
Shim Command Reference

R P Herrold

Last revised: March 8, 2008

R P Herrold

Post office box 12069
Columbus, Ohio, 43212, USA

Phone: 614-488-6954
E-mail: info@owlriver.com

Web site: www.owlriver.com

All rights reserved
c© 2007 by R P Herrold

No part of the material protected by this copyright notice may be reproduced or utilized

in any form or by any means – graphic, electronic, or mechanical, including photocopying,

taping, recording or by any other information storage and retrieval system, without prior,

written permission from R P Herrold.

iv

Contents

Table of Contents . xi
Disclaimer . xiii
License . xv
To Do . xv

I Introduction 1

1 Introduction 3
1.1 Trademarks . 3
1.2 Quotation of Copyrighted material 4
1.3 Disclaimer of the Author and Publisher 4
1.4 No Warranties, express or implied 4
1.5 Typographic conventions . 4
1.6 How this document has been compiled 5

II The commands, and their syntax 13

2 Introduction to command verbs 15
2.1 Description - command verbs 15
2.2 Line wrapped output . 15

3 The commands, alphabetically 21
3.1 account - get account quads 22

3.1.1 Description . 22
3.1.2 Peers . 22

3.2 acct - get account quads . 23
3.2.1 Description . 23
3.2.2 Usage . 23
3.2.3 Peers . 25
3.2.4 Listing of: help acct . 26

3.3 bind - FIXME . 27
3.3.1 Description . 27v

3.3.2 Usage . 27
3.4 book - subscribe to market depth 28

3.4.1 Description . 28
3.4.2 Usage . 28
3.4.3 See related . 29
3.4.4 Peers . 29
3.4.5 Listing of: help book 30

3.5 cash - FIXME . 31
3.5.1 Description . 31
3.5.2 Usage . 31
3.5.3 Peers . 31

3.6 dbms - describe the dbms to use 32
3.6.1 Description . 32
3.6.2 Usage . 32
3.6.3 Peers . 32
5.1.5 Listing of: help link . 101

3.7 exec - get execution log FIXME 34
3.7.1 Description . 34
3.7.2 Usage . 34
3.7.3 See related . 34

3.8 exercise - FIXME . 35
3.8.1 Description . 35
3.8.2 Usage . 35
3.8.3 Peers . 35

3.9 feed - describe the upstream TWS market data feed parameters 36
3.9.1 Usage . 36
3.9.2 Peers . 36
3.9.3 Antecedents . 36
5.1.5 Listing of: help link . 101

3.10 help - command verb help . 38
3.10.1 Description . 38
3.10.2 Usage . 38
5.1.2 Listing of: help help . 98

3.11 history - ask history query . 40
3.11.1 Description . 40
3.11.2 Peers . 40

3.12 info - get contract info . 41
3.12.1 Description . 41
3.12.2 Usage . 41
3.12.3 Peers . 41
3.12.4 Listing of: help info . 42

3.13 list - list subcriptions . 43
vi

3.13.1 Description . 43
3.13.2 Usage . 43
3.13.3 Listing of: help list . 44

3.14 load - Read, or re-read SubRequest table 45
3.14.1 Description . 45
3.14.2 Usage . 45
3.14.3 Peers . 46
3.14.4 Antecedents . 46
3.14.5 Listing of: help load . 47

3.15 news - control bulletins . 48
3.15.1 Description . 48
3.15.2 Usage . 48
3.15.3 Limitation . 49
3.15.4 See related . 49
3.15.5 Listing of: help news 50

3.16 next - ping the TWS . 51
3.16.1 Description . 51
3.16.2 Usage . 51
3.16.3 Peers . 51
3.16.4 Listing of: help next . 52

3.17 open - check open orders . 53
3.17.1 Description . 53
3.17.2 Usage . 53
3.17.3 Listing of: help open 54

3.18 order - manage a LineItem 55
3.18.1 Description . 55
3.18.2 Usage . 55
3.18.3 Peers . 55

3.19 past - ask history query . 56
3.19.1 Description . 56
3.19.2 Usage . 61
3.19.3 Extended example . 62
3.19.4 Peers . 69
3.19.5 Listing of: help past . 70

3.20 ping - log time, comment through EOL 71
3.20.1 Description . 71
3.20.2 Usage . 71
3.20.3 Peers . 71
3.20.4 Listing of: help ping . 72

3.21 quit - exit the program . 73
3.21.1 Description . 73
3.21.2 Usage . 73

vii

3.21.3 Listing of: help quit . 74
3.22 read - FIXME . 75

3.22.1 Description . 75
3.22.2 Usage . 75
3.22.3 Peers . 75
3.22.4 Antecedents . 75
3.22.5 Listing of: help read . 76

3.23 scan - event scanner TBD . 77
3.23.1 Description . 77
3.23.2 Usage . 77
3.23.3 Peers . 77

3.24 tick - subscribe mk data . 78
3.24.1 Description . 78
3.24.2 Usage . 78
3.24.3 Peers . 78
3.24.4 Future explanation . 79
3.24.5 Listing of: help tick . 80

3.25 transmit - FIXME . 81
3.25.1 Description . 81
3.25.2 Usage . 81

3.26 verb - set tws log level . 82
3.26.1 Description . 82
3.26.2 Usage . 82
3.26.3 Listing of: help verb . 83

3.27 wait - sleep shim N secs . 84
3.27.1 Description . 84
3.27.2 Usage . 84
3.27.3 Listing of: help wait . 85

3.28 wake - clear pause count . 86
3.28.1 Description . 86
3.28.2 Usage . 86
3.28.3 Listing of: help wake 88

3.29 wild - abstract contract . 89
3.29.1 Description . 89
3.29.2 Usage . 89
3.29.3 Peers . 89

3.30 wire - accumulate orders . 90
3.30.1 Description . 90
3.30.2 Peers . 90
3.30.3 Listing of: help wire . 91

3.31 xmit - release tws order . 92
3.31.1 Description . 92

viii

3.31.2 Usage . 92
3.31.3 See related . 92

4 Parameters, common to the command verbs 93
4.1 Parameters to the command verbs 94

4.1.1 Simple parameters . 94
4.1.2 Order (wire) parameters 94

5 ‘shim –help’ matters 95
5.1 –help - short form help from the program 96

5.1.1 Description . 96
5.1.2 Listing of: help help . 98
5.1.3 Listing of: help args . 99
5.1.4 Listing of: help cmds 100
5.1.5 Listing of: help link . 101

5.2 shim Modes . 102
5.2.1 Listing of: help mode 103

5.3 shim Options . 104
5.3.1 Listing of: help opts . 105

5.4 .shimrc - optional file to describe shim parameters 106
5.4.1 Usage . 106
5.4.2 Peers . 107

6 Numbering - Commands, Requests, Messages, Comments 109
6.1 Overview on message numbering 109
6.2 message class, message value and message version 110

6.2.1 message class . 111
6.2.2 message value . 111
6.2.3 message version . 111
6.2.4 TWS message value and message version co-ordination 111

6.3 message values in the TWS 112
6.4 Java sample client . 112

6.4.1 Rationale’ for consulting the Java sample client 113
6.4.2 How to view a permanent page URL on the IB site . . 113
6.4.3 Retrieving the Java sample client 114

6.5 Numbering in the Java sample client 115
6.5.1 Numbering of Requests in EClientSocket.java 115
6.5.2 Numbering of Messages in EReader.java 116
6.5.3 Numbering of Tick Types in TickType.java 117

6.6 Numbering in rule.c of the shim 118
6.6.1 Numbering of Commands in rule.c 118
6.6.2 Numbering of Requests in rule.c 119
6.6.3 Numbering of Messages in rule.c 120

ix

6.6.4 Numbering of Comments in rule.c 120

III Guided Tutorial 121

7 A Tour of Tables 125
7.1 Tables . 126

7.1.1 Why so many tables 126
7.1.2 What tables are there anyway? 126
7.1.3 Which tables are safe to alter 127
7.1.4 Adding additional tables 128
7.1.5 The initial database load process 129
7.1.6 Each starts with the initial database load process . . . 130

8 Working with the database 133
8.1 The shim database and Contract IDs 134

8.1.1 Looking up an underlying Symbol from the cid - step
by step . 134

8.1.2 Looking up a underlying Symbol from the cid - with
LEFT JOIN . 140

8.1.3 Looking up a Contract.uid with LEFT JOIN 144
8.1.4 Adding a new underlying Symbol to the Contract

table . 146
8.1.5 Fixing the make test 149
8.1.6 Tabular database table listings in other contexts 152
8.1.7 How to extend the Symbol (and then Contract) tables156
8.1.8 Bulk loading the Contract table 166

9 Commands and the database together 167
9.1 Market Data, History, and Market Depth 168
9.2 Market Data subscription . 169

9.2.1 Subscribing to Market Data 169
9.2.2 Unsubscribing from Market Data 170

9.3 History retrieval . 170
9.3.1 Retrieving a History set – one off current 172
9.3.2 Retrieving a History set – recurring current 173
9.3.3 History Pacing Violations 173

9.4 Market Depth subscription . 176
9.4.1 Subscribing to Market Depth 176
9.4.2 Unsubscribing from Market Depth 177

10 Adding a web browser interface 179
10.1 Look up interface . 180x

IV Preparing this document 183

11 Preparing this document 185

12 The writing process 187
12.1 Adding new commands . 187
12.2 Editing prior text . 188

V Conclusion 189

Appendix 193

Bibliography 196

Index 196

xi

xii

Disclaimer

DISCLAIMER: This documentation is presently under active development
and as such there may be mistakes and omissions – watch out for these and
please report any you find to the mailing list,
ts-general@trading-shim.org

or by a private email to the author at the email address indicated on the
Copyright page.

The latest version is available on-line. Contributions of material, sugges-
tions and corrections are welcome.

xiii

xiv

License

The trading-shim is an open-source project. Most portions of the trading-
shim are licensed for copying under the terms of the GNU General Public
License, version 3. Please refer to the COPYING file for details.

As noted at the website, as the sole copyright holder or assignee, and
exclusive licensor of the trading-shim, trading-shim.com, LLC has and offers
the option of sub-licensing its software under alternative commercial terms.

xv

xvi

Reminders to the author

To Do

Update as of 24 October 2007:
Sections still to write (in addition to completing the per command sum-

maries) include a section about:

1. How the shim exposes only three major types of command, and hides
the TWS’ enormous complexity: global state commands, ’cid’ specific
commands, and the ’order’ command

2. writing the ’order’ tutorial (I have this blocked out, however, and need
to describe bracket and OCA orders with worked examples)

3. completion of a bit more on load.sql, and discussing strategies for mi-
grating data as the underlying database schema may need to change,
or be unloaded and re-loaded

4. reorganizing some code back into appendices, and moving some narra-
tive back and around in the tutorial

xvii

Please note: This is a draft, and subject to major revision; large parts
are known to be stale and not recently tested.

xviii

Part I

Introduction

1

Chapter 1

Introduction

This manual relates to the trading-shim TMwhich is a is a command-line and
dbms controlled interface to the socket-based API of Interactive Brokers’
Trader Workstation.

We describe the syntax for each command, and provide an alphabetical
quick reference. Applied examples of useful command sequences are saved
for later. We also explore topics related to working with the database used
by the shim. This includes pointing out the purposes of some tables which
may sensibly be used by an end user, usually on a ‘read only’ basis to give
human readible context to values used by the shim, or in some cases, to point
out ways a user may safely add additional or local values to the population
of the tables as provided by the developers.

Please note that in this work, we adopt a more conversational style of
writing than the formal ‘The Trading-Shim Manual’, authored by Bill Pippin.
Neither is inherently ‘better’ than the other, but rather are targetted to
different audience needs.

1.1 Trademarks

Generally, the appearance of trademarks or registered trademarks within
this work are done as a nominative and factual matter, as and for descrip-
tion and identification. See, generally, 15 USC 1115(b)(4). We are in no
wise interested in any implied trademark infringement or counterfeiting (11
USC 1114(1)); false designation or unfair competition (15 USC 1125(a)); di-
lution (15 USC 1125(c); common law infringement or unfair competition, or
dilution; violation of business practice law or regulation as to use of marks.

The uses of trading-shim and the short form shim are intentionally noted
here and not later capitalized. For marks other than those held by trading-
shim.com, LLC, we strive to note this status with Capitalization marking.

3

1.2 Quotation of Copyrighted material

We quote from the shim source code, and from sessions running the shim,
both in examples, and more extensively, in producing a listing of all shim
shim entries. As the shim help content was authored by Bill Pippin, we
acknowledge and thank him for production of this content. We refresh it
with am mechanical script from time to time.

1.3 Disclaimer of the Author and Publisher

”This publication is designed to provide accurate and authoritative informa-
tion in regard to the subject matter covered. It is sold with the understanding
that the publisher is not engaged in rendering legal, tax, accounting, or other
professional service. If legal advice or other expert assistance is required, the
services of a competent professional person should be sought.”

– from a Declaration of Principles jointly adopted by a Committee of the
American Bar Association and a Committee of Publishers and Associations.

1.4 No Warranties, express or implied

Absent a prior, formal, written, paid up and commercial license and support
contract, there is no warranty, expressed or implied, nor guarantee
against any sort of perceived adverse result, regardless any prior
contrary request for assurance; no person except the officers of
trading-shim.com, LLC may in any fashion vary this term, except that it be
by a writing countersigned by at least two such officers of trading-shim.com,
LLC.

1.5 Typographic conventions

Most narrative text is simply in regular Times Roman.
A code listing or screen scrape is usually wrapped into a standalone code

block, set up in monospace font:

[herrold@centos-4 docs]$ ls -l ../shim-071016 | cut -c 24-79 | head

herrold 4096 Oct 16 17:34 bin

herrold 35147 Jul 9 15:16 COPYING

herrold 4096 Oct 16 16:04 dep

herrold 4096 Oct 16 17:41 doc

herrold 936 Oct 16 17:38 FUT.SMART.YM.hql

herrold 17908 Jul 9 15:13 INSTALL
4

herrold 47 Oct 16 17:38 keying

herrold 4096 Oct 16 16:04 lib

herrold 4096 Oct 16 16:04 log

[herrold@centos-4 docs]$

Unix commands, Linux commands, filesystem paths and scripts, and shim
commands are set off in a san-serif font when not in a verbatim code block
as well: grep, bin/includes, info, past and tick.

MySQL commands are set off in an ALL CAPS san-serif font: INSERT,
LEFT JOIN, and SELECT.

MySQL table names, and table names with a specific field were previously
indicated: ‘Contract’, and ‘Contract.uid’ They were changed to a Small

Caps font: Contract and Contract.uid

1.6 How this document has been compiled

The shim has been noted as an explorational project, and so has evolved
over time; commands, Options, and such have come and gone as our under-
standing of the subject domain has changed. The commands and options
been added, renamed, and grown or changed in meaning over time, and so
forth. As the source code contines to grow, this document may fall out of
date and need to be re-synchronized against the one true point of authority:
the source code itself.

This reference is broken into certain major parts:

1. the statement of the Syntax of each command, sorted alphabetically by
first command word [updated through 09 July 2007]. Presently, some
commands are explained lightly, if at all; others in a uniform form, and
a few with local examples. This variation will probably be re-organized
away in later revisions of this draft.

2. a Guided Tutorial to first then database, and then common command
usages

3. a Section of Troubleshooting commonly observed issues and error mes-
sages

4. We manually drill in additional index entries and cross references as
well.

The list of commands which we discuss in the first part was built by scan-
ning the entries in rule.c, [formerly tabs.c] and using the Unix TMderived grep
command to view the relevant lines for the names of the potential commands
to document.

5

As of the 12 Oct 2007 revision, this yields this cluttered list:

[herrold@centos-4 shim]$./docs/get_cmd_list.sh shim_071011 | grep cmd

new (p) cmd::Help(w, STV(1), c, T0x, "help", null),// log time, comment

new (p) cmd::Ping(w, STV(2), c, T01, "ping", null),// ping connectivity

new (p) cmd::Next(w, STV(3), c, T00, "next", null),// tick, order index

new (p) cmd::List(w, STV(4), c, T00, "list", null),// list subcriptions

new (p) cmd::Wait(w, STV(5), c, T02, "wait", null),// sleep shim n secs

new (p) cmd::Wake(w, STV(6), c, T00, "wake", null),// clear pause count

new (p) cmd::Quit(w, STV(7), c, T00, "quit", null),// that’s it for now

new (p) cmd::Verb(w, STV(11), c, T06, "verb", xact),// set tws log level

new (p) cmd::News(w, STV(12), c, T05, "news", news),// control bulletins

new (p) cmd::Open(w, STV(13), c, T00, "open", xact),// check open orders

new (p) cmd::Acct(w, STV(14), c, T03, "acct", acct),// get account quads

new (p) cmd::Info(w, STV(15), c, T07, "info", data),// req contract data

new (p) cmd::Wild(w, STV(16), c, T08, "wild", data),// abstract contract

new (p) cmd::Tick(w, STV(17), c, T13, "tick", tick),// subscribe mk data

new (p) cmd::Book(w, STV(18), c, T13, "book", book),// also market depth

new (p) cmd::Past(w, STV(19), c, T14, "past", past),// ask history query

new (p) cmd::Scan(w, STV(20), c, T13, "scan", news),// event scanner TBD

new (p) cmd::Exec(w, STV(21), c, T02, "exec", xact),// get execution log

new (p) cmd::Read(w, STV(22), c, T00, "read", null),// append new tuples

new (p) cmd::Load(w, STV(23), c, T00, "load", tick),// reread subrequest

new (p) cmd::Bind(w, STV(25), c, T11, "bind", null),// bind sym to tuple

new (p) cmd::Wire(w, STV(26), c, T16, "wire", xact),// accumulate orders

new (p) cmd::Xmit(w, STV(27), c, T04, "xmit", xact),// release tws order

new (p) cmd::Cash(w, STV(28), c, T15, "cash", xact),// use options right

new (p) cmd::Acct(w, STV(14), c, T03, "account", acct),

new (p) cmd::Past(w, STV(19), c, T13, "history", past),

new (p) cmd::Wire(w, STV(26), c, T16, "order", xact),

new (p) cmd::Xmit(w, STV(27), c, T16, "transmit", xact),

new (p) cmd::Cash(w, STV(28), c, T15, "exercise", xact)

new (p) cmd::Dbms(w, STV(1), c, T0, "dbms", null), // database connection

new (p) cmd::Feed(w, STV(2), c, T1, "feed", null) // upstream tws params

[herrold@centos-4 shim]$ date

Fri Oct 12 13:32:55 EDT 2007

[herrold@centos-4 shim]$

which, is just too cluttered to be very useful. With a bit more pipeline
filtering code, we can massage that mess into a more useful checklist of
commands:

[herrold@centos-4 shim]$ date ; ./docs/get_cmd_list.sh shim_071011 | \
6

grep cmd | awk -F’"’ {’print $2’} | sort | tr ’\n’ ’ ’ | fmt -t

Fri Oct 12 13:38:29 EDT 2007

account acct bind book cash dbms exec exercise feed help history info

list load news next open order past ping quit read scan tick transmit

verb wait wake wild wire xmit

[herrold@centos-4 shim]$

Similarly useful in building other parts of the documentation is using
variations of:

grep ’.dual’ syms.c

to draw out a list of program options, RC file Key-value name labels, and
runtime Options and aliases, among other data ‘constants’.

This produces a checklist of the shim program’s options:

[herrold@centos-4 shim]$ date ; grep ’.dual’ shim_071011/src/syms.c | \

grep ’Option’| awk -F’"’ {’print $2’} | sort | tr ’\n’ ’ ’ | fmt -t

Fri Oct 12 13:42:25 EDT 2007

cmds cout fast file init load logd many null opts pane save stdout

syslog window

[herrold@centos-4 shim]$

This produces a checklist of the shim help assistance topics:

[herrold@centos-4 shim]$ date ; grep ’.dual’ shim_071011/src/syms.c | \

grep ’Assist’| awk -F’"’ {’print $2’} | sort | tr ’\n’ ’ ’ | fmt -t

Fri Oct 12 14:24:43 EDT 2007

acct args bind book cash cmds exec help info link list load mode news next

open opts past ping quit read scan tick verb wait wake wild wire xmit

[herrold@centos-4 shim]$

This produces a enumeration checklist of binary argument forms:

[herrold@centos-4 shim]$ date ; grep ’.dual’ shim_071011/src/syms.c | \

egrep "(False|True)" | awk -F’"’ {’print $2’} | sort | tr ’\n’ ’ ’ | \

fmt -t

Fri Oct 12 14:28:46 EDT 2007

add all del new no off on start stop yes

We see also the modes: data and risk, and some Equalitity forms: =, eq,
as, and to.

7

Stub parts from shim –help

8

FIXME
shim help
help help;

__

Online Help

The help command provides information about trading-shim operation and the

shim command set. There is one argument, selecting a command verb or topic:

The shim command verbs: General topics:

____________________________ _____________________

help mode

ping next opts

wait wake quit link

read load list cmds

*bind args

verb news open acct

info *wild *exec Note: commands marked

tick book past *scan with an asterisk are

wire *xmit *cash not yet implemented.

Syntax:

help <verb>;

help <topic>;

where <verb> or <topic> is from one of the tables above.

snapshotted 19 Oct 2007

9

FIXME
shim modes

Modes:

--help # list the help command arguments and accept help commands

real modes, requiring access to an IB tws:

--data # process subscriptions and log resulting tick stream events

--risk # accept full command set, send requests, and log all events

test modes, with no connection to the tws:

--play # read events from the image file and send text to stdout

--unit # for internal use; unstable though otherwise harmless

10

FIXME
shim options

1. cmds

2. cout

3. fast

4. file

5. init

6. load

7. logd

8. many

9. null

10. opts

11. pane

12. save

13. stdout

14. syslog

15. window

this is to some degree a classified list, ordered by FIXME describe.

The shim command verbs: General topics:

____________________________ _____________________

help

ping next

wait wake quit

read load list

*bind

verb news open acct

info *wild *exec

tick book past *scan

wire *xmit *cash

Note: commands marked with an asterisk are not yet implemented.
11

FIXME
shim RC file

12

Part II

The commands, and their
syntax

13

Chapter 2

Introduction to command verbs

2.1 Description - command verbs

This section will contain more descriptive material about the command verbs

2.2 Line wrapped output

Some output here is too wide for a conventional 80 character line; to acco-
modate this, consider the following sample line:

Feb 5 21:15:46 centos-4 : shim|data|0.28| 2433|76546| 1382844|

3| 4| 2| -1|2107|HMDS data farm connection is inactive

but should be available upon demand.:ushmds2a|

which in this example is broken after the time counter (maintained by the
shim), but before the Reply message tuple: 3— 4— 2—. A counted eight
spaces are inserted, for TEX layout reasons inside the ‘verbatim’ section.

A very long response, such as the final message field shown, may also be
broken later at a convenient whitespace. By and large this permits retaining
whitespace within ‘pipe’ seperators. Sometimes we move the ‘pipe’ to the
continuation line, as on occasion there is leading white space padding which
we may wish to see, but that would otherwise be lost.

Note that the examples in the reference have come from many shim ver-
sions over time, and reflect debugging examples for code which may not be
in the present testing scripts, or expose output log formats which are not
presently used. The development of the shim has changed such formats over
time, and upon request, we will add a note that a given example is of histor-
ical or pedigological interest, rather than something which may be produced
with the then-current day’s release.

15

Type Source Tag Version
Command 1 see src/rule.c
Request 2 see src/rule.c -few-
Message 3 FIXME -several-
Comment 4 -none-

We mentioned a ‘tuple’ above, will refer to it again from time to time,
and see it in nearly all examples; a tuple consists of three parts: the Source,
the message Tag, and the tag Version. This permits seperating Command,
Request, Message, and Comment entries from one another, and within a given
‘Source’, the sub-element provided, by its ‘Tag’, and finally, as is occasionally
needed as a message format may change, the particular ‘Version’ of that ‘Tag’

• Command: is the shim command text language used by a client to the
shim. We see them enumerated thus:

[herrold@centos-5 src]$ grep TagName rule.c | grep ’STV(1,’ | \

awk ’{print $7" "$5}’ | sort -n | grep ^[0-9]

1), "help"),

2), "ping"),

3), "next"),

...

27), "xmit"),

28), "cash"),

28), "exercise"),

[herrold@centos-5 src]$

From a test run, we might example the file ‘cmdinput.txt’:

[herrold@centos-5 shim_071221]$ cat cmdinput.txt

order(3,LMT,Create,2,60.0,0.0,0);

order(4,LMT,Create,2,70.0,0.0,0);

order(3,LMT,Submit,2,60.0,0.0,0);

open;

order(3,MKT,Submit,2,00.0,0.0,0);

order(4,MKT,Submit,2,00.0,0.0,0);

past add 181 6 now;

next;

news on all;

news off all;

acct on;
16

book add 15 3;

book add 178 7;

load;

quit;

[herrold@centos-5 shim_071221]$

The rest of the example is pulled from the matching ‘ShimText’ file.
In part it reads:

11304|45056| 1031692|4|100| 0|# |4|100|0|****************|

11304|45056| 1031699|4|101| 0|# |4|101|0|0.52|070831|risk|

11304|45056| 1031703|4|100| 0|# |4|100|0|****************|

11304|45056| 1031682|4|102| 0|# |4|102|0|23|11304|39|20071226

12:30:55 EST|Connect with: cv 23, id 11304, sv 39|

11304|45056| 1177737|3| 9| 1|1|

11304|45056| 1194419|3| 4| 2| -1|2104|Market data farm

connection is OK:usfarm|

11304|45056| 1194434|3| 4| 2| -1|2104|Market data farm

connection is OK:usfuture|

11304|45056| 1194452|3| 4| 2| -1|2107|HMDS data farm

connection is inactive but should be available upon

demand.ushmds2a|

11304|45059| 3990653|1|26| 0|order(3,LMT,Create,2,60.0,0.0,0);|

11304|45059| 4010547|2| 3|15|1| 3|LMT|BUY|STK.SMART.AIG.

11304|45060| 4990331|1|26| 0|order(4,LMT,Create,2,70.0,0.0,0);|

11304|45060| 5010145|2| 3|15|2| 4|LMT|SELL|STK.SMART.AIG.

11304|45061| 5994359|1|26| 0|order(3,LMT,Submit,2,60.0,0.0,0);|

11304|45061| 6014113|2| 3|15|1| 3|LMT|BUY|STK.SMART.AIG.

11304|45061| 6122540|3|11| 4|1|AIG|STK||||SMART|USD|AIG|

00018037.44913a80.01.01|20071226 12:31:01|DU10126|

ISLAND|BOT|2|59.26|1671595100|11304|0|

11304|45061| 6123046|3| 5|10|1|AIG|STK||0.0|?|SMART|USD|

AIG|BUY|2|LMT|60.0|0.0|GTC||DU10126|C|0||11304|1671595100

|false|false|0||1671595100.0/DU10126/100|||||||||0||0 |

||||||false|false|false|false||3|false|false||0|1|

• Request: is the binary translation, occastionally using information from
the database, of a Command to a form which the upstream TWS re-
ceives across a socket connection.

[herrold@centos-5 src]$ grep TagName rule.c | grep ’STV(2,’ | \

awk ’{print $9" "$6}’ | sort -n | grep ^[0-9]
17

1, "ReqMktData"

2, "EndMktData"

...

23, "EndScanSub"

25, "EndHistory"

[herrold@centos-5 src]$

• Message: is a binary format which the TWS sends across a socket
connection, to transfer both control state and substantive content to a
downstream client.

Some mesages were revieced on an unsolicited basis from the upstream
TWS as to the conenction status and availability of reqources ‘up-
stream’ of it:

11304|45056| 1177737|3| 9| 1|1|

11304|45056| 1194419|3| 4| 2| -1|2104|Market data farm

connection is OK:usfarm|

11304|45056| 1194434|3| 4| 2| -1|2104|Market data farm

connection is OK:usfuture|

11304|45056| 1194452|3| 4| 2| -1|2107|HMDS data farm

connection is inactive but should be available upon

demand.ushmds2a|

Other messages were in reply to Commands, translated into Requests.
This Created, but did not release to be Submit[ed] upstream, an order
based on LineItem.uid: 3

11304|45059| 3990653|1|26| 0|order(3,LMT,Create,2,60.0,0.0,0);|

11304|45059| 4010547|2| 3|15|1| 3|LMT|BUY|STK.SMART.AIG.

A few seconds later, the order is Submit[ed] upstream, and fills at once,
as it is actually already past the limit price stated:

11304|45061| 5994359|1|26| 0|order(3,LMT,Submit,2,60.0,0.0,0);|

11304|45061| 6014113|2| 3|15|1| 3|LMT|BUY|STK.SMART.AIG.

11304|45061| 6122540|3|11| 4|1|AIG|STK||||SMART|USD|AIG|

00018037.44913a80.01.01|20071226 12:31:01|DU10126|

ISLAND|BOT|2|59.26|1671595100|11304|0|

QUERY: How can we tell the entry at 6014113 from the earlier one at
4010547 – each ine appears identical, although one is a Create, and the
second a Submit?

18

• Comment: additional text added by the shim locally toward its output
consumer, expanding on its state.

11304|45056| 1031692|4|100| 0|# |4|100|0|****************|

11304|45056| 1031699|4|101| 0|# |4|101|0|0.52|070831|risk|

11304|45056| 1031703|4|100| 0|# |4|100|0|****************|

11304|45056| 1031682|4|102| 0|# |4|102|0|23|11304|39|20071226

which describe the state of the connection, and message versions which
the shim used during its connecion to the TWS.

19

20

Chapter 3

The commands, alphabetically

A recent re-work of the command language has changed it to a ‘verb object‘
command form, which replies heavily on the verbs: select and cancel. For-
merly, and throughout this work until revisions are complete, one might see
the follow form:

tick add 181 1;

tick del 181 1;

which is obsolete, and now carries the forms, respectively:

select tick 181 1;

cancel tick 181 1;

This change in expression applies to the following commands. A back link
to this discussion has been placed at the top of each affected command listed
below. As each command’ section is revised, the backlink will be removed.

• acct

• book

• exec

• info

• news

• next

• past

• tick

21

3.1 account - get account quads

3.1.1 Description

get account quads

3.1.2 Peers

It has a synonym called acct; see acct (at: 3.2) which is also used. acct is
preferred in help system documentation matters.

22

3.2 acct - get account quads

This form of the comand in obsolete, and pending re-write. (see: the note at
the start of Cp. 3).

3.2.1 Description

get account quads

acct on;

where:

• Op : one of: on, off

3.2.2 Usage

Minimal usage:

acct on;

quit;

(From bin/includes)

produces in the logfile:

15222|60185| 86937479|1|14| 0|account on;|

15222|60185| 86958126|2| 6| 2|on|

15222|60185| 86958864|3| 6| 2|AccountCode | DU10126

| |DU10126|

15222|60185| 86958878|3| 6| 2|AccountReady | true

| |DU10126|

15222|60185| 86958891|3| 6| 2|AccountType |UNIVERSAL

| |DU10126|

15222|60185| 86958991|3| 6| 2|AccruedCash | 0.00

|BASE|DU10126|

15222|60185| 86959015|3| 6| 2|AccruedCash | 0.00

|EUR |DU10126|

15222|60185| 86964130|3| 6| 2|AvailableFunds | 66088.00

|USD |DU10126|

15222|60185| 86964144|3| 6| 2|AvailableFunds-C | 0.00

|USD |DU10126|

15222|60185| 86964159|3| 6| 2|AvailableFunds-S | 66088.00

|USD |DU10126|

23

15222|60185| 86964524|3| 6| 2|BuyingPower |264351.96

|USD |DU10126|

15222|60185| 86964539|3| 6| 2|CashBalance | 36415.59

|BASE|DU10126|

15222|60185| 86964552|3| 6| 2|CashBalance | 58.48

|EUR |DU10126|

15222|60185| 86964565|3| 6| 2|CashBalance | 36330.61

|USD |DU10126|

15222|60185| 86964578|3| 6| 2|Currency | BASE

|BASE|DU10126|

15222|60185| 86964590|3| 6| 2|Currency | EUR

|EUR |DU10126|

15222|60185| 86964602|3| 6| 2|Currency | USD

|USD |DU10126|

Note that this account has conducted trades in both USD and EUR, and
so is reported in both the base currency of USD, and also the EUR compo-

nent.

...

15222|60185| 86964764|3| 6| 2|ExcessLiquidity-S | 66088.00

|USD |DU10126|

15222|60185| 86964778|3| 6| 2|ExchangeRate | 1.00

|BASE|DU10126|

15222|60185| 86964791|3| 6| 2|ExchangeRate | 1.45315

|EUR |DU10126|

15222|60185| 86964804|3| 6| 2|ExchangeRate | 1.00

|USD |DU10126|

15222|60185| 86964818|3| 6| 2|FullAvailableFunds | 66088.00

|USD |DU10126|

...

15222|60185| 86971854|3| 6| 2|UnrealizedPnL |-10771.10

|USD |DU10126|

15222|60185| 86971867|3| 6| 2|WhatIfPMEnabled | true

| |DU10126|

24

15222|60185| 86971917|3| 7| 5|AIG|STK||0.0|0|USD|AIG|208|56.65000155|

11783.2|68.3380947|-2431.12|0.0|DU10126|

15222|60185| 86971928|3| 8| 1|16:35|

15222|60185| 86971965|3| 7| 5|EUR|CASH||0.0|0|USD|EUR.USD|-51|1.45315005|

-74.11|1.3548|-5.02|0.0|DU10126|

15222|60185| 86971976|3| 8| 1|16:41|

15222|60185| 86972020|3| 7| 5|IBKR|STK||0.0|0|USD|IBKR|1000|27.7799988|

27780.0|36.115|-8335.0|0.0|DU10126|

15222|60185| 86972030|3| 8| 1|16:31|

15222|60185| 86972036|3| 8| 1|16:41|

When the markets are open, there will be periodic updates as to account mar-
gin capacity, as well as to values of underlying positions (including Forex)
as prices fluctuate. The command may be repeated from time to time, and
no express limits by IB on repetition are known as documented, beyond the
general 50 transactions per second upstream transaction request limit.

3.2.3 Peers

It has a synonym called account; see account (at: 3.1) which is also used. acct
is preferred in help system documentation matters.

25

3.2.4 Listing of: help acct

Refreshed from: shim-071228

26

3.3 bind - FIXME

FIXME - not yet implemented

3.3.1 Description

3.3.2 Usage

Minimal usage:

produces in the logfile:

27

3.4 book - subscribe to market depth

This form of the comand in obsolete, and pending re-write. (see: the note at
the start of Cp. 3).

3.4.1 Description

subscribe to market depth – think: NYSE OpenBook

book Op Cid I;

where:

• Op : one of: add, del

• Cid : the contract id

• I : the configuration id, from table: DepthLimit. That is: the number
of ‘lines’ from the ‘top’ of the book to display down from the ‘Bid/Ask’
frontier.

3.4.2 Usage

Minimal usage:

book add 15 3;

subscribes (in one dataset), to AIG market depth information
We can also then stop it thus:

book del 15 3;

TBD: The del operator is presently non-functional - 071112
(From bin/includes)
The first command produces in the logfile:

Nov 27 15:58:53 centos-4 : 1838|57533|3128310288|1|18| 0|book add 15 3;|

Nov 27 15:58:53 centos-4 : 1838|57533|3128329934|2|10| 3|3|15|3|

Nov 27 15:58:54 centos-4 : 1838|57534|3128691413|3|12| 1| 15

| 0|0|1| 54.48| 5|bid|insert|STK.SMART.AIG.

Nov 27 15:58:54 centos-4 : 1838|57534|3128691431|3|12| 1| 15

| 1|0|1| 54.46| 39|bid|insert|STK.SMART.AIG.

Nov 27 15:58:54 centos-4 : 1838|57534|3128691447|3|12| 1| 15

| 2|2|1| 54.25| 3|bid|delete|STK.SMART.AIG.

Nov 27 15:58:54 centos-4 : 1838|57534|3128691463|3|12| 1| 15
28

| 2|0|1| 54.25| 3|bid|insert|STK.SMART.AIG.

Nov 27 15:58:54 centos-4 : 1838|57534|3128691478|3|12| 1| 15

| 0|0|0| 54.49| 10|ask|insert|STK.SMART.AIG.

...

TBD: del is not working 070205; indeed, the command is echoed as an
add

book del 15 3;

appears in the log as this error message:

Nov 27 15:59:03 centos-4 : 1838|57543|3138246745

|3| 4| 2| 15| 310|Can’tfind the subscribed market

depth with tickerId:4|

3.4.3 See related

• arg 1 is the Operand, one of: add, del

• arg 2 is the security’s ContractID lookup

• arg 3 is the Book Depth lookup, as drawn from the index by uid into
DepthLimit; the uid’s there have been structured to match the num-
ber of rows (‘lines’) deep to look – that is uid 1 refers 1 row down, uid
2 refers 2 rows down, and so forth.

3.4.4 Peers

There are three other ’peer’ subscriptions: past (at: 3.19), and scan (at: 3.23),
and tick (at: 3.24)

FIXME - continue expansion of book like past example

29

3.4.5 Listing of: help book

Refreshed from: shim-071228

30

3.5 cash - FIXME

FIXME - not yet implemented

3.5.1 Description

3.5.2 Usage

Minimal usage:

produces in the logfile:

3.5.3 Peers

It has a synonym called exercise; see exercise (at: 3.8) which is also used. cash
is preferred in help system documentation matters.

31

3.6 dbms - describe the dbms to use

3.6.1 Description

Describe the dbms to use

3.6.2 Usage

Minimal usage:
This example is manually entered, after the init command line option was

specified;

[herrold@centos-4 shim_071109]$./shim --data init

...

Enter the dbms connect parameters via the dbms command, using the format:

dbms DbmsName DbmsHost TableSet UserName Password;

dbms mysql xps400.first.lan rph_testing rph_shim 0;

Ok

Enter the upstream connect values via the feed command, using the format:

feed FeedName FeedHost FeedPort;

feed tws xeon.first.lan 7496;

Ok

The trading shim has finished program initialization, including the

construction of successful connections to the database and IB tws.

quit;

[herrold@centos-4 shim_071109]$

dbms produces no output in the logfile

3.6.3 Peers

There is one other ’peer’ command: feed (at: 3.9), which is similar in that it
permits runtime description of the upstream TWS data feed to and from IB,
to which the shim is to connect.

Also, the discussion of the .shimrc file (at 5.4.1) provides more examples.

32

3.6.4 Listing of: help link

Refreshed from: shim-071228

33

3.7 exec - get execution log FIXME

This form of the comand in obsolete, and pending re-write. (see: the note at
the start of Cp. 3).

3.7.1 Description

get execution log
FIXME - not yet implemented

3.7.2 Usage

Minimal usage:

TBD - add a scrape

produces in the logfile:

TBD - add a scrape

3.7.3 See related

TBD: arg 1 value – what is it?

34

3.8 exercise - FIXME

FIXME - not yet implemented

3.8.1 Description

3.8.2 Usage

Minimal usage:

produces in the logfile:

3.8.3 Peers

It has a synonym called cash; see cash(at: 3.5) which is also used. cash is
preferred in help system documentation matters.

35

3.9 feed - describe the upstream TWS market

data feed parameters

3.9.1 Usage

Minimal usage:
This example is manually entered, after the init command line option was

specified;

[herrold@centos-4 shim_071109]$./shim --data init

...

Enter the dbms connect parameters via the dbms command, using the format:

dbms DbmsName DbmsHost TableSet UserName Password;

dbms mysql xps400.first.lan rph_testing rph_shim 0;

Ok

Enter the upstream connect values via the feed command, using the format:

feed FeedName FeedHost FeedPort;

feed tws xeon.first.lan 7496;

Ok

The trading shim has finished program initialization, including the

construction of successful connections to the database and IB tws.

quit;

[herrold@centos-4 shim_071109]$

feed produces no output in the logfile

3.9.2 Peers

There is one other ’peer’ command dbms (at: 3.6) which is similar in that it
permits runtime description of the database to which the shim is to connect.

Also, the discussion of the .shimrc file (at 5.4.1) provides more examples.

3.9.3 Antecedents

The feed command is a successor to the now obsolete link command.

36

3.9.4 Listing of: help link

Refreshed from: shim-071228

37

3.10 help - command verb help

3.10.1 Description

Display help information for a command verb
The help system is the front line of documentation, but carries lots to

write and to keep updated. As it varies over time and is the ‘leading edge’
of what it documented, we commend to reader the command line generated
Listing of: subsection after the narrative for a given command. Not all
commands are presently covered by the help system.

Please see the next page for an example of a Listing of: subsection, in
this example of the help help; command;

3.10.2 Usage

Minimal usage:

help help;

quit;

produces no output to stdout; the result is directed to stderr.
It leaves the following in the logfile:

Nov 27 16:19:37 centos-4 : 3033|58777|1085189015|1| 1| 0|help help;|

Nov 27 16:21:18 centos-4 : 3033|58878|1186354288|1| 7| 0|quit;|

38

3.10.3 Listing of: help help

Refreshed from: shim-071228

39

3.11 history - ask history query

3.11.1 Description

Ask a history query

3.11.2 Peers

It has a synonym called past; see past (at: 3.19) which is also used. past is
preferred in help system documentation matters.

40

3.12 info - get contract info

This form of the comand in obsolete, and pending re-write. (see: the note at
the start of Cp. 3).

This command returns a wealth of information about trading options
available on a given Contract ID.

3.12.1 Description

3.12.2 Usage

Minimal usage:

info 15 new;

produces in the logfile:

15222|60974| 875663793|1|15| 0|info 15 new;|

15222|60974| 875683464|2| 9| 3|1|15|new|

15222|60974| 875746177|3|10| 2|AIG|STK||0.0||SMART|USD|AIG|

AIG|AIG|4301|0.01||ADJUST,ALERT,ALGO,AON,AVGCOST,

BASKET,COND,CONDORDER,DAY,DEACTEOD,DIS,GAT,GTC,GTD,

GTT,HID,ICE,IOC,LIT,LMT,LOC,MIT,MKT,MOC,MTL,NONALGO,

OCA,OPG,OPGREROUT,REL,RTH,SCALE,STP,STPLMT,SWEEP,

TIMEPRIO,TRAIL,TRAILLMT,|SMART,ARCA,CBSX,CHX,DRCTEDGE,

EDGEA,IBSX,ISE,ISLAND,LAVA,MIBSX,NYSE,PHLX,TRACKECN,VWAP|1|

FIXME – companion to wild (at: 3.29) for contract details description
lookup

3.12.3 Peers

There is one other ’peer’ command for obtaining contract details in bulk:
wild (at: 3.29).

41

3.12.4 Listing of: help info

Refreshed from: shim-071228

42

3.13 list - list subcriptions

3.13.1 Description

list the presently subcriptions
FIXME - clean up example – is this correct?

3.13.2 Usage

Minimal usage:

tick add 177 1;

list;

quit;

FIXME -=- no example known
produces in the logfile:

Nov 27 17:36:17 centos-4 : 4267|63377| 15046452|1| 4| 0|list;|

Nov 27 17:36:17 centos-4 : 4267|63377| 15046859|2|14| 1|5|

FIXME: seems broken; has no appearant effect
It also produces stderr content:

Sub: tick 15 STK SMART AIG

Sub: tick 26 STK SMART AXP

Sub: tick 38 STK SMART CAT

Sub: tick 82 STK SMART HON

Sub: tick 83 STK SMART HPQ

...

Sub: tick 163 STK SMART WFMI

Sub: tick 166 STK SMART WYNN

43

3.13.3 Listing of: help list

Refreshed from: shim-071228

44

3.14 load - Read, or re-read SubRequest table

3.14.1 Description

Read, or re-read the SubRequest table

3.14.2 Usage

Minimal usage:

tick add 15 1;

load;

quit;

produces in the logfile:

15533|63360| 199264964|1|23| 0|load;|

15533|63360| 199292929|1|17| 0|tick add 15 1;|

15533|63360| 199292952|1|17| 0|tick add 26 1;|

15533|63360| 199292972|1|17| 0|tick add 38 1;|

15533|63360| 199292996|1|17| 0|tick add 82 1;|

15533|63360| 199293014|1|17| 0|tick add 83 1;|

...

15533|63360| 199293257|1|17| 0|tick add 163 1;|

15533|63360| 199293276|1|17| 0|tick add 166 1;|

15533|63360| 199312937|2| 1| 5| 15|AIG|STK||0.00||1|SMART||USD||

15533|63360| 199333943|2| 1| 5| 26|AXP|STK||0.00||1|SMART||USD||

15533|63360| 199354856|2| 1| 5| 38|CAT|STK||0.00||1|SMART||USD||

15533|63360| 199374874|2| 1| 5| 82|HON|STK||0.00||1|SMART||USD||

15533|63360| 199380068|3| 1| 5| 15|1| 56.1| 4| |

price.outcry.bid. |STK.SMART.AIG.

15533|63360| 199380085|3| 1| 5| 15|2| 56.59| 3| |

price.outcry.ask. |STK.SMART.AIG.

15533|63360| 199380099|3| 1| 5| 15|4| 56.48| 1| |

price.summary.last. |STK.SMART.AIG.

...

The first part is an enumeration of each Contract ID, as it has a tick
request added, and then data, is tick data for the symbols selected by the
present state of the SubRequest table

45

3.14.3 Peers

There is one other somewhat similar ’peer’ command: read (at: 3.22), which
causes a full re-read of the database.

TBD: add a usage example show how to populate the SubRequest table

3.14.4 Antecedents

The load command is a successor to the now obsolete bulk command.

46

3.14.5 Listing of: help load

Refreshed from: shim-071228

47

3.15 news - control bulletins

This form of the comand in obsolete, and pending re-write. (see: the note at
the start of Cp. 3).

3.15.1 Description

control bulletins

news Op Adj;

where:

• Op : one of: on, off

• Adj : one of: all, (?? FIXME - are there more)

3.15.2 Usage

Minimal usage:

news on all;

quit;

or

news off all;

(From bin/includes)

produces in the logfile:

Nov 29 13:47:58 centos-4 : 25529|49678| 3949082|1|12| 0|news on all;|

Nov 29 13:47:58 centos-4 : 25529|49678| 3949290|2|12| 1|all|

Nov 29 13:47:58 centos-4 : 25529|49678| 3956022|3|14| 1|1196313365|1

|==

To AMEX traders: Thu Nov 29 13:18:37 2007 EST AMEX Stock is

currently unavailable for trading due to technical problems at

the exchange. |AMEX|

Nov 29 13:48:04 centos-4 : 25529|49684| 9958462|1| 7| 0|quit;|

and for the ’off’ operator
48

Feb 5 21:12:21 centos-4 : shim|data|0.28| 2431|76341| 5721836|

2| 9| 0|news on all;|

Feb 5 21:12:21 centos-4 : shim|data|0.28| 2431|76341| 5721876|

3|12| 1|all|

Feb 5 21:12:25 centos-4 : shim|data|0.28| 2431|76345| 9683105|

2| 9| 0|news off all;|

Feb 5 21:12:25 centos-4 : shim|data|0.28| 2431|76345| 9683126|

3|13| 1|

Feb 5 21:12:29 centos-4 : shim|data|0.28| 2431|76349| 13101463|

2| 7| 0|quit;|

FIXME BUG: seems not to add the all present in the del command 070205

3.15.3 Limitation

Caveat: We believe, from observation, that the news command in only en-
abled for real live, production accounts, and not for the demo or a paper
account. We have filed a TAC ticket regarding this, and will update this
section once an answer is received.

3.15.4 See related

arg 1 value – itemize on and off
QUERY: arg 2 – what arguments other than all exist?

49

3.15.5 Listing of: help news

Refreshed from: shim-071228

50

3.16 next - ping the TWS

This form of the comand in obsolete, and pending re-write. (see: the note at
the start of Cp. 3).

3.16.1 Description

3.16.2 Usage

Check connectivity between the shim and the tws
Minimal usage:

verb Detail;

next;

quit;

produces in the logfile:
RFE: no example in bin/includes

Nov 27 17:48:51 centos-4 : 4313|64131| 7026420

|1|11| 0|verb Detail;|

Nov 27 17:48:51 centos-4 : 4313|64131| 7026592

|1| 3| 0|next;|

Nov 27 17:48:51 centos-4 : 4313|64131| 7026639

|2|14| 1|5|

Nov 27 17:48:51 centos-4 : 4313|64131| 7047194

|2| 8| 1|1|

Nov 27 17:48:51 centos-4 : 4313|64131| 7069166

|3| 9| 1|1|

Nov 27 17:48:54 centos-4 : 4313|64134| 10026865

|1| 7| 0|quit;|

3.16.3 Peers

There is one other ’peer’ command for programatically checking connectiv-
ity: ping (at: 3.20), which when answered, indicates the presence of a live
connection between the client and TWS.

51

3.16.4 Listing of: help next

Refreshed from: shim-071228

52

3.17 open - check open orders

3.17.1 Description

check details for open orders
Note: Per my notes, it is not functioning presently (071112) as it did

last February; it formerly returned, when sent, a fresh enumeration of open
(working) orders; it now seems to act, like news as a general session state
configuration option.

FIXME: to test and confirm open option
Note: The TWS configuration option:

Configure | Global Configuration |

API | General | Fire openorder on status’ change

must be enabled (checked), for open to work properly.

3.17.2 Usage

Minimal usage:

[existing order on]

...

open;

...

– no example in bin/includes 070205
Formerly (February 2007) produced in the logfile:

...

Feb 6 11:20:03 centos-4 : shim|risk|0.28| 6054|40803| 3419794|

3| 3| 5|1|Submitted|0|2|0.0|1473815805|0|0.0|6055|

Feb 6 11:20:04 centos-4 : shim|risk|0.28| 6054|40804| 4000872|

2|10| 0|open;|

Feb 6 11:20:04 centos-4 logger: 6051 open orders info

Feb 6 11:20:04 centos-4 : shim|risk|0.28| 6054|40804| 4000894|

3| 5| 1|

Feb 6 11:20:04 centos-4 : shim|risk|0.28| 6054|40804| 4022761|

3| 5| 8|1|AIG|STK||0.0|?|SMART|USD|AIG|BUY|2|LMT|68.0|0.0|

GTC||DU10126|O|0||6055|1473815805|1|0|0||

1473815805.0/DU10126/100|||||||||0||0|||||||1|0|0|0||3|0|0||0|1|

Feb 6 11:20:04 centos-4 : shim|risk|0.28| 6054|40804| 4023432|

3| 3| 5|1|Submitted|0|2|0.0|1473815805|0|0.0|6055|

...

53

3.17.3 Listing of: help open

Refreshed from: shim-071228

54

3.18 order - manage a LineItem

3.18.1 Description

Manage a LineItem

The order command, due to the number of TWS API parameters, is more
complicated. Much of the complexity is hidden in the table: LineItem

row refered to by uid, but modifiable parameters must be provided on the
command line.

wire(Oid,Type,Op,Q,P,Aux,T);

where:

• Oid: the LineItem id, a database uid attribute value of LineItem

• Type: an order type, e.g., MKT, LMT, STP, or TRAIL

• Op: one of: Create, Submit, Modify, Cancel

• Q: the quantity

• P: the limit price

• Aux: the auxiliary price

• T: the timeout (just a dummy for now, not yet used)

TBD: insert a: describe LineItem and comment on the fields

3.18.2 Usage

Minimal usage:

order(1,MKT,Create,100,0.0,0.0,0);

or

order(1,MKT,Submit,100,0.0,0.0,0);

produces in the logfile:

FIXME RPH to supplement

TBD: doco OCA
TBD: doco bracket

3.18.3 Peers

It has a synonym called wire; see wire (at: 3.30) which is also used, wireis
preferred in help system documentation matters.

55

3.19 past - ask history query

This form of the comand in obsolete, and pending re-write. (see: the note at
the start of Cp. 3).

3.19.1 Description

ask history query

past Op Cid I timeSpec;

where:

• Op: one of: add, del

• Cid: the contract id

Note: we discuss looking up a Contract ID in great detail later in this
work at: 8.1.3 Looking up a Contract.uid with join.

• I: the configuration id, into PastFilter, which we will describe in
more detail below.

• timeSpec: a specification of the ending time of the query, in one of the
following forms:

– now
where this is taken as the present date and time

– Ymd T()
where the argument is of the form: 20070921 15:16:50

Note: that there are two blank spaces seperating the YYYYMMDD
and the HH:MM:SS

– Epoch()
where the argument is in seconds since Unix Epoch

QUERY: Is epoch different from Epoch; a prior testing script ex-
ample used all lower case.

56

Note: We observe that if one sends along an ill-formed ending time Ymd T
value, one gets an error message of the following form from the TWS:

15:26:54:200 JTS-EServerSocket-655: Error: can’t parse

long string - java.lang.StringIndexOutOfBoundsException:

String index out of range: 8

15:26:54:201 JTS-EServerSocket-655: [19163:23:35:1:0:0:0:ERR] -

’rb’ : cause - Historical data query end date/time

string [200709 13:00:00] is invalid. Format is

’YYYYMMDD{SPACE}hh:mm:ss[{SPACE}TMZ]’.

15:26:54:201 JTS-EServerSocket-655: Anticipated error

jextend.d: Historical data query end date/time string

[200709 13:00:00] is invalid. Format is

’YYYYMMDD{SPACE}hh:mm:ss[{SPACE}TMZ]’.

Now to expand on I, the configuration id, in more detail:

I: the configuration id, points to a row in PastFilter by its uid index.
The row entry itself is either yet a further pointer off into a sub-table value,
or an ultimate fundemental natural unit, That table is described thus:

mysql> describe PastFilter ;

+----------+------------------+------+-----+---------+----------------+

| Field | Type | Null | Key | Default | Extra |

+----------+------------------+------+-----+---------+----------------+

| uid | int(10) unsigned | NO | PRI | NULL | auto_increment |

| tid | int(10) unsigned | NO | MUL | | |

| period | int(10) unsigned | YES | MUL | NULL | |

| reps | int(10) unsigned | NO | | 0 | |

| duration | int(10) unsigned | NO | | | |

| script | char(64) | NO | | | |

+----------+------------------+------+-----+---------+----------------+

which control:
57

• PastFilter.tid: a pointer through the HistoryTag.uid, and then either
enumerating a value, or that row itself in turn pointing off to a BarSize.uid

selected by the value in the HistoryTag.bar field for that row:

mysql> describe HistoryTag;

+----------+---+------+

| Field | Type | Null | ...

+----------+---+------+

| uid | int(10) unsigned | NO |

| rth_only | tinyint(1) | NO |

| format | enum(’ymdt’,’epoch’) | NO |

| what | enum(’TRADES’,’MIDPOINT’,’BID’,’ASK’,’BID/ASK’) | NO |

| bar | int(10) unsigned | NO |

+----------+---+------+

which is a truncated form of that DESCRIBE result.

In similar fashion, we wrap the enum MySQL Type specification for BarSize.

mysql> describe BarSize ;

----------------------------------+------+-----+---------+-------+

| Field | Type | Null | Key | Default | Extra |

----------------------------------+------+-----+---------+-------+

| uid | int(10) unsigned | NO | PRI | | |

| type | enum(’s01’,’s05’,’s15’,’s30’,

’m01’,’m02’,’m05’,’m15’,’m30’,

’h01’,’d01’) | NO | | | |

| secs | int(10) unsigned | NO | | | |

+-------+-------------------------+------+-----+---------+-------+

FIXME - RPH - 071126 – as this is now a permuted table, re-write
– showing all rth only (binary), what (TRADES, MIDPOINT, BID, ASK,
BID/ASK), format (ymdt, epoch), and bar (widths – 1 to 11, from Bar-

Width). This is 220 [= 2x5x2x11] rows.

FIXME – rework this section

For shim tarball versions released after September 2007, we decided to fully
pre-populate the HistoryTag table with a ‘cross-product’ (that is, a full ex-
pansion) of all valid combinations of the two HistoryTag.rth only values,
by the two HistoryTag.format values, by the five HistoryTag.what

enumeration of values, by the 11 rows in BarSize, to yield 220 [= 2x2x5x11]
rows.

mysql> select count(*) from HistoryTag;

+----------+

| count(*) |

+----------+

| 220 |

58

As an example, to seek ‘one second’ history, returned in the ‘ymdt’ for-
mat, we can see the available subset of candidate rows in HistoryTag

meeting that criteria thus:

mysql> select * from HistoryTag left

join BarSize on HistoryTag.bar = BarSize.uid

where BarSize.type like ’s01’ and

HistoryTag.format = ’ymdt’ ;

+-----+----------+--------+----------+-----+------+------+------+

| uid | rth_only | format | what | bar | uid | type | secs |

|<--- HistoryTag ------(added line)------->|<--- BarSize --->|

+-----+----------+--------+----------+-----+------+------+------+

| 1 | 0 | ymdt | TRADES | 1 | 1 | s01 | 1 |

| 12 | 0 | ymdt | MIDPOINT | 1 | 1 | s01 | 1 |

| 23 | 0 | ymdt | BID | 1 | 1 | s01 | 1 |

| 34 | 0 | ymdt | ASK | 1 | 1 | s01 | 1 |

| 45 | 0 | ymdt | BID/ASK | 1 | 1 | s01 | 1 |

| 111 | 1 | ymdt | TRADES | 1 | 1 | s01 | 1 |

| 122 | 1 | ymdt | MIDPOINT | 1 | 1 | s01 | 1 |

| 133 | 1 | ymdt | BID | 1 | 1 | s01 | 1 |

| 144 | 1 | ymdt | ASK | 1 | 1 | s01 | 1 |

| 155 | 1 | ymdt | BID/ASK | 1 | 1 | s01 | 1 |

+-----+----------+--------+----------+-----+------+------+------+

10 rows in set (0.00 sec)

Note: This cross-product obsoletes a discussion elsewehre in this ref-
erence to the mechanism by which one would add new PastFilter

detail specifications.

FIXME: to move that other text to an archival section of instructive
obsoleted matter, passed by in developmental changes.

So if we wanted restrict this further to a simple RTH TRADES in
‘ymdt’ reply message format, with ‘one second’ value for a half-hour
duration, we would use a PastFilter.uid value found as follows:

59

mysql> select PastFilter.uid, PastFilter.duration,

HistoryTag.rth_only, HistoryTag.format,

HistoryTag.what, BarSize.type from PastFilter

left join HistoryTag on PastFilter.tid = HistoryTag.uid

left join BarSize on HistoryTag.bar = BarSize.uid

where PastFilter.duration = ’1800’ and

BarSize.type like ’s01’ and

HistoryTag.format = ’ymdt’ ;

+-----+----------+----------+--------+--------+------+

| uid | duration | rth_only | format | what | type |

+-----+----------+----------+--------+--------+------+

| 21 | 1800 | 1 | ymdt | TRADES | s01 |

+-----+----------+----------+--------+--------+------+

• PastFilter.period: the delay, in seconds, before any repeated past
History query is re-performed; see also, the next field: PastFilter.reps

• PastFilter.reps: the quantity, i.e., number of times (periods), which
the query is repeated; if zero, a single time with no periodic repetition.
This defaults to zero.
QUERY: does this then imply that a value of 1 has two instances?

• PastFilter.duration: the quantity, i.e., number of samples (always
in seconds) for the total maximum sample to look back.

TBD: show a RTH which shortens the lookback span, and how it is
handled

• PastFilter.script: what, if any, script to exec after the History data
is retrieved.

Note: We can make no representation as to whether any such script is
run before, during, or after the MySQL INSERT of the result of that past
command query; in part this is because the timing one would observe
is not expressly knowable in all instances, absent additional design,
coding, and debugging of fairly complex result code checking, retry,
failure handling, and ultimately perfomance limiting case checking into
the shim. We choose not to proceed down that path at present.

Instead, the script in question is passed an argument, containing a well-
formed and predictibly named file name [e.g., STK.SMART.WYNN.hql],
with the query results, and upon which it may rely as to completeness
according to the semantics of the underlying operating system. The

60

‘tuple’ consists of an expansion of the Contract.uid values threaded
back with a LEFT JOIN for: SecType.type, a dot, Exchange.name,
a dot, and Symbol.name.

mysql> select Contract.uid, SecType.type,

Exchange.name, Symbol.name from Contract

left join Symbol on Contract.sid = Symbol.uid

left join SecType on Symbol.tid = SecType.uid

left join Exchange on Contract.route = Exchange.uid

where Contract.uid = ’166’ ;

+-----+------+-------+------+

| uid | type | name | name |

+-----+------+-------+------+

| 166 | STK | SMART | WYNN |

+-----+------+-------+------+

Note: We do not presently include a mechanism for a script to dis-
ambiguate a Future or Option front month from a prior (expired), or
longer date expiration, nor to determine a Put from a Call, nor a strike
price for an Option. This is on the assumption here, as with the expan-
sions in file output, syslog entries, and so forth, that the downstream
client already knows what it is asking for, and can infer the rest from
the response context.

TBD: describe how called this exec relates to man 3 exec

TBD: describe how the argument file argv is handed to the child script

3.19.2 Usage

Minimal usage:

past add 177 1 Ymd_T(20070921 15:16:50);

which asks for a history dataset, and inserts the return into the shim’s
database.

TBD: add a section regarding removing content which needs to persist to
another database – draft written in dump-data.php

produces in the logfile:

Feb 6 11:29:38 centos-4 : shim|data|0.28| 6225|41378| 6600225|

3|17| 2|177|30|

Note that history detail lines do NOT carry the shim timestamp.
61

Feb 6 11:29:38 centos-4 : shim|data|0.28| 6225|

0| 1| 1|0|1|1|20070206 11:29:08|12681.0|12681.0|12681.0|

12681.0| 26|12681.0|false|FUT.SMART.YM.

Feb 6 11:29:38 centos-4 : shim|data|0.28| 6225|

0| 1| 1|0|1|1|20070206 11:29:09|12681.0|12681.0|12681.0|

12681.0| 0|12681.0|false|FUT.SMART.YM.

...

Feb 6 11:29:38 centos-4 : shim|data|0.28| 6225|

0| 1| 1|0|1|1|20070206 11:29:37|12683.0|

12683.0|12683.0|12683.0| 0|12683.0|false|FUT.SMART.YM.

Feb 6 11:29:39 centos-4 : shim|data|0.28| 6225|41378| 6638595|

4|100| 5|# |4|100|5|event: history insert|(177, 1, 2007

0206 11:29:08 -- 20070206 11:29:37)|

Feb 6 11:29:39 centos-4 : shim|data|0.28| 6225|41379| 7543195|

2| 7| 0|quit;|

The last line before the quit; notice is an advice from the shim, that a
MySQL INSERT has been initiated with the database server containing the
retrieved data, in an appropriate form which is mindful of TBD: name the
original v. smoothed forms.

3.19.3 Extended example

Specific Usages:

This example has appeared in the sample scripts in the recent past.

Note: The following example does MySQL SELECT operations against
table contents from a pre-October 2007 version of the shim. The particular
row contents which a reader may observe will almost certainly contain differ-
ent uid values, than existed at that point in time for tables: PastFilter,
BarSize, and HistoryTag. This is a byproduct of the fact that in a SQL
database, the sequencing of rows is not guaranteed absent a GROUP BY or
ORDER BY clause, through which an ordering is imposed.

past add 180 11 now;

which we can decode to give a ‘tuple’ for the Contract in question, using its
Contract.uid: 180

62

mysql> select Contract.uid, Contract.sid, SecType.type, Exchange.name,

-> Symbol.name, FutDetail.expiry from Contract

-> left join Symbol on Contract.sid = Symbol.uid

-> left join SecType on Symbol.tid = SecType.uid

-> left join Exchange on Contract.route = Exchange.uid

-> left join FutDetail on Contract.tag = FutDetail.uid

-> where Contract.uid = ’180’ ;

+-----+------+------+-------+------+--------+

| uid | sid | type | name | name | expiry |

+-----+------+------+-------+------+--------+

| 180 | 5494 | FUT | SMART | YM | 200712 |

+-----+------+------+-------+------+--------+

As noted, the third argument is a tag, pointing into the PastFilter

table. This table in turn has sub-tables feeding it, so that value needs further
decoding for easier human use:

mysql> select * from PastFilter where PastFilter.uid = ’11’ ;

+-----+-----+--------+------+----------+--------+

| uid | tid | period | reps | duration | script |

+-----+-----+--------+------+----------+--------+

| 11 | 2 | 3 | 0 | 30 | hql2ps |

+-----+-----+--------+------+----------+--------+

and in doing the full MySQL LEFT JOIN based expansion, we end up
with a query like this:

select PastFilter.uid, HistoryTag.what, HistoryTag.format,

HistoryTag.rth_only, BarSize.type, PastFilter.script

from PastFilter

left join HistoryTag on PastFilter.tid = HistoryTag.uid

left join BarSize on HistoryTag.bar = BarSize.uid

where PastFilter.uid = ’11’ ;

which yields on our reference database:
63

mysql> select PastFilter.uid, HistoryTag.what, HistoryTag.format,

-> HistoryTag.rth_only, BarSize.type, PastFilter.script

-> from PastFilter

-> left join HistoryTag on PastFilter.tid = HistoryTag.uid

-> left join BarSize on HistoryTag.bar = BarSize.uid

-> where PastFilter.uid = ’11’ ;

+-----+--------+--------+----------+------+--------+

| uid | what | format | rth_only | type | script |

+-----+--------+--------+----------+------+--------+

| 11 | TRADES | ymdt | 1 | s05 | hql2ps |

+-----+--------+--------+----------+------+--------+

So for that complete example we are going to see contract:
FUT — SMART — YM — 200712

with Trades at 5 second intervals with data from regular trading hours, which
then also runs the script: hql2ps at each history reply message series end.

TBD: RPH: results – perhaps this next section should be back in the later
narrative.

As an example on how a end user might extend the History data to be re-
trieved, assume that we are interested in harvesting History detail for a cou-
ple of timeframes not presently in the PastFilter table using a shim tarball
from before October 2007. We will again look at FUT.SMART.YM.200712 as
follows:

Example Timeframe Covered Hours
1 1 second rth only
2 1 minute rth only
3 1 minute wrap rth with pre and post

But, with a shim tarball pre-dating Octoer 2007, we needed to add some
relevant new query time frames mentioned in that table. We demonstrate
how we would do this using the MySQL INCLUDE fragment:

[herrold@centos-4 shim]$ cat rph_hx.sql

-- rph_hx.sql

--

-- add some new history query PastFilter intervals

--

-- table addition needs at least user: ’code’ rights

--

-- non rth queries by minute

insert into HistoryTag (bar, what, format, rth_only)

select BarSize.uid, ’TRADES’, ’ymdt’, ’0’ from BarSize
64

where BarSize.type = ’m01’ ;

-- hour hour of YM by second

-- 1800 seconds in a half hour

insert into PastFilter (tid, reps, duration)

select BarSize.uid, ’0’, ’1800’ from BarSize

where BarSize.type = ’s01’;

--

-- YM rth matching NYSE hours by minute

-- for 0930-1600 (== 390 minutes, 23400 sec)

insert into PastFilter (tid, reps, duration)

select BarSize.uid, ’0’, ’23400’ from BarSize

where BarSize.type = ’m01’ ;

--

-- YM wider (include some non rth) hours by minute

-- for 0830 to 1645 (== 495 minutes, 30600 sec) AND

-- the new BarSize non-RTH entry

-- we add the left join here

insert into PastFilter (tid, reps, duration)

select HistoryTag.uid, ’0’, ’30600’ from HistoryTag

left join BarSize on HistoryTag.bar = BarSize.uid

where BarSize.type = ’m01’ and

HistoryTag.what = ’TRADES’ and

HistoryTag.format = ’ymdt’ and

HistoryTag.rth_only = ’0’ ;

[herrold@centos-4 shim]$

The added line or lines (for HistoryTag and PastFilter, respectively)
are shown at the end of each table dump:

mysql> select * from HistoryTag ;

+-----+-----+--------+--------+----------+

| uid | bar | what | format | rth_only |

+-----+-----+--------+--------+----------+

| 1 | 1 | TRADES | ymdt | 1 |

...

| 5 | 5 | TRADES | ymdt | 1 |

...

| 11 | 11 | TRADES | ymdt | 1 |

| 12 | 5 | TRADES | ymdt | 0 |

+-----+-----+--------+--------+----------+
65

mysql> select * from PastFilter ;

+-----+-----+--------+------+----------+--------+

| uid | tid | period | reps | duration | script |

+-----+-----+--------+------+----------+--------+

| 1 | 1 | NULL | 0 | 30 | |

...

| 5 | 5 | NULL | 0 | 300 | |

...

| 12 | 5 | 7 | 0 | 30 | hql2ps |

| 13 | 1 | NULL | 0 | 1800 | |

| 14 | 5 | NULL | 0 | 23400 | |

| 15 | 12 | NULL | 0 | 24300 | |

+-----+-----+--------+------+----------+--------+

And to ease understanding that MySQL INSERT example, we show the
one second, one minute, and other BarWidth values ending in 01:

mysql> select * from BarSize where BarSize.type like ’%01’ ;

+-----+------+-------+

| uid | type | secs |

+-----+------+-------+

| 1 | s01 | 1 |

| 5 | m01 | 60 |

| 10 | h01 | 3600 |

| 11 | d01 | 86400 |

+-----+------+-------+

so we can build up a query set like this:

ping YM one second bar set at EoD for 21 Sep 2007 ending at 16:00:00;

past add 180 13 Ymd_T(20070921 16:00:00);

quit;

We see can see the effect of these commands by cleaning out the database
from some prior experimentation (As HistoryBar is a table only written
to by the shim, the shim is indifferent to the starting uid, or any gaps in the
detail present in that table.) The MySQL DELETE FROM operator does not
reset the uid counter to an initial state of 0. Accordingly our HistoryBar.uid
detail line values do not commence at 0 in this example.

mysql> delete from HistoryBar;

Query OK, 1800 rows affected (0.07 sec)

mysql> select * from HistoryBar ;

Empty set (0.00 sec)
66

And then we run the commands to harvest the history of the last half-
hour of the ‘regular trading hours’ OHLC data, at one second summarization
intervals:

past add 180 13 Ymd_T(20070921 16:00:00);

quit;

Turning back to examine the database:

mysql> select * from HistoryBar limit 2 ;

+------+-----+-----+---------------------+------------+------------+

------------+------------+-----+------------+----------+

| uid | cid | bid | time | open | high |

low | close | vol | wap | has_gaps |

+------+-----+-----+---------------------+------------+------------+

------------+------------+-----+------------+----------+

| 1802 | 180 | 1 | 2007-09-21 15:30:00 | 13929.0000 | 13929.0000 |

13929.0000| 13929.0000 | 5 | 13929.0000 | 0 |

| 1803 | 180 | 1 | 2007-09-21 15:30:01 | 13930.0000 | 13931.0000 |

13930.0000 | 13931.0000 | 19 | 13930.0000 | 0 |

mysql> select * from HistoryBar;

...

| 3600 | 180 | 1 | 2007-09-21 15:59:58 | 13909.0000 | 13909.0000 |

13909.0000 | 13909.0000 | 2 | 13909.0000 | 0 |

| 3601 | 180 | 1 | 2007-09-21 15:59:59 | 13908.0000 | 13909.0000 |

13907.0000 | 13908.0000 | 39 | 13908.0000 | 0 |

+------+-----+-----+---------------------+------------+------------+

1800 rows in set (0.03 sec)

So we have demonstrated the retrieval of one second data from upstream.
Retrieving a full day’s data is not much different

ping YM one minute bar RTH set at EoD for 21 Sep 2007 ending at 16:00:00;

past add 180 14 Ymd_T(20070921 16:00:00);

quit;

FIXME: pacing misbehaviour noted: The foregoing command sequence,
pasted all at once, does not wait for the pending History return to clear.
RFE: Can quit; wait for the history retrieval timeout, if there is an active
query in flight?

67

Oct 8 14:48:06 centos-4 : 30074|53286| 2551597|1| 2| 0|

ping YM one minute bar RTH set at EoD for 21 Sep

2007 ending at 16:00:00;|

Oct 8 14:48:06 centos-4 : 30074|53286| 2551765|1|19| 0|

past add 180 14 Ymd_T;|

Oct 8 14:48:06 centos-4 : 30074|53286| 2551842|1| 7| 0|

quit;|

Oct 8 14:48:06 centos-4 : 30074|53286| 2551908|2|20| 3|

1|180|14|Ymd_T|

But grant a one seond sleep (in the external client process feeding the
shim), and it works:

ping YM one minute bar RTH set at EoD for 21 Sep 2007 ending at 16:00:00;

past add 180 14 Ymd_T(20070921 16:00:00);

[sleep 1]

quit;

And indeed, when run as a second connection, with a make test running
in a second connection panel, spread out in time, and without the quit; being
stated until after an arbitrary delay (here, eight minutes, from 15:00:37 to
15:08:40 for process ID: 30696), and then run a second time as well, it works
fine:

...

Oct 8 15:00:37 centos-4 : 30696|54037| 16140163|3| 1| 1|

20070921 15:59:00|13911.0|13915.0|13907.0|13908.0|

496|13911.0|false|FUT.SMART.YM.

Oct 8 15:00:37 centos-4 : 30696|54037| 16651263|4|100| 5|

|4|100|5|event: history insert|

(180, 5, 20070921 09:30:00 -- 20070921 15:59:00)

...

Oct 8 15:08:40 centos-4 : 30696|545| 499671050|1| 7| 0|quit;|

And to complete the set of examples, with a retrieval including data from
outside of ‘regular trading hours’, using the new PastFilter.uid = 15 query
that we added earlier:

Oct 8 15:25:15 centos-4 : 31639|55515| 117661378|1|19| 0|

past add 180 15 Ymd_T;|

Oct 8 15:25:15 centos-4 : 31639|55515| 117681245|2|20| 3|

3|180|15|Ymd_T|

Oct 8 15:25:15 centos-4 : 31639|55515| 118049738|3|17|
68

| 180|510|

Oct 8 15:25:15 centos-4 : 31639|55515| 118038614|3| 1| 1|

20070921 08:15:00|13917.0|13921.0|13917.0|13921.0

| 40|13920.0|false|FUT.SMART.YM.

Oct 8 15:25:15 centos-4 : 31639|55515| 118038637|3| 1| 1|

20070921 08:16:00|13921.0|13923.0|13920.0|13923.0

| 29|13922.0|false|FUT.SMART.YM.

...

Oct 8 15:25:16 centos-4 : 31639|55515| 118049567|3| 1| 1|

20070921 16:43:00|13900.0|13900.0|13900.0|13900.0

| 0|13900.0|false|FUT.SMART.YM.

Oct 8 15:25:16 centos-4 : 31639|55515| 118049587|3| 1| 1|

20070921 16:44:00|13900.0|13901.0|13900.0|13901.0

| 4|13901.0|false|FUT.SMART.YM.

Oct 8 15:25:16 centos-4 : 31639|55515| 118847318|4|100| 5|

|4|100|5|event: history insert|

(180, 5, 20070921 08:15:00 -- 20070921 16:44:00)|

showing data spanning from 08:15:00 to 16:44:00.
TBD: describe further the INSERT mechanism into HistoryBar, the

optional script call, and highlighting the need to harvest anything needed
more permamently with our sample HistoryBar extract script.

3.19.4 Peers

There are three other ’peer’ subscriptions: book (at: 3.4), scan (at: 3.23), and
tick (at: 3.24).

It has a synonym called history; see history (at: 3.11) which is also used.
past is preferred in help system documentation matters

69

3.19.5 Listing of: help past

Refreshed from: shim-071228

70

3.20 ping - log time, comment through EOL

3.20.1 Description

Pass through a time mark, and comment through EOL; A successful return
also verifies a presently live connection from the client through the shim to
the upstream TWS.

3.20.2 Usage

Minimal usage:
The commands: ping alone is unusual in that it alone take optional com-

ment content through the next semicolon: ;

ping acme;

quit;

produces in the logfile:
(example from bin/includes)

Feb 5 21:29:34 centos-4 : shim|data|0.28| 2476|77374| 5148896|

2| 2| 0|ping acme;|

Feb 5 21:29:44 centos-4 : shim|data|0.28| 2476|77384| 14649744|

2| 7| 0|quit;|

3.20.3 Peers

There is one other ’peer’ command for programatically checking connectiv-
ity: next (at: 3.16), which when answered, indicates the presence of a live
connection between the TWS and IB (and implicitly between the client, the
shim, and the TWS).

71

3.20.4 Listing of: help ping

Refreshed from: shim-071228

72

3.21 quit - exit the program

3.21.1 Description

That’s it for now

3.21.2 Usage

Minimal usage:

quit;

(From bin/includes)
produces in the logfile (this is the full session, of a minimum possible well

formed shim session):

Feb 5 18:08:59 centos-4 : shim|data|0.28|29075|65338| 1022377|

4|100| 5|# |4|100|5|*******************|

Feb 5 18:08:59 centos-4 : shim|data|0.28|29075|65338| 1022384|

4|100| 5|# |4|100|5|version|0.28|070202|

Feb 5 18:08:59 centos-4 : shim|data|0.28|29075|65338| 1022387|

4|100| 5|# |4|100|5|*******************|

Feb 5 18:08:59 centos-4 : shim|data|0.28|29075|65338| 1022483|

3| 9| 1|1|

Feb 5 18:08:59 centos-4 : shim|data|0.28|29075|65339| 1335811|

3| 4| 2| -1|2104|Market data farm connection is OK:usfuture|

Feb 5 18:08:59 centos-4 : shim|data|0.28|29075|65339| 1335841|

3| 4| 2| -1|2104|Market data farm connection is OK:usfarm|

Feb 5 18:08:59 centos-4 : shim|data|0.28|29075|65339| 1335871|

3| 4| 2| -1|2107|HMDS data farm connection is inactive

but should be available upon demand.:ushmds2a|

Feb 5 18:09:18 centos-4 : shim|data|0.28|29075|65358| 21039847|

2| 7| 0|quit;|

See also: wait (at: 3.27), wake (at: 3.28)

73

3.21.3 Listing of: help quit

Refreshed from: shim-071228

74

3.22 read - FIXME

3.22.1 Description

re-read the entire database, adding new rows found.
It is a mandatory precursor to some commands. After a order detail line

has been added to the LineItem table, the read command is required, before
that newly added line is known to and threfore properly able to be used by
the shim, as in an order (see: 3.18) command.

3.22.2 Usage

Minimal usage:

produces in the logfile:

3.22.3 Peers

There is one other somewhat similar ’peer’ command load (at: 3.14), which
also causes a re-read of the database.

3.22.4 Antecedents

The read command is a successor to the now obsolete look command.

75

3.22.5 Listing of: help read

Refreshed from: shim-071228

76

3.23 scan - event scanner TBD

FIXME - not yet implemented

3.23.1 Description

event scanner TBD

book Op Cid I;

where:

• Cid: the contract id

• Op: one of: add, del

• Cid: the contract id

• I: the configuration id, from FIXME – TBD

FIXME - not yet implemented

3.23.2 Usage

Minimal usage:

TBD - add a scrape

produces in the logfile:

TBD - add a scrape

TBD - add a scrape

3.23.3 Peers

There are three other ’peer’ subscriptions: book (at: 3.4), past (at: 3.19), and
tick (at: 3.24).

77

3.24 tick - subscribe mk data

This form of the comand in obsolete, and pending re-write. (see: the note at
the start of Cp. 3).

3.24.1 Description

subscribe to market data

tick Op Cid I;

where:

• Op: one of: add, del

• Cid: the contract id, from Contract.uid

• I: the configuration id, from TickConfig.uid

3.24.2 Usage

Minimal usage:

tick add 177 1;

quit;

– no example in bin/includes
produces in the logfile:

Feb 6 11:41:08 centos-4 : shim|data|0.28| 6429|42068| 14508289|

2|13| 0|tick add 177 1;|

Feb 6 11:41:08 centos-4 : shim|data|0.28| 6429|42068| 14508331|

3| 1| 5|177|YM|FUT|200703|0.00||1|ECBOT||USD||

Feb 6 11:41:08 centos-4 : shim|data|0.28| 6429|42068| 14587457|

3| 1| 5|177|1| 12684.0| 8|1|price.outcry.bid. |FUT.SMART.YM.

...

Feb 6 11:41:08 centos-4 : shim|data|0.28| 6429|42068| 14587891|

3| 1| 5|177|9| 12703.0| 0|0|price.summary.close.|FUT.SMART.YM.

Feb 6 11:41:09 centos-4 : shim|data|0.28| 6429|42069| 15884283|

2| 7| 0|quit;|

3.24.3 Peers

There are three other ’peer’ subscriptions: book (at: 3.4), past (at: 3.19), and
scan (at: 3.23).

78

3.24.4 Future explanation

FIXME: Explain tick argument TickConfig feature variation
There is the I: Configuration ID tag in the command, which points into

the TickConfig. We carry it here, to provide full access to all tick request
features.

QUERY: What are the variations, and how might they be useful?

mysql> describe TickConfig;

+-------+---------------------+------+-----+---------+----------------+

| Field | Type | Null | Key | Default | Extra |

+-------+---------------------+------+-----+---------+----------------+

| uid | int(10) unsigned | NO | PRI | NULL | auto_increment |

| type | enum(’tick’,’time’) | NO | | tick | |

| bar | int(10) unsigned | NO | MUL | | |

| bars | int(10) unsigned | NO | | 1 | |

+-------+---------------------+------+-----+---------+----------------+

mysql> select * from TickConfig ;

+-----+------+-----+------+

| uid | type | bar | bars |

+-----+------+-----+------+

| 1 | tick | 5 | 9 |

| 2 | time | 2 | 9 |

| 3 | tick | 5 | 20 |

| 4 | time | 2 | 20 |

+-----+------+-----+------+

FIXME - continue expansion of tick like past example

79

3.24.5 Listing of: help tick

Refreshed from: shim-071228

80

3.25 transmit - FIXME

3.25.1 Description

FIXME - alias to xmit (at: 3.31)
FIXME - add pointer manually

3.25.2 Usage

Minimal usage:

TBD - add a scrape

produces in the logfile:

TBD - add a scrape

81

3.26 verb - set tws log level

3.26.1 Description

set tws log level
These are several levels available:

verb Level;

where:

• Level: one of: System, Error, Warning, Information, Detail

3.26.2 Usage

Minimal usage:

verb Detail;

quit;

(From bin/includes)
produces in the logfile:

Feb 6 11:44:56 centos-4 : shim|data|0.28| 6447|42296| 1019387|

4|100| 5|# |4|100|5|*******************|

Feb 6 11:44:56 centos-4 : shim|data|0.28| 6447|42296| 1019393|

4|100| 5|# |4|100|5|version|0.28|070112|

Feb 6 11:44:56 centos-4 : shim|data|0.28| 6447|42296| 1019396|

4|100| 5|# |4|100|5|*******************|

Feb 6 11:44:56 centos-4 : shim|data|0.28| 6447|42296| 1019490|

3| 9| 1|1|

Feb 6 11:44:56 centos-4 : shim|data|0.28| 6447|42296| 1399452|

3| 4| 2| -1|2104|Market data farm connection is OK:usfuture|

Feb 6 11:44:56 centos-4 : shim|data|0.28| 6447|42296| 1399485|

3| 4| 2| -1|2104|Market data farm connection is OK:usfarm|

Feb 6 11:44:56 centos-4 : shim|data|0.28| 6447|42296| 1399516|

3| 4| 2| -1|2107|HMDS data farm connection is inactive

but should be available upon demand.:ushmds2a|

Feb 6 11:45:01 centos-4 : shim|data|0.28| 6447|42301| 6100183|

2| 8| 0|verb Detail;|

Feb 6 11:45:01 centos-4 : shim|data|0.28| 6447|42301| 6100215|

3|14| 1|5|

Feb 6 11:45:02 centos-4 : shim|data|0.28| 6447|42302| 7318151|

2| 7| 0|quit;

82

3.26.3 Listing of: help verb

Refreshed from: shim-071228

83

3.27 wait - sleep shim N secs

3.27.1 Description

sleep shim N secs
There is a companion: wake which causes an early termination of an

active wait.

wait N;

where:

• N: an integer

3.27.2 Usage

Minimal usage:

wait 5;

quit;

– no example in bin/includes
produces in the logfile:

Feb 6 12:41:18 centos-4 : shim|data|0.28| 7286|45678| 3696040|

2| 5| 0|wait 5;|

Feb 6 12:41:21 centos-4 : shim|data|0.28| 7286|45681| 5957462|

2| 7| 0|quit;|

FIXME: more narrative explaining how it will hold up a quit but due to
the input reader’s greedy nature, not much else.

See also: quit (at: 3.21), and wake (at: 3.28)

84

3.27.3 Listing of: help wait

Refreshed from: shim-071228

85

3.28 wake - clear pause count

clear a pause count created with wait
This is a companion to wait, in that it causes an early termination of any

running wait

3.28.1 Description

clear any pause (wait) count at once

3.28.2 Usage

Minimal usage:

wait 60;

wake;

quit;

This fragment produces in the logfile:

Feb 5 21:38:17 centos-4 : shim|data|0.28| 2498|77897| 6280957|

2| 5| 0|wait 60;|

Feb 5 21:38:19 centos-4 : shim|data|0.28| 2498|77899| 8546237|

2| 6| 0|wake;|

Feb 5 21:38:22 centos-4 : shim|data|0.28| 2498|77902| 11223130|

2| 7| 0|quit;|

That is, the wake at line 2 cancels the wait at line 1, and permits the quit
at line 2 proceed earlier than otherwise scheduled.

In the next example, however, and perhaps counterintuitively, the wake
at line 3 “reached through” the quit, to “prematurely” cancel a previously
running wait at line 1, and then permits the quit at line 2 proceed earlier
than otherwise scheduled.

wait 60;

quit;

wake;

This arises from the way the command line queue is read to exhaustion of
compeleted lines, and then given effect so much as possible; the wait line 1,
the quit is in the queue to run in 60 seconds, and then the wake at line 3
is encounterred, and the running wake is ended. The quit then immediately
follows.

86

Feb 5 21:38:31 centos-4 : shim|data|0.28| 2499|77911| 4076453|

2| 5| 0|wait 60;|

Feb 5 21:38:34 centos-4 : shim|data|0.28| 2499|77914| 7291713|

2| 7| 0|quit;|

Feb 5 21:38:38 centos-4 : shim|data|0.28| 2499|77918| 11176296|

2| 6| 0|wake;|

So in reviewing the timestamps, it is clear that each has the same effect of
cancelling the wait, and then promoting the next following into effect, where
this being the quit in each case.

See also: quit (at: 3.21, wait (at: 3.27)

87

3.28.3 Listing of: help wake

Refreshed from: shim-071228

88

3.29 wild - abstract contract

3.29.1 Description

FIXME - not yet implemented
– companion to info (at: 3.12) for wildcard contract information lookup

3.29.2 Usage

Minimal usage:

produces in the logfile:

produces in the stderr:

3.29.3 Peers

There is one other ’peer’ command for obtaining details: for a specific con-
tract: info (at: 3.12).

89

3.30 wire - accumulate orders

3.30.1 Description

accumulate orders

3.30.2 Peers

It has a synonym called order; see order (at: 3.18) which is also used. wire is
preferred in help system documentation matters.

90

3.30.3 Listing of: help wire

Refreshed from: shim-071228

91

3.31 xmit - release tws order

3.31.1 Description

release tws order
QUERY: believed obsolete
QUERY – one or many – is this a companion to wire?
NOTE: There is a commented out partial of xmit in bin/includes

3.31.2 Usage

Minimal usage:

TBD -- add a scrape

produces in the logfile:

TBD - add a scrape

3.31.3 See related

QUERY: related to order (wire) ?

92

Chapter 4

Parameters, common to the
command verbs

93

4.1 Parameters to the command verbs

4.1.1 Simple parameters

• N: the number of seconds

• Level: one of: System, Error, Warning, Information, Detail

• Cid: the contract id, a database uid attribute value of Contract

• Op: one of: add, del

• I: the configuration id, a database table uid, one of, by command verb:

– tick: TickConfig

– book: DepthLimit

– past: PastFilter

4.1.2 Order (wire) parameters

• Oid: the line item id, a database uid attribute value of LineItem

• Type: an order type, e.g., MKT, LMT, STP, or TRAIL

• Op: one of: Create, Submit, Modify, Cancel

• Q: the quantity

• P: the limit price

• Aux: the auxiliary price

• T: the timeout (just a dummy for now, not yet used)

94

Chapter 5

‘shim –help’ matters

95

5.1 –help - short form help from the program

5.1.1 Description

Earlier through this reference, we placed, per command, the output from
running the shim in –help mode, for each supported command:

• acct at: 3.2.3

• book at: 3.4.4

• info at: 3.12.3

• list at: 3.13.2

• load at: 3.14.4

• news at: 3.15.4

• next at: 3.16.3

• open at: 3.17.2

• past at: 3.19.4

• ping at: 3.20.3

• quit at: 3.21.2

• read at: 3.22.4

• tick at: 3.24.4

• verb at: 3.26.2

• wait at: 3.27.2

• wake at: 3.28.2

• wire at: 3.30.2

This leaves the following output available under –help mode, yet to print:

• args at: 5.1.2

• cmds at: 5.1.3

• help at: 5.1.1
96

• link at: 5.1.4

• mode at: 5.2

• opts at: 5.3

which we set forth below.
This section is maintained as a ‘aid to memory’ through mechanical gen-

eration, and may lag from time to time the present state of the shim. Of
course, in case of uncertainty or conflict, the source code itself is authorita-
tive.

97

5.1.2 Listing of: help help

Refreshed from: shim-071228

98

5.1.3 Listing of: help args

Refreshed from: shim-071228

99

5.1.4 Listing of: help cmds

Refreshed from: shim-071228

100

5.1.5 Listing of: help link

Refreshed from: shim-071228

101

5.2 shim Modes

The shim has several modes of operation. Normal day to day operation will
use: data locks out order logic; or risk permits orders. As always, verify
through testing your trust level in the shim code before using it with a live
account.

1. data

2. risk

There is a mode to permit starting the shim with no requirement of a
TWS connection, nor of a working database. It also permits help subsystem
use.

1. help

The last two are primarily for developers.

1. play

2. unit

102

5.2.1 Listing of: help mode

Refreshed from: shim-071228

103

5.3 shim Options

The shim has several options which may modify a given modes of operation.
Normal day to day operation might use:

1. file

2. cout

3. logd

4. init

5. pane

6. load

7. save

8. fast

We do not describe in great detail them here, but rather leave the de-
scription for the following subsection for the present.

104

5.3.1 Listing of: help opts

Refreshed from: shim-071228

105

5.4 .shimrc - optional file to describe shim pa-

rameters

5.4.1 Usage

Minimal usage:
The shim will colate the connection data needed for the upstream TWS

connection, and fo rthe database connection from several sources; A higher
priority specification will over-ride an earlier one.

The shim sources ship with default settings which look for a local TWS,
and a local database. The –help command has full and particular details,
and it follows this section.

Basically, the compiled in defaults (which are set out in src/data.c) may
be over-ridden by:

1. Any .shimrc file found at the $HOME [or /] directory of the Unix

$USER running the shim.

2. Any dbms or feed commands, either from a script file, or as manually
entered in repsonse to the promots for, first dbms and then feed, but
only in such cases as the shim was started with the init option.

Note: if the init option is used, entries for both dbms or feed are required
befor the timeout.

A sample commmand line session appears as follows:

[herrold@centos-4 shim_071109]$./shim --data init

...

Enter the dbms connect parameters via the dbms command, using the format:

dbms DbmsName DbmsHost TableSet UserName Password;

dbms mysql xps400.first.lan rph_testing rph_shim 0;

Ok

Enter the upstream connect values via the feed command, using the format:

feed FeedName FeedHost FeedPort;

feed tws xeon.first.lan 7496;

Ok

The trading shim has finished program initialization, including the

construction of successful connections to the database and IB tws.

quit;

[herrold@centos-4 shim_071109]$
106

Use of an .shimrc file, produces no output in the logfile; input manually
entered at the command line is echoed by the shell, but the shim does not
pass them through to the stdout, absent the use of the 2 cout command line
option. All the shim prompts are to the stderr.

We can see where output is being routed by the shell, between the std-
out, the stderr, and echoing of the stdin thus. All visible input stdin was
locally typed, and thus is visible when echoed by the shell (but not from an
appearance on the stdout).

[herrold@centos-4 shim_071210]$./shim --data init 2> /dev/null

dbms mysql xps400.first.lan rph_testing rph_shim 0;

feed tws xeon.first.lan 7496;

quit;

[herrold@centos-4 shim_071210]$

In the next example, we see that

[herrold@centos-4 shim_071210]$./shim --data init > /dev/null

Enter the dbms connect parameters via the dbms command, using the format:

dbms DbmsName DbmsHost TableSet UserName Password;

dbms mysql xps400.first.lan rph_testing rph_shim 0;

Ok

Enter the upstream connect values via the feed command, using the format:

feed FeedName FeedHost FeedPort;

feed tws xeon.first.lan 7496;

Ok

The trading shim has finished program initialization, including the

construction of successful connections to the database and IB tws.

quit;

[herrold@centos-4 shim_071210]$

5.4.2 Peers

There are the two ‘peer’ commands to the init option: dbms (at: 3.6) and,
feed (at: 3.9) which permit runtime description of the database to which the
shim is to connect, or the TWS to which the shim is to connect, respectively.

107

108

Chapter 6

Numbering - Commands,
Requests, Messages, Comments

The trading shim is a command-line and dbms controlled inter-
face to the socket-based API of Interactive Brokers’ Trader Work-
station, abbreviated as the IB tws socket api, or simply ’tws’.
– [trading-shim home page]

6.1 Overview on message numbering

Let’s break that down a bit, and consider just the messages of various type,
which the shim passes to and receives from the TWS and from its downstream
clients; for the present, we put aside the shim’s communication with the
database.

The shim, under this simplified analytic model, is a tool to accept com-
mand line input (Commands). It then consults its view of a database (which
we ignore here). The shim emits a well formed series of binary strings across
a socket connection to a TWS (Requests). The TWS then replies to the shim
with a well formed series of binary strings, again across a socket connection
back (Messages). The shim decodes all these messages, and annotates parts
of the binary strings, and formats all three message strings, along with adding
commentary on some state machine status matters (Comments).

The first three fields of message entries are reflected by small integer
numbers in the first three substantive entries of formatted ShimText or logd
output.

109

6.2 message class, message value and mes-

sage version

Those first three values represent the message class, the message value, and
message version. We are familiar with these from viewing such output:

15973|42454| 1033567|4|100| 0|# |4|100|0|****************|

15973|42454| 1033577|4|101| 0|# |4|101|0|0.52|070831|risk|

15973|42454| 1033580|4|100| 0|# |4|100|0|****************|

15973|42454| 1033562|4|102| 0|# |4|102|0|23|15973|39|

20080114 11:47:33 EST|Connect with: cv 23, id 15973, sv 39|

15973|42454| 1176390|3| 9| 1|1|

15973|42454| 1194530|3| 4| 2| -1|2104|

Market data farm connection is OK:u

sfarm|

15973|42454| 1194554|3| 4| 2| -1|2104|

Market data farm connection is OK:usfuture|

15973|42454| 1194577|3| 4| 2| -1|2106|

HMDS data farm connection is OK:ushmds2a|

15973|42457| 3990801|1|20| 0|past add 181 6 now;|

15973|42464| 10422584|2|20| 3|1|181|6|now|

15973|42464| 10938322|3|17| 3| 181|8|

15973|42464| 10938103|3| 1| 1|20080114 11:40:13|

12747.0|12751.0|12747.0|12749.0| 89|12749.0|

false|FUT.SMART.YM.

We can use the Unix cut and head commands to focus on the parts we
are interested in discussing:

[herrold@centos-5 shim_080114]$ cut -d"|" -f 4-6 ShimText | head -n 12

4|100| 0

4|101| 0

4|100| 0

4|102| 0

3| 9| 1

3| 4| 2

3| 4| 2

3| 4| 2

1|20| 0

2|20| 3

3|17| 3

3| 1| 1
110

6.2.1 message class

Viewed this way, and looking at the leftmost (first) column (message class),
we see four Commands (class 4), four Messages (class 3), one Command
(class 1), one Request (class 2), and two more Messages (class 3); presently
only four class numbers are used by the shim to report the message class.

number message class

1 Commands
2 Requests
3 Messages
4 Comments

6.2.2 message value

The center (second) field of each line is the message value, which is a uniquely
varying series, within each given message class. The message value is assigned
by the program that produces it: by the shim for Commands and Comments;
by the TWS for Requests and Messages. We will view this in greater detail
in the balance of this piece.

6.2.3 message version

The rightmost (third) field is the message version.
In the implementation of the shim, we have not sought to preserve ob-

solete or outmoded Command, and Comment message value numbers. As
such, the shim uses a message version of zero.

IB has a stronger desire to support both prior TWS releases and new
additions to its API over time; it therefore provides a message version to
eash of its message values, which are called Server versions (Messages), and
Client versions (Requests).

6.2.4 TWS message value and message version co-ordination

As noted, IB has a trickier task of release engineering with the TWS than
the shim project, as there is an installed base of clients which would po-
tentially be broken if IB re-assigned TWS message numbers for Requests or
Messages. Broken clients potentially mean a client leaving the IB interfaces,
and that is commercially costly. They finnesse the issue by simply adding
new message value numbers, and occasionally updating the minimum sup-
ported message versions, on the part of the Client (the downstream) or the
Server (the TWS). Obsolete forms can eventually be discarded by causing
the TWS to only accpet a minimum Client messate version. We note that

111

when IB has done this from time, it tends to provoke much consternation in
the end user community.

This upstream approach on issuing new TWS Request or Message mes-
sage value assignments, in turn drives the process of extension of the shim
as new Request message values emerge, or new Message message values are
encountered with a new TWS version or by IB instructing and existing TWS
to require a minumin Client message version (both approaches ahve been
used by IB). The portents of such a change coming may be anticipated by
study of API release notes from IB, and is often heralded by parser errors on
the stderr of the shim as well.

When found, the shim is extended by getting a clear definition of the
new expected message values (usually from examination of the Java sample
client). Then by studying the functions and methods which IB has added,
one may then shim patterns to articulate well-formed new Requests, and
extract information from new Messages.

6.3 message values in the TWS

The Java sample client is an authoritative source for the mapping between
Request numbers, and Message numbers which the shim needs to use in
communicating with the TWS; the shim sources are an authoritative source
for the mapping between Command numbers, and Comment numbers. As
noted above, the combination of these message value number series appears
in the logging, to file, to the syslog, and so forth, which the shim does for its
downstream users.

6.4 Java sample client

The web documentation of IB is perhaps, naturally, the first secondary source
one might turn to, in seeking to understand how the TWS works; This web
page

http://individuals.interactivebrokers.com/php/webhelp/Interoperability/logging.htm

offers a word of caution, and suggests that:

NOTE: this information, along with the various request/response
message versions, can be found in the EClientSocket implemen-
tation file supplied with the API installation.

The author at IB knew that this resource becomes stale, and incomplete,
as the answers will vary with each new API release, Server version, and Client

112

http://individuals.interactivebrokers.com/php/webhelp/Interoperability/logging.htm

version. To their credit, it seems that new versions are largely ‘additive’ in
expanding features, or new options for existing features. A couple of false
starts, and only a few re-definitions are known – history retrieval changes
from October 2006 to present; rationalization of the two inverse sense ‘rth’
binary flags.

So, IB itself refers a person wishing to understand its code to its ‘reference
implementations.’ This ‘reference’ code is not intentionally obsfucated, is
reasonably well versioned, and is freely available (albeit under a ‘non-free’
copyright and license).

6.4.1 Rationale’ for consulting the Java sample client

IB ships several implementations of sample clients. We choose to use the
Java one because it seems that the java contained in that client is most likely
to be used verbatim in the Java based TWS itself.

Side note: We obtained this URL from the following process (using the
Firefox web browser; version 1.5.0.12):

1. Open the web page at:

http://individuals.interactivebrokers.com/php/webhelp/webhelp.htm

2. Select the Contents button in the upper left

3. Drag the selection box down to: API

4. Click within that topic: API Logging

5. In the Right Lower panel, at the bottom, it presently states:

NOTE: this information, along with the various request/re-
sponse message versions, can be found in the EClientSocket
implementation file supplied with the API installation.

6.4.2 How to view a permanent page URL on the IB
site

IB has started to use non-traditional basic HTML features (javascript, Flash,
and such), which assumedly make the site more compelling for humans view-
ing it; This has the consequence, however, of removing easy to read and
reference, permanent URL’s.

Accordingly, we write this side note: How to view the permanent page
URL

113

http://individuals.interactivebrokers.com/php/webhelp/webhelp.htm

1. Open the bottom right panel (HTML frame) in a new Window of its
own.

2. Right-click to select: View Page Info

3. Expand the box so that the URL can all be seen at the top of the
General tab, Address field.

4. Highlight and copy it to the clipboard.

6.4.3 Retrieving the Java sample client

One may use the following method to consult the source files, which we
consider authoritative.

1. Obtain the Java sample (standalone) client at:

http://individuals.interactivebrokers.com/en/control/standalone_api.php?os=unix

2. Select and save from the link for the: twsapi unixmac.jar

Note: IB does not version these releases. Each is named the same as its
predecessor, is at the same URL, and will silently over-write old versions
when retrieved; you may wish to implement a system to compare the
md5sum of a downloaded version with a prior corpus of downloads, to
permit detection and the retention of a newly appearing release.

3. Place the retrieved twsapi unixmac.jar in a a newly created temporary
directory, to avoid inadvertently admixing it with other content.

4. Unpack it:

jar xf twsapi_unixmac-9.40.jar

5. View the version number:

$ cat IBJts/API_VersionNum.txt

API_Version=9.40

6. Using the Unix find command, look for a match on the filename frag-
ment, referenced on the documentation webpage

find -name "EClientSocket*"

ls -l ./IBJts/java/com/ib/client/EClientSocket.java
114

http://individuals.interactivebrokers.com/en/control/standalone_api.php?os=unix

7. Print or view the documentation:

lpr ./IBJts/java/com/ib/client/EClientSocket.java

less ./IBJts/java/com/ib/client/EClientSocket.java

6.5 Numbering in the Java sample client

Several of the message numbers we seek are in the Java sample client. These
examples are pulled from the API version 9.40, and will vary over time.

6.5.1 Numbering of Requests in EClientSocket.java

As of API version 9.40, the following Request types are enumerated in
EClientSocket.java

// outgoing msg id’s

private static final int REQ_MKT_DATA = 1;

private static final int CANCEL_MKT_DATA = 2;

private static final int PLACE_ORDER = 3;

private static final int CANCEL_ORDER = 4;

private static final int REQ_OPEN_ORDERS = 5;

private static final int REQ_ACCOUNT_DATA = 6;

private static final int REQ_EXECUTIONS = 7;

private static final int REQ_IDS = 8;

private static final int REQ_CONTRACT_DATA = 9;

private static final int REQ_MKT_DEPTH = 10;

private static final int CANCEL_MKT_DEPTH = 11;

private static final int REQ_NEWS_BULLETINS = 12;

private static final int CANCEL_NEWS_BULLETINS = 13;

private static final int SET_SERVER_LOGLEVEL = 14;

private static final int REQ_AUTO_OPEN_ORDERS = 15;

private static final int REQ_ALL_OPEN_ORDERS = 16;

private static final int REQ_MANAGED_ACCTS = 17;

private static final int REQ_FA = 18;

private static final int REPLACE_FA = 19;

private static final int REQ_HISTORICAL_DATA = 20;

private static final int EXERCISE_OPTIONS = 21;

private static final int REQ_SCANNER_SUBSCRIPTION = 22;

private static final int CANCEL_SCANNER_SUBSCRIPTION = 23;

private static final int REQ_SCANNER_PARAMETERS = 24;

private static final int CANCEL_HISTORICAL_DATA = 25;
115

private static final int REQ_CURRENT_TIME = 49;

private static final int REQ_REAL_TIME_BARS = 50;

private static final int CANCEL_REAL_TIME_BARS = 51;

Note: we manually inserted a blank line after numbers 25 to point up the
non-contiguous nature of the listing, differing from that displayed in the
sources in question.

6.5.2 Numbering of Messages in EReader.java

As of API version 9.40, the following Message (also called ’response message’)
types are enumerated in EReader.java

// incoming msg id’s

static final int TICK_PRICE = 1;

static final int TICK_SIZE = 2;

static final int ORDER_STATUS = 3;

static final int ERR_MSG = 4;

static final int OPEN_ORDER = 5;

static final int ACCT_VALUE = 6;

static final int PORTFOLIO_VALUE = 7;

static final int ACCT_UPDATE_TIME = 8;

static final int NEXT_VALID_ID = 9;

static final int CONTRACT_DATA = 10;

static final int EXECUTION_DATA = 11;

static final int MARKET_DEPTH = 12;

static final int MARKET_DEPTH_L2 = 13;

static final int NEWS_BULLETINS = 14;

static final int MANAGED_ACCTS = 15;

static final int RECEIVE_FA = 16;

static final int HISTORICAL_DATA = 17;

static final int BOND_CONTRACT_DATA = 18;

static final int SCANNER_PARAMETERS = 19;

static final int SCANNER_DATA = 20;

static final int TICK_OPTION_COMPUTATION = 21;

static final int TICK_GENERIC = 45;

static final int TICK_STRING = 46;

static final int TICK_EFP = 47;

static final int CURRENT_TIME = 49;

static final int REAL_TIME_BARS = 50;
116

Note: we manually inserted a blank line after numbers 12 to point up the
non-contiguous nature of the listing, differing from that displayed in the
sources in question.

6.5.3 Numbering of Tick Types in TickType.java

Interestingly, we can see the tick types supported in TickType.java – As of API
version 9.40, the following Request types are enumerated in TickType.java

// constants - tick types

public static final int BID_SIZE = 0;

public static final int BID = 1;

public static final int ASK = 2;

public static final int ASK_SIZE = 3;

public static final int LAST = 4;

public static final int LAST_SIZE = 5;

public static final int HIGH = 6;

public static final int LOW = 7;

public static final int VOLUME = 8;

public static final int CLOSE = 9;

public static final int BID_OPTION = 10;

public static final int ASK_OPTION = 11;

public static final int LAST_OPTION = 12;

public static final int MODEL_OPTION = 13;

public static final int OPEN = 14;

public static final int LOW_13_WEEK = 15;

public static final int HIGH_13_WEEK = 16;

public static final int LOW_26_WEEK = 17;

public static final int HIGH_26_WEEK = 18;

public static final int LOW_52_WEEK = 19;

public static final int HIGH_52_WEEK = 20;

public static final int AVG_VOLUME = 21;

public static final int OPEN_INTEREST = 22;

public static final int OPTION_HISTORICAL_VOL = 23;

public static final int OPTION_IMPLIED_VOL = 24;

public static final int OPTION_BID_EXCH = 25;

public static final int OPTION_ASK_EXCH = 26;

public static final int OPTION_CALL_OPEN_INTEREST = 27;

public static final int OPTION_PUT_OPEN_INTEREST = 28;

public static final int OPTION_CALL_VOLUME = 29;

public static final int OPTION_PUT_VOLUME = 30;

public static final int INDEX_FUTURE_PREMIUM = 31;

public static final int BID_EXCH = 32;
117

public static final int ASK_EXCH = 33;

public static final int AUCTION_VOLUME = 34;

public static final int AUCTION_PRICE = 35;

public static final int AUCTION_IMBALANCE = 36;

public static final int MARK_PRICE = 37;

public static final int BID_EFP_COMPUTATION = 38;

public static final int ASK_EFP_COMPUTATION = 39;

public static final int LAST_EFP_COMPUTATION = 40;

public static final int OPEN_EFP_COMPUTATION = 41;

public static final int HIGH_EFP_COMPUTATION = 42;

public static final int LOW_EFP_COMPUTATION = 43;

public static final int CLOSE_EFP_COMPUTATION = 44;

public static final int LAST_TIMESTAMP = 45;

public static final int SHORTABLE = 46;

6.6 Numbering in rule.c of the shim

We can examine the mapping performed by the shim in the decoding and
encoding by looking at rule.c in some cases. These examples are pulled from
the sources on 10 Jan 2008, and will vary over time.

6.6.1 Numbering of Commands in rule.c

Commands are examined with:

grep TagName rule.c | grep ’STV(1,’

The output may be sorted, and made more readible by some text trans-
forms:

[herrold@centos-5 src]$ grep TagName rule.c | grep ’STV(1,’ | \

sed -e ’s/^.*(w, "//’ -e ’s/c,.*$//’ -e ’s/").*(1,//’ \

-e ’s/).//’ | awk ’{print $2"\t"$1}’ | sort -n

1 help

2 ping

3 next

4 list

5 wait

6 wake

7 quit

11 verb
118

12 news

13 open

14 account

14 acct

15 exec

16 info

17 wild

18 tick

19 book

19 history

20 past

21 report

21 scan

22 ohlc

23 read

24 load

25 bind

26 atonce

27 create

28 modify

29 submit

30 cancel

31 option

[herrold@centos-5 src]$

This way we can more easily see the ‘aliased’ commands: account and
acct, and book and history

6.6.2 Numbering of Requests in rule.c

Requests are examined with:

grep TagName rule.c | grep ’STV(2,’

And again, the output may be sorted, and made more readible by some
text transforms:

[herrold@centos-5 src]$ grep TagName rule.c | grep ’STV(2,’ | \

sed -e ’s/^.*(w, \"//’ -e ’s/, x.*$//’ \

-e ’s/".*STV(2,//’ | awk {’print $2"\t"$1’} | sort -n

1 ReqMktData

2 EndMktData

3 PlaceOrder
119

4 CancelOrder

5 OpenOrders

6 AccountData

7 Executions

8 RequestIds

9 ReqConInfo

9 ReqSymInfo

10 ReqMktBook

11 EndMktBook

12 ReqBulletin

13 EndBulletin

14 SetLogLevel

15 AutoOpens

16 AllOpens

17 ManagedAccts

18 FinAdvisor

19 ReplaceFa

20 HistoryReq

21 ExerciseOpts

22 ReqScanSub

23 EndScanSub

24 ReqScanParms

25 EndHistory

50 ReqOhlcSub

51 EndOhlcSub

[herrold@centos-5 src]$

6.6.3 Numbering of Messages in rule.c

Messages are examined with:
Not in rule.c

6.6.4 Numbering of Comments in rule.c

Comments are examined with:
Not in rule.c

120

Part III

Guided Tutorial

121

We develop a tutorial, working through each implemented command, to
provide a usage reference.

123

124

Chapter 7

A Tour of Tables

125

7.1 Tables

7.1.1 Why so many tables

This section will contain more descriptive material about tables
TBD: the initial bulk table load process
TBD: the (few) tables which may be cleaned of obsolete detail by an end

user process, and
TBD: the remaining tables of interest normally only to the shim.
TBD: Also adding a backup and restore strategy section is in order
TBD: then a version conversion section is needed.
TBD: RO replication setup of an RO copy for RO operations for scaling

to provide local data plant services

7.1.2 What tables are there anyway?

Using the MySQL command line client (“mysql”), and some basic *nix tools,
we can produce and inspect a current listing which enumerates all the tables
in the shim’s database at any time:

[herrold@centos-4 ~]$ echo "show tables ;" | \

mysql -u rph_shim -h xps400 rph_testing | pr --columns=3

2007-09-25 14:12 Page 1

Tables_in_rph_testing FutDetail ProductMap

AccountCode HistoryBar Protocol

AtomTag HistoryTag Rule80A

BarSize Institution ScanFilter

Bool LineItem SecType

BoxOptions LocalSet Stock

Chicago1 Miscellany SubRequest

ComboLeg OcaGroup SubType

ComboSet OcaType Symbol

Contract OptDetail TickConfig

Country OrdType TifType

Currency OrderAct Trigger

DepthLimit OrderFlags UndType

Duplicates OrderJournal Underlying

Exchange PartialFill Version

ExecFilter PastFilter Volatility
126

Execution Position WatchSets

FinAdvisor

We recall that part of the characterizaton of the shim is as follows:

The downstream drives the shim by making changes to the database.
The shim consults the database at initial startup, and from time
to time thereafter when signaled by brief, simple commands. This
combination of database and shim integrate persistent database
aware storage with the tws. The command interface also serves
as an alternative to supplement the existing tws gui interfaces, to
permit you to use downstream programs, whether gui or not, to
drive the tws through its api.
[trading-shim home page]

7.1.3 Which tables are safe to alter

The shim as part of its initialization process, loads and verifies the consis-
tency of almost all tables, and certain relations between their content. These
consistency checks include:

• That the shim version number, contained in table: Version is correct
for the version of the shim which is running

• That all foreign key dependencies are met

• That all tables from which it reads with uid fields are started at: 1, and
are have sequential members without gaps; this value is used for some
index structures in the shim.

The quick answer is: almost none of the tables may be casually modified,
nor re-loaded though manual ad hoc efforts, because such tinkering may
destroy a required consistency or relationship. This is part of the reason
that the initial load scripts are provided.

The tables which may be added to include:

• LocalSet

• WatchSets

• SubRequest
127

Considering each table in turn, LocalSet is used in initial and later
population of the general shim database with Contract ID’s of particular local
interest, but which are not included in the refernece tarball as distributed by
the trading-shim developers.

WatchSets is used to pre-build collections of related symbols, to permit
easy projection, for example, into the SubRequest table. Once such a
projection done, a large number of tick (see: 3.24) subscriptions may be
initiated with a single load (see: 3.14) command. We present an example of
this at the dicussion of the load command.

7.1.4 Adding additional tables

It is also possible, and is not prohibited, to add new tables to the database
to the set beyond those included with the reference implementation which
are included with a tarball from the trading-shim site, of course.

The WatchSets table is present to permit an end user have a short-
hand way to note and ‘remember’ security sets of related interest. The shim
developers initially populated it from researching common index component
members.

Because this information changes over time, sometimes suddenly (thinks
of the company underneath ‘T’ over time - AT&T, Lucent, SBC in recent
years; and the sudden disappearance of ‘ENR’ - Enron), the members for a
given WatchSets.tag, that table falls out of date, and is a maintenance
burden to some degree.

mysql> describe WatchSets ;

+----------+------------------+------+-----+---------+----------------+

| Field | Type | Null | Key | Default | Extra |

+----------+------------------+------+-----+---------+----------------+

| uid | int(10) unsigned | NO | PRI | NULL | auto_increment |

| tag | char(1) | NO | | | |

| sub_type | char(4) | NO | MUL | | |

| sec_type | char(4) | NO | MUL | | |

| exch | char(9) | NO | MUL | | |

| name | char(12) | NO | | | |

| config | int(10) unsigned | NO | | | |

| detail | int(10) unsigned | NO | | | |

+----------+------------------+------+-----+---------+----------------+

8 rows in set (0.00 sec)

mysql> select tag, count(tag) from WatchSets group by tag

order by tag ;

+-----+------------+
128

| tag | count(tag) |

+-----+------------+

| a | 1 |

| b | 1 |

| d | 19 |

| f | 2 |

| g | 1 |

| h | 2 |

| i | 94 |

| j | 3 |

| m | 1 |

| n | 3 |

| p | 15 |

| q | 162 |

| t | 2 |

| Y | 5 |

+-----+------------+

14 rows in set (0.00 sec)

The reason one might wish to do so to add a new table, would be to
support a new facility for external (what we call: ‘downstream’) code to
frame or present results queries in a more human understandable fashion.
As our example, we can add a table to decode the WatchSets.tag index
values into human meaningful names.

7.1.5 The initial database load process

First we will go through the sequence of relations from lower level tables
toward the Contract table in a rapid overview; then we will retrace through
descriptions of selected tables, and elaborate on fields.

The scripts, database structure descriptions, and default table load values
which ship with every shim tarball are in the ./sql/ subdirectory.

Many of the shim commands require a Contract ID value, which is a
shorthand for the Contract.uid for a specific row. That row can be traced
back to characteristics of a given security, as its security type (to SecType),
its ticker symbol (to Symbol), the exchange which is its ‘home’, but which
may or may not be the preferred venue at which to trade it which we call its
‘route’ (two uses for the Exchange). Futures add expiration dates (through
FutDetail), and Options put and call, and strike prices (through OptDe-

tail).

We initially build this information up progressively in the scripted database
load process.

129

A manual maintenance process

Going forward, one can add to various tables in an ad hoc fashion, or by
populating the generation tables. The clear downside to ‘one off’ additions
is that one has to form all the MySQL INSERT statements accurately, and
in a fashion which respects ‘foreign key’ constraints, but with the tactical
upside that one does not a deep understanding of the full database to make
alterations in a local fork, and most often, in a ‘testing’ database which gets
recreated from time to time.

A more automated maintenance process

Once experimentation is over, one can add new ‘tuples’ (as we think of them)
to the generation driver tables, and run the creation scripts, and be done.

... Well not completely done. Some data related to transactions like
orders and executions, and retrieved history would be lost absent an additonal
effort to use MySQL’s tools to mysqldump and then to restore some tables. If
the underlying schema of the database has changed, or if numbering of, say,
Contract.uid has changed [which is unfortunately a common case when
symbols have been added to through the first mentioned ad hoc manner],

7.1.6 Each starts with the initial database load process

FIXME: more text

1. Currency

2. Miscellany

3. Stock

are used by the load scripts to generate:
Underlying

This is combined with the: ProductMap by the load scripts to generate:
Symbol

As there are many rows which are not immediately interesting, the load
scripts again use another map: LocalSet to generate:

Contract

The Contract ID is the primary value used to specify a Contract in concise
and exact form to most commands.

Bill has noted in an email to the mailing list:

In brief, the preferred way to add a new contract to the Con-

tract table is to add an entry to the LocalSet[,] load file
130

mod/LocalSet.sql, add supporting entries as needed to primary
and intermediate load files used to populate Symbol, and then
recreate the database.

In the worst case, for a new Underlying not yet appearing in
the database, you will have to add to one of Currency, Miscel-

lany, or Stock, then, if deriving from that, to ProductMap,
and in any case, add to LocalSet.

131

132

Chapter 8

Working with the database

133

8.1 The shim database and Contract IDs

The shim is a command-line and dbms controlled interface; as such, we clearly
need to consider how to work properly and with facility, with its database,
as well as with its commands.

We will go through some sample exercises. We pursue at least a couple
of objectives in the context of the shim and using the database of the shim.
The exercises will build on one after the other.

We start with some simple database command line operations. These are
asking questions about the database with the MySQL SELECT query, and
performing insertion transactions with the MySQL INSERT command.

Then we will re-visit SELECT and show a more concise form with the
MySQL LEFT JOIN clause. Through these exercises, note that we use the
more formal table name.field qualified form of specifying a match argu-
ment in the WHERE and ORDER BY clauses.

To make the exercise ‘real’, we look at some early tasks we are interested
in understanding include:

• how to interpret values (and particularly errors) seen in the logs,

• how to map from a Contract ID back into the underlying Symbol,
and

• how to extend the Contract (and FutDetail) tables.

In coming to this example, we assume the availability of the sample scripts
in the shim 070802 release, which is present in the FTP attic. This was
a current version at the time this was written, and we have created our
examples with the sample make test test scripts in the ./bin/ directory.

Almost all of the uid values as used by with the shim are arbitrary num-
bers, representing their sequence of insertion into their owning table. The
particular Contract.uid we will focus on is with value: 178 used by the
book and info commands in the sample script versions referenced above.

8.1.1 Looking up an underlying Symbol from the cid -

step by step

The particular use case we are interested in arises from this message series
in the shim’s output logging:

Aug 2 16:36:01 centos-4 : 6961|59761| 8864983|2|18| 0

|book add 15 3;|

Aug 2 16:36:01 centos-4 : 6961|59761| 8865466|2|18| 0
134

|book add 178 7;|

Aug 2 16:36:01 centos-4 : 6961|59761| 8865496|3|10| 3

|6|15|3|

Aug 2 16:36:02 centos-4 : 6961|59761| 8885571|3|10| 3

|7|178|7|

Aug 2 16:36:02 centos-4 : 6961|59762| 9001771|3| 4| 2

| 178| 200|No security definition has been found for

the request|

Aug 2 16:36:02 centos-4 : 6961|59762| 9276599|3|12| 1

| 15| 0|0|1| 63.81| 72|bid|insert|STK.SMART.AIG.

That message about “No security definition ...” should not be occurring.
It indicates that the TWS has concluded, after consulting its upstream state,
that there is a problem with a contract ID proposed by the shim.

We can see that some sort of testing in the scripts references a value: 178
and as indicated, this is causing the TWS to return a ‘No security definition’
message. Using grep against the sample scripts, we see the occurance of that
178

[herrold@centos-4 shim]$ cd shim_070802

[herrold@centos-4 shim_070802]$ cd bin

[herrold@centos-4 bin]$ grep 178 *

includes: hit_shim ’get contract info’ ’info 178 all;’

includes: hit_shim ’YM market depth’ ’book add 178 7;’

includes: hit_shim ’no market depth’ ’book del 178 1;’

includes.orig: hit_shim ’get contract info’ ’info 178 all;’

includes.orig: hit_shim ’YM market depth’ ’book add 178 7;’

includes.orig: hit_shim ’no market depth’ ’book del 178 1;’

shell:info 178 all;

unsafe: # hit_shim ’get contract info’ ’info 178 all;’

[herrold@centos-4 bin]$

How can we fix this? We need to track down what underlying Sym-
bol (actually the particular tradable security it represents) is pointed to by
Contract.uid value: 178, and determine what the correct value to use is.

It is helpful to determine what the underlying security is. We do can
do this step by step with the mysql Unix command line MySQL client, as
follows:

[herrold@centos-4 ~]$ mysql -u rph_shim -h xps400 rph_testing

which gets a command prompt, under MySQL account: rph shim on Unix
host: xps400 using database: rph testing. These values are different from

135

the values in the release script themselves, and indeed we use slightly dif-
ferent keying internally. (Bill uses one set of keying, and Russ, another, so
that each developer can use a common MySQL server, simultaneously servic-
ing different databases, to avoid inadvertently changing the other’s database
contents.)

mysql> select * from Contract where Contract.uid = ’178’;

+-----+------+-------+------+-----+

| uid | sid | route | unit | tag |

+-----+------+-------+------+-----+

| 178 | 5490 | 18 | 1 | 6 |

+-----+------+-------+------+-----+

And then we just work across, decoding back up the database hierarchy
tree of uid pointers through the corresponding applicable tables.

mysql> select * from Symbol where Symbol.uid = ’5490’;

+------+-----+------+------+----------------------+-------+

| uid | tid | exch | name | desc | conid |

+------+-----+------+------+----------------------+-------+

| 5490 | 3 | 6 | YM | DJ IND AVG MINI | NULL |

+------+-----+------+------+----------------------+-------+

We determine the Exchange it trades on from Exchange.uid = ’18’;
This is the Contract.route value. IB uses the virtual exchange: SMART
for trades which it may cross (i.e., ‘route to’) itself. We truncate the Ex-

change.products entry as the details are not germaine here.

mysql> select * from Exchange where Exchange.uid = ’18’;

+-----+-------+------+-----------------+---------------

| uid | name | code | desc | products

+-----+-------+------+-----------------+---------------

| 18 | SMART | US | IB SmartRouting | STK,OPT,FUT,IND, ...

+-----+-------+------+-----------------+---------------

We can examine the ‘home’ Exchange at which a Contract is listed
with Exchange.uid = ’6’. This is the more common expectation as to an
Exchange, but IB, as noted above, interjects a potential ‘route’ for a trans-
action to occur through local transaction crossing at the SMART exchange.

mysql> select * from Exchange where Exchange.uid = ’6’;

+-----+-------+------+-----------------+----------+

| uid | name | code | desc | products |

+-----+-------+------+-----------------+----------+

| 6 | ECBOT | US | Electronic CBOT | FUT,FOP |

+-----+-------+------+-----------------+----------+
136

The Contract.unit field was initially uninteresting to us (it refers to
the currency unit of a Contact) as we have USD denominated accounts,
studied only USD denominated Contracts, and purchased only the market
datastreams supporting those Contract. Accordingly, on the principal of de-
veloping while doing continuous testing, we had populated our entries with
Contacts we could test, which Contrats trade in that currency. Later as
we picked up an interested continental tester, seeking symbols traded on Eu-
roStoxx, we added in a few EUR (Contract.unit) denominated Contracts.
Still being ‘test driven’ in doing development, we enabled the relevant market
and trading rights on one of our IB accounts, and drilled in the DAX and
friends, with a little testing.

mysql> select * from Currency where Currency.uid = ’1’;

+-----+------+---------+-------+------------+

| uid | code | country | floor | plural |

+-----+------+---------+-------+------------+

| 1 | USD | US | 9 | US Dollars |

+-----+------+---------+-------+------------+

And now for that mysterious Contact.tag field:
We consciously defered examining the Security Type, which is the only

‘detail’ we needed to extract via the Symbol table until this point in our
examination. We determine the Type of Security it is, from Symbol.tid =
’3’ which tells us:

mysql> select * from SecType where SecType.uid = ’3’;

+-----+------+------+--------+

| uid | type | text | desc |

+-----+------+------+--------+

| 3 | FUT | FUT | future |

+-----+------+------+--------+

A brief aside as to command line database operations:

We happen to know we are dealing with a FUTure here, but it is useful to
be able to decode at the command line, the SecType. or indeed the ‘tuple’
to which a given Contract ID refers.

$ echo "select SecType.type from Contract \

left join Symbol on Contract.sid = Symbol.uid \

left join SecType on Symbol.tid = SecType.uid \

where Contract.uid = ’178’ " | \

mysql -s -s -r -u rph_shim -h xps400 rph_testing

FUT

$
137

We can determine the nimber of rows in the Contract as well:

$ echo "select count(uid) from Contract" | \

mysql -s -s -r -u rph_shim -h xps400 rph_testing

205

$

For the latter case, we wrote a small script, FIXME - to the appendix
- refdecodeCID.sh decodeCID.sh, to simplify typing, and to permit chaining
processes together.

$ for i in ‘eq 1 205‘ ; do ./decodeCID.sh $i ; done

1 CASH.IDEALPRO.USD

2 CASH.IDEALPRO.AUD

3 CASH.IDEALPRO.CAD

...

203 FUT.SMART.GBL.200712

204 FUT.SMART.GBM.200712

205 FUT.SMART.GBS.200712

$

which script enumerates the entire set of ‘tuples’ in the Contract table.

Completing the look-up

And because we know SecType.type = ’FUT’, which is a future, we know
to use FutDetail for our lookup of the last field in the Contract table,
that of the Contract.tag. We now have the context (telling us to refer
to the values in the FutDetail table) to give that tag meaning for the
Contract.tag = ’6’:

mysql> select * from FutDetail where FutDetail.uid = ’6’;

+-----+--------+------------+

| uid | expiry | multiplier |

+-----+--------+------------+

| 6 | 200706 | 1 |

+-----+--------+------------+

The question becomes: Is there a current Contract already present,
the Contract.uid value of which we can use in the testing scripts?

That is, is there enough information already in the database to permit us
to roll the contract to a new front month? The next front month would end
in September 2007. Let’s look:

138

mysql> select * from FutDetail where FutDetail.expiry = ’200709’;

+-----+--------+------------+

| uid | expiry | multiplier |

+-----+--------+------------+

| 7 | 200709 | 1 |

+-----+--------+------------+

Putting the Symbol and the expiration tag together, we see that it is
there already.

mysql> select * from Contract where Contract.sid = ’5490’

and Contract.tag = ’7’;

+-----+------+-------+------+-----+

| uid | sid | route | unit | tag |

+-----+------+-------+------+-----+

| 179 | 5490 | 18 | 1 | 7 |

+-----+------+-------+------+-----+

Looking ahead, we can repeat the process for the next Expiration, in
December 2007. Once we know the Contract.tag, we can also test if that
contract is in the database yet:

mysql> select * from FutDetail where FutDetail.expiry = ’200712’;

+-----+--------+------------+

| uid | expiry | multiplier |

+-----+--------+------------+

| 8 | 200712 | 1 |

+-----+--------+------------+

mysql> select * from Contract where Contract.sid = ’5490’

and Contract.tag = ’8’;

+-----+------+-------+------+-----+

| uid | sid | route | unit | tag |

+-----+------+-------+------+-----+

| 180 | 5490 | 18 | 1 | 8 |

+-----+------+-------+------+-----+

Please note that although the entries in the FutDetail table presently
are in sequential order for YM expiration months, this is just an artifact of
how that table was initially populated. With MySQL and most databases,
the row order position of a given detail line is not material, nor guaranteed.
Do not design code which relies on any seemingly ‘natural’ seqential ordering
relation persisting over time, as tables almost certainly become disordered as
time passes, and maintenance occurs.

139

8.1.2 Looking up a underlying Symbol from the cid -
with LEFT JOIN

The MySQL LEFT JOIN clause construct with SELECT permits a much
more concise statement of the information we seek from that single Con-

tract.uid. We use white space and alignment to make it easier to see the
clarity of expression which LEFT JOIN confers.

mysql> select Contract.sid, SecType.type, Exchange.name,

Symbol.name, FutDetail.expiry from Contract

left join Symbol on Contract.sid = Symbol.uid

left join SecType on Symbol.tid = SecType.uid

left join Exchange on Contract.route = Exchange.uid

left join FutDetail on Contract.tag = FutDetail.uid

where Contract.uid =’178’;

+------+------+-------+------+--------+

| sid | type | name | name | expiry |

+------+------+-------+------+--------+

| 5490 | FUT | SMART | YM | 200706 |

+------+------+-------+------+--------+

Note: As a quick side note as to argument order in MySQL LEFT JOIN
matching: There is no sensitivity as to the right and left hand side of a match
clause – that is:

left join FutDetail on Contract.tag = FutDetail.uid

will produce the same result as:

left join FutDetail on FutDetail.uid = Contract.tag

and so forth. As a matter of building up the queries, it is visually simpler
to keep all the .uid match parts to the right, but we may from time to time
inadvertently swap the sequence, because argument order is not material.

Let’s confirm that look-up with the decoding script:

$./decodeCID.sh 178

178 FUT.SMART.YM.200706

$

This example was from some foreknowledge – Recall from our previous
example that we were looking at a Future, and so we added the clause:

left join FutDetail on Contract.tag = FutDetail.uid
140

Stock Lookup

The Stock case is simpler:

mysql> select Contract.sid, SecType.type, Exchange.name,

Symbol.name from Contract

left join Symbol on Contract.sid = Symbol.uid

left join SecType on Symbol.tid = SecType.uid

left join Exchange on Contract.route = Exchange.uid

where Contract.uid = ’15’;

+------+------+-------+------+

| sid | type | name | name |

+------+------+-------+------+

| 2850 | STK | SMART | AIG |

+------+------+-------+------+

In the case of a Stock, we were able to omit two parts – the FutDe-

tail.expiry and the left join FutDetail on Contract.tag = FutDetail.uid parts,
as a stock is perpetual, or a least has no stated expiration.

Index symbol Lookup

The Index (SecType.type: IND) case is similar. Let’s dig out a common one,
walking the other way, from Symbol to Contract, and then back to show
the LEFT JOIN’s power:

mysql> select * from Symbol where Symbol.name like ’TICK%’;

+-----+-----+------+-----------+-------------------+-------+

| uid | tid | exch | name | desc | conid |

+-----+-----+------+-----------+-------------------+-------+

| 12 | 4 | 2 | TICK-NYSE | ADVANCE - DECLINE | NULL |

+-----+-----+------+-----------+-------------------+-------+

mysql> select * from Contract where Contract.sid = ’12’;

+-----+-----+-------+------+-----+

| uid | sid | route | unit | tag |

+-----+-----+-------+------+-----+

| 172 | 12 | 18 | 1 | 0 |

+-----+-----+-------+------+-----+

So we suspect Contract.uid = 172 is our candidate. Let’s verify that.

mysql> select Contract.sid, SecType.type, Exchange.name,

Symbol.name from Contract
141

left join Symbol on Contract.sid = Symbol.uid

left join SecType on Symbol.tid = SecType.uid

left join Exchange on Contract.route = Exchange.uid

where Contract.uid = ’172’;

+-----+------+-------+-----------+

| sid | type | name | name |

+-----+------+-------+-----------+

| 12 | IND | SMART | TICK-NYSE |

+-----+------+-------+-----------+

Currency Lookup

And Currencies (called forex, for ‘Foreign Exchange’; in the IB TWS GUI,
SecType.type: CASH) – now that we know the technique:

mysql> select * from Symbol where Symbol.name like ’GBP%’;

+------+-----+------+------+-------------------+-------+

| uid | tid | exch | name | desc | conid |

+------+-----+------+------+-------------------+-------+

| 6 | 6 | 9 | GBP | GB Pounds | NULL |

| 3544 | 1 | 2 | GBP | GABLES RESIDENTIA | NULL |

| 5541 | 3 | 5 | GBP | GB Pounds | NULL |

| 5554 | 2 | 5 | GBP | GB Pounds | NULL |

+------+-----+------+------+-------------------+-------+

4 rows in set (0.01 sec)

(Note here: that the % character is a wildcard match indicator in MySQL,
and is commonly used in a MySQL LIKE clause.)

mysql> select * from Contract where Contract.sid = ’6’;

+-----+-----+-------+------+-----+

| uid | sid | route | unit | tag |

+-----+-----+-------+------+-----+

| 6 | 6 | 9 | 1 | 0 |

+-----+-----+-------+------+-----+

mysql> select Contract.sid, SecType.type, Exchange.name,

Symbol.name from Contract

left join Symbol on Contract.sid = Symbol.uid

left join SecType on Symbol.tid = SecType.uid

left join Exchange on Contract.route = Exchange.uid

where Contract.uid = ’6’;

+-----+------+----------+------+
142

| sid | type | name | name |

+-----+------+----------+------+

| 6 | CASH | IDEALPRO | GBP |

+-----+------+----------+------+

And as expected, one can find:

CASH.IDEALPRO.GBP

IDEALPRO is IB’s in house foreign exchange crossing facility.

Remainder case Lookup

Note: As of August 2007 we have not developed with tests for some secu-
rity types. Indeed, we do not even know for a certainty that there is, or is
not a way for some to be accessed through the API, as it is perfectly possi-
ble (indeed, from the GUI client, it seems likely) that there are non-public
interfaces to the upstream for certain parameters.

Particularly, consider the full list of security types:

mysql> select * from SecType ;

+-----+------+------+-------------------+

| uid | type | text | desc |

+-----+------+------+-------------------+

| 1 | STK | STK | stock |

| 2 | OPT | OPT | option |

| 3 | FUT | FUT | future |

| 4 | IND | IND | index |

| 5 | FOP | FOP | option on future |

| 6 | CASH | CASH | cash (ideal FX) |

| 7 | BOND | BOND | bond |

| 8 | BAG | BAG | combination order |

+-----+------+------+-------------------+

For future options (SecType.type: FOP), future spreads (a type we
omit from the SecType table), options(SecType.type: OPT), warrants (a
type we omit from the SecType table), or bonds (SecType.type: BOND),
as the specification is more complex, and these are not something our research
needs presently encompass. Neither have we explored the combination order
(SecType.type: BAG) to any material extent recently.

If we pick up a committed tester or two for these security types, we are
certainly willing to discuss adding this to our development.

143

8.1.3 Looking up a Contract.uid with LEFT JOIN

With our new knowledge about the power of the LEFT JOIN clause, it be-
comes straightforward to look up the Contract.uid (in shorthand, a cid)
to use for various security types:

1. Currency Lookup - LEFT JOIN

A Currency (here: CASH.IDEALPRO.AUD):

mysql> select Contract.uid, Contract.sid, SecType.type,

Exchange.name, Symbol.name from Contract

left join Symbol on Contract.sid = Symbol.uid

left join SecType on Symbol.tid = SecType.uid

left join Exchange on Contract.route = Exchange.uid

where SecType.type = ’CASH’ and

Exchange.name = ’IDEALPRO’ and

Symbol.name = ’AUD’ ;

+-----+-----+------+----------+------+

| uid | sid | type | name | name |

+-----+-----+------+----------+------+

| 2 | 2 | CASH | IDEALPRO | AUD |

+-----+-----+------+----------+------+

2. Stock Lookup - LEFT JOIN

A Stock (here: STK.SMART.IBM):

mysql> select Contract.uid, Contract.sid, SecType.type,

Exchange.name, Symbol.name from Contract

left join Symbol on Contract.sid = Symbol.uid

left join SecType on Symbol.tid = SecType.uid

left join Exchange on Contract.route = Exchange.uid

where SecType.type = ’STK’ and

Exchange.name = ’SMART’ and

Symbol.name = ’IBM’;

+-----+------+------+-------+------+

| uid | sid | type | name | name |

+-----+------+------+-------+------+

| 84 | 3718 | STK | SMART | IBM |

+-----+------+------+-------+------+
144

3. Index symbol Lookup - LEFT JOIN

An Index symbol (here: IND.SMART.TRIN-NYSE):

mysql> select Contract.uid, Contract.sid, SecType.type,

Exchange.name, Symbol.name from Contract

left join Symbol on Contract.sid = Symbol.uid

left join SecType on Symbol.tid = SecType.uid

left join Exchange on Contract.route = Exchange.uid

where SecType.type = ’IND’ and

Exchange.name = ’SMART’ and

Symbol.name = ’TRIN-NYSE’;

+-----+-----+------+-------+-----------+

| uid | sid | type | name | name |

+-----+-----+------+-------+-----------+

| 171 | 11 | IND | SMART | TRIN-NYSE |

+-----+-----+------+-------+-----------+

4. Future Lookup - LEFT JOIN

... and finally, a Future (here: FUT.SMART.YM.200703):

mysql> select Contract.uid, Contract.sid, SecType.type, Exchange.name,

Symbol.name, FutDetail.expiry from Contract

left join Symbol on Contract.sid = Symbol.uid

left join SecType on Symbol.tid = SecType.uid

left join Exchange on Contract.route = Exchange.uid

left join FutDetail on Contract.tag = FutDetail.uid

where SecType.type = ’FUT’ and

Exchange.name = ’SMART’ and

Symbol.name = ’YM’ and

FutDetail.expiry = ’200703’ ;

+-----+------+------+-------+------+--------+

| uid | sid | type | name | name | expiry |

+-----+------+------+-------+------+--------+

| 177 | 5490 | FUT | SMART | YM | 200703 |

+-----+------+------+-------+------+--------+

145

8.1.4 Adding a new underlying Symbol to the Con-

tract table

As a hypothetical (this example being based on the tarball of 2 August 2007
[‘shim-070802.tgz’]), and knowing that Expiration dates will continue to roll
with the passage of time, say a couple of years had passed and we need to
handle the new ‘front month’ March 2009 expiration for FUT.ECBOT.YM.
This instantiation of the security with a new expiration month is treated as a
new Contract to trade at IB, and so calls for addition of a new Contract

in the database as well.

mysql> select * from FutDetail where FutDetail.expiry = ’200903’;

Empty set (0.00 sec)

Which is saying that it is not yet a known front month.
Let’s see what we do have then:

mysql> select * from FutDetail order by FutDetail.expiry ;

+-----+--------+------------+

| uid | expiry | multiplier |

+-----+--------+------------+

| 1 | 200603 | 1 |

| 2 | 200606 | 1 |

| 3 | 200609 | 1 |

| 4 | 200612 | 1 |

| 5 | 200703 | 1 |

| 6 | 200706 | 1 |

| 7 | 200709 | 1 |

| 8 | 200712 | 1 |

| 9 | 200803 | 1 |

| 10 | 200806 | 1 |

| 11 | 200809 | 1 |

| 12 | 200812 | 1 |

+-----+--------+------------+

NOTE: This next process, of adding information to the database, is most
safely done when the shim is stopped. The shim can accomodate ‘live addi-
tions’ to most of its database tables, and can gain awareness of them with
the load; command. It is safer to not get into the habit of doing additions on
a live copy, since one might forget to send the load;, and become mystified
as to why something is not working as one expects.

As a matter of database maintenance, once orders are pending or filled
against a given Contract.uid, or any subordinate table pointed to by it,
such as , here, FutDetail.uid, any rows present must be retained until all

146

subordinate ’foreign keys’ pointing at it, through the Contract table are
purged. This is because each subordinate key entry of ‘foreign key’ table
members in the chain must be present to ensure a complete and consistent
database exists for the shim.

This is in turn required due to the reliance of the shim, in its C++ code
upon both strong ’foreign key’ enforcement, and also on the shim’s need for
numerically contiguous uid entries in some tables.

MySQL per userid account rights

Additionally, as a matter of data security, we have a chance here to show
that some userid accounts run with lesser privileges than others. Recall that
we logged in thus:

[herrold@centos-4 ~]$ mysql -u rph_shim -h xps400 rph_testing

Let’s try an INSERT while connected in the rph shim userid:

mysql> insert into FutDetail set expiry = ’200903’, multiplier = ’1’;

ERROR 1142 (42000): INSERT command denied to user

’rph_shim’@’centos-4.first.lan’ for table ’FutDetail’

This denial is good, for it shows that our intentionally low privilege user
cannot inadvertently damage some needed integrity of the database. In the
reference client, the user code is used for such operations needing broader
rights. We log out, and then back in with the new userid bearing the needed
permissions.

[herrold@centos-4 ~]$ mysql -u rph_code -h xps400 rph_testing

and repeat the attempted INSERT.

mysql> insert into FutDetail set expiry = ’200903’, multiplier = ’1’;

Query OK, 1 row affected (0.01 sec)

mysql> select * from FutDetail where FutDetail.expiry = ’200903’;

+-----+--------+------------+

| uid | expiry | multiplier |

+-----+--------+------------+

| 13 | 200903 | 1 |

+-----+--------+------------+
147

Recall that from the table definition, that FutDetail.uid entries are
assigned sequentially and contiguously by the database engine. As a general
rule, all uid values are sequentially and contiguously assigned by the database
server backend, and all so assigned are in turn expected by the shim to be in
that form.

The database engine would have prevented a ’malformed’:
[“no ’foreign key’ yet existed ”]

line with the value: 13 in the Contract.tag field. Let’s confirm this:

mysql> select * from Contract where Contract.tag = ’13’;

Empty set (0.00 sec)

Extending the Contract table - part 1

Recall where we are: We have all information we need from a prior FUT.SMART.YM
to know the Symbol (Contract.sid: 5490), Exchange route (Contract.route:
18), and unit (Contract.unit: 1) and will hard code it. This is a less portible
than some other approaches, but will suffice for our first example involving
adding to the Contract table.

Recall that we are in the code reference user account, as we are doing an
INSERT:

mysql> insert into Contract set sid = ’5490’, route = ’18’,

unit = ’1’, tag = ’13’;

Query OK, 1 row affected (0.01 sec)

And then back switching into the unprivileged user, under the familiar
data security principle of only using the ‘least privilege’ required for an op-
eration:

mysql> select * from Contract where Contract.tag = ’13’;

+-----+------+-------+------+-----+

| uid | sid | route | unit | tag |

+-----+------+-------+------+-----+

| 185 | 5490 | 18 | 1 | 13 |

+-----+------+-------+------+-----+

mysql> select * from Contract;

+-----+------+-------+------+-----+

| uid | sid | route | unit | tag |

+-----+------+-------+------+-----+

| 1 | 1 | 9 | 1 | 0 |

...
148

| 183 | 5490 | 18 | 1 | 11 |

| 184 | 5490 | 18 | 1 | 12 |

| 185 | 5490 | 18 | 1 | 13 |

+-----+------+-------+------+-----+

And now we can refer to a Contract.uid of 185 in transactions as the
shorthand for:

FUT.ECBOT.YM expiration 200903

A similar, but a simpler, analysis applies to Stocks and so forth, and the
process to add new Symbols, and thence Contracts. Obviously the database
has ‘foreign key’ constraints which must be honored, and so the database
adminstrator needs to observe some care as to unloading and renumbering, or
more complexly, merging in changes between the upstream reference database
and the local working copy. This is out of scope here, but we highlight the
matter for local case analysis.

8.1.5 Fixing the make test

And of course the impetus for this discussion was to fix the broken make
test, which as it turned out, was referring to a stale contract. We needed to
change the 178 to 179 in a couple scripts.

We will use the Unix sed command for this purpose, as it is designed
to do quick in-place edits without the overhead of opening a full blown edit
client.

Determine the files to edit with grep:

[herrold@centos-4 shim]$ cd shim_070802

[herrold@centos-4 shim_070802]$ cd bin

[herrold@centos-4 bin]$ grep 178 *

includes: hit_shim ’get contract info’ ’info 178 all;’

includes: hit_shim ’YM market depth’ ’book add 178 7;’

includes: hit_shim ’no market depth’ ’book del 178 1;’

includes.orig: hit_shim ’get contract info’ ’info 178 all;’

includes.orig: hit_shim ’YM market depth’ ’book add 178 7;’

includes.orig: hit_shim ’no market depth’ ’book del 178 1;’

shell:info 178 all;

unsafe: # hit_shim ’get contract info’ ’info 178 all;’

Do the edits with a modern implementation of sed [we expect the ‘-i’
option to be present here, and it seems that Apple’s OS/X 10.4 Xcode de-
velopment environment does not have such]:

149

[herrold@centos-4 bin]$ sed -i -e ’s/178/179/’ includes

[herrold@centos-4 bin]$ sed -i -e ’s/178/179/’ shell

[herrold@centos-4 bin]$ sed -i -e ’s/178/179/’ unsafe

Verify that the edits are done (note that some files already had 179 in
them so more lines show up the second time we look with grep).

[herrold@centos-4 bin]$ grep 179 *

includes: hit_shim ’get contract info’ ’info 179 all;’

includes: hit_shim ’YM market depth’ ’book add 179 7;’

includes: hit_shim ’no market depth’ ’book del 179 1;’

includes: hit_shim ’YM history query’ ’past add 179 11;’

4:5; 5:6; 6:8; 7:11; 8:13; 9:16

includes.orig: hit_shim ’YM history query’ ’past add 179 11;’

4:5; 5:6; 6:8; 7:11; 8:13; 9:16

periodic: hit_shim ’’ ’past add 179 11;’

; sleep30

shell:info 179 all;

unsafe: # hit_shim ’get contract info’ ’info 179 all;’

[herrold@centos-4 bin]$

[herrold@centos-4 bin]$ cd ..

And rerun the test:

[herrold@centos-4 shim_070802]$ make test

We show the whole test log sequence here:

Aug 3 14:08:08 centos-4 : 21927|50887| 2592233|4|100| 5

|# |4|100|5|****************|

Aug 3 14:08:08 centos-4 : 21927|50887| 2592240|4|100| 5

|# |4|100|5|0.31|999999|data|

Aug 3 14:08:08 centos-4 : 21927|50887| 2592244|4|100| 5

|# |4|100|5|****************|

Aug 3 14:08:08 centos-4 : 21927|50887| 2592284|3| 9| 1|1|

Aug 3 14:08:08 centos-4 : 21927|50888| 2836686|3| 4| 2

| -1|2104|Market data farm connection is OK:usfuture|

Aug 3 14:08:08 centos-4 : 21927|50888| 2836705|3| 4| 2

| -1|2104|Market data farm connection is OK:usfarm|

Aug 3 14:08:08 centos-4 : 21927|50888| 2836740|2|11| 0|verb Detail;|

Aug 3 14:08:08 centos-4 : 21927|50888| 2856466|3|14| 1|5|

Aug 3 14:08:09 centos-4 : 21927|50889| 3826240|2|19| 0

|past add 179 11;|
150

Aug 3 14:08:09 centos-4 : 21927|50889| 3846936|3|20| 3|1|179|11|

Aug 3 14:08:09 centos-4 : 21927|50889| 4582936|3| 4| 2

| -1|2106|HMDS data farm connection is OK:ushmds2a|

Aug 3 14:08:09 centos-4 : 21927|50889| 4588531|3| 4| 2

| 179| 165|Historical Market Data Service query

message:HMDS server connection was successful.|

Aug 3 14:08:11 centos-4 : 21927|50890| 4830434|3|17| 3| 179|7|

Aug 3 14:08:11 centos-4 : 21927|50890| 4830300|3| 1| 1

|20070803 14:07:40|13487.0|13487.0|13487.0|13487.0| 8

|13487.0|false|FUT.SMART.YM.

Aug 3 14:08:11 centos-4 : 21927|50890| 4830322|3| 1| 1

|20070803 14:07:45|13486.0|13490.0|13486.0|13489.0| 44

|13488.0|false|FUT.SMART.YM.

Aug 3 14:08:11 centos-4 : 21927|50890| 4830343|3| 1| 1|20070803 14:07

:50|13489.0|13489.0|13486.0|13486.0| 19|13488.0|false

|FUT.SMART.YM.

Aug 3 14:08:11 centos-4 : 21927|50890| 4830364|3| 1| 1|20070803 14:07

:55|13485.0|13486.0|13485.0|13485.0| 22|13485.0|false

|FUT.SMART.YM.

Aug 3 14:08:11 centos-4 : 21927|50890| 4830384|3| 1| 1|20070803 14:08

:00|13486.0|13486.0|13484.0|13484.0| 9|13485.0|false

|FUT.SMART.YM.

Aug 3 14:08:11 centos-4 : 21927|50890| 4830405|3| 1| 1|20070803 14:08

:05|13484.0|13484.0|13480.0|13481.0| 151|13482.0|false

|FUT.SMART.YM.

Aug 3 14:08:11 centos-4 : 21927|50890| 4830426|3| 1| 1|20070803 14:08

:08|13481.0|13481.0|13478.0|13478.0| 34|13479.0|false

|FUT.SMART.YM.

Aug 3 14:08:11 centos-4 : 21927|50890| 4833784|4|100| 5|# |4

|100|5|event: history insert|(179, 2, 20070803 14:07:

40 -- 20070803 14:08:08)|

Aug 3 14:08:13 centos-4 : 21927|50893| 7818519|2|12| 0|news on all;|

Aug 3 14:08:13 centos-4 : 21927|50893| 7818659|2|12| 0|news off all;|

Aug 3 14:08:13 centos-4 : 21927|50893| 7818676|3|12| 1|all|

Aug 3 14:08:13 centos-4 : 21927|50893| 7818811|2|14| 0|acct on;|

Aug 3 14:08:13 centos-4 : 21927|50893| 7818994|2|15| 0|info 15 new;|

Aug 3 14:08:13 centos-4 : 21927|50893| 7819101|2|15| 0|info 178 all;|

Aug 3 14:08:13 centos-4 : 21927|50893| 7819208|2|17| 0|tick add 15 1;|

Aug 3 14:08:13 centos-4 : 21927|50893| 7840445|3|13| 1|

Aug 3 14:08:13 centos-4 : 21927|50893| 7861111|3| 6| 2|on|

Aug 3 14:08:13 centos-4 : 21927|50893| 7902311|3| 8| 1|14:05|

Note that there is no longer an error as to:
151

—No security definition has been found for the request—
We have met our goal of fixing an obsolete reference, which was causing

error noise in the log file, and also have learned about adding new expirations
and indeed, underlying securities to obtain market data, history, and to trade.

8.1.6 Tabular database table listings in other contexts

We had a request to demonstrate how to emit a tabluar listing of information
held in the database from the command line. The user wished to produce
a simple listing to post at a website, without having to update the listing
manually from time to time.

[herrold@centos-4 docs]$ echo "select * from Exchange \

order by ’desc’ " | mysql-u rph_shim -h xps400 rph_testing

uid name code desc products

3 AMEX US American Stock Exchange STK,OPT,IND

28 ARCA US Archipelago STK

30 BTRADE US Bloomberg Tradebook STK

...

38 WINNER GB Winterflood Securities Ltd STK

46 IBIS DE XETRA: eXch electronic TRAding STK,IND

[herrold@centos-4 docs]$

and as the question was asked in a web server context, it is possible to
emit a well-formed HTML static table fragment:

[herrold@centos-4 docs]$ cat ./showExchangeTable.php

#!/usr/bin/php -qc/etc

<?php

// Copyright (c) 2007 Owl River Company

// ALL rights reserved ; unauthorized use prohibited

// info@owlriver.com

//

$debug = "y";

$debug = "";

//

// get the SQL passwords

include ’./include.inc’;

//

if ("$debug" != "") {

print "-|" . $sql_server . "|-|" .

$sql_user . "|-|" .

$sql_passwd . "|-|" .
152

$sql_name . "|-|" .

"|-\n";

print "<hr>\n";

}

// Connect to the server

$link = mysql_connect("$sql_server", "$sql_user", "$sql_passwd")

or die("Could not connect");

if ("$debug" != "") {

print "Connected successfully to host: $sql_server
\n";

}

// and Verify the database is accessible

$isdb = mysql_select_db("$sql_name")

or die ("Error connecting to database");

if ("$debug" != "") {

print "Connected successfully to database: $sql_name
\n";

}

//

//

//

print "<hr>\n";

//

// This is the table we wish to dump the contents of

$select1 = "select * from Exchange order by ’desc’";

$result1 = mysql_query($select1)

or $mysql_eval_error = mysql_error();

if ($mysql_eval_error) {

print "mysql_error 1: $mysql_eval_error \n";

}

//

// Did we find any rows

$numrow1 = mysql_num_rows($result1);

if ("$debug" != "") {

print "numrow1: $numrow1
";

}

if ($numrow1 > 0) {

//

// If so, print the table

print "<table>";

print "<tr><td>uid</td><td>name</td><td>code</td>

<td>desc</td><td>products</td></tr>\n";

while ($row1 = mysql_fetch_assoc($result1)) {

// list items are: uid name code desc products

153

$li_uid = $row1["uid"];

$li_name = $row1["name"];

$li_code = $row1["code"];

$li_desc = $row1["desc"];

$li_products = $row1["products"];

print "<tr><td>$li_uid</td><td>$li_name</td><td>$li_code</td>

<td>$li_desc</td><td>$li_products</td></tr>\n";

}

//

print "</table>\n";

print $numrow1 . " rows found
\n";

}

//

print "<hr>\n";

//

?>

The file shown above is in PHP command line interface (‘CLI’) format
with the initial #!/usr/bin/php -qc/etc line; if one were building a web in-
terface, by removing that initial line, this code would also work as for small
tables. Note that it tests the number of returned rows, such that a multi-page
web display interface might be accomodated with just a bit more code.

The CLI version will yield a result when run at the command line, which
is simple to capture into a file using common shell stdout redirect operators:

[herrold@centos-4 docs]$./showExchangeTable.php

<hr>

<table><tr><td>uid</td><td>name</td><td>code</td>

<td>desc</td><td>products</td></tr>

<tr><td>3</td><td>AMEX</td><td>US</td>

<td>American Stock Exchange</td><td>STK,OPT,IND</td></tr>

<tr><td>28</td><td>ARCA</td><td>US</td>

<td>Archipelago</td><td>STK</td></tr>

<tr><td>30</td><td>BTRADE</td><td>US</td>

<td>Bloomberg Tradebook</td><td>STK</td></tr>

...

<tr><td>38</td><td>WINNER</td><td>GB</td>

<td>Winterflood Securities Ltd</td><td>STK</td></tr>

<tr><td>46</td><td>IBIS</td><td>DE</td>

<td>XETRA: eXch electronic TRAding</td><td>STK,IND</td></tr>

</table>

54 rows found

<hr>
154

[herrold@centos-4 docs]$

The database keying file is trivial in form:

[herrold@centos-4 docs]$ cat ./include.inc

<?php

$sql_server = "xps400";

$sql_user = "rph_shim";

$sql_passwd = "";

$sql_name = "rph_testing";

?>

[herrold@centos-4 docs]$

155

FIXME: subsection

8.1.7 How to extend the Symbol (and then Contract)
tables

The IRC channel (#interactivebrokers, on the irc.othernet.org servers) had this
question (we truncate the IRC user nicknames):

10:35 +Mixx> I need ib ticker quote help ok to ask here?

10:35 +Mixx> AD-NYSE

10:35 +Mixx> VOL-NYSE

10:35 +Mixx> i get no quotes

10:40 +Boxx> same here

10:42 +Mixx> ok

10:42 +Mixx> IRT software is getting quotes on it

through tws i see so ok here

10:42 +Mixx> thx

10:43 +Boxx> are you sure it’s using the same symbols you typed ?

11:34 +Mixx> y

and so we check to see if we presently support framing tick or past commands
on those Indices.

mysql> select Contract.uid, Contract.sid, SecType.type,

Exch.name as route, Exchange.name as home,

Symbol.name from Contract

left join Symbol on Contract.sid = Symbol.uid

left join SecType on Symbol.tid = SecType.uid

left join Exchange as Exch on Contract.route = Exch.uid

left join Exchange on Symbol.exch = Exchange.uid

where SecType.type = ’IND’ and Symbol.name like ’%NYSE%’;

+-----+-----+------+-------+------+-----------+

| uid | sid | type | route | home | name |

+-----+-----+------+-------+------+-----------+

| 172 | 12 | IND | SMART | NYSE | TICK-NYSE |

| 171 | 11 | IND | SMART | NYSE | TRIN-NYSE |

+-----+-----+------+-------+------+-----------+

Note: that we had to ‘alias’ the Exchange table to do the projection
to permit seeing both the order ‘route’ Exchange of the Contract and the
‘home’ Exchange of the Symbol in a single query.

The answer is: the ultimate Contract.uid values we want to use are
not currently present, so we would need to add them to the Contract table
in the proper form, before we can test if the feeds are live.

156

Digging further, are they even in the Symbol table yet?

mysql> select Symbol.uid, Symbol.name from Symbol

where Symbol.name like ’%NYSE%’;

+-----+-----------+

| uid | name |

+-----+-----------+

| 12 | TICK-NYSE |

| 11 | TRIN-NYSE |

+-----+-----------+

and again the answer is in the negative, so we will also need to first add these
indices to the Symbol table as well.

To add these, all of the non-optional fields in the Symbol table need to
be specified. The non-optional, or mandatory fields are: tid, exch, and name.
The two remaining fields: desc, and conid are optional, in the sense that no
sub-table relation mandates ‘sensible’ contents for them.

As we are undertaking role of a maintainer of local dataset extensions,
however, we probably want to track IB’s name assignments for these fields.
We started to perform minimal maintainer duties previously with the simpli-
fied case of adding a new front month for FUT.SMART.YM 8.1.4. We need
to look a bit deeper now.

Populating the Symbol table manually

One way to test would be to use the TWS GUI, and seek to add each tuple.
The TWS communicates upstream to IB, and only offers sub menu picks in
turn of potentially ‘correct’ contracts.

Using the TWS GUI, Contract Info — Description, we get a pop-up box,
and it seems: AD-NYSE, an Index, is at NYSE, or in our tuple notation
from the TWS GUI as follows: IND.NYSE.AD-NYSE It is not immediately
obvious that the route is SMART on this index; in earlier experimentation, we
determined that this works experiemntally, when we added IND.NYSE.TICK-
NYSE and IND.NYSE.TRIN-NYSE.

See Figure 8.1
Using the TWS GUI, Contract Info — Contract Details , it seeks to open

a web page at the following URL (as it is quite long, we have broken it over
three lines; obviously a URL needs to be ‘reassembled’ back onto a contiguous
line with no intervening whitespace to work in a web browser or a web page
‘screen scraper’ tool):

http://www.interactivebrokers.co.uk/contract_info/index.php?

action=Details&site=IB&conid=33887584&detlev=2

&sess=1192638048
157

Figure 8.1: Contract Info — Description

In experimenting, we find that the last line with the sess value is not
strictly needed. The other four HTTP GET variables and values, and our
inferred meaning for each are:

1. action=Details - a common and conventional HTTP GET action FORM
variable name for indicating a FORM SUBMIT response is sought from
the webserver. Of course this is a common way to implement a Re-
mote Procedure Call (“RPC”) [here, obtaining extended Contract

Details] in a now customary form, which may be proxied, or directly
be permitted to traverse many firewalls on tcp/80.

2. site=IB - a website ‘badging’ capability, for so called ‘white box’ re-
branding by IB marketing partners.

3. conid=33887584 - the IB Conid; a Contract identifier, specific to IB,
which our observation indicates does not vary often, if at all (we have
not seen one change yet, but are aware of no IB representation on this),
as to a specific tradeable security.

4. detlev=2 - Detail level. This is self-explanatory, but we are aware of no
IB documentation of allowable values.

Note that on the webpage returned that the following ‘boilerplate’ warn-
ing is also present at the bottom of the page, outside the screenshot;

158

159

The information and materials provided via the Interactive Bro-
kers Contract Information Center are provided ”as is” and with-
out warranties of any kind as to the accuracy or validity. Addi-
tionally, IB provides links to other sites that are not maintained
by IB. IB does not endorse those sites and is not responsible for
the content of such other sites. Not all contracts are available for
all account types.

We concur that this is not wholly reliable information, and note in passing
that a mailing list correspondent stated:

> But I _am_ concerned that a MKT order took 40 minutes to fill

> on the initial SELL. What are the ’Regular trading hours’ on

> the exchange upon which ’GBM’ trades?

08:00 - 22:00 (CEST)

>>> From the IB site, the relevant exchange hours seem to be:

>>> 07:30 - 20:00 (CET)

>>> www.eurexchange.com

this information is outdated...

Obviously it is an almost impossible clerical work load, whether for ‘Inter-
active Brokers Contract Information Center’ or a shim developer or user, or
the author of this work to keep manually maintained systems wholly current.

Populating the Symbol table with automation

Manual processes are of course slow and subject to clerical error.
QUERY: Will the wild command permit us to gather a collection of match-

ing conid values, to then ask upstream to IB directly?

Populating the Symbol table

FIXME With some handwaving, we assume we have the relevant conid in
hand, and have performed the webscrape, which yields Symbol.desc =
’NYSE ADVANCE DECLINE INDEX’, for Symbol.conid = ’33887584’.
We have now gathered all we need to do the INSERT of a new row in the
Symbol table.

First let’s test to see what it will look like:

mysql> select SecType.uid as tid, Exchange.uid as exch,

’AD-NYSE’ as name,
160

’NYSE ADVANCE DECLINE INDEX’ as ’desc’,

’33887584’ as conid from SecType

left join Exchange on Exchange.name = ’NYSE’

where SecType.type = ’IND’ and

Exchange.name = ’NYSE’ limit 1 ;

+-----+------+---------+----------------------------+----------+

| tid | exch | name | desc | conid |

+-----+------+---------+----------------------------+----------+

| 4 | 2 | AD-NYSE | NYSE ADVANCE DECLINE INDEX | 33887584 |

+-----+------+---------+----------------------------+----------+

which are the values we hoped to see; As previously discussed at 8.1.4
‘MySQL per userid account rights’, we need to switch into the code MySQL
userid to get INSERT rights.

Let’s examine some status variables concerning the MySQL client con-
nection which we are using:

mysql> \s

mysql Ver 14.7 Distrib 4.1.20, for redhat-linux-gnu

(i686) using readline 4.3

Connection id: 893

Current database: rph_testing

Current user: rph_code@centos-4.first.lan

...

Connection: xps400 via TCP/IP

...

Uptime: 12 days 5 hours 1 min 56 sec

Threads: 1 Questions: 36699 Slow queries: 0 Opens: 49

Flush tables: 1 Opentables: 64 Queries per second avg: 0.035

Relevant to our concerns, we note that the connection is in the: rph code
user account rights.

mysql> insert into Symbol (tid, exch, name, Symbol.desc, conid)

select SecType.uid as tid, Exchange.uid as exch,

’AD-NYSE’ as name,

’NYSE ADVANCE DECLINE INDEX’ as ’desc’,

’33887584’ as conid from SecType

left join Exchange on Exchange.name = ’NYSE’
161

where SecType.type = ’IND’ and

Exchange.name = ’NYSE’ limit 1 ;

Query OK, 1 row affected (0.00 sec)

Records: 1 Duplicates: 0 Warnings: 0

Note: We used the two forms which MySQL uses to dis-ambiguate key-
words in the preceeding MySQL INSERT statement: Symbol.desc and the:
as ’desc’ forms. Additionally we needed to use the singlequote around the
free-standing ’desc’, which is also a MySQL keyword.

For testing purposes (and because we have fore-knowledge that we are
going to need to look up the Symbol.uid on the row we just added), we
then turn around and view the result:

mysql> select * from Symbol where Symbol.name like ’%NYSE%’;

+------+-----+------+-----------+----------------------------+----------+

| uid | tid | exch | name | desc | conid |

+------+-----+------+-----------+----------------------------+----------+

| 11 | 4 | 2 | TRIN-NYSE | ARMS(TRADING) | NULL |

| 12 | 4 | 2 | TICK-NYSE | ADVANCE - DECLINE | NULL |

| 5588 | 4 | 2 | AD-NYSE | NYSE ADVANCE DECLINE INDEX | 33887584 |

+------+-----+------+-----------+----------------------------+----------+

We save for a discussion elsewhere what the proper strategy for populating
Symbol.conid might be.

Extending the Contract table - part 2

We have covered this topic, with an abbreviated form at 8.1.4 ‘Extending the
Contract table - part 1’ and now do so again, but in a less ad hoc fashion.
A completely formal approach is at FIXME refformal-load.

Recall that we had a similar index: IND.SMART.TICK-NYSE in the Con-

tract table already:

mysql> select * from Contract where sid = ’12’ ;

+-----+-----+-------+------+-----+

| uid | sid | route | unit | tag |

+-----+-----+-------+------+-----+

| 172 | 12 | 18 | 1 | 0 |

+-----+-----+-------+------+-----+

Only one field changes: the Contract.sid to reference the new Symbol
just added. We view it:

162

mysql> select Symbol.uid as sid, Contract.route as route,

Contract.unit as unit, Contract.tag as tag from Symbol

left join Contract on Contract.sid = ’12’

where Symbol.name = ’AD-NYSE’ limit 1;

+------+-------+------+------+

| sid | route | unit | tag |

+------+-------+------+------+

| 5588 | 18 | 1 | 0 |

+------+-------+------+------+

and add it. Again, we are in the code reference user account:

mysql> insert into Contract (sid, route, unit, tag)

select Symbol.uid as sid, Contract.route as route,

Contract.unit as unit, Contract.tag as tag from Symbol

left join Contract on Contract.sid = ’12’

where Symbol.name = ’AD-NYSE’ limit 1;

Query OK, 1 row affected (0.02 sec)

Records: 1 Duplicates: 0 Warnings: 0

and of course, we can reverse the lookup, to show that it is correct. we need
to add a MySQL ORDER BY clause to force the last row displayed to be the
uid just assigned:

mysql> select * from Contract order by Contract.uid ;

+-----+------+-------+------+-----+

| uid | sid | route | unit | tag |

+-----+------+-------+------+-----+

| 1 | 1 | 9 | 1 | 0 |

...

| 206 | 5588 | 18 | 1 | 0 |

+-----+------+-------+------+-----+

mysql> select Contract.sid, SecType.type, Exchange.name,

Symbol.name from Contract

left join Symbol on Contract.sid = Symbol.uid

left join SecType on Symbol.tid = SecType.uid

left join Exchange on Contract.route = Exchange.uid

where Contract.uid = ’206’ ;

+------+------+-------+---------+

| sid | type | name | name |

+------+------+-------+---------+

| 5588 | IND | SMART | AD-NYSE |

+------+------+-------+---------+
163

And now we have added a Contract.uid for the first symbol men-
tioned in that IRC thread, that we needed to send the tick or past commands
through the shim. We would repeat the process for VOL-TICK, of course,
and could then run the queries needed to answer the question asked by the
IRC participant.

Conclusion on populating the Symbol table manually

This concludes our somewhat tactical discussion, about the methods for
adding to the various tables by manual efforts. We cover making additions
to the bulk load which ultimately can appear in the Contract table at
FIXME refbulk-up.

In that discussion, we will review parts of the MySQL command script:
sql/load.sql. That is an interesting script, for it has a ‘comma’ JOIN, also
called an INNER JOIN:

insert

into Underlying(nid, home, name, ‘desc’)

select 6,

Currency.floor,

Currency.code,

Currency.plural

from Currency, Exchange

where Currency.floor = Exchange.uid

order by Currency.uid;

Note: the fragment: from Currency, Exchange which is the ‘comma’ JOIN

This produces first the full ‘Cartesian product’ JOIN between Currency

and Exchange, but then limits the result set with the WHERE clause.

mysql> select Currency.floor, Currency.code, Currency.plural,

Exchange.name from Currency INNER JOIN Exchange

where Currency.floor = Exchange.uid;

+-------+------+------------+----------+

| floor | code | plural | name |

+-------+------+------------+----------+

| 9 | USD | US Dollars | IDEALPRO |

| 9 | AUD | AU Dollars | IDEALPRO |

| 9 | CAD | CA Dollars | IDEALPRO |

| 9 | CHF | CH Francs | IDEALPRO |

| 9 | EUR | EU Euro | IDEALPRO |

| 9 | GBP | GB Pounds | IDEALPRO |

| 9 | HKD | HK Dollars | IDEALPRO |
164

| 9 | JPY | JP Yen | IDEALPRO |

| 9 | MXN | MX Pesos | IDEALPRO |

| 9 | SEK | SE Kronor | IDEALPRO |

+-------+------+------------+----------+

165

FIXME: subsection

8.1.8 Bulk loading the Contract table

FIXME: possibly move the discussion in tables.tex here

166

Chapter 9

Commands and the database
together

167

9.1 Market Data, History, and Market Depth

The shim is a command-line and dbms controlled interface; and we have con-
sidered some simple database operations in the previous section.

As we now have a small foundation of knowledge for basic database ma-
nipulation, as to how to specify a particular contract in which we are in-
terested, we can build a more interesting result than simply looking up and
maintaining the shim database. An often requested case is to set up the
retrieval of OHLC History data. We use that nomenclature, to distinguish
this operation from the more ephemeral retrieval and logging of tick by tick
Market Data, which is a form of streaming data.

As an analogy to point up the difference between Market Data and His-
tory, consider the ‘play by play’ call by a baseball game radio announcement
team, contrasted with the characterization and clerical notation of a box
score prepared by the League’s official scorer, each watching the same game.

The first remarks on interesting events as they happen; then the an-
nouncer largely ‘forgets’ the minor events in the game’s past once the next
potentially interesting event occurs. There may also be a ‘color’ commenta-
tor in the booth with the play by play announcer, who may be more versed
in baseball trivia and lore. That person might ‘jump in’ from time to time,
and offer some context to make the game more interesting for the audience
to listen to [compare back in a market context: hitting a new 52 week high,
a ‘gap’, or a trading halt].

We mention this as there is both a ‘Market Scanner’ function in the IB
TWS API, for which we may add support in the future (as is the customary
notation: “... assuming we pick up a committed tester or two for a given
new feature, we are certainly willing to discuss adding this to our develop-
ment”), and it makes sense to build it into this analogy. Also and currently
supported in the shim is a facility to run (with a Unix exec, which may in
turn spawn off a long-lived Unix fork process) an external program as part
of a PastFilter.script. This permits the ‘downstream client’ of the shim
to build in arbitrarily complex add-on processing.

Then there is the official scorer, who summarizes events, possibly ignor-
ing some detail, but (hopefully) memorializing the material highlights of the
contest; the scorer may tally and maintain compiled ‘state’ detail such as
number of innings pitched or number of strike-out’s by a pitcher, or generate
material, such as home run’s hit for very long duration career statistics [we
write this the day after Barry Bonds has exceeded Hank Aaron’s record],
in a form which might be further summarized for tomorrow’s local newspa-
per, or for some future edition of The Bill James’ Baseball Abstract. These
correspond to the Market Data stream, vs. the OHLC History record.

As is our model in this reference, we strive to be practical and task ori-
168

ented; we pursue at least a couple of objectives in the context of the shim
and using the database of the shim. The exercises will build on one after the
other.

9.2 Market Data subscription

The retrieval of Market Data, which is commonly called tick data, is handled
by managing a ‘subscription’ to the data stream. IB imposes a limit of 100
simultaneous Market Data subscriptions, which limit may be altered upward,
depending on commission volume.

The TickConfig table is referenced in the prototype for the tick com-
mand, but I do not understand why FIXME. This looks like Market Depth
information FIXME.

mysql> select * from TickConfig ;

+-----+------+-----+------+

| uid | type | bar | bars |

+-----+------+-----+------+

| 1 | tick | 5 | 9 |

| 2 | time | 2 | 9 |

| 3 | tick | 5 | 20 |

| 4 | time | 2 | 20 |

+-----+------+-----+------+

9.2.1 Subscribing to Market Data

The tick command (See: tick 3.24) is a simple command case.
Entering a new subscrption consists of:

1. doing the Symbol lookup to determine the Contract.uid (See: Look-
ing up a Contract.uid 8.1.3)

2. sending the command:

tick add (Contract.uid) 1;

This assumes one is not close to the limitation on Market Data streams,
which IB has in effect on a given account. From observation of the TWS and
statements from IB over time, at the time of the 100th simultaneous active
request for another Market Data, the TWS will return a message of form:

TBD: example
169

We are not aware of any way within the API to ‘ask’ what limits are
then in effect, and so those constants are hard-coded into the code. If your
account has an ability for more, the constant in src/bind.c will need to be
adjusted and a new shim compiled.

If one goes over the limit, Market Data subscriptions are either: FIXME
silently dropped with no further FIXME silently displaced on a FIFO basis
and no further FIXME cause an error with XXX consequences.

9.2.2 Unsubscribing from Market Data

The tick command (See: tick 3.24) is a simple command case.
Removing an existing subscription consists of:

1. doing the Symbol lookup to determine the Contract.uid (See: Looking
up a Contract.uid 8.1.3)

2. sending the command:

tick del (Contract.uid) 1;

While the TWS may FIXME does (sample) issue an error message if one
attempts to remove a non-subscribed Contract.uid, it does not terminate a
running TWS session. As the TWS code is obscured from being readible by
us, we cannot state with certainty whether any other instability effects may
remain behind.

We infer from observation that the last value is ignored in the del case of
the tick command.

9.3 History retrieval

The canonical database walk which we did for Contract.uid lookup applies
here as well. As we did it the long way earlier, we will provide a couple of
summarized recaps here:

The second sample script does a non-recurrent command line history
request which is also late enough (070806) that it is calling the exec-ed visu-
alization script, hql2ps, which reads thus:

[herrold@centos-4 bin]$ pwd ; grep past *

/home/herrold/shim/shim-070806/bin

includes: hit_shim ’YM history query’ ’past add 179 11;’

includes: ./shim --leaf part tick past

periodic: hit_shim ’’ ’past add 179 11;’

; sleep60

[herrold@centos-4 bin]$
170

(We have removed a terminal comment, and cleaned up the whitespace
in the result above)

mysql> select * from PastFilter where PastFilter.uid = ’11’;

+-----+-----+--------+------+----------+-----+--------+

| uid | tid | period | reps | duration | end | script |

+-----+-----+--------+------+----------+-----+--------+

| 11 | 2 | 3 | 0 | 30 | | hql2ps |

+-----+-----+--------+------+----------+-----+--------+

mysql> select * from HistoryTag where HistoryTag.uid = ’2’;

+-----+-----+--------+--------+----------+

| uid | bar | what | format | rth_only |

+-----+-----+--------+--------+----------+

| 2 | 2 | TRADES | ymdt | 1 |

+-----+-----+--------+--------+----------+

mysql> select * from BarSize where BarSize.uid = ’2’;

+-----+------+------+

| uid | type | secs |

+-----+------+------+

| 2 | s05 | 5 |

+-----+------+------+

Unifying this yields a acutely large query result, which will not fit the
printed page. We show the mysql query at first, but not its output; then we
re-do it in a fashion to show the left, and then the right half of the result,
retaining the PastFilter.uid as a common field:

mysql> select PastFilter.uid, PastFilter.period, PastFilter.reps,

PastFilter.duration, PastFilter.end, PastFilter.script,

HistoryTag.what, HistoryTag.format, HistoryTag.rth_only,

BarSize.type, BarSize.secs from PastFilter

left join HistoryTag on HistoryTag.uid = PastFilter.tid

left join BarSize on BarSize.uid = HistoryTag.bar

where PastFilter.uid = ’11’;

mysql> select PastFilter.uid, PastFilter.period, PastFilter.reps,

PastFilter.duration, PastFilter.end from PastFilter

left join HistoryTag on HistoryTag.uid = PastFilter.tid

left join BarSize on BarSize.uid = HistoryTag.bar

where PastFilter.uid = ’11’;

+-----+--------+------+----------+-----+
171

| uid | period | reps | duration | end |

+-----+--------+------+----------+-----+

| 11 | 3 | 0 | 30 | |

+-----+--------+------+----------+-----+

mysql> select PastFilter.uid, PastFilter.script, HistoryTag.what,

HistoryTag.format, HistoryTag.rth_only, BarSize.type,

BarSize.secs from PastFilter

left join HistoryTag on HistoryTag.uid = PastFilter.tid

left join BarSize on BarSize.uid = HistoryTag.bar

where PastFilter.uid = ’11’;

+-----+--------+--------+--------+----------+------+------+

| uid | script | what | format | rth_only | type | secs |

+-----+--------+--------+--------+----------+------+------+

| 11 | hql2ps | TRADES | ymdt | 1 | s05 | 5 |

+-----+--------+--------+--------+----------+------+------+

FIXME This is a example which is running the new scripting facility.
Explain this as it also relates to the script helper

9.3.1 Retrieving a History set – one off current

The past command (See: past 3.19) is the simplest case - discuss PastFilter

options partially
The shim attends to doing the database insert of History data retrieved,

into the HistoryBar table. It also echoed the retrieved data into the log-
ger, and appends a ‘completion’ summarization of what is has added to the
database in a message of this type:

Aug 7 10:06:46 centos-4 : 6421|36404| 4594668|4|100| 5|

|4|100|5|event: history insert|(179, 2, 20070807 10:06

:15 -- 20070807 10:06:43)|

mysql> describe PastFilter ;

+----------+------------------+------+-----+---------+----------------+

| Field | Type | Null | Key | Default | Extra |

+----------+------------------+------+-----+---------+----------------+

| uid | int(10) unsigned | NO | PRI | NULL | auto_increment |

| tid | int(10) unsigned | NO | MUL | | |

| period | int(10) unsigned | YES | MUL | NULL | |

| reps | int(10) unsigned | NO | | 0 | |

| duration | int(10) unsigned | NO | | | |

| end | char(17) | NO | | | |
172

| script | char(64) | NO | | | |

+----------+------------------+------+-----+---------+----------------+

We have gone through the individual fields in the discussion of the past
command previously.

TBD: add a back index link

9.3.2 Retrieving a History set – recurring current

The past command (See: past 3.19) is the next case – discuss PastFilter,
non-null repetition interval

The particular use case we are interested in arises from this message series
in the shim’s output logging:

TBD: sample needed here
We use a trimmed down version of the table description of HistoryTag,

as we wish to focus on the the last three fields, with enum, rth, and format
field values.

mysql> describe HistoryTag ;

+----------+---+ ...

| Field | Type |

+----------+---+

| uid | int(10) unsigned |

| bar | int(10) unsigned |

| what | enum(’TRADES’,’MIDPOINT’,’BID’,’ASK’,’BID/ASK’) |

| format | enum(’ymdt’,’epoch’) |

| rth_only | tinyint(1) |

+----------+---+

5 rows in set (0.00 sec)

9.3.3 History Pacing Violations

The shim has ‘governor logic’ to ‘ration’ the rate at which past History re-
quests are sent to the upstream TWS. From observation of the TWS and
statements from IB over time, at the time of the 60th request for historical
data, the TWS will return a message of form:

Oct 10 12:48:32 centos-4 : 8101|46112| 69289766|1|19| 0

|past add 15 13 Ymd_T;|

Oct 10 12:48:32 centos-4 : 8101|46112| 69289799|3| 4| 2

| 15| 162|Historical Market Data Service error

message:Historical data request pacing violation|
173

Oct 10 12:48:32 centos-4 : 8101|46112| 69289955|1| 2| 0

|ping harvest HMS: 11:00:00 asked at: 20071010 12:48:27

count: 60 ;|

The quick answer on how to avoid this is: Don’t do that.
We had thought the shim might again start to receive History data after

the expiration of a ten minute interval (like some kind of a period in the
‘penalty box’ at a hockey game), based on some discussion by others in some
of the mailing lists, but we do not observe that with a shim version from late
September 2007. After the messages quoted above, the only later message
we see is:

Oct 10 12:55:01 centos-4 : 8101|46501| 458092368|3| 4| 2

| -1|2107|HMDS data farm connection is inactive

but should be available upon demand.:ushmds2a|

and nothing more, after waiting for another fifteen minutes beyond that.
However, this governor logic is configurable, so that one can manage the

rate limiting in a downstream client, rather than being constrained by the
shim. TBD: explain the RC file option

We produced the error message above by altering the governor logic limits
temporarily to permit one per second past queries, and feeding the shim thus:

[herrold@centos-4 shim.070928]$../get_day.sh | ./shim --data logd

with the following script, which we have also discussed in other forms on the
mailing list:

[herrold@centos-4 shim]$ cat get_day.sh

#!/bin/sh

#

emit a series of commands to get a day’s worth of History

on Contract.uid 15 (AIG), using PastFilter.uid 13

#

CID="15"

QRY="13"

DOZE="1"

N="0"

#

###3

#

for k in ‘seq 10 24‘; do

#
174

only weekdays

[‘date --date "200709${k}" +%u ‘ -lt 6] && {

#

brand when we ask

BRAND=‘date +’%Y%m%m %T’ ‘

echo "ping harvest day: 200709${k} asked at: ${BRAND} ;"

for i in seq 9 16; do

[$i -gt 9] && {

BRAND=‘date +’%Y%m%m %T’‘

export N=‘echo "${N} + 1" | bc‘

echo "ping harvest HMS: ${i}:00:00 asked at: ${BRAND} count: ${N} ;"

echo -n "past add ${CID} ${QRY} Ymd_T(200709"

echo -n "${k}"

echo -n " "

echo "${i}:00:00);"

echo "wait 10;"

sleep ${DOZE}

}

[$i -lt 16] && {

BRAND=‘date +’%Y%m%m %T’‘

export N=‘echo "${N} + 1" | bc‘

echo "ping harvest HMS: ${i}:00:00 asked at: ${BRAND} count: ${N} ;"

echo -n "past add ${CID} ${QRY} Ymd_T(200709"

echo -n "${k}"

echo -n " "

[$i -lt 10] && echo -n "0"

echo "${i}:30:00);"

echo "wait 10;"

sleep ${DOZE}

}

done

}

done

#

echo "quit;";

#

As a bit of good news, we note that by varying the ‘DOZE’ parameter
back to 11 seconds, in that same series of tests we were able run the 154 past
commands in succession, This permitted us to harvest a bit over a quarter
million lines of ‘per second‘ AIG History detail without incident in about
one-half hour’s elapsed time (a bit less actually: 1694 seconds):

175

mysql> select count(*) from HistoryBar;

+----------+

| count(*) |

+----------+

| 280800 |

+----------+

9.4 Market Depth subscription

The retrieval of Market Depth, which is commonly called ‘OpenBook’ data,
is handled by managing a ‘subscription’ to the data stream IB imposes a limit
of 3 simultaneous Market Depth subscriptions, which limit may be altered
upward, depending on commission volume.

FIXME – more text here
The DepthLimit table is referenced in the prototype for the book com-

mand. It permits a lookup of the desired number of Market Depth (so called
‘OpenBook’) visible orders.

mysql> select * from DepthLimit ;

+-----+------+

| uid | rows |

+-----+------+

| 1 | 1 |

| 2 | 2 |

| 3 | 3 |

| 4 | 4 |

| 5 | 5 |

| 6 | 6 |

| 7 | 7 |

| 8 | 8 |

| 9 | 9 |

| 10 | 10 |

+-----+------+

In the usual case, we caution about the need to not rely on the strict se-
quential relation between the uid a and the datum referenced, and to counsel
doing the database lookup. In this particular case, however, this should be
a durable relation.

9.4.1 Subscribing to Market Depth

The book command (See: book 3.4) is the simplest case
176

1. doing the Symbol lookup to determine the Contract.uid (See: Look-
ing up a Contract.uid 8.1.3)

2. sending the command:

book add (Contract.uid) 9;

This assumes one is not close to the limitation which IB has in effect on
a given account. We are aware of no way within the API to ‘ask’ what limits
are in effect, and so those constants are presently hard-coded into the code.

If one goes over the limit, Market Depth subscriptions are either:
FIXME silently dropped with no further
FIXME silently displaced on a FIFO basis and no further
FIXME cause an error with XXX consequences.

9.4.2 Unsubscribing from Market Depth

The book command (See: book 3.4) is a simple command case:

1. doing the Symbol lookup to determine the Contract.uid (See: Look-
ing up a Contract.uid 8.1.3)

2. sending the command:

book del (Contract.uid) 1;

While the TWS may FIXME does (sample) issue an error message if one
attempts to remove a non-subscribed Contract.uid, it does not terminate
a running TWS session. As the TWS code is obscured from being readible
by us, we cannot state with certainty whether any other instability effects
may remain behind.

We infer from observation that the last value is ignored in the del case of
the book command.

177

178

Chapter 10

Adding a web browser interface

179

10.1 Look up interface

TBD - show a lookup interface – script luCID.sh is an example
Testing – Add code to show the screen-shot interface I use:

#!/bin /sh
[”x$1” = ”x”] && {

echo ” usage : $0 f i l ename . jpg ”
}

cd ˜
s l e ep 10
import −window root $1

180

We discuss diagnosis, and point to solutions for the problems we have
faced along the way.

181

182

Part IV

Preparing this document

183

Chapter 11

Preparing this document

185

How we generate this document – a transient part until it stabilizes

186

Chapter 12

The writing process

12.1 Adding new commands

1. periodicly inventory new commands (YYMMDD will of course vary)

(./get_cmd_list.sh ../shim-070706 | \

grep cmd ; ls -1 *tex) > command-list-070709.txt

and print it

2. when a new command appears, copy template.tex to command-name.tex

3. add a placeholder

% FIXME \include(command-name.tex)

in the alphabetical command list in

commands.tex

with the FIXME marker

4. edit the new

command-name.tex

to contain a marker

\section{command-name - FIXME}

5. update shim–help.tex, top section
187

12.2 Editing prior text

1. spot remaining items to edit thus:

grep FIXME *tex | grep -v ’:%’

and process newly appearing commands in, as they start working

2. clean up older commands containing ^FIXME’s, ^TBD’s and ^QUERY’s

——————————
Run an ‘edit’ window, and a ‘make’ window

make clean ; make all && xdvi commands.dvi

188

Part V

Conclusion

189

This ends the document – an ‘under construction’ part until we draw
more substantive conclusions

191

“Feed me, Norman ... Feed me”

192

FIXME - Appendix template

193

194

Bibliography

[trading-shim home page] The trading-shim home page
http://www.trading-shim.org/

[trading-shim manual] The trading-shim manual
http://www.trading-shim.org/pdfs/manual.pdf

[Russ’ command reference - DRAFT] Russ’ command reference
http://www.herrold.com/commands.pdf

195

http://www.trading-shim.org/
http://www.trading-shim.org/pdfs/manual.pdf
http://www.herrold.com/commands.pdf

Index

.shimrc, 106

account, 22
account, 22
acct, 23

help, 26
Appendix, 193
args, 99

help, 99
Arguments, 99

Bibliography, 196
bind, 27
book, 28

help, 30

cash, 31
cmds, 100

help, 100
Code

../snapshot.sh, 180
Commands, 100

account, 22
acct, 23
bind, 27
book, 28
cash, 31
dbms, 32
exec, 34
exercise, 35
feed, 36
help, 38, 98
history, 40
info, 41
list, 43
load, 45

news, 48
next, 51
open, 53
order, 55
past, 56
ping, 71
quit, 73
read, 75
scan, 77
Syntax, 15
tick, 78
transmit, 81
verb, 82
wait, 84
wake, 86
wild, 89
wire, 90
xmit, 92

Conclusion, 191
Contract

Bulk loading, 166
Copyright, iii
Copyrighted material

Quotation, 4
Cover Page, 1
Currency

Looking up from Type, Route, and
Symbol

directly with LEFT JOIN, 144
Currency (Forex)

Looking up from a Contract.uid

directly with LEFT JOIN, 142
Currency Unit

Looking up from a Contract.uid,
137

196

dbms, 32
Disclaimer, xiii

error message
can’t parse long string, 57
Historical data query end date/time

string is invalid, 57
Historical Market Data Service er-

ror message, 173
No security definition has been found

for the request, 135
exec, 34
exercise, 35
Extending the Contract table

INSERT
part 1, 148
part 2, 162

feed, 36
Files, 106

.shimrc, 106
help, 106
ShimText, 109

Foreign Exchange
see: Currency, 142

Forex
see: Currency, 25, 142

Future
Expiration

Looking up from a FutDetail.uid,
138

Looking up from a Contract.uid

directly with LEFT JOIN, 140
Looking up from Type, Route, and

Symbol
directly with LEFT JOIN, 145

Security Type
Looking up from a Contract.tag,

137

governor logic
History, 173

help, 38, 98

.shimrc, 106
acct, 26
args, 99
book, 30
cmds, 100
help, 39, 98
info, 42
link, 33, 37, 101
list, 44
load, 47
mode, 102, 103
news, 50
next, 52
open, 54
opts, 104, 105
past, 70
ping, 72
quit, 74
read, 76
tick, 80
verb, 83
wait, 85
wake, 88
wire, 91

History
governor logic, 173
original, 62
Pacing Violations, 173
rate limit, 173
Retrieving

one off current, 172
recurring current, 173

smoothed, 62
history, 40
Home Exchange

Looking up from an Exchange.uid,
136

Index, 196
Index symbol

Looking up from a Contract.uid

directly with LEFT JOIN, 141
197

Looking up from Type, Route, and
Symbol

directly with LEFT JOIN, 145
info, 41

help, 42
Introduction, 3
IRC

irc.othernet.org
#interactivebrokers, 156

License, xv
GPL v 3, xv

link, 101
help, 33, 37, 101

Links, 101
list, 43

help, 44
load, 45

help, 47
logd, 109

make test
Fixing an error, 149

Market Data
Subscribing, 169
Unsubscribing, 170

Market Data Subscription, 169
Market Depth

Subscribing, 176
Unsubscribing, 177

Market Depth Subscription, 176
mode, 102

help, 102, 103
Modes, 102
MySQL

‘comma’ JOIN, 164
account rights

per userid, 147
alias operator

AS, 162
backup client

mysqldump, 130
command line client

mysql, 126, 135
mysqldump, 130

DELETE FROM, 66
DESCRIBE, 58
foreign keys, 127, 130, 147
GROUP BY, 62
INCLUDE, 64
INNER JOIN, 164
INSERT, 60, 62, 130, 134, 147,

160
JOIN, 164
LEFT JOIN, 61, 63, 134, 140
match operator

LIKE, 142
ORDER BY, 62, 134, 163
query client

mysql, 126, 135
SELECT, 62, 134, 140
Status, 161
WHERE, 134, 164
wildcard match character

%, 142

news, 48
help, 50

next, 51
help, 52

numbering, 108
Commands

rule.c, 118
Comments

rule.c, 120
Java sample client, 115

Message, 116
Request, 115
tick types, 117

Message
Java sample client, 116

Messages
rule.c, 120

Request
Java sample client, 115
rule.c, 119

198

rule.c, 118
Commands, 118
Comments, 120
Messages, 120
Request, 119

tick types
Java sample client, 117

open, 53
help, 54

OpenBook, 176
Options

see: shim
shim options, 104

opts, 104
help, 104, 105

order, 55

past, 56
help, 70

ping, 71
help, 72

Preparing this document, 185

quit, 73
help, 74

rate limit
History, 173

read, 75
help, 76

Route
Looking up from an Exchange.uid,

136

scan, 77
shim

Arguments, 99
Commands, 100
Files, 106

ShimText, 109
Links, 101
Modes, 102
modes, 102

data, 102
help, 102
play, 102
risk, 102
unit, 102

shim options, 104
cout, 104
fast, 104
file, 104
init, 104
load, 104
logd, 104, 109
pane, 104
save, 104

table
Contract, 29, 41, 56, 78, 130
Currency, 130
LineItem, 75
LocalSet, 127, 130
Miscellany, 130
ProductMap, 130
Stock, 130
SubRequest, 45, 127
Symbol, 130
TickConfig, 79
Underlying, 130
WatchSets, 127–129

shim options
logd, 109

ShimText, 109
Stock

Looking up from a Contract.uid

directly with LEFT JOIN, 141
Looking up from Type, Route, and

Symbol
directly with LEFT JOIN, 144

subscription limit
Market Data, 169
Market Depth, 176
tickstream, 169

Symbol
Adding to the Contract table,

199

145
Extending the Symbol table, 156

automation, 160
INSERT, 160
manually, 157

Looking up from a Contract.uid

directly with LEFT JOIN, 140
step by step, 134

Looking up from a Symbol.uid,
136

Table of Contents, xi
Tables, 132
tick, 78

help, 80
tick data, 169
To Do, xv
Trademarks, 3
transmit, 81
Troubleshooting, 182
Tutorial, 124
Typographic conventions, 4

Unix
cat, 114
cut, 110
exec, 168
find, 114
firefox, 113
fork, 168
grep, 118, 135
head, 110
jar, 114
less, 115
lpr, 115
ls, 114
sed, 149
stderr, 38, 107
stdin, 107
stdout, 38

verb, 82
help, 83

wait, 84
help, 85

wake, 86
help, 88

Warranties disclaimer, 4
wild, 89
wire, 90

help, 91

xmit, 92

200

201

	Table of Contents
	Disclaimer
	License
	To Do
	I Introduction
	1 Introduction
	1.1 Trademarks
	1.2 Quotation of Copyrighted material
	1.3 Disclaimer of the Author and Publisher
	1.4 No Warranties, express or implied
	1.5 Typographic conventions
	1.6 How this document has been compiled

	II The commands, and their syntax
	2 Introduction to command verbs
	2.1 Description - command verbs
	2.2 Line wrapped output

	3 The commands, alphabetically
	3.1 account - get account quads
	3.1.1 Description
	3.1.2 Peers

	3.2 acct - get account quads
	3.2.1 Description
	3.2.2 Usage
	3.2.3 Peers
	3.2.4 Listing of: help acct

	3.3 bind - FIXME
	3.3.1 Description
	3.3.2 Usage

	3.4 book - subscribe to market depth
	3.4.1 Description
	3.4.2 Usage
	3.4.3 See related
	3.4.4 Peers
	3.4.5 Listing of: help book

	3.5 cash - FIXME
	3.5.1 Description
	3.5.2 Usage
	3.5.3 Peers

	3.6 dbms - describe the dbms to use
	3.6.1 Description
	3.6.2 Usage
	3.6.3 Peers
	3.6.4 Listing of: help link

	3.7 exec - get execution log FIXME
	3.7.1 Description
	3.7.2 Usage
	3.7.3 See related

	3.8 exercise - FIXME
	3.8.1 Description
	3.8.2 Usage
	3.8.3 Peers

	3.9 feed - describe the upstream TWS market data feed parameters
	3.9.1 Usage
	3.9.2 Peers
	3.9.3 Antecedents
	3.9.4 Listing of: help link

	3.10 help - command verb help
	3.10.1 Description
	3.10.2 Usage
	3.10.3 Listing of: help help

	3.11 history - ask history query
	3.11.1 Description
	3.11.2 Peers

	3.12 info - get contract info
	3.12.1 Description
	3.12.2 Usage
	3.12.3 Peers
	3.12.4 Listing of: help info

	3.13 list - list subcriptions
	3.13.1 Description
	3.13.2 Usage
	3.13.3 Listing of: help list

	3.14 load - Read, or re-read SubRequest table
	3.14.1 Description
	3.14.2 Usage
	3.14.3 Peers
	3.14.4 Antecedents
	3.14.5 Listing of: help load

	3.15 news - control bulletins
	3.15.1 Description
	3.15.2 Usage
	3.15.3 Limitation
	3.15.4 See related
	3.15.5 Listing of: help news

	3.16 next - ping the TWS
	3.16.1 Description
	3.16.2 Usage
	3.16.3 Peers
	3.16.4 Listing of: help next

	3.17 open - check open orders
	3.17.1 Description
	3.17.2 Usage
	3.17.3 Listing of: help open

	3.18 order - manage a LineItem
	3.18.1 Description
	3.18.2 Usage
	3.18.3 Peers

	3.19 past - ask history query
	3.19.1 Description
	3.19.2 Usage
	3.19.3 Extended example
	3.19.4 Peers
	3.19.5 Listing of: help past

	3.20 ping - log time, comment through EOL
	3.20.1 Description
	3.20.2 Usage
	3.20.3 Peers
	3.20.4 Listing of: help ping

	3.21 quit - exit the program
	3.21.1 Description
	3.21.2 Usage
	3.21.3 Listing of: help quit

	3.22 read - FIXME
	3.22.1 Description
	3.22.2 Usage
	3.22.3 Peers
	3.22.4 Antecedents
	3.22.5 Listing of: help read

	3.23 scan - event scanner TBD
	3.23.1 Description
	3.23.2 Usage
	3.23.3 Peers

	3.24 tick - subscribe mk data
	3.24.1 Description
	3.24.2 Usage
	3.24.3 Peers
	3.24.4 Future explanation
	3.24.5 Listing of: help tick

	3.25 transmit - FIXME
	3.25.1 Description
	3.25.2 Usage

	3.26 verb - set tws log level
	3.26.1 Description
	3.26.2 Usage
	3.26.3 Listing of: help verb

	3.27 wait - sleep shim N secs
	3.27.1 Description
	3.27.2 Usage
	3.27.3 Listing of: help wait

	3.28 wake - clear pause count
	3.28.1 Description
	3.28.2 Usage
	3.28.3 Listing of: help wake

	3.29 wild - abstract contract
	3.29.1 Description
	3.29.2 Usage
	3.29.3 Peers

	3.30 wire - accumulate orders
	3.30.1 Description
	3.30.2 Peers
	3.30.3 Listing of: help wire

	3.31 xmit - release tws order
	3.31.1 Description
	3.31.2 Usage
	3.31.3 See related

	4 Parameters, common to the command verbs
	4.1 Parameters to the command verbs
	4.1.1 Simple parameters
	4.1.2 Order (wire) parameters

	5 `shim --help' matters
	5.1 --help - short form help from the program
	5.1.1 Description
	5.1.2 Listing of: help help
	5.1.3 Listing of: help args
	5.1.4 Listing of: help cmds
	5.1.5 Listing of: help link

	5.2 shim Modes
	5.2.1 Listing of: help mode

	5.3 shim Options
	5.3.1 Listing of: help opts

	5.4 .shimrc - optional file to describe shim parameters
	5.4.1 Usage
	5.4.2 Peers

	6 Numbering - Commands, Requests, Messages, Comments
	6.1 Overview on message numbering
	6.2 message class, message value and message version
	6.2.1 message class
	6.2.2 message value
	6.2.3 message version
	6.2.4 TWS message value and message version co-ordination

	6.3 message values in the TWS
	6.4 Java sample client
	6.4.1 Rationale' for consulting the Java sample client
	6.4.2 How to view a permanent page URL on the IB site
	6.4.3 Retrieving the Java sample client

	6.5 Numbering in the Java sample client
	6.5.1 Numbering of Requests in EClientSocket.java
	6.5.2 Numbering of Messages in EReader.java
	6.5.3 Numbering of Tick Types in TickType.java

	6.6 Numbering in rule.c of the shim
	6.6.1 Numbering of Commands in rule.c
	6.6.2 Numbering of Requests in rule.c
	6.6.3 Numbering of Messages in rule.c
	6.6.4 Numbering of Comments in rule.c

	III Guided Tutorial
	7 A Tour of Tables
	7.1 Tables
	7.1.1 Why so many tables
	7.1.2 What tables are there anyway?
	7.1.3 Which tables are safe to alter
	7.1.4 Adding additional tables
	7.1.5 The initial database load process
	7.1.6 Each starts with the initial database load process

	8 Working with the database
	8.1 The shim database and Contract IDs
	8.1.1 Looking up an underlying Symbol from the cid - step by step
	8.1.2 Looking up a underlying Symbol from the cid - with LEFT JOIN
	8.1.3 Looking up a Contract.uid with LEFT JOIN
	8.1.4 Adding a new underlying Symbol to the Contract table
	8.1.5 Fixing the make test
	8.1.6 Tabular database table listings in other contexts
	8.1.7 How to extend the Symbol (and then Contract) tables
	8.1.8 Bulk loading the Contract table

	9 Commands and the database together
	9.1 Market Data, History, and Market Depth
	9.2 Market Data subscription
	9.2.1 Subscribing to Market Data
	9.2.2 Unsubscribing from Market Data

	9.3 History retrieval
	9.3.1 Retrieving a History set -- one off current
	9.3.2 Retrieving a History set -- recurring current
	9.3.3 History Pacing Violations

	9.4 Market Depth subscription
	9.4.1 Subscribing to Market Depth
	9.4.2 Unsubscribing from Market Depth

	10 Adding a web browser interface
	10.1 Look up interface

	IV Preparing this document
	11 Preparing this document
	12 The writing process
	12.1 Adding new commands
	12.2 Editing prior text

	V Conclusion
	Appendix
	Bibliography
	Index

