Red Hat Enterprise
Linux 5.3

SystemTap
Beginners Guide

For use with Red Hat Enterprise Linux 5

‘® redhat.

Don Domingo

SystemTap Beginners Guide

Red Hat Enterprise Linux 5.3 SystemTap Beginners Guide
For use with Red Hat Enterprise Linux 5
Edition 1.0

Author Don Domingo ddomingo@redhat.com
Copyright © 2009

Copyright © 2009 . This material may only be distributed subject to the terms and conditions set forth
in the Open Publication License, V1.0 or later with the restrictions noted below (the latest version of
the OPL is presently available at http://www.opencontent.org/openpub/).

Distribution of substantively modified versions of this document is prohibited without the explicit
permission of the copyright holder.

Distribution of the work or derivative of the work in any standard (paper) book form for commercial
purposes is prohibited unless prior permission is obtained from the copyright holder.

Red Hat and the Red Hat "Shadow Man" logo are registered trademarks of Red Hat, Inc. in the United
States and other countries.

All other trademarks referenced herein are the property of their respective owners.
The GPG fingerprint of the security@redhat.com key is:

CA 20 86 86 2B D6 9D FC 65 F6 EC C4 21 91 80 CD DB 42 A6 OE

1801 Varsity Drive

Raleigh, NC 27606-2072USAPhone: +1 919 754 3700
Phone: 888 733 4281

Fax: +1 919 754 3701

PO Box 13588Research Triangle Park, NC 27709USA

This guide provides basic instructions on how to use SystemTap to monitor different subsystems of
Red_Hat_Enterprise_Linux 5 in finer detail. The SystemTap Beginners Guide is recommended for
users who have taken RHCT or have a similar level of expertise in Red_Hat_Enterprise_Linux 5.

mailto:ddomingo@redhat.com
http://www.opencontent.org/openpub/

Preface v

T B Lo Lot U] g 1= 1 O 0] 4 \V/=T a1 (10] o £ \

1.1. TypographiC CONVENTIONSuiiiiiiiiie ettt e et e e e et e e e aea e \

1.2. PUll-QUOtE CONVENTIONS ...\ttt e e e e e e e e e e eanaeeees vii

I I o) (<SR- U o YA = Vg 71 o TS Vii

2. WE NEEA FEEUADACK!eeiniiiie e e e e e e e e e e e aaaas viii

1. Introduction 1
T R T Y- | £ 1

1.2. SystemTap Versus Other Monitoring TOOIScoeuuiiiiiiiiie e 1

2. Understanding How SystemTap Works 3
B T N o] 11 (<Y o3 (U 3

A S V51 1= 4 = T o TS T] o] £ 3
D T V7= o | £ PPN 4

2.2.2. HandIers/Probe BOAYcoouiiiiiii e 6

A T =1 1= £ T PP 8

3. Using SystemTap 11
3.1. Setup and INSAlIALIONcoeeiii e 11

B 2 U = o 1 12

4. Useful SystemTap Scripts 13
T I 113 13

4.2, 1]O SUDSYSIEIM ..ttt et e et e et e e et e et e e et e e ea e eaa s 13

R T (=1 1 = T 13

N 1= VYo o TP 13

TS T[T | 13

TS Y= (=1 1 O 1 13

4.7, Other USEfUl SCIIPLS ...uiiii ittt e et e e e e e eens 13

5. Understanding SystemTap Errors 15
6. Tips and Tricks 17
7. References 19
A. Revision History 21

Preface

1. Document Conventions

This manual uses several conventions to highlight certain words and phrases and draw attention to
specific pieces of information.

In PDF and paper editions, this manual uses typefaces drawn from the Liberation Fonts® set. The
Liberation Fonts set is also used in HTML editions if the set is installed on your system. If not,
alternative but equivalent typefaces are displayed. Note: Red Hat Enterprise Linux 5 and later includes
the Liberation Fonts set by default.

1.1. Typographic Conventions

Four typographic conventions are used to call attention to specific words and phrases. These
conventions, and the circumstances they apply to, are as follows.

Mono-spaced Bold

Used to highlight system input, including shell commands, file names and paths. Also used to highlight
key caps and key-combinations. For example:

To see the contents of the file my_next_bestselling_novel in your current
working directory, enter the cat my_next_bestselling_novel command at the
shell prompt and press Enter to execute the command.

A useful shortcut for the above command (and many others) is Tab completion.

Type cat my_ and then press the Tab key. Assuming there are no other files in the
current directory which begin with 'my_', the rest of the file name will be entered on the
command line for you.

(If other file names begin with 'my_', pressing the Tab key expands the file name
to the point the names differ. Press Tab again to see all the files that match. Type
enough of the file name you want to include on the command line to distinguish the
file you want from the others and press Tab again.)

The above includes a file name, a shell command and two key caps, all presented in Mono-spaced
Bold and all distinguishable thanks to context.

Key-combinations can be distinguished from key caps by the hyphen connecting each part of a key-
combination. For example:

Press Enter to execute the command.

Press Ctr1-Alt-F1 to switch to the first virtual terminal. Press Ctr1-Al1t-F7 to return
to your X-Windows session.

The first sentence highlights the particular key cap to press. The second highlights two sets of three
key caps, each set pressed simultaneously.

If source code is discussed, class names, methods, functions, variable names and returned values
mentioned within a paragraph will be presented as above, in Mono-spaced Bold. For example:

! https://fedorahosted.org/liberation-fonts/

https://fedorahosted.org/liberation-fonts/
https://fedorahosted.org/liberation-fonts/

Preface

File-related classes include filesystem for file systems, file for files, and dir for
directories. Each class has its own associated set of permissions.

Proportional Bold

This denotes words or phrases encountered on a system, including application names; dialogue
box text; labelled buttons; check-box and radio button labels; menu titles and sub-menu titles. For
example:

Choose System > Preferences > Mouse from the main menu bar to launch Mouse
Preferences. In the Buttons tab, click the Left-handed mouse check box and click
Close to switch the primary mouse button from the left to the right (making the mouse
suitable for use in the left hand).

To insert a special character into a gedit file, choose Applications > Accessories

> Character Map from the main menu bar. Next, choose Search > Find... from the
Character Map menu bar, type the name of the character in the Search field and click
Next. The character you sought will be highlighted in the Character Table. Double-
click this highlighted character to place it in the Text to copy field and then click the
Copy button. Now switch back to your document and choose Edit > Paste from the
gedit menu bar.

The above text includes application names; system-wide menu names and items; application-specific
menu names; and buttons and text found within a GUI interface, all presented in Proportional Bold and
all distinguishable by context.

Note the > shorthand used to indicate traversal through a menu and its sub-menus. This is to avoid
the difficult-to-follow 'Select Mouse from the Preferences sub-menu in the System menu of the main
menu bar' approach.

Mono-spaced Bold Italic or Proportional Bold Italic

Whether Mono-spaced Bold or Proportional Bold, the addition of Italics indicates replaceable or
variable text. Italics denotes text you do not input literally or displayed text that changes depending on
circumstance. For example:

To connect to a remote machine using ssh, type ssh username@domain. name at
a shell prompt. If the remote machine is example . com and your username on that
machine is john, type ssh john@example.com.

The mount -o remount file-system command remounts the named file
system. For example, to remount the /home file system, the command is mount -o
remount /home.

To see the version of a currently installed package, use the rpm -q package
command. It will return a result as follows: package-version-release.

Note the words in bold italics above — username, domain.name, file-system, package, version and
release. Each word is a placeholder, either for text you enter when issuing a command or for text
displayed by the system.

Aside from standard usage for presenting the title of a work, italics denotes the first use of a new and
important term. For example:

Vi

Pull-quote Conventions

When the Apache HTTP Server accepts requests, it dispatches child processes

or threads to handle them. This group of child processes or threads is known as

a server-pool. Under Apache HTTP Server 2.0, the responsibility for creating and
maintaining these server-pools has been abstracted to a group of modules called
Multi-Processing Modules (MPMs). Unlike other modules, only one module from the
MPM group can be loaded by the Apache HTTP Server.

1.2. Pull-quote Conventions
Two, commonly multi-line, data types are set off visually from the surrounding text.

Output sent to a terminal is set in Mono-spaced Roman and presented thus:

books Desktop documentation drafts mss photos stuff swvn
books_tests Desktopl downloads images notes scripts svgs

Source-code listings are also set in Mono-spaced Roman but are presented and highlighted as
follows:

package org.jboss.book.jca.ex1;
import javax.naming.InitialContext;

public class ExClient

{
public static void main(String args[])
throws Exception
{
InitialContext iniCtx = new InitialContext();
Object ref = iniCtx.lookup("EchoBean");
EchoHome home = (EchoHome) ref;
Echo echo = home.create();
System.out.println("Created Echo");
System.out.println("Echo.echo('Hello') = " + echo.echo("Hello"));
}
}

1.3. Notes and Warnings
Finally, we use three distinct visual styles to highlight certain information nuggets.

Note
A note is useful bit of information: a tip or shortcut or an alternative approach to the task

at hand. Ignoring a note should have no negative consequences, but you might miss
out on a trick that makes your life easier.

Vii

Preface

Important

The Important information box highlights details that are easily missed: such as
configuration changes that only apply to the current session, or services that need
restarting before an update will apply. Ignoring important information won't cause data
loss but may cause irritation and frustration.

Warning

A Warning highlights vital information that must not be ignored. Ignoring warnings will
most likely cause data loss.

2. We Need Feedback!

If you find a typographical error in this manual, or if you have thought of a way to make this manual
better, we would love to hear from you! Please submit a report in Bugzilla: http://bugzilla.redhat.com/
bugzilla/ against the product Red_Hat_Enterprise_Linux 5.

When submitting a bug report, be sure to mention the manual's identifier:
SystemTap_Beginners_Guide

If you have a suggestion for improving the documentation, try to be as specific as possible when
describing it. If you have found an error, please include the section number and some of the
surrounding text so we can find it easily.

viii

http://bugzilla.redhat.com/bugzilla/
http://bugzilla.redhat.com/bugzilla/

Chapter 1.

Introduction

SystemTap is a tracing and probing tool that provides users to study and monitor the activities of the
operating system (particularly, the kernel) in fine detail. It provides information similar to the output of
tools like netstat, ps, top, and iostat; however, SystemTap is designed to provide information
that is more "granular" in nature.

For system administrators, SystemTap can be used as a performance monitoring tool for . It is most
useful when other similar tools cannot precisely pinpoint a bottleneck in the system, requiring a deep
analysis of kernel activity. In the same manner, application developers can also use SystemTap to
monitor, in finer detail, how their application behaves.

1.1. Goals

SystemTap provides the infrastructure to monitor the running Linux kernel for detailed analysis. This
can assist in identifying the underlying cause of a performance or functional problem.

Without SystemTap, monitoring the activity of a running kernel would require a tedious instrument,
recompile, install, and reboot sequence. SystemTap is designed to eliminate this, allowing users to
gather the same information by simply running its suite of tools against specific tapsets or SystemTap
scripts.

However, SystemTap was initially designed for users with intermediate to advanced knowledge of the
kernel. As such, much of the existing documentation for SystemTap is primarily for advanced users.
This could present a steep learning curve for administrators or developers whose knowledge of the
Linux kernel is little to none.

In line with that, the main goals of the SystemTap Beginner's Guide are as follows:

» To introduce users to SystemTap, familiarize them with its architecture, and provide setup
instructions for all kernel types.

 To provide pre-written SystemTap scripts for monitoring and forensic tasks, along with instructions
on how to analyze their output.

1.2. SystemTap Versus Other Monitoring Tools

Advantages
TBD

Limitations
TBD

Chapter 2.

Understanding How SystemTap Works

SystemTap allows users to write and reuse simple scripts to deeply examine the activities of a running
Linux system. These scripts can be designed to extract data, filter it, and summarize it quickly (and
safely), enabling the diagnosis of complex performance (or even functional) problems.

The essential idea behind a SystemTap script is to hname events, and to give them handlers. When
SystemTap runs the script, SystemTap monitors for the event; once the event occurs, the Linux kernel
then runs the handler as a quick sub-routine, then resumes.

There are several kind of events; entering/exiting a function, timer expiration, session termination, etc.
A handler is a series of script language statements that specify the work to be done whenever the
event occurs. This work normally includes extracting data from the event context, storing them into
internal variables, or printing results.

2.1. Architecture

A SystemTap session begins when you run a SystemTap script. This session occurs in the following
fashion:

Procedure 2.1. SystemTap Session
1. SystemTap first translates the script to C, running the system C compiler to create a kernel
module from it.

2. SystemTap loads the module, then enables all the probed events by "hooking" those events into
the kernel.

3. As the events occur, their corresponding handlers are executed.

4. Once the SystemTap session is terminated, the hooked events are disconnected from the kernel;
afterwards, the kernel module is unloaded.

This sequence is driven from a single command-line program: stap. This program is SystemTap's
main front-end tool. For more information about stap, refer to man stap (once SystemTap is set up
on your machine).

2.2. SystemTap Scripts

For the most part, SystemTap scripts are the foundation of each SystemTap session. SystemTap
scripts instruct SystemTap on what type of information to trap, and what to do once that information is
trapped.

As stated in Chapter 2, Understanding How SystemTap Works, SystemTap scripts are made up of two
components: events and handlers. Once a SystemTap session is underway, SystemTap monitors the
operating system for the specified events and executes the handlers as they occur.

Note
An event and its corresponding handler is collectively called a probe. A SystemTap
script can have multiple probes.

Chapter 2. Understanding How SystemTap Works

A probe's handler is also commonly referred to as a probe body.

In terms of application development, using events and handlers is similar to inserting print
statements in a program's sequence of commands. These print statements allow you to view a
history of commands executed once the program is run.

SystemTap scripts go one step further by allowing you more flexibility with regard to handlers. Events
serve as the triggers for handlers to run; handlers can be specified to trap specified data and print it in
a certain manner.

Format
SystemTap scripts use the file extension . stp, and are written in the following format:

probe [event], [another event]{
[handler] exit()

}

The exit () condition is optional, but it is recommended since it safely terminates the session once
the script successfully traps the required information.

Important
Section 2.2, “SystemTap Scripts” is designed to introduce readers to the basics of

SystemTap scripts. To understand SystemTap scripts better, it is advisable that you
refer to Chapter 4, Useful SystemTap Scripts; each section therein provides a detailed
explanation of the script, its events, handlers, and expected output.

2.2.1. Events

SystemTap events can be broadly classified into two types: synchronous and asynchronous.

Synchronous Events

A synchronous event occurs when any processor executes an instruction matched by the
specification. This gives other events a reference point (or instruction address) from which more
contextual data may be available.

Examples of synchronous events include:

kernel.function("[function]")
The entry to the kernel function function. For example, kernel. function("sys_open")
refers to the "event" that the kernel function sys_open is used. To specify the return of
the kernel function sys_open, append the return string to the event statement; i.e.
kernel. function("sys_open").return.

When defining functions, you can use asterisk (*) for wildcards. You can also trace the entry/exit
of a function in a kernel source file. Consider the following example:

Events

probe kernel.function("*@net/socket.c") { }
probe kernel.function("*@net/socket.c").return { }

Example 2.1. Wildcards and Kernel Source Files in an Event

In the previous example, the first probe's event specifies the entry of ALL functions in the kernel
source file net/socket.c. The second probe specifies the exit of all those functions. Note that in
this example, no handler was specified; as such, no information will be displayed.

syscall.[system_call]
The entry to the system call [system_call]. Similar to kernel. function, appending a
return to the statement specifies the exit of the system call. For example, to specify the entry of
the system call close, use syscall.close.return.

To identify what system calls are made by a specific program/command, use strace command.

module("[module]").function("[function]")
Allows you to probe functions within modules. For example:

probe module("ext3").function("*") { }
probe module("ext3").function("*").return { }

Example 2.2. Module Probe

The first probe in Example 2.2, “Module Probe” points to the entry of all functions for the ext3
module. The second probe points to the exits of all entries for that same module; the use of

the . return suffix is similar to kernel. function(). Note that the probes in Example 2.2,
“Module Probe” also do not contain probe bodies, and as such will not print any useful data (as in
Example 2.1, “Wildcards and Kernel Source Files in an Event”).

A system's loaded modules are typically located in /1ib/modules/[kernel version], where
kernel version refers to the currently loaded kernel. Modules use the filename extension . ko.

Asynchronous Events
Asynchronous events, on the other hand, do not point to any reference point. This family of probe
points consists mainly of counters, timers, and similar constructs.

Examples of asynchronous events include:

begin
The startup of a SystemTap session; i.e. as soon as the SystemTap script is run.

end
The end of a SystemTap session.

timer.ms()
An event that specifies a handler to be executed "after X number of milliseconds”. For example:

Chapter 2. Understanding How SystemTap Works

probe timer.ms(4000)
{

exit()

}

Example 2.3. Using timer.ms

Example 2.3, “Using timer.ms” is an example of a probe that allows you to terminate the script
after 4000 milliseconds (or 4 seconds). When used in conjunction with another probe that traps a
large quantity of data, a probe using timer .ms () allows you to limit the information your script is
collecting (and printing out).

Important
SystemTap supports the use of a large collection of probe events. For more information

about supported events, refer to man stapprobes. The SEE ALSO section of man
stapprobes also contains links to other man pages that discuss supported events for
specific subsystems and components.

SystemTap supports multiple events per probe; as shown in Format, multiple events are delimited by a
comma (,). If multiple events are specified in a single probe, SystemTap will execute the handler when
any of the specified events occur.

2.2.2. Handlers/Probe Body

Consider the following sample script:

probe begin

{
printf ("hello world\n")

exit ()

}

Example 2.4. Hello World

In Example 2.4, “Hello World”, the event begin (i.e. the start of the session) triggers the handler
enclosed in { }, which simply prints hello world, then exits.

printf () Statements

The printf () statement is one of the simplest handler tools for printing data. printf () can also
be used to trap data using a wide variety of SystemTap handler functions using the following format:

printf ("[format string]\n", [argument])

The [format string] region specifies how [argument] should be displayed. The format string
of Example 2.4, “Hello World” simply instructs SystemTap to print hello world, and contains no
arguments.

Handlers/Probe Body

You can use the variables %s (for strings) and %d (for numbers) in format strings, depending on
your list of arguments. Format strings can have multiple variables, each matching a corresponding
argument; multiple arguments are delimited by a comma (,) and space.

To illustrate this, consider the following probe example:

This probe will need to be manually terminated with Ctrl-C
probe syscall.open

{
printf ("%s(%d) open\n", execname(), pid())

3

Example 2.5. Using Variables In printf () Statements

Example 2.5, “Using Variables In printf () Statements” instructs SystemTap to probe all entries to the
system call open; for each event, it prints the current execname () (which is a string) and pid ()
(which is a number), followed by the word open. A snippet of this probe's output would look like:

vmware-guestd(2206) open
hald(2360) open
hald(2360) open
hald(2360) open

df(3433) open

df(3433) open

df (3433) open

hald(2360) open

Handler Functions

SystemTap supports a wide variety of handler functions that can be used as printf () arguments.
Example 2.5, “Using Variables In printf () Statements” uses the handler functions exechame()
(current process hame) and pid() (current process ID).

The following is a list of commonly-used handler functions:

tid()
The ID of the current thread.

uid()
The ID of the current user.

cpu()
The current CPU number.

gettimeofday_s()
The number of seconds since UNIX epoch (January 1, 1970).

get_cycles()
A snapshot of the hardware cycle counter.

PP()
A string describing the probe point currently being handled.

Chapter 2. Understanding How SystemTap Works

probefunc()
If known, the name of the function in which the probe was placed

thread_indent()
This particular handler function is quite useful, providing you with a way to better organize your
print results. When used with an indentation parameter (for example, -1), it allows the probe to
internally store an "indentation counter" for each thread (identified by ID, as in tid). It then returns
a string with some generic trace data along with an appropriate number of indentation spaces.

The generic data included in the returned string includes a timestamp (number of microseconds
since the most recent initial indentation), a process name, and the thread ID. This allows you to
identify what functions were called, who called them, and the duration of each function call.

Consider the following example on the use of thread_indent():

probe kernel.function("*@net/socket.c")

{
printf ("%s -> %s\n", thread_indent(1), probefunc())

}

probe kernel.function("*@net/socket.c").return

{
printf ("%s <- %s\n", thread_indent(-1), probefunc())

3

Example 2.6. Using thread_indent()

Example 2.6, “Using thread_indent()” prints out the thread_indent () and probe functions at
each event in the following format

0 ftp(7223): -> sys_socketcall
1159 ftp(7223): -> sys_socket

2173 ftp(7223): -> _ _sock_create
2286 ftp(7223): -> sock_alloc_inode
2737 ftp(7223): <- sock_alloc_inode
3349 ftp(7223): -> sock_alloc

3389 ftp(7223): <- sock_alloc

3417 ftp(7223): <- _ sock_create
4117 ftp(7223): -> sock_create

4160 ftp(7223): <- sock_create

4301 ftp(7223): -> sock_map_fd

4644 ftp(7223): -> sock_map_file
4699 ftp(7223): <- sock_map_file

4715 ftp(7223): <- sock_map_fd
4732 ftp(7223): <- sys_socket
4775 ftp(7223): <- sys_socketcall

For more information about supported handler functions, refer to man stapfuncs.

2.3. Tapsets

Tapsets are scripts that form a library of pre-written probes and functions to be used in SystemTap
scripts. When a user runs a SystemTap script, SystemTap checks the script's probe events and

Tapsets

handlers against the tapset library; SystemTap then loads the corresponding probes and functions
before translating the script to C (refer to Section 2.1, “Architecture” for information on what transpires
in a SystemTap session).

Like SystemTap scripts, tapsets use the filename extension .stp. The standard library of tapsets

is located in /usr/share/systemtap/tapset/ by default. However, unlike SystemTap scripts,
tapsets are not meant for direct execution; rather, they constitute the library from which other scripts
can pull definitions.

Simply put, the tapset library is an abstraction layer designed to make it easier for users to define
events and functions. In a manner of speaking, tapsets provide useful "aliases" for functions that users
may want to specify as an event; knowing the proper alias to use is, for the most part, easier than
understanding how to specify a specific kernel function.

Several handlers and functions in Section 2.2.1, “Events” and Section 2.2.2, “Handlers/Probe Body”
are defined in tapsets. For example, thread_indent () is defined in indent . stp.

10

Chapter 3.

Using SystemTap

This chapter instructs users how to install SystemTap, and provides an introduction on how to run
SystemTap scripts.

3.1. Setup and Installation

To deploy SystemTap, you need to install the SystemTap packages along with the corresponding set
of debug RPMs of your kernel. This means that if your system has multiple kernels installed, and you
wish to use SystemTap on more than one kernel, you will need to install the debug RPMs for each of
those kernels.

Preparing For Installation
To view what kernels and kernel versions are installed on your system, check the contents of /boot.
Each installed kernel/kernel version has a corresponding vmnlinuz- [kernel version] there.

To determine what kernel your system is currently using, use:

uname -r

Procedure 3.1. Deploying SystemTap
1. Once you've decided which kernels you need to use SystemTap with, install the following
packages:

« systemtap
e systemtap-runtime
This will install the SystemTap suite of tools.

2. Next, you'll need to download and install the necessary debug RPMs for your kernel. Most
debugging RPMs for Red Hat Enterprise Linux 5 can be found at the following link:

The necessary debugging RPMs are as follows:
* kernel-debuginfo

* kernel-debuginfo-common

* kernel-devel

For example, if you wish to use SystemTap on kernel version 2.6.18-53.e15, then you need to
download the following debugging RPMs:

+ kernel-debuginfo-2.6.18-53.1.13.e€15.1686.rpm
* kernel-debuginfo-common-2.6.18-53.1.13.e15.1686.rpm
* kernel-devel-2.6.18-53.1.13.e15.i686.rpm

Example 3.1. Sample List of Debugging RPMs

11

Chapter 3. Using SystemTap

3. Install the debugging RPMs using rpm -Ivh [RPM] or yum localinstall [RPM].

Cross-Compiling
TBD

3.2. Usage

12

Chapter 4.

Useful SystemTap Scripts

4.1. Disk

4.2. 110 Subsystem
4.3. Kernel

4.4. Network

4.5. Signals

4.6. System Calls

4.7. Other Useful Scripts

13

14

Chapter 5.

Understanding SystemTap Errors

15

16

Chapter 6.

Tips and Tricks

17

18

Chapter 7.

References

19

20

Appendix A. Revision History

Revision History
Revision 1.0 September 2, 2008 DonDomingoddomingo@redhat . com
Built scratch build (pre-Alpha) of document, content to be added later.

21

mailto:ddomingo@redhat.com

22

	SystemTap Beginners Guide
	Table of Contents
	Preface
	1. Document Conventions
	1.1. Typographic Conventions
	1.2. Pull-quote Conventions
	1.3. Notes and Warnings

	2. We Need Feedback!

	Chapter 1. Introduction
	1.1. Goals
	1.2. SystemTap Versus Other Monitoring Tools

	Chapter 2. Understanding How SystemTap Works
	2.1. Architecture
	2.2. SystemTap Scripts
	2.2.1. Events
	2.2.2. Handlers/Probe Body

	2.3. Tapsets

	Chapter 3. Using SystemTap
	3.1. Setup and Installation
	3.2. Usage

	Chapter 4. Useful SystemTap Scripts
	4.1. Disk
	4.2. I/O Subsystem
	4.3. Kernel
	4.4. Network
	4.5. Signals
	4.6. System Calls
	4.7. Other Useful Scripts

	Chapter 5. Understanding SystemTap Errors
	Chapter 6. Tips and Tricks
	Chapter 7. References
	Appendix A. Revision History

