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The framework

Given the large n× n linear system

Ax = b

Find xm such that xm ≈ x

x0 initial guess r0 = b−Ax0 (if no info, take x0 = 0)

Krylov subspace approximation: xm = x0 + zm

zm ∈ Km(A, r0) := span{r0, Ar0, A
2r0, . . . , A

m−1r0}

? Projection onto a much smaller space m¿ n
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Basic Idea of Projection

Assume x0 = 0.

Let {v1, . . . , vm} be a basis of

Km(A, r0) = span{r0, Ar0, A
2r0, . . . , A

m−1r0}

and Vm := [v1, . . . , vm]

Then
xm = Vmym ym ∈ R

m

ym coefficients of linear combination
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Some popular Krylov subspace methods

rm = b−Axm = b−AVmym

Mostly theoretical (for nonsymmetric A):

GMRES (Generalized Minimum RESidual)

ym : min
y∈Rm

‖rm‖2

FOM (Full Orthogonalization Method)

ym : rm ⊥ Km

Note:
for A symmetric pos. def., FOM becomes CG (Conjugate Gradients)
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Some popular Krylov subspace methods

More Practical (for nonsymmetric A):

GMRES(m): Restarted GMRES

FOM(m): Restarted FOM (far less popular)

BiCGStab(`): short-term recurrence

Restarted Procedure: Given x0, r0

do until convergence
∗ Run m steps of “Method” to get xm

∗ Compute rm = b−Axm

∗ Set x0 ← xm, r0 ← rm

Characteristics:

? Economy-versions

? “Good” properties are lost or preserved only locally

Krylov subspace methods – p. 5



Some popular Krylov subspace methods

More Practical (for nonsymmetric A):

GMRES(m): Restarted GMRES

FOM(m): Restarted FOM (far less popular)

BiCGStab(`): short-term recurrence

Restarted Procedure: Given x0, r0

do until convergence
∗ Run m steps of “Method” to get xm

∗ Compute rm = b−Axm

∗ Set x0 ← xm, r0 ← rm

Characteristics:

? Economy-versions

? “Good” properties are lost or preserved only locally

Krylov subspace methods – p. 5



Some popular Krylov subspace methods

More Practical (for nonsymmetric A):

GMRES(m): Restarted GMRES

FOM(m): Restarted FOM (far less popular)

BiCGStab(`): short-term recurrence

Restarted Procedure: Given x0, r0

do until convergence
∗ Run m steps of “Method” to get xm

∗ Compute rm = b−Axm

∗ Set x0 ← xm, r0 ← rm

Characteristics:

? Economy-versions

? “Good” properties are lost or preserved only locally

Krylov subspace methods – p. 5



Outline

Application-driven practical issues:

Basic considerations on restarted methods

“Quasi-optimal” methods

Indefinite inner products

Inexact methods

Krylov subspace methods. a versatile Tool for complex problems:

many requirements may be relaxed
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Restarted Methods

Convergence strongly depends on choice of m ...
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Restarted Methods

Convergence strongly depends on choice of m ... true?
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Restarted Methods

Convergence strongly depends on choice of m
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Restarted Methods

Switch to FOM residual vector at the very first restart
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Pictures from Simoncini, SIMAX 2000.
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Outline

Application-driven practical issues:

Basic considerations on restarted methods

“Quasi-optimal” methods
Indefinite inner products

Inexact methods
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Enhanced Restarted Methods

Warning: Large m not always means faster convergence

Current research:

Deflated Methods (originally used for A s.p.d.)
Mansfield, Nicolaides, Erhel etal., Saad etal., Nabben, Vuik, ...

Augmented Methods ( information saved from previous restarts)
De Sturler, Morgan, Sorensen, Baglama etal, Baker etal, ...

See also Eiermann, Ernst, Schneider (JCAM 2000)

Truncated Methods (only local information maintained)
Golub, Ye, Notay, Szyld, ...
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De Sturler’s method

Tricky way to enhance approximation space

0 200 400 600 800 1000 1200
10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Iteration index

R
e
la

ti
v
e
 r

e
s
id

u
a
l 
n
o
rm

GMRES(50)

GMRES(150)

Krylov subspace methods – p. 13



De Sturler’s method

Trickly way to enhance approximation space

0 200 400 600 800 1000 1200
10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

Iteration index

R
e
la

ti
v
e
 r

e
s
id

u
a
l 
n
o
rm

GMRES(50)

GMRES(150)

GCROT(7,23,23,4,1,0)

Code: courtesy of Oliver Ernst.
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Truncated methods and “Quasi-optimality”. I

? A truncated method discards “older” vectors

{v1, v2, . . . , vm−k, vm−k+1, . . . , vm︸ ︷︷ ︸
orthogonal

, vm+1, . . . , }

(local optimality properties)

Limited memory requirements

Optimality is lost

1553.gif How “old” is old?
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Truncated methods and “Quasi-optimality’. II

Example: A is non-normal, spectrum on circle |1− z| = 0.5
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Truncated methods and “Quasi-optimality’. III

? If A is nonsymmetric, but harmless modification of a symmetric matrix
then short truncation suffices

Ax = b A symmetric ⇒ P−1Ax = P−1b

P−1v = L−T L−1v + ε1, ε = 10−5, L Incomplete Cholesky of A
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Outline

Application-driven practical issues:

Basic considerations on restarted methods

“Quasi-optimal” methods

Indefinite inner products
Inexact methods
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Need for a “different” inner product ?

Typical orthogonality: rm ⊥ Km

Common alternative:

? Given M Hermitian and positive definite,

rm ⊥M Km

i.e., for Range(Vm)=Km it holds V ∗

mMrm = 0

may lead to minimization of ‖rm‖M or ‖em‖M

♣ In many cases, use of M−
1

2 AM−
1

2 hpd

What about different alternatives?
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Motivations for an indefinite inner product

Exploit inherent properties of the problem. For instance,

A complex symmetric

Exploit matrix structure

A =

(
H B

BT 0

)

(or, say, A Hamiltonian)

... to gain in efficiency with (hopefully) no loss in reliability
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An example. Indefinite (Constraint) Preconditioner

Ax = b A =

(
H B

BT 0

)
, H = HT , H ≥ 0

Preconditioning: AP−1x̂ = b

Block indefinite Preconditioner:

P =

(
H̃ B

BT 0

)
H̃ ≈ H

* AP−1 not symmetrizable!
* However: AP−1 is P−1-Hermitian (Hermitian wrto P−1)

⇒ Cheap short-term recurrence
(Simplified Lanczos - Freund & Nachtigal ’95)
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Preconditioner Performance

P−1 =

(
H̃ B

BT 0

)−1

=

(
I −B

O I

) (
I O

O −(BT
B)−1

) (
I O

−BT I

)

( eH = I if prescaling used)

3D Magnetostatic problem. Number of iterations

size QMR QMR(Pdef ) QMR(P )
1119 2368 40 15
2208 2825 36 13
4371 5191 43 17
8622 >10000 49 16

22675 >10000 81 25

Pdef = diag (I, BT B) hpd

In practice: BT B ≈ S Incomplete Cholesky fact. ⇒ bP
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Inexact methods

It is given an operator v → Aε(v).

Efficiently solve the given problem in the approximation space

Km = span{v,Aε1(v),Aε2(Aε1(v)), . . .}, v ∈ C
n

with dim(Km) = m, where Aε → A for ε→ 0 (ε may be tuned)

? for A = A, ε = 0⇒ Km = span{v, Av, A2v, . . . , Am−1v}

? Analysis also possible for eigenproblem
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Some typical situations

A(v) function (linear in v):

A result of a complex functional application

Schur complement: A = BT S−1B S expensive to invert

Flexible preconditioned system: AP−1x = b, where

P−1vi ≈ P−1
i vi

etc.

In the eigenvalue context: shift-and-invert strategy

Ax = λMx A(v) = (A− σM)−1v
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Questions

? Do we need to have ε small to get good approximation?

good approximation: ‖rm‖ ≤ ε0 (fixed tolerance)

? Do we need to have ε fixed throughout?

? Do we still converge to a meaningful solution if ε varies?

? What happens to convergence rate when ε varies?
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Assuming A is exact...

Km Krylov subspace Vm = [v1, . . . , vm] orthogonal basis

Arnoldi relation:

AVm = VmHm + vm+1hm+1,meT
m = Vm+1Hm

with v = Vme1‖v‖
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Working with an inaccurate A

A = A → Aε(v) = Av + f

AVm = Vm+1Hm + Fm︸︷︷︸
[f1,f2,...,fm]

Fm error matrix, ‖fj‖ = O(εj)

——————————

How large is Fm allowed to be?

xm = Vmym

rm = b−AVmym = b− Vm+1Hmym − Fmym

= Vm+1(e1β −Hmym)︸ ︷︷ ︸
computed residual =:r̃m

−Fmym

where Fmym =

m∑

i=1

fi(ym)i
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Relaxed methods

Fmym =

m∑

i=1

fi(ym)i

In fact, for several methods there exists `m such that

| (ym)i | ≤ `m‖r̃i−1‖

Therefore, ‖fi‖ is allowed to be large!

More precisely,

If ‖fi‖ ≤
`m

m

1

‖r̃i−1‖
ε i = 1, . . . , m

then ‖Fmym‖ ≤ ε ⇒ ‖rm − r̃m‖ ≤ ε

Bouras, Frayssè, Giraud, Simoncini, Szyld, Sleijpen, Van den Eshof, Gratton ...
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Numerical experiment: Schur complement

BT S−1B︸ ︷︷ ︸
A

x = b at each it. i solve Swi = Bvi

Inexact FOM

δm = ‖rm − (b − Vm+1H
m

ym)‖

0 20 40 60 80 100 120
10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

number of iterations

m
a
g
n
it
u
d
e

δ
m

 

||r
m

|| 

||r
m

|| 

ε
inner

 

~ 

Krylov subspace methods – p. 30



Eigenproblem

Inverted Arnoldi: Ax = λx Find min |λ| y ← A(v) = A−1v

Matrix SHERMAN5
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Structural Dynamics

(A+ σB)x = b

Solve for many σ’s simultaneously ⇒ (AB−1 + σI)x̂ = b

(Perotti & Simoncini 2002)

Inexact solutions with B at each iteration:

Prec. Fill-in 5 Prec. Fill-in 10
e-time [s] # outer its e-time [s] # outer its

Tol 10−6 14066 296 13344 289
Dynamic Tol 11579 301 11365 293

20 % enhancement with tiny change in the code

(Preconditioned CG-type iteration for B)
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Relaxed procedure

? A may be replaced by Aεi
with increasing εi and still converge

? Stable procedure for not too sensitive (e.g. non-normal) problems

Property inherent of Krylov approximation

⇓

Many more applications for this general setting
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Conclusions

Often, enough confidence to tailor methods to problems

Ability to relax many of the classical requirements

Further enhancements are ahead!

Recent Survey:
Recent computational developments in Krylov Subspace Methods for linear systems
Simoncini & Szyld, 2005
59 pp., 352 references
to appear in Numer. Linear Algebra w/Appl.

http://www.dm.unibo.it/˜simoncin
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