ref;

  }

}

"java gov.nasa.jpf.GenPeer x.y.z.MyClass > JPF_x_y_z_MyClass.java"

There exist a number of command line options that can be displayed by calling GenPeer without argu-
ments. GenPeer per default writes to stdout, i.e. the output has to be redirected into a file.

Since NativePeer method invocations impose a significant (reflection call) overhead, there exists a 
mechanism to bypass the JVM method dispatching and the parameter conversion, called "NativePeer 
Dispatcher". This is implemented as a completely transparent NativePeer proxy that can be automatically 
generated by means of the GenPeerDispatcher tool



GenPeerDispatcher

package x.y.z;

class MyClass {

  ...

  native String foo (int i, String s);

}

class JPF_x_y_z_MyClass$ {

  ...

  Instruction executeMethod (..) {

    ..

    switch (mthId) {

    case 781623876: // "foo__<sig>".hashCode()

      JPF_x_y_z_MyClass.foo__ILjava_lang_String__2(..); break;

    ..

    } ..

  }

}

"java gov.nasa.jpf.GenPeerDispatcher x.y.z.MyClass > JPF_x_y_z_MyClass$.java"

NativePeer
executeMethod()

JPF_x_y_z_MyClass$
executeMethod()

JPF_x_y_z_MyClass
foo__ILjava_lang_String__2()

Depending on further improvements of target JVMs, this might not be required in the future and should 
only be considered for performance critical methods. The generated dispatcher class has the same name 
like the corresponding NativePeer, with a "$" suffix. It is looked up via the standard CLASSPATH (i.e. 
should be kept in the same directory / archive like the NativePeer).

Example
The following example is an excerpt of a JPF regression test, showing how to intercept various different 
method types, and using MJIEnv to access JPF objects. 

Model class

public class TestNativePeer {
  static int sdata;
 
  static {
    // only here to be intercepted
  }
 
  int idata;
 
  TestNativePeer (int data) {
    // only here to be intercepted
  }
 
  public void testClInit () {
    if (sdata != 42) {
      throw new RuntimeException("native 'clinit' failed");
    }
  }
 
  public void testInit () {
    TestNativePeer t = new TestNativePeer(42);
    if (t.idata != 42) {



      throw new RuntimeException("native 'init' failed");
    }
  }
 
  native int nativeInstanceMethod (double d, char c, boolean b, int i);
 
  public void testNativeInstanceMethod () {
    int res = nativeInstanceMethod(2.0, '?', true, 40);
    if (res != 42) {
      throw new RuntimeException("native instance method failed");
    }
  }
 
  native long nativeStaticMethod (long l, String s);
 
  public void testNativeStaticMethod () {
    long res = nativeStaticMethod(40, "Blah");
    if (res != 42) {
      throw new RuntimeException("native instance method failed");
    }
  }
 
  native void nativeException ();
 
  public void testNativeException () {
    try {
      nativeException();
    } catch (UnsupportedOperationException ux) {
      String details = ux.getMessage();
 
      if ("caught me".equals(details)) {
        return;
      } else {
        throw new RuntimeException("wrong native exception details: " + details);
      }
    } catch (Throwable t) {
      throw new RuntimeException("wrong native exception type: " + t.getClass());
    }
    throw new RuntimeException("no native exception thrown");
  }
}

NativePeer class:

public class JPF_gov_nasa_jpf_jvm_TestNativePeer {
 
  public static void $clinit (MJIEnv env, int rcls) {
    env.setStaticIntField(rcls, "sdata", 42);
  }
 
  public static void $init__I (MJIEnv env, int robj, int i) {
    env.setIntField(robj, "idata", i);
  }
 
  public static int nativeInstanceMethod (MJIEnv env, int robj,
                                          double d, char c, boolean b, int i) {
    if ((d == 2.0) && (c == '?') && b) {
      return i + 2;
    }



    return 0;
  }
 
  public static long nativeStaticMethod (MJIEnv env, int rcls,
                                         long l, int stringRef) {
    String s = env.getStringObject(stringRef);
    if ("Blah".equals(s)) {
      return l + 2;
    }
    return 0;
  }
 
  public static void nativeException (MJIEnv env, int robj) {
    env.throwException("java.lang.UnsupportedOperationException", "caught me");
  }
} 

Coding Conventions
JPF is an open system. In order to keep the source format reasonably consistent, we strive to keep the fol-
lowing minimal set of conventions

• 2 space indentation (no tabs)

• opening brackets in same line (class declaration, method declaration, control statements)

• no spaces after opening '(', or before closing ')'

• method declaration parameters indent on column

• all files start with copyright and license information

• all public class and method declarations have preceding Javadoc comments

The following code snippet illustrates these rules.

/* <copyright notice goes here>
 * <license referral goes here>
 */

/**
 * this is my class declaration example
 */

public class MyClass {
  /**
   * this is my public method example
   */
  public void foo (int arg1, int arg2,
                   int arg3) {
    if (bar) {
      ..
    }
  }
  ..
}



For convenience reasons, we include a jalopy.xml configuration file to format sources, but do not support 
it as a separate Ant target, to avoid accidental reformatting of a huge amount of CVS sources, and mini-
mize dependencies for libraries required by the build process.

We consider modularity to be of greater importance than source format. With its new configuration 
scheme, there is no need to introduce dependencies of core classes towards optional extensions anymore. 
If you add something that is optional, and does not seamlessly fit into an existing directory, keep it sepa-
rate by adding new directories. The core JPF classes should not contain any additional dependencies to 
external code.

JPF Related Papers
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