
Puppet Workshop
Configuration Management Made Easy

Jeroen van Meeuwen, RHCE

Stefan Hartsuiker, RHCE

Puppet Workshop

Puppet Workshop
Configuration Management Made Easy
Edition 1

Author Jeroen van Meeuwen, RHCE j.van.meeuwen@ogd.nl
Author Stefan Hartsuiker, RHCE s.hartsuiker@ogd.nl
Copyright © 2008 Jeroen van Meeuwen

This material may only be distributed subject to the terms and conditions set forth in the Open
Publication License, V1.0, (the latest version is presently available at http://www.opencontent.org/
openpub/).

Although Operator Groep Delft has exercised due care to ensure the correctness of the information
in this documentation, Operator Groep Delft cannot be held reponsible for errors and/or incomplete
information in this documentation. All content is provided "as is" and "as available". Decisions made
based on the information provided here is at one's own expense and risk.

This book is a configuration management workshop wrapped around puppet, the next-generation
configuration management utility that has proven to be simple, straightforward, flexible, stable, fast,
extensible and most importantly, truely Free.

mailto:j.van.meeuwen@ogd.nl
mailto:s.hartsuiker@ogd.nl
http://www.opencontent.org/openpub/
http://www.opencontent.org/openpub/

iii

Preface v
1. About the Contributors .. v
2. Document Conventions ... v

2.1. Typographic Conventions .. v
2.2. Pull-quote Conventions .. vii
2.3. Notes and Warnings ... viii

3. Feedback ... viii

1. Introduction 1
1.1. Target Audience ... 1

2. Introduction to Configuration Management 3
2.1. What is Configuration Management? ... 3

2.1.1. Configuration Management .. 3
2.1.2. Configuration Management Requirements ... 4

2.2. Problems without Configuration Management ... 5
2.3. Not So Technical Aspects .. 6

3. Introduction To Puppet 9
3.1. What Does Puppet Do? .. 9

4. Puppet Terminology 11

5. How Puppet Works 13

6. Puppet Features 15

7. Troubleshooting Puppet 17

8. Setting Up Puppet 19
8.1. Installation .. 19
8.2. Configuration .. 20

8.2.1. Configuring the Puppetmaster .. 20
8.2.2. Configuring the SSL Frontend Reverse Proxy Load Balancer 22
8.2.3. Configuring the Database Server .. 23

9. How To Use Puppet 25
9.1. Using Modules ... 25
9.2. Using Plugins ... 25
9.3. Environments ... 25

10. Other Things To Do With Puppet 27
10.1. Tweaking Reporting .. 27
10.2. Writing Custom Types .. 27
10.3. Writing Custom Facts ... 27
10.4. Writing Custom Functions ... 27

11. Best Practices 29

I. Appendices 31

A. Puppet Terminology 33

B. Example SSL Frontend Reverse Proxy Load Balancer Configuration 35

C. Revision History 37

iv

v

Preface
This is the Configuration Management Workshop reader as provided to you by the Operator Groep
Delft. This reader is composed form both an introduction to Configuration Management with Puppet as
well as a reference for later use.

1. About the Contributors

Author
Jeroen van Meeuwen (RHCE, LPIC-2, MCP, CCNA) is currently a Senior System Engineer,
specialized in Linux systems and Systems Architecture, working for Operator Groep Delft in The
Netherlands. His experience with computers goes back to the early '90s, with a Philips P2000T being
over a decade old, little tapes containing programs but most importantly games, and 16K memory
cartridges. Since 1998, he has been involved with Red Hat Linux (5.2 at that time), and was an early
adopter of Fedora Core Linux in November 2003, until his first real contributions to Free and Open
Source Software were made in 2005.

As a contributor to Free and Open Source Software within the Fedora community, amongst other
programs, Jeroen has developed Revisor, a Python framework to build distributions with. With regards
to Configuration Management, Jeroen currently maintains or co-maintains -amongst other packages-
the entire stack of packages related to Puppet

2. Document Conventions
This manual uses several conventions to highlight certain words and phrases and draw attention to
specific pieces of information.

In PDF and paper editions, this manual uses typefaces drawn from the Liberation Fonts1 set. The
Liberation Fonts set is also used in HTML editions if the set is installed on your system. If not,
alternative but equivalent typefaces are displayed. Note: Red Hat Enterprise Linux 5 and later includes
the Liberation Fonts set by default.

2.1. Typographic Conventions
Four typographic conventions are used to call attention to specific words and phrases. These
conventions, and the circumstances they apply to, are as follows.

Mono-spaced Bold

Used to highlight system input, including shell commands, file names and paths. Also used to highlight
key caps and key-combinations. For example:

To see the contents of the file my_next_bestselling_novel in your current
working directory, enter the cat my_next_bestselling_novel command at the
shell prompt and press Enter to execute the command.

A useful shortcut for the above command (and many others) is Tab completion.
Type cat my_ and then press the Tab key. Assuming there are no other files in the

1 https://fedorahosted.org/liberation-fonts/

https://fedorahosted.org/liberation-fonts/
https://fedorahosted.org/liberation-fonts/

Preface

vi

current directory which begin with 'my_', the rest of the file name will be entered on the
command line for you.

(If other file names begin with 'my_', pressing the Tab key expands the file name
to the point the names differ. Press Tab again to see all the files that match. Type
enough of the file name you want to include on the command line to distinguish the
file you want from the others and press Tab again.)

The above includes a file name, a shell command and two key caps, all presented in Mono-spaced
Bold and all distinguishable thanks to context.

Key-combinations can be distinguished from key caps by the hyphen connecting each part of a key-
combination. For example:

Press Enter to execute the command.

Press Ctrl+Alt+F1 to switch to the first virtual terminal. Press Ctrl+Alt+F7 to
return to your X-Windows session.

The first sentence highlights the particular key cap to press. The second highlights two sets of three
key caps, each set pressed simultaneously.

If source code is discussed, class names, methods, functions, variable names and returned values
mentioned within a paragraph will be presented as above, in Mono-spaced Bold. For example:

File-related classes include filesystem for file systems, file for files, and dir for
directories. Each class has its own associated set of permissions.

Proportional Bold

This denotes words or phrases encountered on a system, including application names; dialogue
box text; labelled buttons; check-box and radio button labels; menu titles and sub-menu titles. For
example:

Choose System > Preferences > Mouse from the main menu bar to launch Mouse
Preferences. In the Buttons tab, click the Left-handed mouse check box and click
Close to switch the primary mouse button from the left to the right (making the mouse
suitable for use in the left hand).

To insert a special character into a gedit file, choose Applications > Accessories
> Character Map from the main menu bar. Next, choose Search > Find… from the
Character Map menu bar, type the name of the character in the Search field and
click Next. The character you sought will be highlighted in the Character Table.
Double-click this highlighted character to place it in the Text to copy field and then
click the Copy button. Now switch back to your document and choose Edit > Paste
from the gedit menu bar.

The above text includes application names; system-wide menu names and items; application-specific
menu names; and buttons and text found within a GUI interface, all presented in Proportional Bold and
all distinguishable by context.

Note the > shorthand used to indicate traversal through a menu and its sub-menus. This is to avoid
the difficult-to-follow 'Select Mouse from the Preferences sub-menu in the System menu of the main
menu bar' approach.

Mono-spaced Bold Italic or Proportional Bold Italic

Pull-quote Conventions

vii

Whether Mono-spaced Bold or Proportional Bold, the addition of Italics indicates replaceable or
variable text. Italics denotes text you do not input literally or displayed text that changes depending on
circumstance. For example:

To connect to a remote machine using ssh, type ssh username@domain.name at
a shell prompt. If the remote machine is example.com and your username on that
machine is john, type ssh john@example.com.

The mount -o remount file-system command remounts the named file
system. For example, to remount the /home file system, the command is mount -o
remount /home.

To see the version of a currently installed package, use the rpm -q package
command. It will return a result as follows: package-version-release.

Note the words in bold italics above — username, domain.name, file-system, package, version and
release. Each word is a placeholder, either for text you enter when issuing a command or for text
displayed by the system.

Aside from standard usage for presenting the title of a work, italics denotes the first use of a new and
important term. For example:

When the Apache HTTP Server accepts requests, it dispatches child processes
or threads to handle them. This group of child processes or threads is known as
a server-pool. Under Apache HTTP Server 2.0, the responsibility for creating and
maintaining these server-pools has been abstracted to a group of modules called
Multi-Processing Modules (MPMs). Unlike other modules, only one module from the
MPM group can be loaded by the Apache HTTP Server.

2.2. Pull-quote Conventions
Two, commonly multi-line, data types are set off visually from the surrounding text.

Output sent to a terminal is set in Mono-spaced Roman and presented thus:

books Desktop documentation drafts mss photos stuff svn
books_tests Desktop1 downloads images notes scripts svgs

Source-code listings are also set in Mono-spaced Roman but are presented and highlighted as
follows:

package org.jboss.book.jca.ex1;

import javax.naming.InitialContext;

public class ExClient
{
 public static void main(String args[])
 throws Exception
 {
 InitialContext iniCtx = new InitialContext();
 Object ref = iniCtx.lookup("EchoBean");
 EchoHome home = (EchoHome) ref;

Preface

viii

 Echo echo = home.create();

 System.out.println("Created Echo");

 System.out.println("Echo.echo('Hello') = " + echo.echo("Hello"));
 }

}

2.3. Notes and Warnings
Finally, we use three distinct visual styles to highlight certain information nuggets.

Note
A note is useful bit of information: a tip or shortcut or an alternative approach to the task
at hand. Ignoring a note should have no negative consequences, but you might miss
out on a trick that makes your life easier.

Important
The Important information box highlights details that are easily missed: such as
configuration changes that only apply to the current session, or services that need
restarting before an update will apply. Ignoring important information won't cause data
loss but may cause irritation and frustration.

Warning
A Warning highlights vital information that must not be ignored. Ignoring warnings will
most likely cause data loss.

3. Feedback
Should you find any discrepancies or additional information for this documentation, we would
appreciate to hear from you.

Our mailing lists are:
•http://1lists.fedorahosted.org/1mailman/1listinfo/1courses-users/

Our "users" mailing list where anyone can comment on the course materials offered, provide other
means of feedback and ask questions when things appear to not be as clear as they intend to be.

•http://1lists.fedorahosted.org/1mailman/1listinfo/1courses-devel/
Our development mailing list for anyone seeking to get involved in the project.

•http://1lists.fedorahosted.org/1mailman/1listinfo/1courses-commits/
This mailing list is used to send any changes made to any of the documents to anyone subscribed.

http://lists.fedorahosted.org/mailman/listinfo/courses-users/
http://lists.fedorahosted.org/mailman/listinfo/courses-devel/
http://lists.fedorahosted.org/mailman/listinfo/courses-commits/

Chapter 1.

1

Introduction
Welcome to the Puppet Workshop (or Configuration Management workshop). Today's workshop is
comprised of the following topics, in order of appearance:

Topic
Introduction to Configuration
Management

Introduction to Puppet

Puppet Terminology

How Puppet Works

Puppet Features

Troubleshooting Puppet

Setting up Puppet

How to use Puppet

Other Things To Do With Puppet

Best Practices

1.1. Target Audience
The primary audience for this book is, of course, Linux system administrators and engineers seeking
to implement, further enhance or extend their knowledge about configuration management in general
and by using the next-generation configuration management utility Puppet in particular.

2

Chapter 2.

3

Introduction to Configuration
Management

2.1. What is Configuration Management?
Within virtually every organization, there's probably a number of systems running Linux, Solaris, Mac
OS X or HP-UX. All these machines need to be configured to be able to function properly. Some will
need special drivers, and all of them will need correct DNS settings, certain packages installed and
certain other packages removed. Most probably, the more systems, the more these diverge in the
configuration they need, and potentially diverge in the way this configuration needs to be applied to a
given operating system or operating system version.

More specifically, an organization may have a couple of webservers, fileservers, a DNS and a DHCP
server, a number of desktop PCs, and a number of laptops. The laptops may need slightly different
system configuration (no LDAP authentication, and with a VPN client installed, for example), and the
desktop PCs may need different applications installed then the servers, and so forth. Yet, between,
say, a hundred desktop PCs, you would want the configuration to be as similar as possible. You may
want to diverge between a software developer's desktop PC and a desktop PC in Human Resources,
but in essence these are desktop profiles diverging on the application level, applied upon a stable
system configuration which remains the same, or similar at least.

By the time the organization grows, replaces the hardware, upgrades to another version of the
operating system, or applies changes, the challenge to making everything work yet maintain a similar
configuration between all nodes becomes bigger. While every attempt made to control the situation
can be called a form of configuration management, the solution without a configuration management
framework is often comprised of:

1. a number of scripts (with or without revision control), to move around files, install packages, perform
daily check-ups,

2. NFS mounts with programs pre-installed, so that nodes can mount these NFS shares and the
software needs to be provided once, in one location, for all to share,

3. file server shares with pre-compiled drivers, or driver sources being compiled on the nodes by
scripts running on the nodes,

4. terminal servers or desktop servers like with FreeNX, so that configuration concentrates on a
smaller number of boxes

This means that work-arounds for actual (user) problems maybe require an additional if-then-else in
one or the other script, and updates to programs installed require manual compilation and installation.
The success rate of these solutions never reaches 100%, and as it turns out the longer such a
implemented solution runs, the more exotic problems become and the more machines will fail to
remain up-to-date regardless of any attempt made to fix the issue; simply because it becomes to
diversive and unmaintainable.

2.1.1. Configuration Management
Generally speaking, with configuration management, it's about managing the configuration of one or
more organizational resources in order to have it be in a state in which it can perform the operations
required by, and possibly critical to, the organization's operations.

Chapter 2. Introduction to Configuration Management

4

In this workshop though, we are not going to explore configuration management of a coffee machine.
Instead we look at the computers in a network running any platform but the one from a prominent
proprietary North America-based vendor. We are talking automation and further enhancement of
Computer Systems Administration.

When managing the operating system and software running on mainframes, servers, desktop PCs and
laptops, you may find yourself looking for answers to questions such as:

• How do I manage what packages are installed on a given system?
• How do I manage the configuration of those packages (this software)?

• How do I make sure these packages are updated?

• How do I make sure the services that every machine needs to run are actually running?

• How do I manage monitoring the services or a machine's state?

• A job needs to run periodically (maybe via crontab), but how do I make sure it is run, and how can I
change or remove the job later?

• Given different operating systems and operating system versions, how do I make sure I apply the
correct routine for adding a user, starting a service, install/update/remove a package?

2.1.2. Configuration Management Requirements
This section is about what you would want Configuration Management to do for you:

•Maintain consistency across systems
Consistency across systems is key in understanding where a problem might come from. If each and
every system is unique, you may end up searching for unique aspects of the system's configuration
in order to determine the cause of a problem, while if systems are consistent to some extend, you
may have found the problem even before your users report it.

Consistency !== Equality
Of course keeping system consistent in their configuration doesn't say all your systems should be
entirely equal, because that would not be feasible for many organizations and defeat the purpose of
configuration management. Needless to say though, having all systems be entirely unique defeats
part of the purpose of configuration management as well.

•Categorize systems
Categorizing systems into categories like (for example) desktop, server and/or laptop, helps in
applying changes to one category, such as installing GNOME or keeping systems up-to-date
according to a schedule that may (servers) or may not (desktops, laptops) need a service or
maintenance window.

Different profiles
More generally speaking, different profiles for each of these categories may be defined as well,
of course. A developer's desktop most likely has different requirements then a publicly accessible
booth at the reception desk.

Problems without Configuration Management

5

•Version Control
Version control lets you keep track of changes applied to the overall configuration management
framework, which is important because since you are managing different aspects of a number of
systems, if something goes wrong the changes applied to the configuration of puppet will most likely
be the first clue as to what caused the new problem and lets you recover relatively fast.

•Overview of systems' tasks and services
Being able to quickly tell what a system does exactly, and how it differs from another system
not only aids in performing risk assessments (impact of a given change), but may also help in
determining the impact of a change beforehand, as well as determine the impact of an unexpected
system interruption. Providing an example to the latter I suppose if you update httpd across
systems (whether tested or untested), but the new software version doesn't work as expected, a
configuration management framework should be able to quickly give you an overview of impacted
systems and services.

•Updating systems
Some systems can be updated irregularly, such as desktop PCs, but need to be kept up-to-date
nonetheless. Other systems need to have service and/or maintenance windows, such as servers.

2.2. Problems without Configuration Management
There's a number of challenges in applying configuration management, such as:

1.Different operating systems
If you have a diverse organization in terms of the operating systems your systems run, applying
the same configuration items to a set of different operating systems is challenging in that adding
a user or setting a password on one operating system is not the same as adding a user or setting
a password on another operating system. The same applies to installing, updating or removing
a package, and so forth. Additionally the more different operating systems you have, the harder
managing any given system resource becomes. Some commands for day-to-day administrative
tasks may be equal, or similar, but most of them are and/or behave different.

2.Different distributions
Although an organization may not have different distributions running right now, sooner or later,
an organization will migrate from one distribution to another; That is practically inevitable. If an
organization does have different distributions running, practical problems such as the location of
certain files become evident, as well as different interfaces to resource-management (like adding a
user with useradd or adduser).

3.Different versions of distributions
Different versions of distributions, or more accurately the different versions of the utilities, as well
as the configuration settings for updated programs that come with the distributions, can form a
challenge when or if the organization does not have a proper configuration management framework
in place. Note that even though an organization may not have different versions of a distribution
right now, at some point the organization will need to upgrade to the next available release.

4.Different tasks to perform
Each different system in an organization is performing one or more tasks that may be unique to
the system or may be shared between a group of systems, but with many different tasks being
performed throughout the organization's infrastructure, keeping track of what system performs

Chapter 2. Introduction to Configuration Management

6

which task, keeping these systems up to date and configuring them to have the required packages
installed for each of the tasks they perform, tackling the problem becomes harder.

5.Different ways to perform a task
Within an organization that has multiple servers performing the same task, keeping a similar state
or perform a task in a similar manner is challenging in that without configuration management,
you are most likely to find three or more ways to purge old files from /tmp/ and /var/tmp/, for
example. The same differentiation may apply to how webservers' VirtualHost's are configured, or
how a NFS share is mounted (mount options in particular).

6.Different nodes
This one goes to hardware-specific needs and configuration. When each of the systems in an
organization are not all of the same brand, make and model, or each system has different harddisk
layouts, or needs different videocard drivers, you are basically keeping lists and making choices
based on this list.

7.Different services
Different services of course are configured differently, as far as configuration file locations and
syntax are concerned. However, figuring out the best way to apply certain configuration to a system
for each service is less efficient without configuration management. You might adjust a script or two
and/or adjust the source repository from which you pull updates to each machine, but the changes
may turn out to only apply to that system that needed the exception to the rule instead of focussing
on a more general solution to the problem once, and apply that solution multiple times, over and
over again.

8.Interfaces to a system resource
This is probably the hardest one if you are not using any configuration management framework.
Given different operating systems, distributions and/or distribution versions, in which case any
combination of the three only makes the problem harder to solve, you are most likely to encounter
so many different ways to manage a given system resource, that a simple script or routine cannot
cover all of them -and remain comprehensible and maintainable. One example is adding a user
to the system, and making the user a group member of several groups. You may find routines
ranging from using useradd or adduser depending on the distribution used, to writing out ldifs from
a template and using ldapadd or ldapmodify depending on whether the user already exists or not.

2.3. Not So Technical Aspects
In addition to the problems you may encounter with or without configuration management, there's a
number of problems or challenges that are not so technical, but you may want to see resolved by a
configuration management utility;

1.Applying changes
Applying changes to multiple machines at once may become a problem depending on the size of
the organization or the amount of control that you have over systems, remotely. There was a time
when changing the DNS servers for a set of systems required one to log on to the console of each
system and edit /etc/resolv.conf manually. You can see the problem become bigger if the
organization does not have 20 systems, but 1200.

2.Keeping track of changes
Another challenge is keeping track of the changes applied to each system. Even with configuration
management, errors can be made and systems might behave unexpectedly, in which case you will
want to know what changed on these systems, and how to recover to an operational state. Keeping

Not So Technical Aspects

7

track of changes without a configuration management framework however is a little harder, but with
configuration management, you have reports (changes applied to a system in a nice overview),
and most advisebly you have the configuration for Puppet stored in a Source Control Management
system, or SCM system, like CVS, SVN, Mercurial, or GIT.

3.Staging changes
Staging changes is a huge must-have in case changes are radical or might destroy a normal
system's operation (even if temporary). For such changes, you would want to test the changes
first, and with Puppet, you get this in the form of environments. Additionally, in case any critical
component needs to change, proper Change Management then requires you to Build & Test the
solution prior to implementation, often not a very bad idea to relieve stress in case the implemented
solution does not work, especially if the change is time-constrained such as with service windows.

8

Chapter 3.

9

Introduction To Puppet
Puppet is a solution to many of the problems set forth in Section 2.2, “Problems without Configuration
Management”, and thus perfect for a workshop on Configuration Management.

Another solution may be CFEngine. We have chosen not to use CFEngine for several reasons:
• Puppet has an open development model, whereas CFEngine has not. This means that the changes

and bugfixes, and more importantly innovation and development is in the hands of you and me.

• The level of abstraction of system resources that Puppet enables you to use allows you to
concentrate on the bigger picture, rather then needing to figure out again and again, and then
specify again and again, how a certain task is to be performed on a given operating system,
distribution and/or specific distribution version. CFEngine however is a very low-level utility, perfect
for keeping 800 identical machines in shape, but becomes worse with any desirable discrepancy
between systems because of that low-level management.

For a more detailed CFEngine vs. Puppet poem, visit
http://1reductivelabs.com/1trac/1puppet/1wiki/1CfengineVsPuppet.

3.1. What Does Puppet Do?
Puppet offers a high-level abstraction of system resources like you would encounter on any given
system, such as users, services and packages. Seeing as how different operating systems and
different distributions each have different interfaces (providers in puppet terms), to these system
resources, managing a package to be installed, updated, removed or be of a certain version includes
a lot of if-then-else statements in a script you would write to manage that particular system
resource; one package.

On Debian, Ubuntu and derivative distributions for example, the package provider may be apt, dpkg,
smart, alien, PackageKit, while on Fedora, Red Hat and it's derivatives, the package provider may be
rpm, yum, PackageKit, apt or smart. Although some of these package managers can be combined,
while others can not, and systems usually stick to their natively integrated package manager, figuring
out such while actually trying to manage the result of what a package manager does could be seen as
a lot of work for little gain.

Another difference between distributions is how services can be started, or configured to start up when
the machine boots. A service script may be available, or /etc/init.d/ may contain scripts to start
and stop a service. Also, some of these service providers may have status, reload and restart
command parameters, whereas others may not have. Additionally, using chkconfig to configure the
runlevels the service should be enabled or disabled in may not be available on all systems.

By abstracting these system resources into types, Puppet takes on the headaches for most operating
system and distribution specific interfaces to managing these system resources. It knows, or figures
out all by itself, what provider to use given a type.

Abstraction of system resources
Abstraction of the system resources into so-called types causes the administrator to only need to
configure a type, such as package, user, cron, and so forth. The configuration management utility
itself will figure out what package manager backend to use, whether it's apt, yum, rpm, dpkg, smart or
PackageKit.

Puppet example to ensure user sysadmin exists on a system:

http://reductivelabs.com/trac/puppet/wiki/CfengineVsPuppet

Chapter 3. Introduction To Puppet

10

user { "sysadmin":
ensure => present
}

Puppet example to ensure the ypbind package is installed and the most recent version, ypbind is
correctly configured, and the ypbind service is running:

package { "ypbind":
ensure => latest
}

file { "/etc/yp.conf":
source => "puppet://$server/files/yp.conf",
notify => Service["ypbind"],
require => Package["ypbind"]
}

service { "ypbind":
enable => true,
ensure => running,
require => [
 File["/etc/yp.conf"],
 Package["ypbind"]
]
}

The above example is called a manifest, built out of types (package, file, service), which, once defined
in a manifest, are referred to as resources. See also Appendix A, Puppet Terminology

Chapter 4.

11

Puppet Terminology
Terminology used in this documentation. See also Appendix A, Puppet Terminology
•class

A class is a collection of resources applied to a node with a single include statement. It
groups together a comprehensible set of resources. A class ypclient would manage the
File["/etc/nsswitch.conf"], File["/etc/yp.conf"], Package["ypbind"], and
Service["ypbind"] resources.

•fileserver
The fileserver is where the puppet pulls files from. It is normally integrated with the puppetmaster,
but it can be an entirely different server, too.

The fileserver serves files to puppets that request them, but it also serves templates, which are
parsed on the fileserver (puppetmaster), and passed on to the client as a whole new file.

•manifest
The collection of classes, modules and resources that the puppetmaster uses to distribute the
appropriate configuration to a puppet.

•module
A module is a placeholder for files, manifests, plugins and templates. Creating a module has
numerous advantages such as separate version control, separate staging from development
through testing to production, and so forth.

See also: Section 9.1, “Using Modules”, Section 9.2, “Using Plugins”

•node
The client, a node, is an operating system instance running the puppet client application. This can
be a regular operating system running directly on top of actual hardware, a virtual guest as well as a
virtual host.

•puppet
The client, a node, runs the puppetd daemon or service, and is referred to as the puppet

•puppetmaster
The puppetmaster is the node that runs the server-side application to a puppet setup.

•resource
A resource is an instantiated type. It has been defined and it cannot be undefined. The
puppetmaster sends all applicable resources the a puppet, which then applies them. Resources
are fundamentally built from a type, a title, and a list of attributes, with each resource type having a
specific list of supported attributes.

•system resource
A system resource is a resource available on the node whether it is managed by puppet or not.
Unlike what is otherwise understood by system resources, the puppet definition of system resources
throughout this documentation does not so much refer to hardware resources like CPU or memory,
but rather to manageable aspects of the operating system, like users, packages, services, files,
cronjobs, and so forth.

Chapter 4. Puppet Terminology

12

•type
Puppet uses types to abstract system resources. Types have parameters such as ensure =>
present|absent in case of a user, or ensure => installed|absent|latest|1.0-1.el5,
indicating in which state the system resource should be. Each type has a title, which must be unique
throughout the manifest, and a list of supported attributes. E.g., there is no mode => 644 to the
package type.

Chapter 5.

13

How Puppet Works
This is an overview of how puppet works -in a working setup.

1.The puppet starts for the first time
It generates a certificate using the node's FQDN.

Note
Although not required, it is strongly recommended to have the client use a FQDN
that is registered in DNS (forward as well as reverse).

2.The puppet submits the certificate to the puppetmaster
The puppetmaster, also the Certificate Authority, or puppetca, needs to sign the certificate before
the client can be considered authenticated.

3.The puppet waits 300 seconds for a signed certificate
It this configurable timeout of 300 seconds1 has passed, the puppet quits.

4.The puppetmaster signs the certificate
To do so, you can either configure the puppetmaster to automatically sign certificates or sign
manually. Automatically signing certificates is generally a very bad idea. To manually sign a
certificate, use:

puppetca --sign <fqdn>

5.The puppet receives the signed certificate
Immediately thereafter, the puppet starts a configuration run.

Warning
The time on both the puppetmaster and the puppet must be within 5 minutes
of eachother as the certificate generated and signed has a validity period. If
the difference in time of these two nodes is more then 5 minutes, you will get a
"Certificates not trusted" type of error.

6.The puppet generates all the facts
Most configurations rely on client information to make decisions. When the Puppet client starts,
it loads the Facter Ruby library, collects all of the facts that it can, and passes those facts to the
interpreter. When you use Puppet over a network, these facts are passed over the network to the
server and the server uses them to compile the client's configuration.

7.The puppetmaster parses it's manifests
The puppetmaster parses through all it's manifests, including the manifests not applicable to the
puppet that is polling. It only sends out the manifest applicable to the puppet polling, however.

8.The puppet receives the manifests
When the puppet receives the manifests, it may still contain variables such as $hostname,
$operatingsystem and others, which the puppet fills out with the appropriate values.

Chapter 5. How Puppet Works

14

9.The puppet applies the manifest
While the puppet applies the manifest, it pulls files from the puppetmaster's fileserver after checking
the local checksum against the remote checksum. When running with debug output, this will show
as

debug: Calling fileserver.list
debug: //Node[node1.example.com]/File[/tmp/foo]/checksum: Initializing
 checksum hash
debug: //Node[node1.example.com]/File[/tmp/foo]: Creating checksum
 {md5}85e53dc9439253a1ec9ca87aeffd9b0b
debug: Calling fileserver.describe

10.Files that are replaced are backed up
The puppet sends a copy of the files it replaces back to the puppetmaster.

11.The puppet reports to the puppetmaster
A detailed report of what the puppet has done with the manifests is sent back to the puppetmaster.

12.The puppet waits for 30 minutes
The next run the puppet performs/polls for is after a configurable timeperiod, which defaults to 30
minutes.

A puppet setup is comprised out of the following parts:

The Puppetmaster
The puppetmaster of course is the core element in a puppet setup. Not only is it responsible for the
handing over the manifest to the client, it also takes care of serving the files needed by the manifest,
as well as

Chapter 6.

15

Puppet Features
paragraph

16

Chapter 7.

17

Troubleshooting Puppet
This section is about troubleshooting the puppetmaster and puppet

18

Chapter 8.

19

Setting Up Puppet
In this section, we are going to set up a puppetmaster, and a puppet client. The puppetmaster is going
to run the mongrel server-type, for setting up a puppetmaster for larger environments.

8.1. Installation
The default server type for the puppetmaster is called webrick, a single-threaded webserver. The
webserver handles the puppets' requests for manifests, certificate exchanges, as well requests for
files and templates. Being single-threaded, the webrick webserver can only handle one client at a
time. While the puppets poll the puppetmaster with a default interval of 30 minutes, and configuration
runs can take longer then 60 seconds, putting more then 25 clients in front of a puppetmaster with a
webrick webserver is a very, very bad idea.

There is a multi-threaded webserver in Ruby, called mongrel. This is a simple, multi-threaded, but not
very feature-rich webserver. For one, it does not perform SSL. For scalability purposes though, the
mongrel server type is an absolute must, and can better be chosen as the webserver to handle the
puppets' requests, right from the beginning. This however requires a frontend that performs the SSL
part of the communications between the puppetmaster and the puppets. We choose Apache's HTTPd
for it's excellent performance, flexible configuration, excellent configuration syntax, and because it can
be set up as a reverse proxy load balancer, allowing more then one puppetmaster behind the scenes if
necessary.

Install the required packages for the puppetmaster:

Smaller organizations (< ~25 clients)
• The puppetmaster.

yum install puppet-server

• (optional) A database server (one of MySQL, SQLite3 or Postgresql), and the appropriate Ruby
library. During this workshop, we use MySQL.

yum install mysql-server ruby-mysql

• (optional) The Ruby RRDtool library.

yum install ruby-RRDtool

Larger organizations (> ~25 clients)
• A webserver capable of performing as a frontend SSL reverse proxy load balancer, such as the

Apache HTTPd webserver.

yum install httpd

• The Ruby mongrel library, for better scalability.

Chapter 8. Setting Up Puppet

20

yum install rubygem-mongrel

• The puppetmaster.

yum install puppet-server

• (optional) A database server (one of MySQL, SQLite3 or Postgresql), and the appropriate Ruby
library. During this workshop, we use MySQL.

yum install mysql-server ruby-mysql

• (optional) The Ruby RRDtool library.

yum install ruby-RRDtool

8.2. Configuration
In this section, we walk you through the initial configuration of a puppetmaster with the mongrel server
type.

8.2.1. Configuring the Puppetmaster
The configuration file for puppet and puppetmaster is /etc/puppet/puppet.conf. It is a file in INI-
like format with sections, keys and values. There's 4 sections of interest,
•[main]

Primarily file locations, directory settings and other globals applicable to both the puppet as well as
the puppetmaster.

•[puppetca]
Puppet Certificate Authority (puppetca) settings.

•[puppetd]
Puppet client daemon settings.

•[puppetmasterd]
Puppetmaster daemon settings.

8.2.1.1. Relevant Settings

Relevant Settings For The First Run
For the first run of the puppetmaster, the following settings require configuration:
•[main]

The locations where puppet seeks it's configuration and puts it's transitional data. The most
important setting is vardir, which should be set to /var/lib/puppet/. Further settings include:
• logdir = /var/log/puppet/

Configuring the Puppetmaster

21

• rundir = /var/run/puppet/

• ssldir = $vardir/ssl/

Note
If you used a package to install puppet, the defaults should work, but may not comply
with your backup strategy. It is the upstream puppet package that cannot cater to
each and every distribution or operating system it is available for, and therefore has a
set of defaults that will work, but will need to be changed on most platforms.

•[puppetmasterd]
•certname

The puppetmaster certificate's Common Name (CN), for which by default the system's hostname
is used. The hostname of the system is a pretty reasonable value.

•certdnsnames
A colon (:) seperated list of DNS names resolving to the puppetmaster. Include here:
1. The short hostname of the system, using the output of:

hostname -s

2. puppet

3. puppet, followed by the DNS domain name of the system, using the output of

dnsdomainname

4. Any other hostname or fully qualified domain name you want to use for the puppetmaster.

• Another setting to check is whether or not this puppetmaster is going to be the Certificate Authority

[puppetmasterd]
 ca = true

The default is often set to true.

• Whether or not to use autosigning of certificates, using

[puppetca]
 autosign = false

The default is to not use autosigning. Only applicable if puppetca is set to true.

Other Relevant Settings
The following settings require review before the puppetmaster is going in production.
• A list of environments using a comma seperated list, in

Chapter 8. Setting Up Puppet

22

[puppetmasterd]
 environments = development,testing,production

See also: Section 9.3, “Environments”

• Whether or not to use reporting, and what reporting to use (tagmail, store, rrdgraph). To configure
the types or reports that should be used by the puppetmaster, use a comma separated list without
spaces, in:

[puppetmasterd]
 reports = tagmail,store,rrdgraph

See also: Section 10.1, “Tweaking Reporting”

• The location of tagmail.conf, in order to map tags you give to resources to email addresses the
reports should be sent to;

[main]
 tagmap = /path/to/tagmail.conf

for reporting changes applied to puppets, via email.

See also: Section 10.1, “Tweaking Reporting”

8.2.1.2. Minimal site.pp
Create a minimal site.pp in /etc/puppet/manifests/site.pp for the puppetmaster to parse
on it's initial startup. Below is an example.

#
site.pp for any domain
#

$server = "master.puppetmanaged.org"

The default node

node default {
}

8.2.1.3. Service Configuration
On Red Hat based systems, use /etc/sysconfig/puppetmaster to configure the service. It has
three variables set, of which PUPPETMASTER_MANIFEST needs to point to the default manifest to use.

8.2.2. Configuring the SSL Frontend Reverse Proxy Load Balancer
A webserver needs to be configured to handle the SSL XML-RPC requests from the puppets, because
the mongrel server type is not capable of performing SSL.

Configuring the Database Server

23

The webserver is going to listen on port 8140, the default port for the puppetmaster to listen for clients.
It is going to forward traffic (after being decrypted) to the puppetmaster on 127.0.0.1:8141.

8.2.3. Configuring the Database Server
para

8.2.3.1. SQLite3
para

8.2.3.2. MySQL
para

8.2.3.3. PostgreSQL
para

24

Chapter 9.

25

How To Use Puppet
This is a first section

9.1. Using Modules
About using modules

9.2. Using Plugins
About the use of plugins

9.3. Environments
paragraph

26

Chapter 10.

27

Other Things To Do With Puppet
This is a first section

10.1. Tweaking Reporting
paragraph

10.2. Writing Custom Types
paragraph

10.3. Writing Custom Facts
paragraph

10.4. Writing Custom Functions
paragraph

28

Chapter 11.

29

Best Practices
This is a first section

30

Part I. Appendices

33

Appendix A. Puppet Terminology
•class

A class is a collection of resources applied to a node with a single include statement. It
groups together a comprehensible set of resources. A class ypclient would manage the
File["/etc/nsswitch.conf"], File["/etc/yp.conf"], Package["ypbind"], and
Service["ypbind"] resources.

•fact
A client-side generated aspect of the node the puppet client runs on. Example facts are the amount
of available memory, the hostname, the fully qualified domain name, the operating system (version).

•manifest
The collection of classes, modules and resources that the puppetmaster uses to distribute the
appropriate configuration to a puppet.

•module
module

•node
The client, a node, is an operating system instance running the puppet client application. This can
be a regular operating system running directly on top of actual hardware, a virtual guest as well as a
virtual host.

•puppet
The client, a node, runs the puppetd daemon or service, and is referred to as the puppet

•puppetmaster
The puppetmaster is the node that runs the server-side application to a puppet setup.

•resource
A resource is an instantiated type

•system resource
A system resource is a resource available on the node whether it is managed by puppet or not.
Unlike what is otherwise understood by system resources, the puppet definition of system resources
does not so much refer to resources like CPU or memory, but rather to whether or not a package is
installed or what version of said package, or the $osversion, and so on and so forth.

•type
definition

34

35

Appendix B. Example SSL Frontend
Reverse Proxy Load Balancer
Configuration
<ifModule !mod_proxy.c>
 LoadModule proxy_module modules/mod_proxy.so
</IfModule>

<IfModule !mod_proxy_http.c>
 LoadModule proxy_http_module modules/mod_proxy_http.so
</IfModule>

<IfModule !mod_proxy_balancer.c>
 LoadModule proxy_balancer_module modules/mod_proxy_balancer.so
</IfModule>

<IfModule !mod_headers.c>
 LoadModule headers_module modules/mod_headers.so
</IfModule>

<IfModule !mod_ssl.c>
 LoadModule ssl_module modules/mod_ssl.so
</IfModule>

<IfModule !mod_authz_host.c>
 LoadModule authz_host_module modules/mod_authz_host.so
</IfModule>

<IfModule !mod_log_config.c>
 LoadModule log_config_module modules/mod_log_config.so
</IfModule>

<Directory />
 Options FollowSymLinks
 AllowOverride None
 Order deny,allow
 Deny from all
</Directory>

<Proxy balancer://master.puppetmanaged.org>
 BalancerMember http://127.0.0.1:8141 keepalive=on retry=30
</Proxy>

<VirtualHost *:8140>
 ServerName master.puppetmanaged.org SSLEngine on
 SSLCipherSuite SSLv2:-LOW:-EXPORT:RC4+RSA

Appendix B. Example SSL Frontend Reverse Proxy Load Balancer Configuration

36

 SSLCertificateFile /var/lib/puppet/ssl/
certs/master.puppetmanaged.org.pem
 SSLCertificateKeyFile /var/lib/puppet/ssl/
private_keys/master.puppetmanaged.org.pem
 SSLCertificateChainFile /var/lib/puppet/ssl/ca/ca_crt.pem
 SSLCACertificateFile /var/lib/puppet/ssl/ca/ca_crt.pem
 SSLVerifyClient optional
 SSLVerifyDepth 1
 SSLOptions +StdEnvVars

 # The following client headers allow the same configuration to work
 with Pound.
 RequestHeader set X-SSL-Subject %{SSL_CLIENT_S_DN}e
 RequestHeader set X-Client-DN %{SSL_CLIENT_S_DN}e
 RequestHeader set X-Client-Verify %{SSL_CLIENT_VERIFY}e

 <Location />
 SetHandler balancer-manager
 Order allow,deny
 Allow from all
 </Location>

 ProxyPass / balancer://master.puppetmanaged.org:8140/ timeout=180
 ProxyPassReverse / balancer://master.puppetmanaged.org:8140/
 ProxyPreserveHost on
 SetEnv force-proxy-request-1.0 1
 SetEnv proxy-nokeepalive 1

 ErrorLog logs/master.puppetmanaged.org-balancer-error_log
 CustomLog logs/master.puppetmanaged.org-balancer-access_log combined
 CustomLog logs/master.puppetmanaged.org-balancer-ssl_request_log "%t
 %h \
 %{SSL_PROTOCOL}x %{SSL_CIPHER}x \"%r
\" %b"
</VirtualHost>

37

Appendix C. Revision History
Revision History
Revision 1.0

38

	Puppet Workshop
	Table of Contents
	Preface
	1. About the Contributors
	2. Document Conventions
	2.1. Typographic Conventions
	2.2. Pull-quote Conventions
	2.3. Notes and Warnings

	3. Feedback

	Chapter 1. Introduction
	1.1. Target Audience

	Chapter 2. Introduction to Configuration Management
	2.1. What is Configuration Management?
	2.1.1. Configuration Management
	2.1.2. Configuration Management Requirements

	2.2. Problems without Configuration Management
	2.3. Not So Technical Aspects

	Chapter 3. Introduction To Puppet
	3.1. What Does Puppet Do?

	Chapter 4. Puppet Terminology
	Chapter 5. How Puppet Works
	Chapter 6. Puppet Features
	Chapter 7. Troubleshooting Puppet
	Chapter 8. Setting Up Puppet
	8.1. Installation
	8.2. Configuration
	8.2.1. Configuring the Puppetmaster
	8.2.1.1. Relevant Settings
	8.2.1.2. Minimal site.pp
	8.2.1.3. Service Configuration

	8.2.2. Configuring the SSL Frontend Reverse Proxy Load Balancer
	8.2.3. Configuring the Database Server
	8.2.3.1. SQLite3
	8.2.3.2. MySQL
	8.2.3.3. PostgreSQL

	Chapter 9. How To Use Puppet
	9.1. Using Modules
	9.2. Using Plugins
	9.3. Environments

	Chapter 10. Other Things To Do With Puppet
	10.1. Tweaking Reporting
	10.2. Writing Custom Types
	10.3. Writing Custom Facts
	10.4. Writing Custom Functions

	Chapter 11. Best Practices
	Part I. Appendices
	Appendix A. Puppet Terminology
	Appendix B. Example SSL Frontend Reverse Proxy Load Balancer Configuration
	Appendix C. Revision History

