
IBM Developer Kit and Runtime Environment, Java 2

Technology Edition, Version 1.4.2

Diagnostics Guide

SC34-6358-06

���

IBM Developer Kit and Runtime Environment, Java 2

Technology Edition, Version 1.4.2

Diagnostics Guide

SC34-6358-06

���

Note

Before using this information and the product it supports, read the information in Appendix L, “Notices,” on page 511.

Tenth Edition (November 2006)

This edition applies to all the platforms that are included in the IBM Developer Kit and Runtime Environment, Java

2 Technology Edition, Version 1.4.2 and to all subsequent releases and modifications until otherwise indicated in

new editions. Technical changes that have been made since the previous edition of this book are indicated by a

vertical bar to the left of each change.

© Copyright International Business Machines Corporation 2003, 2006. All rights reserved.

US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract

with IBM Corp.

Contents

Figures xi

Tables xiii

About this book xv

What does the ″Java Virtual Machine (JVM)″ mean? xv

Who should read this book xv

Before you read this book xv

How to read this book xv

Other sources of information xvi

Reporting problems in the JVM xvi

Conventions and terminology used in this book . . xvi

How to send your comments xvii

Contributors to this book xvii

Summary of changes for Version 1.4.2, Service

Refresh 7 xviii

Summary of changes for Version 1.4.2, Service

Refresh 6 xix

Summary of changes for Version 1.4.2, Service

Refresh 5 xix

Summary of changes for Version 1.4.2, Service

Refresh 4 xix

Summary of changes for Version 1.4.2, Service

Refresh 3 xix

Summary of changes for Version 1.4.2, Service

Refresh 2 xix

Summary of changes for Version 1.4.2 xix

Summary of changes for the Version 1.4.1 April 2004

update xx

Summary of changes for Version 1.4.1, Service

Refresh 1 xx

Summary of changes for Version 1.4.1 xxi

Part 1. Understanding the IBM JVM 1

Chapter 1. The building blocks of the

IBM JVM 3

Core interface 4

Execution engine (XE) 4

Execution management (XM) 4

Diagnostics (DG) 5

Class Loader (CL) 5

Data conversion (DC) 5

Lock (LK) 5

Storage (ST) 5

Hardware platform interface (HPI) 5

Chapter 2. Understanding the Garbage

Collector 7

Overview of garbage collection 7

Object allocation 7

Reachable objects 8

Garbage collection 8

Heap size 9

The system heap 10

Allocation 10

Heap lock allocation 10

Cache allocation 10

The wilderness 11

Pinned clusters 12

Detailed description of garbage collection 13

Conservative and type-accurate garbage

collection 13

Mark phase 14

Sweep phase 16

Compaction phase 17

Compaction avoidance 17

Subpool (AIX only) 18

Reference objects 18

JNI weak reference 19

Heap expansion 19

Heap shrinkage 20

Resettable JVM (z/OS only) 21

How to do heap sizing 21

Initial and maximum heap sizes 21

Avoiding fragmentation 22

Using verbosegc 22

Using fine tuning options 23

Interaction of the Garbage Collector with

applications 23

How to coexist with the Garbage Collector 23

Predicting Garbage Collector behavior 23

Finalizers 25

Manual invocation 26

Summary 27

Frequently asked questions about the Garbage

Collector 27

Chapter 3. Understanding the class

loader 31

Eager and lazy loading 31

The parent-delegation model 32

Name spaces and the runtime package 32

Why write a custom class loader? 33

How to write a custom class loader 33

The Persistent Reusable JVM (z/OS only) 34

WebSphere 5.0 ClassLoader overview 35

Chapter 4. Understanding the JIT . . . 37

JIT overview 37

MMI overview 37

Runtime modes 38

How the JIT optimizes code 38

Bytecode optimization 38

Quad optimization 38

DAG optimization 39

Native code generation 39

JIT frequently-asked questions 39

© Copyright IBM Corp. 2003, 2006 iii

|
||
|
||

Chapter 5. Understanding the ORB . . 41

CORBA 41

RMI and RMI-IIOP 41

Java IDL or RMI-IIOP? 42

RMI-IIOP limitations 42

Further reading 42

Examples 42

Interfaces 42

Remote object implementation (or servant) . . . 43

Stub and ties generation 43

Server code 44

Summary of major differences between RMI

(JRMP) and RMI-IIOP 47

Using the ORB 48

How the ORB works 51

The client side 51

The server side 55

Features of the ORB 57

Portable object adapter 57

Fragmentation 59

Portable interceptors 59

Interoperable naming service (INS) 62

Other features 63

IBM pluggable ORB 63

Using the IBM ORB runtime 64

Using the IBM ORB development tools 64

Chapter 6. Understanding the Java

Native Interface 67

The JNI and the Garbage Collector 68

Garbage Collector and object references 68

Garbage Collector and global references 69

Garbage Collector and retained garbage 69

Copying and pinning 70

Handling local references 70

Local reference scope 70

Summary of local references 71

Local reference capacity 71

Manually handling local references 71

Handling global references 72

Global reference capacity 72

Handling exceptions 72

Using the isCopy flag 72

Using the mode flag 73

A generic way to use the isCopy and mode flags . . 74

Synchronization 74

Debugging the JNI 75

check:jni 75

check:nabounds 75

JNI checklist 76

Chapter 7. Understanding Java Remote

Method Invocation 77

The RMI implementation 77

Thread pooling for RMI connection handlers . . . 78

Understanding Distributed Garbage Collection

(DGC) 78

Debugging applications involving RMI 79

Part 2. Submitting problem reports 81

Chapter 8. Overview of problem

submission 83

How does IBM service Java ? 83

Submitting Java problem reports to IBM 83

Java duty manager 83

Chapter 9. MustGather: Collecting the

correct data to solve problems 85

Before you submit a problem report 85

Data to include 85

Things to try 86

Factors that affect JVM performance 86

Test cases 86

Performance problems — questions to ask 86

Chapter 10. Advice about problem

submission 89

Raising a problem report 89

What goes into a problem report? 89

Problem severity ratings 89

Escalating problem severity 90

Chapter 11. Submitting data with a

problem report 91

IBM internal only (javaserv) 91

Sending files to IBM support 92

Getting files from IBM support 92

Using your own ftp server 93

Sending an AIX core file to IBM support 93

When you will receive your fix 93

Part 3. Problem determination . . . 95

Chapter 12. First steps in problem

determination 97

Chapter 13. Working in a WebSphere

Application Server environment 99

Chapter 14. AIX problem

determination 101

Setting up and checking your AIX environment 101

Enabling full AIX core files 102

General debugging techniques 102

Other sources of information for debugging . . 103

Starting Javadumps in AIX 103

Starting Heapdumps in AIX 103

Debugging memory leaks 103

AIX debugging commands 103

Diagnosing crashes 111

Documents to gather 111

Interpreting the stack trace 111

Sending an AIX core file to IBM Support . . . 112

Debugging hangs 112

AIX deadlocks 112

contents

iv Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

AIX infinite loops 112

Poor performance on AIX 115

Understanding memory usage 115

32- and 64-bit JVMs 115

The 32-bit AIX Virtual Memory Model 115

The 64-bit AIX Virtual Memory Model 116

Changing the Memory Model (32-bit JVM) . . 116

The native and Java heaps 117

The AIX Java2 32-Bit JVM default memory

models 117

Changing the memory models 118

Monitoring the native heap 118

Native heap usage 119

Monitoring the Java heap 119

Receiving OutOfMemory errors 120

Is the Java or native heap exhausted? 121

Java heap exhaustion 121

Native heap exhaustion 121

AIX fragmentation problems 122

Submitting a bug report 123

Debugging performance problems 123

Finding the bottleneck 123

CPU bottlenecks 124

Memory bottlenecks 126

I/O bottlenecks 127

Collecting data from a fault condition in AIX . . . 127

Getting AIX technical support 128

Chapter 15. Linux problem

determination 129

Setting up and checking your Linux environment 129

Working directory 129

Linux core files 129

Threading libraries 130

Floating stacks 130

General debugging techniques 131

Starting Javadumps in Linux 131

Starting heapdumps in Linux 131

Using the dump extractor on Linux 131

Using core dumps 131

Using system logs 132

Linux debugging commands 133

Diagnosing crashes 136

Checking the system environment 136

Gathering process information 136

Finding out about the Java environment . . . 137

Debugging hangs 137

Debugging memory leaks 138

Debugging performance problems 139

System performance 139

JVM performance 141

JIT 142

Collecting data from a fault condition in Linux . . 142

Collecting core files 142

Producing Javadumps 142

Using system logs 142

Determining the operating environment . . . 142

Sending information to Java Support 143

Collecting additional diagnostic data 143

Known limitations on Linux 143

Threads as processes 143

Floating stacks limitations 144

glibc limitations 144

Font limitations 144

CORBA limitations 144

Scheduler limitation on SLES 8 145

Chapter 16. Sun Solaris problem

determination 147

Chapter 17. Hewlett-Packard SDK

problem determination 149

Chapter 18. Windows problem

determination 151

Setting up and checking your Windows

environment 151

Windows 32-bit large address aware support 152

Setting up your Windows environment for data

collection 153

General debugging techniques 154

Starting Javadumps in Windows 154

Starting Heapdumps in Windows 154

Using the Windows Dump Extractor 154

Microsoft tools 154

Diagnosing crashes in Windows 155

Tracing back from JIT’d code 156

Data to send to IBM 159

Debugging hangs 160

Analyzing deadlocks 160

Getting a dump from a hung JVM 160

Creating a user dump file for a hung process

using the Dr. Watson utility 160

Debugging memory leaks 161

The Windows memory model 161

Classifying leaks 162

Tracing leaks 162

Verbose GC 163

Using HeapDump to debug memory leaks . . 163

Debugging performance problems 163

Data required for submitting a bug report . . . 164

Frequently reported problems 164

Collecting data from a fault condition in Windows 164

Controlling the JVM when used as a browser

plug-in 165

Chapter 19. z/OS problem

determination 167

Setting up and checking your z/OS environment 167

Maintenance 167

LE settings 167

Environment variables 167

Private storage usage 167

Standalone environment checking utility

program 168

Setting up dumps 169

General debugging techniques 169

Starting Javadumps in z/OS 169

Starting Heapdumps in z/OS 169

The dump tool 170

contents

Contents v

The -cache option 171

The -exception option 172

The -dis <addr> <n> option 172

The -dump <addr> <n> option 172

The -r<n> option 173

Using IPCS commands 173

Interpreting error message IDs 174

Diagnosing crashes 174

Documents to gather 174

Determining the failing function 175

Working with TDUMPs using IPCS 176

Debugging hangs 181

The process is deadlocked 181

The process is looping 181

The process is performing badly 181

Debugging memory leaks 182

Allocations to LE HEAP 182

z/OS virtual storage 182

OutOfMemoryErrors 183

Debugging performance problems 184

Collecting data from a fault condition in z/OS . . 185

Chapter 20. Debugging the ORB . . . 187

Identifying an ORB problem 187

What the ORB component contains 187

What the ORB component does not contain . . 188

Platform-dependent problem 188

JIT problem 188

Fragmentation 188

Packaging 188

ORB versions 188

Debug properties 189

ORB exceptions 190

User exceptions 190

System exceptions 190

Completion status and minor codes 191

Java2 security permissions for the ORB 191

Interpreting the stack trace 192

Description string 192

Nested exceptions 193

Interpreting ORB traces 193

Message trace 193

Comm traces 194

Client or server 195

Service contexts 195

Common problems 196

Hanging 196

Running the client without the server running

before the client is invoked 197

Client and server are running, but not naming

service 197

Running the client with MACHINE2 (client)

unplugged from the network 198

IBM ORB service: collecting data 198

Preliminary tests 198

Data to be collected 199

Chapter 21. NLS problem

determination 201

Overview of fonts 201

Font specification properties 201

Fonts installed in the system 202

The font.properties file 202

The *nix font.properties file 202

The Windows font.properties file 203

Font utilities 203

Font utilities in *nix platforms 203

Font utilities on Windows systems 203

Common problems and possible causes 204

Chapter 22. AS/400 problem

determination 207

Chapter 23. OS/2 problem

determination 209

Part 4. Using diagnostic tools . . . 211

Chapter 24. Overview of the available

diagnostics 213

Categorizing the problem 213

Platforms 213

Third-party tools 214

Summary of cross-platform tools 214

Javadump (or Javacore) 214

Heapdump 214

Cross-platform dump formatter 214

JVMPI tools 215

JVMDI tools 215

JVM trace 215

JVMRI 216

JVMMI 216

Application trace 216

Method trace 216

JVM command line parameters 217

JVM environment variables 217

Platform tools 217

Chapter 25. Using Javadump 219

Enabling a Javadump 219

The location of the generated Javadump 219

Triggering a Javadump 220

Interpreting a Javadump 221

Javadump tags 221

Locks, monitors, and deadlocks (LK) 222

Javadump sample output 1 (Windows) 225

Javadump sample output 2 (Linux) 233

Javadump sample output 3 (AIX) 239

Javadump sample output 4 (z/OS) 241

Chapter 26. Using Heapdump 245

Information for users of previous releases of

Heapdump 245

Summary of Heapdump 245

Enabling a Heapdump 245

Explicit generation of a Heapdump 246

Triggered generation of a Heapdump 246

Location of the generated Heapdump 247

contents

vi Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

Producing a compressed Heapdump text file from

a System Dump 247

Sample Heapdump output 248

Finding memory leaks by using Heapdump . . . 249

Out Of Memory exceptions 249

Steady memory leaks 249

Using the HeapRoots post-processor to process

Heapdumps 249

How to write a JVMMI Heapdump agent 249

Using VerboseGC to obtain heap information . . . 250

Chapter 27. JVM dump initiation . . . 251

Overview 251

Settings 252

Platform-specific variations 253

z/OS 253

AIX 254

Windows 254

Linux 255

Chapter 28. Using method trace . . . 257

Running with method trace 257

Examples of use 258

Where does the output appear? 258

Advanced options 258

Real example 259

Chapter 29. Using the dump formatter 261

What the dump formatter is 262

Dump formatter dumps 262

How to use the dump formatter 262

Analyzing dumps with jformat 263

Minimum requirements and performance

considerations 264

Installing jformat 264

Starting jformat 264

Opening the dump 264

Command plug-ins 265

Shortened command forms 266

Supported commands 267

Control block formatting 275

Settings 275

Dump plug-ins 275

Property files 276

Hints 276

Example session 276

Dumpviewer 286

Analyzing dumps with Dumpviewer 291

Chapter 30. JIT diagnostics 295

Disabling the JIT 295

Introducing the MMI 295

Disabling the MMI 296

Selecting the MMI threshold 296

Working with MMI 296

Selectively disabling the JIT 297

Performance of short-running applications . . . 298

Identifying JIT compilation failures 298

Advanced JIT diagnostics 298

Chapter 31. Garbage Collector

diagnostics 299

How does the Garbage Collector work? 299

Common causes of perceived leaks 299

Listeners 300

Hash tables 300

Static data 300

JNI references 300

Premature expectation 300

Objects with finalizers 300

Basic diagnostics (verbosegc) 300

verbosegc output from a System.gc() 301

verbosegc output when pinnedFreeList is

exhausted 301

verbosegc output from an allocation failure . . 301

verbosegc output from a heap expansion . . . 302

verbosegc output from a heap shrinkage . . . 302

verbosegc output from a compaction 303

verbosegc output from a concurrent mark

kickoff 303

verbosegc output from a concurrent mark

System.gc collection 304

verbosegc output from a concurrent mark AF

collection 304

verbosegc output from a concurrent mark AF

collection with :Xgccon 304

verbosegc output from a concurrent mark

collection 305

verbosegc output from a concurrent mark

collection with :Xgccon 305

verbosegc output from resettable (z/OS only) 305

Advanced diagnostics 306

-Xcompactexplicitgc 306

-Xdisableexplicitgc 306

-Xgcpolicy:<optthruput | optavgpause |

subpool> 307

-Xgcthreads<n> 307

-Xnoclassgc 307

-Xnocompactgc 307

-Xnocompactexplicitgc 307

-Xnopartialcompactgc 308

Tracing 308

st_terse 309

st_verify 309

st_mark 310

st_compact 310

st_compact_verbose 311

st_compact_dump 311

st_dump 311

st_alloc 311

st_refs 312

st_backtrace 313

st_freelist 313

st_calloc 313

st_parallel 314

st_trace 315

st_concurrent 315

st_concurrent_pck 316

st_icompact 317

st_concurrent_shadow_heap 318

Heap and native memory use by the JVM 318

contents

Contents vii

Native Code 318

Large native objects 318

Chapter 32. Class-loader diagnostics 319

Class-loader command-line options 319

Class loader runtime diagnostics 319

Loading from native code 320

Chapter 33. Tracing Java applications

and the JVM 321

What can be traced? 321

Tracing methods 321

Tracing applications 321

Internal trace 322

Where does the data go? 322

Placing trace data into in-storage buffers . . . 322

Placing trace data into a file 322

External tracing 323

Tracing to stderr 323

Trace combinations 323

Controlling the trace 323

Specifying trace system properties 324

Trace property summary 324

Detailed property descriptions 326

Using the trace formatter 340

Trace properties 340

What to trace 341

Determining the tracepoint ID of a tracepoint . . 341

Using trace to debug memory leaks 341

Enabling memory tracing 342

Enabling backtrace 342

Linking with dbgmalloc 342

Chapter 34. Using the JVM monitoring

interface (JVMMI) 343

Using JVMMI for problem determination 343

Preparing to use JVMMI 344

Writing an agent 344

Using Detail information in a JVMMI agent . . 345

Using user data in a JVMMI agent 346

Using Detail information on EBCDIC platforms 346

Obtaining the JVMMI interface 346

Specifying the agent name 346

Inside the agent 346

Building the agent 346

API calls provided by JVMMI 347

EnableEvent 347

DisableEvent 348

EnumerateOver 348

Events produced by JVMMI 348

Thread-related events 349

Class-related events 349

Heap and garbage collection events 350

Miscellaneous events 351

Enumerations supported by JVMMI 351

Sample JVMMI Heapdump agent 352

Chapter 35. Using the Reliability,

Availability, and Serviceability

interface 355

Preparing to use JVMRI 355

Writing an agent 355

Registering a trace listener 356

Changing Trace Options 357

Launching the Agent 357

Building the agent 357

Plug-in design 357

JVMRI functions 358

API calls provided by JVMRI 358

TraceRegister 358

TraceDeregister 358

TraceSet 358

TraceSnap 359

TraceSuspend 359

TraceResume 359

DumpRegister 359

DumpDeregister 360

NotifySignal 360

GetRasInfo 360

ReleaseRasInfo 360

CreateThread 361

GenerateJavacore 361

RunDumpRoutine 361

InjectSigsegv 362

InjectOutOfMemory 362

GetComponentDataArea 362

SetOutOfMemoryHook 363

InitiateSystemDump 363

DynamicVerbosegc 363

TraceSuspendThis 363

TraceResumeThis 364

GenerateHeapdump 364

RasInfo structure 364

RasInfo request types 365

Intercepting trace data 365

The ibm.dg.trc.external property 365

Calling external trace 365

Formatting 366

Chapter 36. Using the JVMPI 369

The HPROF profiler 369

Explanation of the HPROF output file 370

Chapter 37. Using DTFJ 375

Which JVMs are DTFJ enabled? 375

Overview of the DTFJ interface 376

DTFJ example application 379

Chapter 38. Using third-party tools 383

GlowCode 383

Supported platforms 383

Applicability 383

Summary 383

Running GlowCode 384

Heap analysis tool (HAT) 384

Applicability 385

Generating a .hprof file 385

contents

viii Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

Running the program 385

HeapWizard 386

Terms 386

Heap view 386

Command-line options 387

Jinsight 388

Supported platforms 388

Applicability 388

Summary 388

Jinsight views 388

Running Jinsight 389

Visualizing an application trace 390

JProbe 390

Applicability 390

Supported platforms 390

Summary 390

Using the Memory Debugger 391

JSwat 391

Applicability 391

Summary 392

Preparing for JSwat debugging 392

Running your application in JSwat debugger 392

Process Explorer 392

Part 5. Appendixes 395

Appendix A. Compatibility tables . . . 397

WebSphere Application Server and JVM/SDK

levels 397

Appendix B. ORB tracing for

WebSphere Application Server

version 5 399

Enabling trace at server startup 399

Changing the trace on a running server 400

Selecting ORB traces 400

Appendix C. CORBA GIOP message

format 401

GIOP header 401

Request header 402

Request body 402

Reply header 402

Reply body (based on reply status) 403

Cancel request header 403

Locate request header 403

Locate reply header 404

Locate reply body 404

Fragment message 404

Fragment header (GIOP 1.2 only) 404

Appendix D. CORBA minor codes . . 405

Appendix E. Environment variables 407

Displaying the current environment 407

Setting an environment variable 407

Separating values in a list 407

JVM environment settings 407

z/OS environment variables 411

Appendix F. Messages and codes . . 415

Where do the messages appear? 415

JVM error messages for JVMCI 415

JVM error messages for JVMCL 432

JVM error messages for JVMDC 439

JVM error messages for JVMDBG 439

JVM error messages for JVMDG 440

JVM error messages for JVMHP 456

JVM error messages for JVMLK 459

JVM error messages for JVMST 462

JVM error messages for JVMXE 471

JVM error messages for JVMXM 472

Universal Trace Engine error messages 474

Appendix G. Command-line

parameters 487

General command-line parameters 487

System property command-line parameters . . . 487

Nonstandard command-line parameters 489

Garbage Collector command-line parameters . . . 491

Appendix H. Default settings for the

JVM 495

Appendix I. Using the alternative JVM

for Java debugging 499

How the debug environment relates to other

components 500

Dumps 500

Trace 500

Verbose garbage collection 501

JNIChk utility 501

The JIT 501

Command-line options in the debug environment 501

Appendix J. Using a Problem

Determination build of the JVM 503

When to use the PD build 503

Why is the PD build necessary? 503

Where to find the PD build 503

How to enable the PD build 504

Appendix K. Some notes on jformat

and the jvmdcf file 505

Using jformat to display the JVM control block . . 508

Appendix L. Notices 511

Trademarks 512

Index 515

contents

Contents ix

x Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

Figures

 1. The components of a typical Java Application

Stack and the IBM JRE 3

 2. Subcomponent structure of the IBM JVM 4

 3. The ORB client side 51

 4. Relationship between the ORB, the object

adapter, the skeleton, and the object

implementation 57

 5. Simple portable object adapter architecture 59

 6. The AIX 32–Bit Memory Model with

MAXDATA=0 (default) 116

 7. Screenshot of the ReportEnv tool 152

 8. First Dumpviewer display 287

 9. Menu items and history list 288

10. The display after a dump file has been

opened 289

11. Dialog box 290

12. A busy screen 290

13. Diagram of the DTFJ interface 378

14. Screenshot of Process Explorer 393

15. The start of a jvmdcf.X file 505

16. A symbol table entry 506

17. The file from offset 0x1cf40 508

© Copyright IBM Corp. 2003, 2006 xi

xii Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

Tables

 1. Commands for stubs and ties (skeletons) 43

 2. Stub and tie files 44

 3. Deprecated Sun properties 50

 4. JNI checklist 76

 5. Usage of ulimit 130

 6. Methods affected when running with Java 2

SecurityManager 144

 7. Packaging 188

 8. Methods affected when running with Java 2

SecurityManager 191

 9. Javadump filename formats 220

10. Format of Heapdump filenames 247

11. Signal mappings on different platforms 253

12. Shortened command forms for jformat 266

13. Shortened modifier forms for jformat 266

14. Commands from DvBaseCommands for

jformat 267

15. Commands from DvBaseFmtCommands for

jformat 270

16. Commands from DvTraceFmtPlugin for

jformat 270

17. Commands from DvClassCommands for

jformat 272

18. Commands from DvObjectsCommands for

jformat 272

19. Commands from DvJavaCore for jformat 273

20. Commands from DvXeCommands for

jformat. 273

21. Commands from DvHeapDumpPlugins for

jformat. 274

22. GUI menu items and console commands for

jformat 291

23. Comparison of tracegc options 308

24. Properties that control tracepoint selection 325

25. Properties that indirectly affect tracepoint

selection 325

26. Triggering and suspend or resume 325

27. Properties that specify output files 326

28. MiscellaneousTrace control properties 326

29. CORBA GIOP messages 401

30. JVM environment settings — general options 408

31. Basic JIT options 409

32. Javadump and Heapdump options 410

33. Diagnostics options 410

34. Cross platform defaults 495

35. Platform specific defaults 496

36. System properties 500

37. Command-line differences 501

© Copyright IBM Corp. 2003, 2006 xiii

xiv Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

About this book

This book describes debugging techniques and the diagnostic tools that are

available to help you solve problems with Java™ JVMs. It also gives guidance on

how to submit problems to IBM®.

What does the ″Java Virtual Machine (JVM)″ mean?

The installable Java package supplied by IBM comes in two versions:

v The Java Runtime Environment (JRE)

v The Java Software Development Kit (SDK)

The JRE provides runtime support for Java applications. The SDK provides the

Java compiler and other development tools. The SDK includes the JRE.

Both the JRE and the SDK include a Java Virtual Machine (JVM). This is the

application that executes a Java program. A Java program requires a JVM to run on

a particular platform, such as Linux or AIX®.

This book describes problem determination and diagnostics for the JVM. When

you see the terms SDK or JRE, they refer to the JVM only.

Who should read this book

This book is for anyone who is responsible for solving problems with Java.

Before you read this book

Before you can use this book, you must have a good understanding of Java

Developer Kits and the Runtime Environment.

How to read this book

This book is to be used with the IBM SDK 1.4.2.

Check the full version of your installed JVM. If you do not know how to do this,

see Chapter 12, “First steps in problem determination,” on page 97. Ensure that

your JVM is at Version 1.4.2. Some of the diagnostic tools described in this book

apply only to this version or later.

You can use this book in three ways:

v As an overview of how the IBM JVM operates, with emphasis on the interaction

with Java. Part 1 of the book provides this information. You might find this

information helpful when you are designing your application.

v As straightforward guide to determining a problem type, collecting the

necessary diagnostic data, and sending it to IBM. Part 2 and Part 3 of the book

provide this information.

v As the reference guide to all the diagnostic tools that are available in the IBM

JVM. This information is given in Part 4 of the book.

© Copyright IBM Corp. 2003, 2006 xv

The parts overlap in some ways. For example, Part 3 refers to chapters that are in

Part 4 when those chapters describe the diagnostics data that is required. You will

be able to more easily understand some of the diagnostics that are in Part 4 if you

read the appropriate chapter in Part 1.

The appendixes provide supporting reference information that is gathered into

convenient tables and lists.

Other sources of information

v For the tools and sample code to which this book refers, see:

http://www.ibm.com/developerworks/java/jdk/diagnosis/index.html

v For the latest tools and documentation, see IBM developerWorks at:

http://www.ibm.com/developerworks/java/

v For Java documentation, see:

http://java.sun.com/products/jdk/1.4/docs/index.html

v For the IBM Java SDKs, see IBM Java downloads at:

http://www.ibm.com/developerworks/java/jdk/index.html

Reporting problems in the JVM

If you want to use this book only to determine your problem and to send a

problem report to IBM, go to Part 3, “Problem determination,” on page 95 of the

book, and to the chapter that relates to your platform. Go to the section that

describes the type of problem that you are having. This section might offer advice

about how to correct the problem, and might also offer workarounds. The section

will also tell you what data IBM service needs you to collect to diagnose the

problem. Collect the data and send a problem report and associated data to IBM

service, as described in Part 2, “Submitting problem reports,” on page 81 of the

book.

Conventions and terminology used in this book

Command-line options, system parameters, and class names are shown in bold.

For example:

v -Xresettable

v -Xinitsh

v -Dibm.jvm.trusted.middleware.class.path

v java.security.SecureClassLoader

Functions and methods are shown in a monospaced font. For example:

v ResetJavaVM()

v QueryJavaVM()

Options shown with values in braces signify that one of the values must be

chosen. For example:

-Xverify:{remote | all | none}
with the default underscored.

how to read this book

xvi Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

http://www.ibm.com/developerworks/java/jdk/diagnosis/index.html
http://www.ibm.com/developerworks/java/
http://java.sun.com/products/jdk/1.4/docs/index.html
 http://www.ibm.com/developerworks/java/jdk/index.html

Options shown with values in brackets signify that the values are optional. For

example:

-Xrunhprof[:help][:<suboption>=<value>,...]

In this book, any reference to Sun is intended as a reference to Sun Microsystems,

Inc.

How to send your comments

Your feedback is important in helping to provide accurate and useful information.

If you have any comments about this book, you can send them by e-mail to

jvmcookbook@uk.ibm.com. Include the name of the book, the part number of the

book, the platform you are using, the version of your JVM, and, if applicable, the

specific location of the text you are commenting on (for example, a page number

or table number).

Do not use this method for sending in bug reports on the JVM. For these, use the

usual methods, as described in Part 2, “Submitting problem reports,” on page 81.

Contributors to this book

This book has been put together by members of the IBM Java Technology Center

development and service departments in Hursley, Bangalore, Austin, Toronto, and

others, including:

 Ajjaiah B M

 Amar Devegowda

 Eduardo Angel

 Chris Bailey

 John Barfield

 Alan Beasley

 Flavio Bergamaschi

 Bhupesh Gupta

 Geoffrey Blandy

 Mark Bluemel

 Sam Borman

 Joe Chacko

 Richard Chamberlain

 Dave Clarke

 Richard Cole

 Mike Cotton

 Cassius Crockatt

 Alan Darlington

 Devaprasad K N

 Robert Fairley

 Ron Fillmore

 Ross Grayton

 Guruprasad H N

 Hari P Venkateshaiah

 Lakshmi Shankar

conventions and terminology

About this book xvii

jvmcookbook@uk.ibm.com

Linda Howard

 Steve Hughes

 Clive Kates

 Matthew Kilner

 Sripathi Kodi

 Roger Leuckie

 Nigel Lewis

 Bob Maddison

 Neil Masson

 Mahesh P Kumar

 Wai-Kau Mak

 Caroline Maynard

 Diego Oriato

 Panneer S Gangatharan

 Mark Partridge

 Pavan Kumar B

 Prasanna K Kalle

 Prashanth K N

 Rajeev Palanki

 Rajesh Kumar J

 David Reynolds

 Neil Richards

 Phil Rosenthal

 Ruchika Gupta

 Rupesh B Khandekar

 David Screen

 Sreekanth R Iyer

 Jon Stone

 Sudarshan Rao

 Subramanian V Ganesh

 Thekkepat A Vinod

 Venkat R Vellaisamy

 Venugopal Kailaikurthi

 Phil Vickers

 Chris White

Summary of changes for Version 1.4.2, Service Refresh 7

This book has been updated to include minor changes that apply to the IBM

Developer Kit and Runtime Environment, Java 2 Technology Edition, Version 1.4.2.

No significant changes were made to this book for Service Refresh 7. This edition

of the book (SC34-6358–06) was produced in November 2006.

contributors

xviii Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

|

|
|
|
|

Summary of changes for Version 1.4.2, Service Refresh 6

This book has been updated to include minor changes that apply to the IBM

Developer Kit and Runtime Environment, Java 2 Technology Edition, Version 1.4.2.

No significant changes were made to this book for Service Refresh 6. This edition

of the book (SC34-6358–05) was produced in August 2006.

Summary of changes for Version 1.4.2, Service Refresh 5

This book was updated to include changes that apply to the IBM Developer Kit

and Runtime Environment, Java 2 Technology Edition, Version 1.4.2. Technical

changes that have been made since the previous edition of this book

(SC34-6358–03) produced in January 2006, are indicated by a vertical bar to the left

of each change.

The major changes and additions are:

v A major revision of Appendix I, “Using the alternative JVM for Java debugging,”

on page 499 now that the alternative debug environment applies to AIX and

Linux PPC32 and PPC64.

Summary of changes for Version 1.4.2, Service Refresh 4

The major changes and additions are:

v A new chapter, Chapter 37, “Using DTFJ,” on page 375

v ALLOCATION_THRESHOLD environment variable, see Table 33 on page 410.

v JVMDBG messages, see “JVM error messages for JVMDBG” on page 439.

v Increased process space under windows, see “Windows 32-bit large address

aware support” on page 152.

Summary of changes for Version 1.4.2, Service Refresh 3

The major changes and additions are:

v A revised section ″Threading libraries″ and a new section ″Floating stacks″ in

Chapter 15, “Linux problem determination,” on page 129.

v Further changes in Chapter 26, “Using Heapdump,” on page 245.

v New JVMHP messages in “JVM error messages for JVMHP” on page 456.

v Small changes to the -Xpd option in Appendix J, “Using a Problem

Determination build of the JVM,” on page 503.

Summary of changes for Version 1.4.2, Service Refresh 2

This Diagnostics Guide now includes items in the Addenda file up to June 2005

and there are some changes to CORBA properties and minor codes.

Summary of changes for Version 1.4.2

The major changes and additions are:

v Chapter 17, “Hewlett-Packard SDK problem determination,” on page 149 is new.

v “How to write a JVMMI Heapdump agent” on page 249 is new.

v jformat information in “Opening the dump” on page 264 and following sections

is new.

v Backtrace information in “Controlling the trace” on page 323 is new.

summary of changes

About this book xix

|

|
|
|
|

v Some triggered trace information is new in “Controlling the trace” on page 323.

v “Sample JVMMI Heapdump agent” on page 352 is new.

v “Universal Trace Engine error messages” on page 474 is new.

v The -Xifa parameter in Appendix G, “Command-line parameters,” on page 487

is new.

v Appendix J, “Using a Problem Determination build of the JVM,” on page 503 is

new. The new build replaces the _g builds.

Summary of changes for the Version 1.4.1 April 2004 update

The main changes and additions were:

v Chapter 2, “Understanding the Garbage Collector,” on page 7 contains new

sections: “Subpool (AIX only)” on page 18, “Avoiding fragmentation” on page

22, and “Frequently asked questions about the Garbage Collector” on page 27.

v Chapter 3, “Understanding the class loader,” on page 31 contains an expanded

introduction and new sections: “Eager and lazy loading” on page 31 and

“WebSphere 5.0 ClassLoader overview” on page 35.

v Chapter 7, “Understanding Java Remote Method Invocation,” on page 77 is new.

v Chapter 14, “AIX problem determination,” on page 101 contains a number of

enhancements.

v Chapter 18, “Windows problem determination,” on page 151 contains new

sections: “Creating a user dump file for a hung process using the Dr. Watson

utility” on page 160 and “Controlling the JVM when used as a browser plug-in”

on page 165.

v Chapter 19, “z/OS problem determination,” on page 167 contains new sections:

one about HPI trace (not valid for 1.4.2) and “Working with TDUMPs using

IPCS” on page 176.

v Chapter 30, “JIT diagnostics,” on page 295 contains a new section: “Performance

of short-running applications” on page 298.

v Chapter 31, “Garbage Collector diagnostics,” on page 299 contains updated -X

options.

v Appendix E, “Environment variables,” on page 407 contains new entries.

v Appendix G, “Command-line parameters,” on page 487 contains new entries.

v Appendix K, “Some notes on jformat and the jvmdcf file,” on page 505 is new.

Summary of changes for Version 1.4.1, Service Refresh 1

This update showed the changes that applied to the IBM Developer Kit and

Runtime Environment, Java 2 Technology Edition, Version 1.4.1, Service Refresh 1.

The major changes were:

v The addition of a chapter that describes how to diagnose the class loader

v The addition of an appendix that describes how to diagnose the WebSphere

workbench runtime environment

v The addition of an appendix that describes the most-common CORBA minor

codes

v Major revision to Heapdump information

summary of changes

xx Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

Summary of changes for Version 1.4.1

This update showed the changes that applied to the IBM Developer Kit and

Runtime Environment, Java 2 Technology Edition, Version 1.4.1.

The major changes were:

v The addition of chapters for AS/400® and OS/2® problem determination

v The addition of a chapter that describes the Java Native Interface (JNI)

v Updates, deletions, and additions to the JVM messages

v Major revision to ORB information

v Major revision to tracing information

v Major revision to Heapdump information

summary of changes

About this book xxi

summary of changes

xxii Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

Part 1. Understanding the IBM JVM

The information in this part of the book will give you a basic understanding of the

JVM. It provides:

v Background information to explain why some diagnostics work the way they do

v Useful information for application designers

v An explanation of some parts of the JVM

A fairly large amount of information about the garbage collector is provided,

because the garbage collector often seems to be the most difficult part of the JVM

to understand.

Other sections provide a summary, especially where guidelines about the use of

the JVM are appropriate. This part is not intended as a description of the design of

the JVM, except that it might influence application design or promote an

understanding of why things are done the way that they are.

This part also provides a chapter that describes the IBM® Object Request Broker

(ORB) component. The IBM ORB ships with the JVM and is used by the IBM

WebSphere®® Application Server. It is one of the enterprise features of the Java™ 2

Standard Edition. The ORB is a tool and runtime component that provides

distributed computing through the OMG-defined CORBA IIOP communication

protocol. The ORB runtime consists of a Java implementation of a CORBA ORB.

The ORB toolkit provides APIs and tools for both the RMI programming model

and the IDL programming model.

The chapters in this part are:

v Chapter 1, “The building blocks of the IBM JVM,” on page 3

v Chapter 2, “Understanding the Garbage Collector,” on page 7

v Chapter 3, “Understanding the class loader,” on page 31

v Chapter 4, “Understanding the JIT,” on page 37

v Chapter 5, “Understanding the ORB,” on page 41

v Chapter 6, “Understanding the Java Native Interface,” on page 67

v Chapter 7, “Understanding Java Remote Method Invocation,” on page 77

© Copyright IBM Corp. 2003, 2006 1

2 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

Chapter 1. The building blocks of the IBM JVM

The IBM Java Virtual Machine (JVM) is the core component of the IBM Java

Runtime Environment (JRE). The IBM JRE includes the JVM, the class libraries

(including the IBM ORB), and other files that provide the runtime support that is

necessary for a Java application stack.

Figure 1 shows the components of a typical Java Application Stack and the IBM

JRE.

The IBM Java Virtual Machine (JVM) technology consists of a set of

subcomponents (building blocks). Each subcomponent defines a high-level logical

grouping of functions in the IBM JVM. The core IBM JVM is built with the

following set of default subcomponents that provides a compatible Java Virtual

Machine.

v Core interface

v Execution management

v Execution engine

v Diagnostics

v Class Loader

v Data conversion

v Locking

v Storage

v Hardware platform interface

Java Application

Java Application Stack

Ja
va

 C
od

e
N

at
iv

e
C

od
e

Java Class
Extensions

Class Libraries ORB

Platform

IBM JVM

Native Libraries

Others

NativeOpt.
Packages

User
Native
Exts.

Figure 1. The components of a typical Java Application Stack and the IBM JRE

© Copyright IBM Corp. 2003, 2006 3

Figure 2 shows subcomponent structure of the IBM JVM.

Subcomponents are built around a collection of functional units. Each functional

unit defines a lower-level logical grouping of functions.

Core interface

This subcomponent encapsulates all interaction with the user, external programs,

and operating environment. It is responsible for initiation of the JVM. It also:

v Provides presentation (but not execution) of all external APIs (for example, JNI,

JVMDI, JVMPI)

v Presents the HPI APIs to other Java2 components

v Processes command-line input

v Converts relevant environmental settings to platform-neutral initiation

information

v Provides internal APIs to enable other subcomponents to interact with the

console

v Holds routines for interacting with the console; nominally, standard in, out, and

err

v Provides support for issuing formatted messages that are suitable for NLS

v Holds routines for accessing the system properties

Execution engine (XE)

This subcomponent provides all methods of executing Java byte codes, both

compiled and interpretive. It:

v Executes the byte code (in whatever form)

v Calls native method routines

v Contains and defines byte code compiler (JIT) interfaces

v Provides support for math functions that the byte code requires

v Provides support for raising Java exceptions

Execution management (XM)

This subcomponent provides process control and management of multiple

execution engines. Is initiated by the core interface. It provides:

v Threading facilities

v Runtime configuration; setting and inquiry

v Support for raising internal exceptions

Diagnostics (DG) Class Loader (CL)

Data Conversion (DC) Storage (ST)Lock (LK)

Execution Engine (XE)

HPI

Core Interface (CI)

Execution Management (XM)

Figure 2. Subcomponent structure of the IBM JVM

4 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

v End JVM processing

v Support for the resolution and loading of native methods

Diagnostics (DG)

This subcomponent provides all diagnostic and debug services and facilities. It is

also responsible for providing methods for raising events. It provides:

v Support for issuing events

v Implementation of debug APIs

v Trace facilities

v Reliability, availability, and serviceability (RAS) facilities

v First failure data capture (FFDC) facilities

Class Loader (CL)

This subcomponent provides all support functions to Java classes, except the

execution. This includes:

v Loading

v Resolution

v Verification

v Initialization

v Methods for interrogation of class abilities

v Implementation of reflection APIs

Data conversion (DC)

This subcomponent provides support for converting data between various formats.

This includes:

v UTF Translation

v String conversion

v Support for primitive types

Lock (LK)

This subcomponent provides locking and synchronization services.

Storage (ST)

This subcomponent encapsulates all support for storage services. It provides:

v Facilities to create, manage, and destroy discrete units of storage

v Specific allocation strategies

v The Java object store (garbage collectable heap)

Hardware platform interface (HPI)

This subcomponent consists of a set of well-defined functions that provide

low-level facilities and services in a platform-neutral way. The HPI is an external

interface that is defined by Sun.

Chapter 1. The building blocks of the IBM JVM 5

6 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

Chapter 2. Understanding the Garbage Collector

This chapter describes the Garbage Collector under these headings:

v “Overview of garbage collection”

v “Allocation” on page 10

v “Detailed description of garbage collection” on page 13

v “How to do heap sizing” on page 21

v “Interaction of the Garbage Collector with applications” on page 23

v “How to coexist with the Garbage Collector” on page 23

v “Frequently asked questions about the Garbage Collector” on page 27

For detailed information about diagnosing Garbage Collector problems, see

Chapter 31, “Garbage Collector diagnostics,” on page 299.

For reference information about the Garbage Collector command-line parameters,

see “Garbage Collector command-line parameters” on page 491.

For more information about the workings of the Garbage Collector, see IBM JVM

Garbage Collection and Storage Allocation Techniques at http://www.ibm.com/
developerworks/java/jdk/diagnosis/index.html.

Overview of garbage collection

Many users have difficulty understanding the Garbage Collector. This chapter

provides:

v A summary of some of the diagnostic techniques that are described elsewhere in

this book

v Knowledge of how the Garbage Collector works so that you can design

applications accordingly

The Garbage Collector allocates areas of storage in the heap. These areas of storage

define objects, arrays, and classes. When allocated, an object continues to be live

while a reference (pointer) to it exists somewhere in the active state of the JVM;

therefore the object is reachable. When an object ceases to be referenced from the

active state, it becomes garbage and can be reclaimed for reuse. When this

reclamation occurs, the Garbage Collector must process a possible finalizer and

also ensure that any internal JVM resources that are associated with the object are

returned to the pool of such resources.

Object allocation

Object allocation is driven by requests from inside the JVM for storage for Java

objects, arrays, or classes. Every allocation nominally requires a heap lock to be

acquired to prevent concurrent thread access. To optimize this allocation, particular

areas of the heap are dedicated to a thread, and that thread can allocate from its

local heap area without the need to lock out other threads. This technique delivers

the best possible allocation performance for small objects. Objects are allocated

directly from a thread local allocation buffer, which the thread has previously

allocated from the heap. A new object is allocated from the end of this cache

without the need to grab the heap lock. Therefore, the allocation is very efficient.

© Copyright IBM Corp. 2003, 2006 7

http://www.ibm.com/developerworks/java/jdk/diagnosis/index.html
http://www.ibm.com/developerworks/java/jdk/diagnosis/index.html

Objects that are allocated through this interface are, if small enough (currently 512

bytes), allocated from the cache. This cache is often referred to as the thread local

heap or TLH.

Reachable objects

The active state of the JVM is made up of the set of stacks that represents the

threads, the statics that are inside Java classes, and the set of local and global JNI

references. All functions that are invoked inside the JVM itself cause a frame on the

thread stack. This information is used to find the roots. These roots are then used to

find references to other objects. This process is repeated until all reachable objects

are found.

Garbage collection

When the JVM cannot allocate an object from the current heap because of lack of

space, a memory allocation fault occurs, and the Garbage Collector is invoked. The

first task of the Garbage Collector is to collect all the garbage that is in the heap.

This process starts when any thread calls the Garbage Collector either indirectly as

a result of allocation failure, or directly by a specific call to System.gc(). The first

step is to get all the locks that the garbage collection process needs. This step

ensures that other threads are not suspended while they are holding critical locks.

All the other threads are then suspended. Garbage collection can then begin. It

occurs in three phases:

v Mark

v Sweep

v Compaction (optional)

Mark phase

In the mark phase, all the objects that are referenced from the thread stacks, statics,

interned strings, and JNI references are identified. This action creates the root set of

objects that the JVM references. Each of those objects might, in turn, reference

others. Therefore, the second part of the process is to scan each object for other

references that it makes. These two processes together generate a vector that

defines live objects.

Sweep phase

After the mark phase, the mark vector contains a bit for every reachable object that

is in the heap. The mark vector must be a subset of the allocbits vector. The task of

the sweep phase is to identify the intersection of these vectors; that is, objects that

have been allocated but are no longer referenced.

The original technique for this sweep phase was to start a scan from the bottom of

the heap, and visit each object in turn. The length of each object was held in the

word that immediately preceded it on the heap. At each object, the appropriate

allocbit and markbit was tested to locate the garbage.

Now, the bitsweep technique avoids the need to scan the objects that are in the heap

and therefore avoids the associated overhead cost for paging. In the bitsweep

technique, the mark vector is examined directly to look for long sequences of zeros

(not marked), which probably identify free space.

When such a long sequence is found, the length of the object that is at the start of

the sequence is examined to determine the amount of free space that is to be

released. Objects are not normally allocated from the heap itself but from thread

local heap, which is allocated from the heap and later used by an individual thread

to meet any allocation requirements.

overview of garbage collection

8 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

Compaction phase

When the garbage has been removed from the heap, the Garbage Collector can

consider compacting the resulting set of objects to remove the spaces that are

between them. Because compaction can take a long time, the Garbage Collector

tries to avoid it if possible. Compaction is, therefore, a rare event. For more

information, see “Compaction avoidance” on page 17.

Heap size

The maximum heap size is controlled by the -Xmx option. If this option is not

specified, the default applies as follows:

Windows®

Half the real storage with a minimum of 16 MB and a maximum of

2 GB -1.

OS/390® and AIX®

64 MB.

Linux Half the real storage with a minimum of 16 MB and a maximum of

512 MB -1.

 The initial size of the heap is controlled by the -Xms option. If this option is not

specified, the default applies as follows:

Windows, AIX, and Linux

4 MB

OS/390

1 MB

Some basic heap sizing problems

For the majority of applications, the default settings work well. The heap expands

until it reaches a steady state, then remains in that state, which should give a heap

occupancy (the amount of live data on the heap at any given time) of 70%. At this

level, the frequency and pause time of garbage collection should be acceptable.

For some applications, the default settings might not give the best results. Listed

here, are some problems that might occur, and some suggested actions that you

can take. Use verbosegc to help you monitor the heap.

The frequency of garbage collections is too high until the heap reaches a steady

state.

Use verbosegc to determine the size of the heap at a steady state and set -Xms

to this value.

The heap is fully expanded and the occupancy level is greater than 70%.

Increase the -Xmx value so that the heap is not more than 70% occupied, but

for best performance try to ensure that the heap never pages. The maximum

heap size should, if possible, be able to be contained in physical memory.

At 70% occupancy the frequency of garbage collections is too great.

Change the setting of -Xminf. The default is 0.3, which tries to maintain 30%

free space by expanding the heap. A setting of 0.4, for example, increases this

free space target to 40%, and reduces the frequency of garbage collections.

Pause times are too long.

Try using -Xgcpolicy:optavgpause. This reduces the pause times and makes

them more consistent when the heap occupancy rises. It does, however, reduce

throughput by approximately 5%, although this value varies with different

applications.

overview of garbage collection

Chapter 2. Understanding the Garbage Collector 9

Here are some useful tips:

v Ensure that the heap never pages; that is, the maximum heap size must be able

to be contained in physical memory.

v Avoid finalizers. You cannot guarantee when a finalizer will run, and often they

cause problems. If you do use finalizers, try to avoid allocating objects in the

finalizer method. A verbosegc trace shows whether finalizers are being called.

v Avoid compaction. A verbosegc trace shows whether compaction is occurring.

Compaction is usually caused by requests for large memory allocations. Analyze

requests for large memory allocations and avoid them if possible. If they are

large arrays, for example, try to split them into smaller arrays.

The system heap

The system heap contains only objects that have a life expectancy of the life of the

JVM. The objects that are in this heap are the class objects for system and shareable

middleware, and for application classes. The system heap is never garbage

collected because all objects that are in it either are reachable for the lifetime of the

JVM, or, in the case of shareable application classes, have been selected to be

reused during the lifetime of the JVM. The system heap is a chain of

noncontiguous areas of storage. The initial size of the system heap is 128 KB in

32-bit architecture, and 8 MB in 64-bit architecture. If this fills, the system heap

obtains another extent and chains the extents together.

Allocation

The Garbage Collector is the JVM memory manager and is therefore responsible

for allocating memory in addition to collecting garbage. Because the task of

memory allocation is small, compared to that of garbage collection, the term

“garbage collection” usually also means “memory management”.

Heap lock allocation

Heap lock allocation occurs when the allocation request is greater than 512 bytes or

when the allocation cannot be contained in the existing cache; see “Cache

allocation.” As its name implies, heap lock allocation requires a lock and is

therefore avoided, if possible, by using the cache.

If the Garbage Collector cannot find a big enough chunk of free storage, allocation

fails and the Garbage Collector must perform a garbage collection. After a garbage

collection cycle, if the Garbage Collector created enough free storage, it searches

the freelist again and picks up a free chunk. If the Garbage Collector does not find

enough free storage, it returns out of memory. The HEAP_LOCK is released either

after the object has been allocated, or if not enough free space is found.

Cache allocation

Cache allocation is specifically designed to deliver the best possible allocation

performance for small objects. Objects are allocated directly from a thread local

allocation buffer that the thread has previously allocated from the heap. A new

object is allocated from the end of this cache without the need to grab the heap

lock; therefore, cache allocation is very efficient.

The Garbage Collector uses cache allocation if the size of the object is less than 512

bytes, or if the object can be contained in the existing cache.

The cache block is sometimes called a thread local heap (TLH). The size of the

TLH varies from 2 KB to 164 KB, depending on the use of the TLH.

overview of garbage collection

10 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

The wilderness

The wilderness is now called the Large Object Area (LOA). The way in which it

works has changed to improve the allocation of large objects. The terms

“wilderness”, “Large Object Area”, and “LOA” are used interchangeably

throughout the remainder of this book.

Initialization

The LOA boundary is calculated when the heap is initialized, and recalculated

after every garbage collection. The initial size of the LOA is 5% of the current heap

size. It can then be readjusted as follows:

v If the free space size and the LOA size combined provide less space than is

available when the -Xminf value (default 30%) of the heap is free, the LOA size

is zero.

v If the free space size provides less space than is available when the -Xminf value

(default 30%) of the heap is free, the LOA size will be reduced so that the free

space size equals the -Xminf value.

When the Garbage Collector calculates the size of the LOA, it also sets

ca_progressFreeObjectCtr to be equal to the free space size minus the -Xminf value

of the current heap size. This variable is then used to decide when to allocate out

of the LOA.

Expansion and shrinkage

The Garbage Collector uses the following algorithm to expand or shrink the LOA,

depending on usage:

v If an allocation failure occurs on the main heap:

– If the current size of the heap is greater than the initial size and if the amount

of free space in the LOA is greater than 70%, reduce by 1% the percentage of

space that is allocated to the LOA.

– If the current size of the heap is equal to or less than the initial size, and if

the amount of free space in the LOA is greater than 90%:

- If the current size of the heap is greater than 1%, reduce by 1% the

percentage of space that is allocated to the LOA.

- If the current size of the heap is 1% or less, reduce by 0.1%, to a minimum

of 0.1%, the percentage of space that is allocated to the LOA.
v If an allocation failure occurs on the LOA:

– If the size of the allocation request is greater than 5 times the current size of

the LOA, increase the LOA by 1% to a maximum of 20%.

– If the current size of the heap is less then the initial size, and if the amount of

free space in the LOA is less than 50%, increase the LOA by 1%.

– If the current size of the heap is equal to or greater than the initial size, and if

the amount of free space in the LOA is less than 30%, increase the LOA by

1% to a maximum of 20%.

This algorithm enables the Garbage Collector to expand the LOA if the LOA is

being highly used, and shrink it if it is being lightly used, or not used at all. If the

usage changes, the Garbage Collector tries to get the LOA back to 5%. If two

expansions occur without an intervening shrinkage, the Garbage Collector triggers

an incremental compaction by using the trigger COMPACT_LOA_EXPANDED.

Allocation in the LOA

Allocation occurs before and after a garbage collection.

allocation

Chapter 2. Understanding the Garbage Collector 11

Before a garbage collection: Before a garbage collection, allocation from the LOA

is done in manageAllocFailure(), which is called after the Garbage Collector has

failed to allocate from the free list in either heap lock allocation or cache allocation.

At this time, storage is released only from the first half of the LOA. The Garbage

Collector releases storage for either of two reasons:

v If the size of the request is equal to, or greater than, 64 KB.

v If the free space is greater than ca_progressFreeObjectCtr, the Garbage Collector

has not made enough allocation progress, so it tries to find space in the LOA.

In both cases, if the Garbage Collector finds space in the LOA, it puts the free

chunk at the beginning of the free list, and returns without initiating a garbage

collection.

After a garbage collection: The second half of the LOA is used to allocate objects

after a garbage collection. In handleFreeChunk, if the only chunk that is large

enough to satisfy the allocation request is in the LOA, the Garbage Collector splits

the chunk and releases enough storage for the request. If three consecutive releases

of storage come from the LOA in this way, the Garbage Collector triggers an

incremental compaction by using the trigger COMPACT_LOA_PRESSURE.

Pinned clusters

Objects that are on the Java heap are usually mobile; that is, the Garbage Collector

can move them around if it decides to resequence the heap. Some objects, however,

cannot be moved either permanently, or temporarily. Such immovable objects are

known as pinned objects.

The Garbage Collector allocates a kCluster as the first object at the bottom of the

heap. A kCluster is an area of storage that is used exclusively for class blocks. It is

large enough to hold 1280 entries. Each class block is 256 bytes long.

The Garbage Collector then allocates a pCluster as the second object on the heap. A

pCluster is an area of storage that is used to allocate any pinned objects. It is 16

KB long.

When the kCluster is full, the Garbage Collector allocates class blocks in the

pCluster. When the pCluster is full, the Garbage Collector allocates a new pCluster

of 2 KB. Because this new pCluster can be allocated anywhere, it can cause

problems.

To remove these problems, the pinnedFreeList changes the way in which the

pCluster is allocated. The concept is that after every garbage collection, the

Garbage Collector takes an amount of storage from the bottom of the free list and

chains it from the pinnedFreeList. Allocation requests for pClusters use the

pinnedFreeList, while other allocation requests use the free list. When either free

list is exhausted, the Garbage Collector causes an allocation failure and a garbage

collection. This action ensures that all pClusters are allocated in the

lowest-available storage location in the heap.

The Garbage Collector uses this algorithm to determine how much storage to put

on the pinnedFreeList:

v The initial allocation is for 50 KB.

v If this is not the initial allocation and the pinnedFreeList is empty, the Garbage

Collector allocates 50 KB or five times the amount of allocations from the

clusters since the last garbage collection, whichever is the larger.

allocation

12 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

v If this is not the initial allocation and the pinnedFreeList is not empty, the

Garbage Collector allocates 2 KB or five times amount of allocations from the

clusters since the last garbage collection, whichever is the larger.

This algorithm increases the amount of storage that is available when the

application is loading many classes. It therefore avoids an allocation failure that is

due to an exhausted pinnedFreeList. It also reduces the amount of storage that is

on the pinnedFreeList when little allocation of pinned clusters exists, and therefore

avoids the need to remove large amounts of storage from the free list.

The buildPinnedFreeList function builds the pinnedFreeList by using the above

algorithm. This function is called from the following places:

v In initializeClusters

v At the end of expandHeap

v At the end of gc0_locked

The Garbage Collector makes allocations from the pinnedFreeList by calling the

nextPinnedCluster function. This function works in a way that is similar to the

way in which nextTLH works; that is, it always takes the next available free chunk

on the pinnedFreeList. If the pinnedFreeList is empty, it calls manageAllocFailure.

In realObjCAlloc, if no room remains in the clusters, the Garbage Collector calls

nextPinnedCluster to allocate a new pCluster.

In initializeClusters, the Garbage Collector calls nextPinnedCluster, which allocates

an initial pCluster of 50 KB because 50 KB is the size of the only free chunk that is

on the pinnedFreeList. The free chunk has that size because the pinnedFreeList had

the initial allocation of 50 KB.

Detailed description of garbage collection

Garbage collection is performed when an allocation failure occurs in heap lock

allocation, or if a specific call to System.gc() occurs. The thread that has the

allocation failure or the System.gc() call takes control and performs the garbage

collection. It first gets all the locks that are required for a garbage collection, then

suspends all the other threads. Garbage collection then goes through the three

phases: mark, sweep, and, optionally, compaction. The IBM Garbage Collector is a

stop-the-world (STW) operation, because all application threads are stopped while

the garbage is collected.

Conservative and type-accurate garbage collection

A Garbage Collector is allowed, by the JVM specification, to be either conservative

or type accurate. The terms relate to the way pointers to objects are handled. A

type-accurate Garbage Collector can determine whether a pointer to an object

really is a pointer or whether it is only application data that happens to look like a

pointer to an object. Conservative collectors cannot determine this.

All Garbage Collectors have to find a root set of object pointers from which they

can trace all other objects. The IBM Garbage Collector handles pointers to the root

set conservatively. This means that, although objects in the root set are subject to

collection, they cannot be moved. If they were moved (in a heap compaction), the

Garbage Collector would have to reset the pointer to the root object, which might

be application data. Except for the root set, all other objects are traced

type-accurately.

allocation

Chapter 2. Understanding the Garbage Collector 13

Mark phase

In this phase, all the live objects are marked. Because unreachable objects cannot be

identified singly, all the reachable objects must be identified. Therefore, everything

else must be garbage. The process of marking all reachable objects is also known as

tracing.

The active state of the JVM is made up of the saved registers for each thread, the

set of stacks that represent the threads, the statics that are in Java classes, and the

set of local and global JNI references. All functions that are invoked in the JVM

itself cause a frame on the C stack. This frame might contain instances of objects as

a result of either an assignment to a local variable, or a parameter that is sent from

the caller. All these references are treated equally by the tracing routines. The

Garbage Collector views the stack of a thread as a set of 4-byte fields (8 bytes in

64-bit architecture) and scans them from the top to the bottom of each of the

stacks. The Garbage Collector assumes that the stacks are 4-byte aligned (8-byte

aligned in 64-bit architecture). Each slot is examined to see whether it points at an

object that is in the heap. Note that this does not make it necessarily a pointer to

an object, because it might be only an accidental combination of bits in a float or

integer. So, when the Garbage Collector performs the scan of a thread stack, it

handles conservatively anything that it finds. Anything that points at an object is

assumed to be an object, but the object in question must not be moved during

garbage collection. A slot is thought to be a pointer to an object if it meets these

three requirements:

1. It is grained on an 8-byte boundary.

2. It is inside the bounds of the heap.

3. The allocbit is on.

Objects that are referenced in this way are known as roots and have their dosed bit

set on, to indicate that they cannot be moved in any later compaction phase.

Tracing can now proceed accurately. That is, the Garbage Collector can find

references in the roots to other objects and, because it knows that they are real

references, it can move them during compaction because it can change the

reference. The tracing process uses a stack that can hold 4 KB entries. All

references that are pushed to the stack are marked at the same time by setting the

relevant markbit on. The roots are marked and pushed to the stack and then the

Garbage Collector starts to pop entries off the stack and trace them. Normal objects

(not arrays) are traced by using the classblock, which tells where references to

other objects are to be found in this object. As each reference is found, if it is not

already marked, it is marked and pushed.

Array objects are traced by looking at each array entry and, if it is not already

marked, it is marked and pushed. Some additional code traces a small portion of

the array at a time, to try to avoid mark stack overflow.

The above process continues repeatedly until the mark stack eventually becomes

empty.

Mark stack overflow

Because the mark stack has a fixed size, it can overflow. If this occurs, the Garbage

Collector:

v Sets a global flag to indicate that mark stack overflow has occurred

v Sets the NotYetScanned bit in the object that could not be pushed

Tracing can then continue with all other objects that could not be pushed because

they have their NotYetScanned bit set. When all tracing is complete, the Garbage

detailed description of garbage collection

14 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

Collector then walks the heap by starting at the first object and using the size field

to navigate to the next object. All found objects that have their NotYetScanned bit

set are marked and pushed to the mark stack. The NotYetScanned bit is set off and

tracing continues as before. It is possible to get another mark stack overflow, in

which case the Garbage Collector must go through the whole process again until

all reachable objects are marked.

Parallel Mark

With Bitwise Sweep and Compaction Avoidance, the majority of garbage collection

time is spent marking objects. Therefore, a parallel version of Garbage Collector

Mark has been developed. The goal of Parallel Mark is to not degrade Mark

performance on a uniprocessor, and to increase typical Mark performance on a

multiprocessor system.

Object marking is increased through the addition of helper threads and a facility

that shares work between those threads. Parallel Mark still requires the

participation of one application thread, which is used as the master coordinating

agent. This thread performs very much as it always did, including the

responsibility for scanning C-stacks to identify root pointers for the collection. A

platform with N processors also has N-1 new helper threads, which work with the

master thread to complete the marking phase of garbage collection. The default

number of threads can be overridden with the -Xgcthreads parameter. A value of 1

results in no helper threads. The -Xgcthreads option accepts any value greater than

0, but you gain little by setting it to more than N-1.

At a high level, each marker thread is provided with a local stack and a sharable

queue, both of which contain references to objects that are marked but not yet

scanned. Threads do most of the marking work by using their local stacks,

synchronizing on sharable queues only when work balance requires it. Mark bits

are updated by using atomic primitives that require no additional lock. Because

each thread has a Mark Stack that can hold 4 KB entries, and a Mark Queue that

can hold 2 KB entries, the chances of a Mark Stack Overflow are reduced.

Concurrent mark

Concurrent mark gives reduced and consistent garbage collection pause times

when heap sizes increase. It starts a concurrent marking phase before the heap is

full. In the concurrent phase, the Garbage Collector scans the roots by asking each

thread to scan its own stack. These roots are then used to trace live objects

concurrently. Tracing is done by a low-priority background thread and by each

application thread when it does a heap lock allocation.

While the Garbage Collector is marking live objects concurrently with application

threads running, it has to record any changes to objects that are already traced. It

uses a write barrier that is activated every time a reference in an object is updated.

The write barrier flags when an object reference update has occurred, to force a

rescan of part of the heap. It is the same write barrier that is required by resettable,

as described later. The heap is divided into 512-byte sections and each section is

allocated a byte in the card table. Whenever a reference to an object is updated, the

card that corresponds to the start address of the object that has been updated with

the new object reference is marked with 0x01. A byte is used instead of a bit for

two reasons: a write to a byte is quicker than a bit change, and the other bits are

reserved for future use. An STW collection is started when one of the following

occurs:

v An allocation failure

v A System.gc

detailed description of garbage collection

Chapter 2. Understanding the Garbage Collector 15

v Concurrent mark completes all the marking that it can do

The Garbage Collector tries to start the concurrent mark phase so that it completes

at the same time as the heap is exhausted. The Garbage Collector does this by

constant tuning of the parameters that govern the concurrent mark time. In the

STW phase, the Garbage Collector scans all roots, uses the marked cards to see

what must be retraced, then sweeps as normal. It is guaranteed that all objects that

were unreachable at the start of the concurrent phase are collected. It is not

guaranteed that objects that become unreachable during the concurrent phase are

collected.

Reduced and consistent pause times are the benefits of concurrent mark, but they

come at a cost. Application threads must do some tracing when they are requesting

a heap lock allocation. The overhead varies depending on how much idle CPU

time is available for the background thread. Also, the write barrier has an

overhead.

This parameter enables concurrent mark:

 -Xgcpolicy:<optthruput|optavgpause>

 Setting -Xgcpolicy to optthruput disables concurrent mark. If you do not have

pause time problems (as seen by erratic application response times), you get the

best throughput with this option. Optthruput is the default setting. Setting

-Xgcpolicy to optavgpause enables concurrent mark with its default values. If you

are having problems with erratic application response times that are caused by

normal garbage collections, you can reduce those problems at the cost of some

throughput, by using the optavgpause option.

Sweep phase

After the mark phase, the markbits vector contains a bit for every reachable object

that is in the heap, and must be a subset of the allocbits vector. The sweep phase

identifies the intersection of the allocbits and markbits vectors; that is, objects that

have been allocated but are no longer referenced. In the bitsweep technique, the

Garbage Collector examines the markbits vector directly and looks for long

sequences of zeros, which probably identify free space. When such a long sequence

is found the Garbage Collector checks the length of the object at the start of the

sequence to determine the amount of free space that is to be released. If this

amount of free space is greater than 512 bytes plus the header size, this free chunk

is put on the freelist. The small areas of storage that are not on the freelist are

known as ″dark matter″, and they are recovered when the objects that are next to

them become free, or when the heap is compacted. It is not necessary to free the

individual objects in the free chunk, because it is known that the whole chunk is

free storage. When a chunk is freed, the Garbage Collector has no knowledge of

the objects that were in it. During this process, the markbits are copied to the

allocbits so that on completion, the allocbits correctly represent the allocated

objects that are on the heap.

Parallel bitwise sweep

Parallel Bitwise Sweep improves sweep time by using available processors. In

Parallel Bitwise Sweep, the Garbage Collector uses the same helper threads that are

used in Parallel Mark, so the default number of helper threads is also the same

and can be changed with the -Xgcthreadsn parameter. The heap is divided into

sections. The number of sections is significantly larger than the number of helper

threads. The calculation for the number of sections is as follows:

detailed description of garbage collection

16 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

v 32 x the number of helper threads, or

v The maximum heap size ÷ 16 MB

whichever is larger. The helper threads take a section at a time and scan it,

performing a modified bitwise sweep. The results of this scan are stored for each

section. When all sections have been scanned, the freelist is built.

Compaction phase

When the garbage has been removed from the heap, the Garbage Collector can

consider compacting the resulting set of objects, to remove the spaces that are

between them. The process of compaction is complicated because if any object is

moved, the Garbage Collector must change all the references that exist to it. If one

of those references was from a stack, and therefore the Garbage Collector is not

sure that it was an object reference (it might have been a float, for example), the

Garbage Collector cannot move the object. Such objects that are temporarily fixed

in position are referred to as dosed in the code and have the dosed bit set in the

header word to indicate this fact. Similarly, objects can be pinned during some JNI

operations. Pinning has the same effect but is permanent until the object is

explicitly unpinned by JNI. Objects that remain mobile are compacted in two

phases by taking advantage of the fact that the mptr is known to have the low

three bits zero and unused. One of these bits can therefore be used to denote the

fact that it has been swapped. Note that this swapped bit is applied in two places:

the size + flags field (where it is known as OLINK_IsSwapped) and also the mptr

(where it is known as GC_FirstSwapped). In both cases, the least significant bit

(x01) is being set.

The following analogy might help you understand the compaction process.

Think of the heap as a warehouse that is partly full of pieces of furniture of

different sizes. The free space is the gaps between the furniture. The free list

contains only gaps that are above a particular size. Compaction pushes everything

in one direction and closes all the gaps. It starts with the object that is closest to

the wall, and puts that object against the wall. Then it takes the second object in

line and puts that against the first. Then it takes the third and puts it against the

second, and so on. At the end, all the furniture is at one end of the warehouse and

all the free space is at the other. Pinned and dosed objects that cannot be moved

make the picture difficult, but do not change the general idea.

Compaction avoidance

Compaction avoidance focuses on correct object placement. It therefore reduces,

and in many cases removes, the need for compaction. An important point of this

approach is a concept that is called Wilderness Preservation. Wilderness

Preservation attempts to keep a region of the heap in an unused state by focusing

allocation activity elsewhere. It does this by making a boundary between most of

the heap and a reserved wilderness portion. In typical cases, noncompacting

garbage collection events are triggered whenever the wilderness is threatened. The

wilderness is consumed (eroded) only when necessary to satisfy a large allocation,

or when not enough allocation progress has been made since the previous garbage

collection.

The wilderness is allocated at the end of the active part of the heap. Its size is 5%

of the active part of the heap, with a maximum of 3 MB. On heap lock allocation

failure, if enough allocation progress has been made since the last garbage

collection, the Garbage Collector runs. Enough progress means that at least 30% of

the heap has been allocated since the last garbage collection. This is the default. It

detailed description of garbage collection

Chapter 2. Understanding the Garbage Collector 17

can be changed with the -Xminf parameter. If not enough progress has been made,

the allocation is immediately satisfied from the wilderness if possible. Otherwise, a

normal allocation failure occurs. Not enough progress has been made if the

Garbage Collector gets an allocation request for a large object that cannot be

satisfied before the free list is exhausted. In this condition, the reserved wilderness

can satisfy the request, and avoid a garbage collection and a compaction.

Compaction occurs if any of the following are true and -Xnocompactgc has not

been specified:

v -Xcompactgc has been specified.

v Following the sweep phase, not enough free space is available to satisfy the

allocation request.

v A System.gc() has been requested and the last allocation failure garbage

collection did not compact.

v At least half the previously available memory has been consumed by TLH

allocations (ensuring an accurate sample) and the average TLH size falls below

1000 bytes.

v Less than 5% of the active heap is free.

v Less than 128 KB of the active heap is free.

Subpool (AIX only)

On AIX only, release 1.4.1 Service Refresh 1 introduced an improved GC policy for

object allocation that is specifically targeted at improving the performance of object

allocation. You invoke it with the -Xgcpolicy:subpool command-line option.

The subpool algorithm uses multiple free lists rather than the single free list used

by optavgpause and optthruput. It tries to predict the size of future allocation

requests based on earlier allocation requests. It recreates free lists at the end of

each GC based on these predictions. While allocating objects on the heap, free

chunks are chosen using a ″best fit″ method, as against the ″first fit″ method used

in other algorithms. It also tries to minimize the amount of time for which a lock is

held on the Java heap, thus reducing contention among allocator threads.

Concurrent mark is disabled when subpool policy is used. Also, subpool policy

uses a new algorithm for managing the Large Object Area (LOA). Hence, the

subpool option might provide additional throughput optimization for some

applications.

Reference objects

Reference objects enable all references to be handled and processed in the same

way. Therefore, the Garbage Collector creates two separate objects on the heap: the

object itself and a separate reference object. The reference objects can optionally be

associated with a queue to which they will be added when the referent becomes

unreachable. Instances of SoftReference, WeakReference, and PhantomReference are

created by the user and cannot be changed; they cannot be made to refer to other

than the object that they referenced on creation. Objects that are associated with a

finalizer are ’registered’ with the Finalizer class on creation. The result is the

creation of a FinalReference object that is associated with the Finalizer queue and

refers to the object that is to be finalized.

During garbage collection, these reference objects are handled specially; that is, the

referent field is not traced during the marking phase. When marking is complete,

the references are processed in sequence:

1. Soft

detailed description of garbage collection

18 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

2. Weak

3. Final

4. Phantom

Processing of SoftReference objects is specialized; that is, the Garbage Collector can

decide that these references should be cleared if the referent is unmarked

(unreachable except for a path through a reference). The clearing is done if

memory is running out and is done selectively on the principle of most recent

usage. Usage is measured by the last time that the get method was called, which

can give some unexpected, although valid, results. When a reference object is being

processed, its referent is marked, ensuring that when, for example, a

FinalReference is processed for an object that also has a SoftReference, the

FinalReference sees a marked referent. The FinalReference, therefore, is not queued

for processing. The result is that references are queued in successive garbage

collection cycles.

References to unmarked objects are initially queued to the ReferenceHandler

thread that is in the reference class. The ReferenceHandler takes objects off its

queue and looks at their individual queue field. If an object is associated with a

specific queue, it is requeued to it for further processing. Therefore, the

FinalReference objects are requeued and eventually their finalize method is run by

the finalizer thread.

JNI weak reference

JNI weak references provide the same capability as WeakReference objects do, but

the processing is very different. A JNI routine can create a JNI Weak reference to

an object and later delete that reference. The Garbage Collector clears any weak

reference where the referent is unmarked, but no equivalent of the queuing

mechanism exists. Note that failure to delete a JNI Weak reference causes a

memory leak in the table and performance problems. This is also true for JNI

global references. The processing of JNI weak references is handled last in the

reference handling process. The result is that a JNI weak reference can exist for an

object that has already been finalized and had a phantom reference queued and

processed.

Heap expansion

Heap expansion occurs after garbage collection and when all the threads have been

restarted, but the HEAP_LOCK is still held. The active part of the heap is

expanded up to the maximum if one of the following is true:

v The Garbage Collector did not free enough storage to satisfy the allocation

request.

v Free space is less than the minimum free space, which you can set by using the

-Xminf parameter. The default is 30%.

v More than 13% of the time is being spent in garbage collection, and is expanding

by the minimum expansion amount. (-Xmine) does not result in a heap that is

greater than the maximum percentage of free space (-Xmaxf).

The amount to expand the heap is calculated as follows:

v If the heap is being expanded because less than -Xminf (default 30%) free space

is available, the Garbage Collector calculates how much the heap needs to

expand to get -Xminf free space.

If this is greater than the maximum expansion amount, which you can set with

the -Xmaxe parameter (default of 0, which means no maximum expansion), the

calculation is reduced to -Xmaxe.

detailed description of garbage collection

Chapter 2. Understanding the Garbage Collector 19

If this is less than the minimum expansion amount, which you can set with the

-Xmine parameter (default of 1 MB), it is increased to -Xmine.

v If the heap is expanding because the Garbage Collector did not free enough

storage and the JVM is not spending more than 13% in garbage collection, the

heap is expanded by the allocation request.

v If the heap is expanding for any other reason, the Garbage Collector calculates

how much expansion is needed to get 17.5% free space. This is adjusted as

above, depending on -Xmaxe and -Xmine.

v Finally, the Garbage Collector must ensure that the heap is expanded by at least

the allocation request if garbage collection did not free enough storage.

All calculated expansion amounts are rounded up to a 64 KB boundary on 32-bit

architecture, or a 4 MB boundary on 64-bit architecture.

Heap shrinkage

Heap shrinkage occurs after garbage collection, but when all the threads are still

suspended. Shrinkage does not occur if any of the following are true:

v The Garbage Collector did not free enough space to satisfy the allocation

request.

v The maximum free space, which can be set by the -Xmaxf parameter (default is

60%), is set to 100%.

v The heap has been expanded in the last three garbage collections.

v This is a System.gc() and the amount of free space at the beginning of the

garbage collection was less than -Xminf (default is 30%) of the live part of the

heap.

v If none of the above is true and more than -Xmaxf free space exists, the Garbage

Collector must calculate how much to shrink the heap to get it to -Xmaxf free

space, without going below the initial (-Xms) value. This figure is rounded

down to a 64 KB boundary on 32-bit architecture, or a 4 MB boundary on 64-bit

architecture.

A compaction occurs before the shrink if all the following are true:

v A compaction was not done on this garbage collection cycle.

v No free chunk is at the end of the heap, or the size of the free chunk that is at

the end of the heap is less than 10% of the required shrinkage amount.

v The Garbage Collector did not shrink and compact on the last garbage collection

cycle.

Note that, on initialization, the JVM allocates the whole heap in a single

contiguous area of virtual storage. The amount that is allocated is determined by

the setting of the -Xmx parameter. No virtual space from the heap is ever freed

back to the native operating system. When the heap shrinks, it shrinks inside the

original virtual space.

Whether any physical memory is released depends on the ability of the native

operating system. If it supports paging; that is, the ability of the native operating

system to commit and decommit physical storage to the virtual storage, the

Garbage Collector uses this function. In this case, physical memory can be

decommitted on a heap shrinkage.

detailed description of garbage collection

20 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

To summarize. You never see the amount of virtual memory that is used by the

JVM decrease. You might see physical memory free size increase after a heap

shrinkage. The native operating system determines what it does with decommitted

pages.

Also note that, where paging is supported, the Garbage Collector allocates physical

memory to the initial heap to the amount that is specified by the -Xms parameter.

Additional memory is committed as the heap grows.

Resettable JVM (z/OS only)

The resettable JVM is available only on z/OS™.

You can find documentation about the Resettable JVM in New IBM Technology

featuring Persistent Reusable Java Virtual Machines, SC34-6034-01. This is available at

http://www.s390.ibm.com/Java

How to do heap sizing

This section describes how to do heap sizing to suit your requirements. Generally:

v Do not start with a minimum heap size that is the same as the maximum heap

size.

v Use verbosegc to tailor the minimum and maximum settings.

v Investigate the use of fine-tuning options.

Initial and maximum heap sizes

When you have established the maximum heap size that you need, you might

want to set the minimum heap size to the same value; for example, -Xms 512M

-Xmx 512M. Using the same values is not usually a good idea, because it delays the

start of garbage collection until the heap is full. The first time that the Garbage

Collector runs, therefore, becomes a very expensive operation. Also, the heap is

most likely to be very fragmented when a need to do a heap compaction occurs.

Again, this is a very expensive operation. The recommendation is to start your

application with the minimum heap size that it needs. When it starts up, the

Garbage Collector will run often and, because the heap is small, efficiently.

The Garbage Collector takes these steps:

1. If the Garbage Collector finds enough garbage, it exits.

If it cannot find enough garbage, it goes to the next step.

2. The Garbage Collector runs compaction.

If it cannot find enough garbage, it goes to the next step.

3. The Garbage collector expands the heap.

Therefore, an application normally runs until the heap is full. Then, successive

garbage collection cycles recover garbage. When the heap is full of live objects, the

Garbage Collector compacts the heap. If and when the heap is full of live objects

and cannot be compacted, the Garbage Collector expands the heap size.

From the above description, you can see that the Garbage Collector compacts the

heap as the needs of the application rise, so that as the heap expands, it expands

with a set of compacted objects in the bottom of the original heap. This is an

efficient way to manage the heap, because compaction runs on the

smallest-possible heap size at the time that compaction is found to be necessary.

Compaction is performed with the minimum heap sizes as the heap grows. Some

detailed description of garbage collection

Chapter 2. Understanding the Garbage Collector 21

http://www.s390.ibm.com/Java

evidence exists that an application’s initial set of objects tends to be the key or root

set, so that compacting them early frees the remainder of the heap for more

short-lived objects.

Eventually, the JVM has the heap at maximum size with all long-lived objects

compacted at the bottom of the heap. The compaction occurred when compaction

was in its least expensive phase. The overheads of expanding the heap are almost

trivial compared to the cost of collecting and compacting a very large fragmented

heap.

Avoiding fragmentation

For a large Java application, such as WebSphere Application Server, the default

kCluster space (for an introduction to kCluster, see “Pinned clusters” on page 12)

might not be sufficient to allocate all classblocks. Use the -Xk and -Xp

command-line options to specify kCluster and pCluster sizes. For example:

-Xknnnn

where nnnn specifies the maximum number of classes the kCluster will contain.

-Xk instructs the JVM to allocate space for nnnn class blocks in kCluster.

GC trace data obtained by setting -Dibm.dg.trc.print=st_verify (for more

information about GC tracing, see “Tracing” on page 308) provides a guide for the

optimum value of the nnnn parameter. For example::

<GC(VFY-SUM): pinned=4265(classes=3955/freeclasses=0)

dosed=10388 movable=1233792 free=5658>

The ’pinned/classes’ size is about the correct size needed for the -Xk parameter.

You are recommended to add 10% to the reported value (3955). So, in this example,

-Xk4200 would be a good setting.

The difference between pinned (=4265) and classes (=3955) provides a guide for

the initial size of pCluster, although because each object might be different in size

it is hard to predict the requirements for the pCluster and pCluster overflow

options. You can specify the pCluster and pCluster overflow sizes by the -Xp

command-line option:

-Xpiiii[K][,oooo[K]]

where iiii specifies the size of the initial pCluster in KB and oooo optionally

specifies the size of overflow (subsequent) pClusters in KB. Default values of iiii

and oooo are 16 KB and 2 KB respectively .

Where your application suffers from heap fragmentation, use GC trace and specify

the -Xk option. If the problem persists, experiment with higher initial pCluster

settings and overflow pCluster sizes.

Using verbosegc

The verbosegc output is fully described in Chapter 31, “Garbage Collector

diagnostics,” on page 299. Switch on verbosegc and run up the application with no

load. Check the heap size at this stage. This provides a rough guide to the start

size of the heap (-Xms parameter) that is needed. If this value is much larger than

the defaults (see Appendix H, “Default settings for the JVM,” on page 495), think

about reducing this value a little to get efficient and rapid compaction up to this

value, as described in “Initial and maximum heap sizes” on page 21.

garbage collection - how to do heap sizing

22 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

By running an application under stress, you can determine a maximum heap size.

Use this to set your max heap (-Xmx) value.

Using fine tuning options

Refer to the description of the following command line parameters and consider

applying to fine-tune the way the heap is managed:

-Xmaxe

-Xmine

-Xmaxf

-Xminf

These are described in “Heap expansion” on page 19 and “Heap shrinkage” on

page 20.

Interaction of the Garbage Collector with applications

This interaction can be expressed as a contract between the Garbage Collector and

an application. The Garbage Collector honors this contract:

1. The Garbage Collector will collect unused objects.

a. The Garbage Collector does not guarantee to find all unused objects.
2. The Garbage Collector will not collect live objects.

3. The Garbage Collector will stop all threads when it is running.

4. Garbage Collector invocation:

a. The Garbage Collector will not run itself except when a memory fault

occurs.

b. The Garbage Collector will honor manual invocations.
5. The Garbage Collector will collect garbage at its own convenience, sequence,

and timing, subject to clause 4b.

6. The Garbage Collector will honor all command line variables, environment

variables, or both.

7. Finalizers:

a. Are not run in any particular sequence

b. Are not run at any particular time

c. Are not guaranteed to run at all

d. Will run asynchronously to the Garbage Collector

This contract is used in the following section for some advice.

Note clause 4b. The specification says that a manual invocation of the Garbage

Collector (for example, through the System.gc() call) suggests that a garbage

collection cycle might be run. In fact, the call is interpreted as “Do a full garbage

collection scan unless a garbage collection cycle is already executing”.

How to coexist with the Garbage Collector

Predicting Garbage Collector behavior

Why would you want to predict the behavior of the Garbage Collector? Java

service often receive PMRs that are implicitly expecting predictable behavior. The

IBM Garbage Collector does not have predictable behavior. The following sections

garbage collection - how to do heap sizing

Chapter 2. Understanding the Garbage Collector 23

describe why. This information is important in helping you to understand some of

the remaining advice that is given in this section.

Consider the initial conditions that face the Garbage Collector when it starts a

cycle. The IBM Garbage Collector is not completely type-accurate. This means that

no formal way exists to distinguish objects, or references to objects, from normal

data. Some JVMs have complete type accuracy. The IBM JVM does not. So how

does it find objects from which it can start tracing the graph of live objects ?

The Garbage Collector scans all the stacks and registers of running threads and

also scans a known area where JNI references are stored. If a number is found that

looks like it might be a reference to the Java heap (that is, it points to an object),

the Garbage Collector follows the link and handles the resultant data as an object.

The set of objects that is found in this way is known as the root set. When a root

object has been found, the Garbage Collector checks what should be object

references from that object. If these references are all valid, most likely the root

object is an object, and it is handled as such. If these references are not all valid,

the object is discarded from the root set. Any references from a root object are

handled type accurately.

A small but finite chance exists that some application datum on the stack, or in a

register, is not actually an object reference, but coincidentally looks like one. This

has two important implications:

1. The Garbage Collector follows an invalid reference into the heap and traces

from that reference a graph of objects that are considered reachable and,

therefore, not garbage. If some or all of those objects really are garbage, they

are not collected. This is known as retained garbage (see clause 1a on page 23).

This is unavoidable with the IBM Garbage Collector. In normal conditions, it is

not expected that consecutive garbage collection cycles would throw up the

same invalid reference, so retained garbage will be collected eventually (see

clause5 on page 23).

2. The root set of objects are treated conservatively. This means that they are not

moveable. If the garbage collection cycle invokes a heap compaction, the

Garbage Collector cannot move these objects, because it would then change the

reference on the stack or register, and this might be an application datum.

Therefore, the set of root objects, which can be quite large, are unmovable in

the same garbage collection cycle. Obviously, the root set are considered

reachable and also noncollectable.

Consider the root set. It is mainly a pseudo-random set of references from what

happened to be in the stacks and registers of the JVM threads at the time that the

Garbage Collector was invoked This means that the graph of reachable objects that

the Garbage Collector constructs in any given cycle is nearly always different from

that traced in another cycle. (See clause 5 on page 23). This has significant

consequences for finalizers (clause 7 on page 23), which are described more fully in

“Finalizers” on page 25.

Thread local heap

The heap is subject to concurrent access by all the threads that are running in the

JVM. Therefore, it must be protected by a resource lock so that one thread can

complete updates to the heap before another thread is allowed in. Access to the

heap is therefore single-threaded. However, the Garbage Collector also maintains

areas of the heap as thread caches or thread local heap (TLH). These TLHs are

areas of the heap that are allocated as a single large object, marked noncollectable,

and allocated to a thread. The thread can now suballocate from the TLH, objects

that are below a defined size. No heap lock is needed, so allocation is very fast and

how to coexist with the Garbage Collector

24 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

efficient. When a cache becomes full, a thread returns the TLH to the main heap

and grabs another chunk for a new cache.

A TLH is not subject to a garbage collection cycle; it is a reference that is dedicated

to a thread.

Bug reports

Attempts to predict the behavior of the Garbage Collector are frequent underlying

causes of bug reports. An example of a regular bug report to Java service of the

hello-world variety is one in which a simple programme allocates some object or

objects, clears references to these objects, then initiates a garbage collection cycle.

The objects are not seen as collected, usually because the application has attached a

finalizer that reports when it is run.

It should be clear from the contract and the unpredictable nature of the Garbage

Collector that more than one valid reason exists for this:

v The objects are in TLH and do not become visible until the TLH flushes.

v An object reference exists in the thread stack or registers, and the objects are

retained garbage.

v The Garbage Collector has not chosen to run a finalizer cycle at this time.

See clause 1 on page 23. True garbage is always found eventually, but it is not

possible to predict when (clause 5 on page 23).

Finalizers

The Java service team strongly recommends that applications avoid the use of

finalizers as far as possible. The JVM specification states that finalizers should be

used as an emergency clear-up of, for example, hardware resources. The service

team recommends that this should be the only use of finalizers. They should not

be used to clean up Java software resources or for closedown processing of

transactions.

The reasons for this recommendation are partly in the nature of finalizers and how

they are permanently linked to garbage collection, and partly in the contract that is

described in “Interaction of the Garbage Collector with applications” on page 23.

These topics are examine more closely in the following sections.

Nature of finalizers

The JVM specification says nothing about finalizers, except that they are final in

nature. Nothing states when, how, or even whether a finalizer is run. The only rule

is that if and when it is run, it is final.

Final, in terms of a finalizer, means that the class object is known not to be in use

any more. Clearly, this can happen only when the object is not reachable. Only the

Garbage Collector can determine this. Therefore, when the Garbage Collector runs,

it makes a list of all unreachable objects that have a finalizer method. Normally,

such objects would be collected, and the Garbage Collector would be able to satisfy

the memory allocation fault. Finalized garbage, however, must have its finalizer

run before it can be collected. Therefore, no finalized garbage can be collected in

the cycle that actually finds it. Finalizers therefore make a garbage collection cycle

longer (the cycle has to detect and process the objects) and less productive.

Finalizers are an overhead on garbage collection. Because garbage collection is a

stop-the-world operation, it makes sense to reduce this overhead as far as possible.

how to coexist with the Garbage Collector

Chapter 2. Understanding the Garbage Collector 25

Note that the Garbage Collector cannot run finalizers itself when it finds them.

This is because a finalizer might run an operation that takes a long time, and the

Garbage Collector cannot risk locking out the application while this operation is

running. So finalizers must be collected into a separate thread for processing. This

task adds more overhead into the garbage collection cycle.

Finalizers and the garbage collection contract

Garbage Collector contract clause 7 on page 23, which shows the nonpredictable

behavior of the Garbage Collector, has particular significant results:

v Because the graph of objects that the Garbage Collector finds is basically

random, the sequence in which finalized objects are located has no relationship

to the sequence in which they were created nor to the sequence in which their

objects became garbage (contract subclause 7a on page 23). Similarly, the

sequence in which finalizers are run is also random.

v Because the Garbage Collector has no knowledge of what is in a finalizer, or

how many finalizers exist, it tries to satisfy an allocation without needing to

process finalizers. If a garbage collection cycle cannot produce enough normal

garbage, it might decide to process finalized objects. So it is not possible to

predict when a finalizer is run (contract subclause 7b on page 23).

v Because a finalized object might be retained garbage, it is possible that a

finalizer might not run at all (contract subclause 7c on page 23).

How finalizers are run

If and when the Garbage Collector decides to process unreachable finalized objects,

those objects are placed onto a queue that is input to a separate finalizer thread.

When the Garbage Collector has ended and the threads are unblocked, this thread

starts to perform its function. It runs as a high-priority thread and runs down the

queue, running the finalizer of each object in turn. When the finalizer has run, the

finalizer thread marks the object as collectable and the object is (probably) collected

in the next garbage collection cycle. See contract subclause 7d on page 23. Of

course, if running with a large heap, the next garbage collection cycle might not

happen for quite a long time.

Summary

v Finalizers are an expensive overhead.

v Finalizers are not dependable.

The Java service team would recommend that :

v Finalizers are not used for process control

v Finalizers are not used for tidying Java resources

v Finalizers are not used at all as far as possible

For tidying Java resources, think about the use of a clean up routine. When you

have finished with an object, call the routine to null out all references, deregister

listeners, clear out hash tables, and so on. This is far more efficient than using a

finalizer and has the useful side-benefit of speeding up garbage collection. The

Garbage Collector does not have so many object references to chase in the next

garbage collection cycle.

Manual invocation

The Garbage Collector contract subclause 4b on page 23 notes that the Garbage

Collector always honors a manual invocation; for example, through the System.gc

() call. This call nearly always invokes a garbage collection cycle, which is

expensive.

how to coexist with the Garbage Collector

26 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

The Java service team recommend that this call is not used, or if it is, it is

enveloped in conditional statements that block its use in an application runtime

environment. The Garbage Collector is carefully adjusted to deliver maximum

performance to the JVM. Forcing it to run severely degrades JVM performance

From the previous sections, you can see that it is pointless trying to force the

Garbage Collector to do something predictable, such as collecting your new

garbage or running a finalizer. It might happen; it might not. Let the Garbage

Collector run in the parameters that an application selects at start-up time. This

method nearly always produces best performance.

Several actual customer applications have been turned from unacceptable to

acceptable performance simply by blocking out manual invocations of the Garbage

Collector. One actual enterprise application was found to have more than four

hundred System.gc() calls.

Summary

Do not try to control the Garbage Collector or to predict what will happen in a

given garbage collection cycle. You cannot do it. This unpredictability is handled,

and the Garbage Collector is designed to run well and efficiently inside these

conditions. Set up the initial conditions that you want and let the Garbage

Collector run. It will honor the contract (described in “Interaction of the Garbage

Collector with applications” on page 23), which is within the JVM specification.

Frequently asked questions about the Garbage Collector

What are the default heap sizes?

See “Heap size” on page 9.

If I don’t specify -Xmx and -Xms, what values will Java use?

See Appendix H, “Default settings for the JVM,” on page 495.

What are default values for the native stack (-Xss) and Java stack (-Xoss)?

The Native stack size is machine-dependent, because it is based on the

platform’s C stack usage. The Java stack size is 400*1024

What is the difference between the GC policies optavgpause and optthruput?

optthruput disables concurrent mark. If you do not have pause time problems

(indicated by erratic application response times), you should get the best

throughput with this option.

 optavgpause enables concurrent mark. If you have problems with erratic

application response times in garbage collection, you can alleviate them at the

cost of some throughput when running with this option.

What is the default GC mode (optavgpause or optthruput)?

optthruput - that is, concurrent marking is off.

How many GC helper threads are spawned? What is their work?

A platform with n processors will have n-1 helper threads. These threads work

along with the main GC thread during:

v Parallel mark phase

v Parallel bitwise sweep phase

You can control the number of GC helper threads with the -Xgcthreads option.

Passing the -Xgcthreads1 option to Java results in no helper threads at all.

how to coexist with the Garbage Collector

Chapter 2. Understanding the Garbage Collector 27

You gain little by setting -Xgcthreads to more than n-1 other than possibly

alleviating mark-stack overflows, if you suffer from them.

Is incremental compaction enabled by default?

Yes. But incremental compaction works only if the size of the heap is at least

128 MB.

What is double allocation failure?

Double allocation failure refers to the condition in which the GC believes that

it has freed enough heap storage to satisfy the current allocation request, but

still the allocation request fails. This is clearly an error condition, and it results

in the JVM closing down with a ″panic″ error message.

What are pinned and dosed objects?

Pinned and dosed objects are the immovable objects on the Java heap. GC does

not move these objects during compaction. These are the major cause of heap

fragmentation.

 All objects that are referenced from JNI are pinned. All objects on the heap that

are referenced from the thread stacks are dosed.

How can I prevent Java heap fragmentation?

Note that the following suggestions might not help avoid fragmentation in all

cases.

v Start with a small heap. Set -Xms far lower than -Xmx. It might be

appropriate to allow -Xms to default, because the default is a low value.

v Increase the maximum heap size, -Xmx.

v If the application uses JNI, make sure JNI references are properly cleared. All

objects being referenced by JNI are pinned and not moved during

compaction, contributing significantly to heap fragmentation.

Does running with -Xpartialcompactgc avoid heap fragmentation?

This option can be useful when used with incremental compaction and will

reduce fragmentation. However, it is no more effective than regular compaction

for pinned and dosed objects.

What is Mark Stack Overflow? Why is MSO bad for performance?

Mark stacks are used for tracing all object reference chains from the roots. Each

such reference that is found is pushed onto the mark stack so that it can be

traced later. Mark stacks are of fixed size, so they can overflow. This situation

is called Mark Stack Overflow (MSO). The algorithms to handle this situation

are very expensive in processing terms, and so MSO is a big hit on GC

performance.

How can I prevent Mark Stack Overflow?

There is nothing an application can do to avoid MSO, except to reduce the

number of objects it allocates. The following suggestions are not guaranteed to

avoid MSO:

v Increase the number of GC helper threads using -Xgcthreads command-line

option

v Decrease the size of the Java heap using the -Xmx setting.

v Use a small initial value for the heap or use the default.

When and why does the Java heap expand?

The JVM starts with a small default Java heap, and it expands the heap based

on an application’s allocation requests until it reaches the value specified by

-Xmx. Expansion occurs after GC if GC is unable to free enough heap storage

for an allocation request, or if the JVM determines that expanding the heap is

required for better performance.

how to coexist with the Garbage Collector

28 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

When does the Java heap shrink?

Heap shrinkage occurs when GC determines that there is a lot of free heap

storage, and releasing some heap memory is beneficial for system performance.

Heap shrinkage occurs after GC, but when all the threads are still suspended.

Does the IBM GC guarantee that it will clear all the unreachable objects?

The IBM GC guarantees only that all the objects that were not reachable at the

beginning of the mark phase will be collected. While running concurrently, our

GC guarantees only that all the objects that were unreachable when concurrent

mark began will be collected. Some objects might become unreachable during

concurrent mark, but they are not guaranteed to be collected.

I am getting an OutOfMemoryError. Does this mean that the Java heap is

exhausted?

Not necessarily. Sometimes the Java heap has free space but an

OutOfMemoryError can occur. The error could occur because of

v Shortage of memory for other operations of the JVM.

v Some other memory allocation failing. The JVM throws an OutOfMemoryError

in such situations.

v Excessive memory allocation in other parts of the application, unrelated to

the JVM, if the JVM is just a part of the process, rather than the entire

process (JVM through JNI, for instance).

How can I confirm if the OutOfMemoryError was caused by the Java heap

becoming exhausted?

Run with the -verbosegc option. VerboseGC will show messages such as

Insufficient heap space to satisfy allocation request when the Java heap

is exhausted

When I see an OutOfMemoryError, does that mean that the Java program will

exit?

Not always. Java programs can catch the exception thrown when OutOfMemory

occurs, and (possibly after freeing up some of the allocated objects) continue to

run.

What does verifyHeap do? What can we learn about the problem or crash from

verifyHeap?

The verifyHeap option can verify the integrity of the heap and free list during

the phase of GC when all application threads are locked. It can be invoked

with the -Dibm.dg.trc.print=st_verify_heap command-line option. It verifies

the heap before the sweep phase and at the end of GC. verifyHeap walks the

heap from the bottom to the top, until any of the following conditions occurs,

or it reaches the end of the heap:

v The length of a chunk of memory is zero or too big to fit onto the heap.

v If the alloc bit is set (live object) and its method table or class block is NULL

or invalid.

v If verifyHeap shows a problem before GC, that usually means that the

problem was created by allocation routines or something outside the GC. If

verifyHeap after GC shows a problem, while the verifyHeap before that GC

has not shown any problems, it is likely that the problem has been created

by GC.

How do I figure out if the Java heap is fragmented?

When you see (from verboseGC) that the Java heap has a lot of free space, but

the allocation request still fails, it usually points to a fragmented heap. To

confirm this, run with -Dibm.dg.trc.print=st_verify. This option gives the

how to coexist with the Garbage Collector

Chapter 2. Understanding the Garbage Collector 29

number of pinned and dosed objects, a high number of which indicates a

fragmented heap. Running with -Dibm.dg.trc.print=st_compact_verbose lists

the pinned and dosed objects.

In verboseGC output, sometimes I see more than one GC for one allocation

failure. Why?

You see this when GC decides to clear all soft references. gc0() is called once to

do the regular garbage collection, and might run again one or two times to

clear soft references. So you might see more than one GC cycle for one

allocation failure.

how to coexist with the Garbage Collector

30 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

Chapter 3. Understanding the class loader

The Java 2 JVM introduced a new class loading mechanism with a

parent-delegation model. The parent-delegation architecture to class loading was

implemented to aid security and to help programmers to write custom class

loaders.

The class loader loads, verifies, prepares and resolves, and initializes a class from a

JVM class file.

v Loading involves obtaining the byte array representing the Java class file.

v Verification of a JVM class file is the process of checking that the class file is

structurally well-formed and then inspecting the class file contents to ensure that

the code does not attempt to perform operations that are not permitted.

v Preparation involves the allocation and default initialization of storage space for

static class fields. Preparation also creates method tables, which speed up virtual

method calls, and object templates, which speed up object creation.

v Initialization involves the execution of the class’s class initialization method, if

defined, at which time static class fields are initialized to their user-defined

initial values (if specified).

Symbolic references within a JVM class file, such as to classes or object fields that

reference a field’s value, are resolved at runtime to direct references only. This

resolution might occur either:

v After preparation but before initialization

v Or, more typically, at some point following initialization, but before the first

reference to that symbol.

The delay is generally to increase execution speed. Not all symbols in a class file

are referenced during execution. So, by delaying resolution, fewer symbols might

have to be resolved, giving you less runtime overhead. Additionally, the cost of

resolution is gradually reduced over the total execution time.

Eager and lazy loading

The JVM must be able to load JVM class files. The JVM class loader loads

referenced JVM classes that have not already been linked to the runtime system.

Classes are loaded implicitly because:

v The initial class file - the class file containing the public static void main(String

args[]) method - must be loaded at startup.

v Depending on the class policy adopted by the JVM, classes referenced by this

initial class can be loaded in either a lazy or eager manner.

An eager class loader loads all the classes comprising the application code at

startup. Lazy class loaders wait until the first active use of a class before loading

and linking its class file.

The first active use of a class occurs when one of the following occurs:

v An instance of that class is created

v An instance of one of its subclasses is initialized

v One of its static fields is initialized

© Copyright IBM Corp. 2003, 2006 31

Certain classes, such as ClassNotFoundException, are loaded implicitly by the

JVM to support execution. You may also load classes explicitly using the

java.lang.Class.forName() method in the Java API, or through the creation of a

user class loader.

The IBM JVM’s class resolution is lazy by default. Specifying the

-Dibm.cl.eagerresolution command-line option turns on eager class resolution.

Lazy class resolution improves startup time of JVMs. For example, the number of

classes loaded in a basic Java test reduces from approximately 1500 to

approximately 300 with lazy loading.

The parent-delegation model

The delegation model requires that any request for a class loader to load a given

class is first delegated to its parent class loader before the requested class loader

tries to load the class itself. The parent class loader, in turn, goes through the same

process of asking its parent. This chain of delegation continues through to the

bootstrap class loader (also known as the primordial or system class loader). If a

class loader’s parent can load a given class, it returns that class. Otherwise, the

class loader attempts to load the class itself.

The JVM has three class loaders, each possessing a different scope from which it

can load classes. As you descend the hierarchy, the scope of available class

repositories widens, and normally the repositories are less trusted:

Bootstrap

|

Extensions

|

Application

At the top of the hierarchy is the bootstrap class loader. This class loader is

responsible for loading only the classes that are from the core Java API. These are

the most trusted classes and are used to bootstrap the JVM.

The extensions class loader can load classes that are standard extensions packages

in the extensions directory.

The application class loader can load classes from the local file system, and will

load files from the CLASSPATH. The application class loader is the parent of any

custom class loader or hierarchy of custom class loaders.

Because class loading is always delegated first to the parent of the class loading

hierarchy, the most trusted repository (the core API) is checked first, followed by

the standard extensions, then the local files that are on the class path. Finally,

classes that are located in any repository that a custom class loader can access, are

accessible. This system prevents code from less-trusted sources from replacing

trusted core API classes by assuming the same name as part of the core API.

Name spaces and the runtime package

Loaded classes are identified by both the class name and the class loader that

loaded it. This separates loaded classes into name spaces that the class loader

identifies.

A name space is a set of class names that are loaded by a specific class loader.

When an entry for a class has been added into a name space, it is impossible to

class loader - the parent-delegation model

32 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

load another class of the same name into that name space. Multiple copies of any

given class can be loaded because a name space is created for each class loader.

Name spaces cause classes to be segregated by class loader, thereby preventing

less-trusted code loaded from the application or custom class loaders from

interacting directly with more trusted classes. For example, the core API is loaded

by the bootstrap class loader, unless a mechanism is specifically provided to allow

them to interact. This prevents possibly malicious code from having guaranteed

access to all the other classes.

It is possible to grant special access privileges between classes that are in the same

package by the use of package or protected access. This gives access rights

between classes of the same package, but only if they were loaded by the same

class loader. This prevents the case where code from an untrusted source tries to

insert a class into a trusted package. As discussed above, the delegation model

prevents the possibility of replacing a trusted class with a class of the same name

from an untrusted source. The use of name spaces prevents the possibility of using

the special access privileges that are given to classes of the same package to insert

code into a trusted package.

Why write a custom class loader?

The three main reasons for wanting to create a custom class loader are:

v To allow class loading from alternative repositories.

This is the most common case, in which an application developer might want to

load classes from other locations, for example, over a network connection.

v To partition user code.

This case is less frequently used by application developers, but widely used in

servlet engines.

v To allow the unloading of classes.

This case is useful if the application creates large numbers of classes that are

used for only a finite period. Because a class loader maintains a cache of the

classes that it has loaded, these classes cannot be unloaded until the class loader

itself has been dereferenced. For this reason, system and extension classes are

never unloaded, but application classes can be unloaded when their classloader

is.

How to write a custom class loader

Under the Java 1 class loading system, it was a requirement that any custom class

loader must subclass java.lang.ClassLoader and override the abstract loadClass()

method that was in the ClassLoader. The loadClass() method had to meet several

requirements so that it could work effectively with the JVM’s class loading

mechanism, such as:

v Checking whether the class has previously been loaded

v Checking whether the class had been loaded by the system class loader

v Loading the class

v Defining the class

v Resolving the class

v Returning the class to the caller

The Java 2 class loading system has simplified the process for creating custom class

loaders. The ClassLoader class was given a new constructor that takes the parent

class loader - name spaces and the runtime package

Chapter 3. Understanding the class loader 33

class loader as a parameter. This parent class loader can be either the application

class loader, or another user-defined class loader. This allows any user-defined

class loader to be contained easily into the delegation model.

Under the delegation model, the loadClass() method is no longer abstract, and as

such does not need to be overridden. The loadClass() method handles the

delegation class loader mechanism and should not be overridden, although it is

possible to do so, so that Java 1 style ClassLoaders can run on a Java 2 JVM.

Because the delegation code is handled in loadClass(), in addition to the other

requirements that were made of Java 1 custom class loaders, custom class loaders

should override only the new findClass() method, in which the code to access the

new class repository should be placed. The findClass() method is responsible only

for loading the class bytes and returning a defined class. The method defineClass()

can be used to convert class bytes into a Java class:

 class NetworkClassLoader extends ClassLoader {

 String host;

 int port;

 public Class findClass(String name) {

 byte[] b = loadClassData(name);

 return defineClass(name, b, 0, b.length);

 }

 private byte[] loadClassData(String name) {

 // load the class data from the connection

 }

 }

The Persistent Reusable JVM (z/OS only)

IBM has developed the new Persistent Reusable Java Virtual Machine technology,

which is available on z/OS. The Persistent Reusable JVM allows the use of

multiple JVMs that share classes, and for each of these to be reset, thereby

distributing the cost of starting the JVM over multiple runs.

The Persistent Reusable JVM consists of a master JVM and several worker JVMs,

that together make a JVMSet. The master JVM controls the JVMSet by providing a

system heap that contains the core API, as loaded by the bootstrap class loader,

and shareable classes. This system heap is available to all worker JVMs.

The Persistent Reusable JVM introduces two new class loaders: the Trusted

Middleware Class loader (TMC) and the Shareable Application Class loader (SAC).

Classes that are loaded by the TMC can operate without restrictions and persist

over a JVM reset. Classes loaded by the SAC are not trusted and therefore have a

set of restrictions placed on them that prevents the JVM from becoming

unresettable. The class repositories that these class loaders use are specified by the

launcher at startup. The class loader hierarchy therefore becomes:

Bootstrap ClassLoader

|

Extensions ClassLoader

|

Trusted Middleware ClassLoader (TMC)

|

Shareable Application ClassLoader (SAC)

|

Application ClassLoader

how to write a custom class loader

34 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

Because of the parent-delegation model, classes are loaded by the correct loader,

provided that they are placing into the correct class repository as defined by the

command-line options:

v -Dibm.jvm.trusted.middleware.class.path=<path> and

v -Dibm.jvm.shareable.application.class.path=<path>

WebSphere 5.0 ClassLoader overview

There are three major classes of ClassLoaders in the WebSphere system:

System classloader

Provided by the JVM

WebSphere Runtime classloaders

Used to load the WebSphere runtime and some supporting libraries for

application use

Application classloaders

Used to load the application artifacts (Web Modules, EJB modules, Utility jars)

Each class loader is a child of the class loader above it. The application class

loaders are children of the WebSphere Runtime class loader, which is a child of the

System class loader.

For more information about application class loader policies and modes, refer to

the WebSphere Software Information Center or refer to the Information Center that

is part of your WebSphere installation.

class loader - the Persistent Reusable JVM

Chapter 3. Understanding the class loader 35

http://publib.boulder.ibm.com/infocenter/wasinfo/index.jsp?topic=/com.ibm.websphere.nd.doc/info/ae/ae/trun_classload.html

class loader - the Persistent Reusable JVM

36 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

Chapter 4. Understanding the JIT

The JIT is the just-in-time compiler. It is not actually part of the Java Virtual

Machine (JVM) but is, nonetheless, an essential component of Java. This chapter

summarizes the relationship between the JVM and the JIT, and gives a short

description of JIT operation.

JIT overview

Java is an interpreted language, so it has a WORA (Write Once Run Anywhere)

capability. The Java compiler outputs strings of bytecodes. The JVM turns those

bytecodes into something that will execute on the host platform. A JVM that is

interpreting bytecodes cannot match the performance of a native application that

consists of machine code that an appropriate native compiler has generated.

The JIT is therefore important. In theory, the JIT comes into use whenever a Java

method is called, and it compiles the bytecodes of that method into native machine

code, thereby compiling it “just in time” to execute. After a method is compiled,

the JVM calls that method-compiled code directly instead of trying to interpret it.

However, when the JVM starts, thousands of methods are executed. A significant

overhead exists on all of them because of the time it takes the JIT to run and

compile them. So, if you run without a JIT, the JVM starts up quickly but runs

slowly. If you run with a JIT, the JVM starts up slowly, then runs quickly. At some

point, you might find that it takes longer to start the JVM than to run an

application.

MMI overview

The MMI, the JVM, and the JIT are tightly coupled. The MMI acts as a wrapper

around all Java methods. Among other things, the wrapper determines where the

method is, if it has been compiled, and maintains a JIT threshold count. The MMI

interprets a method until its threshold count is reached. So high-use methods are

compiled quite soon after the JVM has started; low-use methods are compiled

much later or perhaps not at all. The effect of the MMI is therefore to spread the

compilation of methods out over the life of the JVM. In this way, the JVM starts up

quite quickly, but you do not lose performance benefit because methods become

compiled when they reach the threshold. The threshold is carefully selected to get

the maximum balance between startup times and runtime performance. Its value

varies between 500 and 1000 according to the platform on which the JVM is

running.

However, invoking a normal ″C-loop″ interpreter for those first 500+ times that a

method is called is still too slow. The MMI uses a hand-crafted assembly code

interpreter, which uses various techniques to increase performance.

It is possible to disable the MMI interpreter and go back to the traditional C-l, but

this is not a runtime option. The JVM has to be recompiled to do this.

Finally, the MMI uses the native stack, where possible, instead of the Java stack, to

save Java stack frames. The JIT is continually evolving. As optimization techniques

are implemented, they open new possibilities of optimizing that are based on the

code from the previous cycle.

© Copyright IBM Corp. 2003, 2006 37

Runtime modes

Three different ways of running the IBM JVM are available:

1. Default. MMI and JIT both active

2. MMI off, JIT on

3. MMI off, JIT off

In case 2, the JVM is a pure ’JIT’d’ system. All methods are compiled before being

run for the first time.

In case 3, the JVM is a pure interpretive system. No code is compiled. Note that

turning the JIT off automatically turns the MMI off also.

The MMI is an integral part of the JVM. The JVM, the MMI, and the JIT are tightly

coupled in the IBM JVM. The JIT knows about JVM data structures and can insert

data into the JVM.

How the JIT optimizes code

When the JIT is called, it needs to understand the semantics and syntax of the

bytecodes before it can compile the code correctly. This chapter does not contain

much detail, but provides a summary of the phases of JIT analysis.

The compilation consists of four stages:

1. Bytecode optimization

2. Quad optimization

3. DAG optimization

4. Native code generation

The first three phases are mostly cross-platform code.

Bytecode optimization

This is a relatively simple operation where a set of known optimizations are

applied to the bytecodes. Optimizations include:

v Flow analysis

v Static method inlining

v Virtual method inlining

v Idiomatic translation

v Field privatization

v Stack and register analysis

Flow analysis might be applied more than once to take account of preceding

optimizations. After optimization, the bytecodes are translated into ’quads’, which

can be regarded as a pseudo machine code. Optimization can now be applied in a

way that is similar to the way that conventional native compilers use.

Quad optimization

Quad optimization includes:

v Control flow optimization

v Data flow optimization

v Escape analysis

v Loop optimization

runtime modes

38 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

v Data flow analysis

Quad optimization typically requires repeated applications of these techniques.

DAG optimization

A DAG (Direct Acyclic Graph) of the quads is generated and subjected to:

v Induction analysis

v Loop versioning

v Loop striding

v Induction removal

v Dead storage analysis

Native code generation

Native code generation proceeds differently, depending on platform architecture,

but is broadly split between Intel and Power-PC architectures. The compiled code

is placed into the JVM process space and the MMI wrapper is changed to point to

the compiled code. At any given time therefore, the JVM process consists of the

executables and a set of JIT-compiled code that is dynamically linked to the MMI

method wrappers that are in the JVM.

So, if you get a crash or a hang in code that is in the JVM process space yet

outside the range of compiled code in that process, you have a problem with JIT’d

code.

It is possible for the JIT, by placing hooks into the compiled code, to revisit

compiled methods and to recompile them with reference to operational data.

JIT frequently-asked questions

Can I disable the JIT?

Yes. Set the appropriate command line parameter (see Appendix G,

“Command-line parameters,” on page 487) or environment variable (see

Appendix E, “Environment variables,” on page 407). Alternatively, delete or

rename the JIT DLL, which is located with the JVM executables and called

jitc.dll

Can I use another vendor’s JIT?

No

Can the JIT ’decompile’ methods?

That is, can compiled code be canceled? No.

Can I control the JIT compilation?

Yes. See Chapter 30, “JIT diagnostics,” on page 295. Advanced diagnostics are

available to IBM engineers.

Can I use any version of the JIT with the JVM?

No. The two are tightly coupled. You must use the version of the JIT that

comes with the JVM package that you use.

Can I dynamically control the JIT?

No. You can set the JIT initial conditions only at JVM start-up time. The JIT can

be started up only at the same time as the JVM.

Do special service arrangements exist for the JIT?

At this time, no. Report to Java service problems that you think are JIT-related.

how the JIT optimizes code

Chapter 4. Understanding the JIT 39

JIT frequently-asked questions

40 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

Chapter 5. Understanding the ORB

This chapter describes the Object Request Broker (ORB). The topics are:

v “CORBA”

v “RMI and RMI-IIOP”

v “Java IDL or RMI-IIOP?” on page 42

v “RMI-IIOP limitations” on page 42

v “Further reading” on page 42

v “Examples” on page 42

v “Using the ORB” on page 48

v “How the ORB works” on page 51

v “Features of the ORB” on page 57

v “IBM pluggable ORB” on page 63

CORBA

Common Object Request Broker Architecture (CORBA) is an open,

vendor-independent specification for distributed computing. It is published by the

Object Management Group (OMG). Using the Internet Inter-ORB Protocol (IIOP), it

allows objects on different architectures, operating systems, and networks to

interoperate. This interoperability is obtained by the use of the Interface Definition

Language (IDL), which specifies the syntax that is used to invoke operations on

objects. IDL is programming-language independent.

Developers define the hierarchy, attributes, and operations of objects in IDL, then

use an IDL compiler (such as IDLJ for Java) to map the definition onto an

implementation in a programming language. The implementation of an object is

encapsulated. Clients of the object can see only its external IDL interface.

OMG have produced specifications for mappings from IDL to many common

programming languages, including C, C++, and Java. Central to the CORBA

specification is the Object Request Broker (ORB). The ORB routes requests from

client to remote object, and responses to their destinations. Java contains an

implementation of the ORB that communicates by using IIOP.

RMI and RMI-IIOP

RMI is Java’s traditional form of remote communication. Basically, it is an

object-oriented version of Remote Procedure Call (RPC). It uses the

nonstandardized Java Remote Method Protocol (JRMP) to communicate between

Java objects. This provides an easy way to distribute objects, but does not allow for

interoperability between programming languages.

RMI-IIOP is an extension of traditional Java RMI that uses the IIOP protocol. This

protocol allows RMI objects to communicate with CORBA objects. Java programs

can therefore interoperate transparently with objects that are written in other

programming languages, provided that those objects are CORBA-compliant.

Objects can still be exported to traditional RMI (JRMP) however, and the two

protocols can communicate.

© Copyright IBM Corp. 2003, 2006 41

A terminology difference exists between the two protocols. In RMI (JRMP), the

server objects are called skeletons; in RMI-IIOP, they are called ties. Client objects

are called stubs in both protocols.

Java IDL or RMI-IIOP?

RMI-IIOP is the method that is chosen by Java programmers who want to use the

RMI interfaces, but use IIOP as the transport. RMI-IIOP requires that all remote

interfaces are defined as Java RMI interfaces. Java IDL is an alternative solution,

intended for CORBA programmers who want to program in Java to implement

objects that are defined in IDL. The general rule that is suggested by Sun is to use

Java IDL when you are using Java to access existing CORBA resources, and

RMI-IIOP to export RMI resources to CORBA.

RMI-IIOP limitations

In a Java-only application, RMI (JRMP) is more lightweight and efficient than

RMI-IIOP is, but less scalable. Because it has to conform to the CORBA

specification for interoperability, RMI-IIOP is a more complex protocol. The

developing of an RMI-IIOP application is much more similar to CORBA than it is

to RMI (JRMP).

You must take care if you try to deploy an existing CORBA application in a Java

RMI-IIOP environment. An RMI-IIOP client cannot necessarily access every

existing CORBA object. The semantics of CORBA objects that are defined in IDL

are a superset of those of RMI-IIOP objects. That is why the IDL of an existing

CORBA object cannot always be mapped into an RMI-IIOP Java interface. It is only

when the semantics of a specific CORBA object are designed to relate to those of

RMI-IIOP that an RMI-IIOP client can call a CORBA object.

Further reading

Object Management Group website: http://www.omg.org contains CORBA

specifications that are available to download.

OMG - CORBA Basics: http://www.omg.org/gettingstarted/corbafaq.htm.

Remember that some features discussed here are not implemented by all ORBs.

You can find the RMI-IIOP programmer’s guide in your SDK installation directory

under docs/rmi-iiop/rmi_iiop_pg.html. Example programs are provided in

demo/rmi-iiop.

Examples

Here, CORBA, RMI (JRMP), and RMI-IIOP approaches are going to be used to

present three client-server hello-world applications. All the applications exploit the

RMI-IIOP IBM ORB.

Interfaces

These are the interfaces that are to be implemented:

v CORBA IDL Interface (Foo.idl):

interface Foo { string message(); };

v JAVA RMI Interface (Foo.java):

ORB - RMI and RMI-IIOP

42 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

http://www.omg.org
http://www.omg.org/gettingstarted/corbafaq.htm
docs/rmi-iiop/rmi_iiop_pg.html
demo/rmi-iiop

public interface Foo extends java.rmi.Remote

{ public String message() throws java.rmi.RemoteException; }

These two interfaces define the characteristics of the remote object. The remote

object implements a method, named message, that does not need any parameter,

and it returns a string. For further information about IDL and its mapping to Java

see, the OMG specifications (www.omg.org).

Remote object implementation (or servant)

The possible RMI(JRMP) and RMI-IIOP implementations (FooImpl.java) of this

object could be:

 public class FooImpl extends javax.rmi.PortableRemoteObject implements Foo {

 public FooImpl() throws java.rmi.RemoteException { super(); }

 public String message() { return "Hello World!"; }

}

In the early versions of Java RMI (JRMP), the servant class had to extend the

java.rmi.server.UnicatRemoteObject class. Now, you can use the class

PortableRemoteObject for both RMI over JRMP and IIOP, thereby making the

development of the remote object virtually independent of the protocol that is

used. Also, the object implementation does not need to extend

PortableRemoteObject, especially if it already extends another class (single-class

inheritance). However, in this case, the remote object instance must be exported in

the server implementation (see below). By exporting a remote object, you make

that object available to accept incoming remote method requests. When you extend

javax.rmi.PortableRemoteObject, your class is exported automatically on creation.

The CORBA or Java IDL implementation of the remote object (servant) is:

public class FooImpl extends _FooPOA {

 public String message() { return "Hello World"; }

}

This implementation conforms to the Inheritance model in which the servant

extends directly the IDL-generated skeleton FooPOA. You might want to use the

Tie or Delegate model instead of the typical Inheritance model if your

implementation must inherit from some other implementation. In the Tie model,

the servant implements the IDL-generated operations interface (such as

FooOperations). However, the Tie model introduces a level of indirection; one extra

method call occurs when you invoke a method. The server code describes the extra

work that is required in the Tie model, so you can decide whether to use the Tie or

the Delegate model. In RMI-IIOP however, you can use only the Tie or Delegate

model.

Stub and ties generation

The RMI-IIOP code provides the tools to generate stubs and ties for whatever

implementation exists of the client and server. Table 1 shows what command

should be run to get stubs and ties (or skeletons) for the three techniques.

 Table 1. Commands for stubs and ties (skeletons)

CORBA RMI(JRMP) RMI-IIOP

idlj Foo.idl rmic FooImpl rmic -iiop Foo

The compilation generates the files that are shown in Table 2 on page 44. (Use the

-keep option with rmic if you want to keep the intermediate .java files).

ORB - examples

Chapter 5. Understanding the ORB 43

Table 2. Stub and tie files

CORBA RMI(JRMP) RMI-IIOP

Foo.java FooImpl_Skel.class _FooImpl_Tie.class

FooHolder.java FooImpl_Stub.class _Foo_Stub.class

FooHelper.java Foo.class (Foo.java present) Foo.class (Foo.java present)

FooOperations.java FooImpl.class (only

compiled)

FooImpl.class (only

compiled)

_FooStub.java

FooPOA.java (-fserver, -fall,

-fserverTie, -fallTie)

FooPOATie.java (-fserverTie,

-fallTie)

_FooImplBase.java

(-oldImplBase)

In the J2SE v.1.4 ORB, the default object adapter (see the OMG CORBA

specification v.2.3) is the portable object adapter (POA). Therefore, the default

skeletons and ties that the IDL compiler generates can be used by a server that is

using the POA model and interfaces. By using the idlj -oldImplBase option, you

can still generate older versions of the server-side skeletons that are compatible

with servers that are written in J2SE 1.3 and earlier.

Server code

The server application has to create an instance of the remote object and publish it

in a naming service. The Java Naming and Directory Interface (JNDI) defines a set

of standard interfaces that are used to query a naming service or to bind an object

to that service.

The implementation of the naming service can be a CosNaming Service in the

CORBA environment or the RMI registry for a RMI (JRMP) application. Therefore,

you can use JNDI in CORBA and in RMI cases, thereby making the server

implementation independent of the naming service that is used. For example, you

could use the following code to obtain a naming service and bind an object

reference in it:

Context ctx = new InitialContext(...); // get hold of the initial context

ctx.bind("foo", fooReference); // bind the reference to the name "foo"

Object obj = ctx.lookup("foo"); // obtain the reference

However, to tell the application which naming implementation is in use, you must

set one of the following Java properties:

v java.naming.factory.initial: Defined also as

javax.naming.Context.INITIAL_CONTEXT_FACTORY, this property specifies the

class name of the initial context factory for the naming service provider. For RMI

registry, the class name is com.sun.jndi.rmi.registry.RegistryContextFactory. For

the CosNaming Service, the class name is com.sun.jndi.cosnaming.CNCtxFactory.

v java.naming.provider.url: This property configures the root naming context, the

ORB, or both. It is used when the naming service is stored in a different host,

and it can take several URI schemes:

– rmi

– corbaname

– corbaloc

ORB - examples

44 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

– IOR

– iiop

– iiopname

For example:

rmi://[<host>[:<port>]][/<initial_context>] for RMI registry

iiop://[<host>[:<port>]][/<cosnaming_name>] for COSNaming

To get the previous properties in the environment, you could code:

Hashtable env = new Hashtable();

Env.put(Context.INITIAL_CONTEXT_FACTORY,

 "com.sun.jndi.cosnaming.CNCtxFactory");

and pass the hashtable as an argument to the constructor of InitialContext.

For example, with RMI(JRMP), you do not need to do much other than create an

instance of the servant and follow the previous steps to bind this reference in the

naming service.

With CORBA (Java IDL), however, you must do some extra work because you

have to create an ORB. The ORB has to make the servant reference available for

remote calls. This mechanism is usually controlled by the object adapter of the

ORB.

public class Server {

 public static void main (String args []) {

 try {

 ORB orb = ORB.init(args, null);

 // Get reference to the root poa & activate the POAManager

 POA poa = (POA)orb.resolve_initial_references("RootPOA");

 poa.the_POAManager().activate();

 // Create a servant and register with the ORB

 FooImpl foo = new FooImpl();

 foo.setORB(orb);

 // TIE model ONLY

 // create a tie, with servant being the delegate and

 // obtain the reference ref for the tie

 FooPOATie tie = new FooPOATie(foo, poa);

 Foo ref = tie._this(orb);

 // Inheritance model ONLY

 // get object reference from the servant

 org.omg.CORBA.Object ref = poa.servant_to_reference(foo);

 Foo ref = FooHelper.narrow(ref);

 // bind the object reference ref to the naming service using JNDI

 (see previous code)

 orb.run();

 }

 catch(Exception e) {}

 }

}

For RMI-IIOP:

public class Server {

 public static void main (String args []) {

 try {

 ORB orb = ORB.init(args, null);

 // Get reference to the root poa & activate the POAManager

ORB - examples

Chapter 5. Understanding the ORB 45

POA poa = (POA)orb.resolve_initial_references("RootPOA");

 poa.the_POAManager().activate();

 // Create servant and its tie

 FooImpl foo = new FooImpl();

 _FooImpl_Tie tie = (_FooImpl_Tie)Util.getTie(foo);

 // get an usable object reference

 org.omg.CORBA.Object ref = poa.servant_to_reference((Servant)tie);

 // bind the object reference ref to the naming service using JNDI

 (see previous code)

 }

 catch(Exception e) {}

 }

}

To use the previous POA server code, you must use the -iiop -poa options together

to enable rmic to generate the tie. If you do not use the POA, the RMI(IIOP) server

code can be reduced to instantiating the servant (FooImpl foo = new FooImpl())

and binding it to a naming service as is usually done in the RMI(JRMP)

environment. In this case, you need use only the -iiop option to enable rmic to

generate the RMI-IIOP tie. If you omit -iiop, the RMI(JRMP) skeleton is generated.

You must remember also one more important fact when you decide between the

JRMP and IIOP protocols. When you export an RMI-IIOP object on your server,

you do not necessarily have to choose between JRMP and IIOP. If you need a

single server object to support JRMP and IIOP clients, you can export your

RMI-IIOP object to JRMP and to IIOP simultaneously. In RMI-IIOP terminology,

this action is called dual export.

RMI Client example:

public class FooClient {

 public static void main(String [] args) {

 try{

 Foo fooref

 //Look-up the naming service using JNDI and get the reference

 // Invoke method

 System.out.println(fooRef.message());

 }

 catch(Exception e) {}

 }

}

CORBA Client example:

public class FooClient {

 public static void main (String [] args) {

 try {

 ORB orb = ORB.init(args, null);

 // Look-up the naming service using JNDI

 // Narrowing the reference to the right class

 Foo fooRef = FooHelper.narrow(o);

 // Method Invocation

 System.out.println(fooRef.message());

 }

 catch(Exception e) {}

 }

}

RMI-IIOP Client example:

ORB - examples

46 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

public class FooClient {

 public static void main (String [] args) {

 try{

 ORB orb = ORB.init(args, null);

 // Retrieving reference from naming service

 // Narrowing the reference to the correct class

 Foo fooRef = (Foo)PortableRemoteObject.narrow(o, Foo.class);

 // Method Invocation

 System.out.println(fooRef.message());

 }

 catch(Exception e) {}

 }

}

Summary of major differences between RMI (JRMP) and

RMI-IIOP

This section examines the major differences in development procedures between

RMI (JRMP) and RMI-IIOP. The points discussed here also represent work items

that are necessary when you convert RMI (JRMP) code to RMI-IIOP code.

Because the usual base class of RMI-IIOP servers is PortableRemoteObject, you

must change this import statement accordingly, in addition to the derivation of the

implementation class of the remote object. After completing the Java coding, you

must generate a tie for IIOP by using the rmic compiler with the -iiop option.

Next, run the CORBA CosNaming tnameserv as a name server instead of

rmiregistry.

For CORBA clients, you must also generate IDL from the RMI Java interface by

using the rmic compiler with the -idl option.

All the changes in the import statements for server development apply to client

development. In addition, you must also create a local object reference from the

registered object name. The lookup() method returns a java.lang.Object, and you

must then use the narrow() method of PortableRemoteObject to cast its type. You

generate stubs for IIOP using the rmic compiler with the -iiop option.

Summary of differences in server development

v Import statement:

import javax.rmi.PortableRemoteObject;

v Implementation class of a remote object:

public class FooImpl extends PortableRemoteObject implements Foo

v Name registration of a remote object:

NamingContext.rebind("Foo",ObjRef);

v Generate a tie for IIOP with rmic -iiop

v Run tnameserv as a name server

v Generate IDL with rmic -idl for CORBA clients

Summary of differences in client development

v Import statement:

import javax.rmi.PortableRemoteObject;

v Identify a remote object by name:

Object obj = ctx.lookup("Foo")

MyObject myobj = (MyObject)PortableRemoteObject.narrow(obj,MyObject.class);

ORB - examples

Chapter 5. Understanding the ORB 47

v Generate a stub for IIOP with rmic -iiop

Using the ORB

To use the ORB, you need to understand the properties that the ORB contains.

These properties change the behavior of the ORB as described in this section. All

property values are specified as strings.

v com.ibm.CORBA.AcceptTimeout: (range: 0 through 5000) (default: 0=infinite

timeout)

The maximum number of milliseconds for which the ServerSocket waits in a call

to accept(). If this property is not set, the default 0 is used. If it is not valid, 5000

is used.

v com.ibm.CORBA.AllowUserInterrupt:

Set this property to true so that you can call Thread.Interrupt() on a thread that

is currently involved in a remote method call and thereby interrupt that thread’s

wait for the call to return. Interrupting a call in this way causes a

RemoteException to be thrown, containing a CORBA.NO_RESPONSE runtime

exception with the RESPONSE_INTERRUPTED minor code.

If this property is not set, the default behavior is to ignore any

Thread.Interrupt() received while waiting for a call to complete.

v com.ibm.CORBA.ConnectTimeout: (range: 0 through 300) (default: 0=infinite

timeout)

The maximum number of seconds that the ORB waits when opening a

connection to another ORB. By default, no timeout is specified.

v com.ibm.CORBA.BootstrapHost:

The value of this property is a string. This string can be a host name or the IP

address (ex. 9.5.88.112). If this property is not set, the local host is retrieved by

calling one of the following methods:

– For applications: InetAddress.getLocalHost().getHostAddress()

– For applets: <applet>.getCodeBase().getHost(

The hostname is the name of the machine on which the initial server contact for

this client resides.

Note: This property is deprecated. It is replaced by -ORBInitRef and

-ORBDefaultInitRef.

v com.ibm.CORBA.BootstrapPort: (range: 0 through 2147483647=Java max int)

(default: 2809)

The port of the machine on which the initial server contact for this client is

listening.

Note: This property is deprecated. It is replaced by -ORBInitRef and

-ORBDefaultInitRef.

v com.ibm.CORBA.BufferSize: (range: 0 through 2147483647=Java max int)

(default: 2048)

The number of bytes of a GIOP message that is read from a socket on the first

attempt. A larger buffer size increases the probability of reading the whole

message in one attempt. Such an action might improve performance. The

minimum size used is 24 bytes.

v com.ibm.CORBA.SendingContextRunTimeSupported: (default: true)

ORB - examples

48 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

Set this property to false to disable the CodeBase SendingContext RunTime

service. This means that the ORB will not attach a SendingContextRunTime

service context to outgoing messages.

v com.ibm.CORBA.enableLocateRequest: (default: false)

If this property is set, the ORB sends a LocateRequest before the actual Request.

v com.ibm.CORBA.FragmentSize: (range: 0 through 2147483647=Java max int)

(default:1024)

Controls GIOP 1.2 fragmentation. The size specified is rounded down to the

nearest multiple of 8, with a minimum size of 64 bytes. You can disable message

fragmentation by setting the value to 0.

v com.ibm.CORBA.FragmentTimeout: (range: 0 through 600000 ms) (default:

300000)

The maximum length of time for which the ORB waits for second and

subsequent message fragments before timing out. Set this property to 0 if

timeout is not required.

v com.ibm.CORBA.GIOPAddressingDisposition: (range: 0, 1 or 2) (default: 0)

When a GIOP 1.2 Request/LocateRequest/Reply/LocateReply is created, the

addressing disposition is set depending on the value of this property:

– 0 = Object Key

– 1 = GIOP Profile

– 2 = full IOR

If this property is not set or is passed an invalid value, the default 0 is used.

v com.ibm.CORBA.InitialReferencesURL:

The format of the value of this property is a correctly-formed URL; for example,

″http://w3.mycorp.com/InitRefs.file. The actual file contains a name/value pair

like: NameService=<stringified_IOR>. If you specify this property, the ORB does

not attempt the bootstrap approach. Use this property if you do not have a

bootstrap server and want to have a file on the webserver that serves the

purpose.

Note: This property is deprecated.

v com.ibm.CORBA.ListenerPort: (range: 0 through 2147483647=Java max int)

(default: next available system assigned port number)

The port on which this server listens for incoming requests. If this property is

specified, the ORB starts to listen during ORB.init().

v com.ibm.CORBA.LocalHost:

The value of this property is a string. This string can be a host name or the IP

address (ex. 9.5.88.112). If this property is not set, retrieve the local host by

calling: InetAddress.getLocalHost().getHostAddress(). This property represents

the host name (or IP address) of the machine on which the ORB is running. The

local host name is used by the server-side ORB to place the host name of the

server into the IOR of a remote-able object.

v com.ibm.CORBA.LocateRequestTimeout: (range: 0 through 2147483647)

(default: 0=infinity)

Defines the number of seconds to wait before timing out on a LocateRequest

message.

v com.ibm.CORBA.MaxOpenConnections: (range: 0 through 255) (default: 240)

Determines the maximum number of in-use connections that are to be kept in

the connection cache table at any one time.

v com.ibm.CORBA.MinOpenConnections: (range: 0 through 255) (default: 100)

using the ORB

Chapter 5. Understanding the ORB 49

The ORB cleans up only connections that are not busy from the connection cache

table, if the size is of the table is higher than the MinOpenConnections.

v com.ibm.CORBA.NoLocalInterceptors: (default: false)

If this property is set to true, no local PortableInterceptors are driven. This

should improve performance if interceptors are not required when invoking a

co-located object.

v com.ibm.CORBA.ORBCharEncoding: (default: ISO8859_1)

Specifies the ORB’s native encoding set for character data.

v com.ibm.CORBA.ORBWCharDefault: (default: UCS2)

Indicates that wchar codeset UCS2 is to be used with other ORBs that do not

publish a wchar codeset.

v com.ibm.CORBA.RequestTimeout: (range: 0 through 2147483647) (default:

0=infinity)

Defines the number of seconds to wait before timing out on a Request message.

v com.ibm.CORBA.SendVersionIdentifier: (default: false)

Tells the ORB to send an initial dummy request before it starts to send any real

requests to a remote server. This action determines the partner version of the

remote server ORB from that ORB’s response.

v com.ibm.CORBA.ServerSocketQueueDepth: (range: 50 through 2147483647)

(default: 0)

The maximum queue length for incoming connection indications (a request to

connect). If a connection indication arrives when the queue is full, the

connection is refused. If the property is not set, the default 0 is used. If the

property is not valid, 50 is used.

v com.ibm.CORBA.ShortExceptionDetails: (default: false)

When a CORBA SystemException reply is created, the ORB, by default, includes

the Java stack trace of the exception in an associated ExceptionDetailMessage

service context. If you set this property to any value, the ORB includes a

toString of the Exception instead.

v com.ibm.tools.rmic.iiop.Debug: (default: false)

The rmic tool automatically creates import statements in the classes that it

generates. If set to true, this property causes rmic to output the mappings of

fully qualified class names to short names.

v com.ibm.tools.rmic.iiop.SkipImports: (default: false)

If this property is set to true, classes are generated with rmic using fully

qualified names only.

Table 3 shows the Sun properties that are now deprecated and the IBM properties

that have replaced them .

 Table 3. Deprecated Sun properties

Sun property IBM property

com.sun.CORBA.ORBServerHost com.ibm.CORBA.LocalHost

com.sun.CORBA.ORBServerPort com.ibm.CORBA.ListenerPort

org.omg.CORBA.ORBInitialHost com.ibm.CORBA.BootstrapHost

org.omg.CORBA.ORBInitialPort com.ibm.CORBA.BootstrapPort

org.omg.CORBA.ORBInitialServices com.ibm.CORBA.InitialReferencesURL

using the ORB

50 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

Note that none of these properties are OMG standard properties, despite their

names.

How the ORB works

This section describes a simple, typical RMI-IIOP session in which a client accesses

a remote object on a server by implementing an interface named Foo, and invokes

a simple method called message(). This method returns a Hello World string. (See

the examples that are given earlier in this chapter.)

Firstly, this section explains the client side, and describes what the ORB does under

the cover and transparently to the client. Then, the important role of the ORB in

the server-side is explained

The client side

The subjects discussed here are:

v “Stub creation”

v “ORB initialization” on page 52

v “Getting hold of the remote object” on page 52

v “Remote method invocation” on page 54

Stub creation

In a simple distributed application, the client needs to know (in almost all the

cases) what kind of object it is going to contact and which method of this object it

needs to invoke. Because the ORB is a general framework you must give it general

information about the method that you want to invoke.

For this reason, you implement a Java interface, Foo, which contains the signatures

of the methods that can be invoked in the remote object (see Figure 3).

The client relies on the existence of a server that contains an object that is that Foo

interface. You must, therefore, create a proxy. This proxy is an object, called stub

that acts as an interface between client application and ORB.

To create the stub, run the RMIC compiler on the Java interface: rmic -iiop Foo.

This action generates a file/object that is named _Foo_Stub.

IIOP
ORB ORB

RMI Java interface
(Foo.java)

Stub
_Foo_Stub.java

TIE
_Foo_Tie.javarmic-iiop

RMI
Java
client

RMI
Java

server

Figure 3. The ORB client side

using the ORB

Chapter 5. Understanding the ORB 51

The presence of a stub is not always mandatory for a client application to operate.

When you use particular CORBA features such as the DII (Dynamic Invocation

Interface), you do not require a stub because the proxy code is implemented

directly by the client application. You can also upload a stub from the server to

which you are trying to connect. See the CORBA specification for further details

ORB initialization

In a standalone Java application, the client has to create an instance of the ORB by

calling the static method init(...); for example:

ORB orb = ORB.init(args,props);

The parameters that are passed to the method are:

v A string array that contains pairs property-value

v A Java Properties object

For an applet, a similar method is used in which a Java Applet is passed instead of

the string array.

The first step of the ORB initialization is the processing of the ORB properties. The

properties are processed in the following sequence:

1. Check in the applet parameter or application string array

2. Check in the properties parameter (if the parameter exists)

3. Check in the system properties

4. Check in the orb.properties file that is in the <user-home> directory (if the file

exists)

5. Check in the orb.properties file that is in the <java-home>/lib directory (if the

file exists)

6. Fall back on a hardcoded default behavior

The two properties ORBClass and ORBSingletonClass determine which ORB class

has to be instantiated. The constructor for that ORB class is called. This allows you

to plug in a vendor ORB.

The ORB then loads its native libraries. Libraries are not mandatory, but they

improve performance.

After this, the ORB starts and initializes the TCP transport layer. If the ListenerPort

property was set, the ORB also opens a ServerSocket that is listening for incoming

requests, as a server-side ORB usually does. At the end of the init() method, the

ORB is fully functional and ready to support the client application.

Getting hold of the remote object

Several methods exist by which the client can get a reference for the remote object.

Usually, this reference is in a stringified form, called an IOR (Interoperable Object

Reference). For example:

IOR:000000000000001d524d493a5......

This reference contains all the information that is necessary to find the remote

object. It also contains some details of the settings of the server to which the object

belongs.

Generally, the client ORB is not supposed to understand the details of the IOR, but

use it as a sort of a key; that is, a reference to the remote object. However, when

client and server are both using an IBM ORB, extra features are coded in the IOR.

how the ORB works

52 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

For example, the IBM ORB adds into the IOR a proprietary field that is called

IBM_PARTNER_VERSION. This field looks like:

49424d0a 00000008 00000000 1400 0005

where:

v The three initial bytes (from left to right) are the ASCII code for IBM, followed

by 0x0A, which specifies that the following bytes handle the partner version.

v The next four bytes encode the length of the remaining data (in this case 8 bytes)

v The next four null bytes are for future use.

v The two bytes for the Partner Version Major field (0x1400) define the release of

the ORB that is being used (1.4.0 in this case).

v The Minor field (0x0005) distinguishes in the same release, service refreshes that

contain changes that have affected the backward compatibility.

Because the IOR is not visible to application-level ORB programmers and the client

ORB does not know where to look for it, another step has to be made. This step is

called the bootstrap process. Basically, the client application needs to tell the ORB

where the remote object reference is located.

A typical example of bootstrapping is if you use a naming service: the client

invokes the ORB method resolve_initial_references(″NameService″) that returns

(after narrowing) a reference to the name server in the form of a NamingContext

object. The ORB looks for a name server in the local machine at the port 2809 (as

default). If no name server exists , or the name server is listening in another port,

the ORB returns an exception. The client application can specify a different host,

port, or both by using the -ORBInitRef and -ORBInitPort options.

Using the NamingContext and the name with which the Remote Object has been

bound in the name service, the client can retrieve a reference to the remote object.

The reference to the remote object that the client holds is always an instance of a

Stub object; that is, your _Foo_Stub.

ORB.resolve_initial_references() causes a lot of activity under the covers. Mainly,

the ORB starts a remote communication with the name server. This communication

might include several requests and replies. Usually the client ORB first checks

whether a name server is listening, then asks for the specified remote reference. In

an application where performance is considered important, caching the remote

reference is a better alternative to repetitive use of the naming service. However,

because the naming service implementation is a transient type, the validity of the

cached reference is tied to the time in which the naming service is running.

The IBM ORB implements an Interoperable Naming Service as described in the

CORBA 2.3 specification. This service includes a new string format that can be

passed as a parameter to the ORB methods string_to_object() and

resolve_initial_references(). By invoking the previous two methods where the string

parameter has a corbaloc (or corbaname) format as, for example:

corbaloc:iiop:1.0@aserver.aworld.aorg:1050/AService

the client ORB uses GIOP 1.0 to send a request with a simple object key of

AService to port 1050 at host aserver.aworld.aorg. There, the client ORB expects to

find a server for the Aservice that is requested, and returns a reference to itself.

You can then use this reference to look for the remote object.

how the ORB works

Chapter 5. Understanding the ORB 53

This naming service is transient. It means that the validity of the contained

references expires when the name service or the server for the remote object is

stopped.

Remote method invocation

At this point, the client should hold a reference to the remote object that is an

instance of the stub class. The next step is to invoke the method on that reference.

The stub implements the Foo interface and therefore contains the message()

method that the client has invoked. It is that method that is executed.

First, the stub code determines whether the implementation of the remote object is

located on the same ORB instance and can be accessed without using the internet.

Note: In this discussion, the remote object will be called FooImpl, which in CORBA

language is referred to as a servant.

If the implementation of the remote object is located on the same ORB instance, the

performance improvement can be significant because a direct call to the object

implementation is done. If no local servant can be found, the stub first asks the

ORB to create a request by invoking its _request() method, specifying the name of

the method to invoke and whether a reply is expected or not.

Note that the CORBA specification imposes an extra indirection layer between the

ORB code and the stub. This layer is commonly known as delegation. CORBA

imposes the layer by using an interface named Delegate. This interface specifies a

portable API for ORB-vendor-specific implementation of the

org.omg.CORBA.Object methods. Each stub contains a delegate object, to which all

org.omg.CORBA.Object method invocations are forwarded. This allows a stub that

is generated by one vendor’s ORB to work with the delegate from another

vendor’s ORB.

When creating a request, the ORB first checks whether the enableLocateRequest

property is set to true. If it is, a LocateRequest is created. The steps of creating this

request are similar to the full Request case.

The ORB gets hold of the IOR of the remote object (the one that was retrieved by a

naming service, for example) and passes the information that is contained in the

IOR (Profile object) to the transport layer.

The transport layer uses the information that is in the IOR (IP address, port

number, object key) to create a connection if it does not already exist. The ORB

TCP/IP transport has an implementation of a table of cached connections for

improving performances, because the creation of a new connection is a

time-consuming process. The connection at this point is not an open

communication channel to the server host. It is only an object that has the potential

to create and deliver a TCP/IP message to a location on the internet. Usually that

involves the creation of a Java socket and a reader thread that is ready to intercept

the server reply. The ORB.connect() is invoked as part of this process.

When the ORB has the connection, it proceeds to create the Request message. In

the message are the header and the body of the request. The CORBA 2.3

specification specifies the exact format. The header contains, for example, local and

remote IP addresses and ports, message size, version of the CORBA stream format

(GIOP 1.x with x=0,1,2), byte sequence convention, request types, and Ids. (See

Chapter 20, “Debugging the ORB,” on page 187 for a detailed description and

example).

how the ORB works

54 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

The body of the request contains several service contexts and the name and

parameters of the method invocation. Parameters are typically serialized.

A service context is some extra information that the ORB includes in the request or

reply, to add several other functions. CORBA defines a few service contexts, such

as the codebase and the codeset service contexts. The first is used for the call-back

feature (see the CORBA specification), the second to specify the encoding of

strings.

In the next step, the stub calls _invoke(). Again it is the delegate invoke() method

that is executed. The ORB in this chain of events calls the send() method on the

connection that will write the request to the socket buffer and flush it away. The

delegate invoke() method waits for a reply to arrive. The reader thread that was

spun during the connection creation gets the reply message, demarshals it, and

returns the correct object.

The server side

Typically, a server is an application that makes available one of its implemented

objects through an ORB instance. The subjects discussed here are:

v “Servant implementation”

v “Tie generation”

v “Servant binding”

v “Processing a request” on page 56

Servant implementation

The implementations of the remote object can either inherit from

javax.rmi.PortableRemoteObject, or implement a remote interface and use the

exportObject() method to register themselves as a servant object. In both cases, the

servant has to implement the Foo interface. Here, the first case is described. From

now, the servant is called FooImpl.

Tie generation

Again, you must put an interfacing layer between the servant and the ORB code.

In the old RMI(JRMP) naming convention “skeleton” was the name given to the

proxy that was used on the server side between ORB and the object

implementation. In the RMI-IIOP convention, the proxy is called a Tie.

You generate the RMI-IIOP tie class at the same time as the stub, by invoking the

rmic compiler. These classes are generated from the compiled Java programming

language classes that contain remote object implementations; for example, rmic

-iiop FooImpl generates the stub _Foo_Stub.class and the tie _Foo_Tie.class.

Servant binding

The server implementation is required to do the following tasks:

1. Create an ORB instance; that is, ORB.init(...)

2. Create a servant instance; that is, new FooImpl(...)

3. Create a Tie instance from the servant instance; that is, Util.getTie(...)

4. Export the servant by binding it to a naming service

As described for the client side, you must create the ORB instance by invoking the

ORB static method init(...). The usual steps for that method are:

1. Retrieve properties

2. Get the system class loader

how the ORB works

Chapter 5. Understanding the ORB 55

3. Load and instantiate the ORB class as specified in the ORBClass property

4. Initialize the ORB as determined by the properties

Then, the server needs to create an instance of the servant class FooImpl.class.

Something more than the creation of an instance of a class happens under the

cover. Remember that the servant FooImpl extends the PortableRemoteObject class,

so the constructor of PortableRemoteObject is executed. This constructor calls the

static method exportObject(...) whose parameter is the same servant instance that

you try to instantiate. The programmer must directly call exportObject() if it is

decided that the servant will not inherit from PortableRemoteObject.

The exportObject() method first tries to load a rmi-iiop tie. The ORB implements a

cache of classes of ties for improving performances. If a tie class is not already

cached, the ORB loads a tie class for the servant. If it cannot find one, it goes up

the inheritance tree, trying to load the parent class ties. It stops if it finds a

PortableRemoteObject class or a java.lang.Object, and returns null. Otherwise, it

returns an instance of that tie that is kept in a hashtable that is paired with the

instance of the tie’s servant. If the ORB cannot get hold of the tie, it guesses that an

RMI (JRMP) skeleton might be present and calls the exportObject method of the

UnicastRemoteObject class. Finally, if all fails, a null tie and exception is thrown.

At this point, the servant is ready to receive remote methods invocations. However,

it is not yet reachable.

In the next step, the server code has to get hold of the tie itself (assuming the ORB

has already done this successfully) to be able to export it to a naming service. To

do that, the server passes the newly-created instance of the servant into the static

method javax.rmi.CORBA.Util.getTie(). This, in turn, fetches the tie that is in the

hashtable that the ORB created. The tie contains the pair of tie-servant classes.

When in possession of the tie, the server must get hold of a reference for the

naming service and bind the tie to it. As in the client side, the server invokes the

ORB method resolve_initial_references(“NameService”). It then creates a

NameComponent, a sort of directory tree object that identifies in the naming

service the path and the name of the remote object reference, and binds together

this NameComponent with the tie. The naming service then makes the IOR for the

servant available to anyone requesting. During this process, the server code sends

a LocateRequest to get hold of the naming server address. It also sends a Request

that requires a rebind operation to the naming server.

Processing a request

During the ORB initialization, a listener thread was created. The listener thread is

listening on a default port (the next available port at the time the thread was

created). You can specify the listener port by using the

com.ibm.CORBA.ListenerPort property. When a request comes in through that

port, the listener thread first creates a connection with the client side. In this case,

it is the TCP transport layer that takes care of the details of the connection. As seen

for the client side, the ORB caches all the connections that it creates.

By using the connection, the listener thread spawns a reader thread to process the

incoming message. When dealing with multiple clients, the server ORB has a

single listener thread and one reader thread for each connection or client.

The reader thread does not fully read the request message, but instead creates an

input stream for the message to be piped into. Then, the reader thread picks up

one of the worker threads in the implemented pool (or creates one if none is

present), and delegates the reading of the message. The worker threads read all the

how the ORB works

56 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

fields in the message and dispatch them to the tie, which unmarshals any

parameters and invokes the remote method.

The service contexts are then created and written to the response output stream

with the return value. The reply is sent back with a similar mechanism, as

described in the client side. After that, the connection is removed from the reader

thread which eventually stops.

Features of the ORB

This section describes:

v “Portable object adapter”

v “Fragmentation” on page 59

v “Portable interceptors” on page 59

v “Interoperable naming service (INS)” on page 62

v “Other features” on page 63

Portable object adapter

An object adapter is the primary way for an object to access ORB services such as

object reference generation. An object adapter exports a public interface to the

object implementation, and a private interface to the skeleton. The main

responsibilities of an object adapter are:

v Generation and interpretation of object references

v Method invocation

v Object and implementation activation and deactivation

v Mapping object references to the corresponding object implementations

Figure 4 shows how the object adapter relates to the ORB, the skeleton, and the

object implementation.

In CORBA 2.1 and below, all ORB vendors had to implement an object adapter,

which was known as the basic object adapter. Because the basic object adapter was

never completely specified with a standard CORBA IDL, vendors implemented it

in many different ways. Therefore, for example, programmers could not write

server implementations that could be truly portable between different ORB

products. A first attempt to define a standard object adapter interface was done in

Figure 4. Relationship between the ORB, the object adapter, the skeleton, and the object

implementation

how the ORB works

Chapter 5. Understanding the ORB 57

CORBA 2.1. With CORBA v.2.3, the OMG group released the final corrected

version for a standard interface for the object adapter. This adapter is known as the

portable object adapter (POA).

Some of the main features of the POA specification are:

v Allow programmers to construct object and server implementations that are

portable between different ORB products.

v Provide support for persistent objects; that is, objects whose lifetimes span

multiple server lifetimes.

v Support transparent activation of objects and the ability to associate policy

information to objects.

v Allow multiple distinct instances of the POA to exist in one ORB.

For more details of the POA, see the CORBA v.2.3 (formal/99-10-07) specification.

The IBM J2SE v.1.4 ORB supports both the POA specification and the proprietary

basic object adapter that is already present in previous IBM ORB versions. As

default, the rmic compiler, when used with the -iiop option, generates RMI-IIOP

ties for servers. These ties are based on the basic object adapter. When a server

implementation uses the POA interface, you must add the -poa option to the rmic

compiler to generate the relevant ties.

If you want to implement an object that is using the POA, the server application

must obtain a POA object. When the server application invokes the ORB method

resolve_initial_reference(RootPOA), the ORB returns the reference to the main POA

object that contains default policies (see the CORBA specification for a complete

list of all the POA policies). You can create new POAs as children of the RootPOA,

and these children can contain different policies. This in turn allows you to

manage different sets of objects separately, and to partition the name space of

objects IDs.

Ultimately, a POA handles Object IDs and active servants. An active servant is a

programming object that exists in memory and has been registered with the POA

by use of one or more associated object identities. The ORB and POA cooperate to

determine on which servant the client-requested operation should be invoked. By

using the POA APIs, you can create a reference for the object, associate an object

ID, and activate the servant for that object. A map of object IDs and active servants

is stored inside the POA. A POA provides also a default servant that is used when

no active servant has been registered. You can register a particular implementation

of this default servant and also of a servant manager, which is an object for

managing the association of an object ID with a particular servant. A simple POA

architecture is represented in Figure 5 on page 59.

ORB - features

58 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

The POA Manager is an object that encapsulates the processing state of one or

more POAs. You can control and change the state of all POAs by using operations

on the POA manager.

The adapter activator is an object that an application developer uses to activate

child POAs.

Fragmentation

CORBA specification introduced the concept of fragmentation to handle the

growing complexity and size of marshaled objects in GIOP messages. Graphs of

objects are linearized and serialized inside a GIOP message under the IDL

specification of valuetypes. Fragmentation specifies the way a message can be split

into several smaller messages (fragments) and sent over the net.

The system administrator can set the properties FragmentSize and

FragmentTimeout to obtain best performance in the existing net traffic. As a

general rule, the default value of 1024 bytes for the fragment size is a good

trade-off in almost all conditions. The fragment time-out should not be set to too

low a value, or time-outs might occur unnecessarily.

Portable interceptors

CORBA implementations have long had proprietary mechanisms that allow users

to insert their own code into the ORB’s flow of execution. This code, known as

interceptors, is called at particular stages during the processing of requests. It can

directly inspect and even manipulate requests.

Because this message filtering mechanism is extremely flexible and powerful, the

OMG standardized interceptors in the CORBA 2.4.2 specification under the name

“portable interceptors”. The idea is to define a standard interface to register and

execute application-independent code that, among other things, takes care of

passing service contexts. These interfaces are stored in the package

org.omg.PortableInterceptor.* . The implementation classes are in the

com.ibm.rmi.pi.* package of the IBM ORB. All the interceptors implement the

Interceptor interface.

Two classes of interceptors are defined: request interceptors and IOR interceptors.

Request interceptors are called during request mediation. IOR interceptors are

RootPOA POA Child1

Default servant

User-supplied
servant

User-supplied servant

User-supplied servant

User-supplied servant

Object ID

Object ID

Object ID

POA
manager

Adapter activator

Object ID

Figure 5. Simple portable object adapter architecture

ORB - features

Chapter 5. Understanding the ORB 59

called when new object references are created so that service-specific data can be

added to the newly-created IOR in the form of tagged components.

The ORB calls request interceptors on the client and the server side to manipulate

service context information. Interceptors must register with the ORB for those

interceptor points that are to be executed.

Five interception points are on the client side:

v send_request (sending request)

v send_poll (sending request)

v receive_reply (receiving reply)

v receive_exception (receiving reply)

v receive_other (receiving reply)

Five interception points are on the server side:

v receive_request_service_contexts (receiving request)

v receive_request (receiving request)

v send_reply (sending reply)

v send_exception (sending reply)

v send_other (sending reply)

The only interceptor point for IOR interceptors is establish_component. The ORB

calls this interceptor point on all its registered IOR interceptors when it is

assembling the set of components that is to be included in the IOP profiles for a

new object reference. Registration of interceptors is done using the interface

ORBInitializer.

Example:

package pi;

public class MyInterceptor extends org.omg.CORBA.LocalObject

implements ClientRequestInterceptor, ServerRequestInterceptor

{

 public String name() { return "MyInterceptor"; }

 public void destroy() {}

 // ClientRequestInterceptor operations

 public void send_request(ClientRequestInfo ri)

 { logger(ri, "send_request"); }

 public void send_poll(ClientRequestInfo ri)

 { logger(ri, "send_poll"); }

 public void receive_reply(ClientRequestInfo ri)

 { logger(ri, "receive_reply"); }

 public void receive_exception(ClientRequestInfo ri)

 { logger(ri, "receive_exception"); }

 public void receive_other(ClientRequestInfo ri)

 { logger(ri, "receive_other"); }

 // Server interceptor methods

 public void receive_request_service_contexts(ServerRequestInfo ri)

 { logger(ri, "receive_request_service_contexts"); }

 public void receive_request(ServerRequestInfo ri)

ORB - features

60 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

{ logger(ri, "receive_request"); }

 public void send_reply(ServerRequestInfo ri)

 { logger(ri, "send_reply"); }

 public void send_exception(ServerRequestInfo ri)

 { logger(ri, "send_exception"); }

 public void send_other(ServerRequestInfo ri)

 { logger(ri, "send_other"); }

 // Trivial Logger

 public void logger(RequestInfo ri, String point)

 {

 System.out.println("Request ID:" + ri.request_id() +

 " at " name() + "." + point);

 }

 }

}

The interceptor class extends org.omg.CORBA.LocalObject to ensure that an

instance of this class does not get marshaled, because an interceptor instance is

strongly tied to the ORB with which it is registered. This trivial implementation

prints out a message at every interception point.

You can do a simple registration of the interceptor by using the ORBInitializer

class. Because interceptors are intended to be a means by which ORB services

access ORB processing, by the time the init() method call on the ORB class returns

an ORB instance, the interceptors have already been registered. It follows that

interceptors cannot be registered with an ORB instance that is returned from the

init() method call.

First, you must create a class that implements the ORBInitializer class. This class

will be called by the ORB during its initialization:

public class MyInterceptorORBInitializer extends LocalObject implements ORBInitializer {

 public static Interceptor interceptor;

 public String name() { return ""; }

 public void pre_init(ORBInitInfo info) {

 try {

 interceptor = new MyInterceptor();

 } catch (Exception ex) {}

}

public void post_init(ORBInitInfo info) {}

}

Then, in the server implementation, add the following code:

 Properties p = new Properties();

 p.put("org.omg.PortableInterceptor.ORBInitializerClass.pi.MyInterceptorORBInitializer", "");

 orb = ORB.init((String[])null, p);

During the ORB initialization, the ORB runtime gets hold of the ORB properties

that begin with org.omg.PortableInterceptor.ORBInitializerClass;. The remaining

portion is extracted and the corresponding class is instantiated. Then, the pre_init()

and post_init() methods are called on the initializer object.

ORB - features

Chapter 5. Understanding the ORB 61

Interoperable naming service (INS)

CosNaming that is implemented in the IBM ORB is another name for the CORBA

Naming Service that observes the OMG Interoperable Naming Service specification

(INS, CORBA 2.3 specification). It stands for Common Object Services Naming. The

name service maps names to CORBA object references. Object references are stored

in the namespace by name and each object reference-name pair is called a name

binding. Name bindings can be organized under naming contexts. Naming contexts

are themselves name bindings, and serve the same organizational function as a file

system subdirectory does. All bindings are stored under the initial naming context.

The initial naming context is the only persistent binding in the namespace.

This implementation includes a new string format that can be passed as a

parameter to the ORB methods string_to_object() and resolve_initial_references()

such as the corbaname and corbaloc formats.

Corbaloc URIs allow you to specify object references that can be contacted by IIOP,

or found through ORB::resolve_initial_references(). This new format is easier than

IOR is to manipulate. To specify an IIOP object reference, use a URI of the form

(see the CORBA 2.4.2 specification for full syntax):

corbaloc:iiop:<host>:<port>/<object key>

For example, the following corbaloc URI specifies an object with key MyObjectKey

that is in a process that is running on myHost.myOrg.com listening on port 2809.

corbaloc:iiop:myHost.myOrg.com:2809/MyObjectKey

Corbaname URIs (see the CORBA 2.4.2 specification) cause string_to_object() to

look up a name in a CORBA naming service. They are an extension of the corbaloc

syntax:

corbaname:<corbaloc location>/<object key>#<stringified name>

For example:

corbaname::myOrg.com:2050#Personal/schedule

where the portion of the reference up to the hash mark (#) is the URL that returns

the root naming context. The second part is the argument that is used to resolve

the object on the NamingContext.

The INS specified two standard command-line arguments that provide a portable

way of configuring ORB::resolve_initial_references():

v -ORBInitRef takes an argument of the form <ObjectId>=<ObjectURI>. So, for

example, with command line arguments of:

-ORBInitRef NameService=corbaname::myhost.example.com

resolve_initial_references(″NameService″) returns a reference to the object with

key NameService available on myhost.example.com, port 2809.

v -ORBDefaultInitRef provides a prefix string that is used to resolve otherwise

unknown names. When resolve_initial_references() cannot resolve a name that

has been specifically configured (with -ORBInitRef), it constructs a string that

consists of the default prefix, a `/’ character, and the name requested. The string

is then fed to string_to_object(). So, for example, with a command line of:

-ORBDefaultInitRef corbaloc::myhost.example.com

a call to resolve_initial_references(″MyService″) returns the object reference that

is denoted by corbaloc::myhost.example.com/MyService.

ORB - features

62 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

You can specify -ORBInitRef and -ORBDefaultInitRef also as system properties;

for example:

-Dcom.ibm.CORBA.ORBInitRef.NameService="corbaloc:..."

-Dcom.ibm.CORBA.ORBDefaultInitRef="corbaloc:..."

Other features

Among all the other differences with previous versions of IBM ORBs, it is

important to outline the support for GIOP 1.2, an extended and improved RAS

facility.

IBM pluggable ORB

The IBM Java ORB is also made available for use with non-IBM J2SE

implementations. This ORB is bundled with IBM middleware offerings, including

the WebSphere Application Server and its various client packages. It can be used

on platforms for which no IBM J2SE implementation is available, or where the

customer has a business need to use an alternative J2SE implementation, but still

requires the IBM ORB.

This release of the IBM Java ORB runs on the following SDKs:

v HP SDK for J2SEHP-UX 11i platform, adapted by IBM for IBM Software, Version

1.4.2

v HP Runtime Environment for J2SE HP-UX 11i platform, adapted by IBM for IBM

Software, Version 1.4.2

v IBM 32-bit SDK for Solaris, Java 2 Technology Edition, Version 1.4.2

v IBM 32-bit Runtime Environment for Solaris, Java 2 Technology Edition, Version

1.4.2

v Sun Windows 32-bit SDK, v1.4.2

This version of the IBM Java ORB does not work with the IBM 32-bit SDK for

Windows, Java 2 Technology Edition, Version 1.4.2.

The IBM Java ORB contains:

v ibmorbguide.htm

v ibm_bin directory

– rmic - invoke rmic (HP-UX and Solaris)

– idlj - invoke idlj (HP-UX and Solaris)

– rmic.bat - invoke rmic (Windows)

– idlj.bat - invoke idlj (Windows)
v ibm_lib directory

– orb.idl - used by IDL compiler

– ir.idl - used by IDL compiler
v jre\lib\endorsed directory

– ibmext.jar - IBM JVM extended system emulation

– ibmorb.jar - ORB runtime

– ibmorbapi.jar - CORBA API
v lib directory

– ibmtools.jar - rmic and idlj support

ORB - features

Chapter 5. Understanding the ORB 63

You must copy these files into the corresponding directories of the non-IBM SDK.

For example, if the SDK is installed at /opt/j2sdk1.4.1, you must copy the runtime

jar to /opt/j2sdk1.4.1/jre/lib/endorsed/ibmorb.jar.

Using the IBM ORB runtime

The IBM Java ORB uses the ″Java Endorsed Standards Override Mechanism″ at

http://java.sun.com/j2se/1.4.2/docs/guide/standards/index.html.

When you install the IBM Java ORB, the CORBA API provided in ibmorbapi.jar

overrides automatically the CORBA API from your SDK. If you want to use your

SDK’s original CORBA API, move ibmorbapi.jar to another directory. If you then

want to use the IBM CORBA API for a particular Java invocation, set the Java

system property java.endorsed.dirs to include the directory to which ibmorbapi.jar

has been moved, followed by the standard endorsed directory,

<JAVA_HOME>\jre\lib\endorsed.

If you are using the CORBA API provided in ibmorbapi.jar, the IBM ORB runtime

implementation is used by default.

If you are using your SDK’s version of the CORBA API, you can set the IBM ORB

runtime implementation to be the default with the following system properties:

org.omg.CORBA.ORBClass=com.ibm.CORBA.iiop.ORB

org.omg.CORBA.ORBSingletonClass=

 com.ibm.rmi.corba.ORBSingleton

javax.rmi.CORBA.UtilClass=

 com.ibm.CORBA.iiop.UtilDelegateImpl

javax.rmi.CORBA.StubClass=

 com.ibm.rmi.javax.rmi.CORBA.StubDelegateImpl

javax.rmi.CORBA.PortableRemoteObjectClass=

 com.ibm.CORBA.iiop.PortableRemoteObject

For instructions on how to set these properties, see http://java.sun.com/j2se/1.4/
docs/api/org/omg/CORBA/ORB.html.

The tnameserv program, which is Sun’s version of IBM name server, does not

honor the orb.properties file. Therefore, if you use this program, the default SDK

ORB is started. If you prefer to start the IBM name server when you are using the

IBM ORB, you can start it with the command:

java com.ibm.CosNaming.TransientNameServer

Using the IBM ORB development tools

The scripts ibm_bin\rmic.bat and ibm_bin\idlj.bat (on HP and Solaris, the files do

not have the .bat extension) allow you to use the IBM version of idlj and the IBM

back-end generators for the rmic -iiop and -idl options.

These scripts do not work on Windows 95 and Windows 98.

If you are invoking idlj from your application’s code, you must invoke the main

class com.ibm.idl.toJavaPortable.Compile.

If you want to invoke rmic from your application’s code, ensure that

lib\ibmtools.jar is on the application’s classpath (not on the rmic classpath). The

main class is sun.rmi.rmic.Main.

ORB - features

64 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

http://java.sun.com/j2se/1.4.2/docs/guide/standards/index.html
http://java.sun.com/j2se/1.4/docs/api/org/omg/CORBA/ORB.html
http://java.sun.com/j2se/1.4/docs/api/org/omg/CORBA/ORB.html

To check whether you are using the IBM Java ORB, use the -version option, which

is valid only if used with -iiop or -idl:

ORB - features

Chapter 5. Understanding the ORB 65

ORB - features

66 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

Chapter 6. Understanding the Java Native Interface

The Java Native Interface (JNI) is a source of much confusion. Much of this

confusion occurs because the JNI specification, which is controlled by Sun

Microsystems Inc, has not been fully understood. IBM strongly recommend that

you read the JNI specification. Go to http://www.javasoft.com and search the site

for JNI. Also search the site for educational information.

Sun Microsystems Inc maintains a combined programming guide and specification

at http://java.sun.com/docs/books/jni/.

This chapter gives additional information to help you avoid the problems that can

frequently occur in particular parts of JNI operation and design.

The JNI is a set of wrapper functions that enables C or C++ code to access Java

code, and Java code to access C or C++ code. The JNI does very little management;

it mostly provides a vehicle for the code.

Note: In this chapter, C/C++ code is always called native code because it runs

directly on the target platform, unlike Java code, which requires a JVM.

You can use the JNI in two ways:

v You can write some C or C++ code in a library, and call it from your Java

application.

v You can embed a JVM in your native application so that you can write some

parts of that application in Java. This way is the normal runtime mode of Java;

that is, you start a native Java executable, which then embeds a JVM to execute

the Java code that you specify to that executable.

The JNI specification does not have a complete set of rules about how the JNI is to

be implemented. Therefore, different vendors implement JNI in different ways. The

Sun trademark specification and the Java Compatibility Kit (JCK) ensure

compliance to the specification, but not to the implementation. It is a common

mistake to write native JNI code that assumes implementation methods instead of

conforming strictly to the specification. Although this code might not cause any

problems at first, it could cause many problems if it is moved from one vendor’s

JVM to another, or if a vendor changes an implementation strategy.

The main topics that are discussed in the remainder of this chapter are:

v “The JNI and the Garbage Collector” on page 68

v “Copying and pinning” on page 70

v “Handling local references” on page 70

v “Handling global references” on page 72

v “Handling exceptions” on page 72

v “Using the isCopy flag” on page 72

v “Using the mode flag” on page 73

v “A generic way to use the isCopy and mode flags” on page 74

v “Synchronization” on page 74

v “Debugging the JNI” on page 75

v “JNI checklist” on page 76

© Copyright IBM Corp. 2003, 2006 67

http://www.javasoft.com
http://java.sun.com/docs/books/jni/

The JNI and the Garbage Collector

Before you read about the two main JNI topics (“Handling local references” on

page 70 and “Handling global references” on page 72), you need to understand

why and how references are maintained, and how the Garbage Collector is

involved.

Three main interactions occur between the Garbage Collector and the JNI. Those

interactions are:

1. Garbage Collector and object references

2. Garbage Collector and global references

3. Garbage Collector and retained garbage

The first two interactions manage Java objects in native code. The third is a result

of the design of the IBM Garbage Collector.

Garbage Collector and object references

The Garbage Collector reclaims garbage, which is defined as anything on the Java

heap that is not reachable. However, if you access a Java object from your native

code, the reference for that access might not exist in a form that the Garbage

Collector can trace. The Garbage Collector, therefore, is likely to deduce that

objects that you have referenced or created are garbage. The Garbage Collector can,

from its root set of object pointers, trace only references to objects that are in the

Java heap (see Chapter 2, “Understanding the Garbage Collector,” on page 7).

To avoid this problem, the JNI automatically creates a local reference to any object

that is referenced across it. The local reference that it creates for your object is a

pointer to your object. It is created in the stack of the thread that is running your

code. When the Garbage Collector runs, it finds that local reference as part of its

root set of object pointers (see Chapter 2, “Understanding the Garbage Collector,”

on page 7) and therefore does not collect your object.

You can think of local references as invisible automatic variables that are in the

function or method that you use to access a Java object. The invisible variable is

passed on (invisibly) to all the functions that are called within the function that

declares the local reference, and to all the functions that are called by them, and so

on. As with all automatic variables, the local reference goes out of scope when you

exit the function in which it was declared.

Therefore, you have two elements of data for objects to which you refer across the

JNI. You have a real object that exists on the Java heap, and you have a reference to

that object. This reference exists on the stack of your native thread. When the

reference disappears, it does not directly affect the object to which you referred,

but the object might become unreachable and therefore able to be collected by a

future garbage collection cycle. An object can have more than one native reference

to it, and remains uncollectable as long as one or more references exist.

Here is some JNI code:

static void JNIcode (...)

{

 jobject myObject = env->NewObject ()

 env->GetObjectClass (myObject)

}

JNI and Garbage Collector

68 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

Here is how the same code would look if you used a local variable to create an

object reference (invisible code is in italics):

static void JNIcode (...)

{

 void * myObjectlocalRef;

 jobject myObject = env->NewObject ()

 myObjectLocalRef = *myObject

 env->GetObjectClass (myObject, myObjectLocalRef)

}// myObjectLocalRef goes out of scope here

The myObjectLocalRef is created in the scope of the function or method that creates

the object for which the local reference exists. This imaginary automatic variable

refers to myObject so that it cannot be garbage collected in the scope of the local

reference. The analogy has been expanded a little by the passing of the automatic

variable into all the functions that are called inside the scope. The idea is that the

local reference in JNIcode remains active in the GetObjectClass function, and in

any other functions that it calls. Only when you exit the function (or method) in

which a local reference is created does it become invalid (or out of scope). How

this affects your application is discussed in more detail in “Handling local

references” on page 70.

Garbage Collector and global references

“Garbage Collector and object references” on page 68 showed how local references

are automatically created and deleted. The scope of local references, however, is

limited. If you want to use an object outside the scope of a local reference, you

must manually create a reference to it. Obviously, you are also responsible for

deleting such a reference. These references are known as global references. Global

references are stored in a space that is reserved by the JVM. This space is in the

native heap space for the Java process. The Garbage Collector always checks in this

special space to determine whether a reference exists to an otherwise unreachable

object.

Another class of references is available. These references are known as weak global

references whose typical function is to cache objects. For more information about

weak global references, see your JNI documentation.

Garbage Collector and retained garbage

Retained garbage is space that is unused in the heap, but not recognized as unused

by the Garbage Collector. Therefore, the space is not reclaimed, it is retained.

Retained garbage is garbage that might not be collected when you think it should

be. For example, you know that a particular object is garbage but find that, after a

garbage collection cycle, it has not been collected.

You cannot directly solve this problem; it usually solves itself. Eventually, the

Garbage Collector finds the garbage. Do not assume that you can determine when

garbage should be collected. If this simple answer is enough for you, go to

“Handling local references” on page 70. Otherwise, continue here.

The retained garbage is a result of the conservative nature of the Garbage Collector

reclamation and the use of JNI. You cannot always determine whether a value in

the stack frame is a reference to a Java object, or whether it is a native parameter

value that has been pushed onto the stack.

Garbage Collector and object references

Chapter 6. Understanding the Java Native Interface 69

The Java threads execute as native threads on the native platform. The thread of

execution is defined by the set of frames that is on the native stack. The Garbage

Collector finds part of its set of root objects by scanning the native stack. When a

mixture of native and Java frames exists on the stack, the Garbage Collector might

scan native stack frames and create false root objects. These actions lead to retained

garbage. The JVM attempts to store the limit of the heap when it changes from

Java code to C/C++ code, so that it can control a garbage collection scan.

However, nested or recursive JNI calls (for example, from native code -> Java ->

native code -> Java) cause Java and native frames to become interleaved on the

stack, and the Garbage Collector is forced to scan an area that does not contain

valid heap references. As a result, false root objects are found, and the garbage of

any object graph to which such a root object refers might be kept.

Copying and pinning

Objects that are on the Java heap are usually mobile; that is, the Garbage Collector

can move them around if it decides to resequence the heap. Some objects, however,

cannot be moved either permanently, or temporarily. Such immovable objects are

known as pinned objects.

When native code, by way of the JNI, creates or refers to an object that is on the

heap, the JVM can do either of these actions:

v Make a copy of the object in local storage, and return this copy to the caller

v Pin the actual object on the heap, and return a pointer to the caller

The caller is told whether the object is a copy or is pinned, by way of a flag in the

appropriate API call.

The IBM JVM usually uses a pinning implementation instead of a copy

implementation.

Handling local references

Local reference scope

You must understand the scoping rules of local references before you can

understand the problems that this section discusses. Ensure that you have read

“The JNI and the Garbage Collector” on page 68 or have visited the Sun website at

http://www.sun.com and read the documentation or specification that is given

there.

It is very easy for a programmer to lose a local reference unintentionally. That is,

the local reference goes out of scope, but you continue to use the objects to which

it used to refer. When you lose a local reference in this way, the object is not

pinned down, and problems will occur later. The loss of a local reference does not

invalidate the object to which it refers. Your application continues to work

normally and to use the object, until a garbage collection cycle occurs. However,

until the space on the heap is moved or reused, you can continue to use the object.

Your code is pointing to invalid space, but that space continues to hold the valid

data that you put into it.

So your application might seem to work well, but at random intervals, it fails

when an object that you think is valid suddenly disappears. This is the type of

problem that usually occurs late in a product cycle. It can be quite difficult to

Garbage Collector and retained garbage

70 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

http://www.sun.com

isolate. If you always have this type of problem shortly after a garbage collection

cycle with compaction, when objects are moved, it is a good hint that local

references are being misused.

Consider local reference scope as being the same as automatic variable scope. Local

references go out of scope when the function they are "declared" in returns.

Summary of local references

Local references cannot be shared between separate functions or methods. Because

local references are like automatic variables, you cannot share them between

threads.

Local reference capacity

Occasionally, you might see a message such as:

"***ALERT: JNI local ref creation exceeded capacity

This message does not indicate an error. It is warning from the JVM that your

application has more local references than can be contained in the storage that you

first allocated for them. The local reference storage was described in the previous

section. The message suggests that you might want to check your JNI code to see

why you have many outstanding local references, and decide whether it would be

better if you managed them yourself (see “Manually handling local references”).

Normally, it is assumed that a function or method will not hold many references at

the same time. If, however, you have designed you code to hold many references,

you can ignore the message.

The JVM does not stop storing local references when this message appears; it

extends the storage capacity, as necessary. The execution of your application is not

affected in any way by this message, except for a small processing overhead. If

your application is designed this way and the message becomes annoying, or if

you are not willing to accept the overhead of recreating stack frames, JNI calls are

available that enable you to increase the capacity of the local reference storage.

The JNI specification does not set the local reference capacity of a JVM, nor does it,

require (or deny) use of this message. Therefore, this message might or might

appear. If it does, it might appear at different times for different JVMs.

Manually handling local references

You can control the storage capacity and freeing of local references, but you cannot

control whether they are created or not. You can create extra local references if you

want to. IBM strongly recommends that you do not create new local references in

an attempt to keep an object alive outside its automatic local reference scope. If

you do, it is almost certain that a window will remain through which data is lost

in a garbage collection cycle. Use global references instead.

Ensure that you do not refer to an object after you delete its local reference unless

you have a global reference to it. It might be good housekeeping to throw away a

local reference to an object when you have attached a global reference to it.

handling local references

Chapter 6. Understanding the Java Native Interface 71

Handling global references

Use a global reference to refer to a JNI object where the scope of the local reference

is too restricted. You can use global references across threads and between

functions and methods. The Garbage Collector always finds objects that are

accessed through global references. Every “create global reference” call must have

a corresponding “free global reference” call. Otherwise, the global references

accumulate and cause a memory leak, because the objects that they reference are

never collected. The JVM does not (cannot) police or check global references.

Global references are completely under the JNI programmer’s control.

Leaks in global references eventually lead to an out-of-memory exception. They

can be quite difficult to solve, especially if you do not manage JNI exception

handling (see “Handling exceptions”).

Global reference capacity

The JNI specification does not define what the capacity of the JVM to hold global

references should be. The IBM JVM has a fairly small limit, on the order of 105.

Other JVMs have a much larger capacity or perhaps an unlimited capacity (subject

only to overriding process or platform sizes). This implementation detail can cause

problems. If you have a reference leak, it might not show up for a very long time

on some JVMs, although it will eventually. That same leak would show up much

more quickly on the IBM JVM. This difference can lead you to think mistakenly

that your application works on the vendor’s JVM, but not on the IBM JVM.

Handling exceptions

Exceptions give you a way to handle errors in your application. Java has a clear

and consistent strategy for the handling of exceptions, but C/C++ code does not.

Therefore, the Java JNI does not throw an exception when it detects a fault because

it does not know how, or even if, the native code of an application can handle it.

The JNI specification requires exceptions to be deferred; it is the responsibility of

the native code to check whether an exception has occurred. A set of JNI APIs are

provided for this purpose. Note that a JNI function with a return code always sets

an error if an exception is pending. That is, you do not need to check for

exceptions if a JNI function returns “success”, but you do need to check for an

exception in an error case. If you do not check, the next time you go through the

JNI, the JNI code will detect a pending exception and throw it. Clearly, an

exception can be difficult to debug if it is thrown later and, possibly, at a different

point in the code from the point at which it was actually created.

Note: The JNI ExceptionCheck function might be a cheaper way of doing

exception checks than the ExceptionOccurred call, because the

ExceptionOccurred call has to create both an object to which you can refer,

and a local reference.

Using the isCopy flag

Many of the JNI functions have a copy flag as a parameter (jboolean *isCopy). On

return, the flag is set to state TRUE if the data that is returned is a copy, or to

FALSE if that data is pinned. Whether to copy or pin data is an implementation

detail (see “Copying and pinning” on page 70).

handling global references

72 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

The isCopy flag is an output parameter. You cannot set it, on entry to a JNI

function, to specify whether you want copy or pin. You do not have to use this

flag at all. You can pass NULL into the JNI function to indicate that you do not

care what the result is.

If the flag indicates a copy, a copy of the data has been taken. If the flag indicates

pinning, the data that is on the heap has been marked as referenced and pinned.

Pinned data cannot be moved in a compaction cycle, nor collected. If the data is

pinned, you effectively have a direct pointer to the data that is on the Java heap.

Clearly, you must free the space that is used for a copy of the data. Also, you must

free the data when it is pinned. By doing this, you tell the JVM that it can unpin

the data again. For example, the GetBooleanArrayElements call must always be

followed by a ReleaseBooleanArrayElements call, whatever the setting of the

isCopy flag.

The IBM JVM generally uses the pin implementation. A common mistake is to

think that only copied data needs to be freed. If you assume that you need free

only data that is copied, the heap gradually becomes more and more fragmented

with bits of uncollectable, pinned data. Eventually, a failure occurs.

Use of the isCopy flag is one of the JNI specification details in which you might

accidentally code to a JVM that prefers the copy method. Everything works

correctly if you accidentally free only copied data. If you swap to a pinning JVM

(or the JVM that you use changes its algorithm), code that was working fails if it is

not written to specification.

The JNI specification also states:“It is not possible to predict whether any given

JVM will copy or pin data on any particular JNI call”. If the flag indicates that a

copy has been used, another trap opens in which you must be sensitive to the

mode flag in the corresponding release call (see “Using the mode flag”).

 Attention: isCopy flag summary:

Always call the Release<something> function after a function that is using the

isCopy flag.

Using the mode flag

This flag is used in Release<something>Array calls. For example:

ReleaseBooleanArrayElements

 (JNIEnv *env, jbooleanArray array, jboolean *elems, jint mode);

You must use this flag correctly with respect to the setting of the corresponding

isCopy flag. You need to know what the isCopy flag is telling you (see “Using the

isCopy flag” on page 72). If the isCopy flag indicates that the returned data is

pinned, any preceding changes that you made to the data have been copied

directly into the Java heap, and the mode parameter is ignored.

If, however, the isCopy flag indicates that the returned data is a copy, you must

use the mode flag to ensure that all changes that you made are actually actioned.

The possible settings of the mode flag are:

0 Update the data on the Java heap and free the space used by the copy.

using the isCopy flag

Chapter 6. Understanding the Java Native Interface 73

JNI_COMMIT

Update the data on the Java heap and do not free the space used by the

copy.

JNI_ABORT

Do not update the data on the Java heap and free the space used by the

copy.

If you do not change the array data that you got as a copy, use JNI_ABORT

because it prevent unnecessary copying and so on. If you do change the data, use

0, or JNI_COMMIT to ensure that your changes actually happen, or use

JNI_ABORT if appropriate.

 Attention: mode flag summary:

v If the isCopy flag indicates that the data is pinned, use the JNI_ABORT setting.

v If the isCopy flag indicates that the data is a copy, use the appropriate setting.

A generic way to use the isCopy and mode flags

Here is a generic way to use the isCopy and mode flags that works with all JVMs,

and ensures that changes are committed and leaks do not occur:

v Do not use the isCopy flag. Pass in null/0.

v Always set the mode flag to zero.

A complicated use of these flags is necessary only if you want to do some special

optimization and so on. This generic way does not release you from the need to

think about synchronization (see “Synchronization”).

Synchronization

When you get array elements through a Get<something>ArrayElements call, you

must think about synchronization. Whether or not the data is pinned, two entities

are involved in accessing the data:

v The Java code in which the data entity is declared and used

v The native code that accesses the data through the JNI

It is likely that these two entities are separate threads, in which case contention

occurs.

Consider the following scenario in a copying JNI implementation:

1. A Java program creates a large array and partially fills it with data.

2. The Java program calls native write function to write the data to a socket.

3. The JNI native that implements write() calls GetByteArrayElements.

4. GetByteArrayElements copies the contents of the array into a buffer, and

returns it to the native.

5. The JNI native starts writing a region from the buffer to the socket.

6. While the thread is busy writing, another thread (Java or native) runs and

copies more data into the array (outside the region that is being written).

7. The JNI native completes writing the region to the socket.

8. The JNI native calls ReleaseByteArrayElements with mode 0, to indicate that it

has completed its operation with the array.

9. The VM, seeing mode 0, copies back the whole contents of the buffer to the

array, and overwrites the data that was written by the second thread.

using the mode flag

74 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

In this particular scenario, note that the code would work with a pinning JVM.

Because each thread writes only its own bit of the data and the mode flag is

ignored, no contention occurs. This is another example of how code that is not

strictly to specification would work with one JVM implementation and not with

another. Although this scenario involves an array elements copy, you can see that

pinned data can also be corrupted when two threads access it at the same time.

Take care if the getter method says the data is pinned.

 Attention: Synchronization summary:

Be very careful about how you synchronize access to array elements. The JNI

interfaces allow you to access regions of Java entities to reduce problems in this

sort of interaction. In the above scenario, the thread that is writing the data should

write into its own region, and the thread that is reading the data should read only

its own region. This works whatever the JNI implementation is.

Debugging the JNI

If you think that you have a problem with the interaction between your native

code and the JVM (that is, JNI problems), you can run diagnostics that help you

check the JNI transitions. These diagnostics are all command line options and must

be passed to the JVM at startup time. Because they are all extra command line

options, they must be preceded by the an X (for extra); for example, -Xcheck:jni.

These are options that you might find useful:

v check:jni

v check:nabounds

check:jni

This option causes a set of wrappers around the actual JNI functions to be

activated. The wrappers perform checks on the incoming parameters such as:

v Check whether the call and the call that initialized JNI are on the same thread.

v Check whether the object parameters are valid objects.

v Check whether local or global references refer to valid objects.

v Check the type matching in get or set field operations.

v Check static and nonstatic field id validity.

v Check whether strings are valid and non-null.

v Check whether array elements are non-null.

v Match the types on array elements

This option is an expensive overhead, but it is quite thorough on input parameter

validation.

check:nabounds

This option works in the same way as check:jni does, and wraps some checks for

array bounds around the JNI array functions.

synchronization

Chapter 6. Understanding the Java Native Interface 75

JNI checklist

 Table 4. JNI checklist

Remember Outcome of nonadherence

Check your code to ensure that you do not

accidentally lose local references. If in doubt,

create a global reference and ensure that you

delete that global reference when

appropriate.

Random crashes (depending on what you

pick up in the overwritten object space)

happen at random intervals.

Local references cannot be saved in global

variables.

As above.

Do not attempt to manipulate local

references.

As above. This problem might occur only in

small windows, very infrequently.

Ensure that every global reference created

has a path that deletes that global reference.

Memory leak. It might throw a native

exception if the global reference storage

overflows. It can be difficult to isolate.

Always check for exceptions (or return

codes) on return from a JNI function.

Always handle a deferred exception

immediately you detect it.

Unexplained exception in apparently perfect

code

Ensure that array and char elements are

always freed.

A small memory leak. It might fragment the

heap and cause other problems to occur

first.

Ensure that you use the isCopy and mode

flags correctly (see “A generic way to use

the isCopy and mode flags” on page 74).

Memory leaks, heap fragmentation, or both.

When you update a Java object in native

code, ensure synchronization of access.

Memory corruption.

JNI checklist

76 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

Chapter 7. Understanding Java Remote Method Invocation

Java Remote Method Invocation (Java RMI) enables you to create distributed Java

technology-based applications that can communicate with other such applications,

in which the methods of remote Java objects can be invoked from other Java

virtual machines, possibly on different hosts. RMI uses object serialization to

marshal and unmarshal parameters and does not truncate types, supporting true

object-oriented polymorphism.

The RMI implementation

The RMI implementation consists of three abstraction layers:

1. The Stub and Skeleton layer, which intercepts method calls made by the client

to the interface reference variable and redirects these calls to a remote RMI

service.

2. The Remote Reference layer below understands how to interpret and manage

references made from clients to the remote service objects.

3. The bottom layer is the Transport layer, which is based on TCP/IP connections

between machines in a network. It provides basic connectivity, as well as some

firewall penetration strategies.

On top of the TCP/IP layer, RMI uses a wire-level protocol called Java Remote

Method Protocol (JRMP), which works like this:

1. Objects that require remote behavior should extend the RemoteObject class,

typically through the UnicastRemoteObject subclass.

a. The UnicastRemoteObject subclass exports the remote object to make it

available for servicing incoming RMI calls.

b. Exporting the remote object creates a new server socket, which is bound to

a port number.

c. A thread is also created that listens for connections on that socket. The

Server is registered with a registry.

d. A client obtains details of connecting to the server from the registry.

e. Using the information from the registry, which includes the hostname and

the port details of the server’s listening socket, the client connects to the

server.
2. When the client issues a remote method invocation to the server, it creates a

TCPConnection object, which opens a socket to the server on the port specified

and sends the RMI header information and the marshalled arguments through

this connection using the StreamRemoteCall class.

3. On the server side:

a. When a client connects to the server socket, a new thread is assigned to

deal with the incoming call. The original thread can continue listening to

the original socket so that additional calls from other clients can be made.

b. The server reads the header information and creates a RemoteCall object of

its own to deal with unmarshalling the RMI arguments from the socket.

c. The serviceCall() method of the Transport class services the incoming call by

dispatching it

d. The dispatch() method calls the appropriate method on the object and

pushes the result back down the wire.

© Copyright IBM Corp. 2003, 2006 77

e. If the server object throws an exception, the server catches it and marshals it

down the wire instead of the return value.
4. Back on the client side:

a. The return value of the RMI is unmarshalled and returned from the stub

back to the client code itself.

b. If an exception is thrown from the server, that is unmarshalled and thrown

from the stub.

Thread pooling for RMI connection handlers

As explained in the previous section, on the server side, when a client connects to

the server socket, a new thread is forked to deal with the incoming call. The IBM

SDK implements thread pooling in the sun.rmi.transport.tcp.TCPTransport class.

Thread pooling is not enabled by default. Enable it with this command-line setting:

 -Dsun.rmi.transport.tcp.connectionPool=true

(or use a non-null value instead of true).

With the connectionPool enabled, threads are created only if there is no thread in

the pool that can be reused. In the current implementation of the connection Pool,

the RMI connectionHandler threads are added to a pool and are never removed.

Because you cannot currently fine tune the number of threads in the pool, enabling

thread pooling is not recommended for applications that have only limited RMI

usage. Such applications have to live with these threads during the RMI off-peak

times as well. Applications that are mostly RMI intensive can benefit by enabling

the thread pooling because the connection handlers will be reused and there is no

overhead if these threads are created for every RMI call.

Understanding Distributed Garbage Collection (DGC)

The RMI subsystem implements reference counting-based Distributed Garbage

Collection (DGC) to provide automatic memory management facilities for remote

server objects.

The DGC abstraction is used for the server side of Distributed Garbage Collection.

This interface contains two methods: dirty() and clean(). A dirty() call is made

when a remote reference is unmarshalled in a client (the client is indicated by its

VMID). A corresponding clean() call is made when no more references to the

remote reference exist in the client. A failed dirty() call must schedule a strong

clean() call so that the call’s sequence number can be retained in order to detect

future calls received out of order by the distributed garbage collector.

A reference to a remote object is leased for a period of time by the client holding

the reference. The lease period starts when the dirty call is received. The client has

to renew the leases, by making additional dirty calls, on the remote references it

holds before such leases expire. If the client does not renew the lease before it

expires, the distributed garbage collector assumes that the remote object is no

longer referenced by that client.

DGCClient implements the client side of the RMI Distributed Garbage Collection

system. The external interface to DGCClient is the registerRefs() method. When a

LiveRef to a remote object enters the JVM, it must be registered with the

DGCClient to participate in distributed garbage collection. When the first LiveRef

to a particular remote object is registered, a dirty call is made to the server-side

distributed garbage collector for the remote object, which returns a lease

78 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

guaranteeing that the server-side DGC will not collect the remote object for a

certain period of time. While LiveRef instances to remote objects on a particular

server exist, the DGCClient periodically sends more dirty calls to renew its lease.

The DGCClient tracks the local availability of registered LiveRef instances using

phantom references. When the LiveRef instance for a particular remote object is

garbage collected locally, a clean() call is made to the server-side distributed

garbage collector, indicating that the server no longer needs to keep the remote

object alive for this client. The RenewCleanThread handles the asynchronous

client-side DGC activity by renewing the leases and making clean calls. So this

thread would wait until the next lease renewal or until any phantom reference is

queued for generating clean requests as necessary.

Debugging applications involving RMI

The list of exceptions that can occur when using RMI and their context is included

in the RMI Specification document on the Sun Web site:

http://java.sun.com/j2se/1.4.2/docs/guide/rmi/spec/rmi-exceptions.html#3601

Properties settings that are useful for tuning, logging, or tracing RMI servers and

clients can be found at the Sun Web site:

http://java.sun.com/j2se/1.4.2/docs/guide/rmi/javarmiproperties.html

Solutions to some common problems and answers to frequently asked questions

related to RMI and object serialization can be found at Sun RMI FAQ Web site:

http://java.sun.com/j2se/1.4.2/docs/guide/rmi/faq.html

Network monitoring tools like netstat and tcpdump are useful for debugging RMI

problems at the network level.

Chapter 7. Understanding Java Remote Method Invocation 79

http://java.sun.com/j2se/1.3/docs/guide/rmi/spec/rmi-exceptions.html#3601
http://java.sun.com/j2se/1.4.2/docs/guide/rmi/javarmiproperties.html
http://java.sun.com/j2se/1.4.2/docs/guide/rmi/faq.html

80 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

Part 2. Submitting problem reports

This part describes how to gather data about a problem and how to send that data

to IBM service.

The chapters are:

v Chapter 8, “Overview of problem submission,” on page 83

v Chapter 9, “MustGather: Collecting the correct data to solve problems,” on page

85

v Chapter 10, “Advice about problem submission,” on page 89

v Chapter 11, “Submitting data with a problem report,” on page 91

© Copyright IBM Corp. 2003, 2006 81

82 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

Chapter 8. Overview of problem submission

This chapter gives an overview of Java service and how you can send problem

reports.

How does IBM service Java ?

Java is not a product that IBM sells; it is a supporting technology. Java is vital to

IBM’s strategic products such as the IBM WebSphere Application Server.

No traditional level 1, level 2, and level 3 service exists for Java. However, the Java

Technology Centre (JTC) maintains a Java L3 service team. Initially, your problem

report will probably go to the L2 service team for the product that you are using.

They will forward to the JTC if necessary. You can also send problem reports direct

to the JTC, as described in this part of the book.

Java L3 service is in Hursley (England) and Bangalore (India). This geographical

split is transparent to you for the purpose of submitting problem reports. However,

you might find that you need to communicate directly with a service engineer, in

which case be aware that Hursley operates on GMT and uses Daylight Savings

Time (DST), while Bangalore operates on Indian Standard Time (IST), which is

GMT + 4.5. India does not use DST.

Submitting Java problem reports to IBM

Three methods are available:

v Create a Problem Management Report (PMR): If you are inside IBM, you can

do this directly. Your PMR will arrive on the Java PMR queue. If you are outside

IBM, your IBM representative will do this for you. As noted above, a PMR

might be created against the product that you are using. The product service

team will forward that PMR to the JTC if L3 java analysis is required. If you are

outside IBM and would like access to the PMR system, ask your IBM

representative for details.

v Via the web: This route is available only if you have access to the IBM intranet.

Go to http://eureka.hursley.ibm.com. This is a front end to the PMR system. Fill

in the form, and the server will create a PMR for you and queue it directly to

the Java queue.

v Direct contact: If you have direct contacts in the JTC, you can use them.

However, this is not the most desirable route because you are dependant on one

engineer, and that engineer might be absent for various reasons.

Java duty manager

 A Java duty manager is available 24 hours per day, seven days per week. The duty

manager will call out staff if necessary. To call out the duty manager, you must

have a PMR number. Ask your IBM representative for the telephone number of the

Java duty manager.

© Copyright IBM Corp. 2003, 2006 83

http://eureka.hursley.ibm.com

84 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

Chapter 9. MustGather: Collecting the correct data to solve

problems

This chapter gives general guidance about how to generate a problem report and

which data to include in it:

v “Before you submit a problem report”

v “Data to include”

v “Things to try” on page 86

v “Factors that affect JVM performance” on page 86

v “Test cases” on page 86

v “Performance problems — questions to ask” on page 86

See Part 3, “Problem determination,” on page 95 for specific information for your

platform.

Before you submit a problem report

To obtain a quicker response to your problems, you must try all the suitable

diagnostics and provide as much information as possible. By doing this, you

ensure that your initial submission contains the maximum information for IBM

support to track down your problem. If all the data is not there, you will get a

request for more information from IBM support and, therefore, increase the

turnaround time.

Data to include

The following checklist describes the information that you could include in your

problem report:

v Full version number

v Command line options

v Environment, non-default settings

v OS and OS version

v OS distribution (if applicable)

v Javadump

v Optionally, core dump (see Chapter 12, “First steps in problem determination,”

on page 97 for instructions on how to enable this)

v SDFF dump for use with the cross-platform dump formatter (see Chapter 14,

“AIX problem determination,” Chapter 15, “Linux problem determination,” or

Chapter 18, “Windows problem determination,” as appropriate, for instructions

about how to use the jextract command to create the SDFF dump from the core

dump)

v SVC dump for z/OS; see Chapter 19, “z/OS problem determination.”

v Optionally, cross-platform dump formatter (see Chapter 12, “First steps in

problem determination,” on page 97 for instructions on how to enable this)

v Heapdump, where required

v Verbose output, where required

v Data from any diagnostics that you run

© Copyright IBM Corp. 2003, 2006 85

v Data from JIT diagnostics

v Platform-specific data

For information on how to gather this data, see Part 3, “Problem determination,”

on page 95.

Things to try

Refer to Chapter 12, “First steps in problem determination,” on page 97.

Factors that affect JVM performance

v Runtime flags

v Environment variables (list required environment variable)

v Set stack and heap size, Memory size (MAXDATA setting and -Xms, -Xmx ,

-Xss, and -Xoss settings)

v The search path to the class libraries (class path, mostly used classpath should

come first)

v Garbage collection

v System limits

v The quality of the code

v System thread parameters

v The machine configuration

v I/O disk size and speed

v Number and speed of CPUs

v Network and network adapters number and speed

Test cases

It is easier for IBM Service to solve a problem when a test case is available. Include

a test case with your problem report wherever possible.

If your application is too large or too complex to reduce into a test case, provide, if

possible, some sort of remote login so that IBM can see the problem in your

environment. (For example, install a VNC/Remote Desktop server and provide

logon details in the problem report.) This option is not very effective because IBM

has no control over the target JVM.

If no test case is available, analysis takes longer. IBM might send you

specially-instrumented JVMs that require the collection of the diagnostics data

while you are using them. This method often results in a series of interim fixes,

each providing progressively more instrumentation in the fault area. This operation

obviously increases the turnaround time of the problem. It might be quicker for

you to invest time and effort into a test case instead of having a costly cycle of

installing repeated JVM instrumentation onto your application.

Performance problems — questions to ask

When someone reports a performance problem, it is not enough only to gather

data and analyze it. Without knowing the characteristics of the performance

problem, you might waste time analyzing data that might not be related to the

problem that is being reported.

problems - data to include

86 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

Always obtain and give as much detail as possible before you attempt to collect or

analyze data. Ask the following questions about the performance problem:

v Can the problem be demonstrated by running a specific test case or a sequence

of events?

v Is the slow performance intermittent?

v Does it become slow, then disappear for a while?

v Does it occur at particular times of the day or in relation to some specific

activity?

v Are all, or only some, operations slow?

v Which operation is slow? For example, elapsed time to complete a transaction,

or time to paint the screen?

v When did the problem start occurring?

v Has the condition existed from the time the system was first installed or went

into production?

v Did anything change on the system before the problem occurred (such as adding

more users or upgrading the software installed on the system)?

v If you have a client and server operation, can the problem be demonstrated

when run only locally on the server (network versus server problem)?

v Which vendor applications are running on the system, and are those

applications included in the performance problem? For example, the IBM

WebSphere Application Server?

v What effect does the performance problem have on the users?

v Which part of your analysis made you decide that the problem is caused by a

defect in the SDK?

v What hardware are you using? Which models; how many CPUs; what are the

memory sizes on the affected systems; what is the software configuration in

which the problem is occurring?

v Does the problem affect only a single system, or does it affect multiple systems?

v What are the characteristics of the Java application that has the problem?

v Which performance objectives are not being met?

v Did the objectives come from measurements on another system? If so, what was

the configuration of that system?

Two more ways in which you can help to get the problem solved more quickly are:

v Provide a clear written statement of a simple specific example of the problem,

but be sure to separate the symptoms and facts from the theories, ideas, and

your own conclusions. PMRs that report “the system is slow” require extensive

investigation to determine what you mean by slow, how it is measured, and

what is acceptable performance.

v Provide information about everything that has changed on the system in the

weeks before the problem first occurred. By missing something that changed,

you can block a possible investigation path and delay the solution of the

problem. If all the facts are available, the team can quickly reject those that are

not related.

problems - performance problem questions

Chapter 9. MustGather: Collecting the correct data to solve problems 87

problems - performance problem questions

88 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

Chapter 10. Advice about problem submission

This chapter describes how to submit a problem report, and explains the

information that you should include in that report:

v “Raising a problem report”

v “What goes into a problem report?”

v “Problem severity ratings”

v “Escalating problem severity” on page 90

Raising a problem report

See “Submitting Java problem reports to IBM” on page 83.

What goes into a problem report?

v All the data that you can collect; see below

v Contact numbers

v A brief description of your application and how Java is part of it

v An assessment of the severity of the problem

Problem severity ratings

Here is a guide to how to assess the severity of your problem. You can attach a

severity of 1, 2, 3, or 4 to your problem, where:

Sev 1

v In development: You cannot continue development.

v In service: Customers cannot use your product.

Sev 2

v In development: Major delays exist in your development.

v In service: Users cannot access a major function of your product.

Sev 3

v In development: Major delays exist in your development, but you have

temporary workarounds, or can continue to work on other parts of your

project.

v In service: Users cannot access minor functions of your product.

Sev 4

v In development: Minor delays and irritations exist, but good

workarounds are available.

v In service: Minor functions are affected or unavailable, but good

workarounds are available.

An artificial increase of the severity of your problem does not result in quicker

fixes. IBM queries your assessed severity if it seems too high. Problems that are

assessed at Sev 1 require maximum effort from the IBM Service team and,

therefore, 24-hour customer contact to enable Service Engineers to get more

information.

© Copyright IBM Corp. 2003, 2006 89

Escalating problem severity

For problems below Sev 1, ask IBM Service to raise the severity if conditions

change. Do this, for example, when you discover that the problem is more

wide-ranging than you first thought, or if you are approaching a deadline and no

fix is forthcoming, or if you have waited too long for a fix.

For problems at Sev 1, you can escalate the severity higher into a ’critsit’. This

route is available only to customers who have service contracts and to internal

customers.

raising a problem report

90 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

Chapter 11. Submitting data with a problem report

Having followed the advice that is given in the previous two chapters, you

probably have a large amount of data to send to IBM in one or more files. This

chapter describes how to transmit data to IBM Java service. Data can be sent to

IBM in three ways:

v Java service maintain an anonymous ftp server, named ’javaserv’, for sending or

receiving data, This server is behind the IBM firewall and is therefore accessible

only inside IBM. Ask your SE to transmit the data.

v IBM also maintains an anonymous ftp public server. Java service prefer the use

of the javaserv ftp because the IBM server is not under the control of the IBM

Java Technology Center.

v You can also use an ftp server of your own if you want to. In your PMR, include

details of how to log on, and where the data is. Java service might need to send

data to you; for example an interim fix (see “When you will receive your fix” on

page 93). IBM uses the same server to send (PUT) data as Java service did to

receive (GET) it. If you use your own server, provide an address that Java

service can use to write to your server.

This chapter includes:

v “IBM internal only (javaserv)”

v “Sending files to IBM support” on page 92

v “Getting files from IBM support” on page 92

v “Using your own ftp server” on page 93

v “Sending an AIX core file to IBM support” on page 93

v “When you will receive your fix” on page 93

IBM internal only (javaserv)

ftp to javaserv like this:

ftp javaserv.hursley.ibm.com

1. Log-in anonymously.

2. Change to directory pmrs and create a directory called 12345 (assuming your

PMR is 12345.xxx.xxx).

3. Change into 12345.

4. Set bin mode.

5. PUT your files.

Your output should look like this:

H:\crashes > ftp javaserv.hursley.ibm.com

Connected to fat.hursley.ibm.com.

220 fat.hursley.ibm.com FTP server (Version 4.1 Tue Sep 8 17:35:59 CDT 1998) ready.

User (fat.hursley.ibm.com:(none)): anonymous

331 Guest login ok, send ident as password.

Password:

230 Guest login ok, access restrictions apply.

ftp> cd pmrs

250 CWD command successful.

ftp> mkdir 12345

257 MKD command successful.

ftp> cd 12345

© Copyright IBM Corp. 2003, 2006 91

250 CWD command successful.

ftp> bin

200 Type set to I.

ftp> put mytestcase

Sending files to IBM support

1. ftp to testcase.boulder.ibm.com

2. Change to <platform>/to ibm. For example:

v For Windows and AIX platforms, change to aix/toibm

v For Linux, change to linux/toibm

v For s/390, change to s390/to ibm
3. Set binary mode.

4. PUT your file

Your output should look like this:

 H:\website\IntelW32 > ftp testcase.boulder.ibm.com

 Connected to testcase.boulder.ibm.com.

 220 testcase.boulder.ibm.com FTP server (Version wu-2.6.1(1) Thu Aug 16 13:39:44

 MDT 2001) ready.

 User (testcase.boulder.ibm.com:(none)): anonymous

 331 Guest login ok, send your complete e-mail address as password.

 Password: fred@bloggs.customer.com

 230-Please read the file README

 230- it was last modified on Wed Oct 31 08:42:25 2001 - 29 days ago

 230-Please read the file README_PS.TXT

 230- it was last modified on Wed Oct 31 08:42:11 2001 - 29 days ago

 230 Guest login ok, access restrictions apply.

 ftp> cd aix

 250 CWD command successful.

 ftp> cd toibm

 250 CWD command successful.

 ftp> bin

 ftp> put myfile

Files are kept on the server for only a short time, so notify IBM support

immediately after you have sent the files.

Getting files from IBM support

You can get files from IBM support in two ways:

1.

a. Point your browser to http://testcase.software.ibm.com

b. Click the TESTCASE SERVER.

c. Click the <platform>/fromibm icons. For example:

v For Windows and AIX platforms, change to aix/fromibm

v For Linux, change to linux/fromibm

v For s/390, change to s390/fromibm
d. Click on the file that you want.

2. ftp to the server as above, and GET the data.

Remember that the files are on the server for only a short time.

submitting data with a problem report

92 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

http://testcase.software.ibm.com

Using your own ftp server

1. Dump the files and include the server address and log-in data in your problem

report.

2. Give read and write access to IBM service for this area of your server.

Sending an AIX core file to IBM support

In general, it is difficult to correctly examine an AIX core file that is not in the

environment in which it is run. This is because the core file does not include any

of the libraries that were loaded by the process at the point of failure. For IBM

support to be able to use fully the data that is in the core file, you must make the

loaded libraries available also. For this purpose, a tool, called libsGrabber.sh, is

available. When run against a core file, libsGrabber.sh generates a list of libraries

that were loaded, and their locations. From this list, it creates a compressed file.

that contains the libraries and a copy of the core file. This compressed file contains

all the files that IBM support requires to analyze the core files on another machine.

When you will receive your fix

Java builds are performed daily at IBM. When an engineer has identified your

problem and produced a fix, that fix goes into the overnight build.

IBM periodically produces service refreshes of Java. After you have been notified

that your problem has been solved, you must obtain the next service refresh.

Service refreshes are fully supported by IBM. The version number in your JVM

(see Part 3, “Problem determination,” on page 95) identifies the service refresh level

that you are using. In some cases (for example when you urgently need a fix for a

Sev 1 problem), IBM service provides you with an overnight build as an electronic

fix (interim fix). An interim fix is a set of the Java binaries that contains a fix for

your problem. IBM support sends you this set of binaries to replace your original

binaries. Interim fixes are ftp’d to you through the same server that you used to

send in your problem data. Interim fixes are used to validate that a fix is good in

your environment, or to allow you to continue work on your project while waiting

for the next service refresh. Interim fixes are not supported by Java service,

because they have not been officially certified as Java-compatible. If you receive an

interim fix, you must get the next service refresh immediately it becomes available.

submitting data with a problem report

Chapter 11. Submitting data with a problem report 93

submitting data with a problem report

94 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

Part 3. Problem determination

This part of the book is the problem determination guide. It is intended to help

you find the kind of fault you have and from there to do one or more of the

following tasks:

v Fix the problem

v Find a good workaround

v Collect the necessary data with which to generate a bug report to IBM

IBM produces Software Development Kits (SDK) and Runtime Environments (JRE)

for a number of different platforms, including:

v Windows 32- and 64-bit

v AIX (Power PC) 32- and 64-bit

v z/OS (S390)

v Linux for Intel 32-bit and AMD64, Linux for PowerPC 32- and 64-bit, and Linux

for zSeries 31-bit and 64-bit..

To use this part, go to the chapter that relates to your platform. A chapter covers

both 32- and 64-bit versions of the JDK for that particular platform where

applicable. If your application runs on more than one platform and is exhibiting

the same problem on them all, go to the chapter about the platform on which you

have easiest access.

If you use the IBM WebSphere Application Server, the above guidance applies to

you, but read Chapter 13, “Working in a WebSphere Application Server

environment,” on page 99 first, because the platform-specific chapters discuss

subjects such as environment variables, and you will need the additional

information that is given in the chapter for the WebSphere Application Server.

A couple of JVM issues do not fit neatly into the platform model, and these have

their own chapters:

v Chapter 20, “Debugging the ORB,” on page 187

v Chapter 21, “NLS problem determination,” on page 201

If you have problems in these areas, check out the appropriate chapter in addition

to general diagnostics about your platform.

The chapters in this part are:

v Chapter 12, “First steps in problem determination,” on page 97

v Chapter 13, “Working in a WebSphere Application Server environment,” on page

99

v Chapter 14, “AIX problem determination,” on page 101

v Chapter 15, “Linux problem determination,” on page 129

v Chapter 16, “Sun Solaris problem determination,” on page 147

v Chapter 17, “Hewlett-Packard SDK problem determination,” on page 149

v Chapter 18, “Windows problem determination,” on page 151

v Chapter 19, “z/OS problem determination,” on page 167

v Chapter 20, “Debugging the ORB,” on page 187

© Copyright IBM Corp. 2003, 2006 95

v Chapter 21, “NLS problem determination,” on page 201

v Chapter 22, “AS/400 problem determination,” on page 207

v Chapter 23, “OS/2 problem determination,” on page 209

96 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

Chapter 12. First steps in problem determination

Ask these questions before going any further:

Have you enabled core dumps?

Core dumps are essential to enable IBM Service to debug a problem.

Depending on the platform, core dumps might not be enabled by default (see

Chapter 27, “JVM dump initiation,” on page 251 for details). To enable core

dumps, set the environment variable JAVA_DUMP_OPTS to:

JAVA_DUMP_OPTS="ONERROR(JAVADUMP,SYSDUMP) ONEXCEPTION(JAVADUMP,SYSDUMP),

 ONDUMP(JAVADUMP)"

See Appendix E, “Environment variables,” on page 407 for details on setting

environment variables.

Can you reproduce the problem with the latest Service Refresh?

The problem might also have been fixed in a recent service refresh. Make sure

you are using the latest service refresh.

Are you using a supported Operating System (OS) with the latest patches

installed?

It is important to use an OS or distribution that supports the JVM and to have

the latest patches for operating system components. For example, upgrading

system libraries can solve problems. Moreover, later versions of system

software can provide a richer set of diagnostic information. (See platform

specific, ″Setting up and checking environment″ sections in chapters Chapter 13

through Chapter 19).

Have you installed the latest patches for other software that interacts with the

JVM? For example, the IBM WebSphere Application Server and DB2®.

The problem could be related to configuration of the JVM in a larger

environment and might have been solved already in a Fix Pack. The problem

could be related to native code executed by the JVM on behalf of other

software. If this is so, the issue might have been resolved in a later version of

any relevant software, for example DB2 or the WebSphere Application Server.

(See Chapter 13, “Working in a WebSphere Application Server environment,”

on page 99.)

Is the problem reproducible on the same machine?

Knowing that this defect occurs every time the described steps are taken, is

one of the most helpful things you can know about it and tends to indicate a

straightforward programming error. If, however, it occurs at alternate times, or

at one time in ten or a hundred, thread interaction and timing problems in

general would be much more likely.

Is the problem reproducible on another machine?

A problem that is not evident on another machine could help you find the

cause. A difference in hardware could make the problem disappear; for

example, the number of processors. Also, differences in the operating system

and application software installed might make a difference to the JVM. For

example, the visibility of a race condition in the JVM or a user Java application

might be influenced by the speed at which certain operations are performed by

the system.

Does the problem appear on multiple platforms?

If the problem appears only on one platform, it could be related to a

© Copyright IBM Corp. 2003, 2006 97

platform-specific part of the JVM or native code used within a user

application. If the problem occurs on multiple platforms, the problem could be

related to the user Java application or a cross-platform part of the JVM; for

example, Java Swing API. Some problems might be evident only on particular

hardware; for example, Intel32. A problem on particular hardware could

possibly indicate a JIT problem.

Does turning off the JIT help?

If turning off the JIT prevents the problem, there might be a problem with the

JIT. This can also indicate a race condition within the user Java application

which surfaces only in certain conditions. If the problem is intermittent,

reducing the JIT compilation threshold to 0 might help reproduce the problem

more consistently. (See Chapter 30, “JIT diagnostics,” on page 295.)

Have you tried reinstalling the JVM or other software and rebuilding relevant

application files?

Some problems occur from a damaged or invalid installation of the JVM or

other software. It is also possible that an application could have inconsistent

versions of binary files or packages. Inconsistency is particularly likely in a

development or testing environment and could potentially be solved by getting

a completely fresh build or installation.

Is the problem particular to a multiprocessor (or SMP) platform? If you are

working on a multiprocessor platform, does the problem still exist on a

uniprocessor platform?

This information is valuable to IBM Service.

first steps in problem determination

98 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

Chapter 13. Working in a WebSphere Application Server

environment

The WebSphere Application Server depends on the JVM and ORB technology.

Refer to Appendix A, “Compatibility tables,” on page 397 for WebSphere

Application Server/JVM/ORB compatibility tables.

The IBM JVM version 1.4.2 ships with WebSphere Application Server version 5.1.1

Earlier versions of WebSphere Application Server shipped with earlier versions of

the JVM.

WebSphere Application Server 5.1.1 ships with the IBM JVM on Windows, AIX,

Intel Linux, PPC Linux, and z/OS Linux in the 32-bit versions.

WebSphere Application Server 5.1.1 also ships with Sun and HP JVMs on the

relevant Solaris and HP platforms. In these cases, IBM ships a ″hybrid″ Java SDK

comprising the vendor’s JVM, the IBM ORB, and additional IBM packages such as

security.

For aspects of WebSphere Application Server JVM support (for example,

information on how to set JVM runtime parameters or how to get heapdumps

from the WebSphere environment) visit the WebSphere Application Server support

and service site at http://www.ibm.com/software/webservers/appserv/was/
support/. Click on the Technotes link and search for the topic that interests you to

find relevant documents.

© Copyright IBM Corp. 2003, 2006 99

http://www.ibm.com/software/webservers/appserv/was/support/
http://www.ibm.com/software/webservers/appserv/was/support/

100 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

Chapter 14. AIX problem determination

This chapter describes problem determination on AIX in:

v “Setting up and checking your AIX environment”

v “General debugging techniques” on page 102

v “Diagnosing crashes” on page 111

v “Debugging hangs” on page 112

v “Understanding memory usage” on page 115

v “Debugging performance problems” on page 123

v “I/O bottlenecks” on page 127

v “Collecting data from a fault condition in AIX” on page 127

If you are working in the alternative debug environment, see Appendix I, “Using

the alternative JVM for Java debugging,” on page 499.

Setting up and checking your AIX environment

Set up the right environment for the AIX JVM to run correctly during AIX

installation from either the installp image or the product with which it is packaged.

Note that the 64-bit JVM can work on a 32-bit kernel (AIX 5.1 onwards) if the

hardware is 64-bit. In that case, you have to enable a 64-bit application

environment by: Smitty -> System Environments -> Enable 64-bit Application

Environment.

Occasionally the configuration process does not work correctly, or the environment

might become altered, affecting the operation of the JVM. In these conditions, you

can make a number of checks to ensure that the JVM’s required settings are in

place:

1. Ensure that all the JVM files have installed in the correct location and that the

correct permissions are set. The default installation directory for the Version

1.4.2 Developer Kit is in /usr/java142. For developer kits packaged with other

products, the installation directory might be different. In such a case, consult

your product documentation.

2. Ensure that the PATH environment variable contains the correct Java

executable, or that the application you are using is pointing to the correct Java

executable. You must include /usr/java142/jre/bin:/usr/java142/bin in your

PATH environment variable . If it is not present, add it by using export

PATH=/usr/java142/jre/bin:/usr/java142/bin:$PATH

3. Ensure that the LANG environment variable is set to a supported locale. You

can find the language environment in use using echo $LANG, which should

report one of the supported locales as documented in the User Guide shipped

with the SDK.

4. Ensure that all the prerequisite AIX maintenance and APARs have been

installed. The prerequisite APARs and filesets will have been checked during an

install using smitty or installp. You can find the list of prerequisites in the

User Guide that is shipped with the SDK. Use lslpp -l to find the list of

current filesets. Use instfix -i -k <apar number> to test for the presence of an

APAR and instfix -i | grep _ML to find the installed maintenance level.

© Copyright IBM Corp. 2003, 2006 101

The Java service team has a tool named ReportEnv that plugs into your JVM and

reports on the JVM environment in real time. Your JVM environment affects the

operation of the JVM. ReportEnv reports on environment variables and

command-line parameters. It is a GUI tool, although it can be run without a GUI.

The GUI allows you to browse your environment and, to some extent, dynamically

change it. The tool also has a mechanism to generate reports to tell you the exact

state of your JVM environment. A screenshot of the tool is shown in “Setting up

and checking your Windows environment” on page 151. The ReportEnv tool is

available on request from jvmcookbook@uk.ibm.com.

Enabling full AIX core files

The AIX core file is created in the current working directory for the Java process.

The core file can often be truncated if it is full of core dumps that have not been

enabled in the operating system settings.

Provided with AIX v5.2 and upwards, the syscorepath utility can be used to

specify a single system-wide directory in which all core files of any processes are

saved. The syntax for this command is: syscorepath -p alternate_directory.

To set the OS for full core dumps and files to unlimited:

1. Set the ulimit setting for core dumps to unlimited: ulimit -c unlimited.

2. Set the ulimit setting for core files to unlimited: ulimit -f unlimited.

3. Set Smit to use full core dumps either by starting smit and setting: System

Environments -> Change/Show Characteristics of Operating System -> Enable

Full CORE dump to ″TRUE″, or by using the command chdev -l sys0 -a

fullcore=’true’ as root.

4. Ensure that the current working directory has enough disk space available to

write the core file. You can redirect AIX core files to alternative locations using

a symbolic link. To do this, you must create a link from the current working

directory of the Java process to an alternative directory where there is a file

called ″core″:

ln -s <alternative directory path>/core <current working directory of Java

process> /core

After a full core file has been generated and located, you must rename that file to

prevent any other core file, that is generated in the same directory, from

overwriting it.

General debugging techniques

Below is a short guide to the JVM provided diagnostic tools and AIX commands

that can be useful when diagnosing problems with the AIX JVM. In addition to the

information given below, the AIX 4.3.3 and 5.1 publications can be obtained from

the IBM Web site (go to www.ibm.com/aix and follow the links). Of particular

interest are:

v The AIX 5.1 Performance Management Guide (AIX 5L Version 5.1 Books ->

System Management Guides -> Performance Management Guide)

v The AIX 4.3 Performance Management Guide (AIX Version 4.3 Books -> System

Management Guides -> Performance Management Guide)

v The AIX Programmer’s Guides - the AIX 4.3.3 or AIX 5.1 Reference

Documentation.

v The Redbook: ″C and C++ Application Development on AIX″ (SG24-5674) available

from: http://www.redbooks.ibm.com.

setting up and checking your AIX environment

102 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

jvmcookbook@uk.ibm.com
www.ibm.com/aix
http://www.redbooks.ibm.com

Other sources of information for debugging

Other sources of information for debugging AIX problems are:

v These articles on developerWorks:

– http://www-106.ibm.com/developerworks/eserver/library/es-
javaonaix_core.html

– http://www-106.ibm.com/developerworks/eserver/library/es-
JavaOnAix_install.html

v A set of presentation slides about installing, configuring, and debugging the

JVM. Very good on annotated screen shots that walk you through the various

processes:

v AIX technical support:

http://techlink.austin.ibm.com/cgi-bin/austext/megacgi

Starting Javadumps in AIX

See Chapter 25, “Using Javadump,” on page 219.

Starting Heapdumps in AIX

See Chapter 26, “Using Heapdump,” on page 245.

Debugging memory leaks

The dbgmalloc library can be linked in to a customer native library to help identify

native memory leaks. dbgmalloc must be linked in to the library before the

C-runtime library, so that the standard memory routines can be overridden.

Note that dbgmalloc is meant for IBM use only.

The following options must be added to the makeC++SharedLib_r command before

any others:

-L$SDK/jre/bin -ldbgmalloc

(The environment variable $SDK points to the Java SDK directory (for example,

/opt/IBMJava2-142).

For more information about AIX memory, see “Understanding memory usage” on

page 115.

AIX debugging commands

ps

The Process Status (ps) is used to monitor:

v A process.

v Whether the process is still consuming CPU cycles.

v Which threads of a process are still running.

To invoke ps to monitor a process, type:

ps -fp <PID>

Your output should be:

ftp://ausgsa.ibm.com/projects/l/13java/public/docs/Implementing_Java_on_AIX.prz

AIX - general debugging techniques

Chapter 14. AIX problem determination 103

http://www-106.ibm.com/developerworks/eserver/library/es-javaonaix_core.html
http://www-106.ibm.com/developerworks/eserver/library/es-javaonaix_core.html
http://www-106.ibm.com/developerworks/eserver/library/es-JavaOnAix_install.html
http://www-106.ibm.com/developerworks/eserver/library/es-JavaOnAix_install.html
http://techlink.austin.ibm.com/cgi-bin/austext/megacgi

UID PID PPID C STIME TTY TIME CMD

 user12 29730 27936 0 21 Jun - 12:26 java StartCruise

Where

UID

The user ID of the process owner. The login name is printed under the -f flag.

PPID

The Parent Process ID.

PID

The Process ID.

C CPU utilization, incremented each time the system clock ticks and the process

is found to be running. The value is decayed by the scheduler by dividing it

by 2 every second. For the sched_other policy, CPU utilization is used in

determining process scheduling priority. Large values indicate a CPU intensive

process and result in lower process priority whereas small values indicate an

I/O intensive process and result in a more favorable priority.

STIME

The start time of the process, given in hours, minutes, and seconds. The start

time of a process begun more than twenty-four hours before the ps inquiry is

executed is given in months and days.

TTY

The controlling workstation for the process.

TIME

The total execution time for the process.

CMD

The full command name and its parameters.

To see which threads are still running, type:

ps -mp <PID> -o THREAD

Your output should be:

 USER PID PPID TID ST CP PRI SC WCHAN F TT BND COMMAND

 user12 29730 27936 - A 4 60 8 * 200001 pts/10 0 java StartCruise

 - - - 31823 S 0 60 1 e6007cbc 8400400 - 0 -

 - - - 44183 S 0 60 1 e600acbc 8400400 - 0 -

 - - - 83405 S 2 60 1 50c72558 400400 - 0 -

 - - - 114071 S 0 60 1 e601bdbc 8400400 - 0 -

 - - - 116243 S 2 61 1 e601c6bc 8400400 - 0 -

 - - - 133137 S 0 60 1 e60208bc 8400400 - 0 -

 - - - 138275 S 0 60 1 e6021cbc 8400400 - 0 -

 - - - 140587 S 0 60 1 e60225bc 8400400 - 0 -

Where

USER

The user name of the person running the process.

TID

The Kernel Thread ID of each thread.

ST

The state of the thread:

O Nonexistent.

R Running.

AIX - general debugging techniques

104 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

S Sleeping.

W Swapped.

Z Canceled.

T Stopped.

CP

CPU utilization of the thread.

PRI

Priority of the thread.

SC

Suspend count.

ARCHON

Wait channel.

F Flags.

TAT

Controlling terminal.

BAND

CPU to which thread is bound.

For more details, see the manual page for ps.

svmon

Svmon captures snapshots of virtual memory. Using svmon to take snapshots of

the memory usage of a process over regular intervals allows you to monitor its

memory usage and check for unbounded memory growth that would be indicative

of a memory leak. The following usage of svmon generates regular snapshots of a

process memory usage and writes the output to a file:

svmon -P [process id] -m -r -i [interval] > output.file

Gives output like:

 Pid Command Inuse Pin Pgsp Virtual 64-bit Mthrd

 25084 AppS 78907 1570 182 67840 N Y

 Vsid Esid Type Description Inuse Pin Pgsp Virtual Addr Range

 2c7ea 3 work shmat/mmap 36678 0 0 36656 0..65513

 3c80e 4 work shmat/mmap 7956 0 0 7956 0..65515

 5cd36 5 work shmat/mmap 7946 0 0 7946 0..65517

 14e04 6 work shmat/mmap 7151 0 0 7151 0..65519

 7001c d work shared library text 6781 0 0 736 0..65535

 0 0 work kernel seg 4218 1552 182 3602 0..22017 :

 65474..65535

 6cb5a 7 work shmat/mmap 2157 0 0 2157 0..65461

 48733 c work shmat/mmap 1244 0 0 1244 0..1243

 cac3 - pers /dev/hd2:176297 1159 0 - - 0..1158

 54bb5 - pers /dev/hd2:176307 473 0 - - 0..472

 78b9e - pers /dev/hd2:176301 454 0 - - 0..453

 58bb6 - pers /dev/hd2:176308 254 0 - - 0..253

 cee2 - work 246 17 0 246 0..49746

 4cbb3 - pers /dev/hd2:176305 226 0 - - 0..225

 7881e - pers /dev/e2axa702-1:2048 186 0 - - 0..1856

 68f5b - pers /dev/e2axa702-1:2048 185 0 - - 0..1847

 28b8a - pers /dev/hd2:176299 119 0 - - 0..118

 108c4 - pers /dev/e2axa702-1:1843 109 0 - - 0..1087

 24b68 f work shared library data 97 0 0 78 0..1470

 64bb9 - pers /dev/hd2:176311 93 0 - - 0..92

 74bbd - pers /dev/hd2:176315 68 0 - - 0..67

 3082d 2 work process private 68 1 0 68 65287..65535

AIX - general debugging techniques

Chapter 14. AIX problem determination 105

10bc4 - pers /dev/hd2:176322 63 0 - - 0..62

 50815 1 pers code,/dev/hd2:210969 9 0 - - 0..8

 44bb1 - pers /dev/hd2:176303 7 0 - - 0..6

 7c83e - pers /dev/e2axa702-1:2048 4 0 - - 0..300

 34a6c a mmap mapped to sid 44ab0 0 0 - -

 70b3d 8 mmap mapped to sid 1c866 0 0 - -

 5cb36 b mmap mapped to sid 7cb5e 0 0 - -

 58b37 9 mmap mapped to sid 1cb66 0 0 - -

 1c7c7 - pers /dev/hd2:243801 0 0 - -

in which:

Vsid

Segment ID

Esid

Segment ID: corresponds to virtual memory segment. The Esid maps to the

Virtual Memory Manager segments. By understanding the memory model that

is being used by the JVM, you can use these values to determine whether you

are allocating or committing memory on the native or Java heap.

Type

Identifies the type of the segment:

pers Indicates a persistent segment.

work Indicates a working segment.

clnt Indicates a client segment.

mmap Indicates a mapped segment. This is memory allocated using mmap in

a large memory model program.

Description

 If the segment is a persistent segment, the device name and i-node number of

the associated file are displayed.

 If the segment is a persistent segment and is associated with a log, the string

log is displayed.

 If the segment is a working segment, the svmon command attempts to

determine the role of the segment:

kernel

The segment is used by the kernel.

shared library

The segment is used for shared library text or data.

process private

Private data for the process.

shmat/mmap

Shared memory segments that are being used for process private data,

because you are using a large memory model program.

Inuse

The number of pages in real memory from this segment.

Pin

The number of pages pinned from this segment.

Pgsp

The number of pages used on paging space by this segment. This value is

relevant only for working segments.

AIX - general debugging techniques

106 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

Addr Range

The range of pages that have been allocated in this segment. Addr Range

displays the range of pages that have been allocated in each segment, whereas

Inuse displays the number of pages that have been committed. For instance,

Addr Range might detail more pages than Inuse because pages have been

allocated that are not yet in use.

bindprocessor –q

This command shows how many processors are enabled.

bootinfo –K

This command shows if the 64–bit kernel is active.

bootinfo –y

This command shows whether the hardware in use is 32-bit or 64-bit.

iostat

Use this command to determine if a system has an I/O bottleneck. The read and

write rate to all disks is reported. This tool is useful in determining if you need to

’spread out’ the disk workload across multiple disks. The tool, also reports the

same CPU activity that vmstat does.

lsattr

This command details characteristics and values for devices in the system. To

obtain the processor type, and therefore the speed, use:

lsattr -El proc0

state enable Processor state False

type PowerPC_POWER3 Processor type False

frequency 200000000 Processor Speed False

netpmon

This command uses the trace facility to obtain a detailed picture of network

activity during a time interval. It also displays process CPU statistics that show:

v The total amount of CPU time used by this process,

v The CPU usage for the process as a percentage of total time

v The total time that this process spent executing network-related code.

For example,

netpmon -o /tmp/netpmon.log; sleep 20; trcstop

is used to look for a number of things such as CPU usage by program, first level

interrupt handler, network device driver statistics, and network statistics by

program. Add the -t flag to produce thread level reports. The following output

shows the processor view from netpmon.

Process CPU Usage Statistics:

 Network

Process (top 20) PID CPU Time CPU % CPU %

--

java 12192 2.0277 5.061 1.370

UNKNOWN 13758 0.8588 2.144 0.000

gil 1806 0.0699 0.174 0.174

UNKNOWN 18136 0.0635 0.159 0.000

dtgreet 3678 0.0376 0.094 0.000

swapper 0 0.0138 0.034 0.000

trcstop 18460 0.0121 0.030 0.000

sleep 18458 0.0061 0.015 0.000

The adapter usage is shown here:

 ----------- Xmit ----------- -------- Recv ---------

AIX - general debugging techniques

Chapter 14. AIX problem determination 107

Device Pkts/s Bytes/s Util QLen Pkts/s Bytes/s Demux

--

token ring 0 288.95 22678 0.0%518.498 552.84 36761 0.0222

...

DEVICE: token ring 0

recv packets: 11074

 recv sizes (bytes): avg 66.5 min 52 max 1514 sdev 15.1

 recv times (msec): avg 0.008 min 0.005 max 0.029 sdev 0.001

 demux times (msec): avg 0.040 min 0.009 max 0.650 sdev 0.028

xmit packets: 5788

 xmit sizes (bytes): avg 78.5 min 62 max 1514 sdev 32.0

 xmit times (msec): avg 1794.434 min 0.083 max 6443.266 sdev 2013.966

You can also request for less information to be gathered. For example to look at

 socket level traffic use the "-O so" option.

netpmon -O so -o /tmp/netpmon_so.txt; sleep 20; trcstop

The following shows the java extract:

PROCESS: java PID: 12192

reads: 2700

 read sizes (bytes): avg 8192.0 min 8192 max 8192 sdev 0.0

 read times (msec): avg 184.061 min 12.430 max 2137.371 sdev 259.156

writes: 3000

 write sizes (bytes): avg 21.3 min 5 max 56 sdev 17.6

 write times (msec): avg 0.081 min 0.054 max 11.426 sdev 0.211

To see a thread level report add the -t as shown here.

 netpmon -O so -t -o /tmp/netpmon_so_thread.txt; sleep 20; trcstop

The extract below shows the thread output:

 THREAD TID: 114559

reads: 9

 read sizes (bytes): avg 8192.0 min 8192 max 8192 sdev 0.0

 read times (msec): avg 988.850 min 19.082 max 2106.933 sdev 810.518

writes: 10

 write sizes (bytes): avg 21.3 min 5 max 56 sdev 17.6

 write times (msec): avg 0.389 min 0.059 max 3.321 sdev 0.977

netstat

Use this command with the –m option to look at mbuf memory usage, which will

tell you something about socket and network memory usage. By default in AIX 4.3,

the extended netstat statistics are turned off in /etc/tc.net with the line:

/usr/sbin/no -o extendednetstats=0 >>/dev/null 2>&1

To turn on these statistics, change to extendednetstats=1 and reboot. You can also

try to set this directly with no and get some back. When using netstat -m, pipe to

page as the first information is some of the most important:

67 mbufs in use:

64 mbuf cluster pages in use

272 Kbytes allocated to mbufs

0 requests for mbufs denied

0 calls to protocol drain routines

0 sockets not created because sockthresh was reached

-- At the end of the file:

Streams mblk statistic failures:

0 high priority mblk failures

0 medium priority mblk failures

0 low priority mblk failures

To see the size of the wall use:

AIX - general debugging techniques

108 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

no -a | grep wall

 thewall = 524288

no -o thewall =

1000000

Use netstat -i <interval to collect data> to look at network usage and

possible dropped packets.

nmon

Nmon is a free software tool that gives much of the same information as topas, but

saves the information to a file in Lotus 123 and Excel formats. The download site

is www-1.ibm.com/servers/esdd/articles/analyze_aix/. The information that is

collected includes CPU, disk, network, adapter statistics, kernel counters, memory,

and the ’top’ process information.

sar

Use the sar command to check the balance of CPU usage across multiple CPU’s. In

this example below, two samples are taken every five seconds on a 2-processor

system that is 80% utilized.

sar -u -P ALL 5 2

AIX aix4prt 0 5 000544144C00 02/09/01

15:29:32 cpu %usr %sys %wio %idle

15:29:37 0 34 46 0 20

 1 32 47 0 21

 - 33 47 0 20

15:29:42 0 31 48 0 21

 1 35 42 0 22

 - 33 45 0 22

Average 0 32 47 0 20

 1 34 45 0 22

 - 33 46 0 21

tprof

Tprof is one of the AIX legacy tools that provides a detailed profile of CPU usage

for every AIX process ID and name. There are more details on special Java options

under profiling tools below.

topas

Topas is a useful graphical interface that will give you immediate information

about system activity. The screen looks like this:

Topas Monitor for host: aix4prt EVENTS/QUEUES FILE/TTY

Mon Apr 16 16:16:50 2001 Interval: 2 Cswitch 5984 Readch 4864

 Syscall 15776 Writech 34280

Kernel 63.1 |################## | Reads 8 Rawin 0

User 36.8 |########## | Writes 2469 Ttyout 0

Wait 0.0 | | Forks 0 Igets 0

Idle 0.0 | | Execs 0 Namei 4

 Runqueue 11.5 Dirblk 0

Network KBPS I-Pack O-Pack KB-In KB-Out Waitqueue 0.0

lo0 213.9 2154.2 2153.7 107.0 106.9

tr0 34.7 16.9 34.4 0.9 33.8 PAGING MEMORY

 Faults 3862 Real,MB 1023

Disk Busy% KBPS TPS KB-Read KB-Writ Steals 1580 % Comp 27.0

hdisk0 0.0 0.0 0.0 0.0 0.0 PgspIn 0 % Noncomp 73.9

 PgspOut 0 % Client 0.5

Name PID CPU% PgSp Owner PageIn 0

java 16684 83.6 35.1 root PageOut 0 PAGING SPACE

java 12192 12.7 86.2 root Sios 0 Size,MB 512

lrud 1032 2.7 0.0 root % Used 1.2

AIX - general debugging techniques

Chapter 14. AIX problem determination 109

www-1.ibm.com/servers/esdd/articles/analyze_aix/

aixterm 19502 0.5 0.7 root NFS (calls/sec) % Free 98.7

topas 6908 0.5 0.8 root ServerV2 0

ksh 18148 0.0 0.7 root ClientV2 0 Press:

gil 1806 0.0 0.0 root ServerV3 0 "h" for help

trace

This command captures a sequential flow of time-stamped system events. The

trace is a valuable tool for observing system and application execution. While

many of the other tools provide high level statistics such as CPU and I/O

utilization, the trace facility helps expand the information about where the events

happened, which process is responsible, when the events took place, and how they

are affecting the system. Two postprocessing tools that can extract information

from the trace are utld (in AIX 4) are curt (in AIX 5). These tools provide statistics

on CPU utilization and process and thread activity. The third postprocessing tool is

splat, the Simple Performance Lock Analysis Tool. This tool is used to analyze lock

activity in the AIX kernel and kernel extension for simple locks.

truss

This command traces a process’s system calls, dynamically loaded user-level

function calls, received signals, and incurred machine faults.

vmstat

Use this command to give multiple statistics on the system. The vmstat command

reports statistics about kernel threads in the run and wait queue, memory paging,

interrupts, system calls, context switches, and CPU activity. The CPU activity is

percentage breakdown of user mode, system mode, idle time, and waits for disk

I/O.

The general syntax of this command is:

vmstat <time_between_samples_in_seconds> <number_of_samples> -t

The first line of information returned is the time since system reboot, and is

normally ignored.

A typical output looks like this:

kthr memory page faults cpu time

----- ----------- ------------------------ ------------ ----------- --------

 r b avm fre re pi po fr sr cy in sy cs us sy id wa hr mi se

 0 0 45483 221 0 0 0 0 1 0 224 326 362 24 7 69 0 15:10:22

 0 0 45483 220 0 0 0 0 0 0 159 83 53 1 1 98 0 15:10:23

 2 0 45483 220 0 0 0 0 0 0 145 115 46 0 9 90 1 15:10:24

In this output, look for:

v Columns r (run queue) and b (blocked) starting to go up, especially above 10.

This rise usually indicates that you have too many processes competing for

CPU.

v Values in the pi, po (page in/out) columns at non-zero, possibly indicating that

you are paging and need more memory. It might be possible that you have the

stack size set too high for some of your JVM instances.

v cs (contact switches) going very high compared to the number of processes. You

might need to tune the system with vmtune.

v In the cpu section, us (user time) indicating the time being spent in programs.

Assuming Java is at the top of the list in tprof, you need to tune the Java

application. In the cpu section, if sys (system time) is higher than expected, and

AIX - general debugging techniques

110 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

you still have id (idle) time left, you might have lock contention. Check the tprof

for lock–related calls in the kernel time. You might want to try multiple

instances of the JVM.

v The -t flag, which adds the time for each sample at the end of the line.

Diagnosing crashes

A crash can occur only because of a fault in the JVM, or because of a fault in

native (JNI) code being run in the Java process. Therefore, if the application does

not include any JNI code and does not use any third-party packages that have JNI

code (for example, JDBC application drivers), the fault must be in the JVM, and

should be reported to IBM Support through the normal process.

If a crash occurs, you should gather some basic documents. These documents

either point to the problem that is in the application or third party package JNI

code, or help the IBM JVM Support team to diagnose the fault.

Documents to gather

When a crash takes place, two documents are vital to debugging the problem:

v The AIX core file. Enter the command jextract <core file name> to take the

native core file as input and produce a file in SDFF format (the input format

required by the cross platform dump formatter).

v The JVM-produced Javadump file.

Interpreting the stack trace

If dbx or stackit produce no stack trace, the crash usually has two possible causes:

v A stack overflow of the native AIX stack.

v JIT compiled or MMI code is currently running.

A failing instruction reported by dbx or stackit as ″stwu″ indicates that there might

have been a stack overflow. For example:

Segmentation fault in strlen at 0xd01733a0 ($t1)

0xd01733a0 (strlen+0x08) 88ac0000 stwu r1,-80(r1)

You can check for the first cause by using the dbx command thread info and

looking at the stack pointer, stack limit, and stack base values for the current

thread. If the value of the stack pointer is close to that of the stack base, you might

have had a stack overflow. A stack overflow occurs because the stack on AIX

grows from the stack limit downwards towards the stack base. If the problem is a

native stack overflow, you can solve the overflow by increasing the size of the

native stack from the default size of 400K using the command-line option

-Xss<size>. You are recommended always to check for a stack overflow, regardless

of the failing instruction. To reduce the possibility of a JVM crash, you must set an

appropriate native stack size when you run a Java program using a lot of native

stack.

(dbx) thread info 1

 thread state-k wchan state-u k-tid mode held scope function

>$t1 run running 85965 k no sys oflow

 general:

 pthread addr = 0x302027e8 size = 0x22c

 vp addr = 0x302057e4 size = 0x294

 thread errno = 0

 start pc = 0x10001120

AIX - general debugging techniques

Chapter 14. AIX problem determination 111

joinable = yes

 pthread_t = 1

 scheduler:

 kernel =

 user = 1 (other)

 event :

 event = 0x0

 cancel = enabled, deferred, not pending

 stack storage:

 base = 0x2df23000

 size = 0x1fff7b0

 limit = 0x2ff227b0

 sp = 0x2df2cc70

For the second cause, currently dbx (and therefore stackit) does not understand the

structure of the JIT and MMI stack frames, and is not capable of generating a stack

trace from them. The Javadump, however, does not suffer from this limitation and

can be used to examine the stack trace. A failure in JIT-compiled code can be

verified and examined using the JIT Debugging Guide (see Chapter 30, “JIT

diagnostics,” on page 295). If a stack trace is present, examining the function

running at the point of failure should give you a good indication of the code that

caused the failure, and whether the failure is in IBM’s JVM code, or is caused by

application or third party JNI code.

Sending an AIX core file to IBM Support

See “Sending an AIX core file to IBM support” on page 93.

Debugging hangs

The JVM is hanging if the process is still present, but is not responding in some

sense. This lack of response can be caused because:

v The process has come to a complete halt because of a deadlock condition

v The process has become caught in an infinite loop

v The process is running very slowly

AIX deadlocks

For an explanation of deadlocks and how the Javadump tool is used to diagnose

them, see “Locks, monitors, and deadlocks (LK)” on page 222.

If the process is not taking up any CPU time, it is deadlocked. Use the ps -fp

[process id] command to investigate whether the process is still using CPU time.

The ps command is described in “AIX debugging commands” on page 103. For

example:

$ ps -fp 30450

 UID PID PPID C STIME TTY TIME CMD

 root 30450 32332 2 15 May pts/17 12:51 java ...

If the value of ’TIME’ increases over the course of a few minutes, the process is

still using the CPU and is not deadlocked.

AIX infinite loops

If there is no deadlock between threads, consider other reasons why threads are

not carrying out useful work. Usually, this state occurs for one of the following

reasons:

1. Threads are in a ’wait’ state waiting to be ’notified’ of work to be done.

AIX - diagnosing crashes

112 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

2. Threads are in explicit sleep cycles.

3. Threads are in I/O calls (for example, sysRecv) waiting to do work.

The first two reasons imply a fault in the Java code, either that of the application,

or that of the standard class files included in the SDK.

The third reason, where threads are waiting (for instance, on sockets) for I/O, ask

why the I/O is not occurring. Has the process at the other end of the I/O failed?

Do any network problems exist?

Investigating busy hangs in AIX

If the process seems still to be using processor cycles, either it has entered an

infinite loop or it is suffering from very bad performance. Using ps -mp [process

id] -o THREAD allows individual threads in a particular process to be monitored

to determine which threads are using the CPU time. If the process has entered an

infinite loop, it is likely that a small number of threads will be using the time. For

example:

$ ps -mp 43824 -o THREAD

 USER PID PPID TID ST CP PRI SC WCHAN F TT BND COMMAND

 wsuser 43824 51762 - A 66 60 77 * 200001 pts/4 - java ...

 - - - 4021 S 0 60 1 22c4d670 c00400 - - -

 - - - 11343 S 0 60 1 e6002cbc 8400400 - - -

 - - - 14289 S 0 60 1 22c4d670 c00400 - - -

 - - - 14379 S 0 60 1 22c4d670 c00400 - - -

...

 - - - 43187 S 0 60 1 701e6114 400400 - - -

 - - - 43939 R 33 76 1 20039c88 c00000 - - -

 - - - 50275 S 0 60 1 22c4d670 c00400 - - -

 - - - 52477 S 0 60 1 e600ccbc 8400400 - - -

...

 - - - 98911 S 0 60 1 7023d46c 400400 - - -

 - - - 99345 R 33 76 0 - 400000 - - -

 - - - 99877 S 0 60 1 22c4d670 c00400 - - -

 - - - 100661 S 0 60 1 22c4d670 c00400 - - -

 - - - 102599 S 0 60 1 22c4d670 c00400 - - -

...

Those threads with the value ’R’ under ’ST’ are in the ’runnable’ state, and

therefore are able to accumulate processor time. What are these threads doing? The

output from ps shows the TID (Kernel Thread ID) for each thread. This can be

mapped to the Java thread ID using dbx. The output of the dbx thread command

gives an output of the form of:

thread state-k wchan state-u k-tid mode held scope function

 $t1 wait 0xe60196bc blocked 104099 k no sys _pthread_ksleep

>$t2 run blocked 68851 k no sys _pthread_ksleep

 $t3 wait 0x2015a458 running 29871 k no sys pthread_mutex_lock

...

 $t50 wait running 86077 k no sys getLinkRegister

 $t51 run running 43939 u no sys reverseHandle

 $t52 wait running 56273 k no sys getLinkRegister

 $t53 wait running 37797 k no sys getLinkRegister

 $t60 wait running 4021 k no sys getLinkRegister

 $t61 wait running 18791 k no sys getLinkRegister

 $t62 wait running 99345 k no sys getLinkRegister

 $t63 wait running 20995 k no sys getLinkRegister

By matching the TID value from ’s to the k-tid value from the dbx thread

command, it can be seen that the currently running methods in this case are

reverseHandle and getLinkRegister.

AIX - debugging hangs

Chapter 14. AIX problem determination 113

Now you can use dbx to generate the C thread stack for these two threads using

the dbx thread command for the corresponding dbx thread numbers ($tx). To

obtain the full stack trace including Java frames, map the dbx thread number to

the threads pthread_t value, which is listed by the Javadump file, and can be

obtained from the ExecEnv structure for each thread using the Dump Formatter.

Do this with the dbx command thread info [dbx thread number], which produces

an output of the form:

thread state-k wchan state-u k-tid mode held scope function

 $t51 run running 43939 u no sys reverseHandle

 general:

 pthread addr = 0x220c2dc0 size = 0x18c

 vp addr = 0x22109f94 size = 0x284

 thread errno = 61

 start pc = 0xf04b4e64

 joinable = yes

 pthread_t = 3233

 scheduler:

 kernel =

 user = 1 (other)

 event :

 event = 0x0

 cancel = enabled, deferred, not pending

 stack storage:

 base = 0x220c8018 size = 0x40000

 limit = 0x22108018

 sp = 0x22106930

Showing that the TID value from ps (k-tid in dbx) corresponds to dbx thread

number 51, which has a pthread_t of 3233. Looking for the pthread_t in the

Javadump file, you now have a full stack trace:

"Worker#31" (TID:0x36288b10, sys_thread_t:0x220c2db8) Native Thread State:

ThreadID: 00003233 Reuse: 1 USER SUSPENDED Native Stack Data : base: 22107f80

pointer 22106390 used(7152) free(250896)

----- Monitors held -----

java.io.OutputStreamWriter@3636a930

com.ibm.servlet.engine.webapp.BufferedWriter@3636be78

com.ibm.servlet.engine.webapp.WebAppRequestDispatcher@3636c270

com.ibm.servlet.engine.srt.SRTOutputStream@36941820

com.ibm.servlet.engine.oselistener.nativeEntry.NativeServerConnection@36d84490 JNI pinning lock

----- Native stack -----

_spin_lock_global_common pthread_mutex_lock - blocked on Heap Lock

sysMonitorEnterQuicker sysMonitorEnter unpin_object unpinObj

jni_ReleaseScalarArrayElements jni_ReleaseByteArrayElements

Java_com_ibm_servlet_engine_oselistener_nativeEntry_NativeServerConnection_nativeWrite

------ Java stack ------ () prio=5

com.ibm.servlet.engine.oselistener.nativeEntry.NativeServerConnection.write(Compiled Code)

com.ibm.servlet.engine.srp.SRPConnection.write(Compiled Code)

com.ibm.servlet.engine.srt.SRTOutputStream.write(Compiled Code)

java.io.OutputStreamWriter.flushBuffer(Compiled Code)

java.io.OutputStreamWriter.flush(Compiled Code)

java.io.PrintWriter.flush(Compiled Code)

com.ibm.servlet.engine.webapp.BufferedWriter.flushChars(Compiled Code)

com.ibm.servlet.engine.webapp.BufferedWriter.write(Compiled Code)

java.io.Writer.write(Compiled Code)

java.io.PrintWriter.write(Compiled Code)

java.io.PrintWriter.write(Compiled Code)

java.io.PrintWriter.print(Compiled Code)

java.io.PrintWriter.println(Compiled Code)

pagecompile._identifycustomer_xjsp.service(Compiled Code)

javax.servlet.http.HttpServlet.service(Compiled Code)

AIX - debugging hangs

114 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

com.ibm.servlet.jsp.http.pagecompile.JSPState.service(Compiled Code)

com.ibm.servlet.jsp.http.pagecompile.PageCompileServlet.doService(Compiled Code)

com.ibm.servlet.jsp.http.pagecompile.PageCompileServlet.doGet(Compiled Code)

javax.servlet.http.HttpServlet.service(Compiled Code)

javax.servlet.http.HttpServlet.service(Compiled Code)

And, using the full stack trace, it should be possible to identify any infinite loop

that might be occurring. The above example shows the use of

spin_lock_global_common which is a busy wait on a lock, hence the use of CPU

time.

Poor performance on AIX

If no infinite loop is being done by the running threads, look at the process that is

working, but having bad performance. In this case, change your focus from what

individual threads are doing to what the process as a whole is doing. This is

described in the AIX documentation.

Understanding memory usage

Before you can properly diagnose memory problems on AIX, first you must have

an understanding of the AIX virtual memory model and how the JVM interacts

with it.

32- and 64-bit JVMs

Most of the information in this section about altering the memory model and

running out of native heap is relevant only to the 32-bit model, because the 64-bit

model does not suffer from the same kind of memory constraints. The 64-bit JVM

can suffer from memory leaks in the native heap, and the same methods can be

used to identify and pinpoint those leaks. The information regarding the Java heap

relates to both 32 and 64-bit JVMs.

The 32-bit AIX Virtual Memory Model

AIX assigns a virtual address space partitioned into 16 segments of 256 MB.

Process addressability to data is managed at the segment level, so a data segment

can either be shared (between processes), or private.

AIX - debugging hangs

Chapter 14. AIX problem determination 115

v Segment 0 is assigned to the kernel.

v Segment 1 is application program data.

v Segment 2 is the primordial thread stack and private data.

v Segments 3 to C are shared memory available to all processes.

v Segments D and F are shared library text and data areas respectively.

v Segment E is also shared memory and miscellaneous kernel usage.

The 64-bit AIX Virtual Memory Model

The 64-bit model allows many more segments, although each segment is still 256

MB. Again, addressability is managed at segment level, but the granularity of

function for each segment is much finer.

With the greater addressability available to the 64-bit process, you are unlikely to

encounter the same kind of problems with relation to native heap usage as

described later in this chapter, although you might still suffer from a leak in the

native heap.

Changing the Memory Model (32-bit JVM)

With the default ’Small Memory Model’ for an application (as shown above), the

application has only one segment, segment 2, in which it can malloc() data and

Kernel

Application program text

Application program data and application stack

Shared library text

Miscellaneous kernel data

Application shared library data

0x0

0x1

0x2

0x3

0x4

0x5

0x6

0x7

0x8

0x9

0xA

0xB

0xC

0xD

0xE

0xF

Shared memory and mmap services

Figure 6. The AIX 32–Bit Memory Model with MAXDATA=0 (default)

AIX - understanding memory usage

116 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

allocate additional thread stacks. It does, however, have 11 segments of shared

memory into which it can mmap() or shmap() data.

This single segment for data that is allocated by using malloc()might not be

enough, so it is possible to move the boundary between Private and Shared

memory, providing more Private memory to the application, but reducing the

amount of Shared memory. You move the boundary by altering the o_maxdata

setting in the Executable Common Object File Format (XCOFF) header for an

application.

You can alter the o_maxdata setting by:

v Setting the value of o_maxdata at compile time by using the -bmaxdata flag with

the ld command.

v On later versions of AIX Version 4.3.3 and on AIX Version 5.1, setting the

o_maxdata value by using the LDR_CNTRL=MAXDATA=0xn0000000 (n

segments) environment variable.

Altering the MAXDATA applies only to a 32-bit process, and should not be done

on the 64-bit JVM.

The native and Java heaps

The JVM maintains two memory areas, the Java heap, and the native (or system)

heap. These two heaps have different purposes, are maintained by different

mechanisms, and are largely independent of each other.

The Java heap contains the instances of Java objects and is often referred to simply

as ’the heap’. It is the Java heap that is maintained by Garbage Collection, and it is

the Java heap that is changed by the command-line heap settings. In the AIX 1.2.2

JVM, this Java heap was allocated as one contiguous area of shared memory,

running from the first available segment of shared memory up to the maximum

heap size setting. Now, the Java heap is allocated using malloc, and therefore is

placed at the next available area of process private memory. The maximum size of

the Java heap is preallocated during JVM startup as one contiguous area, even if

the minimum heap size setting is lower. Next, you can move the artificial heap size

limit imposed by the minimum heap size setting toward the actual heap size limit

with heap expansion. See Chapter 2, “Understanding the Garbage Collector,” on

page 7 for more information.

The native, or system heap, is allocated by using the underlying malloc and free

mechanisms of the operating system, and is used for the underlying

implementation of particular Java objects; for example, Motif objects required by

AWT and Swing, buffers for Inflaters and Deflators, malloc allocations by

application JNI code, compiled code generated by the Just In Time (JIT) Compiler,

and threads to map to Java threads.

The AIX Java2 32-Bit JVM default memory models

In the AIX 1.2.2 JVM, the MAXDATA setting is set to 5 segments. This gives 5

segments for the native heap, and allows up to 5 segments to be used for the Java

heap. (Theoretically there are 6 shared memory segments left, but because segment

E is not contiguous to the rest of shared memory, it is not used.)

Now, the JVM has a MAXDATA setting of 8 segments. This is the maximum

permissible value (segments B and C can be used only for shared memory). and

provides a 2 GB limit for the combined Java and native heaps. Remember that the

AIX - understanding memory usage

Chapter 14. AIX problem determination 117

Java heap is preallocated at the maximum heap size, so setting a large Java heap

size reduces the amount of memory available to the native heap.

Changing the memory models

You can change the memory model of the JVM in two ways:

1. Move from a malloc allocated heap to an mmap allocated heap.

2. Alter the MAXDATA setting.

You gain little by reducing the MAXDATA setting of the JVM while it is running

with a malloc() allocated Java heap. In this case, lowering the MAXDATA setting

reduces the available memory that is used by both the Java and native heaps.

To cause the JVM to use mmap instead of malloc to allocate the Java heap, set the

environment variable: IBM_JAVA_MMAP_JAVA_HEAP=true, or alternatively, set a

Java heap size of 1 GB or greater. A 1 GB heap causes the Java heap to be allocated

from shared memory using mmap. If you do not change the MAXDATA setting

from the default value of 8, only 2 contiguous segments of shared memory will be

available for use by the Java heap, therefore imposing a maximum heap size of 512

MB.

After you have monitored the native heap usage, you can reduce the MAXDATA

setting to allow greater Java heap sizes (at the cost of the native heap size).

Monitoring the native heap

You can monitor the memory usage of a process by taking a series of snapshots

over regular time intervals of the memory currently allocated and committed. Use

svmon like this:

 svmon -P [pid] -m -r -i [interval] > output.filename

Use the -r flag to print the address range.

Under the 1.2.2 memory model, because the Java heap is allocated using mmap(),

there can be no confusion whether memory allocated to a specific segment of

memory (under ’Esid’) is allocated to the Java or the native heap. With a

MAXDATA setting of 5 segments, the primordial thread stack is held in segment 2,

and the subsequent five segments are available for use by the native heap

(segments 3 to 7).

The mmap() allocated Java heap then resides in the next segment, and occupies as

many segments as it requires to allocate the maximum heap size as defined by the

-Xmx command line value.

Here is the svmon output from the command that is shown above:

Pid Command Inuse Pin Pgsp Virtual 64-bit Mthrd

23,560 java 10,984 1,271 1,262 9,340 N Y

Vsid Esid Type Description Inuse Pin Pgsp Virtual Addr Range

3b85 2 work process private 5,056 1 0 5,055 0..9499

 65305..65535

b016 d work shared library text 2,090 0 24 581 0..65535

0 0 work kernel seg 1,651 1,257 1,238 3,481 0..21298 :

 65475..65535

8c91 - pers /dev/hd2:153712 530 0 - - 0..2403

1,482 - pers /dev/hd2:22808 520 0 - - 0..842

......

AIX - understanding memory usage

118 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

In the 1.4 versions of the JVM, the Java heap is allocated using malloc(). This

introduces some difficulties in interpreting whether memory is being allocated to

the Java or native heap. As in the 1.2.2 memory settings, segment 2 is reserved for

the primordial thread stack. The subsequent eight segments (from the MAXDATA

setting of 8) are available for both the native and Java heaps. What usually occurs

is that during startup of the JVM some addition threads and native objects will be

allocated into segment 3. Next the Java heap will be allocated as a contiguous

lump of memory of the size of the maximum heap size setting. Subsequent

allocations to the native heap will occur after the Java heap.

Thus, you might to run with the 1.2.2 memory model if you suspect that you have

a memory leak in the native heap as shown above.

Native heap usage

The native heap usage will largely grow to a stable level, and then stay at around

that level. You can monitor the amount of memory committed to the native heap

by observing the number of ’Inuse’ pages in the svmon output. However, note that

as JIT compiled code is allocated to the native heap with malloc(), there might be a

steady slow increase in native heap usage as little used methods reach the

threshold to undergo JIT compilation.

You can monitor the JIT compiling of code to avoid confusing this behavior with a

memory leak. To do this, run with the environment variable

JITC_COMPILEOPT=COMPILING. This prints each method name to stderr as it is being

compiled and, as it finishes compiling, the location in memory where the compiled

code is stored.

Compiling [java/io/BufferedOutputStream][flushBuffer]

345bafe0 [java/io/BufferedOutputStream][flushBuffer]

Compiling [java/io/OutputStream][flush]

345bb0c0 [java/io/OutputStream][flush]

Compiling [java/lang/String][indexOf]

345bb13c [java/lang/String][indexOf]

Compiling [sun/io/CharToByteConverter][nextByteIndex]

345bb218 [sun/io/CharToByteConverter][nextByteIndex]

Compiling [java/io/Writer][write]

345bb2ec [java/io/Writer][write]

Compiling [java/io/BufferedWriter][flushBuffer]

345bb438 [java/io/BufferedWriter][flushBuffer]

Compiling [java/io/OutputStreamWriter][flushBuffer]

345bb678 [java/io/OutputStreamWriter][flushBuffer]

If the Java heap is being allocated using malloc(), the location the compiled code is

being written to is useful in determining the location of the Java heap.

When you have monitored how much native heap you are using, you can increase

or decrease the maximum native heap available by altering the MAXDATA setting

if the Java heap is allocated using mmap(). You should reduce this value only if

you require the extra Java heap space this would allow.

Increase the native heap if you are failing to create new threads or you are

receiving OutOfMemoryErrors that are not related to Java objects. Do this by

increasing the MAXDATA value if the Java heap is allocated using mmap(), or by

reducing the Java heap maximum size if it is allocated using malloc().

Monitoring the Java heap

The most straightforward, and often most useful, way of monitoring the Java heap

is by seeing what garbage collection is doing. Turn on garbage collection’s verbose

AIX - understanding memory usage

Chapter 14. AIX problem determination 119

tracing using the command-line option -Xverbosegc to cause a report to be written

to stderr each time garbage collection occurs.

<AF[305]: Allocation Failure. need 528 bytes, 20915 ms since last AF>

<AF[305]: managing allocation failure, action=1 (0/63962104) (3145728/3145728)>

<GC: Fri Dec 7 11:52:40 2001

<GC(376): freed 45406840 bytes in 220 ms, 72> free (48552568/67107832)>

 <GC(376): mark: 204 ms, sweep: 16 ms, compact: 0 ms>

 <GC(376): refs: soft 0 (age >= 32), weak 12, final 219, phantom 0>

<AF[305]: completed in 223 ms>

<AF[306]: Allocation Failure. need 5576 bytes, 14693 ms since last AF>

<AF[306]: managing allocation failure, action=1 (404168/63962104) (3145728/3145728)>

<GC: Fri Dec 7 11:52:55 2001

<GC(377): freed 44582248 bytes in 218 ms, 71> free (48132144/67107832)>

 <GC(377): mark: 202 ms, sweep: 16 ms, compact: 0 ms>

 <GC(377): refs: soft 0 (age >= 32), weak 14, final 194, phantom 0>

<AF[306]: completed in 221 ms>

<AF[307]: Allocation Failure. need 15432 bytes, 140 ms since last AF>

<AF[307]: managing allocation failure, action=1 (11728960/63962104) (3145728/3145728)>

<GC: Fri Dec 7 11:52:55 2001

<GC(378): freed 33315928 bytes in 216 ms, 71> free (48190616/67107832)>

 <GC(378): mark: 200 ms, sweep: 16 ms, compact: 0 ms>

 <GC(378): refs: soft 0 (age >= 32), weak 0, final 0, phantom 0>

<AF[307]: completed in 219 ms>

<AF[308]: Allocation Failure. need 20168 bytes, 120 ms since last AF>

<AF[308]: managing allocation failure, action=1 (16384864/63962104) (3145728/3145728)>

<GC: Fri Dec 7 11:52:55 2001

<GC(379): freed 28654352 bytes in 211 ms, 71> free (48184944/67107832)>

 <GC(379): mark: 196 ms, sweep: 15 ms, compact: 0 ms>

 <GC(379): refs: soft 0 (age >= 32), weak 0, final 1, phantom 0>

<AF[308]: completed in 214 ms>

The verbose garbage collection output allows you to determine whether an

OutOfMemoryError has been caused by the Java heap or the native heap. It also

allows you to tune the size of the Java heap for the kind of performance you want

for your application; you can have garbage collection running frequently, for short

periods of time, or infrequently for longer periods.

Receiving OutOfMemory errors

Any OutOfMemory condition that occurs could be due to either running out of

Java heap or Native heap. In either case it is entirely possible that there is not a

memory leak as such, just that the steady state of memory usage that is required is

higher than that available. Therefore the first step is to determine which heap is

being exhausted, and increase the size of that heap.

If the problem is occurring because of a real memory leak, increasing the heap size

will not solve the problem, but will delay the onset of the OutOfMemory

conditions, which can be of help on any production system.

The 32-bit JVM has these limits:

v The maximum size of an object that can be created is 1 GB.

v For an array object, the maximum number of array elements supported is (228 -1).

So, for a byte array, the maximum size of an array object is 256 MB.

AIX - understanding memory usage

120 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

Is the Java or native heap exhausted?

Some OutOfMemory conditions also carry an explanatory message, including an

error code. If a received OutOfMemory condition has one of these, consulting

Appendix F, “Messages and codes,” on page 415 might point to the origin of the

error, either native or Java heap.

If no error message is present, the first stage is to monitor the Java and native heap

usages. The Java heap usage can be monitored by using -Xverbosegc as detailed

above, and the native heap using svmon.

Java heap exhaustion

The Java heap becomes exhausted when garbage collection cannot free enough

objects to make a new object allocation. Garbage collection can free only objects

that are no longer referenced by other objects, or are referenced from the thread

stacks (see Chapter 2, “Understanding the Garbage Collector,” on page 7 for more

details).

Java heap exhaustion can be identified from the -Xverbosegc output by garbage

collection occurring more and more frequently, with less memory being freed.

Eventually the JVM will fail, and the ’totally out of heapspace’ message can be

seen. (See Chapter 2, “Understanding the Garbage Collector,” on page 7 for more

details on -Xverbosegc output).

If the Java heap is being exhausted, and increasing the Java heap size does not

solve the problem, the next stage is to examine the objects that are on the heap,

and look for suspect data structures that are referencing large numbers of Java

objects that should have been released. Use Heapdump Analysis, as detailed in

Chapter 26, “Using Heapdump,” on page 245. Similar information can be gained

by using other tools, such as JProbe and OptmizeIt.

If an allocation of hundreds of kilobytes is failing with plenty of free space

available, some fragmentation might be occurring. (See “Avoiding fragmentation”

on page 22 to help you solve the problem.) If your system is suffering from

fragmentation, make sure that the minimum heap size is smaller than the

maximum, and preferably as small as possible (32 to 64 MB). A small size forces

the initial class allocations, threads, and persistent objects in the bottom of the

thread stacks to be allocated at the bottom of the heap. By forcing them together,

you might reduce fragmentation. A small size also allows you (at least initially) to

expand the heap to allocate large objects when you cannot allocate inside the heap

because of fragmentation.

Native heap exhaustion

You can identify native heap exhaustion by monitoring the svmon snapshot output

as discussed above. Each segment is 256 MB of space, which corresponds to 65535

pages. (Inuse is measured in 4 KB pages.)

If each of the segments has approximately 65535 Inuse pages, the process is

suffering from native heap exhaustion. At this point, extending the native heap

size might solve the problem, but you should improve the profiling.

It is important to remember that Java is not the only component that might be

allocating memory to the Java processes native heap. Any JNI that is running,

either as part of the application, or through loaded third-party libraries, will also

malloc() to the native heap. The dbgmalloc library can be linked in to a customer

AIX - understanding memory usage

Chapter 14. AIX problem determination 121

native library (see “Debugging memory leaks” on page 103), but this cannot be

done with third-party libraries, and so eliminating them from the scenario is the

easiest way of determining where any leak might be.

Note that dbgmalloc is meant for IBM use only.

In the case of DB2, you can change the application code to use the ″net″ (thin

client) drivers, and in the case of WebSphere MQ you can use the ″client″ (out of

process) drivers.

AIX fragmentation problems

Native heap exhaustion can occur also without the Inuse pages approaching 65535

Inuse pages. This can be caused by fragmentation of the AIX malloc heaps, which

is how AIX handles the native heap of the JVM.

This kind of OutOfMemory condition can again be identified from the svmon

snapshots. Whereas previously the important column to look at for a memory leak

is the Inuse values, for problems in the AIX malloc heaps it is important to look at

the ’Addr Range’ column. The ’Addr Range’ column details the pages that have

been allocated, whereas the Inuse column details the number of pages that are

being used (committed).

It is possible that pages that have been allocated have not been released back to

the process when they have been freed. This leads to the discrepancy between the

number of allocated and committed pages.

You have a range of environment variables to change the behavior of the malloc

algorithm itself and thereby solve problems of this type:

MALLOCTYPE=3.1

This option allows the system to move back to an older version of memory

allocation scheme in which memory allocation is done in powers of 2. The 3.1

Malloc allocator, as opposed to the default algorithm, frees pages of memory

back to the system for reuse. The 3.1 allocation policy is available for use only

with 32-bit applications.

MALLOCMULTIHEAP=heaps:n,considersize

By default, the malloc subsystem uses a single heap. MALLOCMULTIHEAP

allows users to enable the use of multiple heaps of memory. Multiple heaps of

memory can lead to memory fragmentation, and so the use of this

environment variable is not recommended

MALLOCTYPE=buckets

Malloc buckets provides an optional buckets-based extension of the default

allocator. It is intended to improve malloc performance for applications that

issue large numbers of small allocation requests. When malloc buckets is

enabled, allocation requests that fall within a predefined range of block sizes

are processed by malloc buckets. Because of variations in memory

requirements and usage, some applications might not benefit from the memory

allocation scheme used by malloc buckets. Therefore, it is not advisable to

enable malloc buckets system-wide. For optimal performance, enable and

configure malloc buckets on a per-application basis.

Note: The above options might cause a percentage of performance hit. Also

the 3.1 malloc allocator does not support the Malloc Multiheap and

Malloc Buckets options.

AIX - understanding memory usage

122 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

MALLOCBUCKETS=number_of_buckets:128,bucket_sizing_factor:64,blocks_per_
bucket:1024: bucket_statistics: pathname of file for malloc statistics>

See above.

Submitting a bug report

If the data is indicating a memory leak in native JVM code, contact the IBM service

team. If the problem is Java heap exhaustion, it is much less likely to be an SDK

issue, although it is still possible. The process for raising a bug is detailed in Part 2,

“Submitting problem reports,” on page 81, and the data that should be included in

the bug report is listed below:

v Required:

1. The OutOfMemoryCondition. The error itself with any message or stack trace

that accompanied it.

2. -Xverbosegc output. (Even if the problem is determined to be native heap

exhaustion, it can be useful to see the verbose gc output.)
v As appropriate:

1. The svmon snapshot output

2. The Heapdump output

Debugging performance problems

Performance problems are often difficult to diagnose and fix. Usually, a

performance problem is seen as a slowing down of the entire system and not as

the failure of a particular component. A user normally sees a performance problem

as a lack of responsiveness from the system, but this lack of response can be

caused by any one of a large number of systems that interact.

An example of this is a system that has many users logged in from remote

terminals over a network with several routers. The users might report that the

system is slow because they experience long delays between typing and seeing the

characters on their terminals. This could either be caused by the server being

overcommitted and suffering 100% CPU usage or by packets being lost over the

network.

Finding the bottleneck

Given that any performance problem could be caused by any one of several other

problems, you must look at several areas, and eliminate each as a possibility. First,

determine which resource is constraining the system:

v CPU

v Memory

v Input/Output (I/O)

To do this, use the vmstat command. The vmstat command produces a compact

report that details the activity of these three areas:

> vmstat 1 10

outputs:

kthr memory page faults cpu

----- ----------- ------------------------ ------------ -----------

 r b avm fre re pi po fr sr cy in sy cs us sy id wa

 0 0 189898 612 0 0 0 3 11 0 178 606 424 6 1 92 1

 1 0 189898 611 0 1 0 0 0 0 114 4573 122 96 4 0 0

 1 0 189898 611 0 0 0 0 0 0 115 420 102 99 0 0 0

 1 0 189898 611 0 0 0 0 0 0 115 425 91 99 0 0 0

AIX - understanding memory usage

Chapter 14. AIX problem determination 123

1 0 189898 611 0 0 0 0 0 0 114 428 90 99 0 0 0

 1 0 189898 610 0 1 0 0 0 0 117 333 102 97 3 0 0

 1 0 189898 610 0 0 0 0 0 0 114 433 91 99 1 0 0

 1 0 189898 610 0 0 0 0 0 0 114 429 94 99 1 0 0

 1 0 189898 610 0 0 0 0 0 0 115 437 94 99 0 0 0

 1 0 189898 609 0 1 0 0 0 0 116 340 99 98 2 0 0

The example above shows a system that is CPU bound. This can be seen as the

user (us) plus system (sy) CPU values either equal or are approaching 100. A

system that is memory bound shows values of page in (pi) and page out (po)

exceeding 10 pages per second. A system that is disk I/O bound will show an I/O

wait percentage (wa) exceeding 10%. More details of vmstat can be found under

“AIX debugging commands” on page 103.

CPU bottlenecks

If vmstat has shown that the system is CPU-bound, the next stage is to determine

which process is using the most CPU time. The recommended tool is tprof:

> tprof -s -k -x sleep 60

outputs:

Starting Trace now

Tue Nov 26 11:40:11 2002

System: AIX voodoo Node: 4 Machine: 00455F1B4C00

Starting sleep 60

Trace is done now

 * Samples from __trc_rpt2

 * Reached second section of __trc_rpt2

> cat __prof.all

 Process PID TID Total Kernel User Shared Other

 ======= === === ===== ====== ==== ====== =====

 java 38454 43763 6700 5 0 3 6692

 X 15552 19681 29 7 11 11 0

 java 38454 35017 27 15 0 12 0

 swapper 0 3 25 25 0 0 0

 gil 1032 2065 23 23 0 0 0

 dtterm 20640 28639 20 11 0 9 0

 gil 1032 1291 17 17 0 0 0

 gil 1032 1807 15 15 0 0 0

 gil 1032 1549 13 13 0 0 0

 dtpad 21166 23867 9 1 0 8 0

 syncd 3136 3911 3 3 0 0 0

 sh 19436 38455 3 3 0 0 0

 sleep 19436 38455 2 2 0 0 0

 init 1 261 1 1 0 0 0

 rpc.lockd 12194 13421 1 1 0 0 0

 dsmc 27484 22709 1 0 0 1 0

 trace 16352 32479 1 1 0 0 0

 tprof 36242 37939 1 0 1 0 0

 nfsd 10848 55077 1 1 0 0 0

 ======= === === ===== ====== ==== ====== =====

 Total 6892 144 12 44 6692

 Segment :: 5 28741921144832

 Process FREQ Total Kernel User Shared Other

 ======= === ===== ====== ==== ====== =====

 java 2 6727 20 0 15 6692

 gil 4 68 68 0 0 0

 X 1 29 7 11 11 0

 swapper 1 25 25 0 0 0

 dtterm 1 20 11 0 9 0

 dtpad 1 9 1 0 8 0

AIX - debugging performance problems

124 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

syncd 1 3 3 0 0 0

 sh 1 3 3 0 0 0

 sleep 1 2 2 0 0 0

 init 1 1 1 0 0 0

 rpc.lockd 1 1 1 0 0 0

 dsmc 1 1 0 0 1 0

 trace 1 1 1 0 0 0

 tprof 1 1 0 1 0 0

 nfsd 1 1 1 0 0 0

 ======= === ===== ====== ==== ====== =====

 Total 19 6892 144 12 44 6692

 Total System Ticks: 6892 (used to calculate function level CPU)

This output shows that the Java process with Process ID (PID) 38454 is using the

majority of the CPU time. Notice the Kernel and Shared values. Because these are

both very small, you know that only a small number of system calls exist. The

majority of time is spent in Other, which accounts for time spent running actual

Java code, either through the Mixed Mode Interpreter (MMI) or the Just In Time

(JIT) Compiler.

In this example the JVM is performing normally and is doing a large amount of

work (although no output is seen). At this point, two options are available to

improve the performance of the Java application:

v Use a faster processor, or

v Profile the Java application for improvements by using Java profiling tools; for

example, Hprof and JinSight. (See Chapter 38, “Using third-party tools,” on page

383.)

If the results show that the Java process is using the majority of the CPU, and most

of the time is not in ″Other″ as below, it is likely to be a JVM internal problem.

 Process PID TID Total Kernel User Shared Other

 ======= === === ===== ====== ==== ====== =====

 java 162918 861337 3139 2847 0 292 0

 wait 774 775 2597 2597 0 0 0

 wait 3354 3355 1713 1713 0 0 0

 wait 2838 2839 1692 1692 0 0 0

However, the JVM might be performing abnormally long garbage collection cycles,

or very frequent garbage collection, therefore reducing actual application

throughput. To find out if this is the case, you can either:

v Look at the shared library usage shown in the tprof output, or

v Monitor the verbose GC output. This is easier, however, if the JVM was not

already running with this option. You will have to restart it.

The relevant section of the tprof output to look at is the shared library section:

 Shared Object Ticks % Address Bytes

 ============= ===== ==== ========== ======

 /applications/speople/hr81705/jre/bin/libjitc.a/ 2052 5.2 d34ea000 22da60

 /usr/lib/libc.a/shr.o 1355 3.4 d016ebe0 1d64f7

 /home/oracle/product/8.1.7/lib/libclntsh.a/shr.o 1081 2.7 d2dd7100 55d5d9

 /applications/speople/hr81705/jre/bin/classic/libjvm.a/ 1053 2.7 d3350000 1990ca

 /applications/speople/hr81705/bin/libpscompat.a/ 565 1.4 d0d4b000 26102

 /applications/speople/hr81705/bin/libpsbtunicode.a/ 311 0.8 d2bbe000 100355

 /applications/speople/hr81705/bin/libpsmgr.a/ 255 0.6 d1975000 bb5a3

 /applications/speople/hr81705/bin/libpssys.a/ 247 0.6 d0ded000 7f9ea2

 /applications/speople/hr81705/bin/libpsora.a/ 192 0.5 d2dc7000 fe82

 /applications/speople/hr81705/bin/libpspcm.a/ 125 0.3 d1c6f000 5f089c

 /applications/speople/hr81705/bin/libpscmn.a/ 84 0.2 d0d72000 576e7

 /usr/lib/libpthreads.a/shr_xpg5.o 75 0.2 d0004000 20307

AIX - debugging performance problems

Chapter 14. AIX problem determination 125

This shows that two of the JVM’s libraries in the top four utilized: libjitc.a, the JIT

Compiler, and libjvm.a, the core JVM itself. Examine the most highly used methods

in each:

 This output shows that the highest used JIT-support function is fi_init, and the

highest used JVM function is _fill. With knowledge of the internals of the JVM,

you can determine that these calls are used to create a Java stack trace. This shows

a problem in the JVM itself, and should be reported with all available

documentation. If the libjvm.a is the highest used JVM library, and the high-use

methods in that library consist almost exclusively of localMark and gc0, the most

likely cause is a garbage collection tuning problem. See Chapter 2, “Understanding

the Garbage Collector,” on page 7 for more information about tuning garbage

collection.

Memory bottlenecks

If the results of vmstat point to a memory bottleneck, you must find out which

processes are using large amounts of memory, and which, if any, of these are

growing. Use the svmon tool:

> svmon -P -t 5

This command outputs:

 Pid Command Inuse Pin Pgsp Virtual 64-bit Mthrd

 38454 java 76454 1404 100413 144805 N Y

 Pid Command Inuse Pin Pgsp Virtual 64-bit Mthrd

 15552 X 14282 1407 17266 19810 N N

 Pid Command Inuse Pin Pgsp Virtual 64-bit Mthrd

 14762 dtwm 3991 1403 5054 7628 N N

 Pid Command Inuse Pin Pgsp Virtual 64-bit Mthrd

 15274 dtsessi 3956 1403 5056 7613 N N

 Pid Command Inuse Pin Pgsp Virtual 64-bit Mthrd

 21166 dtpad 3822 1403 4717 7460 N N

This output shows that the highest memory user is Java, and that it is using 144805

pages of virtual memory (144805 * 4 KB = 565.64 MB). This is not an unreasonable

amount of memory for a JVM with a large Java heap - in this case 512 MB.

 Profile: /applications/speople/hr81705/jre/bin/libjitc.a/

 Total Ticks For All Processes (/applications/speople/hr81705/jre/bin/libjitc.a/) = 2052

Subroutine Ticks % Source Address Bytes

============= ===== ==== ======== ========== =====

.fi_init 293 0.7 /userlvl/ca141/src/jit/pfm/ppc/aix/../../../pfm/ppc/rt_framec.c d34f4fb8 218

._fill 81 0.2 noname d34ecb24 70

.dopt_dessa_dag 67 0.2 /userlvl/ca141/src/jit/pfm/ppc/aix/../../../sov/Dopt/dopt_rename.c d36a258c 20ac

.MERGE_VARREF 57 0.1 /userlvl/ca141/src/jit/pfm/ppc/aix/../../../sov/util/jit_dataflow.c d35e0e9c 234

.Copypropa_Init_Dataflow 53 0.1 /userlvl/ca141/src/jit/pfm/ppc/aix/../../../sov/Qopt/dfQ_copypropa.c d35fcca0 37c8

.Commoning_Final_Dataflow_B 47 0.1 /userlvl/ca141/src/jit/pfm/ppc/aix/../../../sov/Qopt/dfQ_commoning_sub.c d3648350 408c

.hasher 43 0.1 /userlvl/ca141/src/jit/pfm/ppc/aix/../../../sov/util/hasher.c d352b78c 1b0

.dopt_regenerate_dag 43 0.1 /userlvl/ca141/src/jit/pfm/ppc/aix/../../../sov/Dopt/dopt_dag.c d36914c0 408c

.dopt_generate_dag 33 0.1 /userlvl/ca141/src/jit/pfm/ppc/aix/../../../sov/Dopt/dopt_quad2dag.c d3683044 4788

.ReachDef_Q_Fwd_Visit_DataFlow_R 32 0.1 /userlvl/ca141/src/jit/pfm/ppc/aix/../../../sov/Qopt/dfQ_reachdef.c d36c5ed8 220

 Profile: /applications/speople/hr81705/jre/bin/classic/libjvm.a/

 Total Ticks For All Processes (/applications/speople/hr81705/jre/bin/classic/libjvm.a/) = 1053

Subroutine Ticks % Source Address Bytes

============= ===== ==== ======== ========== ======

._fill 428 1.1 noname d3351098 88

.memcpy 145 0.4 moveeq.s d3351700 1b8

.atomicSetTLHAllocbits 51 0.1 /userlvl/ca141/src/jvm/sov/st/msc/gc_alloc.c d3430f24 3a4

.localMark 35 0.1 /userlvl/ca141/src/jvm/sov/st/msc/gc_mark.c d344fd60 1de4

.is_instance_of 21 0.1 /userlvl/ca141/src/jvm/sov/xe/common/jit.c d336941c 8c

.clProgramCounter2Method 19 0.0 /userlvl/ca141/src/jvm/sov/cl/clloadercache.c d349669c 23c

AIX - debugging performance problems

126 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

If the system is memory-constrained with this level of load, the only remedies

available are either to obtain more physical memory, or to attempt to tune the

amount of paging space that is available by using the vmtune command to alter

the maxperm and minperm values.

If the Java process continues to increase its memory usage, an eventual memory

constraint will be caused by a memory leak.

I/O bottlenecks

This book does not discuss conditions in which the system is disk- or

network-bound. For disk-bound conditions, use filemon to generate more details

on which files and disks are in greatest use, and netstat to determine network

traffic. A good resource for these kinds of problems is Accelerating AIX by Rudy

Chukran (Addison Wesley, 1998).

Collecting data from a fault condition in AIX

The information that is most useful at a point of failure depends, in general, on the

type of failure that is experienced. These normally have to be actively generated

and as such is covered in each of the sections on the relevant failures. However,

some data can be obtained passively:

The AIX core file

If the environment is correctly set up to produce full AIX Core files (as

detailed in “Setting up and checking your AIX environment” on page 101),

a core file is generated when the process receives a terminal signal (that is,

SIGSEGV, SIGILL, or SIGABORT). The core file is generated into the

current working directory of the process, or at the location pointed to by a

symbolic link.

 To obtain a core file, set export DISABLE_JAVADUMP=TRUE. If you run java

–fullversion and the build date is later than January 2003, you must set the

IBM_NOSIGHANDLER as well; for example: export

IBM_NOSIGHANDLER=TRUE.

 For complete analysis of the core file, the IBM support team needs:

v The core file

v A copy of the Java executable that was running the process

v Copies of all the libraries that were in use when the process core

dumped

When a core file is generated, you should:

1. Rename the core file to prevent the core file from being overwritten by

any subsequent core file.

2. Run the AIX dump extractor against the core file (type jextract <core

file name>) to generate a cross platform dump format file (SDFF) that

the dump formatter can work on. Note that this SDFF file will be a

significant fraction of the size of the original AIX core file, so plenty of

disk space is required.

3. Use the libsGrabber.sh tool, which is available from IBM support, to

generate a compressed package that contains the core file and its

associated libraries. This compressed file contains all the files that IBM

support requires to analyze the core files on another machine.

The libsGrabber.sh tool works only on core files created by a 32-bit

executable. Alternatively, the snapcore utility is available from AIX 5.1

AIX - debugging performance problems

Chapter 14. AIX problem determination 127

onwards. You can use snapcore to collect the same information. For

example, snapcore -d /tmp/savedir core.001 /usr/java142/jre/bin/
java creates an archive (snapcore_pid.pax.Z) in the file /tmp/savedir.

You also have the option of looking directly at the core file by using dbx,

or a canned dbx session. dbx does not, however, have the advantage of

understanding Java frames and the JVM control blocks that the Dump

Formatter does. Therefore, you are recommended to use the Dump

Formatter in preference to dbx.

The JavaDump file:

When a Javadump is written, a message (JVMDG304) is written to stderr

telling you the name and full path of the Javadump file. In addition, a

Javadump file can be actively generated from a running Java process by

sending it a SIGQUIT (kill -3 or Ctrl-\) command.

The Error Report

The use of errpt -a generates a complete detailed report from the system

error log. This report can provide a stack trace, which might not have been

generated elsewhere. It might also point to the source of the problem

where it would otherwise be ambiguous.

Getting AIX technical support

See these web pages:

http://techsupport.services.ibm.com/server/nav?fetch=a4ojc

http://techsupport.services.ibm.com/server/nav?fetch=a5oj

collecting data from a fault condition in AIX

128 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

http://techsupport.services.ibm.com/server/nav?fetch=a4ojc
http://techsupport.services.ibm.com/server/nav?fetch=a5oj

Chapter 15. Linux problem determination

This chapter describes problem determination on Linux in:

v “Setting up and checking your Linux environment”

v “General debugging techniques” on page 131

v “Diagnosing crashes” on page 136

v “Debugging hangs” on page 137

v “Debugging memory leaks” on page 138

v “Debugging performance problems” on page 139

v “Collecting data from a fault condition in Linux” on page 142

v “Known limitations on Linux” on page 143

If you are working in the alternative debug environment, see Appendix I, “Using

the alternative JVM for Java debugging,” on page 499.

Setting up and checking your Linux environment

Note: Linux operating systems undergo a large number of patches and updates. It

is impossible for IBM personnel to test the JVM against every patch. The intention

is to test against the most recent releases of a few distributions. In general, you

should keep systems up-to-date with the latest patches. See http://www.ibm.com/
developerworks/java/jdk/linux/tested.html for an up-to-date list of releases and

distributions that have been successfully tested against.

The Java service team has a tool named ReportEnv that plugs into your JVM and

reports on the JVM environment in real time. Your JVM environment affects the

operation of the JVM. ReportEnv reports on environment variables and

command-line parameters. It is a GUI tool, although it can be run without a GUI.

The GUI allows you to browse your environment and, to some extent, dynamically

change it. The tool also has a mechanism to generate reports to tell you the exact

state of your JVM environment. A screenshot of the tool is shown in “Setting up

and checking your Windows environment” on page 151. The ReportEnv tool is

available on request from jvmcookbook@uk.ibm.com.

Working directory

The current working directory of the JVM process is where core files, Java dumps,

heap dumps, and the JVM trace outputs, including Application Trace and Method

trace, are outputted. Enough free disk space must be available for this directory.

Also, the JVM must have write permission.

Linux core files

A core file is an image of a process that is created by the operating system when

the process terminates unexpectedly. This file can be very useful in determining

what went wrong with a process. The production of core files can be enabled by

default, depending on the distribution and version of Linux that you have.

Because truncated files are of no practical use, set the size of the Linux core file to

″unlimited″.

© Copyright IBM Corp. 2003, 2006 129

http://www.ibm.com/developerworks/java/jdk/linux/tested.html
http://www.ibm.com/developerworks/java/jdk/linux/tested.html
jvmcookbook@uk.ibm.com

Table 5. Usage of ulimit

Usage Action

ulimit -c # check the current corefile limit

ulimit -c 0 # turn off corefiles

ulimit -c x # set the maximum corefile size to x number

of 1024-bytes

ulimit -c unlimited # turn on corefiles with unlimited size

ulimit -n unlimited # allows an unlimited number of open file

descriptors

ulimit -p # size of pipes

ulimit -s # maximum native stack size for a process

ulimit -u # number of user processes

help ulimit #list of other options

The core file is placed into the current working directory of the process, subject to

write permissions for the JVM process and free disk space.

Depending on the kernel level, a useful kernel option is available that gives

corefiles more meaningful names. As root user, the option sysctl -w

kernel.core_users_pid=1 ensures that core files have a name of the form

″Core.PID″.

Threading libraries

Two different threading libraries are available for Linux. The IBM JVM supports

both the more recent Native POSIX Threads Library for Linux (NPTL) and the

Linuxthreads libraries. The Linuxthreads library is supported both with and

without floating stacks. NPTL is available and is the default library for RedHat

distributions since RHEL3 and for SuSE since SLES9.

If you suspect a problem in the threading area, you can try using Linuxthreads to

see if the problem lies in NPTL.

To use Linuxthreads on RHEL3 and RHEL4, set the following environment

variable:

export LD_ASSUME_KERNEL=2.4.19

To use Linuxthreads on SLES9, set:

export LD_ASSUME_KERNEL=2.4.21

Floating stacks

On older distributions, only Linuxthreads are available. On the Intel 32-bit

architecture, a problem exists in Linux kernels earlier than release 2.4.10. The

operating system might lock up when running the IBM JVM with floating stacks

enabled. The Java wrapper script detects the kernel version and sets an

environment variable LD_ASSUME_KERNEL=2.2.5, which on RedHat systems

loads the Linuxthreads library without floating stacks enabled.

If the JVM is loaded by the Invocation API, the LD_ASSUME_KERNEL must be

set either on the command line or by the invoking program.

setting up and checking your Linux environment

130 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

If floating stacks are not enabled, thread stacks are aligned on fixed boundaries.

The -Xss flag that sets the size of a thread stack in the JVM has no effect.

You can discover your glibc version by changing to the /lib directory and running

the file libc.so.6. The Linux command ldd prints information that should help you

to work out the shared library dependency of your application.

General debugging techniques

This section provides a guide to the JVM-provided diagnostic tools and Linux

commands that can be useful when you are diagnosing problems that occur with

the Linux JVM.

Starting Javadumps in Linux

See Chapter 25, “Using Javadump,” on page 219.

Starting heapdumps in Linux

See Chapter 26, “Using Heapdump,” on page 245.

Using the dump extractor on Linux

When a dump occurs, the structure and contents of the core file produced differ

depending on platform. A cross-platform dump formatter can automate some of

the tasks that are involved with studying a corefile. For the dump formatter to

function, all corefiles must be converted to a common format. The Linux Dump

Extractor converts a corefile obtained on a Linux machine to a corefile suitable for

use by the dump formatter. To use the Linux Dump extractor, run the command:

jextract <corefile>

This command produces a modified core file with a .sdff file extension, which you

might be asked to send to IBM service. See Chapter 29, “Using the dump

formatter,” on page 261 for details of the Cross Platform Dump Formatter.

Using core dumps

The commands objdump and nm both display information about object files. If a

crash occurs and a corefile is produced, these commands help you analyze the file.

objdump

Use this command to disassemble shared objects and libraries. After you have

discovered which library or object has caused the problem, use objdump to

locate the method in which the problem originates. To invoke objdump, type:

objdump <option> <filename>

nm

This command lists symbol names from object files. These symbol names can

be either functions, global variables, or static variables. For each symbol, the

value, symbol type, and symbol name are displayed. Lower case symbol types

mean the symbol is local, while upper case means the symbol is global or

external. To use this tool, type: nm <option> <filename>

 You can see a complete list of options by typing objdump -H. The -d option

disassembles contents of executable sections

Run these commands on the same machine as the one that produced the core files

to get the most accurate symbolic information available. This output (together with

the core file, if small enough) is used by IBM Java Support to diagnose a problem.

setting up and checking your Linux environment

Chapter 15. Linux problem determination 131

Using system logs

The kernel provides useful environment information. Use the following commands

to view this information:

v ps -elf

v top

v vmstat

The ps command displays process status. Use it to gather information about native

threads. Some useful options are:

v -e: Select all processes

v -l: Displays in long format

v -f: Displays a full listing

The top command displays the most CPU- or memory-intensive processes in real

time. It provides an interactive interface for manipulation of processes and allows

sorting by different criteria, such as CPU usage or memory usage. The display is

updated every five seconds by default, although this can be changed by using the

s (interactive) command. The top command displays several fields of information

for each process. The process field shows the total number of processes that are

running, but breaks this down into tasks that are running, sleeping, stopped, or

undead. In addition to displaying PID, PPID, and UID, the top command displays

information on memory usage and swap space. The mem field shows statistics on

memory usage, including available memory, free memory, used memory, shared

memory, and memory used for buffers. The Swap field shows total swap space,

available swap space, and used swap space.

The vmstat command reports virtual memory statistics. It is useful to perform a

general health check on your system, although, because it reports on the system as

a whole, commands such as ps and top can be used afterwards to gain more

specific information about your programs operation. When you use it for the first

time during a session, the information is reported as averages since the last reboot.

However, further usage will display reports that are based on a sampling period

that you can specify as an option. Vmstat 3 4 will display values every 3 seconds

for a count of 4 times. It might be useful to start vmstat before the application,

have it direct its output to a file and later study the statistics as the application

started and ran. The basic output from this command appears in five sections;

processes, memory, swap, io, system, and cpu.

The processes section shows how many processes are awaiting run time, blocked,

or swapped out.

The memory section shows the amount of memory (in kilobytes) swapped, free,

buffered, and cached. If the free memory is going down during certain stages of

your applications execution, there might be a memory leak.

The swap section shows the kilobytes per second of memory swapped in from and

swapped out to disk. Memory is swapped out to disk if RAM is not big enough to

store it all. Large values here can be a hint that not enough RAM is available

(although it is normal to get swapping when the application first starts).

The io section shows the number of blocks per second of memory sent to and

received from block devices.

Linux - general debugging techniques

132 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

The system section displays the interrupts and the context switches per second.

There is overhead associated with each context switch so a high value for this may

mean that the program does not scale well.

The cpu section shows a break down of processor time between user time, system

time, and idle time. The idle time figure shows how busy a processor is, with a

low value indicating that the processor is very busy. You can use this knowledge to

help you understand which areas of your program are using the CPU the most.

In Linux, each native thread is a distinct process with a unique process ID (PID).

The kernel can therefore provide very useful information about your threads

through commands such as ps and top.

Linux debugging commands

ps

On Linux, Java threads are implemented as system threads and might be visible in

the process table, depending on the Linux distribution. Running the ps command

gives you a snapshot of the current processes. The ps command gets its

information from the /proc filesystem. Here is an example of using ps.

ps -efwH

UID PID PPID C STIME TTY TIME CMD

cass 1234 1231 0 Aug07 ? 00:00:00 /bin/bash

cass 1555 1234 0 Aug07 ? 00:00:02 java app

cass 1556 1555 0 Aug07 ? 00:00:00 java app

cass 1557 1556 0 Aug07 ? 00:00:00 java app

cass 1558 1556 0 Aug07 ? 00:00:00 java app

cass 1559 1556 0 Aug07 ? 00:00:00 java app

cass 1560 1556 0 Aug07 ? 00:00:00 java app

e Specifies to select all processes.

f Ensures that a full listing is provided.

m Shows threads if they are not shown by default.

w An output modifier that ensures a wide output.

H Useful when you are interested in Java threads because it displays a

hierarchical listing. With a hierarchical display, you can determine which

process is the primordial thread, which is the thread manager, and which are

child threads. In the example above, process 1555 is the primordial thread,

while process 1556 is the thread manager. All the child processes have a

parent process id pointing to the thread manager.

Tracing

Tracing is a technique that presents details of the execution of your program. If

you are able to follow the path of execution, you will gain a better insight into

how your program runs and interacts with its environment. Also, you will be able

to pinpoint locations where your program starts to deviate from its expected

behavior.

Three tracing tools on Linux are strace, ltrace and mtrace. The command man

<strace> will show a full set of available options.

strace

The strace tool traces system calls. You can either use it on a process that is

already active, or start it with a new process. strace records the system calls

made by a program and the signals received by a process. For each system call,

Linux - general debugging techniques

Chapter 15. Linux problem determination 133

the name, arguments, and return value are used. strace allows you to trace a

program without requiring the source (no recompilation is required). If you use

it with the -f option, it will trace child processes that have been created as a

result of a forked system call. strace is often used to investigate plug-in

problems or to try to understand why programs do not start properly.

ltrace

The ltrace tool is distribution-dependent. It is very similar to strace. This tool

intercepts and records the dynamic library calls as called by the executing

process. strace does the same for the signals received by the executing process.

mtrace

mtrace is included in the GNU toolset. It installs special handlers for malloc,

realloc, and free, and enables all uses of these functions to be traced and

recorded to a file. This tracing decreases program efficiency and should not be

enabled during normal use. To use mtrace, set IBM_MALLOCTRACE to 1,

and set MALLOC_TRACE to point to a valid file where the tracing

information will be stored. You must have write access to this file.

gdb

The GNU debugger (gdb) allows you to examine the internals of another program

while the program executes or retrospectively to see what a program was doing at

the moment that it crashed. The gdb allows you to examine and control the

execution of code and is very useful for evaluating the causes of crashes or general

incorrect behavior. gdb does not handle Java processes, so it is of limited use on a

pure Java program. It is useful for debugging native libraries and the JVM itself.

You can run gdb in three ways:

Starting a program

Normally the command: gdb <application> is used to start a program under

the control of gdb. However, because of the way that Java is launched, you

must invoke gdb by setting an environment variable and then calling Java:

export IBM_JAVA_DEBUG_PROG=gd

java

Then you receive a gdb prompt, and you supply the run command and the

Java arguments:

r<java_argumnets>

Attaching to a running program

If a Java program is already running, you can control it under gdb. The

process id of the running program is required, and then gdb is started with the

Java executable as the first argument and the pid as the second argument:

gdb <Java Executable> <PID>

When gdb is attached to a running program, this program is halted and its

position within the code is displayed for the viewer. The program is then

under the control of gdb and you can start to issue commands to set and view

the variables and generally control the execution of the code.

Running on a corefile

A corefile is normally produced when a program crashes. gdb can be run on

this corefile. The corefile contains the state of the program when the crash

occurred. Use gdb to examine the values of all the variables and registers

leading up to a crash. With this information, you should be able to discover

what caused the crash. To debug a corefile, invoke gdb with the Java

executable as the first argument and the corefile name as the second argument:

Linux - general debugging techniques

134 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

gdb <Java Executable> <corefile>

When you run gdb against a corefile, it will initially show information such as

the termination signal the program received, the function that was executing at

the time, and even the line of code that generated the fault.

 When a program comes under the control of gdb, a welcome message is displayed

followed by a prompt (gdb). The program is now waiting for your input and will

continue in whichever way you choose.

There are a number of ways of controlling execution and examination of the code.

Breakpoints can be set for a particular line or function using the command:

breakpoint linenumber

or

breakpoint functionName

 After you have set a breakpoint, use the continue command to allow the program

to execute until it hits a breakpoint.

Set breakpoints using conditionals so that the program will halt only when the

specified condition is reached. For example, using breakpoint 39 if var = = value

causes the program to halt on line 39 only if the variable is equal to the specified

value.

If you want to know where as well as when a variable became a certain value you

can use a watchpoint. Set the watchpoint when the variable in question is in scope.

After doing so, you will be alerted whenever this variable attains the specified

value. The syntax of the command is: watch var = = value.

To see which breakpoints and watchpoints are set, use the info command:

info break

info watch

 When gdb reaches a breakpoint or watchpoint, it prints out the line of code it is

next set to execute. Note that setting a breakpoint on line 8 will cause the program

to halt after completing execution of line 7 but before execution of line 8. As well

as breakpoints and watchpoints, the program also halts when it receives certain

system signals. By using the following commands, you can stop the debugging

tool halting every time it receives these system signals:

handle sig32 pass nostop noprint

handle sigusr2 pass nostop noprint

When the correct position of the code has been reached, there are a number of

ways to examine the code. The most useful is backtrace (abbreviated to bt), which

shows the call stack. The call stack is the collection of function frames, where each

function frame contains information such as function parameters and local

variables. These function frames are placed on the call stack in the order that they

are executed (the most recently called function appears at the top of the call stack),

so you can follow the trail of execution of a program by examining the call stack.

When the call stack is displayed, it shows a frame number to the very left,

followed by the address of the calling function, followed by the actual function

name and the source file for the function. For example:

Linux - general debugging techniques

Chapter 15. Linux problem determination 135

#6 0x804c4d8 in myFunction () at myApplication.c

To view more in-depth information about a function frame, use the frame

command along with a parameter specifying the frame number. After you have

selected a frame, you can display its variables using the command print var.

Use the print command to change the value of a variable; for example, print var

= newValue.

The info locals command displays the values of all local variables in the selected

function.

To follow the exact sequence of execution of your program, use the step and next

commands. Both commands take an optional parameter specifying the number of

lines to execute, but while next treats function calls as a single line of execution,

step will step through each line of the called function.

When you have finished debugging your code, the run command causes the

program to run through to its end or its crash point. The quit command is used to

exit gdb.

Other useful commands are:

ptype

Prints datatype of variable.

info share

Prints the names of the shared libraries that are currently loaded.

info functions

Prints all the function prototypes.

list

Shows the 10 lines of source code around the current line.

help

The help command displays a list of subjects, each of which can have the help

command invoked on it, to display detailed help on that topic.

Diagnosing crashes

Many approaches are possible when you are trying to determine the cause of a

crash. The process normally involves isolating the problem by checking the system

setup and trying various diagnostic options.

Checking the system environment

The system might have been in a state that has caused the JVM to crash. For

example, this could be a resource shortage (such as memory or disk) or a stability

problem. Check the Javadump file, which contains various system information (as

described in Chapter 25, “Using Javadump,” on page 219). The Javadump file tells

you how to find disk and memory resource information. The system logs can give

indications of system problems.

Gathering process information

It is useful to find out what exactly was happening leading up to the crash.

Linux - general debugging techniques

136 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

Analyze the core file (as described in Chapter 29, “Using the dump formatter,” on

page 261) to produce a stack trace, which will show what was running up to the

point of the crash. This could be:

v JNI native code.

v JIT compiled code. If you have a problem with the JIT, try running with JIT off

by setting JAVA_COMPILER=NONE.

v JVM code.

Other tracing methods:

v ltrace

v strace

v mtrace - can be used to track memory calls and determine possible corruption

v RAS trace, described in Chapter 35, “Using the Reliability, Availability, and

Serviceability interface,” on page 355.

Finding out about the Java environment

Use the Javadump to determine what each thread was doing and which Java

methods were being executed. Match function addresses against library addresses

to determine the source of code executing at various points.

Use the verbosegc option to look at the state of the Java heap and determine if:

v There was a shortage of Java heap space and if this could have caused the crash.

v The crash occurred during garbage collection, indicating a possible garbage

collection fault. See Chapter 2, “Understanding the Garbage Collector,” on page

7.

v The crash occurred after garbage collection , indicating a possible memory

corruption.

For more information about the Garbage Collector, see Chapter 2, “Understanding

the Garbage Collector,” on page 7.

Debugging hangs

For an explanation of deadlocks and diagnosing them using the Javadump tool,

see “Locks, monitors, and deadlocks (LK)” on page 222.

A hang is caused by a wait or a loop. A wait or deadlock sometimes occurs

because of a wait on a lock or monitor. A loop or livelock can occur similarly or

sometimes because of an algorithm making little or no progress towards

completion. The following approaches are most useful in this situation:

v Monitoring process and system state (as described in “Collecting data from a

fault condition in Linux” on page 142).

v Java Dumps give monitor and lock information.

v verbosegc information is useful. It indicates:

– Excessive garbage collection because of lack of Java heap space causing the

system to appear to be in livelock

– Garbage collection causing of hang or memory corruption which later causes

hangs
v Java Process Examination Tool (procdata).

When the Linux JVM hangs or loops, there are a number of things you can look

at that can help determine the cause of the problem. Linux has a virtual

filesystem (the /proc filesystem) that contains data about a particular process

Linux - diagnosing crashes

Chapter 15. Linux problem determination 137

including signal masks, allocated storage, and current instruction counter. This

information must be written to a file before any intrusive debugging takes place

(such as trying to take a javacore or attaching a debugger).

You must first find out the PID of the primordial thread and then run the

procdata class on the PID; for example, java com.ibm.jvm.linux.procdata 5886.

You can discover the primordial thread by using the -H option of the ps

command. This gives you a hierarchical list of processes and their PIDs with the

primordial thread being the topmost Java thread in the hierarchy. For example, if

the JVM has hung and you run ps -H from another session, you should get

output like this:

ps -efH

peacocb 5884 5882 0 13:45 pts/3 00:00:00 /bin/ksh

peacocb 5886 5884 3 13:45 pts/3 00:00:02 java hwawt

peacocb 5887 5886 0 13:45 pts/3 00:00:00 java hwawt

peacocb 5888 5887 0 13:45 pts/3 00:00:00 java hwawt

peacocb 5889 5887 0 13:45 pts/3 00:00:00 java hwawt

peacocb 5890 5887 0 13:45 pts/3 00:00:00 java hwawt

peacocb 5891 5887 0 13:45 pts/3 00:00:00 java hwawt

peacocb 5892 5887 0 13:45 pts/3 00:00:00 java hwawt

peacocb 5893 5887 0 13:45 pts/3 00:00:00 java hwawt

peacocb 5894 5887 0 13:45 pts/3 00:00:00 java hwawt

peacocb 5895 5887 0 13:45 pts/3 00:00:00 java hwawt

peacocb 5896 5887 0 13:45 pts/3 00:00:00 java hwawt

peacocb 5897 5887 0 13:45 pts/3 00:00:00 java hwawt

In this example, 5886 is the PID of the primordial thread (5887 is the PID of the

thread manager, and thus the parent PID of all the other threads in the JVM).

Running procdata against the PID of the primordial thread produces a file called

PID.procdata (in this case 5886.procdata). This file contains the output of

/proc/5886/maps in addition to /proc/pid/stat and /proc/pid/status for all

the threads in the JVM. It then summarizes the data that is collected, and

produces a table of threads and the signals that are blocked or pending. The

typical signal masks encountered are identified and any masks that are unusual

are flagged as such. Send this file to IBM Java Service as an aid to problem

diagnosis.

This process is completely unintrusive of the failing JVM. Typically, you run this

before the debugger (gdb) is attached to a failing JVM because the process of

attaching gdb will change the signal masks. You should coordinate this process

with other debugging techniques so that a consistent core file, javacore, and

procdata output from a single failure are collected together.

Debugging memory leaks

If dynamically allocated objects are not freed at the end of their lifetime, memory

leaks can occur. When objects that should have had their memory released are still

holding memory and more objects are being created, the system eventually runs

out of memory.

The dbgmalloc library can be linked in to a customer native library to help identify

native memory leaks. dbgmalloc must be linked in to the library before the

C-runtime library, so that the standard memory routines can be overridden.

The following options must be added to the gcc for the native library to wrap the

memory access routines:

-Wl,--wrap -Wl,malloc -Wl,--wrap -Wl,calloc -Wl,--wrap -Wl,realloc -Wl,--wrap

-Wl,strdup -Wl,--wrap -Wl,strndup -Wl,--wrap -Wl,free

-L$SDK/jre/bin -ldbgmalloc

Linux - debugging hangs

138 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

(The environment variable $SDK points to the Java SDK directory (for example,

/opt/IBMJava2-142).

You can use the backtrace trace option to debug memory leaks. See the backtrace

entry under “Detailed property descriptions” on page 326 for usage details.

The mtrace tool from GNU is also available for tracking memory calls. The

Allocation Debugging section of http://www.gnu.org/manual/glibc-2.2.3/
html_node/libc_toc.html specifies how to use this tool effectively. This tool enables

you to trace memory calls such as malloc and realloc so that you can detect and

locate memory leaks.

For more details about analyzing the Java Heap, see Chapter 26, “Using

Heapdump,” on page 245.

Debugging performance problems

Locating the causes of poor performance is often difficult, because, although many

factors can affect performance, the overall effect is often the same; that is, poor

response or slow execution of your program.

Whether you want to find obvious performance bottlenecks, or tune general

performance, find out as much as possible about your system and how it performs.

Also, remember that when you correct one set of problems, you might cause more

problems in another area. By finding and correcting a bottleneck in one place, you

might only shift the cause of poor performance to other areas. So, to really

improve performance, you must experiment by tuning different parameters,

monitoring their effect, and retuning until you are satisfied that your system is

performing acceptably.

System performance

Several tools are available that enable you to measure system components and

establish how they are performing and under what kind of workload. Although

most of these tools have been introduced earlier in this chapter, it is still worth

mentioning them here, and discussing how you can use them to specifically debug

performance issues.

The aspects of the system that you are most interested in measuring are CPU

usage and memory usage. If you can prove that the CPU is not powerful enough

to handle the workload, any amount of tuning makes not much difference to

overall performance. Nothing less than a CPU upgrade might be required.

Similarly, if a program is running in an environment in which it does not have

enough memory, an increase in the memory is going to make a much bigger

change to performance than any amount of tuning does.

CPU usage

You might typically experience Java processes consuming 100% of processor time

when a process reaches its resource limits. Ensure that ulimit settings are

appropriate to the application requirement. Some of the most-used ulimit

parameters are discussed in Table 5 on page 130.

The /proc file system provides information about all the processes that are running

on your system, including the Linux kernel. Because Java threads are run as

system processes, you can learn valuable information about the performance of

Linux - debugging memory leaks on Linux

Chapter 15. Linux problem determination 139

http://www.gnu.org/manual/glibc-2.2.3/html_node/libc_toc.html
http://www.gnu.org/manual/glibc-2.2.3/html_node/libc_toc.html

your application. See /proc man for more information about viewing /proc

information. /proc/version gives you information about the Linux kernel that is

on your system.

The top command provides real-time information about your system processes.

The top command is useful for getting an overview of the system load. It quite

clearly displays which processes are using the most resources. Having identified

the processes that are probably causing a degraded performance, you can take

further steps to improve the overall efficiency of your program. More information

is provided about the top command in “Using system logs” on page 132.

Memory usage

If a system is performing poorly because of lack of memory resources, it is

memory bound. By viewing the contents of /proc/meminfo, you can view your

memory resources and see how they are being used. /proc/swap gives

information on your swap file.

Swap space is used as an extension of the systems virtual memory. Therefore, not

having enough memory or swap space causes performance problems. A general

guideline is that swap space should be at least twice as large as the physical

memory.

A swap space can be either a file or disk partition. A disk partition offers better

performance than a file does. fdisk and cfdisk are the commands that you use to

create another swap partition. It is a good idea to create swap partitions on

different disk drives because this distributes the I/O activities and so reduces the

chance of further bottlenecks.

VMstat is a tool that enables you to discover where performance problems might

be caused. For example, if you see that high swap rates are occurring, it is likely

that you do not have enough physical or swap space. The free command displays

your memory configuration, while swapon -s displays your swap device

configuration. A high swap rate (for example, many page faults) means that it is

quite likely that you need to increase your physical memory. More details on how

to use VMstat are provided in “Using system logs” on page 132.

Network problems

Another area that often affects performance is the network. Obviously, the more

you know about the behavior of your program, the easier it is for you to decide

whether this is a likely source of performance bottleneck. If you think that your

program is likely to be I/O bound, netstat is a useful tool. In addition to providing

information about network routes, netstat gives a list of active sockets for each

network protocol and can give overall statistics, such as the number of packets that

are received and sent. Using netstat, you can see how many sockets are in a

CLOSE_WAIT or ESTABLISHED state and you can tune the respective TCP/IP

parameters accordingly for better performance of the system. For example, tuning

/proc/sys/net/ipv4/tcp_keepalive_time will reduce the time for socket waits in

TIMED_WAIT state before closing a socket. If you are tuning /proc/sys/net file

system, the effect will be on all the applications running on the system. However,

to make a change to an individual socket or connection, you have to use Java

Socket API calls (on the respective socket object). Use netstat -p (or the lsof

command) to find the right PID of a particular socket connection and its stack

trace from a javacore file taken with the kill -3 <pid> command.

You can also use IBM’s RAS trace, -Dibm.dg.trc.print=net, to trace out

network-related activity within the JVM. This technique is helpful when

Linux - debugging performance problems

140 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

socket-related Java thread hangs are seen. Correlating output from netstat -p, lsof,

JVM net trace, and ps -efH can help you to diagnose the network-related

problems.

Providing summary statistics that are related to your network is useful for

investigating programs that might be underperforming because of TCP/IP

problems. The more you understand your hardware capacity, the easier it is for

you to tune with confidence the parameters of particular system components that

will improve the overall performance of your application. You can also determine

whether only system tuning and tweaking will noticeably improve performance, or

whether actual upgrades are required.

JVM performance

In addition to looking at your overall hardware and system performance, you can

tune several JVM parameters to further increase performance of your Java

application. These parameters are normally set as Java command line options.

java [-options] class [args...]

OR

 java -jar [-options] jarfile [args...]

where options include:

v -Xgcpolicy:optavgpause

v -Xmx

v -Xms

v -Xgcpolicy:optthruput

The Java heap size is one of the most important tunable parameters of your JVM.

It is especially important if you are running several processes and JVMs on your

system. The heap contains all Java objects (live and dead) and free memory.

Garbage collection is based on how full your heap is. Therefore, a large heap size

delays the frequency of garbage collection, but when garbage collection does occur,

it takes longer to complete.

What you consider to be an acceptable heap size depends on your application; you

will certainly need to experiment. In addition to balancing the frequency and

length of garbage collections, you must also remember that memory that is

allocated to one applications heap is not available to other applications. This is an

example of fixing a bottleneck in one area, by increasing heap size to decrease

frequency of garbage collection, and causing problems somewhere else. For

example, other processes might have to use paging to supplement their diminished

memory. Under no circumstances should heap size be larger than physical

memory.

-Xms sets the initial heap size while -Xmx sets the maximum heap size.

After you have set the heap size, the verbosegc command shows you information

about garbage collection. The default garbage collection policy is optthruput,

which generally gives the fastest throughput. However, by specifying optavgpause,

you can help programs that are displaying erratic response times, although

throughput will be slower. See Chapter 31, “Garbage Collector diagnostics,” on

page 299 for more information.

Linux - debugging performance problems

Chapter 15. Linux problem determination 141

JIT

The JIT is another area that can affect the performance of your program. When

deciding whether to use JIT compilation, you must make a balance between faster

execution and increased compilation overhead. The JIT is on by default; you can

turn it off by using one of the following Java options:

-Djava.compiler=NONE

or

-Djava.compiler=" "

It is useful to investigate the JIT when you are debugging performance problems.

For more details about the JIT, see Chapter 4, “Understanding the JIT,” on page 37

and Chapter 30, “JIT diagnostics,” on page 295.

You can learn much about your Java application by using hprof, the nonstandard

profiling agent. Statistics about CPU and memory usage are presented along with

many other options. The hprof tool is discussed in detail in Chapter 36, “Using the

JVMPI,” on page 369. -Xrunhprof:help gives you a list of suboptions that you can

use with hprof.

Collecting data from a fault condition in Linux

When a problem occurs, the more information known about the state of the system

environment, the easier it is to reach a diagnosis of the problem. A large set of

information can be collected, although only some of it will be relevant for

particular problems. The following sections tell you the data to collect to help IBM

Java Service solve the problem.

Collecting core files

Collect corefiles to help diagnose many types of problem. Process the corefile with

jextract. The resultant sdff file is useful for service (see “jextract” on page 262).

Producing Javadumps

In some conditions (a crash, for example), a Javadump is produced, usually in the

current directory. In others (for example, a hang) you might have to prompt the

JVM for this by sending the JVM a SIGQUIT (kill -3 <PID>) signal. This is

discussed in more detail in Chapter 25, “Using Javadump,” on page 219.

Using system logs

The kernel logs system messages and warnings. The system log is located in the

/var/log/messages file. Use it to observe the actions that led to a particular

problem or event. The system log can also help you determine the state of a

system. Other system logs are in the /var/log directory.

Determining the operating environment

The following commands can be useful to determine the operating environment of

a process at various stages of its lifecycle:

uname -a

Provides operating system and hardware information.

df Displays free disk space on a system.

free

Displays memory use information.

Linux - debugging performance problems

142 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

ps -ef

Gives a full process list.

lsof

Lists open file handles.

top

Displays process information (such as processor, memory, states) sorted by

default by processor usage.

vmstat

Provides general memory and paging information.

 In general, the uname, df, and free output is useful. The other commands may be

run before and after a crash or during a hang to determine the state of a process

and to provide useful diagnostic information.

Sending information to Java Support

When you have collected the output of the commands listed in the previous

section, put that output into files. Compress the files (which could be very large)

before sending them to Java Support. You should compress the files at a very high

ratio.

The following command builds an archive from files {file1,..,fileN} and compresses

them to a file whose name has the format filename.tar.gz:

tar czf filename.tgz file1 file2...filen

Collecting additional diagnostic data

Depending on the type of problem, the following data can also help you diagnose

problems. The information available depends on the way in which Java is invoked

and also the system environment. You will probably have to change the setup and

then restart Java to reproduce the problem with these debugging aids switched on.

proc file system

The /proc file system gives direct access to kernel level information. The /proc/N

directory contains detailed diagnostic information about the process with PID

(process id) N, where N is the id of the process.

The command cat /proc/N/maps lists memory segments (including native heap)

for a given process.

strace, ltrace, and mtrace

Use the commands strace, ltrace, and mtrace to collect further diagnostic data. See

“Tracing” on page 133.

Known limitations on Linux

Threads as processes

The JVM for Linux implements Java threads as native threads. This results in each

thread being a separate Linux process. If the number of Java threads exceeds the

maximum number of processes allowed, your program might:

v Get an error message

v Get a SIGSEGV error

v Hang

collecting data from a fault condition in Linux

Chapter 15. Linux problem determination 143

Before kernel 2.4, the maximum number of threads available is determined by the

minimum of:

v The user processes setting (ulimit -u) in /etc/security/limits.conf.

v The limit MAX_TASKS_PER_USER defined in /usr/include/linux/tasks.h.

(This change requires the Linux kernel to be recompiled.)

v The limit PTHREAD_THREADS_MAX defined in libpthreads.so. (This change

requires the Linux kernel to be recompiled.)

However, you might run out of virtual storage before reaching the maximum

number of threads.

In kernel 2.4, the native stack size is the main limitation when running a large

number of threads. Use the -Xss environment variable to reduce the size of the

thread stack so that the JVM can handle the required number of threads. For

example, set the stack size to 32 KB on startup.

For more information, see The Volano Report at http://www.volano.com/report/
index.html.

Floating stacks limitations

If you are running without floating stacks, regardless of what is set for -Xss, a

minimum native stack size of 256 KB for each thread is provided. On a floating

stack Linux system, the -Xss values are used. Thus, if you are migrating from a

non-floating stack Linux system, ensure that any -Xss values are large enough and

are not relying on a minimum of 256 KB. (See also “Threading libraries” on page

130.)

glibc limitations

If you receive a message indicating that the libjava.so library could not be loaded

because of a symbol not found (such as __bzero), you might have a down-level

version of the GNU C Runtime Library, glibc, installed. The SDK for Linux thread

implementation requires glibc version 2.1 or greater.

Font limitations

When you are installing on a Red Hat system, to allow the font server to find the

Java TrueType fonts, run:

/usr/sbin/chkfontpath --add /opt/IBMJava2-131/jre/lib/fonts

You must do this at install time and you must be logged on as ″root″ to run the

command. For more detailed font issues, particularly with regard to Japanese fonts,

see the User Guide for your SDK.

CORBA limitations

Bidirectional GIOP is not supported.

When running with a Java 2 SecurityManager, invocation of some methods in the

CORBA API classes might cause permission checks to be made that could result in

a SecurityExecption. Here is a selection of affected methods:

 Table 6. Methods affected when running with Java 2 SecurityManager

Class/Interface Method Required permission

org.omg.CORBA.ORB init java.net.SocketPermission resolve

org.omg.CORBA.ORB connect java.net.SocketPermission listen

known limitations on Linux

144 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

http://www.volano.com/report/index.html
http://www.volano.com/report/index.html

Table 6. Methods affected when running with Java 2 SecurityManager (continued)

Class/Interface Method Required permission

org.omg.CORBA.ORB resolve_initial_references java.net.SocketPermission connect

org.omg.CORBA.

portable.ObjectImpl

_is_a java.net.SocketPermission connect

org.omg.CORBA.

portable.ObjectImpl

_non_existent java.net.SocketPermission connect

org.omg.CORBA.

portable.ObjectImpl

OutputStream _request (String,

boolean)

java.net.SocketPermission connect

org.omg.CORBA.

portable.ObjectImpl

_get_interface_def java.net.SocketPermission connect

org.omg.CORBA.

Request

invoke java.net.SocketPermission connect

org.omg.CORBA.

Request

send_deferred java.net.SocketPermission connect

org.omg.CORBA.

Request

send_oneway java.net.SocketPermission connect

javax.rmi.

PortableRemoteObject

narrow java.net.SocketPermission connect

Scheduler limitation on SLES 8

After SDK 1.4.1 first became available, applications that run on symmetric

multiprocessor machines have been found to perform better with a new IBM

Virtual Machine implementation of Java monitors. Because this new

implementation either improves, or has no effect on, the performance of most

applications, it is now the default behavior. However, on SLES 8, a few

heavily-multithreaded applications might not perform so well with the new

default. You can restore the old algorithm by setting the environment variable:

export IBM_JVM_MONITOR_OLD=<any value>

This problem occurs only with the Linux scheduler implementation on SLES 8. It

does not occur in SLES 8 Service Pack 2 when the following kernel configuration is

applied:

/sbin/sysctl -w kernel.sched_yield_scale=1

Neither does it occur with the default configuration of SLES 8 Service Pack 3.

known limitations on Linux

Chapter 15. Linux problem determination 145

known limitations on Linux

146 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

Chapter 16. Sun Solaris problem determination

IBM does not supply a software developer kit or runtime environment for the Sun

Solaris platform. However, IBM does make strategic products, such as the

WebSphere Application Server, for this platform. In this case, the WebSphere

Application Server contains an embedded copy of the Sun Solaris JVM alongside

some IBM add-ons, such as security packages. The WebSphere Application Server

Solaris SDK is therefore a hybrid of Sun and IBM products but the core JVM and

JIT are Sun Solaris.

This book is therefore not appropriate for diagnosis on Sun Solaris. IBM does

service the Sun Solaris SDK, but only when it is an embedded part of IBM

middleware, for example, WebSphere Application Server. If you get a Java problem

on Solaris as a result of using an IBM middleware product, go to Part 2, “Submitting

problem reports,” on page 81 and submit a bug report.

© Copyright IBM Corp. 2003, 2006 147

148 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

Chapter 17. Hewlett-Packard SDK problem determination

IBM does not supply a software developer kit or runtime environment for HP

platforms. However, IBM does make strategic products, such as the WebSphere

Application Server, for this platform. In this case, the WebSphere Application

Server contains an embedded copy of the HP JVM alongside some IBM add-ons,

such as security packages. The WebSphere Application Server HP SDK is therefore

a hybrid of HP and IBM products but the core JVM and JIT are HP software.

This book is therefore not appropriate for diagnosis on HP platforms. IBM does

service the HP SDK, but only when it is an embedded part of IBM middleware, for

example, WebSphere Application Server. If you get a Java problem on an HP

platform as a result of using an IBM middleware product, go to Part 2, “Submitting

problem reports,” on page 81 and submit a bug report.

© Copyright IBM Corp. 2003, 2006 149

150 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

Chapter 18. Windows problem determination

This chapter describes problem determination on Windows in:

v “Setting up and checking your Windows environment”

v “General debugging techniques” on page 154

v “Diagnosing crashes in Windows” on page 155

v “Debugging hangs” on page 160

v “Debugging memory leaks” on page 161

v “Debugging performance problems” on page 163

v “Collecting data from a fault condition in Windows” on page 164

v “Controlling the JVM when used as a browser plug-in” on page 165

If you are working in the alternative debug environment, see Appendix I, “Using

the alternative JVM for Java debugging,” on page 499.

Setting up and checking your Windows environment

The installation process of the SDK or JRE sets up everything for you. The installer

uses the Windows InstallShield software. If you are using an IBM product with

embedded Java (for example, WebSphere Application Server or WebSphere MQSI),

the product installation process installs Java for you.

The install process is the same on all versions of Windows. These versions are

supported :

v Windows 98

v Windows NT4

v Windows 2000

v Windows ME

v Windows XP

If you experience any difficulty after the installation:

v If you installed Java as part of an IBM product, refer to the manuals for that

product.

v If you installed Java as a standalone product or if you manually installed Java,

check the following environment variables.

PATH

The PATH variable must point to the directory of your Java installation that

contains the file jre.exe. Ensure that PATH includes the \bin directory of

your Java installation.

CLASSPATH

The JRE uses this environment variable to find the classes it needs when it

runs. This is useful when the class you want to run uses classes that are

located in other directories. By default, this is blank. If you install a product

that uses the JRE, CLASSPATH is automatically set to point to the JAR files

that the product needs.

A known problem for first-time users is to install Java and then set up a work

directory and compile a ’Hello World’ program. If you cannot run HelloWorld,

© Copyright IBM Corp. 2003, 2006 151

possibly the CLASSPATH variable is not pointing to your .CLASS file. A solution

is to type set CLASSPATH=., which always allows you to find classes in your

current directory.

The Java service team has a tool named ReportEnv that plugs into your JVM and

reports on the JVM environment in real time. Your JVM environment affects the

operation of the JVM. ReportEnv reports on environment variables and

command-line parameters. It is a GUI tool, although it can be run without a GUI.

The GUI allows you to browse your environment and, to some extent, dynamically

change it. The tool also has a mechanism to generate reports to tell you the exact

state of your JVM environment. A screenshot of the tool is shown in “Setting up

and checking your Windows environment” on page 151. The ReportEnv tool is

available on request from jvmcookbook@uk.ibm.com.

Figure 7 shows the ReportEnv tool.

Windows 32-bit large address aware support

From Version 1.4.2 Service Refresh 4 the IBM JVM for Windows 32-bit JVM

includes support for the /LARGEADDRESSAWARE switch, also know as the /3GB

switch. This switch increases the amount of space available to a process, from 2 GB

to 3 GB. The switch is a Windows boot parameter, not a command line-option to

the JVM.

This switch is useful in the following situations:

v Your application requires a very large number of threads.

v Your application requires a large amount of native memory.

v Your application has a very large codebase, causing large amounts of JIT

compiled code.

To enable large address support, modify your boot.ini file and reboot your

computer. For Instructions on how to do this, see the Microsoft website:

Figure 7. Screenshot of the ReportEnv tool

setting up and checking your Windows environment

152 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

jvmcookbook@uk.ibm.com

http://www.microsoft.com/whdc/system/platform/server/PAE/PAEmem.mspx.

For a list of supported platforms, see this Microsoft knowledge base page:

http://support.microsoft.com/kb/291988/.

After enabling the /3GB switch, the JVM gains 1 GB of extra memory space. This

extra space does not increase the theoretical maximum size of the Java heap, but

does allow the Java heap to grow closer to its theoretical maximum size (2 GB - 1

bytes), because the extra memory can be used for the native heap.

Setting up your Windows environment for data collection

Setting up for dump extraction

To enable the JVM to generate a dump for use by the cross platform debugger, see

Chapter 29, “Using the dump formatter,” on page 261.

Setting up for Javadump and Heapdump

Refer to Chapter 25, “Using Javadump,” on page 219 and Chapter 26, “Using

Heapdump,” on page 245.

Native Windows tools

Windows has embedded function for collecting data from processes that crash. The

functionality is accessed from a utility that is called Dr. Watson. Logs from Dr.

Watson and user dumps are useful to determine problems in crash and hang

situations. Your Windows machine must be set up for collecting this data.

Setting up Dr. Watson: If Dr. Watson is set as your default debugger, a Dr.

Watson log is generated whenever any process crashes. To set Dr. Watson as the

default debugger, at a command prompt type drwtsn32 -i.

This installs Dr. Watson as the default application debugger. This is a

one-time-only operation.

A Dr. Watson log is called drwtsn32.log by default.

Setting up for a crash dump: Dr. Watson provides an option that generates a

crash dump file when a process crashes. To enable this:

1. Run drwtsn32 in a command prompt to get a Dr. Watson window.

2. Ensure that the checkboxes Dump All Thread Contexts, Append To Existing

Log File, Visual Notification, and Create Crash Dump File are checked.

3. Ensure that the Dr. Watson log file and the Crash Dump files are stored in the

directory that is indicated by the text boxes marked ’Log File Path’ and ’Crash

Dump’ respectively. Set these paths to the appropriate directories.

4. Click OK.

Note that crash dumps are a complete dump of your computer virtual memory

and can therefore be quite large. For example, if you have 4 GB of memory on

your server, the crash dump size will also be in the GB range.

By default, crash dumps are put into a file that is called user.dmp and are called

″user dumps″ for this reason. Analyze user dumps with the windbg application

that is provided by Microsoft®. You can also use a user dump to create a

″minidump″ that can subsequently be loaded into the IBM cross-platform

debugger.

Note: By default, the Dr. Watson logs and crash dumps are put into your

Windows installation directory. By default this directory is public, which

Large address aware support

Chapter 18. Windows problem determination 153

http://www.microsoft.com/whdc/system/platform/server/PAE/PAEmem.mspx
http://support.microsoft.com/kb/291988/

means that anyone on your network can access a crash dump. If you do not

want this (for example, if the crash dump contains sensitive data such as

passwords), use the Dr. Watson window to ensure these dumps are put

somewhere private on your workstation.

Generating a user dump file in a hang condition: Windows provides a facility

that generates a user dump file for any process (even if it is hung) through a utility

called userdump.exe. This utility is provided by Microsoft and you can download

it from their Web site: www.microsoft.com.

Usage:

userdump -p

Lists all the processes and their pids.

userdump xxx

Creates a dump file of a process that has a pid of xxx (processname.dmp file is

created in the current directory from where userdump.exe is run).

For more information about generating a user dump file in a hang condition, see

“Debugging hangs” on page 160.

General debugging techniques

This section provides a guide to the JVM-provided diagnostic tools and Windows

commands that can be useful when you are diagnosing problems that occur with

the Windows JVM.

Starting Javadumps in Windows

See Chapter 25, “Using Javadump,” on page 219.

Starting Heapdumps in Windows

See Chapter 26, “Using Heapdump,” on page 245.

Using the Windows Dump Extractor

The IBM Java Cross-Platform Formatter is a powerful tool for debugging many

fault scenarios. As the name implies, it is a cross-platform tool and takes its input

from a predefined data source or code plug-in. The data source must be generated

by platform code because crash dumps vary according to the architecture. See

Chapter 29, “Using the dump formatter,” on page 261 for details.

Microsoft tools

Microsoft tools are provided as part of the operating system. It is therefore not

appropriate for this book to provide detailed instructions on how to use these

tools. Refer to www.microsoft.com and search on the site for instructions.

This section briefly describes how you might like to use the following tools:

v Dr. Watson

v User dumps

v WinDbg

Large address aware support

154 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

http://www.microsoft.com

Dr. Watson

Dr. Watson is a post-mortem tool that you can configure to dump a Dr. Watson log

whenever a Windows process crashes. The information that is in the Dr. Watson

log can be useful. Refer to the manufacturer’s instructions on how to enable the

tool. When enabled, the tool always captures crash dumps until you disable it.

However, with Javadump enabled, you cannot get Dr. Watson logs. You can

overcome this limitation by passing the -Xnosigcatch option to JVM while

invoking the Java application.

User dumps

A user dump can be either a dump of a process, or a dump of the whole system.

To get a user dump, you must configure Dr. Watson suitably.

Note that the data that is generated for a process dump is the same as the data

that the dump extractor provides (see Chapter 29, “Using the dump formatter,” on

page 261). The dump extractor generates minidumps with associated process

memory.

User dumps of a whole system are large; they consist of all the memory that is in

your computer, including the swap file. Gigabyte dumps are quite common.

By default, user dumps are placed into a Windows directory that Windows makes

shareable. You might want to keep user dumps more private if you are concerned

about passwords and other security details that will be contained in a full user

dump.

WinDbg

WinDbg is the general Windows debugging tool. You can attach it to a running

process, or use it in post-mortem mode by loading into WinDbg the user dump

that is generated by the system.

Diagnosing crashes in Windows

You generally see a crash either as an unrecoverable exception thrown by Java or

as a pop-up window notifying you of a General Protection Fault (GPF). The

pop-up usually refers to java.exe as the application that caused the crash. Crashes

can occur because of a fault in the JVM, or because of a fault in native (JNI) code

being run in the Java process.

Try to determine whether the application has any JNI code or uses any third-party

packages that use JNI code (for example, JDBC application drivers, and JVMPI

profiling plug-ins). If this is not the case, the fault must be in the JVM. Otherwise,

the fault must be in other code. Try and find out which is the case so that you can

pinpoint a problem.

As a general rule, try to recreate the crash with minimal dependencies (in terms of

JVM options, JNI applications, or profiling tools).

In a crash condition, gather as much data as possible for the IBM Java service

team. You should:

v Collect the Javadump. See Chapter 25, “Using Javadump,” on page 219 for more

details on using Javadump.

v Collect the Dr. Watson log. Take a copy of the Dr. Watson log. See “Native

Windows tools” on page 153 for details.

Windows - general debugging techniques

Chapter 18. Windows problem determination 155

v Collect the crash dump. See “Setting up and checking your Windows

environment” on page 151 for details.

v Run with the JIT turned off. See Chapter 30, “JIT diagnostics,” on page 295 for

details.

v Collect the Javadump and the Dr. Watson logs if the problem still occurs.

v Try some JIT compile options. If the problem disappears with the JIT turned off,

try some JIT compile options to see if the problem can be narrowed down

further. You could find that you can continue using the JVM, albeit with reduced

JIT performance, while giving the service team a running start with your bug

report. For information on using the basic JIT compile options, see Chapter 30,

“JIT diagnostics,” on page 295.

v Try to disable the MMI. If the problem occurs with or without the JIT, try

disabling the MMI. The MMI is the Mixed Mode Interface. MMI is switched on

by default and delays compiling methods with the JIT until a certain threshold

has been reached. This way, the JVM starts up reasonably quickly (no overhead

of ″JITting″ all the basic methods) while retaining the advantages of having a

JIT. However, with MMI active, some methods in your code are interpreted and

some are executed as native code, depending on whether they have hit the MMI

threshold. Set the MMI threshold to 0 to enforce ″JITting″ of all methods (that is,

no code is interpreted). To do this, set the environment variable

IBM_MIXED_MODE_THRESHOLD = 0. Run your application again and collect the

Javadump and Dr. Watson logs. This is the opposite of the previous scenario

where no code was ″JIT’d″.

v Try adjusting the garbage collection parameters. See Chapter 2, “Understanding

the Garbage Collector,” on page 7 for details. Make a note of any changes in

behavior. As a quick check, run with the following parameters: -nocompactgc

-noclassgc -verbosegc.

v Try running on a uniprocessor box. If your problem is occurring on a

multiprocessor system, test your application on a uniprocessor box. You can use

the BIOS options on your SMP box to reset the processor affinity to 1 to make it

behave like a uniprocessor. If the problem disappears, make a note in your bug

report. Otherwise, collect the Dr. Watson and crash dumps.

Tracing back from JIT’d code

You might get a crash in JIT’d code. If this happens, it is difficult to determine

exactly what Java code is being executed.

Identifying JIT’d code

The JIT compiles a Java method, then places the JIT’d code inside the Java process

space. Two methods are available that you can use to identify the JIT’d code:

v Map file

v Process Explorer

Using the map file: The map file, which is generated when a Windows JVM is

built, lists the components of the JVM (the DLLs), the load addresses, and the sizes

of these. Here is a sample map:

jvm

Timestamp is 3e37b21c (Wed Jan 29 10:51:08 2003)

Preferred load address is 10000000

Start Length Name Class

0001:00000000 000fb2a0H .text CODE

0002:00000000 00000140H .idata$5 DATA

diagnosing crashes in Windows

156 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

From this map, you can see that the preferred load address of the JVM dynamic

link library, jvm.dll, is 0x10000000 and that the CODE segment is 000fb2a0H bytes

long.

When you get a crash, examine the Dr. Watson log, or disassemble the code in the

dump formatter or WinDbg, at the point of the crash. If the code address is in the

segment that contains the dll code (that is, address 0x1nnnnnnn), but is at an offset

that is higher than 0xfb2a0, the code is JIT’d code.

Using Process Explorer: Process Explorer is described in “Process Explorer” on

page 392. Look at the java.exe process and display the DLLs. Part of the display

looks something like this:

- 0x10000000 0x155000 131.2003.0001.0023 29/01/03 <path>\classic\jvm.dll

In this case, the jvm dll is 0x155000 bytes long, so any code that you see above

address 0X10155000 must be JIT’d code.

Analyzing the dump

This section assumes that you are reasonably familiar with WinDbg. (Alternatively,

you can use the command line debugger if you want.)

If the crash is in JIT’d code and if you have a Dr. Watson log and a user dump,

you can manually trace back to find the method that was compiled into the JIT’d

code. Note that the dump extract that is generated by the JVM is also compatible

with the debugger.

1. Find the return address in the stack.

2. Find the end of the JIT frame.

3. Find the method name.

4. Find the class name, if needed.

5. Find the method signature, if needed.

Finding the return address in the stack

1. From the Dr. Watson log, locate the section that is headed “State dump for

current thread”.

2. From the register dump, make a note of the stack pointer setting; that is, the

value of the esp register.

This is all the information that you can get from the Dr. Watson log. Now, you

must use WinDbg:

1. Start WinDbg.

2. Load the user dump: File->Open Crash Dump, load the user.dmp file.

3. Start debugging. Click View->Memory and enter the value of esp.

Note: By default, WinDbg dumps an address followed by the 16 words of data at

that address and following:

d <address>

<address> 16 words

<address> + 16> 16 words

<address> + 32> 16 words

and so on

diagnosing crashes in Windows

Chapter 18. Windows problem determination 157

Because this dump cannot be shown on the printed page, in the following

example, the addresses are shown in bold, and the words of data are allowed to

wrap. Here is an example of the stack dump:

The problem is that the stack frame is undefined, so the location of the return

address in the frame is unknown. The only solution is to laboriously disassemble

each address in the stack in turn. Eventually, you will see a disassembly that has a

call instruction immediately in front of the disassembled instruction.

In the above example, disassembly showed nothing until selection of 11cee0c9 (the

seventh word in the stack trace).

1. Click View --> Disassembly.

2. Click Edit --> Go to Address.

3. Enter the value 11cee0c9. The disassembly view is something like this:

11CEE0C2 8BD5 mov edx,ebp

11CEE0C4 E8E7AA0100 call 11D08BB0

11CEE0C9 0BD8 or ebx,eax

11CEE0CB 8BC6 mov eax,esi

Note that address 11cee0c9 disassembles to or ebx,eax and the immediately

preceding instruction is call 11d08bb0. Therefore, 11cee0c9 is the return address in

the JIT code.

You must now find the end of the JIT code section. The JIT aligns its code frames

on a word boundary, so to find the end of the frame, you must start searching

from 11cee0c8, which is the return address rounded down to a word boundary.

Finding the end of the JIT frame

The end of a JIT frame is flagged by a word that is set to 0xcccccccc. To find this,

dump out the frame from 11cee08 onward. The dump looks like this:

The end of frame flag is at 11cee24c. The next word (18f2f138) is the key, because

it is a pointer to the method block (mb) that is inside the JVM. You do not need to

understand method blocks except for the key offsets that are in it. The following

offsets are valid:

mb + 0 pointer to classblock

mb + 4 pointer to method signature

mb + 8 pointer to method name string

d 1650f2ac

0x1650f2ac 13245ca0 013aeae0 005ff620 005ff620 00000000 013aebe0 11cee0c9 11cedbec

 013aebe0 013aec00 005ff620 1650f314 00000001 12e40378 1650f2f0 71325739

0x1650f2ec 005ff620 01f799e0 00000000 00000000 18f2f258 18f30031 18f2dab0 00000000

 00000000 00000002 1650f34c 71325739 00000000 005ff620 00597660 01f799e0

0x11CEE0C8 8bd80b00 8b088bc6 68528b11 0f013a83 0001038f 047a8100 004c73b0 0077850f

 528b0000 12b70f08 0491548b 854452ff 8bd58bc0 6d850fce 89ffffff 8b08245c

0x11CEE108 8b082444 8b10246c 8b14245c 8b182474 831c247c 89c320c4 eb08245c b9118be2

 02170fd2 e801ca83 5ed18e4c 72b9118b 83004cea 3de801ca 8b5ed18e 73b2b911

0x11CEE148 ca83004c 8e2ee801 178b5ed1 4c73b2b9 01ca8300 d18e1fe8 b9118b5e 004c73b2

 e801ca83 5ed18e10 ba515250 12fb7668 f2ff9bb9 803ee818 5a595ed1 e958d08b

0x11CEE188 fffffe73 ba515250 10cfb568 f2ffa0b9 8022e818 5a595ed1 e958d08b fffffe82

 ba515250 11441c58 f2ffbeb9 8006e818 5a595ed1 e958d08b fffffe94 ba515250

0x11CEE1C8 11441cb8 f2ffaab9 7feae818 5a595ed1 e958c88b fffffebe ba515250 11441c58

 f2ffbeb9 7fcee818 5a595ed1 e958d08b fffffef8 f2f19868 7f9ae918 f9835ed1

0x11CEE208 a7850f10 8bfffffe 884c8b08 fe9ce908 0489ffff 548d5124 5552ec24 8ffb386

8 31e85001 835ec2cb 855910c4 ba0f74c0 11cee0b8 048b0a89 fe7ce924 75e8ffff

0x11CEE248 905ed192 cccccccc 18f2f138 00000000 11cedf70 00000021 11cee2a8 11cee268

 00000001 11cee0c5 00000133 00000000 00000000 12e683c8 11cee258 00000019

diagnosing crashes in Windows

158 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

When the classblock (cb) address is obtained, the following offset is needed:

 cb + c pointer to class name string

Finding the method name

Dump out memory at address 18f2f138 + 8. The dump looks like this:

Go to the memory view and dump from 12f3fdc8 with the display format as

ASCII. This action displays the function name. In this case, it was

removeItemChargeAdjustments().

Now you know that the JIT’d code is for the method

removeItemChargeAdjustments. If this code is unique, you do not need to find the

class name. Otherwise, you must find also the class name.

Finding the class name

Dump the mb memory. The dump looks like this:

Offset 0 is the cb pointer, so the cb is located at 00650fd8, and the class name is at

offset c. Dump the memory at (00650fd8 + c) to show the pointer, then dump the

memory at that address in ASCII format; the class name is shown as

com/bco/bosc/core/charges/ChargeAdjustment. Now you know the name of the

class and the method is known. If these are unique, you do not need to find the

method signature. Otherwise, you must find the method signature.

Finding the method signature

 In the example dump that is shown above, the method signature pointer is

12f13518. Dump this in ASCII format to show the signature:

Lcom/bco/bosc/core/BasicOrderData;Lcom/bco/bosc/tools/ChargeType;)Z

You now know the exact method that was executing when the JIT code crashed. It

is:

com.bco.bosc.core.charges.ChargeAdjustment.removeItemChargeAdjustements ()

which takes objects BasicOrderData and ChargeType as parameters and returns

type boolean. You can start running diagnostics, such as method trace, with this as

a start point.

Data to send to IBM

At this point you potentially have several sets of either logs or dumps, or both (for

example one set for normal running, one set with JIT off, and so on). Label them

appropriately and make them available to IBM. (See Part 2, “Submitting problem

reports,” on page 81 for details.) The required files are:

v JVM-produced Javadump file (Javacore)

v Dr. Watson Log

v Cross-platform dump file (SDFF)

d 18f2f140

0x18F2F140 12f3fdc8 0000401a 00000000 00000000 18f2ff94 00000000 18f30900

18f30ece 00000030 00000007 00000005 11cedf88 00030002 00000005 00000000

11cedfb0

d 18f2f138 0x18F2F138 00650fd8 12f13518 12f3fdc8 0000401a 00000000 00000000

18f2ff94 00000000 18f30900 18f30ece 00000030 00000007 00000005 11cedf88 00030002 00000005

diagnosing crashes in Windows

Chapter 18. Windows problem determination 159

Debugging hangs

Hangs refer to the JVM locking-up or refusing to respond. A hang can occur when:

v Your application entered an infinite loop.

v A deadlock has occurred

To determine which of these situations applies, open the Windows Task Manager

and select the Performance tab. If the CPU time is 100% and your system is

running very slowly, the JVM is very likely to have entered an infinite loop.

Otherwise, if CPU usage is normal, you are more likely to have a deadlock

situation.

Analyzing deadlocks

For an explanation of deadlocks and diagnosing them using the Javadump tool,

see “Locks, monitors, and deadlocks (LK)” on page 222.

Getting a dump from a hung JVM

The Windows JVM is configured to do a dump extraction if it terminates

abnormally. Also, you can cause a dump by configuring the JVM to respond

appropriately to a SIGBREAK signal. This signal is tied, by default, to the Ctrl +

Break key combination. However, neither of these methods is particularly useful if

the JVM is hung up somehow.

For these conditions, the IBM Java service team can supply a small stand-alone

utility program that is called jvmdump.exe. This program takes a single parameter

that is the PID of a process. When run, the programme generates a minidump that

you can analyze through WinDbg, or translate into a dump-formatter dump in the

usual way. (See Chapter 29, “Using the dump formatter,” on page 261 for details.)

The jvmdump application is provided as-is. If you would like a copy, e-mail

jvmcookbook@uk.ibm.com.

Alternatively, if you have the Microsoft debugging tools installed, you can use

Windbg to generate a minidump. To do this:

1. Launch Windbg and attach to the hung JVM process.

2. In the command window, enter:

.dump /mfpa /c "dump comment" <dumpname>

A minidump of the attached process is produced. You can then translate this

minidump into a dump formatter dump in the usual way. (See Chapter 29, “Using

the dump formatter,” on page 261 for details.)

Creating a user dump file for a hung process using the Dr.

Watson utility

If the JVM appears to be hung and is not responding to signals to get a core

dump, use the procedure described below to obtain a Windows user dump file.

You can send this dump file to IBM service instead of an IBM core dump, and the

service team can extract relevant information.

Before running Java:

1. On the Start menu, click Run, type drwtsn32, and click Run.

2. When the Dr Watson dialog appears, in the Crash Dump field type your

required destination for the dump; for example, d:\toibm. Click OK.

Windows - debugging hangs

160 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

jvmcookbook@uk.ibm.com

After a hang:

1. Find the PID of the Java executable by using the Task Manager (Ctrl-Alt-Del

and then click Task Manager), click the Process tab, and find the PID for

java.exe or javaw.exe.

2. From a command line, type:

drwtsn32 -p <pid>

For example:

drwtsn32 - p 868

where 868 is the PID you just found.

This command will generate a file called user.dmp in the location you

specified. You can run the jextract tool against this dump to get a dump

formatter dump, which you can use to do the debugging yourself.

Debugging memory leaks

This section begins with a discussion of the Windows memory model and the Java

heap to provide background understanding before going into the details of

memory leaks.

The Windows memory model

Native memory leaks are not usually relevant to Java so these are discussed very

briefly.

Windows memory is virtualized. Applications do not have direct access to memory

addresses, so allowing Windows to move physical memory and to swap memory

in and out of a swapper file (called pagefile.sys).

Allocating memory is usually a two-stage process. Simply allocating memory

results in an application getting a handle. No physical memory is reserved. There

are more handles than physical memory. To use memory, it must be ’committed’.

At this stage, a handle references physical memory. This might not be all the

memory you requested.

For example, the stack allocated to a thread is normally given a small amount of

actual memory. If the stack overflows, an exception is thrown and the operating

system allocates more physical memory so that the stack can grow.

Memory manipulation by Windows programmers is hidden inside libraries

provided for the chosen programming environment. In the C environment, the

basic memory manipulation routines are the familiar malloc and free functions.

Windows APIs sit on top of these libraries and generally provide a further level of

abstraction.

From the point of view of a programmer, Windows provides a flat memory model,

in which addresses run from 0 up to the limit allowed for an application.

Applications can choose to segment their memory. On a dump, the programmer

sees sets of discrete memory addresses. The Windows NT operating system tends

to use addresses 0x77nnnnnn for its memory segments.

Java uses the following:

Windows - debugging hangs

Chapter 18. Windows problem determination 161

0x00400000 java executable (JAVA.EXE)

 0x10000000 main java library (jvm.dll)

 0x00b70000 extended HPI library (xhpi.dll)

 0x00b80000 HPI library (hpi.dll)

 0x090d0000 java tools library (java.dll)

 0x09100000 java zip library (zip.dll)

 0x091d0000 JIT library (jitc.dll)

Note that the JIT puts compiled code in its segment. The Javadump tells you that

the size of the JIT code is, for example, 5000 bytes. Thus you would expect JIT

code to occupy memory 0x091d0000 to 0x091d4fff inclusive. It is not uncommon to

see crashes indicating that code failed, for example, at address 0x091d6abc. This is

a sure indication that the crash has happened in JIT-compiled code.

Classifying leaks

The following scenarios are possible :

v Windows memory usage is increasing, Java heap is static:

– Memory leak in application.

– Memory leak in JNI.

– Leak with hybrid Java and native objects (very rare).
v Windows memory usage increases because the heap keeps increasing:

– Memory leak in application Java code. (See “Common causes of perceived

leaks” on page 299 below.)

– Memory leak internal to JVM.

Tracing leaks

The dbgmalloc library can be linked in to a customer native library to help identify

native memory leaks. dbgmalloc must be linked in to the library before the

C-runtime library, so that the standard memory routines can be overridden.

Note that dbgmalloc is meant for IBM use only.

Add this to the DLL command:

$SDK\jre\bin\libdbgmalloc.lib

The environment variable $SDK points to the Java SDK directory (for example,

/opt/IBMJava2-142).

Note that the Windows JVM does not support the backtrace trace option, so it will

be harder to use the debug malloc library to find a native memory leak.

Other tools for tracing leaks are available. Some of these tools are freeware. It is

outside the scope of this book to describe how to use all these tools. Chapter 38,

“Using third-party tools,” on page 383 describes some of the tools that are

available.

Some useful techniques are built into the JVM:

v The verbose GC option

v HeapDump: See Chapter 26, “Using Heapdump,” on page 245

v HPROF tools

Windows - debugging memory leaks

162 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

Verbose GC

Verbose GC is a command-line option that you supply to the JVM at startup time.

The format is: -verbose:gc

This option switches on a substantial trace of every garbage collection cycle.

Output typically looks like this:

<GC: Tue Apr 24 10:49:58 2001>

<GC(24): freed 1541416 bytes in 12 ms, 53% free (2248392/4194296)>

<GC(24): mark: 10 ms, sweep: 2 ms, compact: 0 ms>

<GC(24): refs: soft 0 (age >= 32), weak 0, final 116, phantom 0>

Notes:

1. GC(24): The 24th garbage collection cycle in this JVM.

2. freed 1541416 bytes: An indication of the amount of activity since the last

garbage collection cycle.

3. refs: soft 0 ... — the number of soft, weak, final, and phantom reference

objects found in the cycle. Large increasing numbers of references indicate

some kind of problem whereby reference objects are pinning down the objects

to which they refer.

4. For more information on garbage collection, see Chapter 2, “Understanding the

Garbage Collector,” on page 7.

This trace should allow you to see the gross heap usage in every garbage collection

cycle. For example, you could monitor the output to see the changes in the free

heap space and the total heap space.

Using HeapDump to debug memory leaks

For details about analyzing the Java Heap, see Chapter 26, “Using Heapdump,” on

page 245.

Debugging performance problems

Performance-related problems occur when:

v Applications consume 100% CPU when not required.

v Unnecessary events that can hinder performance are generated from the virtual

machine.

v Memory consumption with JVM is abnormal, but the program seems to be

running normally.

v Your application is very slow.

When a Java application seems to be running slowly, you should check the various

JIT options and ensure that a suitable JIT compiler exists for the virtual machine

before you try anything else. Refer to Chapter 30, “JIT diagnostics,” on page 295.

Use the hprof tool, which can help find the CPU usage problems with

applications. Different CPU options can be used to identify the method or thread

that consumes more CPU time. Hprof does not calculate the count of CPU

utilization by internal methods, but flattens the hierarchy of the methods and adds

the counts to the method that is at a lower level in the stack trace. Refer to java

-Xrunhprof:help (in Chapter 36, “Using the JVMPI,” on page 369) for further

options.

The memory consumption performance issues can be addressed by various

garbage collection options. Refer to Chapter 31, “Garbage Collector diagnostics,” on

page 299

Windows - debugging memory leaks

Chapter 18. Windows problem determination 163

page 299. Verify that the OS is tuned with sufficient paging memory for Java heap

management. The application heap tuning also plays a vital role. Using System.gc()

is not a good option because it is totally virtual machine dependent and cannot be

used to optimize the memory usage. Instead, your applications should take proper

care in managing the memory allocated to different objects. If you do use

System.gc(), try making it optionally compilable and switch it off to check if this is

impacting your performance. You can find general guidance on good garbage

collection practice in Chapter 2, “Understanding the Garbage Collector,” on page 7.

Other tools, such as JProf, ProGaurd, and JinSight, can give further inputs on

various parameters of a program running in Java. Some of these tools are

described in Chapter 38, “Using third-party tools,” on page 383.

Data required for submitting a bug report

IBM service requires:

v Description of performance issue.

v A heapdump (see Chapter 26, “Using Heapdump,” on page 245) if you think

that you have a memory consumption or thrashing problem.

v Javadump snapshots (see Chapter 25, “Using Javadump,” on page 219) of the

JVM before performance became a problem and after.

v If performance is a permanent problem, send a couple of snapshots that are

separated by approximately 10 minutes, by using the dump extractor (see

“General debugging techniques” on page 154) after the point at which

performance became a problem.

Frequently reported problems

IBM service often receives problems that are caused by:

v Garbage collection cycles consuming too much processor time:

1. System.gc() check. Check for and remove any unwanted System.gc() calls in

your code. If you want to use this call, make it conditionally compilable and

check whether switching it off addresses performance issues.

2. Heap management check. If your heap is too small, for example, the Garbage

Collector will continually run into allocation faults. Refer to Chapter 31,

“Garbage Collector diagnostics,” on page 299 and Chapter 2, “Understanding

the Garbage Collector,” on page 7 for data to help you to set the correct heap

size and tune the way garbage collection runs.
v Unused objects are not being collected.

See “Common causes of perceived leaks” on page 299.

v Heap never shrinks.

Refer to Chapter 2, “Understanding the Garbage Collector,” on page 7 for

conditions under which this can occur.

Collecting data from a fault condition in Windows

The more information that you can collect about a problem, the easier it is to

diagnose that problem. A large set of data can be collected, although some is

relevant to particular problems. The following list describes a typical data-set that

you can collect to assist IBM service to fix your problem.

v Javadumps. These can be generated automatically or manually. Automatic

dumps are essential.

Windows - debugging performance problems

164 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

v Heapdumps. If generated automatically, they are essential. They are also

essential if you have a memory or performance problem.

v Cross-platform dump formatter (SDFF) dump. This is the key to most problems.

v Dr. Watson logs. Send these if the operating system tells you it has generated

any.

v WebSphere Application Server logs (see Chapter 13, “Working in a WebSphere

Application Server environment,” on page 99), if you are working in a

WebSphere Application Server environment.

v Other data, as determined by your particular problem.

Controlling the JVM when used as a browser plug-in

When the JVM operates as a browser plug-in, you cannot directly pass parameters

into it or collect output. This section describes how to overcome this limitation.

The same technique applies to other platforms. Use the appropriate commands to

set environment variables and launch the browser.

This example shows you how to set verbosegc and dump options. Start a

command session and then:

set IBM_JAVA_OPTIONS=-verbose:gc

set

JAVA_DUMP_OPTS="ONERROR(JAVADUMP,SYSDUMP),ONEXCEPTION(JAVADUMP,SYSDUMP),

 ONDUMP(JAVADUMP)"

set IBM_HEAPDUMP=true

set IBM_HEAPDUMP_OUTOFMEMORY=true

set IBM_HEAPDUMPDIR=C:\Dumpdir

set IBM_JAVACOREDIR=C:\Dumpdir

Set the PATH environment variable to point to your browser if it is not already set.

For example:

set path=<path to browser executable>;%path%

Launch the browser from the command-line session:

mozilla>Output.txt 2>&1

or

start mozilla>Output.txt 2>&1

Use the browser as normal. The JVM plug-in will start with the specified

environment. The IBM_JAVA_OPTIONS environment variable is the key to setting

JVM command-line options. It causes the verbosegc output to be written to the

Output.txt file in the current working directory. Heapdumps and Javadumps will

be dumped to C:\Dumpdir when OutofMemoryError occurs.

Alternatively, you can generate JVM command-line options by passing -verbose:gc

as the JRE runtime parameter in the Plug-in Control Panel and then launching

Mozilla as shown above.

collecting data from a fault condition in Windows

Chapter 18. Windows problem determination 165

Windows - controlling the JVM as a browser plug-in

166 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

Chapter 19. z/OS problem determination

This chapter describes problem determination on z/OS in:

v “Setting up and checking your z/OS environment”

v “General debugging techniques” on page 169

v “Diagnosing crashes” on page 174

v “Debugging hangs” on page 181

v “Debugging memory leaks” on page 182

v “Debugging performance problems” on page 184

v “Collecting data from a fault condition in z/OS” on page 185

Setting up and checking your z/OS environment

Maintenance

The Java for OS/390 and z/OS website at:

http://www-1.ibm.com/servers/eserver/zseries/software/java/

has up-to-date information about any changing operating system prerequisites for

correct JVM operation. In addition, any new prerequisites are described in PTF

HOLDDATA.

LE settings

Language Environment (LE) Runtime Options (RTOs) affect operation of C and

C++ programs such as the JVM. In general, the options that developers set by

using C #pragma statements in the code should not be overridden because they

are generated as a result of testing to provide the best operation of the JVM.

Environment variables

Environment variables that change the operation of the JVM in one release can be

deprecated or change meaning in a following release. Therefore, you should review

environment variables that are set for one release, to ensure that they still apply

after any upgrade.

Private storage usage

The single most common class of failures after a successful install of the SDK are

those related to insufficient private storage. As discussed in detail in “Debugging

memory leaks” on page 182, LE provides storage from Subpool 2, key 8 for C/C++

programs like the JVM that use C RTL calls like malloc() to obtain memory. The LE

HEAP refers to the areas obtained for all C/C++ programs that run in a process

address space and request storage.

This area is used for the allocation of the Java heap where instances of Java objects

are allocated and managed by Garbage Collection. The area is used also for any

underlying allocations that the JVM makes during operations. For example, the JIT

compiler obtains work areas for compilation of methods and to store compiled

code.

© Copyright IBM Corp. 2003, 2006 167

http://www-1.ibm.com/servers/eserver/zseries/software/java/

Because the JVM must preallocate the maximum Java heap size so that it is

contiguous, the total private area requirement is that of the maximum Java heap

size that is set by the -Xmx command line option (or the 64 MB default if this is

not set), plus an allowance for underlying allocations. A total private area of 140

MB is therefore a reasonable requirement for an instance of a JVM that has the

default maximum heap size.

If the private area is restricted by either a system parameter or user exit, failures to

obtain private storage occur. These failures show as OutOfMemoryErrors or

Exceptions, failures to load dlls, or failures to complete subcomponent initialization

during startup.

Standalone environment checking utility program

The jdkiv utility is a small standalone program that helps solve some of the

problems described above. This tool is available on request from

jvmcookbook@uk.ibm.com. It prints out the fields of interest from the VSM (Virtual

Storage Management) LDA (Local Data Area) in a format similar to the output

from the IPCS command:

ip verbx vsmdata ’nog,summary,jobname(jjjjjjjj)’

This utility is particularly useful for identifying when the private area for a process

address space has been limited by an exit or system setting, and is lower than

anticipated. The interaction between exits and system settings is quite complex, so

it is useful to know what the final values in these LDA fields are.

Sample output from jdkiv:

jdkiv -- SDK for z/OS install verification program

(a) Operating System Check for installed SDK

CVT address:fc69b8

CVTFLAG2=f8

BFP Hardware Instruction set present

OS is:z/OS V01 R04.00 Machine 9672 Node MVJ1

getrlimit reports RLIMIT_AS as current:-2147483648, max:-2147483648

(b) Virtual Storage check for process 67174503 (0x4010067) ASCB:00f46880, ASID:0098

Virtual Storage Management, Local Data Area for this process at:7ff16ea0

Summary of Key Information from LDA (Local Data Area), (eyecatcher LDA) :

STRTA =00006000 (ADDRESS of start of private storage area)

SIZA =009fa000 (SIZE of private storage area) (10216 K)

CRGTP =00018000 (ADDRESS of current top of user region)

LIMIT =009fa000 (Maximum SIZE of user region) (10216 K)

LOAL =00012000 (TOTAL bytes allocated to user region)

HIAL =00037000 (TOTAL bytes allocated to LSQA/SWA/229/230 region)

SMFL =ffffffff (IEFUSI specification of LIMIT)

SMFR =ffffffff (IEFUSI specification of VVRG)

ESTRTA =1bb00000 (ADDRESS of start of extended private storage area)

ESIZA =64500000 (SIZE of extended private storage area) (1605 MB)

ERGTP =1c042000 (ADDRESS of current top of extended user region)

ELIM =7f606000 (Maximum SIZE of extended user region) (2038 MB)

ELOAL =00542000 (TOTAL bytes allocated to extended user region)

EHIAL =00c3d000 (TOTAL bytes allocated to extended LSQA/SWA/229/230)

SMFEL =ffffffff (IEFUSI specification of ELIM)

SMFER =ffffffff (IEFUSI specification of EVVRG)

REGREQ =03600000 (REGREQ) (54 MB)

VVRG =009fa000 (VVRG)

z/OS - setting up and checking the environment

168 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

EVVRG =7f606000 (EVVRG)

Total private area above and below capped by REGION limits is 1605 MB

REGION size is adequate for JVM instantiation with default max heap and JIT usage

(c) Envvar Check for installed SDK

No redundant or deprecated environment variables were found set

LIBPATH=/lib:/usr/lib:/usr/lpp/db2610/db2610/lib:.:/u/sovbld/bldsys/ode/os390

Note:LIBPATH is only used by Java for JNI

CLASSPATH=./.:/usr/lpp/db2/db2510/classes/db2jdbcclasses.zip:

PATH=/u/dclarke/cm131s/inst.images/mvs390_oe_1/sdk/jre/bin:

 /u/dclarke/cm131s/inst.images_g/mvs390_oe_1/sdk/jre/bin:

 /usr/lpp/skrb/bin:/bin:/usr/sbin:.:/u/dclarke/J1.3/bin

JAVA_DUMP_OPTS=ONINTERRUPT(ALL) THREAD(ALL) NOFILE NOVARIABLE PAGESIZE(0)

_CEE_RUNOPTS=AL(ON),POS(ON)

Warning:JVM default LE options are as follows

 #pragma runopts(ALL31(ON))

 #pragma runopts(ANYHEAP(2M,512K,ANYWHERE,KEEP))

 #pragma runopts(BELOWHEAP(8K,2K,KEEP))

 #pragma runopts(HEAP(8M,2M,ANYWHERE,KEEP))

 #pragma runopts(LIBSTACK(1K,1K,FREE))

 #pragma runopts(STACK(48K,16K,ANYWHERE,KEEP))

 #pragma runopts(STORAGE(NONE,NONE,NONE,1K))

Any change from these values may cause unexpected results or performance degradation

jdkiv -- there were 1 warning(s) or error condition(s) detected :-(

Setting up dumps

The JVM, by default, generates a Javadump and System Transaction Dump

(SYSTDUMP) when any of the following occurs:

v A SIGQUIT signal is received

v The JVM aborts because of a fatal error

v An unexpected native exception occurs (for example, a SIGSEGV, SIGILL, or

SIGFPE signal is received)

You can use JAVA_DUMP_OPTS to change the dumps that are produced on the

various types of signal. You can use JAVA_DUMP_TDUMP_PATTERN to change

the naming convention to which the SYSTDUMP is written as an MVS dataset.

Both of these variables are described in Chapter 27, “JVM dump initiation,” on

page 251.

General debugging techniques

Alongside the debugging tools that are available on all platforms, z/OS also:

v Implements its own Heapdump generation facility.

v Has a currently unsupported debugging toolset that is called svcdump.jar. This

toolset contains various packages, for example, the Dump package, as described

below, and is available through IBM support.

Starting Javadumps in z/OS

See Chapter 25, “Using Javadump,” on page 219.

Starting Heapdumps in z/OS

See Chapter 26, “Using Heapdump,” on page 245.

z/OS - setting up and checking the environment

Chapter 19. z/OS problem determination 169

The dump tool

You can use the dump tool of svcdump.jar for the analysis of SVC and Transaction

Dumps. You can use it instead of IPCS to gain information (for example,

tracebacks) from the dump. The Dump tool has the added advantage that it prints

Java method names, and understands some underlying JVM structures. The syntax

for using the Dump tool is:

java -classpath svcdump.jar com.ibm.jvm.svcdump.Dump [-options] <filename>

where -options can be one of:

 -cache: Print alloc cache.

 -dis <addr> <n>: Disassemble <n> instructions, starting at <addr> (hex).

 -dump <addr> <n>: Dump<n> words of storage, starting at <addr> (hex).

 -dumpclasses: Dump all the classes and their methods.

 -dumpclass <addr>: Dump the class at <addr>.

 -dumpnative: Dump all the native methods in all the loaded classes.

 -dumpprops: Dump all the system properties.

 -exception: Print old exceptions.

 -heap: Print a summary of objects that are in the heap.

 -systrace: Prints the system trace table.

 -r<n>: Include saved register <n> in the stack trace.

 -verbose: Print extra information.

 -debug: Print debug information.

 -version: Print information about the version.

The default output, if no options are specified, consists of, for every valid address

space, a listing of all the TCBs that are in that address space. The traceback and the

trace table, if available, is listed for each TCB. If available, the trace table is

obtained from the System Trace entries for that TCB, and the addresses that are

found are converted into a function name by finding the closest function entry

point. The trace lists the function names that have been found. The names are

listed in the sequence of which functions feature most often. Many entries of

unknown function (address) might be present. This means that the function name

for that address was unknown, possibly because it is Kernel code. This gives an

indication of what the TCB has been running previously. The environment

variables and the dll table for this address space are also printed out. The expected

tracebacks should be of the form of:

found trace table in asid 0

found trace table in asid 1

found trace table in asid 6

found trace table in asid c9e7d3c3

found trace table in asid c9e7c3c4

found trace table in asid c9e7c3c1

found trace table in asid c9c1d9c3

found trace table in asid e2e8e2e9

found trace table in asid 4

found Linkage TCB af1bc0 tid 0c6c3880 caa 00016a88

Dsa Entry Offset Function

0c330848 07193098 058b3d00 select1

0c330750 0d0ff6c0 000002da ThreadUtils_BlockingSection

0c330568 0d0ea088 000001da sysTimeout

0c3304a8 0d0da110 00000088 sysRead

0c3303f0 0ce05e20 00000120 JVM_Read

0c330340 0024af58 0000018e readBytes

0c330288 0022b618 00000096 Java_java_io_FileInputStream_readBytes

z/OS - general debugging techniques

170 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

0c330198 0ca179e8 00000102

java/io/FileInputStream.readBytes(Ljava/io/FileDescriptor;)I

0c3300a0 0d01d008 00000536 mmipSelectInvokeJavaMethod

(java/io/FileInputStream.read)

0c32ffa0 0d01d008 00000536 mmipSelectInvokeJavaMethod

(java/io/BufferedInputStream.read1)

0c32fea0 0d01d0f0 0000044e mmipSelectInvokeSynchronizedJavaMethod

(java/io/BufferedInputStream.read)

0c32fdb8 0d01d008 00000536 mmipSelectInvokeJavaMethod

(java/io/FilterInputStream.read)

0c32fcc0 0d01d008 00000536 mmipSelectInvokeJavaMethod

(java/io/InputStreamReader.fill)

0c32fbc0 0d01d008 00000536 mmipSelectInvokeJavaMethod

(java/io/InputStreamReader.read)

0c32fad0 0d01d008 00000536 mmipSelectInvokeJavaMethod

(java/io/BufferedReader.fill)

0c32f9b0 0ca1c994 00000118 java/io/BufferedReader.readLine(Z)Ljava/lang/String;

0c32f8d0 0d01d008 00000536 mmipSelectInvokeJavaMethod

(java/io/BufferedReader.readLine)

0c32f7a0 0d01d008 00000536 mmipSelectInvokeJavaMethod

(com/ibm/ctg/server/JGate.main)

0c32f6d0 0d01ca88 00000ab6 INVOKDMY

0c32f600 0d01bf48 00000098 EXECJAVA (^X ^OXá.^L2(F)

0c32f550 0d03c2f0 000000ee mmipExecuteJava (com/ibm/ctg/server/JGate.main)

0c32f428 0d041158 000006ce xeRunJniMethod

0c32f338 0cdd37c0 000001a8 jni_CallStaticVoidMethod

0c32f1e0 0c3088b8 00001c30 main

0c32f0c8 072c4bae f8d5297a EDCZMINV (main invocation event handler)

0c32f018 0000e2c0 0000013e CEEBBEXT (bootstrap routine)

00017330 0c308738 0000b19e (unknown)

00005f88 00000000 00fd2500 (unknown)

found LE TCB ad7b60 tid 0c88d798 caa 0c34b408

Dsa Entry Offset Function

0c34ca38 073b4498 f8c4bb68 CEEOPCW

0c34c978 071449d8 0000007a pthread_cond_wait

0c34c880 0d0ff6c0 000001a2 ThreadUtils_BlockingSection

0c34c788 0d0e1ac8 000001ac sysSignalWait

0c34c6b8 0d05e730 000000b6 signalDispatcherThread

0c34c608 0d060d08 000001d0 xmExecuteThread

0c34c560 0d04dc30 0000006e threadStart

0c34c3f8 0d0fffc8 00000a3a ThreadUtils_Shell

The -cache option

This option prints the Java alloc cache as:

This gives an idea of the most recently allocated objects, because they are still in

the alloc cache.

alloc cache info:

cache_busy = 0x0

cache_size = 0x7bbc

cache_block = 0x14208ef0

cache_orig_size = 0x10004

14210aac: len = 20 methods = efd7ee0 flags = 0 class = java/lang/String

14210acc: len = 70 methods = 32 flags = 2a

14210b3c: len = 68 methods = 2c flags = 2a

14210ba4: len = 20 methods = efd7ee0 flags = 0 class = java/lang/String

14210bc4: len = 20 methods = 110c4d00 flags = 0 class = java/lang/ref/Finalizer

14210be4: len = 20 methods = 110c7560 flags = 0 class = java/lang/ClassLoader$NativeLibrary

14210c04: len = 20 methods = efd7ee0 flags = 0 class = java/lang/String

14210c24: len = 50 methods = 1f flags = 2a

14210c74: len = 20 methods = efd7ee0 flags = 0 class = java/lang/String

z/OS - general debugging techniques

Chapter 19. z/OS problem determination 171

The -exception option

This option forces the output of any leftover exception objects. (Pending exceptions

are printed by default.) It prints the last exception that was thrown by each thread

(if any) in terms of the exception class plus any additional detail:

found old exception: java/lang/NoSuchMethodError: setInternalError

The -dis <addr> <n> option

This option disassembles the instruction at the hex address <addr> and the next

<n> instructions. The disassembler is not complete, but does know about the most

common instructions. When it finds an instruction that it does not understand, it

throws an exception and exits. This usually occurs when the disassembler reaches

the end of a function.

Disassembly starting at 0x11a90c48

0x11a90c48: (0x00000000): B x’22’($r15)

0x11a90c6a: (0x00000022): STM $r14,$r11,x’c’($r13)

0x11a90c6e: (0x00000026): L $r14, x’4c’($r13)

0x11a90c72: (0x0000002a): LA $r0, x’450’($r14)

0x11a90c76: (0x0000002e): CL $r0, x’314’($r12)

0x11a90c7a: (0x00000032): LA $r3, x’3a’($r15)

0x11a90c7e: (0x00000036): BGT x’14’($r15)

0x11a90c82: (0x0000003a): L $r15, x’280’($r12)

0x11a90c86: (0x0000003e): STM $r15,$r0,x’48’($r14)

0x11a90c8a: (0x00000042): MVI x’0’($r14), x’10’

0x11a90c8e: (0x00000046): ST $r13, x’4’($r14)

0x11a90c92: (0x0000004a): LR $r13, $r14

0x11a90c94: (0x0000004c): L $r4, x’1f4’($r12)

0x11a90c98: (0x00000050): L $r5, x’7ae’($r3)

0x11a90c9c: (0x00000054): LA $r2, x’c4’($r13)

0x11a90ca0: (0x00000058): LA $r1, x’98’($r13)

0x11a90ca4: (0x0000005c): ST $r2, x’98’($r13)

0x11a90ca8: (0x00000060): L $r14, x’170’($r5,$r4)

0x11a90cac: (0x00000064): LM $r15,$r0,x’8’($r14)

0x11a90cb0: (0x00000068): ST $r0, x’1f4’($r12)

0x11a90cb4: (0x0000006c): BALR $r14, $r15

0x11a90cb6: (0x0000006e): L $r7, x’7b2’($r3)

0x11a90cba: (0x00000072): L $r6, x’174’($r5,$r4)

0x11a90cbe: (0x00000076): LA $r0, x’f4’($r13)

0x11a90cc2: (0x0000007a): ST $r0, x’ac’($r13)

0x11a90cc6: (0x0000007e): LA $r1, x’407’($r7)

0x11a90cca: (0x00000082): LA $r14, x’fc’($r13)

0x11a90cce: (0x00000086): LA $r10, x’234’($r13)

0x11a90cd2: (0x0000008a): ST $r1, x’9c’($r13)

0x11a90cd6: (0x0000008e): LA $r11, x’41c’($r7)

0x11a90cda: (0x00000092): LM $r15,$r0,x’8’($r6)

0x11a90cde: (0x00000096): ST $r10, x’98’($r13)

0x11a90ce2: (0x0000009a): ST $r11, x’438’($r13)

0x11a90ce6: (0x0000009e): ST $r11, x’a0’($r13)

0x11a90cea: (0x000000a2): ST $r2, x’a4’($r13)

0x11a90cee: (0x000000a6): LA $r1, x’98’($r13)

0x11a90cf2: (0x000000aa): ST $r14, x’a8’($r13)

0x11a90cf6: (0x000000ae): ST $r0, x’1f4’($r12)

0x11a90cfa: (0x000000b2): BALR $r14, $r15

The -dump <addr> <n> option

This option dumps <n> words of storage starting at the hex address <addr>.

Currently it is not possible to specify which of the address spaces in the dump to

use. The tool defaults to the first Java address space.

z/OS - general debugging techniques

172 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

The -r<n> option

This option includes the saved register <n> that is in the stack trace. It assumes

that the register value is held in the DSA.

Using IPCS commands

Here are some sample IPCS commands that you might find useful during your

debugging sessions. In this case, the address space of interest is ASID(x’7D’).

ip verbx ledata ’nthreads(*)’

This command formats out all the C-stacks (DSAs) for threads in the

process that is the default ASID for the dump.

ip setd asid(x’007d’)

This command is to set the default ASID use command setdef; for

example, to set the default asid to x’007d’.

ip verbx ledata ’all,asid(007d),tcb(tttttt)’

In this command, the all report formats out key LE control blocks such as

CAA, PCB,

ZMCH, CIB. In particular, the CIB/ZMCH captures the PSW and GPRs at

the time the program check occurred.

ip verbx ledata ’cee,asid(007d),tcb(tttttt)’

This command formats out the traceback for one specific thread.

ip summ regs asid(x’007d’)

This command formats out the TCB/RB structure for the address space. It

is rarely useful for JVM debugging.

ip verbx sumdump

Then issue find ’slip regs sa’ to locate the GPRs and PSW at the time a

SLIP TRAP s matched. This command is useful for the case where you set

a SA (Storage Alter) trap to catch an overlay of storage.

ip omvsdata process detail asid(x’007d’)

This command generates a report for the process showing the thread status

from a USS kernel perspective.

ip select all

This command generates a list of the address spaces in the system at the

time of the dump, so you can tie up the ASID with the JOBNAME.

found Usta TCB a7e288 tid 1ac30e20 caa 109f5120

Dsa Entry Offset r12 Function

--- ----- ------ --- --------

10a06d90 11aa58d8 fff8909a 109f5120 SYSTDUMP

10a06940 11a90c48 00000414 109f5120 ThreadUtils_CoreDump

10a06830 11a734b0 000004b2 0ef473a0 userSignalHandler

10a06780 11a73a18 000000b8 40404040 intrDispatch

10a066c8 061596b8 000000c4 40404040 @@GETFN

10a06068 0628af48 0000075e 109f5120 __zerros

10a034d0 00000008 0638260e 109f5120 null

10a02a70 11a566d0 fefac3f8 00000000 CompareAndSwap_Impl

10a029c0 119223f0 000000a2 109f5120 pin_object

10a02918 11740c40 00000114 109f5120 jni_GetPrimitiveArrayElements

10a02710 1af1a388 000000b2 109f5120 MVS_CcicsInit

10a02660 1af143b8 000000b0 109f5120 Java_com_ibm_ctg_server_ServerECIRequest_CcicsInit

10a025a8 06419078 0000005c 109f5120 CEEPGTFN

10a02118 119a20d0 00000138 109f5120 MMIPSJNI

10a02038 1199fd48 000003ce 109f5120 mmisInvokeJniMethodHelper

(com/ibm/ctg/server/ServerECIRequest.CcicsInit)

10a01f68 1198e3f8 00000100 109f5120 mmipInvokeJniMethod

(com/ibm/ctg/server/ServerECIRequest.CcicsInit)

z/OS - general debugging techniques

Chapter 19. z/OS problem determination 173

ip systrace asid(x’007d’) time(gmt)

This command formats out the system trace entries for all threads in this

address space. It is useful for diagnosing loops. time(gmt) converts the

TOD Clock entries in the system trace to a human readable form.

Interpreting error message IDs

While working in the OMVS, if you get an error message and if you want to

understand exactly what the error message means, go to: http://www-1.ibm.com/
servers/s390/os390/bkserv/lookat/lookat.html and enter the message ID. Then

select your OS level and then press enter. The output will give a better

understanding of the error message. To decode the errno2 values, use the following

command:

bpxmtext <reason_code>

Reason_code is specified as 8 hexadecimal characters. Leading zeroes may be

omitted.

Diagnosing crashes

A crash should occur only because of a fault in the JVM, or because of a fault in

native (JNI) code that is being run inside the Java process. A crash is more strictly

defined on z/OS as a program check that is handled by z/OS UNIX as a fatal

signal (for example, SIGSEGV for PIC4,10 or 11 or SIGILL for PIC1).

Documents to gather

When one of these fatal signals occurs, the JVM Signal Handler takes control. The

default action of the signal handler is to request an unformatted transaction dump

through the BCP IEATDUMP service and to produce a formatted dump of internal

JVM state, which is known as the Javadump. Output should be written to the

message stream that is written to stderr in the form of:

The output shows the location in HFS into which the Javadump file was written

and the name of the MVS dataset to which the transaction dump is written. These

locations are configurable and are described in Chapter 24, “Overview of the

available diagnostics,” on page 213 and Chapter 27, “JVM dump initiation,” on

page 251.

These two documents (that is, the Javadump file and the transaction dump)

provide the ability to determine the failing function, and therefore decide which

product owns the failing code, be it the JVM, application JNI code, or third part

native libraries (for example native JDBC drivers).

JVMHP001:JVM signal handler receives signal number 3 (SIGABRT)

JVMHP002:JVM requesting Transaction Dump

JVMHP007:JVM default dump data/set name pattern for IEATDUMP was RICCOLE.SYSTDUMP...

JVMHP005:Complete Transaction dump was written in 20566ms

JVMDG217: Dump Handler is Processing a Signal - Please Wait.

JVMHP002: JVM requesting System Transaction Dump

JVMHP012: System Transaction Dump written to RICCOLE.SYSTDUMP.D030929.T134331

JVMDG303: JVM Requesting Java core file

JVMDG304: Java core file written to /u/riccole/JAVADUMP.20030929.134401.16908553

.txt

JVMDG215: Dump Handler has Processed Error Signal 3.

CEE5207E The signal SIGABRT was received.

JVMXM004:JVM is performing abort shutdown sequence

JVMDG303:JVM writing JAVADUMP file

JVMDG304:JAVADUMP written to /u/riccole/JAVADUMP.20030929.134401.16908553

.txt

z/OS - general debugging techniques

174 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

http://www-1.ibm.com/servers/s390/os390/bkserv/lookat/lookat.html
http://www-1.ibm.com/servers/s390/os390/bkserv/lookat/lookat.html

Determining the failing function

Any one of the three documents that you gathered, (see “Documents to gather” on

page 174) should be enough to determine the failing function, and therefore

determine to which IBM support group the problem should be routed, or whether

application native C code is at fault.

The most practical way to find where the exception occurred is to review either the

CEEDUMP or the Javadump. Both of these show where the exception occurred and

the native stack trace for the failing thread. The same information can be obtained

from the transaction dump by using either IPCS LEDATA VERB Exit, or the

svcdump.jar toolset. These generate a report that is similar to the CEEDUMP.

In each case, the report shows the C-Stack (or native stack, which is separate from

the Java stack that is built by the JVM because one method gives control to

another). The C-stack frames are also known on z/OS as DSAs, because this is the

name of the control block that LE provides as a native stack frame for a C/C++

program. The following traceback from a CEEDUMP shows where a failure

occurred:

Notes:

1. The stack frame that has a status value of Exception indicates where the crash

occurred. In this example, the crash occurs in the function

mmipSelectInvokeJavaMethod.

Traceback:

 DSA Addr Program Unit PU Addr PU Offset Entry E Addr E Offset Statement Load Mod Service Status

 196784C0 /u/sovbld/hm131s/hm131s-20020716/src/hpi/pfm/threads_utils.c

 1A2FF8A0 +000006AA ThreadUtils_CoreDump

 1A2FF8A0 +000006AA 1662 *PATHNAM h020716 Call

 196783B0 /u/sovbld/hm131s/hm131s-20020716/src/hpi/pfm/interrupt_md.c

 1A2E2108 +000004B0 userSignalHandler

 1A2E2108 +000004B0 376 *PATHNAM h020716 Call

 19678300 /u/sovbld/hm131s/hm131s-20020716/src/hpi/pfm/interrupt_md.c

 1A2E2670 +000000B6 intrDispatch 1A2E2670 +000000B6 642 *PATHNAM h020716 Call

 19678248 084F8B98 +0000001A @@GETFN 084F8AF0 +000000C2 CEEEV003 Call

 19677CD8 08441918 +0000073A __zerros 08441918 +0000073A CEEEV003 UQ42798 Call

 19675968 CEEHDSP 0868E4E8 +00002B84 CEEHDSP 0868E4E8 +00002B84 CEEPLPKA UQ47631 Call

 196753E0 1A21D3C8 +000004E0 mmipSelectInvokeJavaMethod

 1A21D3C8 +000004E0 *PATHNAM Exception

 19675300 1A21D3C8 +00000534 mmipSelectInvokeJavaMethod

 1A21D3C8 +00000534 *PATHNAM Call

 19675208 1A21D3C8 +00000534 mmipSelectInvokeJavaMethod

 1A21D3C8 +00000534 *PATHNAM Call

 19675110 1A21D3C8 +00000534 mmipSelectInvokeJavaMethod

 1A21D3C8 +00000534 *PATHNAM Call

 19675020 1A21D3C8 +00000534 mmipSelectInvokeJavaMethod

 1A21D3C8 +00000534 *PATHNAM Call

 19674F48 1A21D3C8 +00000534 mmipSelectInvokeJavaMethod

 1A21D3C8 +00000534 *PATHNAM Call

 19674E78 1A21CE48 +00000AB4 INVOKDMY 1A21CE48 +00000AB4 *PATHNAM Call

 19674DA8 1A21C308 +00000096 EXECJAVA 1A21C308 +00000096 *PATHNAM Call

 19674CF8 /u/sovbld/hm131s/hm131s-20020716/src/jvm/pfm/xe/mmi/mmi_supp

 1A23C6B0 +000000EC mmipExecuteJava

 1A23C6B0 +000000EC 149 *PATHNAM h020716 Call

 19674BD0 /u/sovbld/hm131s/hm131s-20020716/src/jvm/sov/xe/common/run.c

 1A242940 +00000494 xeRunDynamicMethod

 1A242940 +00000494 892 *PATHNAM h020716 Call

 19674B20 /u/sovbld/hm131s/hm131s-20020716/src/jvm/sov/ci/jvm.c

 1A003ED0 +000000E0 threadRT0 1A003ED0 +000000E0 332 *PATHNAM h020716 Call

 19674A70 /u/sovbld/hm131s/hm131s-20020716/src/jvm/sov/xm/thr.c

 1A2610C8 +000001CE xmExecuteThread

 1A2610C8 +000001CE 1433 *PATHNAM h020716 Call

 196749C8 /u/sovbld/hm131s/hm131s-20020716/src/jvm/pfm/xe/common/xe_th

 1A24DFF0 +0000006C threadStart 1A24DFF0 +0000006C 79 *PATHNAM h020716 Call

 19674860 /u/sovbld/hm131s/hm131s-20020716/src/hpi/pfm/threads_utils.c

 1A300FC8 +00000A38 ThreadUtils_Shell

 1A300FC8 +00000A38 900 *PATHNAM h020716 Call

 196747A8 084F8B98 +0000001A @@GETFN 084F8AF0 +000000C2 CEEEV003 Call

 7F6B49C0 /u/sovbld/hm131s/hm131s-20020716/src/tools/sov/java.c

 19508808 -194FCE4A main 19508808 -194FCE4A *PATHNAM h020716 Call

z/OS - diagnosing crashes

Chapter 19. z/OS problem determination 175

2. The value under Service for each DSA is the service string. The string is built in

the format of .cyymmdd, where c is the identifier for the code owner and yymmdd

is the build date. A service string like this indicates that the function is part of

the JVM. Similarly, any program unit whose z/OS UNIX filename begins with

/u/sovbld is part of the JVM. All functions should have the same build date,

unless you have been supplied with a dll by IBM Service for diagnostic or

temporary fix purposes.

3. The value for Entry gives the name of the function that is being executed in

that DSA. The EXECJAVA function, or functions that start with mmi are part of

the JVMs Mixed Mode Interpreter, which written in 390 Assembler for z/OS.

Multiple entries into these functions are normal. The same functions are entered

repeatedly as the Interpreter interprets bytecode in different methods. Functions

that appear as a complete package name or class name.method name(method

signature) in slash form are JIT-compiled methods. The JIT Compiler has taken

the bytecode for this method and compiled it into a native binary. When the

native binary is emitted, it is given LE PPA areas that identify the function

name as being the fully-qualified package name or class name.method

name(method signature). For example:

 java/io/BufferedReader.readLine(Z)Ljava/lang/String;

Functions that are in the JVM itself are often identified by a two character

prefix. For example:

v dc=data conversion

v xm=execution management

v xe=execution environment

v cl=class loader

v st=storage management (including object allocation and garbage collection)

v lk=locking

Functions that are named according to the Java format are native methods. For

example, function Java_java_io_FileInputStream_readBytes is the C function

name that is created to support native method java/io/
FileInputStream.readBytes. Functions that start with G3* or jitc* are part of

the JIT compiler.

If the Dump tool is used from the svcdump.jar package, the name of the Java

method that is being executed by the MMI in each stack frame is displayed. The

Dump tool also displays the values of the parameters that are being passed to each

function if they are available from the dump.

Working with TDUMPs using IPCS

A TDUMP or Transaction Dump is generated from the MVS service IEATDUMP by

default in the event of a program check or exception in the JVM. You can disable

the generation of a TDUMP, but IBM Service does not recommended you to do

that.

The normal way to inspect a TDUMP is by using IPCS (see “Using IPCS

commands” on page 173). You can also inspect a TDUMP using a Java application

such as svcdump, or jformat, if the dump data set has been transferred in binary

mode to the inspecting system.

A TDUMP can contain multiple Address Spaces. It is important to work with the

correct address space associated with the failing java process.

z/OS - diagnosing crashes

176 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

Adding the dump file to the IPCS inventory

To work with a TDUMP in IPCS, here is a sample set of steps to add the dump file

to the IPCS inventory:

1. Browse the dump data set to check the format and to ensure that the dump is

correct. If the record ids are of the type DR2 in columns 1 through 3, you need

an OS/390 V2R10 or z/OS 1.0 or later system IPCS level.

2. In IPCS option 3 (Utility Menu), sub option 4 (Process list of data set names)

type in the TSO HLQ (for example, DUMPHLQ) and press Enter to list data sets.

You must ADD (A in the command line alongside the relevant data set) the

uncompressed (untersed) data set to the IPCS inventory.

3. You may select this dump as the default one to analyze in two ways:

v In IPCS option 4 (Inventory Menu) type SD to add the selected data set name

to the default globals.

v In IPCS option 0 (DEFAULTS Menu), change Scope and Source

Scope ==> BOTH (LOCAL, GLOBAL, or BOTH)

Source ==> DSNAME(’DUMPHLQ.UNTERSED.SIGSEGV.DUMP’)

Address Space ==>

Message Routing ==> NOPRINT TERMINAL

Message Control ==> CONFIRM VERIFY FLAG(WARNING)

Display Content ==> NOMACHINE REMARK REQUEST NOSTORAGE SYMBOL

If you change the Source default, IPCS displays the current default address

space for the new source and ignores any data entered in the address space

field.
4. To initialize the dump, select one of the analysis functions, such as IPCS option

2.4 SUMMARY - Address spaces and tasks, which will display something like

the following and give the TCB address. (Note that non-zero CMP entries

reflect the termination code.)

TCB: 009EC1B0

 CMP...... 940C4000 PKF...... 80 LMP...... FF DSP...... 8C

 TSFLG.... 20 STAB..... 009FD420 NDSP..... 00002000

 JSCB..... 009ECCB4 BITS..... 00000000 DAR...... 00

 RTWA..... 7F8BEDF0 FBYT1.... 08

 Task non-dispatchability flags from TCBFLGS5:

 Secondary non-dispatchability indicator

 Task non-dispatchability flags from TCBNDSP2:

 SVC Dump is executing for another task

SVRB: 009FD9A8

 WLIC..... 00000000 OPSW..... 070C0000 81035E40

 LINK..... 009D1138

PRB: 009D1138

 WLIC..... 00040011 OPSW..... 078D1400 B258B108

 LINK..... 009ECBF8

 EP....... DFSPCJB0 ENTPT.... 80008EF0

PRB: 009ECBF8

 WLIC..... 00020006 OPSW..... 078D1000 800091D6

 LINK..... 009ECC80

Useful IPCS commands and some sample output

In IPCS option 6 (COMMAND Menu) type in a command and press the Enter

key:

ip st

Provides a status report.

z/OS - diagnosing crashes

Chapter 19. z/OS problem determination 177

ip select all

Shows the Jobname to ASID mapping:

ASID JOBNAME ASCBADDR SELECTION CRITERIA

 ---- -------- -------- ------------------

 0090 H121790 00EFAB80 ALL

 0092 BPXAS 00F2E280 ALL

 0093 BWASP01 00F2E400 ALL

 0094 BWASP03 00F00900 ALL

 0095 BWEBP18 00F2EB80 ALL

 0096 BPXAS 00F8A880 ALL

ip systrace all time(local)

Shows the system trace:

PR ASID,WU-ADDR- IDENT CD/D PSW----- ADDRESS- UNIQUE-1 UNIQUE-2 UNIQUE-3

 UNIQUE-4 UNIQUE-5 UNIQUE-6

 09-0094 009DFE88 SVCR 6 078D3400 8DBF7A4E 8AA6C648 0000007A 24AC2408

 09-0094 05C04E50 SRB 070C0000 8AA709B8 00000094 02CC90C0 02CC90EC

 009DFE88 A0

 09-0094 05C04E50 PC ... 0 0AA70A06 0030B

 09-0094 00000000 SSRV 132 00000000 0000E602 00002000 7EF16000

 00940000

For suspected loops you might need to concentrate on ASID and exclude any

branch tracing:

ip systrace asid(x’3c’) exclude(br)

ip summ format asid(x’94’)

To find the list of TCBs, issue a find command for ″T C B″.

ip verbx ledata ’ceedump asid(94) tcb(009DFE88)

Obtains a traceback for the specified TCB.

ip omvsdata process detail asid(x’94’)

Shows a USS perspective for each thread.

ip verbx vsmdata ’summary noglobal’

Provides a summary of the local data area:

Summary of Key Information from LDA (Local Data Area) :

 L O C A L S T O R A G E D A T A S U M M A R Y

 LOCAL STORAGE MAP

 ___________________________,

 | |80000000 <- TOP OF EXT. PRIVATE

 | Extended |

 | LSQA/SWA/229/230 |

 |___________________________|7F699000 <- ELSQA BOTTOM

 | |

 | (Free Extended Storage) |11A00000 <- MAX EXT. USER REGION ADDRESS

 |___________________________| FD1E000 <- EXT. USER REGION TOP

 | |

 | Extended User Region |

 |___________________________| FA00000 <- EXT. USER REGION START

 : :

 : Extended Global Storage :

 =======================================<- 16M LINE

 : Global Storage :

 :___________________________: A00000 <- TOP OF PRIVATE

 | |

 | LSQA/SWA/229/230 |

 |___________________________| 997000 <- LSQA BOTTOM

 | |

 | (Free Storage) | 60F000 <- MAX USER REGION ADDRESS

z/OS - diagnosing crashes

178 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

|___________________________| 6D000 <- USER REGION TOP

 | |

 | User Region |

 |___________________________| 5000 <- USER REGION START

 : System Storage :

 :___________________________: 0

Region,Requested => 5FA000

IEFUSI/SMF Specification => SMFL : FFFFFFFF SMFEL: FFFFFFFF

 SMFR : FFFFFFFF SMFER: FFFFFFFF

Actual Limit => LIMIT: 60A000 ELIM : 2000000

STRTA = 5000 (ADDRESS of start of private storage area)

SIZA = 9FB000 (SIZE of private storage area)

CRGTP = 6D000 (ADDRESS of current top of user region)

LIMIT = 60A000 (Maximum SIZE of user region)

LOAL = 68000 (TOTAL bytes allocated to user region)

HIAL = 57000 (TOTAL bytes allocated to LSQA/SWA/229/230 region)

SMFL = FFFFFFFF (IEFUSI specification of LIMIT)

SMFR = FFFFFFFF (IEFUSI specification of VVRG)

ESTRA = FA00000 (ADDRESS of start of extended private storage area)

ESIZA = 70600000 (SIZE of extended private storage area)

ERGTP = FD1E000 (ADDRESS of current top of extended user region)

ELIM = 2000000 (Maximum SIZE of extended user region)

ELOAL = 312000 (TOTAL bytes allocated to extended user region)

EHIAL = 952000 (TOTAL bytes allocated to extended LSQA/SWA/229/230)

SMFEL = FFFFFFFF (IEFUSI specification of ELIM)

SMFER = FFFFFFFF (IEFUSI specification of EVVRG)

ip verbx ledata ’nthreads(*)’

Obtains the tracebacks for all threads.

ip status regs

Shows the PSW and registers:

CPU STATUS:

PSW=078D1400,B258B108

 (Running in PRIMARY key 8 AMODE 31 DAT ON)

 DISABLED,FOR PER

 ASID(X’0048’) 3258B108. SPECIALNAME+24D050 IN EXTENDED PRIVATE

 +0000, 61A4A299 61939797 619181A5 8161C9C2 | /usr/lpp/java/IB |

 +0010, D461D1F1 4BF36182 89956183 9381A2A2 | M/J1.3/bin/class |

 +0020, 89836193 898291A5 944BA296 | ic/libjvm.so |

 ASID(X’0048’) 3258B108. AREA(Subpool252Key00)+24D108 IN EXTENDED PRIVATE

 ASCB72 at F5E100 JOB(TPCCBA0C) for the home ASID

 ASXB72 at 9FDE90 and TCB72E at 9EC1B0 for the home ASID

 HOME,ASID: 0048 PRIMARY ASID: 0048 SECONDARY ASID: 0048

 General purpose register values

 0-3 00000000 040C0000 0007DA28 3258B06A

 4-7 3258E778 32691028 00012548 0007E198

 8-11 32943C00 3269A088 0000000D 0007E1A5

 12-15 00026A00 0007EB30 3269C5C0 0000000D

Access,register values

 0-3 00000000 00000000 00000000 00000000

 4-7 00000000 00000000 00000000 00000000

 8-11 00000000 00000000 00000000 00000000

 12-15 00000000 00000000 0EB175B2 00000000

 Control register values

 0-3 5FB5FE50 6B09B07F 6B020640 00C00048

z/OS - diagnosing crashes

Chapter 19. z/OS problem determination 179

4-7 00000048 6FE1E200 FE000000 6B09B07F

 8-11 00000000 00000000 00000000 00000000

 12-15 6F9F4E6B 6B09B07F FF8EFE20 7F938010

ip cbf rtct

Helps you to find the ASID by looking at the ASTB mapping to see which

ASIDs are captured in the dump.

ip verbx vsmdata ’nog summ’

Provides a summary of the virtual storage management data areas:

DATA FOR SUBPOOL 2 KEY 8 FOLLOWS:

 -- DQE LISTING (VIRTUAL BELOW, REAL ANY64)

 DQE: ADDR 12C1D000 SIZE 32000

 DQE: ADDR 1305D000 SIZE 800000

 DQE: ADDR 14270000 SIZE 200000

 DQE: ADDR 14470000 SIZE 10002000

 DQE: ADDR 24472000 SIZE 403000

 DQE: ADDR 24875000 SIZE 403000

 DQE: ADDR 24C78000 SIZE 83000

 DQE: ADDR 24CFB000 SIZE 200000

 DQE: ADDR 250FD000 SIZE 39B000

 FQE: ADDR 25497028 SIZE FD8

 DQE: ADDR 25498000 SIZE 735000

 FQE: ADDR 25BCC028 SIZE FD8

 DQE: ADDR 25D36000 SIZE 200000

 DQE: ADDR 29897000 SIZE 200000

 DQE: ADDR 2A7F4000 SIZE 200000

 DQE: ADDR 2A9F4000 SIZE 200000

 DQE: ADDR 2AC2F000 SIZE 735000

 FQE: ADDR 2B363028 SIZE FD8

 DQE: ADDR 2B383000 SIZE 200000

 DQE: ADDR 2B5C7000 SIZE 200000

 DQE: ADDR 2B857000 SIZE 1000

***** SUBPOOL 2 KEY 8 TOTAL ALLOC: 132C3000 (00000000 BELOW, 132C3000

ip verbx ledata ’all asid(53) tcb(0088B288)’

Finds the PSW and registers at time of the exception:

MCH_EYE:ZMCH

MCH_GPR00:00000000 MCH_GPR01:00000000

MCH_GPR02:2ABD59B0 MCH_GPR03:28F5C76A

MCH_GPR04:136967C0 MCH_GPR05:0000F588

MCH_GPR06:00000FF8 MCH_GPR07:136A32E0

MCH_GPR08:00000000 MCH_GPR09:2ABD519C

MCH_GPR10:2ABD59B0 MCH_GPR11:11FE8AC8

MCH_GPR12:13E956F0 MCH_GPR13:13EA18C0

MCH_GPR14:808A8887 MCH_GPR15:00000000

MCH_PSW:078D0400 A8F5D1C4 MCH_ILC:0000 MCH_IC1:00

blscddir dsname(’DUMPHLQ.ddir’)

Creates an IPCS DDIR.

runc addr(2657c9b8) link(20:23) chain(9999) le(x’1c’) or runc addr(25429108)

structure(tcb)

Runs a chain of control blocks using the RUNCHAIN command.

 addr: the start address of the first block

 link: the link pointer start and end bytes within the block (decimal)

 chain: the maximum number of blocks to be searched (default=999)

 le: the length of data from the start of each block to be displayed (hex)

z/OS - diagnosing crashes

180 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

structure: control block type

Debugging hangs

A hang refers to a process that is still present, but has become unresponsive. This

lack of response can be caused by any one of these reasons:

v The process has become deadlocked, so no work is being done. Usually, the

process is taking up no CPU time.

v The process has become caught in an infinite loop. Usually, the process is taking

up high CPU time.

v The process is running, but is suffering from very bad performance. This is not

an actual hang, but is normally initially thought to be one.

The process is deadlocked

A deadlocked process does not use any CPU time. You can monitor this condition

by using the USS ps command against the Java process:

 UID PID PPID C STIME TTY TIME CMD

CBAILEY 253 743 - 10:24:19 ttyp0003 2:34 java -classpath .Test2Frame

If the value of TIME increases in a few minutes, the process is still using CPU, and

is not deadlocked.

For an explanation of deadlocks and how the Javadump tool is used to diagnose

them, see “Locks, monitors, and deadlocks (LK)” on page 222.

The process is looping

If no deadlock exists between threads and the process appears to be hanging but is

consuming CPU time, look at what work the threads are doing. To do this, take a

console- initiated dump as follows:

1. Use the operating system commands (D OMVS,A=ALL) or SDSF (DA =

Display Active) to locate the ASID of interest.

2. Use the DUMP command to take a console-initiated dump both for hangs and

for loops:

DUMP COMM=(Dump for problem 12345)

r xx,asid=(53,d),DSPNAME=(’OMVS ’.*),CONT

R yy,SDATA=(GRSQ,LSQA,RGN,SUM,SWA,TRT,LPA,NUC,SQA)

When the console dump has been generated, you can view the Systrace in IPCS to

identify threads that are looping. You can do this in IPCS as follows:

ip systrace asid(x’007d’) time(gmt)

This command formats out the system trace entries for all threads that are in

address space 0x7d. The time(gmt) option converts the TOD clock entries, which

are in the system trace, to a human readable form.

From the output produced, you can determine which are the looping threads by

identifying patterns of repeated CLCK and EXT1005 interrupt trace entries, and

subsequent redispatch DSP entries. You can identify the instruction address range

of the loop from the PSWs (Program Status Words) that are traced in these entries.

The process is performing badly

If you have no evidence of a deadlock or an infinite loop, it is likely that the

process is suffering from very bad performance. This can be caused because

z/OS - diagnosing crashes

Chapter 19. z/OS problem determination 181

threads have been placed into explicit sleep calls, or by excessive lock contention,

long garbage collection cycles, or for several other reasons. This condition is not

actually a hang and should be handled as a performance problem. See “Debugging

performance problems” on page 184 for more information.

Debugging memory leaks

Memory problems can occur in the Java process through two mechanisms:

v A native (C/C++) memory leak that causes increased usage of the LE HEAP,

which can be seen as excessive usage of Subpool2, Key 8 or storage, and an

excessive Working Set Size of the process address space

v A Java object leak in the Java-managed heap. The leak is caused by

programming errors in the application or the middleware. These object leaks

cause an increase in the amount of live data that remains after a garbage

collection cycle has been completed.

The dbgmalloc library can be linked in to a customer native library to help identify

native memory leaks. dbgmalloc must be linked in to the library before the

C-runtime library, so that the standard memory routines can be overridden.

Note that dbgmalloc is meant for IBM use only.

Add this option to the c++ command

$SDK/J1.4/bin/libdbgmalloc.so

The environment variable $SDK points to the Java SDK directory (for example,

/opt/IBMJava2-142).

Allocations to LE HEAP

The Java process makes two distinct allocation types to the LE HEAP.

The first type is the allocation of the Java heap that garbage collection manages.

The Java heap is allocated during JVM startup as a contiguous area of memory. Its

size is that of the maximum Java heap size parameter. Even if the minimum,

initial, heap size is much smaller, you must allocate for the maximum heap size to

ensure that one contiguous area will be available should heap expansion occur.

The second type of allocation to the LE HEAP is that of calls to malloc() by the

JVM, or by any native JNI code that is running under that Java process. This

includes application JNI code, and third party native libraries; for example, JDBC

drivers.

z/OS virtual storage

To debug these problems, you must understand how C/C++ programs, such as the

JVM, use virtual storage on z/OS. To do this, you need some background

understanding of the z/OS Virtual Storage Management component and LE.

The process address space on z/OS has 31-bit addressing that allows the

addressing of 2 GB of virtual storage. This storage includes areas that are defined

as common (addressable by code running in all address spaces) and other areas

that are private (addressable by code running in that address space only).

The size of common areas is defined by several system parameters and the number

of load modules that are loaded into these common areas. On many typical

z/OS - debugging hangs

182 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

systems, the total private area available is about 1.4 GB. From this area, the Java

heap is allocated at startup, along with any subsequent calls to malloc(). A leak of

Java objects, therefore, does not cause VSM to issue an abend878 rc10 because of

lack of private storage. This abend can be caused only by unbounded growth of

storage that is allocated through malloc() for underlying JVM resources requested

by JVM components such as AWT or the JIT, or by calls to malloc() from

application JNI code and third party native libraries.

If you change the LE HEAP setting, you are asking LE to GETMAIN different

amounts of initial or incremental storage for use by all C applications. This has no

effect on a Java application throwing an OutOfMemoryError. If errors are received

because of lack of private storage, you must ensure that the region size is big

enough to allocate for the Java heap and for the underlying JVM resources. Note

that for TSO/E address spaces, the REGION size for USS processes that are like

the JVM inherit from the TSO/E address space, whereas in the case of rlogin or

telnet sessions, the region size is determined by the BPXPRMxx parameter

MAXASSIZE.

OutOfMemoryErrors

The JVM throws a java.lang.OutOfMemoryError (OOM) when the heap is full, and

it cannot find space for object creation. Heap usage is a result of the application

design, its use and creation of object populations, and the interaction between the

heap and the garbage collector.

The operation of the JVM’s Garbage Collector is such that objects are continuously

allocated on the heap by mutator (application) threads until an object allocation

fails. At this point, a garbage collection cycle begins. At the end of the cycle, the

allocation is retried. If successful, the mutator threads resume where they stopped.

If the allocation request cannot be fulfilled, an OutOfMemory exception is thrown.

The Garbage Collector uses a mark and sweep algorithm. That is, the Garbage

Collector marks every object that is referenced from the stack of a thread, and

every object that is referenced from a marked object. Any object on the heap that

remains unmarked is cleared up during the sweep phase because it is no longer

live.

An OutOfMemory exception occurs when the live object population requires more

space than is available in the Java managed heap. It is possible that this can occur

not because of an object leak, but because the Java heap is not large enough for the

application that is being run. In this case, you can use the -Xmx parameter on the

JVM invocation to increase the heap size and remove the problem, as follows:

java -Xmx320m MyApplication

If the failure is occurring under javac, remember that the compiler is a Java

program itself. To pass parameters to the JVM that is created for the compile, use

the -J option to pass the parameters that you would normally pass directly. For

example, the following passes a 128 MB maximum heap to javac:

javac -J-Xmx128m MyApplication.java

In the case of a genuine object leak, the increased heap size does not solve the

problem, but increases the time for a failure to occur.

OutOfMemory errors are also generated when a JVM call to malloc() fails. This

should normally have an associated error code that corresponds to the error codes

that are given in Appendix F, “Messages and codes,” on page 415.

z/OS - debugging memory leaks

Chapter 19. z/OS problem determination 183

Should an OutOfMemoryError be generated, and no error message is produced, it

is assumed that this is because of Java heap exhaustion. At this point, increase the

maximum Java heap size to allow for the possibility that the heap is not big

enough for the application that is running. Also enable the z/OS heapdump, and

switch on verbosegc output.

The -verbosegc (-verbose:gc) switch causes the JVM to print out messages when a

garbage collection cycle begins and ends. These messages indicate how much live

data remains on the heap at the end of a collection cycle. In the case of a Java

object leak, the amount of free space on the heap after a garbage collection cycle

will be seen to decrease over time. The verbosegc output also supplies an action

value. The number that is associated with action determines the type of garbage

collection that is being done:

 action=1 means a preemptive garbage collection cycle.

 action=2 means a full allocation failure.

 action=3 means that a heap expansion takes place.

 action=4 means that all known soft references are cleared.

 action=5 means that stealing from the transient heap is done.

 action=6 means that free space is very low.

These actions are listed in order of severity. As the number increases, the Garbage

Collector is becoming more desperate for memory. A high action number is a good

indication of a significant shortage of Java heap space.

A Java object leak is caused when an application retains references to objects that

are no longer in use. In a C application, a developer in required to free memory

when it is no longer required. A Java developer is required to removed references

to objects that are no longer required. The developer normally does this by setting

references to null. When this does not happen, the object, and anything that that

object references in turn, continues to reside on the Java heap and cannot be

removed. This typically occurs when data collections are not managed correctly;

that is, the mechanism to remove objects from the collection is either not used, or

used incorrectly.

Debugging performance problems

Check whether the JIT compiler is activated. To do this, ensure that:

v You have not unset the environment variable JAVA_COMPILER

v You have set the environment variable JAVA_COMPILER to something other

than jitc.

v You have set the system property -Djava.compiler to null.

The JIT compiler makes a significant difference to performance. Do not disable it

unless under the direction of IBM Service. All areas of JIT optimization are

individually switchable, and the JIT allows for selective disablement of compilation

for identified methods, so you should always be able to bypass a problem without

disabling the JIT compiler completely.

Check whether the system is tuned to cope with the Java managed heap size that

you have specified. If the Java managed heap size is large, on a system without

large amounts of real storage you might see a performance degradation caused by

excessive paging.

z/OS - debugging memory leaks

184 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

If the system intermittently sees high CPU usage for the process in which Java is

running, this might be a symptom of excessive garbage collection pauses. The

garbage collector is a ″Stop The World″ type, and collection cycles are normally so

short (from 5-500 milliseconds, for example) that they are not observed externally.

If the collection cycle takes longer for some reason, or occurs more frequently than

expected, this will be observed as high CPU. This is because the garbage collection

code is CPU-intensive, and the collector uses helper threads for marking objects.

These helper threads could possibly be running on all available CPUs. In addition,

some mutator threads might be in short ″busy waits″ for the cycle to end. In this

case, turn on switch -verbose:gc to see how often the cycles are occurring and

what their duration is. Pause times over several seconds are worth further

investigation. You should also use switch -Xgcpolicy:optavgpause to activate JVM

use of concurrent marking, to reduce and smooth out pause times, at some small

reduction in overall throughput. If this does not help resolve the problem, contact

IBM Service before gathering more information.

In benchmark tests, the performance of later releases of the SDK is in general

improved over the 1.1.8 SDK. If you experience performance degradation in

moving between 1.1.8 and a later release such as 1.4.1, try to narrow this down to

a particular Java application before contacting IBM Service.

Collecting data from a fault condition in z/OS

The data collected from a fault situation in z/OS depends on the problem

symptoms, but could include some or all of the following:

v Transaction dump - an unformatted dump requested by the MVS BCP

IEATDUMP service. This dump can be post-processed with IPCS (Interactive

Problem Control System).

v CEEDUMP - formatted application level dump, requested by the LE service

CEE3DMP.

v JAVADUMP - formatted internal state data produced by the IBM JVM.

v Binary or formatted trace data from the JVM internal high performance trace.

v Debugging messages written to stderr (for example, the output from the JVM

when switches like -verbose:gc or -verbose are used).

v Java stack traces when exceptions are thrown.

v Other unformatted system dumps obtained from middleware products or

components (for example, SVC dumps requested by WebSphere for z/OS).

v SVC dumps obtained by the MVS Console DUMP command (typically for loops

or hangs).

v Trace data from other products or components (for example LE traces or the

Component trace for z/OS UNIX).

The JVM on z/OS makes use of the IEATDUMP service to capture unformatted

dumps. These dumps can then be processed with IPCS on OS/390 or z/OS. The

internal high performance trace allows for the creation of binary trace files, which

can be post-processed on any platform that supports Java.

z/OS - debugging performance problems

Chapter 19. z/OS problem determination 185

z/OS - collecting data from a fault condition

186 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

Chapter 20. Debugging the ORB

One of the first tasks that you must do when debugging an ORB problem is to

determine whether the problem is in the client-side or in the server-side of the

distributed application. Think of a typical RMI-IIOP session as a simple,

synchronous communication between a client that is requesting access to an object,

and a server that is providing it. During this communication, a problem might

occur in the execution of one of the following steps:

1. The client writes and sends a request to the server.

2. The server receives and reads the request.

3. The server execute the task in the request.

4. The server writes and sends a reply back.

5. The client receives and reads the reply.

It is not always easy to identify where the problem occurred. Often, the

information that the application returns, in the form of stack traces or error

messages, is not enough for you to make a decision. Also, because the client and

server communicate through their ORBs, it is likely that if a problem occurs, both

sides will record an exception or unusual behavior.

This chapter describes all the clues that you can use to find the source of the ORB

problem. It also describes a few common problems that occur more frequently. The

topics are:

v “Identifying an ORB problem”

v “Debug properties” on page 189

v “ORB exceptions” on page 190

v “Interpreting the stack trace” on page 192

v “Interpreting the stack trace” on page 192

v “Interpreting ORB traces” on page 193

v “Common problems” on page 196

v “IBM ORB service: collecting data” on page 198

Identifying an ORB problem

When you find a problem that you think is related to CORBA or RMI, a

knowledge of the constituents of the IBM ORB component can be very helpful.

What the ORB component contains

The ORB component contains the following:

v IBM Java ORB and rmi-iiop runtime (com.ibm.rmi.*, com.ibm.CORBA.*)

v rmi-iiop API (javax.rmi.CORBA.*,org.omg.CORBA.*)

v IDL to Java implementation (org.omg.* and IBM versions com.ibm.org.omg.*)

v Transient name server (com.ibm.CosNaming.*, org.omg.CosNaming.*) -

tnameserv

v -iiop and -idl generators (com.ibm.tools.rmi.rmic.*) for the rmic compiler - rmic

v idlj compiler (com.ibm.idl.*)

© Copyright IBM Corp. 2003, 2006 187

What the ORB component does not contain

The ORB component does not contain:

v RMI-JRMP (also known as Standard RMI)

v JNDI and its plug-ins

Therefore, if the problem is in java.rmi.* or sun.rmi.* , it is not an ORB problem.

Similarly, if the problem is in com.sun.jndi.*, it is not an ORB problem.

Platform-dependent problem

If possible, run the test case on more than one platform. All the ORB code is

shared. You can nearly always reproduce genuine ORB problems on any platform.

If you have a platform-specific problem, it is likely to be in some other component.

JIT problem

JIT bugs are very difficult to find. They might show themselves as ORB problems.

When you are debugging or testing an ORB application, it is always safer to switch

off the JIT by, for example, setting the environment variable

JAVA_COMPILER=none. Alternatively, when you are running the application in

debugging mode (not in production mode), include the property as

java -Djava.compiler=NONE myapp.

Fragmentation

Disable fragmentation when you are debugging the ORB. Although fragmentation

does not add complications to the ORB’s functioning, a fragmentation bug can be

difficult to detect because it will most likely show as a general marshalling

problem. The way to disable fragmentation is to set the ORB property

com.ibm.CORBA.FragmentSize=0. You must do this on the client side and on the

server side.

Packaging

 Table 7. Packaging

IBM Platforms Non-IBM Platform

Runtime classes jre/lib/ibmorb.jar jre/lib/endorsed/ibmorb.jar

Tools classes lib/tools.jar lib/ibmtools.jar

CORBA API classes jre/lib/ibmorbapijar jre/lib/endorsed/ibmorbapijar

Runtime support None jre/lib/endorsed/ibmext.jar

rmic wrapper None ibm_bin/rmic

ibm_bin/rmic.bat

idlj wrapper None ibm_bin/idlj

ibm_bin/idlj.bat

ORB versions

The ORB component carries a few version properties that you can display by

invoking the main method of the following classes:

1. com.ibm.CORBA.iiop.Version (ORB runtime version)

2. com.ibm.tools.rmic.iiop.Version (for tools; for example, idlj and rmic)

3. rmic -iiop -version (run the command-line for rmic)

identifying an ORB problem

188 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

Note: Items 2 on page 188 and 3 on page 188 are alternative methods for reaching

the same class.

Debug properties

 Attention: Do not turn on tracing for normal operation, because it might cause

performance degradation. Even if you have switched off tracing, FFDC (First

Failure Data Capture) is still working, so that only serious errors are reported. If a

debug output file is generated, examine it to check on the problem. For example,

the server might have stopped without performing an ORB.shutdown().

You can use the following properties to enable the ORB traces:

v com.ibm.CORBA.Debug: This property turns on trace, message, or both. If you

set this property to trace only traces are turned on; if you set it to message, only

messages are turned on. Any other value, or no value, turns on traces and

messages. The only way not to set this property is not to specify it. A value of

false enables it anyway. When enabling any kind of tracing, it is safe to turn this

property on.

v com.ibm.CORBA.Debug.Output: This property redirects traces to a file, which

is known as a trace log. When this property is not specified, or it is set to an

empty field, the file name defaults to the format

orbtrc.DDMMYYYY.HHmm.SS.txt, where D=Day; M=Month; Y=Year; H=Hour

(24 hour format); m=Minutes; S=Seconds. Note that if the application (or Applet)

does not have the privilege that it requires to write to a file, the trace entries go

to stderr.

v com.ibm.CORBA.CommTrace: This property turns on wire tracing. Every

incoming and outgoing GIOP message will be output to the trace log. You can

set this property independently from Debug; this is useful if you want to look

only at the flow of information, and you are not too worried about debugging

the internals. The only two values that this property can have are true and false.

The default is false.

Here is an example of common usage example:

For rmic -iiop or rmic -idl, the following diagnostic tools are available:

v -J-Djavac.dump.stack=1: This tool ensures that all exceptions are caught.

v -Xtrace: This tool traces the progress of the parse step.

If you are working with an IBM SDK, you can obtain CommTrace for the transient

name server (tnameserv) by using the standard environment variable

IBM_JAVA_OPTIONS. In a separate command session to the server or client SDKs,

you can use:

set IBM_JAVA_OPTIONS=-Dcom.ibm.CORBA.CommTrace=true -Dcom.ibm.CORBA.Debug=true

or the equivalent platform-specific command.

The setting of this environment variable affects each Java process that is started, so

use this variable carefully. Alternatively, you can use the -J option to pass the

properties through the tnameserv wrapper, as follows:

tnameserv -J-Dcom.ibm.CORBA.Debug=true

java -Dcom.ibm.CORBA.Debug=true -Dcom.ibm.CORBA.Debug.Output=trace.log -Dcom.ibm.CORBA.CommTrace=true <classname>

identifying an ORB problem

Chapter 20. Debugging the ORB 189

ORB exceptions

You are using this chapter because you think that your problem is related to the

ORB. Unless your application is doing nothing or giving you the wrong result, it is

likely that your log file or terminal is full of exceptions that include the words

“CORBA” and “rmi” many times. All unusual behavior that occurs in a good

application is highlighted by an exception. This principle is also true for the ORB

with its CORBA exceptions. Similarly to Java, CORBA divides its exceptions into

user exceptions and system exceptions.

User exceptions

User exceptions are IDL defined and inherit from org.omg.CORBA.UserException.

These exceptions are mapped to checked exceptions in Java; that is, if a remote

method raises one of them, the application that invoked that method must catch

the exception. User exceptions are usually not fatal exceptions and should always

be handled by the application. Therefore, if you get one of these user exceptions,

you know where the problem is, because the application developer had to make

allowance for such an exception to occur. In most of these cases, the ORB is not the

source of the problem.

System exceptions

System exceptions are thrown transparently to the application and represent an

unusual condition in which the ORB cannot recover gracefully, such as when a

connection is dropped. The CORBA 2.6 specification defines 31 system exceptions

and their mapping to Java. They all belong to the org.omg.CORBA package. The

CORBA specification defines the meaning of these exceptions and describes the

conditions in which they are thrown.

The most common system exceptions are:

v BAD_OPERATION: This exception is thrown when an object reference denotes

an existing object, but the object does not support the operation that was

invoked.

v BAD_PARAM: This exception is thrown when a parameter that is passed to a

call is out of range or otherwise considered illegal. An ORB might raise this

exception if null values or null pointers are passed to an operation.

v COMM_FAILURE: This exception is raised if communication is lost while an

operation is in progress, after the request was sent by the client, but before the

reply from the server has been returned to the client.

v DATA_CONVERSION: This exception is raised if an ORB cannot convert the

marshaled representation of data into its native representation, or cannot convert

the native representation of data into its marshaled representation. For example,

this exception can be raised if wide character codeset conversion fails, or if an

ORB cannot convert floating point values between different representations.

v MARSHAL: This exception indicates that the request or reply from the network

is structurally not valid. This error typically indicates a bug in either the

client-side or server-side runtime. For example, if a reply from the server

indicates that the message contains 1000 bytes, but the actual message is shorter

or longer than 1000 bytes, the ORB raises this exception.

v NO_IMPLEMENT: This exception indicates that although the operation that

was invoked exists (it has an IDL definition), no implementation exists for that

operation.

v UNKNOWN: This exception is raised if an implementation throws a

non-CORBA exception, such as an exception that is specific to the

ORB exceptions

190 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

implementation’s programming language. It is also raised if the server returns a

system exception that is unknown to the client. (This can happen if the server

uses a later version of CORBA than the version that the client is using, and new

system exceptions have been added to the later version.)

Completion status and minor codes

Each system exception has two pieces of data that are associated with it:

v A completion status, which is an enumerated type that has three values:

COMPLETED_YES, COMPLETED_NO and COMPLETED_MAYBE. These values

indicate either that the operation was executed in full, that the operation was

not executed, or that this cannot be determined.

v A long integer, called minor code, that can be set to some ORB vendor specific

value. CORBA also specifies the value of many minor codes.

Usually the completion status is not very useful. However, the minor code can be

essential when the stack trace is missing. In many cases, the minor code identifies

the exact location of the ORB code where the exception is thrown (see the section

below) and can be used by the vendor’s service team to localize the problem

quickly. However, for standard CORBA minor codes, this is not always possible.

For example:

org.omg.CORBA.OBJECT_NOT_EXIST: SERVANT_NOT_FOUND minor code: 4942FC11 completed: No

Minor codes are usually expressed in hexadecimal notation (except for SUN’s

minor codes, which are in decimal notation) that represents four bytes. The OMG

organization has assigned to each vendor a range of 4096 minor codes. The IBM

vendor-specific minor code range is 0x4942F000 through 0x4942FFFF. Appendix D,

“CORBA minor codes,” on page 405 gives diagnostic information for the

most-common minor codes.

System exceptions might also contain a string that describes the exception and

other useful information. You will see this string when you interpret the stack

trace.

The ORB tends to map all Java exceptions to CORBA exceptions. A runtime

exception is mapped to a CORBA system exception, while a checked exception is

mapped to a CORBA user exception.

More exceptions other than the CORBA exceptions could be generated by the ORB

component in a code bug. All the Java unchecked exceptions and errors and others

that are related to the ORB tools rmic and idlj must be considered. In this case, the

only way to determine whether the problem is in the ORB, is to look at the

generated stack trace and see whether the objects involved belong to ORB

packages.

Java2 security permissions for the ORB

When running with a Java 2 SecurityManager, invocation of some methods in the

CORBA API classes might cause permission checks to be made that could result in

a SecurityException. Here is a selection of affected methods:

 Table 8. Methods affected when running with Java 2 SecurityManager

Class/Interface Method Required permission

org.omg.CORBA.ORB init java.net.SocketPermission resolve

org.omg.CORBA.ORB connect java.net.SocketPermission listen

org.omg.CORBA.ORB resolve_initial_references java.net.SocketPermission connect

ORB exceptions

Chapter 20. Debugging the ORB 191

Table 8. Methods affected when running with Java 2 SecurityManager (continued)

Class/Interface Method Required permission

org.omg.CORBA.

portable.ObjectImpl

_is_a java.net.SocketPermission connect

org.omg.CORBA.

portable.ObjectImpl

_non_existent java.net.SocketPermission connect

org.omg.CORBA.

portable.ObjectImpl

OutputStream _request (String,

boolean)

java.net.SocketPermission connect

org.omg.CORBA.

portable.ObjectImpl

_get_interface_def java.net.SocketPermission connect

org.omg.CORBA.

Request

invoke java.net.SocketPermission connect

org.omg.CORBA.

Request

send_deferred java.net.SocketPermission connect

org.omg.CORBA.

Request

send_oneway java.net.SocketPermission connect

javax.rmi.

PortableRemoteObject

narrow java.net.SocketPermission connect

If your program uses any of these methods, ensure that it is granted the necessary

permissions.

Interpreting the stack trace

Whether the ORB is part of a middleware application or you are using a Java

standalone application (or even an applet), you must retrieve the stack trace that

is generated at the moment of failure. It could be in a log file, or in your terminal

or browser window, and it could consist of several chunks of stack traces.

The following example describes a stack trace that was generated by a server ORB

running in the WebSphere Application Server:

Description string

The example stack trace shows that the application has caught a CORBA

org.omg.CORBA.MARSHAL system exception. After the MARSHAL exception,

some extra information is provided in the form of a string. This string should

specify minor code, completion status, and other information that is related to the

problem. Because CORBA system exceptions are alarm bells for an unusual

condition, they also hide inside what the real exception was.

Usually, the type of the exception is written in the message string of the CORBA

exception. The trace shows that the application was reading a value (read_value())

when an IllegalAccessException occurred that was associated to class

com.ibm.ws.pmi.server.DataDescriptor. This is a hint of the real problem and

should be investigated first.

org.omg.CORBA.MARSHAL: com.ibm.ws.pmi.server.DataDescriptor; IllegalAccessException minor code: 4942F23E completed: No

 at com.ibm.rmi.io.ValueHandlerImpl.readValue(ValueHandlerImpl.java:199)

 at com.ibm.rmi.iiop.CDRInputStream.read_value(CDRInputStream.java:1429)

 at com.ibm.rmi.io.ValueHandlerImpl.read_Array(ValueHandlerImpl.java:625)

 at com.ibm.rmi.io.ValueHandlerImpl.readValueInternal(ValueHandlerImpl.java:273)

 at com.ibm.rmi.io.ValueHandlerImpl.readValue(ValueHandlerImpl.java:189)

 at com.ibm.rmi.iiop.CDRInputStream.read_value(CDRInputStream.java:1429)

 at com.ibm.ejs.sm.beans._EJSRemoteStatelessPmiService_Tie._invoke(_EJSRemoteStatelessPmiService_Tie.java:613)

 at com.ibm.CORBA.iiop.ExtendedServerDelegate.dispatch(ExtendedServerDelegate.java:515)

 at com.ibm.CORBA.iiop.ORB.process(ORB.java:2377)

 at com.ibm.CORBA.iiop.OrbWorker.run(OrbWorker.java:186)

 at com.ibm.ejs.oa.pool.ThreadPool$PooledWorker.run(ThreadPool.java:104)

 at com.ibm.ws.util.CachedThread.run(ThreadPool.java:137)

ORB exceptions

192 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

Nested exceptions

 In the example, the ORB mapped a Java exception to a CORBA exception. This

exception is sent back to the client later as part of a reply message. The client ORB

reads this exception from the reply. It maps it to a Java exception

(java.rmi.RemoteException according to the CORBA specification) and throws this

new exception back to the client application.

Along this chain of events, often the original exception becomes hidden or lost, as

does its stack trace. On early versions of the ORB (for example, 1.2.x, 1.3.0) the

only way to get the original exception stack trace was to set some ORB debugging

properties. Newer versions have built-in mechanisms by which all the nested stack

traces are either recorded or copied around in a message string. When dealing with

an old ORB release (1.3.0 and earlier), it is a good idea to test the problem on

newer versions. Either the problem is not reproducible (known bug already solved)

or the debugging information that you obtain is much more useful.

Interpreting ORB traces

The ORB trace file contains messages, trace points, and wire tracing. This section

describes the various types of trace.

Message trace

Here is a simple example of a message:

This message records the time, the package, and the method name that was

invoked. In this case, logVersions() prints out to the log file, the version of the

running ORB.

After the first colon in the example message, the line number in the source code

where that method invocation is done is written (88 in this case). Next follows the

letter P that is associated with the process number that was running at that

moment. This number is related (by a hash) to the time at which the ORB class

was loaded in that process. It unlikely that two different processes load their ORBs

at the same time.

The following O=0 (alphabetic O = numeric 0) indicates that the current instance of

the ORB is the first one (number 0). CT specifies that this is the main (control)

thread. Other values are: LT for listener thread, RT for reader thread, and WT for

worker thread.

The ORBRas field shows which RAS implementation the ORB is running. It is

possible that when the ORB runs inside another application (such as a WebSphere

application), the ORB RAS default code is replaced by an external implementation.

The remaining information is specific to the method that has been logged while

executing. In this case, the method is a utility method that logs the version of the

ORB.

This example of a possible message shows the logging of entry or exit point of

methods, such as:

16:02:33.978 com.ibm.rmi.util.Version logVersions:88 P=953197:O=0:CT ORBRas[default] IBM Java ORB build cndev-20030114

ORB - interpreting the stack trace

Chapter 20. Debugging the ORB 193

14:54:14.848 com.ibm.rmi.iiop.Connection <init>:504 LT=0:P=650241:O=0:port=1360 ORBRas[default] Entry

.....

14:54:14.857 com.ibm.rmi.iiop.Connection <init>:539 LT=0:P=650241:O=0:port=1360 ORBRas[default] Exit

In this case, the constructor (that is, <init>) of the class Connection is invoked. The

tracing records when it started and when it finished. For operations that include

the java.net package, the ORBRas logger prints also the number of the local port

that was involved.

Comm traces

Here is an example of comm (wire) tracing:

 // Summary of the message containing name-value pairs for the principal fields

OUT GOING:

Request Message // It is an out going request, therefore we are dealing with a client

Date: 31 January 2003 16:17:34 GMT

Thread Info: P=852270:O=0:CT

Local Port: 4899 (0x1323)

Local IP: 9.20.178.136

Remote Port: 4893 (0x131D)

Remote IP: 9.20.178.136

GIOP Version: 1.2

Byte order: big endian

Fragment to follow: No // This is the last fragment of the request

Message size: 276 (0x114)

--

Request ID: 5 // Request Ids are in ascending sequence

Response Flag: WITH_TARGET // it means we are expecting a reply to this request

Target Address: 0

Object Key: length = 26 (0x1A) // the object key is created by the server when exporting

 // the servant and retrieved in the IOR using a naming service

 4C4D4249 00000010 14F94CA4 00100000

 00080000 00000000 0000

Operation: message // That is the name of the method that the client invokes on the servant

Service Context: length = 3 (0x3) // There are three service contexts

Context ID: 1229081874 (0x49424D12) // Partner version service context. IBM only

Context data: length = 8 (0x8)

 00000000 14000005

Context ID: 1 (0x1) // Codeset CORBA service context

Context data: length = 12 (0xC)

 00000000 00010001 00010100

Context ID: 6 (0x6) // Codebase CORBA service context

Context data: length = 168 (0xA8)

 00000000 00000028 49444C3A 6F6D672E

 6F72672F 53656E64 696E6743 6F6E7465

 78742F43 6F646542 6173653A 312E3000

 00000001 00000000 0000006C 00010200

 0000000D 392E3230 2E313738 2E313336

 00001324 0000001A 4C4D4249 00000010

 15074A96 00100000 00080000 00000000

 00000000 00000002 00000001 00000018

 00000000 00010001 00000001 00010020

 00010100 00000000 49424D0A 00000008

 00000000 14000005

Data Offset: 11c

// raw data that goes in the wire in numbered rows of 16 bytes and the corresponding ASCII

decoding

0000: 47494F50 01020000 00000114 00000005 GIOP............

0010: 03000000 00000000 0000001A 4C4D4249 LMBI

0020: 00000010 14F94CA4 00100000 00080000 L.........

interpreting ORB traces

194 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

0030: 00000000 00000000 00000008 6D657373 mess

0040: 61676500 00000003 49424D12 00000008 age.....IBM.....

0050: 00000000 14000005 00000001 0000000C

0060: 00000000 00010001 00010100 00000006

0070: 000000A8 00000000 00000028 49444C3A (IDL:

0080: 6F6D672E 6F72672F 53656E64 696E6743 omg.org/SendingC

0090: 6F6E7465 78742F43 6F646542 6173653A ontext/CodeBase:

00A0: 312E3000 00000001 00000000 0000006C 1.0............l

00B0: 00010200 0000000D 392E3230 2E313738 9.20.178

00C0: 2E313336 00001324 0000001A 4C4D4249 .136...$....LMBI

00D0: 00000010 15074A96 00100000 00080000 J.........

00E0: 00000000 00000000 00000002 00000001

00F0: 00000018 00000000 00010001 00000001

0100: 00010020 00010100 00000000 49424D0A IBM.

0110: 00000008 00000000 14000005 00000000

Note: The italic comments that start with a double slash have been added for

clarity; they are not part of the traces.

In this example trace, you can see a summary of the principal fields that are

contained in the message, followed by the message itself as it goes in the wire. In

the summary are several field name-value pairs. Each number is in hexadecimal

notation.

Appendix C, “CORBA GIOP message format,” on page 401 gives details of the

structure of a GIOP message. See also CORBA specification chapters 13 and 15.)

Client or server

From the first line of the summary of the message, you can identify whether the

host to which this trace belongs is acting as a server or as a client. OUT GOING

means that the message has been generated in the machine where the trace was

taken and is sent to the wire.

In a distributed-object application, a server is defined as the provider of the

implementation of the remote object to which the client connects. In this work,

however, the convention is that a client sends a request while the server sends

back a reply. In this way, the same ORB can be client and server in different

moments of the rmi-iiop session.

The trace shows that the message is an outgoing request. Therefore, this trace is a

client trace, or at least part of the trace where the application acts as a client.

Time information and host names are reported in the header of the message.

The Request ID and the Operation (“message” in this case) fields can be very

helpful when multiple threads and clients destroy the logical sequence of the

traces.

The GIOP version field can be checked if different ORBs are deployed. If two

different ORBs support different versions of GIOP, the ORB that is using the more

recent version of GIOP should fall back to a common level. By checking that field,

however, you can easily check whether the two ORBs speak the same language.

Service contexts

The header also records three service contexts, each consisting of a context ID and

context data. A service context is extra information that is attached to the message

interpreting ORB traces

Chapter 20. Debugging the ORB 195

for purposes that can be vendor-specific (such as the IBM Partner version that is

described in the IOR in Chapter 5, “Understanding the ORB,” on page 41).

Usually, a security implementation makes extensive use of these service contexts.

Information about an access list, an authorization, encrypted IDs, and passwords

could travel with the request inside a service context.

Some CORBA-defined service contexts are available. One of these is the Codeset.

In the example, the codeset context has ID 1 and data 00000000 00010001

00010100. Bytes 5 through 8 specify that characters that are used in the message are

encoded in ASCII (00010001 is the code for ASCII). Bytes 9 through 12 instead are

related to wide characters.

The default codeset is UTF8 as defined in the CORBA specification, although

almost all Windows and UNIX platforms communicate normally through ASCII.

Mainframes such as zSeries systems are based on the IBM EBCDIC encoding.

The other CORBA service context, which is present in the example, is the Codebase

service context. It stores information about how to call back to the client to access

resources in the client such as stubs, and class implementations of parameter

objects that are serialized with the request.

Common problems

This section describes some of the problems that you might find.

Hanging

One of the worst conditions is the hanging of client, or server, or both. If this

happens, the most likely condition (and most difficult to solve) is a deadlock of

threads. In this condition, it is important to know whether the machine that on

which you are running has more than one CPU.

A simple test that you can do is to keep only one CPU running and see whether

the problem disappears. If it does, you know that you must have a synchronization

problem in the application.

Also, you must understand what the application is doing while it hangs. Is it

waiting (low CPU usage), or it is looping forever (almost 100% CPU usage)? Most

of the cases are a waiting problem.

You can, however, still identify two cases:

v Typical deadlock

v Standby condition while the application waits for a resource to arrive

An example of a standby condition is where the client sends a request to the server

and stops while waiting for the reply. The default behavior of the ORB is to wait

indefinitely.

You can set a couple of properties to avoid this condition:

v com.ibm.CORBA.LocateRequestTimeout

v com.ibm.CORBA.RequestTimeout

interpreting ORB traces

196 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

When the property com.ibm.CORBA.enableLocateRequest is set to true (the default

is false), the ORB first sends a short message to the server to find the object that it

needs to access. This first contact is the Locate Request. You must now set the

LocateRequestTimeout to a value other than 0 (which is equivalent to infinity). A

good value could be something around 5000 milliseconds.

Also, set the RequestTimeout to a value other than 0. Because a reply to a request

is often large, allow more time; for example, 10000 milliseconds. These values are

suggestions and might be too low for slow connections. When a request times out,

the client receives an explanatory CORBA exception.

When an application hangs, consider also another property that is called

com.ibm.CORBA.FragmentTimeout. This property was introduced in IBM ORB

1.3.1, when the concept of fragmentation was implemented to increase

performance. You can now split long messages into small chunks or fragments and

send one after the other across the net. The ORB waits for 30 seconds (default

value) for the next fragment before it throws an exception. If you set this property,

you disable this time-out, and problems of waiting threads might occur.

If the problem appears to be a deadlock or hang, capture the Javadump

information. Do this once, then wait for a minute or so, and do it again. A

comparison of the two snapshots shows whether any threads have changed state.

For information about how to do this operation, see “Triggering a Javadump” on

page 220.

In general, stop the application, enable the orb traces (see previous section) and

restart the application. When the hang is reproduced, the partial traces that can be

retrieved can be used by the IBM ORB service team to help understand where the

problem is.

Running the client without the server running before the client

is invoked

This operation outputs:

(org.omg.CORBA.COMM_FAILURE)

Hello Client exception:

 org.omg.CORBA.COMM_FAILURE:minor code:1 completed:No

 at com.ibm.rmi.iiop.ConnectionTable.get(ConnectionTable.java:145)

 at com.ibm.rmi.iiop.ConnectionTable.get(ConnectionTable.java:77)

 at com.ibm.rmi.iiop.GIOPImpl.createRequest(GIOPImpl.java:98)

 at com.ibm.rmi.iiop.GIOPImpl.createRequest(GIOPImpl.java:75)

 at com.ibm.rmi.corba.ClientDelegate.createRequest(ClientDelegate.java:440)

 at com.ibm.rmi.corba.ClientDelegate.is_a(ClientDelegate.java:571)

 at org.omg.CORBA.portable.ObjectImpl._is_a(ObjectImpl.java:74)

 at org.omg.CosNaming.NamingContextHelper.narrow(NamingContextHelper.java:58)

 com.sun.jndi.cosnaming.CNCtx.callResolve(CNCtx.java:327)

Client and server are running, but not naming service

The output is:

Hello Client exception:Cannot connect to ORB

Javax.naming.CommunicationException:

 Cannot connect to ORB.Root exception is org.omg.CORBA.COMM_FAILURE minor code:1 completed:No

 at com.ibm.rmi.iiop.ConnectionTable.get(ConnectionTable.java:145)

 at com.ibm.rmi.iiop.ConnectionTable.get(ConnectionTable.java:77)

 at com.ibm.rmi.iiop.GIOPImpl.createRequest(GIOPImpl.java:98)

 at com.ibm.rmi.iiop.GIOPImpl.createRequest(GIOPImpl.java:75)

 at com.ibm.rmi.corba.ClientDelegate.createRequest(ClientDelegate.java:440)

 at com.ibm.rmi.corba.InitialNamingClient.resolve(InitialNamingClient.java:197)

ORB - common problems

Chapter 20. Debugging the ORB 197

at com.ibm.rmi.corba.InitialNamingClient.cachedInitialReferences(InitialNamingClient.j

 at com.ibm.rmi.corba.InitialNamingClient.resolve_initial_references(InitialNamingClien

 at com.ibm.rmi.corba.ORB.resolve_initial_references(ORB.java:1269)

You must start the Java IDL name server before an application or applet starts that

uses its naming service. Installation of the Java IDL product creates a script

(Solaris: tnameserv) or executable file (Windows NT: tnameserv.exe) that starts the

Java IDL name server.

Start the name server so that it runs in the background. If you do not specify

otherwise, the name server listens on port 2809 for the bootstrap protocol that is

used to implement the ORB resolve_initial_references() and list_initial_references()

methods.

Specify a different port, for example, 1050, as follows:

 tnameserv -ORBInitialPort 1050

Clients of the name server must be made aware of the new port number. Do this

by setting the org.omg.CORBA.ORBInitialPort property to the new port number

when you create the ORB object.

Running the client with MACHINE2 (client) unplugged from the

network

Your output is:

(org.omg.CORBA.TRANSIENT CONNECT_FAILURE)

Hello Client exception:Problem contacting address:corbaloc:iiop:machine2:2809/NameService

javax.naming.CommunicationException:Problem contacting address:corbaloc:iiop:machine2:2809/N

 is org.omg.CORBA.TRANSIENT:CONNECT_FAILURE (1)minor code:4942F301 completed:No

 at com.ibm.CORBA.transport.TransportConnectionBase.connect(TransportConnectionBase.jav

 at com.ibm.rmi.transport.TCPTransport.getConnection(TCPTransport.java:178)

 at com.ibm.rmi.iiop.TransportManager.get(TransportManager.java:79)

 at com.ibm.rmi.iiop.GIOPImpl.createRequest(GIOPImpl.java:131)

 at com.ibm.rmi.iiop.GIOPImpl.createRequest(GIOPImpl.java:98)

 at com.ibm.CORBA.iiop.ClientDelegate._createRequest(ClientDelegate.java:2096)

 at com.ibm.CORBA.iiop.ClientDelegate.createRequest(ClientDelegate.java:1264)

 at com.ibm.CORBA.iiop.ClientDelegate.createRequest(ClientDelegate.java:1177)

 at com.ibm.rmi.corba.InitialNamingClient.resolve(InitialNamingClient.java:252)

 at com.ibm.rmi.corba.InitialNamingClient.cachedInitialReferences(InitialNamingClient.j

 at com.ibm.rmi.corba.InitialNamingClient.resolve_initial_references(InitialNamingClien

 at com.ibm.rmi.corba.InitialReferenceClient.resolve_initial_references(InitialReferenc

 at com.ibm.rmi.corba.ORB.resolve_initial_references(ORB.java:3211)

 at com.ibm.rmi.iiop.ORB.resolve_initial_references(ORB.java:523)

 at com.ibm.CORBA.iiop.ORB.resolve_initial_references(ORB.java:2898)

IBM ORB service: collecting data

This section describes how to collect data about ORB problems.

Preliminary tests

The ORB is affected by problems with the underlying network, hardware, and

JVM. When a problem occurs, the ORB can throw an org.omg.CORBA.* exception,

some text that describes the reason, a minor code, and a completion status. Before

you assume that the ORB is the cause of problem, ensure the following:

v The scenario can be reproduced (not only on customers’ machines, but on a

similar setup configuration).

ORB - common problems

198 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

v The JIT is disabled (see Chapter 30, “JIT diagnostics,” on page 295).

Also:

1. Disable additional CPUs.

2. Eliminate memory dependencies with the client or server. The lack of physical

memory can be the cause of slow performance, apparent hangs, or crashes. To

remove these problems, ensure that you have a reasonable headroom of

memory. Remember that even with 1 GB of physical RAM, Java can use only

512 MB independently of what -Xmx is set to.

3. Check physical network problems (firewalls, com links, routers, DNS name

servers, and so on). These are the major causes of CORBA COMM_FAILURE

exceptions. As a test, ping your own machine name.

4. If the application is using a database such as DB2, switch to the most reliable

driver. For example, to isolate DB2 AppDriver, switch to Net Driver, which is

slower and uses sockets, but is more reliable.

Data to be collected

 If after all these verifications, the problem is still present, collect at all nodes of the

problem the following:

v Operating system name and version.

v Output of java -fullversion.

v Output of java com.ibm.CORBA.iiop.Version.

v Output of rmic -iiop -version, if rmic is involved.

v ASV build number (WebSphere Application Server only).

v If you think that the problem is a regression, include the version information for

the most recent known working build and for the failing build.

v If this is a runtime problem, collect debug and communication traces of the

failure from each node in the system (as explained earlier in this chapter).

v If the problem is in rmic -iiop or rmic -idl, set the options:

-J-Djavac.dump.stack=1 -Xtrace, and capture the output.

v Normally this step is not necessary. If it looks like the problem is in the buffer

fragmentation code, IBM service will return the defect asking for an additional

set of traces, which you can produce by executing with

-Dcom.ibm.CORBA.FragmentSize=0.

A testcase is not essential, initially. However, a working testcase that demonstrates

the problem by using only the Java SDK classes will speed up the resolution time

for the problem.

IBM ORB service: collecting data

Chapter 20. Debugging the ORB 199

IBM ORB service: collecting data

200 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

Chapter 21. NLS problem determination

The JVM contains built-in support for different locales. This chapter provides an

overview of locales, with the main focus on fonts and font management.

v “Overview of fonts”

v “The font.properties file” on page 202

v “Font utilities” on page 203

v “Common problems and possible causes” on page 204

Note: The term ″*nix″ refers to operating systems that are versions of Unix and

Unix-like operating systems, such as AIX, Linux, or MVS.

Overview of fonts

When you want to display text, either in SDK components (AWT or Swing), on the

console or in any application, characters have to be mapped to glyphs. A glyph is

an artistic representation of the character, in some typographical style, and is

stored in the form of outlines or bitmaps. Glyphs might not correspond

one-for-one with characters. For instance, an entire character sequence can be

represented as a single glyph. Also a single character may be represented by more

than one glyph (for example, in Indic scripts).

A font is a set of glyphs, where each glyph is encoded in a particular encoding

format, so that the character to glyph mapping can be done using the encoded

value. Almost all of the available Java fonts are encoded in Unicode and provide

universal mappings for all applications.

The most commonly available font types are TrueType and OpenType fonts.

Font specification properties

Specify fonts according to the following characteristics:

Font family

A font family is a group of several individual fonts that are related in

appearance. For example: Times, Arial, and Helvetica.

Font style

Font style specifies that the font be displayed in various faces. For example:

Normal, Italic, and Oblique

Font variant

This property determines whether the font should be displayed in normal caps

or in small caps. A particular font might contain only normal caps, only small

caps, or both types of glyph.

Font weight

This refers to the boldness or the lightness of the glyph to be used.

Font size

This property is used to modify the size of the displayed text.

© Copyright IBM Corp. 2003, 2006 201

Fonts installed in the system

On *nix platforms

To see the fonts that are either installed in the system or available for an

application to use, type the command: xset -q "". If your PATH also points

to the SDK (as it should be), xset -q output also shows the fonts that are

bundled with the Developer Kit.

 Use xset +fp and xset -fp to add and remove the font path respectively.

On Windows platforms

Most text processing applications have a drop-down list of the available system

fonts, or you can use the Settings->Control Panel->Fonts application.

The font.properties file

The JVM has a font.properties file that controls how Java adds fonts to its runtime.

This is platform specific.

The *nix font.properties file

The font.properties file consists of several sections. The first section associates java

font names to platform fonts.

On *nix platforms, a typical font.properties entry looks like this:

serif.3=-monotype-timesnewromanwt-medium-r-normal--*-%d-75-75-p-*-ibm-udcjp

This can be interpreted as follows:

<General font name>.[<Style>.]<index>=<Platform font name>

where:

 General font name is the font name that Java understands.

 Style can be normal, italic, bold, bolditalic, and so on. The default is ″normal″.

 Index specifies the sequence of searching for matching font glyphs, with zero

the highest priority.

 Platform font name is the name of the font in the system.

Other entries can be:

Font name /font file mapping

Entries in the font.properties help Java to map the font name with the font file

filename.timesnewromanwt_medium_r=tnrwt_j.ttf

This shows that the system font timesnewromanwt is defined in the font file

tnrwt_j.ttf.

Font substitution

 When the font is missing, try to map the missing font with another:

substitute.0=-timesnewromanwt=timesnewromanwt30

Here, if timesnewromanwt font is not found in the system, it is substituted

with timesnewromanwt30.

 If the JVM cannot load any fonts from the system, the characters are displayed

as small squares.

Font CharSet

These entries control the converter to be used to convert unicode strings.

NLS - overview of fonts

202 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

fontcharset.serif.0=sun.iof.CharToByteISO8859_1

This indicates that to draw the font that is specified by serif.0, the

sun.iof.CharToByteISO8859_1 converter is used.

Alias

This is used to map one Java font to another.

alias.timesnewroman=serif

The font definitions for serif are used for the font timesnewroman.

Fontset

The fontset entry is used to match fonts specifically for TextArea and TextField

objects.

fontset.serif.plain=\

-jdk-lucidabright-medium-r-normal--*-%d-75-75-p-*-iso8859-1,\

-monotype-timesnewromanwt-medium-r-normal--*-%d-75-75-*-*-jisx0208.1983-0,\

-monotype-timesnewromanwt-medium-r-normal--*-%d-75-75-*-*-jisx0201.1976-0,\

-monotype-timesnewromanwt-medium-r-normal--*-%d-75-75-p-*-ibm-udcjp

The Windows font.properties file

Modification of this file is risky and is not supported. See http://java.sun.com/
products/jdk/1.2/docs/guide/internat/fontprop.html for more information.

Note: The Windows font.properties file refers to Arial Unicode MS. The Arial

Unicode MS font is part of Office 2000 and above. You can download it from

Microsoft if you have a license for Microsoft Office or related products.

Font utilities

Font utilities in *nix platforms

xfd

Use the command xfd -fn <physical font name> in AIX to find out about the

glyphs and their rendering capacity. For example: Xfd -fn

monotype-sansmonowt-medium-r-normal--*-%d-75-75-m-*-ibm-udcjp brings up

a window with all the glyphs that are in that font.

xlsfonts

Use xlsfonts to check whether a particular font is installed on the system. For

example: xlsfonts | grep ksc will list all the Korean fonts in the system.

iconv

Use to convert the character encoding from one encoding to other. Converted

text is written to standard output. For example: iconv -f oldset -t newset

[file ...]

 Options are:

-f oldset

Specifies the source codeset (encoding).

-t newset

Specifies the destination codeset (encoding).

file

The file that contain the characters to be converted; if no file is specified,

standard input is used.

Font utilities on Windows systems

There are no built-in utilities similar to those offered by *nix.

NLS - font.properties file

Chapter 21. NLS problem determination 203

Common problems and possible causes

Why do I see a square box or ??? (question marks) in the SDK components?

This effect is caused mainly because Java is not able to find the correct font file

to display the character. If a Korean character should be displayed, the system

should be using the Korean locale, so that Java can take the correct font file. If

you are seeing boxes or queries, check the following:

 For AWT components:

1. Check your locale with locale.

2. To change the locale, export LANG=zh_TW (for example)

3. If this still does not work, try to log in with the required language.

For Swing components:

1. Check your locale with locale

2. To change the locale, export LANG=zh_TW (for example)

3. If you know which font you have used in your application, such as serif,

try to get the corresponding physical font from font.properties; then look

into the fontpath to check for the existence of the font. If the font file is

missing, try adding it there.

Character displayed in the console but not in the SDK Components and vice

versa.

Characters that should be displayed in the console are handled by the native

operating system. Thus, if the characters are not displayed in the console, in

AIX use the xlfd <physical font name> command to check whether the

system can recognize the character or not.

Character not displayed in TextArea or TextField

These components are Motif components (*nix). Java gives a set of fonts to

Motif to render the character. If the characters are not displayed properly, use

the following Motif application to check whether the character is displayable

by your Motif.

#include <stdio.h>

#include <locale.h>

#include <Xm/Xm.h>

#include <Xm/PushB.h>

main(int argc, char **argv)

{

 XtAppContext context;

 Widget toplevel, pushb;

 Arg args[8];

 Cardinal i, n;

 XmString xmstr;

 char ptr[9];

 /* ptr contains the hex. Equivalent of unicode value */

 ptr[0] = 0xc4; /*4E00*/

 ptr[1] = 0xa1;

 ptr[2] = 0xa4; /*4E59*/

 ptr[3] = 0x41;

 ptr[4] = 0xa4; /*4EBA*/

 ptr[5] = 0x48;

 ptr[6] = 0xa4; /* 4E09 */

 ptr[7] = 0x54;

 ptr[8] = 0x00;

 setlocale(LC_ALL, "");

 toplevel = XtAppInitialize(&context, "", NULL, 0, &argc, argv,

 NULL, NULL, 0);

 n=0;

NLS - common problems and possible causes

204 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

XtSetArg(args[n], XmNgeometry, "=225x225+50+50"); n++;

 XtSetArg(args[n], XmNallowShellResize, True); n++;

 XtSetValues(toplevel, args, n);

 xmstr =XmStringCreateLocalized(ptr);

 n=0;

 XtSetArg(args[n], XmNlabelString, xmstr); n++;

 pushb = XmCreatePushButton(toplevel, "PushB", args, n);

 XtManageChild(pushb);

 XtRealizeWidget(toplevel);

 XtAppMainLoop(context);

}

Compilation: cc -lXm -lXt -o motif motif.c

 Note that the Motif library is statically linked into the Linux JVMs, so it is not

possible to use this technique there.

NLS - common problems and possible causes

Chapter 21. NLS problem determination 205

NLS - common problems and possible causes

206 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

Chapter 22. AS/400 problem determination

The JTC does not provide or support the AS/400® JVM. The AS/400 JVM is

provided and serviced by the AS/400 product teams. You can get more

information about AS/400 Java from these sites:

For more information about the i-Series platform, contact the i-Series team through

links at the above sites.

http://www-1.ibm.com/servers/eserver/iseries/software/websphere/wsappserver/docs/ws50perfcon.pdf

http://publib.boulder.ibm.com/pubs/pdfs/as400/V4R5PDF/as4ppcp6.pdf (Chapter 7. Java performance guide)

http://ca-web.rchland.ibm.com/perform/websphere/TuningGC.pdf (garbage collection paper)

© Copyright IBM Corp. 2003, 2006 207

http://www-1.ibm.com/servers/eserver/iseries/software/websphere/wsappserver/docs/ws50perfcon.pdf
http://publib.boulder.ibm.com/pubs/pdfs/as400/V4R5PDF/as4ppcp6.pdf
http://ca-web.rchland.ibm.com/perform/websphere/TuningGC.pdf

208 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

Chapter 23. OS/2 problem determination

IBM supports the OS/2® Warp® platform at the JVM 1.3.1 level. No more versions

of the JVM for OS/2 are planned.

The Diagnostics Guide for V1.3.1 contains information for debugging OS/2.

© Copyright IBM Corp. 2003, 2006 209

210 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

Part 4. Using diagnostic tools

This part of the book describes how to use the diagnostic tools that are available.

The chapters are:

v Chapter 24, “Overview of the available diagnostics,” on page 213

v Chapter 25, “Using Javadump,” on page 219

v Chapter 26, “Using Heapdump,” on page 245

v Chapter 27, “JVM dump initiation,” on page 251

v Chapter 28, “Using method trace,” on page 257

v Chapter 29, “Using the dump formatter,” on page 261

v Chapter 30, “JIT diagnostics,” on page 295

v Chapter 31, “Garbage Collector diagnostics,” on page 299

v Chapter 32, “Class-loader diagnostics,” on page 319

v Chapter 33, “Tracing Java applications and the JVM,” on page 321

v Chapter 34, “Using the JVM monitoring interface (JVMMI),” on page 343

v Chapter 35, “Using the Reliability, Availability, and Serviceability interface,” on

page 355

v Chapter 36, “Using the JVMPI,” on page 369

v Chapter 38, “Using third-party tools,” on page 383

© Copyright IBM Corp. 2003, 2006 211

212 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

Chapter 24. Overview of the available diagnostics

This chapter describes the diagnostic tools used during problem determination.

The purpose of this chapter is to describe what is available, with a broad look at

how and when you might use a particular tool.

Note that Java on any given platform comprises two parts:

v The Java Virtual Machine (JVM) that interfaces Java to the native operating

system and

v The Java classes that provide the infrastructure.

There are no tools that can ″cross the barrier″ between these two parts. In other

words, if you have a Java problem you need a Java diagnostic tool and if you have

a problem in the JVM you need a JVM diagnostic tool.

This book addresses the IBM JVM. The diagnostics in this book are all JVM

diagnostics.

Categorizing the problem

Problems are considered to fall into four categories:

1. Crashes

2. Hangs

3. Memory leaks

4. Poor performance

You need different tools to solve problems in each category. Most of the tools

described in this book are from IBM, either built into the Java Virtual Machine

(JVM) or as external monitoring tools.

Platforms

IBM provides and supports Java on a number of platforms. These platforms can be

divided into five groups:

1. Linux

2. Windows

3. AIX (Power PC)

4. z/OS (previously called S/390)

5. Sun Solaris (IBM services the Sun Solaris JVM only when running IBM

middleware; for example, a WebSphere application on the Sun Solaris

platform).

The platform architectures are very different. You will find that:

v Some tools exist only for a given platform.

v Some tools have different versions for different platforms.

v Some tools are cross-platform.

© Copyright IBM Corp. 2003, 2006 213

Third-party tools

This book refers to third-party tools. Refer to Chapter 38, “Using third-party tools,”

on page 383 for more details. This book only outlines whether or not a tool applies

to a problem, and refers you to the vendor of that tool for further documentation

Summary of cross-platform tools

IBM has several cross-platform diagnostic tools. They apply to the different types

of problem described above. The following sections provide a brief description of

the tools and indicate the sort of problem determination to which they are suited.

Javadump (or Javacore)

On some platforms, and in some cases, Javadump is known as ″Javacore″.

The code that creates Javadumps is part of the JVM. You can control it by using

environment variables and runtime switches. By default, a Javadump is produced

when the JVM terminates unexpectedly (crashes) because of an operating system

signal or when the user enters a reserved key-combination (for example, Ctrl-Break

on Windows). A Javadump is a text file that attempts to summarize the state of the

JVM at the instant the signal occurred.

Although Javadump (or Javacore) is present in Sun Solaris JVMs, much of the

content of the Javadump is IBM value-add; that is, it is present only in IBM JVMs.

See Chapter 25, “Using Javadump,” on page 219 for details. Javadump is an

automatic tool; it is simple to use.

Heapdump

Heapdump is an IBM JVM utility that generates a record of all the Java objects in

the Java heap. The Heapdump tool can generate Heapdump files at the request of

the user, in an out-of-memory condition, or when the JVM terminates unexpectedly

(a crash). Each Heapdump file contains details of every object in the heap at the

time it was generated. This is useful for diagnosing several kinds of problems, in

particular, memory-related problems.

Heapdump is an IBM value-add tool; that is, it is present only in IBM JVMs. See

Chapter 26, “Using Heapdump,” on page 245 for details.

Cross-platform dump formatter

The cross-platform dump formatter is a more advanced tool than Javadump. It

uses the dump files that the operating system generates to resolve data relevant to

the JVM. This tool is provided in two parts:

1. Platform code to extract data from the dump generated by the native operating

system

2. A Java tool to analyze that data

The formatter understands the JVM and can be used to analyze its internals. Thus,

it is a useful tool to debug JVM crashes. You must have a basic knowledge of the

JVM internals to use this tool. The formatter is really for use on postmortem

dumps. However, it is also useful for checking if leak problems occur in JVM

resources.

For more information, see Chapter 29, “Using the dump formatter,” on page 261.

diagnostics - third-party tools

214 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

The cross-platform dump formatter is an IBM value-add tool; that is, it is present

only in IBM JVMs. See Chapter 29, “Using the dump formatter,” on page 261 for

details. You need a long time to master the dump formatter; it is not a simple tool

to use. However, it is the deepest and most complete post-mortem analysis tool

that is available.

JVMPI tools

JVMPI tools conform to the JVM Profiling Interface that is common across all

JVMs. The IBM JVM is fully JVMPI compatible. Any tool conforming to JVMPI can

be used to profile the IBM JVM.

JVMPI tools help with problems involving leaks and performance, although profile

logs might give useful hints to the state of the JVM just before a crash or hang

problem.

The JVMPI is intended for interested parties to write profilers, but IBM provides a

useful agent with the IBM SDK.

For more information, see Chapter 36, “Using the JVMPI,” on page 369.

Note that JVMPI is officially described by Sun as “an experimental interface for

profiling”. It is not yet a standard profiling interface. It is provided for the benefit

of tools vendors who have an immediate need for profiling hooks in the Java

virtual machine. Sun states that the JVMPI will continue to evolve, based on

feedback from customers and tools vendors. IBM fully supports the current JVMPI

specification and is fully compatible with the current Sun release of the technology.

Visit Sun’s website (java.sun.com/j2se/1.3/docs/guide/jvmpi) for more

information.

JVMDI tools

JVM Debug Interface (JVMDI) tools are part of the Java Platform Debugging

Architecture, which is a common standard for JVMs. The IBM JVM is fully JPDA

compatible.

Any JPDA debugger can be attached to the IBM JVM. Being debuggers, these tools

are best suited to tracing leaks or the conditions prior to a crash or hang, if these

are repeatable.

An example of such a tool is the debugger that is bundled with Eclipse for Java.

JVM trace

JVM trace is a key diagnostic tool for the JVM.

The IBM JVM contains a large amount of embedded trace. Naturally, this tracing is

switched off by default. Command-line options allow you to turn trace on, set

exactly what is to be traced, and specify where the trace output is to go.

Trace applies to performance and leak problem determination, although the trace

file might provide clues to the state of a JVM before a crash or hang.

Trace is an IBM value-add tool; that is, it is present only in IBM JVMs. See

Chapter 33, “Tracing Java applications and the JVM,” on page 321 for details. You

need some considerable effort to master trace. However, it is an extremely effective

tool.

diagnostics - cross-platform tools

Chapter 24. Overview of the available diagnostics 215

java.sun.com/j2se/1.3/docs/guide/jvmpi

JVMRI

The JVM RAS interface is sometimes referred to as JVMRAS. (RAS stands for

Reliability, Availability, Serviceability.) This interface allows you to control several

JVM operations programmatically.

For example, the IBM JVM contains a large amount of embedded trace. Tracing is

switched off by default. A JVMRI agent acts as a plug-in to allow real-time control

of trace information. You use the -Xrun command-line option so that the agent is

loaded by the JVM itself at startup time. When loaded, a JVMRI agent can

dynamically switch JVM trace on and off, control the trace level, and capture the

trace output. The JVMRI applies to performance and leak problem determination,

although the trace file might provide clues to the state of a JVM before a crash or

hang.

The RAS plug-in interface is an IBM value-add interface; that is, it is present only

in IBM JVMs. See Chapter 35, “Using the Reliability, Availability, and Serviceability

interface,” on page 355 for details. You need some programming skills and tools to

be able to use this interface.

JVMMI

The JVM Monitoring Interface is accessed by library code loaded by the JVM. As

with JVMRI, you usually control the loading of a JVMMI agent by using the -Xrun

command-line option, but you can load it also from a JNI program.

This interface allows an external plug-in to request notification of certain events,

including, but not limited to, thread start and stop, heap low on memory and full,

and class loading and unloading. The interface also allows enumeration, in real

time, over particular objects (for example monitors).

The JVM Monitoring Interface can be used as an aid in tracking down problems in

performance and memory leak detection. If JVMMI is running at the time of a

crash or a hang, it might also be of assistance.

The JVMMI interface is an IBM value-add interface; that is, it is present only in

IBM JVMs. For a sample agent and for more information, see Chapter 34, “Using

the JVM monitoring interface (JVMMI),” on page 343. You need some

programming skills and tools to be able to use this interface.

Application trace

Application trace allows you to place tracepoints in Java code to provide trace data

that is combined with other forms of trace. You can control the tracepoints at

start-up or enable them dynamically. For more information, see Chapter 33,

“Tracing Java applications and the JVM,” on page 321.

Application trace is an IBM value-add tool; that is, it is present only in IBM JVMs.

See Chapter 33, “Tracing Java applications and the JVM,” on page 321 for details.

You need some considerable effort to master trace. However, it is an extremely

effective tool.

Method trace

Method trace permits the tracing of Java methods using the existing JVM trace

facility. The trace has entry, exit, and, optionally, input parameters. You can select

classes and methods for trace using wildcards. You start method trace by

command-line options at JVM startup time, or by using a JVMRI agent.

diagnostics - cross-platform tools

216 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

Method trace is an IBM value-add tool; that is, it is present only in IBM JVMs. See

Chapter 28, “Using method trace,” on page 257 for details. Basic method trace is

simple to use, and very effective.

JVM command line parameters

The IBM JVM has a rich set of command-line parameters that allow you to control

various functions. See Appendix G, “Command-line parameters,” on page 487.

JVM environment variables

The IBM JVM has a rich set of environment variables that you can use to affect its

running; for example, controlling the JIT.

The variables are separately described for the tools and diagnostics to which they

apply, and are also all gathered together for reference in Appendix E,

“Environment variables,” on page 407

Platform tools

Platform-specific tools are documented in the appropriate sections that follow. All

platforms (except z/OS) have a dump extractor tool that feeds the cross-platform

dump formatter. For the other tools, each platform has a different toolset. Some

tools have versions for two or more platforms.

The Java service team has a prototype Java application that displays and analyses

the Java environment variables. If you want more details about this prototype,

send an e-mail to jvmcookbook@uk.ibm.com.

diagnostics - cross-platform tools

Chapter 24. Overview of the available diagnostics 217

jvmcookbook@uk.ibm.com

diagnostics - cross-platform tools

218 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

Chapter 25. Using Javadump

Javadump produces files that contain diagnostic information related to the JVM

and a Java application captured at a point during execution. For example, the

information can be about the operating system, the application environment,

threads, native stack, locks, and memory. The exact contents are dependent on the

platform on which you are running. The files produced by Javadump are called

″Javadump files″. By default, a Javadump occurs when the JVM terminates

unexpectedly. A Javadump can also be triggered by sending specific signals to the

JVM.

Note: Javadump is also known as Javacore. This is NOT the same as a core file

(that is an operating system feature that can be produced by any program,

not just the JVM).

This chapter describes:

v “Enabling a Javadump”

v “The location of the generated Javadump”

v “Triggering a Javadump” on page 220

v “Interpreting a Javadump” on page 221

Note: “Interpreting a Javadump” on page 221 is the main part of this chapter.

Enabling a Javadump

Javadumps are enabled by default. To turn them off, set the environment variable

DISABLE_JAVADUMP to any value. The DISABLE_JAVADUMP environment

variable is not available on z/OS. For more information, see “z/OS environment

variables” on page 411.

You can use the JAVA_DUMP_OPTS environment variable to control exactly when

a Javadump is produced; see Chapter 27, “JVM dump initiation,” on page 251 for

more information.

The location of the generated Javadump

The JVM checks each of the following locations for existence and write-permission,

and stores the Javadump in the first one available. Note that you must have

enough free disk space (possibly up to 2.5 MB) for the Javadump file to be written

correctly.

1. The location specified by the IBM_JAVACOREDIR environment variable if set

(_CEE_DMPTARG on z/OS).

2. The current working directory of the JVM processes.

3. The location specified by the TMPDIR environment variable, if set.

4. The /tmp directory or, on Windows only, the location specified by the TEMP

environment variable, if set.

5. Windows only: If the Javadump cannot be stored in any of the above, it is put

to STDERR.

© Copyright IBM Corp. 2003, 2006 219

On Linux and AIX a log of Javadump files is maintained in the file

/tmp/javacore_locations.

The file name is of the following form: (where PID is the process ID and TIME is

the number of seconds since 1/1/1970.)

 Table 9. Javadump filename formats

Platform Javadump filename format

Windows and Linux javacore.YYYYMMDD.HHMMSS.PID.txt

AIX javacorePID.TIME.txt

z/OS JAVADUMP.YYYYMMDD.HHMMSS.PID.txt

Triggering a Javadump

The Javadump is generated when one of the following occurs:

v A fatal native exception occurs in the JVM (not a Java Exception).

v The JVM has completely run out of heapspace.

Note: You can disable this option by setting the

IBM_JAVADUMP_OUTOFMEMORY=FALSE environment variable.

v You send a signal to the JVM from the operating system.

v You use the JavaDump() method within Java code that is being executed.

The exact conditions in which you get a Javadump vary depending on the

JAVA_DUMP_OPTS environment variable. For example, you can optionally get a

Javadump when the JVM terminates normally (on an interrupt). See Chapter 27,

“JVM dump initiation,” on page 251 for more information.

A ″fatal″ exception is one that will cause the JVM to terminate. The JVM handles

this by producing a Javadump and then returning control to the operating system.

The behavior of the JVM in a failure is not affected by the Javadump and should

not affect the production of core files. However, it is possible that the processing

that is done to generate a Javadump might itself find a problem. In this unlikely

event, switch off Javadumps with the DISABLE_JAVADUMP=TRUE environment

variable.

Note: The exact format and content might be different to what is documented at

this stage.

In the user-controlled cases (the latter two), the JVM stops execution, performs the

dump, and then continues execution.

The signal for Linux and AIX is SIGQUIT. Use the command kill -3 n to send the

signal to a process with process id (PID) n. Alternatively, press Ctrl+\ in the shell

window that started Java.

The signal for z/OS is Ctrl+V.

In Windows, the dump is initiated by using Ctrl+Break in the command window

that started Java.

The class com.ibm.jvm.Dump contains a static JavaDump() method that causes

Java code to initiate a Javadump. In your application code, add a call to

location of generated Javadump

220 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

com.ibm.jvm.Dump.JavaDump(). This is subject to the same Javadump

environment variables as are described in “Enabling a Javadump” on page 219.

You can get a Javadump in a ″totally out of heapspace″ condition; that is, at the

same time as the Java application receives an OutOfMemory error. This feature is

enabled by default. You can disable it by using the

IBM_JAVADUMP_OUTOFMEMORY=FALSE) environment variable.

Interpreting a Javadump

The information that is provided in a Javadump file depends on the platform on

which you are running the JVM.

Notes:

1. In some conditions information might be missing because of the nature of a

crash.

2. Most of the cross-platform sections of the dump are fully documented in the

Windows example. The Linux, AIX, and z/OS examples build on top of the

Windows sections to describe platform specifics.

Javadump tags

The Javadump files contain tags. This metadata makes it easier to parse and

perform simple analysis on the contents of Javadump files. An example tag is:

1CIJAVAVERSION J2RE 1.4.1 IBM Windows 32 build cn141-20030601

Normal tags have these characteristics:

v Tags are up to 15 characters long (padded with spaces).

v The first digit is a nesting level.

v The second and third characters identify the component that wrote the message

(for example, CI, DG, LK).

v The remainder is a unique string.

Special tags have these characteristics:

v A tag of ″NULL″ means the line is purely to aid readability

v Every section is headed by a tag of ″0SECTION″ with the section title

Here is an example of some tags:

NULL --

0SECTION TITLE subcomponent dump routine

NULL ===============================

1TISIGINFO signal 24 received

1TIDATETIME Date: 2003/05/21 at 11:49:02

1TIFILENAME Javacore filename: /u/riccole/JAVADUMP.20030521.114902.50332001.txt

NULL --

0SECTION XHPI subcomponent dump routine

NULL ==============================

1XHSIGRECV SIGQUIT received at 0 in (Default handler)

1XHTIME Wed May 21 11:49:02 2002

1XHFULLVERSION Java J2RE 1.4.1 IBM OS/390 Persistent Reusable VM build cm141-20030521

NULL

1XHOPENV Operating Environment

NULL ---------------------

2XHNOTCPIPINFO Could not get TCPIP information for host WINMVS16

2XHOSLEVEL OS Level : z/OS V01 R02.00 Machine 9672 Node MV16

2XHCPUS Processors -

triggering a Javadump

Chapter 25. Using Javadump 221

3XHCPUARCH Architecture : (not implemented)

3XHNUMCPUS How Many : (not implemented)

3XHCPUSENABLED Enabled : 5

NULL

Note: For the rest of the chapter, the tags are removed to aid readability.

Locks, monitors, and deadlocks (LK)

Here is an example of the LK component part of the dump (this is practically the

same on all platforms). The LK component handles locking in the JVM.

A lock prevents more than one entity from accessing a shared resource. Each object

in Java has an associated lock (gained by using a synchronized block or method).

In the case of the JVM, threads compete for various resources in the JVM and locks

on Java objects.

A monitor is a special kind of locking mechanism that is used in the JVM to allow

flexible synchronization between threads. For the purpose of this section, read the

terms monitor and lock interchangeably.

To avoid having a monitor on every object, the JVM usually uses a flag in a class

or method block to indicate that the item is locked. Most of the time, a piece of

code will transit some locked section without contention. Therefore, the guardian

flag is enough to protect this piece of code. This is called a flat monitor. However,

if another thread wants to access some code that is locked, a genuine contention

has occurred. The JVM must now create (or inflate) the monitor object to hold the

second thread and arrange for a signaling mechanism to coordinate access to the

code section. This monitor is now called an inflated monitor.

 --

LK subcomponent dump routine

============================

Monitor pool info:

 Initial monitor count: 32

 Minimum number of free monitors before expansion: 5

 Pool will next be expanded by: 16

 Current total number of monitors: 32

 Current number of free monitors: 28

Monitor Pool Dump (flat & inflated object-monitors):

 sys_mon_t:0x3020D9E8 infl_mon_t: 0x3020D4D8:

 java.lang.ref.Reference$Lock@302D20C0/302D20C8: <unowned>

 Waiting to be notified:

 "Reference Handler" (0x3477F210)

 sys_mon_t:0x3020DA68 infl_mon_t: 0x3020D500:

 java.lang.ref.ReferenceQueue$Lock@302D1CD0/302D1CD8: <unowned>

 Waiting to be notified:

 "Finalizer" (0x34784B20)

 sys_mon_t:0x3020DAE8 infl_mon_t: 0x00000000:

 java.lang.Object@3030DF38/3030DF40: Flat locked by thread ident 0x07, entry count 1

 Waiting to be notified:

 "Thread-0" (0x353366F0)

 sys_mon_t:0x3020DB68 infl_mon_t: 0x00000000:

 java.lang.Object@3030DF48/3030DF50: Flat locked by thread ident 0x06, entry count 1

 Waiting to be notified:

 "Thread-1" (0x35336E90)

JVM System Monitor Dump (registered monitors):

 Integer lock access-lock: <unowned>

 Evacuation Region lock: <unowned>

 Heap Promotion lock: <unowned>

interpreting a Javadump

222 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

Sleep lock: <unowned>

 Method trace lock: <unowned>

 Heap lock: owner "Signal dispatcher" (0x3477AFD0), entry count 1

 Monitor Cache lock: owner "Signal dispatcher" (0x3477AFD0), entry count 1

 JNI Pinning lock: <unowned>

 JNI Global Reference lock: <unowned>

 Classloader lock: <unowned>

 Binclass lock: <unowned>

 Monitor Registry lock: owner "Signal dispatcher" (0x3477AFD0), entry count 1

 Thread queue lock: owner "Signal dispatcher" (0x3477AFD0), entry count 1

 Waiting to be notified:

 "Thread-2" (0x30210B00)

Thread identifiers (as used in flat monitors):

 ident 0x02 "Thread-2" (0x30210B00) ee 0x302108D4

 ident 0x07 "Thread-1" (0x35336E90) ee 0x35336C64

 ident 0x06 "Thread-0" (0x353366F0) ee 0x353364C4

 ident 0x05 "Finalizer" (0x34784B20) ee 0x347848F4

 ident 0x04 "Reference Handler" (0x3477F210) ee 0x3477EFE4

 ident 0x03 "Signal dispatcher" (0x3477AFD0) ee 0x3477ADA4

Java Object Monitor Dump (flat & inflated object-monitors):

 java.lang.ref.ReferenceQueue$Lock@302D1CD0/302D1CD8

 locknflags 80000200 Monitor inflated infl_mon 0x3020D500

 java.lang.ref.Reference$Lock@302D20C0/302D20C8

 locknflags 80000100 Monitor inflated infl_mon 0x3020D4D8

 java.lang.Object@3030DF38/3030DF40

 locknflags 00070000 Flat locked by thread ident 0x07, entry count 1

 java.lang.Object@3030DF48/3030DF50

 locknflags 00060000 Flat locked by thread ident 0x06, entry count 1

The component dump is split into the following sections:

v Monitor pool info: This keeps track of the state of the LK component.

v Monitor Pool Dump (flat & inflated object-monitors): These are the objects that

threads are waiting to lock.

Consider the monitor that is described by the part:

sys_mon_t:0x3020DAE8 infl_mon_t: 0x00000000:

 java.lang.Object@3030DF38/3030DF40: Flat locked by thread ident 0x07, entry count 1

 Waiting to be notified:

 Thread-0" (0x353366F0)

The first line gives the address of some JVM monitor structures. The second line

shows that a lock is on the java.lang.Object@3030DF38/3030DF40. Object and

thread number 0x07 has this lock. The entry count 1 says that one thread is inside

a method or block that is protected by the lock. The fourth line shows that a

thread called Thread-0 with its JVM sys_thread_t structure at 0x353366F0 is waiting

for the lock.

Note that it is possible for the entry count to be higher than 1 because a method

could use a wait() call in a synchronized method to release a lock temporarily so

that another thread could then take the lock. In this case, two threads would be in

synchronized methods or blocks, but only one would actually have the lock at any

one time.

JVM system monitor dump (registered monitors)

This is a list of monitors that are maintained for use by the JVM. Each lock

contains details of which thread (including their respective JVM sys_thread_t data

structure addresses) holds the lock, if applicable.

interpreting a Javadump

Chapter 25. Using Javadump 223

Thread identifiers (as used in flat monitors)

This section contains a list of the threads. This line describes thread number 0x07

called Thread-1 with JVM data structure at address 0x35336E90:

ident 0x07 "Thread-1" (0x35336E90) ee 0x35336C64

Java object monitor dump (flat & inflated object-monitors)

This section is similar to “Monitor Pool Dump (flat & inflated object-monitors)”,

but with some additional JVM internal information.

Using the LK component dump to diagnose a deadlock

Deadlocks are usually caused by an inconsistency in the locking semantics of the

application, or possibly some aspect of the JVM. This leads to one of the following

conditions:

v Thread 1 has lock A and wants lock B

v Thread 2 has lock B and wants lock A

That is: Thread 1 waits for B is locked by Thread 2 waits for A is locked by Thread

1..... - a cycle in the “waits for/locked by” graph.

Neither thread can proceed until the other releases the relevant lock; this cannot

happen. This might be more complex, involving three or more threads with

interdependent locks, but the principle remains the same. Other threads usually

end up blocked on one or other of the locks involved, thereby causing a totally

deadlocked Java application.

sys_mon_t:0x3020DAE8 infl_mon_t: 0x00000000:

 (1)

 java.lang.Object@3030DF38/3030DF40: Flat locked by thread ident 0x07, entry count 1

 Waiting to be notified:

 "Thread-0" (0x353366F0)

sys_mon_t:0x3020DB68 infl_mon_t: 0x00000000:

 (2)

 java.lang.Object@3030DF48/3030DF50: Flat locked by thread ident 0x06, entry count 1

 Waiting to be notified:

 "Thread-1" (0x35336E90)

The above LK component dump is an example of a deadlock. First notice (see (1)

above) that Thread-0 is waiting to lock the java.lang.Object@3030DF38/3030DF40

object. Now thread number 0x07 has the lock of this object. Looking at the Thread

numbers section, this is the thread called Thread-1. Conversely, Thread-1 is waiting

to lock java.lang.Object@3030DF48/3030DF50, which is held by thread number

0x06 - Thread-0. This is a clear (and in this case simple) deadlock.

Javadump can automatically diagnose most deadlocks. Here is an example:

Deadlock detected !!!

Thread "Thread-1" (0x35336E90)

 is waiting for:

 sys_mon_t:0x3020DB68 infl_mon_t: 0x00000000:

 java.lang.Object@3030DF48/3030DF50:

 which is owned by:

Thread "Thread-0" (0x353366F0)

 which is waiting for:

 sys_mon_t:0x3020DAE8 infl_mon_t: 0x00000000:

 java.lang.Object@3030DF38/3030DF40:

 which is owned by:

Thread "Thread-1" (0x35336E90)

interpreting a Javadump

224 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

Similarly, the dump formatter (see Chapter 29, “Using the dump formatter,” on

page 261) can also diagnose deadlocks.

Note: Some categories of deadlock cannot be diagnosed automatically; they require

understanding of the synchronization in the application. For example, if

threads have interdependencies on wait()/notify() operations, you cannot be

aware, from the diagnostic information, of which thread would be expected

to notify some thread that is waiting.

Javadump sample output 1 (Windows)

This is a sample of the top section of a Javadump file that was produced on

Windows.

The following Javadump sample output 1 (Windows) section applies to Linux and

AIX also.

--

TITLE subcomponent dump routine

===============================

signal 11 received

Date: 2004/05/21 at 14:54:38

Javacore filename: C:\javacore.20040521.145438.2008.txt

--

XHPI subcomponent dump routine

==============================

Exception code: C0000005 Access Violation

Fault address: 00F51090 01:00000090

Fault module: c:\sdk\jre\bin\classic\jvm.dll

Registers:

EAX:00000000

EBX:0006FE98

ECX:0006FFB0

EDX:00000000

ESI:00000002

EDI:007F7A50

CS:EIP:001B:00F51090

SS:ESP:0023:0006FE58 EBP:0006FE60

DS:0023 ES:0023 FS:0038 GS:0000

Flags:00010202

--

CI subcomponent dump routine

============================

J2RE 1.4.2 IBM Windows 32 build cn142-20040521

Running as a standalone JVM

java -Xmx6m -Xbootclasspath/p:D:\fix.jar -classpath classes Pause

Java Home Dir: c:\sdk\jre

Java DLL Dir: c:\sdk\jre\bin

Sys Classpath: c:\sdk\jre\lib\core.jar;c:\sdk\jre\lib\server.jar;

UserArgs:

 -Dconsole.encoding=Cp850

 vfprintf 0x402E00

 -XrunagentGPF

 -Dinvokedviajava

 -Djava.class.path=classes

 vfprintf

JVM Monitoring Interface (JVMMI)

No events are enabled.

...

...

interpreting a Javadump

Chapter 25. Using Javadump 225

...

--

XM subcomponent dump routine

============================

Exception Info

JVM Exception 0x2 (subcode 0x0) occurred in thread "main" (TID:0x92B9B8)

File header (TITLE) - signal information

The top of the file shows general information about the dump. In this case, a

signal 11 (a SIGSEGV) occurred in the JVM and caused it to crash. Looking down

the dump at the XM section, you can see that it occurred in a thread called “main”

with TID (Thread Identifier) 0x92B9B8). This can be cross-referenced against other

parts of the file; for example, the stack traces and locks.

XHPI section

This section is platform-specific. It contains the information that you get for a crash

on Windows. It lists the cause of the problem and where it happened (an access

violation in jvm.dll at address 00F51090). It also shows which registers were in use

at the time of the problem.

System properties (CI)

This section of the file shows:

v SDK Version and Build Identifier: J2RE 1.4.2 IBM Windows 32 build

cn142-20040521.

v The command-line argument that started the JVM: java -Xmx6m

-Xbootclasspath/p:D:\fix.jar -classpath classes Pause.

v The location from which the Runtime Environment executables were loaded:

c:\sdk\jre\bin.

v The default bootclasspath: Sys Classpath: c:\sdk\jre\lib\core.jar;c:\sdk\
jre\lib\server.jar;.

v Arguments supplied when initializing the JVM labeled under UserArgs. For

example: -Djava.class.path=classes.

v Events that are tracked by the JVM Monitoring Interface (none in this case).

The main diagnostic function of this section is to determine exactly what native

executables and Java classes were being run when the dump occurred. This can

include the java executable, the Java API, IBM extensions, and user application

class files.

The UserArgs section shows arguments for the JVM, which might have been

supplied by the user or generated during JVM initialization. For example, the

-Djava.class.path=classes property was generated by the user specifying the

option -classpath classes on the command line. However,

-Dconsole.encoding=Cp850 was generated automatically.

The bootclasspath (classpath of the bootstrap class loader) contains the locations

from which the Java API is loaded. This takes the value listed under ″Sys

Classpath″ and is then modified by any supplied arguments. In this case, the

-Xbootclasspath/p:D:\fix.jar argument adds D:\fix.jar to the start of the

default bootclasspath. The effect of this is that the JVM will attempt to load classes

(including the Java API) from D:\fix.jar before c:\sdk\jre\lib\core.jar;c:\sdk\
jre\lib\server.jar.

interpreting a Javadump (Windows)

226 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

The classpath (generally refers to the system or application class loader’s classpath)

takes a default value of ″.″ (the working directory of Java). This causes the

-Djava.class.path=. property to be set by default. In this example, it is then

overridden by -Djava.class.path=classes (generated from the command-line

option -classpath classes). This example shows the case where a later value of a

system property replaces an earlier value in the system property list.

Data Conversion (DC)

The DC component dump gives information on internal functions used to convert

various character formats and data used to handle Java types.

--

DC subcomponent dump routine

============================

Header eye catcher DCST

Header length 24

Header version 1

Header modification 0

DC Interface at 0x60ED78 with 15 entries

 1 - dcCString2JavaString 0x4A56EA

 2 - dcInt642CString 0x4A5938

 3 - dcJavaString2NewCString 0x4A5BF2

 4 - dcJavaString2CString 0x4A5ACF

 5 - dcJavaString2NewPlatformString 0x4A5D67

 6 - dcJavaString2UTF 0x4A6253

 7 - dcPlatformString2JavaString 0x4A5E79

 8 - dcUnicode2UTF 0x4A607D

 9 - dcUnicode2UTFLength 0x4A5F9B

 10 - dcUTF2JavaString 0x4A6800

 11 - dcUTFClassName2JavaString 0x4A6B6D

 12 - dcJavaString2ClassName 0x4A6372

 13 - dcUTF2UnicodeNext 0x4A6E22

 14 - dcVerifyUTF8 0x4A701E

 15 - dcDumpRoutine 0x4A7A20

Array info at 0x5A98B8 with 16 entries

 1 - index 0 signature 0 name N/A factor 0

 2 - index 0 signature 0 name N/A factor 0

 3 - index 2 signature L name class[] factor 4

 4 - index 0 signature 0 name N/A factor 0

 5 - index 4 signature Z name bool[] factor 1

 6 - index 5 signature C name char[] factor 2

 7 - index 6 signature F name float[] factor 4

 8 - index 7 signature D name double[] factor 8

 9 - index 8 signature B name byte[] factor 1

 10 - index 9 signature S name short[] factor 2

 11 - index 10 signature I name int[] factor 4

 12 - index 11 signature J name long[] factor 8

 13 - index 0 signature 0 name uint[] factor 0

 14 - index 0 signature 0 name uint1[] factor 0

 15 - index 0 signature 0 name uint2[] factor 0

 16 - index 0 signature 0 name uint3[] factor 0

Diagnostics settings (DG)

This part of the dump output gives information about the size of the buffer used

to hold the Javadump before being flushed to disk and information about JVM

trace settings.

--

DG subcomponent dump routine

============================

Trace enabled: Yes

 Trace activated

 Trace: Internal

Javadump buffer size (allocated): 2621440

interpreting a Javadump (Windows)

Chapter 25. Using Javadump 227

Storage Management (ST)

See Chapter 2, “Understanding the Garbage Collector,” on page 7 for information

about how the ST component works. This part of the file gives various storage

management values, including:

v Whether concurrent mark is used (Concurrent GC: No)

v Current heap address limits (between 102601fc and 1065fbfc)

v Counts of allocation failures (AF Counter: 0) and garbage collection cycles (GC

Counter: 0)

v Free space in heap (2e42c0) and size of current heap (3ffa00)
--

ST subcomponent dump routine

============================

Resettable GC: No

Concurrent GC: No

Current Heap Base: 102601fc

Current Heap Limit: 1065fbfc

Middleware Heap Base: 102601fc

Middleware Heap Limit: 1065fbfc

Number of GC Helper Threads: 0

-Xconcurrentlevel: 0

-Xconcurrentbackground: 0

GC Counter: 0

AF Counter: 0

Bytes of Heap Space Free: 2e42c0

Bytes of Heap Space Allocated: 3ffa00

SM Base: 0

SM End: 0

PAM Start: 0

PAM End: 0

Compact Action: 0

Execution Engine (XE)

This part of the dump contains information such as JIT initialization and the JIT

mixed-mode compilation threshold (2000).

--

XE subcomponent dump routine

============================

MMI threshold for Java methods is set to 2000

JIT is initialized

JVMPI is not activated

MMI threshold for JNI methods is set to 0

Trace history length is set to 4

Threads and stack trace (XM)

This section shows a complete list of Java threads that are alive.

interpreting a Javadump (Windows)

228 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

A thread is alive if it has been started but not yet stopped. A Java thread is

implemented by a native thread of the operating system. Each thread is

represented by a line such as:

"Thread-1" (TID:0x9017A0, sys_thread_t:0x23EAC8, state:R, native ID:0x6E4) prio=5

The properties of a thread are name, identifier, JVM data structure address, current

state, native thread identifier, and priority. A large value for priority means that the

thread has a high priority. The values of state can be:

v R - Runnable - the thread is able to run when given the chance.

v CW - Condition Wait - the thread is waiting. For example, because:

– A sleep() call is made.

– The thread has been blocked for I/O.

– A synchronized method of an object locked by another thread has been called.

– The thread is synchronizing with another thread with a join() call.

Below each thread there is a stack trace for that thread. A stack trace is a

representation of the hierarchy of Java method calls made by the thread. For

example:

The java.lang.ref.Reference$ReferenceHandler.run() method calls

java.lang.Object.wait() which calls java.lang.Object.wait() which is then waiting on

some condition (thread state is CW). To the right of each method name called is

the source of the code for the method. Examples of this are:

v at java.lang.Object.wait(Object.java:429) - The wait method is at line 429 of

a Java source file called Reference.java

v at java.lang.Object.wait(Object.java(Compiled Code)) - The wait() method

is executing JIT-compiled code from a Java source file called Reference.java. See

“Refining a stack trace using the JIT options (XM)” on page 230.

XM subcomponent dump routine

============================

Current Thread Details

 "Finalizer"(TID:0x901900,sys_thread_t:0x8818D0,state:CW,native ID:0x734)prio=8

 at java.lang.Object.wait(Native Method)

 at java.lang.ref.ReferenceQueue.remove(ReferenceQueue.java:133)

 at java.lang.ref.ReferenceQueue.remove(ReferenceQueue.java:148)

 at java.lang.ref.Finalizer$FinalizerThread.run(Finalizer.java:213)

All Thread Details

Full thread dump Classic VM (J2RE 1.4.2 IBM build cn1420-20040608,native threads):

 "Thread-1"(TID:0x9017A0,sys_thread_t:0x23EAC8,state:R,native ID:0x6E4)prio=5

 "Thread-0"(TID:0x9017E8,stillborn,sys_thread_t:0x112360D0,state:R,native ID:0x7C0)prio=5

 "Finalizer"(TID:0x901900,sys_thread_t:0x8818D0,state:CW,native ID:0x734)prio=8

 at java.lang.Object.wait(Native Method)

 at java.lang.ref.ReferenceQueue.remove(ReferenceQueue.java:133)

 at java.lang.ref.ReferenceQueue.remove(ReferenceQueue.java:148)

 at java.lang.ref.Finalizer$FinalizerThread.run(Finalizer.java:213)

 "Reference Handler"(TID:0x901948,sys_thread_t:0x87F660,state:CW,native ID:0x748)prio=10

 at java.lang.Object.wait(Native Method)

 at java.lang.Object.wait(Object.java:429)

 at java.lang.ref.Reference$ReferenceHandler.run(Reference.java:131)

 "Signal dispatcher"(TID:0x901990,sys_thread_t:0x870A28,state:R,native ID:0x7B4)prio=5

 "Reference Handler"(TID:0x901948,sys_thread_t:0x87F660,state:CW,native ID:0x748)prio=10

 at java.lang.Object.wait(Native Method)

 at java.lang.Object.wait(Object.java:429)

 at java.lang.ref.Reference$ReferenceHandler.run(Reference.java:131)

interpreting a Javadump (Windows)

Chapter 25. Using Javadump 229

v at java.lang.Object.wait(Native Method) - The wait() method is a native

method. This could be user application JNI code or (as in this case) Java API

implementation.

Refining a stack trace using the JIT options (XM)

Chapter 30, “JIT diagnostics,” on page 295 explains how to use the JIT options.

In a stack trace such as:

at count.output(count.java(Compiled Code))

at count.loop(count.java(Compiled Code))

at count.main(count.java:4)

You can see that the main method has been compiled by the JIT (Just-In-Time)

compiler. This dynamically compiles Java bytecode into native code for greater

execution efficiency. However, because of the optimization for speed, the source

code line numbers are not maintained. If you want to trace the execution path, you

might want to know where loop() called output(). In this case, loop() is compiled

and so no source code line number is given. There might be only one place in

loop() where output() is called. If not, you could disable the JIT or increase the

JIT threshold and rerun the application. For example, with the JIT disabled, the

stack trace now becomes:

at count.output(count.java:15)

at count.loop(count.java:10)

at count.main(count.java:4)

Now the exact path through to output() is available. It is also now possible to see

where execution in the output() method was at the point of the Javadump (line

15), which could be useful in a crash or hang situation. Note that in most cases the

program behavior will be the same with the JIT on or off (however, events will

occur at different speeds). However, in some cases there could be a JIT problem or

the user Java application might have a race condition.

In this example, the trace shows that inline methods might not appear.

"Thread-0" (TID:0x102B3FA0, sys_thread_t:0x27CF18, state:R, native ID:0x2FA4) prio=5

 Stack trace (In-lined methods may not appear)

 at lot.run()V

This is another example where turning the JIT off (or disabling inlining) can help

to get more information about a program path.

Consider the case when a JIT problem occurs, and, for example, the Javadump is

produced when the JVM crashes. Turning the JIT off might prevent the crash and

therefore the Javadump that is being produced.

In the case of a Java application that has a race condition, the behavior of the

program depends on the speed at which different parts execute. So turning the JIT

on or off could also affect whether a crash or a hang occurs at all.

Turning off the JIT might affect the path that the application takes to get to the

point of the Javadump. Because of this, you then might see a different stack trace

from the original. At this point, you could try skipping only the compiling method

in which you were interested, by setting the environment variable export

JITC_COMPILEOPT=SKIP{count}{*}. In the example above, skipping compiling

method output could produce a stack trace like:

at count.output(count.java:15)

at count.loop(count.java(Compiled Code))

at count.main(count.java:4)

interpreting a Javadump (Windows)

230 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

This enables you to see where method output() is in execution, leaving the JIT

turned on for all the other methods.

Classloaders and Classes (CL)

See Chapter 3, “Understanding the class loader,” on page 31 for information about

the parent-delegation model. The classloader section includes:

v Classloader summaries. The defined class loaders and the relationship between

them

v Classoader loaded classes. The classes that are loaded by each classloader

In this example, there are the standard three classloaders:

v Application classloader (sun/misc/Launcher$AppClassLoader), which is a child

of the

v Extension classloader (sun/misc/Launcher$ExtClassLoader), which is a child of

the

v Bootstrap (sometimes called “system”) classloader (*System*).

As an example, take the application classloader with the full name

sun/misc/Launcher$AppClassLoader. Under ″Classloader summaries″, this has

flags -----ta-, which, from the key above, shows that the class loader is 6=trusted

and 7=application. It gives the number of loaded classes (1) and the parent

classloader sun/misc/Launcher$ExtClassLoader(0x102B4098). The parent address

0x102B4098 corresponds to the entry Shadow 0x102B4098 for the extension

classloader entry below. Under the ″ClassLoader loaded classes″ heading, you can

see that the application classloader has loaded one class called lot at address

0x102B0110.

--

CL subcomponent dump routine

============================

 Classpath Z(c:\sdk\jre\lib\core.jar),Z(c:\sdk\jre\lib\server.jar)

 Oldjava mode false

 Bootstrapping false

 Verbose class dependencies false

 Class verification VERIFY_REMOTE

 Namespace to classloader 0x00000000

 Start of cache entry pool 0x00000000

 Start of free cache entries 0x20BF362C

 Location of method table 0x002521C0

 Global namespace anchor 0x00B308F4

 System classloader shadow 0x00249830

 Classloader shadows 0x0026BC90

 Extension loader 0x102B4098

 System classloader 0x102B4030

 Classloader summaries

 12345678: 1=primordial,2=extension,3=shareable,4=middleware,5=system,6=trusted,

 7=application,8=delegating

 -----ta- Loader sun/misc/Launcher$AppClassLoader(0x0026BC90), Shadow 0x102B4030,

 Parent sun/misc/Launcher$ExtClassLoader(0x102B4098)

 Number of loaded classes 1

 Number of cached classes 177

 Allocation used for loaded classes 1

 Package owner 0x102B4030

 -xh-st-- Loader sun/misc/Launcher$ExtClassLoader(0x00269C90), Shadow 0x102B4098,

 Parent *none*(0x00000000)

 Number of loaded classes 2

 Number of cached classes 8

 Allocation used for loaded classes 3

 Package owner 0x102B4098

 p-h-st-- Loader *System*(0x00249830), Shadow 0x00000000

 Number of loaded classes 249

 Number of cached classes 249

interpreting a Javadump (Windows)

Chapter 25. Using Javadump 231

Allocation used for loaded classes 3

 Package owner 0x00000000

 ClassLoader loaded classes

 Loader sun/misc/Launcher$AppClassLoader(0x0026BC90)

 lot(0x102B0110)

 Loader sun/misc/Launcher$ExtClassLoader(0x00269C90)

 com/ibm/crypto/provider/IBMJCA(0x20C50218)

 com/ibm/crypto/provider/IBMJCA$1(0x20C50318)

 Loader *System*(0x00249830)

 java/lang/Character(0x00B55118)

 java/io/OutputStream(0x00B58118)

 java/util/Collection(0x00B51018)

....................left out to save space....................

 java/io/ObjectStreamField(0x00B50718)

Final section

This section gives the Javadump buffer size and usage and gives confirmation that

the file is complete.

--

Javadump End section

Javadump Buffer Usage Information

=================================

Javadump buffer size (allocated): 2621440

Javadump buffer size (used) : 27752

---------------------- END OF DUMP -------------------------------------

interpreting a Javadump (Windows)

232 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

Javadump sample output 2 (Linux)

This section describes the Linux-specific parts of the Javadump; the cross-platform

sections are covered above in the Windows section and should be read before this

section.

The following is the top section of a Javadump file that was produced on Linux.

--

TITLE subcomponent dump routine

===============================

signal 3 received

Date: 2003/05/30 at 13:08:05

Javacore filename: /home/dave/code/dump/javacore868.1034946485.txt

--

XHPI subcomponent dump routine

==============================

Fri May 30 13:08:05 2003

SIGQUIT received in <unknown> at (nil) in <unknown>.

J2RE 1.4.1 IBM build cxia32141-20030530

Operating Environment

Host : golkonda.

OS Level : 2.4.10-4GB.#1 Fri Sep 28 17:20:21 GMT 2001

glibc Version : 2.2.4

Processors -

 Architecture : (not implemented)

 How Many : (not implemented)

 Enabled : 1

Memory Info

----------- total: used: free: shared: buffers: cached:

Mem: 525729792 505630720 20099072 0 48328704 207196160

Swap: 271392768 4218880 267173888

MemTotal: 513408 kB

MemFree: 19628 kB

MemShared: 0 kB

Buffers: 47196 kB

Cached: 198220 kB

SwapCached: 4120 kB

Active: 235400 kB

Inactive: 14136 kB

HighTotal: 0 kB

HighFree: 0 kB

LowTotal: 513408 kB

LowFree: 19628 kB

SwapTotal: 265032 kB

SwapFree: 260912 kB

User Limits (in bytes except for NOFILE and NPROC) -

 RLIMIT_FSIZE : infinity

 RLIMIT_DATA : infinity

 RLIMIT_STACK : 2093056

 RLIMIT_CORE : 0

 RLIMIT_NOFILE : 1024

 RLIMIT_NPROC : 4094

Signal Handlers

HUP : intrDispatchMD (libhpi.so)

INT : intrDispatchMD (libhpi.so)

QUIT : intrDispatchMD (libhpi.so)

ILL : intrDispatchMD (libhpi.so)

TRAP : intrDispatchMD (libhpi.so)

ABRT : intrDispatchMD (libhpi.so)

FPE : intrDispatchMD (libhpi.so)

KILL : default handler

BUS : intrDispatchMD (libhpi.so)

SEGV : intrDispatchMD (libhpi.so)

interpreting a Javadump (Linux)

Chapter 25. Using Javadump 233

PIPE : ignored

ALRM : default handler

USR1 : sigusr1Handler (libhpi.so)

USR2 : get_self (libhpi.so)

TERM : intrDispatchMD (libhpi.so)

CLD : default handler

Environment Variables

PWD=/home/dave/code/frame

.......................(left out to save space).......................

PATH=/home/dave/jdks/141SR1/bin:/home/dave/bin:/usr/local/bin:/usr/bin:/usr/X11R6

 /bin:/bin:/usr/lib/java/bin:/usr/games/bin:/usr/games:/opt/gnome/bin:/opt/kde2/bin:.:/opt/cmvc/bin

LC_COLLATE=POSIX

IBM_JAVA_COMMAND_LINE=/java/jre/bin/exe/java -Djava.compiler=NONE frame

File header (TITLE) and XHPI header - signal information

At the top of the file the following information is given:

v Date and time when the Javadump was produced.

v The signal that caused the dump to be produced. In this case, SIGQUIT

(indicating a user-initiated Javadump). This line also gives the function and

library in which the signal occurred. This is <unknown>at (nil)in <unknown> in

this case because the signal was sent by the user to the JVM to initiate the dump

v The Java version and build identifier.

XHPI - operating environment

This section gives information about the Linux environment that Java is running

on. The information includes:

v The host name (or machine name). In this example: golkonda.

v The Linux kernel level. In this example: 2.4.10-4GB.

v The glibc version. In this example:2.2.4.

v The number of processors. In this example: 1.

XHPI - memory information

This part of the XHPI section contains various virtual memory statistics. In this

example: 19628/513408 KB of physical memory is free and 260912/265032 KB of

swap space is free.

XHPI - user limits

This part of the XHPI section contains various user environment limits (as reported

by ulimit). For example:

v RLIMIT_FSIZE - maximum size of any files created

v RLIMIT_ DATA - maximum data segment size

v RLIMIT_STACK - maximum stack size

v RLIMIT_CORE - maximum core file size

v RLIMIT_NOFILE - maximum number of open files

v RLIMIT_NPROC - maximum number of processes

XHPI - signal handlers

This part of the XHPI section describes the functions that are installed to handle

various signals on behalf of the JVM - for example, intrDispatchMD in libhpi.so

handles most operating system signals.

XHPI - environment variables

This part of the XHPI section describes environment variables set within the Java

process. For example, these include:

interpreting a Javadump (Linux)

234 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

v The working directory (PWD)

v The path (PATH)

v The command line used to invoke Java (stored in

IBM_JAVA_COMMAND_LINE by the JVM)

XHPI - memory map

The location of the memory map of the JVM processes is given in the Javadump

file. The memory map is held in the /proc/<PID>/maps file. Use the memory

map to identify:

v The names of particular system, Java or user libraries and executables that were

loaded.

v The locations in the filesystem that these libraries and executables were loaded

from.

v The contents of various memory addresses. For example, you might have an

exception address that you want to identify.

Each row represents a memory region. The columns are as follows:

ADDRESS-RANGE PERMS OFFSET DEV INODE PATHNAME

ADDRESS-RANGE

The address space that the region occupies

PERMS Permissions:

v r = read

v w = write

v x = execute

v s = shared

v p = private (copy on write)

OFFSET The offset into file or entity from which the region is mapped.

DEV The major and minor device numbers from where the file or entity comes.

INODE The inode of the file or entity. The value is 0 if no file or entity is

associated with region.

PATHNAME

The pathname of file or entity (if applicable).

 Each of the native libraries here has two memory regions. The first is the text

segment and the second is the data segment, which is reflected in the permissions

(text - read and execute, data - read and write). For the most recent information

about memory maps and the proc file system see the section 5 man page for proc:

man 5 proc.

Memory map

08048000-0804c000 r-xp 00000000 00:0d 3153929 /java/jre/bin/exe/java

0804c000-0804d000 rw-p 00003000 00:0d 3153929 /java/jre/bin/exe/java

0804d000-081a8000 rwxp 00000000 00:00 0

10000000-1fab0000 rwxp 00000000 00:00 0

40000000-40014000 r-xp 00000000 08:02 346279 /lib/ld-2.2.4.so

40014000-40015000 rw-p 00013000 08:02 346279 /lib/ld-2.2.4.so

40015000-40016000 rw-p 00000000 00:00 0

40016000-4001b000 r-xp 00000000 00:0d 3145740 /java/jre/bin/libxhpi.so

4001b000-4001c000 rw-p 00004000 00:0d 3145740 /java/jre/bin/libxhpi.so

4001c000-4001d000 r--p 00000000 08:02 1389931 /usr/lib/locale/en_GB/LC_IDENTIFICATION

4001d000-4001e000 r--p 00000000 08:02 981135 /usr/lib/locale/en_GB/LC_MEASUREMENT

4001e000-4001f000 r--p 00000000 08:02 1389937 /usr/lib/locale/en_GB/LC_TELEPHONE

interpreting a Javadump (Linux)

Chapter 25. Using Javadump 235

4001f000-40020000 r--p 00000000 08:02 327046 /usr/lib/locale/en_GB/LC_ADDRESS

40020000-40021000 r--p 00000000 08:02 327064 /usr/lib/locale/en_GB/LC_NAME

40021000-40022000 r--p 00000000 08:02 981143 /usr/lib/locale/en_GB/LC_PAPER

40022000-40023000 r--p 00000000 08:02 1196712 /usr/lib/locale/en_GB/LC_MESSAGES/SYS_LC_MESSAGES

40023000-40031000 r-xp 00000000 08:02 343429 /lib/libpthread.so.0

40031000-40039000 rw-p 0000d000 08:02 343429 /lib/libpthread.so.0

40039000-4004b000 r-xp 00000000 08:02 343420 /lib/libnsl.so.1

4004b000-4004d000 rw-p 00011000 08:02 343420 /lib/libnsl.so.1

4004d000-4004f000 rw-p 00000000 00:00 and 0

4004f000-40051000 r-xp 00000000 08:02 343417 /lib/libdl.so.2

40051000-40053000 rw-p 00001000 08:02 343417 /lib/libdl.so.2

40053000-4016e000 r-xp 00000000 08:02 343413 /lib/libc.so.6

4016e000-40175000 rw-p 0011a000 08:02 343413 /lib/libc.so.6

40175000-40179000 rw-p 00000000 00:00 0

40179000-402fb000 r-xp 00000000 00:0d 3153921 /java/jre/bin/classic/libjvm.so

402fb000-40301000 rw-p 00181000 00:0d 3153921 /java/jre/bin/classic/libjvm.so

40301000-40314000 rw-p 00000000 00:00 0

40314000-40335000 r-xp 00000000 08:02 343418 /lib/libm.so.6

40335000-40336000 rw-p 00020000 08:02 343418 /lib/libm.so.6

40336000-40348000 r-xp 00000000 00:0d 3145739 /java/jre/bin/libhpi.so

40348000-4034a000 rw-p 00011000 00:0d 3145739 /java/jre/bin/libhpi.so

4034a000-4036d000 rw-p 00000000 00:00 0

4036d000-40bc4000 rwxp 00000000 00:00 0

40bc4000-40be7000 r-xp 00000000 00:0d 3145741 /java/jre/bin/libjava.so

40be7000-40beb000 rw-p 00022000 00:0d 3145741 /java/jre/bin/libjava.so

40beb000-40bec000 rw-p 00000000 00:00 0

40bec000-40bfa000 r-xp 00000000 00:0d 3145742 /java/jre/bin/libzip.so

40bfa000-40bfd000 rw-p 0000d000 00:0d 3145742 /java/jre/bin/libzip.so

40bfd000-413b6000 r--s 00000000 00:0d 2375908 /java/jre/lib/rt.jar

413b6000-413e7000 rw-p 00000000 00:00 0

413e7000-41764000 r--s 00000000 00:0d 2375882 /java/jre/lib/i18n.jar

41764000-4178f000 r--p 00000000 08:02 981132 /usr/lib/locale/en_GB/LC_CTYPE

4178f000-41790000 r--p 00000000 08:02 866679 /usr/lib/locale/en_GB/LC_MONETARY

41790000-41796000 r--p 00000000 08:02 719511 /usr/lib/locale/en_GB/LC_COLLATE

41796000-41797000 r--p 00000000 08:02 719506 /usr/lib/locale/en_GB/LC_TIME

41797000-41798000 r--p 00000000 08:02 981141 /usr/lib/locale/en_GB/LC_NUMERIC

41798000-41799000 r--p 00000000 08:02 196231 /usr/share/locale/en_GB/LC_MESSAGES/libc.mo

41799000-4179b000 r-xp 00000000 08:02 1978713 /usr/lib/gconv/ISO8859-1.so

4179b000-4179c000 rw-p 00001000 08:02 1978713 /usr/lib/gconv/ISO8859-1.so

4179c000-417f9000 r--s 00000000 00:0d 2375819 /java/jre/lib/ext/ibmjcaprovider.jar

417f9000-41804000 r--s 00000000 00:0d 2375820 /java/jre/lib/ext/indicim.jar

41804000-41886000 rw-p 00000000 00:00 0

.......................(left out to save space).......................

bffc9000-c0000000 rwxp 0000a000 00:00 0

This provides useful information such as:

v The locale being used (usr/lib/locale/en_GB in this case)

v Where Java was loaded from (the SDK was in /java)

v Which Java native libraries were loaded (for example, libjvm.so, libxhpi.so,

libhpi.so, libjava.so)

v The threading library that is being used (/lib/libpthread.so.0)

v The glibc being used (/lib/libc.so.6)

v Java system libraries and API libraries (for example, rt.jar, i18n.jar,

ibmjcaprovider.jar, indicim.jar)

v The area in memory where the Java heap is stored (in most cases it will be the

largest region starting at 0x10000000 in this case fab0000 in size which is about

250 MB)

An examination of the memory map helps you to highlight problems such as

incorrect system libraries being loaded from the wrong location or with the wrong

filename or version.

interpreting a Javadump (Linux)

236 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

Current Thread Details

 Native Stack of ""Signal dispatcher"" PID 11898

 GetHeapDumpFileName_Impl at 4001929F in libxhpi.so

 Diagnostics_Impl at 40019409 in libxhpi.so

 dgGenerateJavacore at 40249F2E in libjvm.so

 xmSetProtectionDomain at 402DD220 in libjvm.so

 xmExecuteThread at 402DF2E1 in libjvm.so

 double2ll at 402D94EE in libjvm.so

 sysThreadRegs at 40343B0A in libhpi.so

pthread_detach at 40029F37 in libpthread.so.0

 __clone at 4012ABAA in libc.so.6

--

System properties (CI)

This section is the same as the Windows one and is covered in “System properties

(CI)” on page 226.

Data conversion (DC)

This section is the same as the Windows one and is covered in “Data Conversion

(DC)” on page 227.

Diagnostics settings (DG)

This section is the same as the Windows one and is covered in “Diagnostics

settings (DG)” on page 227.

Storage management (ST)

This section is the same as the Windows one and is covered in “Storage

Management (ST)” on page 228.

Execution engine (XE)

This section is the same as the Windows one and is covered in “Execution Engine

(XE)” on page 228.

Locks, monitors, and deadlocks (LK)

For details of using the LK component dump to diagnose deadlocks see “Locks,

monitors, and deadlocks (LK)” on page 222.

Threads and stack trace (XM)

See “Threads and stack trace (XM)” on page 228 for a description of a Java Stack

trace.

The Linux version of the XM component dump is similar to the Windows one

except that it contains additional native stack information. See the dump below for

an example of the additions.

The top stack trace (taken from the bottom of the XHPI section of the dump) is for

the thread that dealt with the signal that caused the Javadump. This is called the

″Signal dispatcher″ thread with PID 11898. This thread is also listed among the

other threads further down the dump output.

Each stack frame visible contains the name, address, and library of the function

involved (this information is not always complete). For example, the function

dgGenerateJavacore at address 40249F2E from library libjvm.so was the one that

generated the Javadump.

Debug builds are also available from IBM. These include line numbers for frames

within JVM libraries.

interpreting a Javadump (Linux)

Chapter 25. Using Javadump 237

XM subcomponent dump routine

============================

Exception Info

Not available

Thread Info

Full thread dump Classic VM (J2RE 1.4.1 IBM build cxia32141-20030530, native threads):

 "Thread-2" (TID:0x10051758, sys_thread_t:0x819C3F8, state:CW, native ID:0x1406) prio=5

 at frame.run(frame.java:52)

 at java.lang.Thread.run(Thread.java:512)

 PID: 11902

 ----- Register Values -----

REG_EAX : FFFFFFFC, REG_EBX : BEFFF804, REG_ECX : 8, REG_EDX : 1F, REG_ESI : BEFFF804,

 REG_EDI : BEFFF804, REG_EBP : BEFFF7D4

--

 PID: 11902

 ----- Native Stack -----

 pthread_getconcurrency at 0x4002c7f0 in libpthread.so.0

 pthread_cond_wait at 0x40028f3d in libpthread.so.0

 condvarWait at 0x4033e6da in libhpi.so

 sysMonitorWait at 0x40340d22 in libhpi.so

 lkMonitorEnter at 0x40260737 in libjvm.so

 mmipInvokeSynchronizedJavaMethodWithCatch at 0x402d14c7 in libjvm.so

 iiq_doinvoke_V__ at 0x402aadfe in libjvm.so

 EJinvq_doinvoke_V__ at 0x402a5013 in libjvm.so

 ??

--

.......................(left out to save space).......................

--

 "Signal dispatcher" (TID:0x10051990, sys_thread_t:0x80D6008, state:R, native ID:0x402) prio=5

 PID: 11898

 ----- Register Values -----

REG_EAX : 0, REG_EBX : 80D6008, REG_ECX : 1, REG_EDX : 403493C0, REG_ESI : 4

, REG_EDI : 80D6008, REG_EBP : BF7FF9E8

--

 PID: 11898

 ----- Native Stack -----

 ??

--

 PID: 11898

 ----- Native Stack -----

 ??

--

 "main" (TID:0x100519D8, sys_thread_t:0x8058C30, state:CW, native ID:0x400) prio=5

 at java.lang.Object.wait(Native Method)

 at java.lang.Thread.join(Thread.java:958)

 at java.lang.Thread.join(Thread.java:1011)

 at frame.main(frame.java:21)

 PID: 11883

 ----- Register Values -----

REG_EAX : FFFFFFFC, REG_EBX : BFFFF3DC, REG_ECX : 8, REG_EDX : BFFFF38C, REG_ESI

: BFFFF3DC, REG_EDI : BFFFF3DC, REG_EBP : BFFFF3AC

--

 PID: 11883

 ----- Native Stack -----

 pthread_getconcurrency at 0x4002c7f0 in libpthread.so.0

 pthread_cond_wait at 0x40028f3d in libpthread.so.0

 condvarWait at 0x4033e6da in libhpi.so

 sysMonitorWait at 0x40340d22 in libhpi.so

 lkMonitorWait at 0x40261104 in libjvm.so

 JVM_MonitorWait at 0x4021b49e in libjvm.so

 mmipSysInvokeJni at 0x402d1078 in libjvm.so

 mmisInvokeJniMethodHelper at 0x402d0bf7 in libjvm.so

 mmipInvokeJniMethod at 0x402d16b3 in libjvm.so

interpreting a Javadump (Linux)

238 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

ivq_doinvoke_V__ at 0x402aa96b in libjvm.so

 ivq_doinvoke_V__ at 0x402aa96b in libjvm.so

 EJisq_doinvoke_V__ at 0x402a512f in libjvm.so

 ??

--

Below each Java stack trace (for example, see ″main″ above) there are the hardware

register values, the PID of the process that implements the thread, and the native

stack.

Refining a stack trace using the JIT options (XM)

See “Refining a stack trace using the JIT options (XM)” on page 230.

Classloaders and classes (CL)

This section is the same as the Windows one and is covered in “Classloaders and

Classes (CL)” on page 231.

Final section

This section is the same as the Windows one and is covered in “Final section” on

page 232.

Javadump sample output 3 (AIX)

This section describes the AIX-specific parts of the Javadump; the cross-platform

sections are covered above in the Windows section, and should be read before this

section.

File header (TITLE) and XHPI header - signal information

This section is almost identical to the corresponding one on Linux, as described in

“File header (TITLE) and XHPI header - signal information” on page 234 except

that details of the ″Signal dispatcher″ thread and stack trace are given at the top of

the file instead of at the top of the XM component.

Fri May 30 13:07:20 2003

SIGQUIT received at 0x0 in <unknown>.

J2RE 1.4.1 IBM AIX build ca141-20030530

Current Thread Details

 "Signal dispatcher" sys_thread_t:0x3436E538

 ----- Native Stack -----

 unavailable - iar 0x0 not in text area

--

XHPI - operating environment

See“XHPI - operating environment” on page 234 for a brief description of the

contents of this section.

Operating Environment

Host : jtc170-43.hursley.ibm.com:9.20.178.89

OS Level : AIX 4.3.3.0

Processors -

 Architecture : POWER_PC (impl: POWER_630, ver: PV_630)

 How Many : 1

 Enabled : 1

XHPI - user limits

See“XHPI - operating environment” on page 234 for a brief description of the

contents of this section.

User Limits (in bytes except for NOFILE and NPROC) -

 RLIMIT_FSIZE : 1073741312

 RLIMIT_DATA : 2147483645

interpreting a Javadump (Linux)

Chapter 25. Using Javadump 239

RLIMIT_STACK : 33554432

 RLIMIT_CORE : 1073741312

 RLIMIT_NOFILE : 2000

 NPROC(max) : 262144

Page Space (in blocks) -

 /dev/hd6: size=524288, free=523883

XHPI - signal handlers

This section is identical to that on Linux and is covered in “XHPI - signal

handlers” on page 234.

XHPI - environment variables

This section is identical to that on Linux and is covered in “XHPI - environment

variables” on page 234.

XHPI - loaded libraries

The AIX Javadump has a section on loaded libraries instead of the memory map

that is displayed in the Linux Javadump. Here is a sample output:

Loaded Libraries (sizes in bytes)

/srvbuild/ca131-20020810/inst.images/rios_aix_4/sdk/jre/bin/libjitc.a

 filesize : 2690612

 text start : 0xD1621000

 text size : 0x22DA90

 data start : 0x3458DD40

 data size : 0xC304

/usr/lib/libiconv.a

 filesize : 377832

 text start : 0xD0034100

 text size : 0x13F3A

 data start : 0x3452EDA0

 data size : 0xA574

/usr/lib/libi18n.a

 filesize : 123742

 text start : 0xD002C100

 text size : 0x7ADC

 data start : 0x3453A6D0

 data size : 0x112C

.......................(left out to save space).......................

/usr/lib/libc.a

 filesize : 6424258

 text start : 0xD145D720

 text size : 0x1C358F

 data start : 0xF06C98A0

 data size : 0x7F968

For each loaded library, the pathname, filesize, and address ranges for text and

data segments are given. See the “XHPI - memory map” on page 235, because the

basic principles of interpretation are the same.

System properties (CI)

This section is the same as for Windows, and is described in “System properties

(CI)” on page 226.

Data conversion (DC)

This section is the same as for Windows, and is described in “Data Conversion

(DC)” on page 227.

Diagnostics settings (DG)

This section is the same as for Windows, and is described in “Diagnostics settings

(DG)” on page 227.

interpreting a Javadump (AIX)

240 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

Storage management (ST)

This section is the same as for Windows, and is described in “Storage Management

(ST)” on page 228.

Execution engine (XE)

This section is the same as for Windows, and is described in “Execution Engine

(XE)” on page 228.

Locks, monitors, and deadlocks (LK)

For details of how to use the LK component dump to diagnose deadlocks, see

“Locks, monitors, and deadlocks (LK)” on page 222.

Threads and stack trace (XM)

This section is very similar to the related Linux section, and is described in

“Threads and stack trace (XM)” on page 237.

Refining a stack trace using the JIT options (XM)

This section is the same as for Windows, and is described in “Refining a stack

trace using the JIT options (XM)” on page 230.

Classloaders and classes (CL)

This section is the same as for Windows, and is described in “Classloaders and

Classes (CL)” on page 231.

Final section

This section is the same as for Windows, and is described in “Final section” on

page 232.

Javadump sample output 4 (z/OS)

The z/OS Javadump format is mainly comprised of cross-platform sections that are

the same as in the Windows Javadump. Some other sections are very similar to

those on AIX and Linux. This section includes some sample output where it differs

from Windows, AIX, or Linux.

File header (TITLE) and XHPI header - signal information

This section is the same as for Linux, and is described in “File header (TITLE) and

XHPI header - signal information” on page 234.

XHPI - operating environment

This section is the same as for Linux, and is described in “XHPI - operating

environment” on page 234.

XHPI - user limits

This section is the same as for Linux, and is described in “XHPI - user limits” on

page 239.

XHPI - signal handlers

This section is the same as for Linux, and is described in “XHPI - signal handlers”

on page 234.

XHPI - environment variables

This section is the same as for Linux, and is described in “XHPI - environment

variables” on page 234.

interpreting a Javadump (AIX)

Chapter 25. Using Javadump 241

XHPI - loaded libraries

This section is the same as for AIX, and is described in “XHPI - loaded libraries”

on page 240.

XHPI - thread counts

This section contains quantitative information about threads.

Thread Counts

Total Thread Count: 5

Active Thread Count: 5

JNI Thread Count: (not implemented)

System properties (CI)

This section is the same as for Windows, and is described in “System properties

(CI)” on page 226.

Data conversion (DC)

This section is the same as for Windows, and is described in “Data Conversion

(DC)” on page 227.

Diagnostics settings (DG)

This section is the same as for Windows, and is described in “Diagnostics settings

(DG)” on page 227.

Storage management (ST)

This section is the same as for Windows, and is described and is covered in

“Storage Management (ST)” on page 228.

Execution engine (XE)

This section is the same as for Windows, and is described in “Execution Engine

(XE)” on page 228.

Locks, monitors, and deadlocks (LK)

For details of how to use the LK component dump to diagnose deadlocks, see

“Locks, monitors, and deadlocks (LK)” on page 222.

Threads and stack trace (XM)

Here is an example of the stack trace that is given on z/OS:

Current Thread Details

"Signal dispatcher" (sys_thread_t:176ab400)

 Native Thread State: SYSTEM RUNNING

 Native Stack Data: base: 17129660 top: 0 pointer: 171a9660 used(e8ed69a0) free(171a9660)

 Monitors Held: (not implemented)

 Native Stack

Program name Entry Name Statement ID

 /u/sovbld/hm131s/hm131s-20020923/src/xhpi/pfm/xhpi.c

Diagnostics 1889

 /jtc/riccole/cm131s/src/jvm/sov/dg/dg_javacore.c

dgGenerateJavacore 495

 /u/sovbld/hm131s/hm131s-20020923/src/jvm/sov/xm/signals.c

signalDispatcherThread 338

 /u/sovbld/hm131s/hm131s-20020923/src/jvm/sov/xm/thr.c

xmExecuteThread 1450

 /u/sovbld/hm131s/hm131s-20020923/src/jvm/pfm/xe/common/xe_thread_md.c threadStart 79

 /u/sovbld/hm131s/hm131s-20020923/src/hpi/pfm/threads_utils.c

interpreting a Javadump (z/OS)

242 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

ThreadUtils_Shell 900

 @@GETFN

 CEEOPCMM CEEOPCMM

The details above for the current thread are taken from the bottom of the XHPI

section of the dump. The remainder of the information below is under the XM

section of the dump.

XM subcomponent dump routine

============================

Exception Info

JVM Exception 0x4 (subcode 0x1) occurred in thread "Signal dispatcher" (TID:0x18004190)

Native stack at exception generation:

Program Name Entry Name Statement ID

/u/sovbld/hm131s/hm131s-20020923/src/hpi/pfm/exception_md.c

 sysSignalCatchHandler 335

/u/sovbld/hm131s/hm131s-20020923/src/hpi/pfm/interrupt_md.c

 userSignalHandler 397

/u/sovbld/hm131s/hm131s-20020923/src/hpi/pfm/interrupt_md.c

 intrDispatch 657

 @@GETFN

 __zerros

CEEHDSP CEEHDSP

/jtc/riccole/cm131s/src/jvm/sov/dg/dg_javacore.c

 dgGenerateJavacore

/u/sovbld/hm131s/hm131s-20020923/src/jvm/sov/xm/signals.c

 signalDispatcherThread 338

/u/sovbld/hm131s/hm131s-20020923/src/jvm/sov/xm/thr.c

 xmExecuteThread 1450

/u/sovbld/hm131s/hm131s-20020923/src/jvm/pfm/xe/common/xe_thread_md.c

 threadStart 79

/u/sovbld/hm131s/hm131s-20020923/src/hpi/pfm/threads_utils.c

 ThreadUtils_Shell 900

 @@GETFN

CEEOPCMM CEEOPCMM

Interpreting this information is very similar to doing so with a Linux Javadump.

See “Threads and stack trace (XM)” on page 237 for more details.

Refining a stack trace using the JIT options (XM)

This section is the same as for Windows, and is described in “Refining a stack

trace using the JIT options (XM)” on page 230.

Classloaders and classes (CL)

This section is the same as for Windows, and is described in “Classloaders and

Classes (CL)” on page 231.

Final section

This section is the same as for Windows, and is described in “Final section” on

page 232.

interpreting a Javadump (z/OS)

Chapter 25. Using Javadump 243

interpreting a Javadump (z/OS)

244 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

Chapter 26. Using Heapdump

This chapter describes:

v “Information for users of previous releases of Heapdump”

v “Summary of Heapdump”

v “Enabling a Heapdump”

v “Location of the generated Heapdump” on page 247

v “Producing a compressed Heapdump text file from a System Dump” on page

247

v “Sample Heapdump output” on page 248

v “Finding memory leaks by using Heapdump” on page 249

v “Using the HeapRoots post-processor to process Heapdumps” on page 249

v “How to write a JVMMI Heapdump agent” on page 249

v “Using VerboseGC to obtain heap information” on page 250

Information for users of previous releases of Heapdump

Heapdumps in release 1.4.1, Service Refresh 1 and above of the IBM JVM, are

different from those of release 1.4.1. These environment variables are now

supported as they were in release 1.3.1:

v IBM_HEAPDUMP

v IBM_HEAPDUMP_OUTOFMEMORY

Heapdumps now always trigger a garbage collection that occurs before the dump.

This means that all the objects that are in the Heapdump are live (reachable)

objects. Earlier versions of Heapdump could include objects that were not

reachable and so were eligible for garbage collection. This change improves the

accuracy and effectiveness of the Heapdump mechanism.

Summary of Heapdump

Heapdump is an IBM JVM facility that generates a dump of all the live objects that

are on the Java heap; that is, those that are used by the Java application. This

dump is called a Heapdump. It shows the objects that are using large amounts of

memory on the Java heap, and what is preventing them from being collected by

the Garbage Collector.

The Heapdump contains two lines per object. The first line displays the address of

the object, various flags (see “Sample Heapdump output” on page 248), its size,

and type information. The second line contains a list of the memory addresses of

objects that have been referenced by that object.

Enabling a Heapdump

You can generate a Heapdump in either of two ways:

v Explicit generation

v JVM-triggered generation

When the Javaheap is exhausted, JVM-triggered generation is enabled by default,

as are Heapdumps that are generated by other programming methods. To enable

© Copyright IBM Corp. 2003, 2006 245

signal-based Heapdumps, you must set the IBM_HEAPDUMP=TRUE

environmental variable or the appropriate JAVA_DUMP_OPTS before you start the

Java process.

Note: If you disable all signal-based dumps (Javadumps and System dumps) that

use JAVA_DUMP_OPTS (see Chapter 27, “JVM dump initiation,” on page

251), all signal-based Heapdumps are disabled.

To disable generation of a Heapdump, on platforms other than Windows use:

unset IBM_HEAPDUMP

unset IBM_HEAP_DUMP

On Windows, use:

set IBM_HEAPDUMP=

set IBM_HEAP_DUMP=

Explicit generation of a Heapdump

You can explicitly generate a Heapdump in either of the following ways:

v By sending a signal to the JVM from the operating system

v By using the HeapDump() method inside Java code that is being executed

v By using the JVMRI to request a Heapdump from a loaded agent

You can explicitly request a Heapdump in the same way as you can a Javadump.

Before the Heapdump starts, the heap is locked and remains locked until the

whole Heapdump file is written to disk. This operation can affect the behavior of

your Java application, and make it unresponsive while the dump is being

produced.

For Linux and AIX, send the JVM the signal SIGQUIT (kill -3, or Ctrl+\ in the

console window).

For Windows, generate a SIGINT (press the Ctrl+Break keys simultaneously).

You can explicitly request a Heapdump from a Java method. The class

com.ibm.jvm.Dump contains a static HeapDump() method that causes Java code to

initiate a Heapdump, provided that the IBM_HEAPDUMP environment variable is

set.

Triggered generation of a Heapdump

The following events automatically trigger the JVM to produce a Heapdump:

v A fatal native exception occurs in the JVM (not a Java Exception)

v An OutOfMemory or heap exhaustion condition occurs (optional)

If Heapdumps are enabled, they are normally produced immediately before a

Javadump. They are produced also if the JVM terminates unexpectedly (a crash).

You can also generate a Heapdump when the Java heap has become full.

This option is enabled by default, and gives a snapshot of the Java heap when no

more memory is available. Usually, this snapshot is the most useful output to help

you determine the cause of an OutOfMemory condition that is related to the Java

heap. This works independently of IBM_HEAPDUMP. So, by default, you get

Heapdumps only when no more heap space is available; you do not get

Heapdumps in crashes or through a signal to the JVM. You can disable this

summary of Heapdump

246 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

feature, and a similar one for Javadumps, by using the

IBM_HEAPDUMP_OUTOFMEMORY=FALSE and

IBM_JAVADUMP_OUTOFMEMORY=FALSE respectively.

Location of the generated Heapdump

The JVM checks each of the following locations for existence and write-permission,

then stores the Heapdump in the first one that is available.

v The location that is specified by the IBM_HEAPDUMPDIR environment variable,

if set (_CEE_DMPTARG on z/OS)

v The current working directory of the JVM processes

v The location that is specified by the TMPDIR environment variable, if set

v The /tmp directory (X:\tmp for Windows, where X is the current working drive)

Note that enough free disk space must be available for the Heapdump file to be

written correctly.

On Linux and AIX, a log of Heapdump files is maintained in the file

/tmp/javacore_locations. Table 10 shows the format of the Heapdump filename for

various platforms.

 Table 10. Format of Heapdump filenames

Platform Heapdump filename format

Windows heapdump.YYYYMMDD.HHMMSS.PID.txt

Linux & AIX heapdumpPID.TIME.txt

z/OS HEAPDUMP.YYYYMMDD.HHMMSS.PID.txt

Note: PID is the process ID. TIME is the number of seconds since 1/1/1970

Producing a compressed Heapdump text file from a System Dump

For information, see “Commands from DvHeapDumpPlugin” on page 274.

summary of Heapdump

Chapter 26. Using Heapdump 247

Sample Heapdump output

Heapdumps can be very large with millions of items in them. Here is a small

sample:

The first line in the Heapdump contains the build identifier of the JVM that

produced the dump.

In each line of data of the main part of the dump:

v The first hex number is the handle of the object.

v The text in angle brackets gives data about the object:

– The locknflags word value

– Whether the object is marked (m)

– Whether the object has the corresponding alloc bit set (a)

– Whether the object is dosed (d), pinned (p) or multiply-pinned (P)
v The number in square brackets is the size of the object.

v The remainder of the line is a description of the object. If an object references

other objects, those objects are presented as a series of object handles indented in

the following line or lines. In the example above, all possible references are

dumped, with nulls being explicitly shown as 0x0.

The last three lines in the Heapdump summarize the heap contents.

// Version: J2RE 1.4.1 IBM AIX build cadev-20030722

0x30270200 <LF:42 map> [388832] byte[]

0x302cf0e0 <LF:0 map> [304] class HeapConsume

0x302cf210 <LF:42 map> [50232] byte[]

0x302db648 <LF:0 map> [128] sun/misc/Launcher$AppClassLoader

 0x303144b0 0x302db6c8 0x303145c8 0x303147b8 0x30314748 0x3036eb10 0x303146e8

 0x0 0x0 0x30314680 0x0 0x30314610 0x0 0x0 0x30314578 0x30314508 0x30314428 0x303148b8 0x3030c1a8 0x30314490

0x302db6c8 <LF:0 map> [128] sun/misc/Launcher$ExtClassLoader

 0x303151d0 0x0 0x30315360 0x303155c0 0x30315550 0x0 0x303154f0 0x3030c110

 0x0 0x30315488 0x0 0x30315418 0x0 0x0 0x30315310 0x303152a0 0x3031a4a8 0x303155f0 0x3030c1a8 0x303151b0 0x3030be00

0x302db748 <LF:0 map> [96] java/util/logging/LogManager$Cleaner

 0x0 0x0 0x302e8600 0x0 0x302f43f8 0x0 0x0 0x302f1a30 0x0 0x302f4730

0x302db7a8 <LF:0 map> [88] java/lang/Thread

 0x0 0x0 0x302e7748 0x0 0x302eeae8 0x0 0x0 0x302f1a30 0x0

0x302db800 <LF:0 map> [88] java/lang/Thread

 0x0 0x0 0x302e7748 0x0 0x302eeb40 0x0 0x0 0x302f1a30 0x0

0x302db858 <LF:0 map> [88] java/lang/Thread

 0x0 0x0 0x302e7748 0x0 0x302eeb68 0x0 0x0 0x302f1a30 0x0

0x302db8b0 <LF:0 map> [88] java/lang/ref/Finalizer$FinalizerThread

 0x0 0x0 0x302e7748 0x0 0x302eebf8 0x0 0x0 0x302f1a30 0x0

0x302db908 <LF:0 map> [88] java/lang/ref/Reference$ReferenceHandler

 0x0 0x0 0x302e7748 0x0 0x302eed30 0x0 0x0 0x302f1a30 0x0

0x302db960 <LF:0 map> [88] java/lang/Thread

 0x0 0x0 0x302e7748 0x0 0x302eeef8 0x0 0x0 0x302f1a30 0x0

0x302db9b8 <LF:0 map> [88] java/lang/Thread

 0x0 0x302ef750 0x302e8600 0x0 0x302ef010 0x0 0x302db648 0x302f1a30 0x0

0x302db908 <LF:0 map> [88] java/lang/ref/Reference$ReferenceHandler

 0x0 0x0 0x302e7748 0x0 0x302eed30 0x0 0x0 0x302f1a30 0x0

0x302db960 <LF:0 map> [88] java/lang/Thread

 0x0 0x0 0x302e7748 0x0 0x302eeef8 0x0 0x0 0x302f1a30 0x0

0x302db9b8 <LF:0 map> [88] java/lang/Thread

 0x0 0x302ef750 0x302e8600 0x0 0x302ef010 0x0 0x302db648 0x302f1a30 0x0

...............(more data)................

// Breakdown - Classes: 321, Objects: 2624425, ObjectArrays: 486, PrimitiveArrays: 1447

// Meta-data - NullRefs: 2623863, Mark(m): 2626359, Alloc(a): 0, Dosed(d): 13, Pinned(p): 0, MultiPinned(P): 0

// EOF: Total ’Objects’,Refs(null) : 2626679,2629818(1797)

sample Heapdump output

248 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

Finding memory leaks by using Heapdump

You can use Heapdump to pinpoint memory leaks in both these conditions:

v Out Of Memory exceptions

v Steady memory leaks

Out Of Memory exceptions

First, ensure that the JVM is set to produce a Heapdump in this condition, as

described in “Triggered generation of a Heapdump” on page 246. You can format

and inspect the dump to see where unexpectedly large numbers of objects appear.

For example, 10 000 objects of type com.ibm.widget.WorkUnit might indicate a

problem.

See “Using the HeapRoots post-processor to process Heapdumps” for help in

interpreting Heapdumps.

Steady memory leaks

If your application has a steady memory leak, you can trigger a Heapdump at

various points of execution to snapshot the heap at those points. You can then

compare the various snapshots to try to identify a problem.

See “Using the HeapRoots post-processor to process Heapdumps” for help in

interpreting Heapdumps.

Using the HeapRoots post-processor to process Heapdumps

HeapRoots is a Heapdump analysis tool that is written in Java.

Notes:

1. HeapRoots is an unofficial tool and is provided “as-is”.

2. HeapRoots is only a simple tool that can help you to solve memory problems.

It does not correct your problem.

The HeapRoots tools can analyze a Heapdump (see the previous sections of this

chapter), and can provide analysis that is based on:

v Heap roots

v Objects

v Object types

v Heap gaps (the spaces that are between objects)

v References to and from a given object

Output is provided as an indented tree or as a flat list. All output can be sorted

and filtered.

Because HeapRoots is being constantly developed, it is not described in detail here.

For the latest information, see http://www.alphaworks.ibm.com/tech/heaproots.

How to write a JVMMI Heapdump agent

You can write a JVMMI agent to create your own custom Heapdumps.

If the event JVMMI_EVENT_HEAPDUMP is enabled, your agent is called to take

a Heapdump instead of the standard built-in Heapdump.

finding memory leaks by using Heapdump

Chapter 26. Using Heapdump 249

http://www.alphaworks.ibm.com/tech/heaproots

To find out how to enable this event and see a sample JVMMI Heapdump agent,

see Chapter 34, “Using the JVM monitoring interface (JVMMI),” on page 343.

If you decide to write your own Heapdump agent, all the information available in

the built-in Heapdump is available.

If you want to use Heaproots to post-process the Heapdump file you create, you

must adhere strictly to the format of the Heapdump file described in “Sample

Heapdump output” on page 248, with the exception of comment lines – those

beginning with // – which are ignored by the Heaproots tool.

Using VerboseGC to obtain heap information

Use the VerboseGC utility to obtain information about the Java Object heap in real

time while running your Java applications. To activate this utility, run Java with

the -verbosegc option:

java -verbosegc

For more information see Chapter 2, “Understanding the Garbage Collector,” on

page 7.

how to write a JVMMI Heapdump agent

250 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

Chapter 27. JVM dump initiation

The JVM supports the ability to generate a native system dump. In addition, a

very simple scripting ability allows you to choose when and how a dump is

generated. The exact dump created is, by definition, platform dependent. How

analysis of the dump proceeds depends upon the platform tools that are available.

A short description of how to proceed with the JVM native dump is provided.

Overview

The JVM might produce dump files in response to specific events, depending on

the setting of the environment variables JAVA_DUMP_OPTS and

JAVA_DUMP_TOOL.

These events (or conditions) are grouped as follows:

EXCEPTION

Unexpected synchronous terminating signal; that is, unrecoverable storage

violation.

ERROR

Controlled abort due to an error detected internally; for example, no more

memory is available.

INTERRUPT

Asynchronous terminating signal; for example, you pressed Ctrl-C.

DUMP

This can be caused if you press Ctrl-BREAK on Windows, CtrlL-V on

z/OS, or Ctrl-\ on AIX or Linux.

OUTOFMEMORY

The JVM cannot satisfy a request for storage.

The types of dump that can be produced (platform specific variations are noted

below) are:

1. SYSDUMP. An unformatted dump that the operating system generated

(basically a core file).

2. user specified. Whatever the JAVA_DUMP_TOOL variable specifies.

3. HEAPDUMP. An internally-generated dump of the objects that are on the Java

heap.

4. JAVADUMP. An internally-generated and formatted analysis of the JVM.

If all types of dump are requested, they are produced in the above sequence

(JAVADUMP always being last). You can read system dumps by using native

dump analysis tools (IPCS, dbx, and so on), although they are usually intended as

input to the JVM Dump Formatter.

SYSDUMP file names and locations vary with each platform and are detailed

below. For more information about JAVADUMP files, see Chapter 25, “Using

Javadump,” on page 219.

© Copyright IBM Corp. 2003, 2006 251

If any external dump exit routines have been registered, they are run before the

main JVM dump sequence (see above), and can optionally terminate all further

dump processing by returning RAS_DUMP_ABORT.

Settings

Which dumps are produced for which condition is determined by the

JAVA_DUMP_OPTS variable as follows:

JAVA_DUMP_OPTS="ONcondition(dumptype[count],dumptype[count]),ONcondition(dumptype[count],...)"

where:

v condition can be:

– ANYSIGNAL

– DUMP

– ERROR

– INTERRUPT

– EXCEPTION

– OUTOFMEMORY
v and dumptype can be:

– ALL

– NONE

– JAVADUMP

– SYSDUMP

– HEAPDUMP
v and count is the maximum number of dumps of this type to produce. The count

parameter is optional. If the count parameter is not specified, there is no limit to

the number of dumps produced.

The default, if JAVA_DUMP_OPTS is not set, is:

 For platforms other than z/OS:

JAVA_DUMP_OPTS="ONANYSIGNAL(JAVADUMP,HEAPDUMP),ONINTERRUPT(NONE)"

 For z/OS:

JAVA_DUMP_OPTS="ONANYSIGNAL(JAVADUMP,SYSDUMP),ONINTERRUPT(NONE)"

which indicates that for all conditions, system and Java dumps are to be produced,

except for the case of an interrupt condition where no dumps are to be produced.

JAVA_DUMP_OPTS is parsed by taking the first (leftmost) occurrence of each

condition, so duplicates are ignored. That is,

ONERROR(SYSDUMP),ONERROR(JAVADUMP) creates system dumps for error

conditions. Also, the ONANYSIGNAL condition is parsed before all others, so

ONINTERRUPT(NONE),ONANYSIGNAL(SYSDUMP)

has the same effect as

ONANYSIGNAL(SYSDUMP),ONINTERRUPT(NONE).

If JAVA_DUMP_TOOL environment variable is set, that variable is assumed to

specify a valid executable name and is passed unchanged to the system unless the

word %pid is detected in the string. If %pid is detected in the string, the string is

replaced with JVM’s own process ID, but only for those conditions where a

SYSDUMP has been requested. The JVM dump is run after the system dump has

been taken, but before anything else.

JVM dump - overview

252 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

Platform-specific variations

Conditions can be mapped to different signals on different platforms, and some

signals are recognized on some platforms but not on others. Table 11 shows the

mapping across platforms. Note that if the JVM receives a signal that it does not

recognize (that is, it is not mapped to a condition as per the table), the default

operating system action for that signal is taken; usually the signal is ignored.

 Table 11. Signal mappings on different platforms

z/OS AIX Windows Linux

EXCEPTION SIGTRAP SIGTRAP SIGTRAP

SIGILL SIGILL SIGILL SIGILL

SIGSEGV SIGSEGV SIGSEGV SISEGV

SIGFPE SIGFPE SIGFPE SIGFPE

SIGBUS SIGBUS SIGBUS

SIGSYS SIGSYS

SIGXCPU SIGXCPU SIGXCPU

SIGXFSZ SIGXFSZ SIGXFSZ

SIGEMT

INTERRUPT SIGINT SIGINT SIGINT SIGINT

SIGTERM SIGTERM SIGTERM SIGTERM

SIGHUP SIGHUP SIGHUP

ERROR SIGABRT SIGABRT SIGABRT SIGABRT

DUMP SIGQUIT SIGQUIT SIGQUIT

SIGBREAK

If a signal is not handled by the JVM, the operating system take its default action

for that signal. (In the case of an EXCEPTION type signal, it is most likely to

produce a system dump.)

z/OS

The full syntax for JAVA_DUMP_OPTS on z/OS is:

JAVA_DUMP_OPTS="ONcondition(dumptype[count],

dumptype[count]),ONcondition(dumptype[count],...),

USERABEND(nnnn),ceedumpoptions"

where dumptype can be:

v ALL

v NONE

v JAVADUMP (see Chapter 25, “Using Javadump,” on page 219)

v SYSDUMP

v CEEDUMP

v HEAPDUMP (see Chapter 26, “Using Heapdump,” on page 245)

If USERABEND is set, it must specify an integer 1 through 4094, or it will be

ignored. If set, it takes precedence over all other settings and for any condition, the

LE will terminate the JVM with the specified abend code, and bypass any cleanup

JVM dump - platform-specific variations

Chapter 27. JVM dump initiation 253

routines. You can intercept this abend code by using a SLIP TRAP to take a system

dump. No other dump processing is done because no return is produced.

If CEEDUMP is specified, an LE CEEDUMP is produced for the relevant

conditions, after any SYSDUMP processing, but before a JAVADUMP is produced.

A CEEDUMP is a formatted summary system dump that shows stack traces for

each thread that is in the JVM process, together with register information and a

short dump of storage pertaining to each register. The default options for

CEEDUMP are:

"THREAD(ALL),PAGESIZE(0),ENC(CUR),NOENTRY,GENO"

Additional (or overriding) options can be appended to the JAVA_DUMP_OPTS

string. Parsing of these is left to right, so whatever is specified last takes

precedence.

Under z/OS, you can change the behavior of LE by setting the _CEE_RUNOPTS

environment variable (for details refer to the LE Programming Reference). In

particular, the TRAP option determines whether LE condition handling is enabled,

which, in turn, drives JVM signal handling, and the TERMTHDACT option

indicates the level of diagnostic information that LE should produce.

Note: Setting TERMTHDACT(UADUMP) causes the JVM to explicitly disable all

signal handling. This behavior has come about for historical reasons and

might be changed in future.

Dumps are produced in the following form:

v SYSDUMP: On TSO as a standard MVS data set, using the default name of the

form: &userid.JVM.TDUMP.&jobname.D&date.T&time, or as determined by the

setting of the JAVA_DUMP_TDUMP_PATTERN environment variable, the

syntax of which is: %s.JVM.TDUMP.&JOBNAME..D&YYMMDD..T&HHMMSS″

v CEEDUMP: In the current directory, or as determined by the setting of

_CEE_DMPTARG as: CEEDUMP.&date.&time.&processid

v JAVADUMP: In the same directory as CEEDUMP, or standard JAVADUMP

directory as: JAVADUMP.&date.&time.&processid.txt

v HEAPDUMP: The heapdump is written to a file that is named

″HEAPDUMP.yyyymmdd.hhmmss.txt″ in the current directory.

AIX

Dumps are produced in the following form:

v SYSDUMP: Output is written to a core file named core.&processid.
×tamp.txt that is in the current working directory.

v JAVADUMP: Output is written a file named javacore.&processid.×tamp.txt.

See Chapter 25, “Using Javadump,” on page 219 for more information.

v HEAPDUMP: The heapdump is written to a file that is named

″heapdump<pidnumber>.<time>.txt″ in the current directory.

Windows

In Windows, if the JVM terminates following its own dump processing, the default

signal handler is reinstated and the terminating signal is passed to the operating

system, which then runs whatever application debug tool is specified in the

registry (for the AeDebug key). This tool would typically be, for example, the MS

Developer Studio debugger or Dr.Watson.

JVM dump - platform-specific variations

254 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

Dumps are produced in the following form:

v SYSDUMP: Output is written to a file named core.&processid.×tamp.dmp

into the same directory that is used for JAVADUMP.

v JAVADUMP: Output is written to a file named a file named

javacore.yyyymmdd.hhmmss.pidnum.txt. See Chapter 25, “Using Javadump,” on

page 219 for more information.

v HEAPDUMP: The heapdump is written to a file that is named

″heapdump.yyyymmdd.hhmmss.txt″ in the current directory.

Linux

Dumps are produced in the following form:

v SYSDUMP: Not available.

v JAVADUMP: Output is written to a file named javacoretttttttt.pppp.txt. See

Chapter 25, “Using Javadump,” on page 219 for more information.

v HEAPDUMP: The heapdump is written to a file that is named

″heapdump<pidnumber>.<time>.txt″ in the current directory.

JVM dump - platform-specific variations

Chapter 27. JVM dump initiation 255

JVM dump - platform-specific variations

256 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

Chapter 28. Using method trace

Method trace is a powerful and free tool that allows you to trace methods in any

Java code. You do not have to add any hooks or calls to existing code. Run the

JVM with method trace turned on and watch the data that is returned. Using

method trace provides a complete (and potentially large) diagnosis of code paths

inside your application and also inside the system classes. Use wild cards and

filtering to control method trace so that you can focus on the sections of code that

interest you.

Method trace can trace:

v Method entry

v Method exit

v Method input parameters

v Method return value

However, method trace has the following restrictions:

v Not all platforms support the ’input parameter’ and ’return value’ trace.

v Sometimes the ’input parameters’ and ’return value’ traces do not work with the

JIT turned on.

If you ask for input parameters but they cannot be produced because of JIT

interaction, you will not see an error. Try turning the JIT off if you do not see all

the output that you expect.

Use method trace to debug and trace application code and the system classes

provided with the JVM.

Method trace is part of the larger ’JVM trace’ package. JVM trace is described in

Chapter 33, “Tracing Java applications and the JVM,” on page 321.

This chapter describes the basic use of trace. Use this chapter to learn the basic use

of trace. Once you feel comfortable using trace, see Chapter 33, “Tracing Java

applications and the JVM,” on page 321 for more detailed information.

Running with method trace

Control method trace by using command-line parameters that specify system

properties. To specify a system property, use the -D<property name> =<property

value> option on the command line. You can find several examples of how to use

the method trace properties below.

All the method trace properties are of the format ibm.dg.trc.<something>. The set

of these properties is quite large and is fully described Chapter 33, “Tracing Java

applications and the JVM,” on page 321.

If you want method trace to be formatted, set two properties:

v ibm.dg.trc.print — set this property to ’mt’ to invoke method trace.

v ibm.dg.trc.methods — set this property to decide what to trace.

The first property is only a constant: -Dibm.dg.trc.print=mt

© Copyright IBM Corp. 2003, 2006 257

Use the methods parameter to control what is traced. To trace everything, set it to

methods=*.*. This is not recommended because you are certain to be overwhelmed

by the amount of output.

The methods parameter is formally defined as follows:

ibm.dg.trc.methods=[[!]method_spec[,...]]

Where method_spec is formally defined as:

{*|[*]classname[*]}.{*|[*]methodname[*]}[()]

Note that the delimiter between parts of the package name is a forward slash, ’/’,

even on platforms like Windows that use a backward slash as a path delimiter.

The ″!″ in the methods parameter is a NOT operator that allows you to tell the

JVM not to trace the specified method or methods. Use this with other methods

parameters to set up a trace of the form: ″trace methods of this type but not

methods of that type″.

The parentheses, (), that are in the method_spec define whether or not to trace

method parameters.

Examples of use

v Tracing entry and exit of all methods in a given class:

-Dibm.dg.trc.methods=ReaderMain.*

-Dibm.dg.trc.methods=java/lang/String.*

v Tracing entry, exit and input parameters of all methods in a class:

-Dibm.dg.trc.methods=ReaderMain.*()

v Tracing all methods in a given package:

-Dibm.dg.trc.methods=com/ibm/socket/*.*()

v Multiple method trace:

-Dibm.trc.dg.methods=Widget.*(),common/Gauge.*

This traces all method entry, exit, and parameters in the Widget class and all

method entry and exit in the Gauge package.

v Using the ! operator

-Dibm.dg.trc.methods=ArticleUI.*,!ArticleUI.get*

This traces all methods in the class ArticleUI except those beginning with “get”.

Where does the output appear?

In this simple case, output appears on the ’stderr’. If you want to store your

output, redirect this stream to a file. You can also write method trace to a file

directly, as described in “Advanced options.”

Advanced options

The use of method trace described above forces a formatted version of the output,

however, it can be rather slow. To work around this, you can make the method

trace output appear in a compressed binary form and thus minimize its impact on

performance. You can then redirect this form of the output to an output file, rather

than only to the console as in the description above.

running with method trace

258 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

You use a tool, supplied with the IBM JVM, to analyze and dump the output

binary file. You can even route trace to your own plug-in agent and process it at

will (see Chapter 33, “Tracing Java applications and the JVM,” on page 321).

Real example

java -Dibm.dg.trc.methods=ReaderMain.*(),ConferenceUI.*() -Dibm.dg. trc.print=mt ReaderMain

Results:

JVMDG200: Diagnostics system property ibm.dg.trc.print=mt

JVMDG200: Diagnostics system property ibm.dg.trc.methods=ReaderMain.*(),ConferenceUI.*()

09C000 0075D878 > Bytecode method ReaderMain.<clinit> This = 0290D918

09C001 0075D878 < Exiting method ReaderMain.<clinit>

09C000 0075D878 > Bytecode method ReaderMain.main This = 0290D918 Arguments

: Array of type "java/lang/String" = 100ADC50

09C000 0075D878 > Bytecode method ReaderMain.<init> This = 0298CD38 Arguments: Integer = 0

09C001 0075D878 < Exiting method ReaderMain.<init>

09C000 0075D878 > Bytecode method ReaderMain.traceLevel This = 0290D918

09C001 0075D878 < Exiting method ReaderMain.traceLevel

09C000 0075D878 > Bytecode method ReaderMain.traceOn This = 0290D918

09C001 0075D878 < Exiting method ReaderMain.traceOn

09C000 0075D878 > Bytecode method ReaderMain.loadData This = 0298CD38

09C000 0075D878 > Bytecode method ReaderMain.traceLevel This = 0290D918

09C001 0075D878 < Exiting method ReaderMain.traceLevel

09C000 0075D878 > Bytecode method ReaderMain.traceLevel This = 0290D918

09C001 0075D878 < Exiting method ReaderMain.traceLevel

09C000 0075D878 > Bytecode method ReaderMain.traceLevel This = 0290D918

09C001 0075D878 < Exiting method ReaderMain.traceLevel

09C001 0075D878 < Exiting method ReaderMain.loadData

09C000 0075D878 > Bytecode method ConferenceUI.<clinit> This = 0290D728

09C001 0075D878 < Exiting method ConferenceUI.<clinit>

09C000 0075D878 > Bytecode method ConferenceUI.<init> This = 02911528 Arguments

: Type "EventSemaphore" = 04ECB250

09C001 0075D878 < Exiting method ConferenceUI.<init>

09C000 0BEC3B78 > Bytecode method ConferenceUI.run This = 02911528

09C000 0BEC3B78 > Bytecode method ConferenceUI.shewWindow This = 02911528

09C000 0BEC3B78 > Bytecode method ConferenceUI.buildTree This = 02911528

09C001 0BEC3B78 < Exiting method ConferenceUI.buildTree

09C000 0BEC3B78 > Bytecode method ReaderMain.traceLevel This = 0290D918

09C001 0BEC3B78 < Exiting method ReaderMain.traceLevel

09C001 0BEC3B78 < Exiting method ConferenceUI.shewWindow

09C001 0BEC3B78 < Exiting method ConferenceUI.run

09C000 0BC51AB8 > Bytecode method ConferenceUI.windowActivated This = 02911528 Arguments

: Type "java/awt/event/WindowEvent" = 04F2F8A8

The first two lines show that the JVM has accepted the diagnostics properties.

Taking the third line as an example, the remaining lines comprise:

v 09C000, an internal JVM trace point used by some advanced diagnostics.

v 0075D878, the current execenv (execution environment). This data is fundamental

because every JVM thread has its own execenv. Hence, you can regard execenv

as a thread-id. All trace with the same execenv relates to a single thread.

v The remaining fields show whether a method is being entered (>) or left (<),

followed by details of the method.

method trace - examples of use

Chapter 28. Using method trace 259

method trace - examples of use

260 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

Chapter 29. Using the dump formatter

The cross-platform dump formatter is the main debugging tool for the IBM JVM. It

is a Java tool that runs on all the IBM supported platforms. The dump formatter is

not a debugger; it is a dump analysis tool that is usually used to analyze crash

dumps.

The dump formatter has two main modes:

v Console mode (the default).

v GUI mode (Swing based using JInternalFrames): This mode is invoked through

the -g parameter that, in this book, is called “Dumpviewer”.

The dump formatter takes an SDFF file as input or, for z/OS, an SVC dump. An

SDFF file is created by running jextract on a core dump. This SDFF file contains all

the information that relates to the JVM. Because of the information about types, the

dump formatter knows all about the JVM data structures. It can interpret the data

that is in the dump and present it in a form that can be understood. The dump

formatter makes it easier to:

v Look inside the JVM

v Look at the state of the heap

v Trace down the loaded classes and methods

v Trace through the stack of the JVM threads

v Check the locks state

v Find what addresses refer to

It is unlikely that the most powerful features of the dump formatter are of much

use to anyone who does not have detailed JVM-internals knowledge, JVM source

code, and build map information. These items are not available to external

customers. However, used simply as a thread and memory viewer, the dump

formatter is still a powerful tool.

Note: When a Java application fails, the production of system dumps is not

enabled by default. See Chapter 12, “First steps in problem determination,”

on page 97 for details on how to enable the dump.

This chapter begins with summaries of:

v “What the dump formatter is” on page 262

v “Dump formatter dumps” on page 262 and

v “How to use the dump formatter” on page 262

The main part of the chapter fully describes:

v “Analyzing dumps with jformat” on page 263

The chapter ends with “Dumpviewer” on page 286 and “Analyzing dumps with

Dumpviewer” on page 291.

© Copyright IBM Corp. 2003, 2006 261

What the dump formatter is

You can run the dump formatter on any platform and you can use it to look at a

dump that is taken on from any platform. For example, you can look at z/OS

dumps on a Windows platform.

The dump formatter consists of:

jextract

On all the platforms, except z/OS, platform-specific extractors take a

system-produced dump (see individual platform problem determination

sections) and convert it into a common format that can be used by jformat and

Dumpviewer. The extractor utility is normally run on the system on which the

dump was produced. The jextract utility is in the jre\bin directory of your Java

installation

jformat

This is a Java-based application that takes the common format file that is

produced by the extractors (or, for z/OS, the direct dump and the typesfile)

and provides several commands that allow you to analyze the dump more

easily. The jformat application is in the sdk\bin directory of your SDK

installation.

Dumpviewer

This is a Java Swing-based application that provides most of the same

functions as jformat, but uses a GUI-based interface instead of a console-based

one. Dumpviewer has menu items that drive panels (JInternalFrames) that

correspond to the commands that are invoked in console mode. Dumpviewer

is launched by jformat -g. For further information on Dumpviewer see

“Dumpviewer” on page 286 and “Analyzing dumps with Dumpviewer” on

page 291.

An important characteristic of the dump formatter is that it provides flexibility for

extension by using plug-ins to enable the support of different types of dump files,

and for the addition of new dump analysis commands.

Dump formatter dumps

The dump formatter takes as input a dump file that is formatted into a

platform-independent form. For example, a dump that is taken on a Linux

platform can therefore be debugged on a Windows workstation. Each platform,

apart from z/OS, has code that enables it to take a relevant dump (for example, a

core dump on Linux) and translate it into the common format (known as SDFF).

z/OS does not require an SDFF dump because z/OS works directly on native

dumps.

How to use the dump formatter

To use the dump formatter:

1. Obtain a relevant platform dump, as described in Part 3, “Problem

determination,” on page 95 for each platform. The platform dumps are usually

created by the native operating system and are acceptable for analysis by native

tools.

2. On platforms other than z/OS, convert the platform dump into a common

format dump. The tool that translates from the platform-specific format (for

example, Linux core file or Windows minidump) is called the dump extractor

and is installed in the jre/bin subdirectory of your Java installation as jextract.

what the dump formatter is

262 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

The syntax of jextract is:

jextract [options][-o outFilename][-f executablePathName]coreFilename

where options include:

 -verbose: Enable verbose output

 -? or -help: Print this help message.

 -Xt [level]: Set trace level

 -Xheader: Generate only SDFF header.

coreFilename is the system dump file that you want to process.

In general:

v The -Xt, -Xheader and -verbose options are unlikely to be relevant unless a

service representative asks you use them.

v You need the -f option only if the executable file is not Java, or is not found

in its usual place.

v You do not need the -o option if you want the output file to be named as

coreFilename.sdff.

Attention: The SDFF file will contain:

v All the data from the core file, that data having been reformatted to a

platform-independent form

v Data that has been extracted from the executable file and the libraries that

are in use

v Java specific data that needs to be derived in place

The SDFF might therefore be a large file. Allow for at least the size of the input

core file, and some extra.

3. Start the dump formatter and load the dump from step 2 on page 262. Steps 1

and 2 must be performed on the platform where the dump was produced. Step

3 can be performed anywhere.

The IBM Java service team almost always requires a dump formatter dump (the

output from step 2 above) or a z/OS SVC dump when you submit a problem.

Analyzing dumps with jformat

jformat is a console-based application that allows you to analyze dumps that are

produced by Java applications. jformat supports two types of dump format:

v SDFF format dumps, which are produced by use of provided extractors from

the normal system dumps

v MVS svc dumps (or TDUMP)

The range of dump formats that are supported might be extended in the future.

Likely extensions include the addition of more dump plug-ins and the expansion

of the range of commands supported and analysis options.

For z/OS, if you type ″help″ under jformat, you see a set of commands that apply

to the analysis of a z/OS SVC dump. For z/OS dumps to invoke jformat with a

different Java address space, use the following command:

java -Xbootclasspath/p:jformat.jar -Dsvcdump.default.asid=<asid>

com.ibm.jvm.dump.format.DvConsole -d <dumpname>

how to use the dump formatter

Chapter 29. Using the dump formatter 263

Minimum requirements and performance considerations

The suggested minimum requirements for successfully running jformat are:

v A 500 MHz pentium or equivalent

v 256 MB RAM

v 10 GB of free hard disk space

The above requirements have been tested successfully under Windows/NT to

handle and analyze dumps of up to 2 GB with reasonable performance.

Some operations are processor and I/O intensive, and can take a long time to

complete. For example, the dis os (display object summary) command scans the

various heaps that are present in the dump and constructs a names index file on

disk. (Note that the second time you use dis os, it runs much faster because the

existing index file is reused and not recreated.) Depending on the size of dump

and the number of items that are on the heaps, this operation can take a long time

to complete. Using the above configuration, for example, the scanning of a 650 MB

MVS dump that contains 800,000 objects takes between 15 and 30 minutes.

Obviously, for exceedingly large dumps that contain large numbers of objects, a

more powerful machine is better. You might want to start the console by using the

Java -Xmx parameter to ensure that conditions do not occur in which you do not

have enough memory:

java -Xmx<size> com.ibm.jvm.dump.format.DumpFormat

(However, in testing, the default memory that is taken by Java when it is running

jformat has been found to be enough.)

Installing jformat

The IBM SDK for Java v1.4.2 supplies (and supports) the dump formatter. You do

not have to install it explicitly.

Starting jformat

Usage:

jformat [[-d]dumpfilename] [other options]

where options include:

 -d dumpfilename: The dump to format

 -g: Bring up Dumpviewer (GUI)

 -o outputfilename: Output to file

 -i inputfilename: Input from file

 -t tracefilename: Trace to file

 -T: Trace to console

 -w: Set working directory

 -? or -h: Help

Typing jformat -h to get information about the usage of jformat.

Opening the dump

If you launch jformat without specifying a dump on the command line, jformat is

initialized with a default set of commands that is followed by a ″ready″ prompt.

analyzing dumps with jformat

264 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

When a dump is identified (either on the command line or if you use the set

dump= command) jformat loads additional command plug-ins. The resulting output

is similar to the following:

jformat

*** Loading plugins ***

loaded com.ibm.jvm.dump.plugins.DvBaseCommands

*** All plugins loaded successfully ***

Ready......

set dump=e:\windump.sdff

command executing

Extracting windump.sdff.hdr (1 tick = 327680 bytes) .../

Dump recognised as a new format SDFF dump

Confirmed that permissions allow names index file to be written.

Dump successfully opened

Suffix established as sov

 Will now attempt load of Dvsov.properties

 to find supplemental command plugins

Dvsov.properties found

*** Loading plugins ***

loaded com.ibm.jvm.dump.plugins.DvBaseCommands

loaded com.ibm.jvm.dump.plugins.DvGeneralSov

loaded com.ibm.jvm.dump.plugins.DvMonitorsSov

.............. lines removed for clarity

loaded com.ibm.jvm.dump.plugins.DvStorageCommands

loaded com.ibm.jvm.dump.plugins.DvHeapDumpPlugin

*** All plugins loaded successfully ***

Using typedefs from core...

Sanity check passed (use "SANCHK Verbose" for details)

STANDALONE JVM:

 address: 0x1015da40

 currently_in_GC0: false

 signal received: 21

fullVersion: J2RE 1.4.2 IBM Windows 32 build cndev-20040408

Ready......

Note: within the dump there is embedded information that allows the dump

formatter to understand the internal control block structures in the JVM.

This information is referred to as typedefs information or typesfile.

Command plug-ins

jformat is extensible. New commands that enable new function can be added. You

do this by using command plug-ins that extend the CommandPlugin class.

Available command plug-ins are controlled by using the CommandPlugins stanza

within the Dv.properties file. Existing plug-ins are constantly being enhanced to

support new commands.

analyzing dumps with jformat

Chapter 29. Using the dump formatter 265

Function is included that provides a sanity check when a dump is opened (the

JVM eyecatchers are checked), and handles multiple JVM sets in an address space.

Further sanity checks will be added in the future.

Available plug-ins are:

v DvBaseCommands

v DvBaseFmtCommands

v DvTraceFmtPlugin

v DvObjectsCommands

v DvClassCommands

v DvJavacorePlugin

v DvXeCommands

v DvHeapDumpPlugin

The commands that are supported by each plug-in are described below.

Shortened command forms

When possible, jformat tries to recognize commands in their shortened forms. For

example, jformat recognizes a full command such as display memory 0x12345678 if

you specify it as dis mem 0x12345678 or even as d m 0x12345678. To see details of

the full command formats that are recognized by each plug-in, use the command

dis pl verbose. The tables below show some valid short forms.

 Table 12. Shortened command forms for jformat

Verb Short Verb

DISPLAY DIS

HELP ?

FORMAT FOR

FINDNEXT FN

FINDPTR FP

WHATIS W

 Table 13. Shortened modifier forms for jformat

Verb Modifier Short Form

SYSTEM SYS (used by DIS)

MEMORY MEM (used by DIS)

THREAD T (used by DIS)

INT I (used by DIS)

LONG L (used by DIS)

POINTER P (used by DIS)

PROCESS PROC (used by DIS)

EXECENV EE (used by FORMAT)

STGLOBAL STG (used by FORMAT)

CLASSSUMMARY CLS (used by DIS)

CLASS CL (used by DIS)

METHODS ME (used by DIS)

analyzing dumps with jformat

266 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

Table 13. Shortened modifier forms for jformat (continued)

Verb Modifier Short Form

OBJECT OBJ (used by DIS)

LOCKSUMMARY LS (used by DIS)

LOCKEDOBJECTS LO (used by DIS)

OBJECTSUMMARY OS (used by DIS)

JAVASTACK JS (used by DIS)

NATIVESTACK NS (used by DIS)

JITMETHODS JITM (used by DIS)

Supported commands

The tables below lists the commands that jformat supports. Note that they are not

case-sensitive. Optional parameters are placed in square brackets [].

Commands from DvBaseCommands

 Table 14. Commands from DvBaseCommands for jformat

Verb Modifier Parameter format Note Example

SET 1 Set

SET <key name> 2 Set <key name>

SET <key name> = 3 Set <key name>=

SET <key name> = <value> 4 Set <key name> = <value>

SET DUMP = <dump id> 5 Set dump=p:\sdff32

SET ERROR = file 24 set error=my.txt

SET FORMATFILE = file 22

SET FORMATAS = a (ASCII) or e (EBCDIC)

SET OUT = file 23 set out=my.txt

SET OUTPUT

SET WORKDIR = x:\yyy 27

SET TRACE = [ON]/[OFF] 28

SET ASID 30

SET JVM 31

SET PROC 32

SET THREAD 33

DISPLAY MMAP 6 Dis mmap

DISPLAY MEMORY ([@],<address>,[<length>]) 7 Dis memory(804c000,256)

DISPLAY THREAD [(<thread id>)] 9 Dis thr(1234)

DISPLAY INTEGER ([@], <address>) 12 Dis int(0x804c000)

DISPLAY LONG ([@], <address>) 13 Dis long(@804c000)

DISPLAY POINTER ([@], <address>) 14 Dis ptr(804c000)

DISPLAY PROCESS [(<process id>)] 15 Display proc(666)

DISPLAY SYSTEM 17 Dis sys

analyzing dumps with jformat

Chapter 29. Using the dump formatter 267

Table 14. Commands from DvBaseCommands for jformat (continued)

Verb Modifier Parameter format Note Example

DISPLAY as 29

DISPLAY plugin [verbose] Dis pl [verbose]

FIND See note 18 target[,sa][,ea][,bdry][,ps][,limit] 18 Find java,804c000,,,,10

FINDPTR See note 19 19 FindPtr 804c000

FINDNEXT See note 20 20 FindNext

+ See note 8 8

- See note 8 8

DISPLAY HINTS 21 Display HINTS

WHATIS 26 WHATIS OAB 3 4 1

HELP 25 Help (or ?)

Notes:

 1. The SET command by itself displays the set values for all keys.

 2. SET <key name> displays the value for the specified key.

 3. SET <key name>= sets the value of the specified key to null.

 4. SET <key name>=<value> sets the value of the specified key to the contents

of <value>. You can also use substitution values in <value> by using the $

character. For example:

 set a=999

 set b=abc

 set c=ab

leaves c with a value of 999abc. Substitution applies to all commands.

Therefore, dis mem $c would transform into dis mem 999abc if you used the

example above.

 5. Set dump=. This command determines which dump is being worked on. It

takes an argument of a file location and discovers which of the dump plug-ins

handles this dump. For SDFF format dumps, additional (unseen) processing

determines the current address space, process, and thread. It also determines

the location of the JVM and STGlobalPtr (used for heap analysis).

 6. Display mmap displays the memory ranges for the current address space.

 7. Display memory([@] <address>, [<length>]) supports ’@’. Therefore, display

memory(@123456,500) would find a pointer at address 123456 and use this

pointer as the starting point of where to display 500 bytes of memory.

Parameter <address> is required and is in hex format. The parameter <length>

is optional and defaults to 256.

 8. When you have displayed a section of memory, use the ’+’ and ’-’ keys to

display the next or previous pieces of memory.

 9. Display thread displays the current thread. The current thread is set when the

dump is opened (SET DUMP=), but you can change it by using the SET

THREAD command.

10. Display thread(<thread name>) displays information for the specified thread.

analyzing dumps with jformat

268 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

11. Display thread(*) displays information for all threads that are associated with

the current process.

12. Display integer([@], <address>) displays the value of the Java integer (32 bits)

at the given address. It takes account of the endian-ness of the machine and

can be shortened to dis int. Therefore, by using dis int in a little-endian

system, where memory is displayed, 0x00000010 would be 16777216, as an

integer, not 16.

13. Display long([@], <address>) displays the value of the Java long (64 bits) at

the given address. As with Display integer, this command takes account of

the endian-ness of the machine.

14. Display pointer([@], <address>) displays the pointer representation from the

address given; this takes account of whether the system is 32- or 64-bit and

whether it is big endian or little endian.

15. Display process displays information about the current process. This includes

a list of all the threads that are in this process and any environment data or

data on loaded modules that is included in the dump.

16. Display process (<process id>) displays information on the specified process.

17. Display system displays information about the provided dump; whether the

system is 32- or 64-bit and the whether it is big endian or little endian, the

number of address spaces and processes, and the type of system and

subsystem that are being used.

18. The Find <target> command and its associated commands FindPtr and

FindNext are used to find items in memory. The target identifies what to find.

It can be either a string, such as java, or a hex pattern, such as 0x12345. (Note

that hex patterns are always padded to an even number of characters with

0’s.) The second and third parts of the command are optional. They are

respectively a start address (such as 804c000) and an ending address to delimit

the memory searched. The fourth part of the command is optional also

(defaults to 1); it is the byte boundary on which the given target should start.

The fifth and sixth parts of the command (both optional) specify respectively

the number of bytes of the first found target to display (default 256) and the

maximum number of matches to find (maximum 32,767). Missing parts are

indicated by a comma with no following value. The default range of memory

that is scanned for the target is all the memory that is available.

19. The FindPtr command has the same syntax that Find has, except that the

target is a hex address. Therefore, FindPtr 804c000 searches for the pointer

804c000 in memory.

20. The FindNext command repeats the previous Find but with the start address

just beyond the one that was used by the previous Find.

21. Display HINTS displays the HINTS that are established as part of the Set

dump= command. For more information, see “Hints” on page 276.

22. Set formatfile tells jformat to use a specified format file (also known as a

types file) to interpret successfully the contents of the JVM that is in the

dump. you can use this to override the file that is normally established when

a dump is opened.

23. Set out directs the command output towards a file. set out=* redirects the

output back to the screen.

24. Set error directs error and diagnostic output toward a file. set error=*redirects

the output back to the screen.

25. Help shows general help for the commands that are available for each

plug-in.

analyzing dumps with jformat

Chapter 29. Using the dump formatter 269

26. Whatis queries the various command plug-ins for what they know about an

object (normally an address).

27. Set workdir allows dumps on read-only file systems to be used. It stores the

nidx files (produced when dis os is run) on the working directory.

28. Set trace starts or stops debug trace from inside jformat.

29. Display as displays a list of address spaces, processes, and threads.

30. Set asid allows more functions on systems that contain multiple address

spaces (mainly z/OS)

31. Set jvm allows switching between multiple JVMs in the same address space.

32. Set proc allows the process in the address space to be set (assume multiple

processes per address space).

33. Set thread allows the current thread (for an address space or process) to be

established.

Commands from DvBaseFmtCommands

 Table 15. Commands from DvBaseFmtCommands for jformat

Verb Modifier Parameter format Note Example

FORMAT execenv Format execenv

FORMAT jvm Format jvm

FORMAT <address> Number 1 Format 804c000 as Jvm

DISPLAY HINTS 2 DISPLAY HINTS

DISPLAY CB 3

DISPLAY CBO(x) 4

Notes:

1. The formatting of an address as a control block does not perform consistency

checking to ensure that a block of memory matches its believed usage. The

control block name that is being used is case-sensitive.

2. Display Hints displays the saved memory addresses that can be used in the

Format command. Therefore:

Format xyz as def

would first look for a hint that is called ″xyz″, obtain its value, and use that as

the address to format.

3. Display CB displays the control blocks that are available for formatting

memory.

4. Display CBO(x) displays a control block and the offsets of the fields.

Commands from DvTraceFmtPlugin

The Trace Format Plug-in extracts trace records from the in-memory trace buffers

that are contained in the dump file, creates a trace file (.trc) from this, then formats

it.

All trace plug-in commands are invoked by Trace.

 Table 16. Commands from DvTraceFmtPlugin for jformat

Verb Modifier Parameter format Note Example

TRACE FORMAT 1 trace format

analyzing dumps with jformat

270 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

Table 16. Commands from DvTraceFmtPlugin for jformat (continued)

Verb Modifier Parameter format Note Example

TRACE EXTRACT 2 trace extract

TRACE summary 3 trace summary

TRACE help 4 trace help

TRACE set none 5 trace set

TRACE set option=value 6 trace set indent=true

TRACE indent true, false or none 7 trace indent false

TRACE verbose true, false or none 7 trace verbose true

TRACE symbolic true, false or none 7 trace symbolic

TRACE threads See Notes 7, 8 Trace threads

0x2545bc8

TRACE entries See Notes 7, 9 Trace entries awt,LK

TRACE datadir See Notes 7, 10 Trace

datadir=c:\temp

TRACE display 11 Trace display -

TRACE display + 11 Trace display +

TRACE display - 11 Trace display -

TRACE display page=40 11 Trace display page=40

Notes:

 1. If the Trace Extract command has not yet been run, it runs automatically and

the extracted.trc file is used as input to the formatter.

 2. This command creates a trace file, called extracted.trc, in the current directory.

This file contains the contents of JVM in-memory trace buffers and the

required header as if the trace had been taken on a running JVM.

 3. Run Trace extract or Trace format before you run this command.

 4. This command produces a page of help about trace commands.

 5. This command lists all the environment variables that are used to control the

formatting of trace.

 6. Each of the environment variables that can be set by using their setter

command below (that is Threads, indent, entries) can also be set with the

syntax trace set option=value.

 7. With no parameters, these commands display current setting of the option.

With a parameter, the option is set to that value.

 8. With no parameters, this command displays the threads that are being traced.

The parameters can be one or more comma-separated hex thread ids. (The

valid ids can be listed by using Trace threads.)

 9. This command selects a subset of the tracepoints from the trace file that will

be formatted. For a list of the components that can be selected, enter TRACE

ENTRIES ?

10. This command is used to set the location of the TraceFormat.dat file

(tracepoint definitions). This is usually only of interest if you are formatting a

dump that is from one release of Java, but you are using a different release to

run the dump formatter. Datadir specifies the directory where TraceFormat.dat

is. If the file is not there, the command is rejected.

11. This is a primitive browser that displays the first or current page (25 lines) of

the formatted trace. You must first have formatted the trace by using the trace

analyzing dumps with jformat

Chapter 29. Using the dump formatter 271

format command. Trace display + displays the next page and Trace display

- displays the previous page. Trace display page=nn sets the pagesize to nn

lines.

Commands from DvClassCommands

The DvClassCommands Format Plug-in displays details of the classes that the JVM

had loaded. The details from these classes are used by the DvObjectCommands

plug-in to enable formatting of object instances.

 Table 17. Commands from DvClassCommands for jformat

Verb Modifier Parameter format Note Example

DIS cls [filters] 1 Dis cls(Test2Frame)

Dis cl filter1[,filter2][,etc....] 2 Dis cl(!*a*,b*)

Notes:

1. The DVClass command causes the loadedClasses, loadedACSClasses, and

loadedSystemClasses portions of the JVM to be scanned, and the addresses of

all the classes to be stored in memory. In addition, for each class a short

summary record is output. If no parameter is specified, every loaded class is

displayed. Using a filter causes only those classes that are handled by the filter

to be displayed; therefore, dis cls(!*a*) displays only those classes that do not

contain an “a” in their name.

2. If the dis cls command has not been run, the DVClass command runs

automatically (and nonverbosely) before it actions the dis cl command that was

input. Dis cl(*) displays data on all the classes that are in the dump (and

produces more output than dis cls does). You can use filters to control the

output. Additionally, dis cl allows enhancer keywords to follow the filter. The

allowed keywords are me (for methods), st (for statics), and fld (for fields). By

using these enhancers, you give more information for the class. Therefore, dis

cl(java/lang/String) fld expands the details for the java/lang/String class to

show the nonstatic field names and types and their offsets in the instance

record for the object. “Example session” on page 276 shows an example of the

output from this.

Commands from DvObjectsCommands

The DvObjectsCommands Plug-in displays details of the objects and locks that are

present in the dump.

 Table 18. Commands from DvObjectsCommands for jformat

Verb Modifier Parameter format Note Example

DIS os 1 Dis os

DIS obj filter1[,filter2][,etc....] 2 Dis obj(!*a*,b*)

DIS obj 0xhhhhhhhh 2 Dis obj 0x4afe000

DIS ls 3 Dis ls

DIS lo filter(s) 4 Dis lo(java/awt/EventQueue)

DIS loc filter(s) 5 Dis loc(*$Lock)

DIS lr 6

DIS lt 7

DEADLOCK 8

analyzing dumps with jformat

272 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

Notes:

1. On first use (which might be an invocation that was caused by the use of

another command), the Dis os command causes a scan of all the objects that

are in the heaps, and produces a summary that is based on this information.

The initial scan can take a long time, but is necessary so that objects can be

located by later commands. “Example session” on page 276 shows the output

from this command.

2. Dis obj displays details for one or more objects. The parameters take two

forms: either normal filter parameter structure, or an object address

specification (0xhhhhhh). Details of the object and its instance data are

displayed in the example session.

3. Dis ls displays a summary of the lock information, including monitor pool

information, registered monitors, and thread identifiers. See “Commands from

DvJavaCore” for more info.

4. Dis lo displays more detailed information about a lock, and formats some

relevant control blocks.

5. Dis loc shows locking status for all objects or (by using a filter) a selection of

objects.

6. Dis lr displays registered monitors.

7. Dis lt displays locks by thread ID.

8. Deadlock performs deadlock analysis and identifies blocking threads or objects.

Commands from DvJavaCore

 Table 19. Commands from DvJavaCore for jformat

Verb Modifier Parameter format Note Example

JAVACORE 1 JAVACORE

JAVACORE HELP 2 JAVACORE HELP

JAVACORE TAGS true|false 3 JAVACORE TAGS TRUE

JAVACORE SECTION 4 JAVACORE SECTION LK

JAVACORE VERBOSE true|false 5 JAVACORE VERBOSE FALSE

Note that JAVADUMP can be used instead of JAVACORE.

Notes:

1. JAVACORE with no parameters produces a full Javacore.

2. JAVACORE HELP displays valid commands.

3. JAVACORE tags are switched on or off. The default is true (= on).

4. Valid section names are TITLE, XHPI, CI, DC, DG, ST, XE, LK, XM, CL, END.

5. VERBOSE allows more information to be obtained about command progress.

Commands from DvXeCommands

 Table 20. Commands from DvXeCommands for jformat.

Verb Modifier Parameter format Note Example

DISPLAY JAVASTACK DIS JS

DISPLAY NATIVESTACK DIS NS

DISPLAY JITMETHODS DIS JITM

See “Example session” on page 276 for an example of the output of these

commands.

analyzing dumps with jformat

Chapter 29. Using the dump formatter 273

Commands from DvHeapDumpPlugin

You can now get a Heapdump (see Chapter 26, “Using Heapdump,” on page 245)

from a system dump. A Heapdump is a list of objects that are in the Java heap.

The advantage of this method is that you can use heap analysis tools in any

condition in which a system dump occurs.

You can send this data to a compressed (GZipped) text file or across the network.

Programs such as HeapRoots (see “Using the HeapRoots post-processor to process

Heapdumps” on page 249) can analyze these files.

 Table 21. Commands from DvHeapDumpPlugins for jformat.

Verb Modifier Parameter format Note Example

HD F Send Heapdump

to a file. The

filename is

derived from the

dump name.

HD F

HD N Send Heapdump

to the network

socket.

HD N

HD P

PORT

Set HD_PORT,

which is the port

for network

send. The

default port is

21179.

HD P 2001

HD H

HOST

Set HD_HOST,

which is the host

for network

send. The

default host is

″localhost″.

HD H myhost

Note: You must run the dis os command to make available these commands from

DvHeapDumpPlugins.

Example output:

Sample output:

Ready......

hd f

command executing

Tue Sep 02 09:57:30 GMT 2003: Opening "SR19.TDUMP.txt.gz" to write heapdump ...

 Tue Sep 02 09:57:32 GMT 2003: All 8737 objects done. Closing file ...

Heap Dump finished.

Ready......

If you want to read the compressed file manually, or use it with a program that

does not support GZip compressed input files, run:

gunzip -c original | head # to look at start of file using ’head’

gunzip -c original > newfile # to uncompress file and create ’newfile’

analyzing dumps with jformat

274 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

Control block formatting

To format control blocks in memory, you must know the typedefs that are

associated with the specific level of the JVM. The JVM has been changed to

incorporate this information into memory. Therefore, when you identify a dump

(SET DUMP= <command>) the typedefs are located and you should see the following

message:

Using typedefs from core

If the typedefs cannot be found in memory, the FORMATFILE setting is used to

provide the information that is required to format control blocks. For example, SET

FORMATFILE=my.file locates my.file and uses it to provide the necessary

information about control block layout and structure.

Note: If the control block information does not match the structures that are in

memory, it is likely that the commands to analyze the dump will fail.

Settings

Various keyword values are set during jformat initialization and on the opening of

a dump. Several of these values establish the context for various commands. This

section describes the most important of those values.

ASID, PROCESS, and THREAD are all initialized when you invoke Set dump=. If

multiple address spaces are present in the dump, Set asid=xxx, where xxx is the id

of the address space, resets the PROCESS and THREAD values to values that are

relevant to that address space.

DUMP. The command Set dump=xxx opens the dump source and establishes the

interface (that is, the dump plug-in) between the dump source and jformat. Until

you invoke a Set dump, other commands will not produce much useful detail.

(Therefore, if you do not have a dump, no memories are available to look at.)

FORMATAS. By default, the dis mem command shows memory that is interpreted

on ASCII or EBCDIC, depending on the one that is suitable for the system that

generated the dump. To overrule this:

v For ASCII, use SET FORMATAS=A

v For EBCDIC, use SET FORMATAS=E.

Similarly, the FIND command assures that the string to be found is in the form

that is suitable for the system. You can overrule this also by using FORMATAS.

CURRJVM. On most systems, only one JVM exists in a dump. On systems such as

z/OS CICS, however, several JVMs can exist in a dump. When a dump is opened,

jformat can detect whether multiple JVMs exist. If they do, jformat sets the value

of CURRJVM to the value of the first JVM that it finds. You can use the set JVM=

command to change the value of CURRJVM. For example, if multiple JVMs exist,

you have values for JVM#1, JVM#2, JVM#3, and so on. To select which JVM is to

be analyzed, give the command:

set jvm=$jvm#n

where n is a value 1, 2, 3, and so on.

Dump plug-ins

jformat uses dump plug-ins to support multiple dump formats.

analyzing dumps with jformat

Chapter 29. Using the dump formatter 275

Two formats are supported. For AIX, Linux, and Windows, the SDFF format is

supported. This is the format that is produced when the extractors are run.

Additionally, for z/OS, the direct IPCS dump is supported.

The supported dump plug-ins are identified by the DumpPlugin section in the

DV.properties file.

Property files

Several property files are used to control jformat.

Dv.properties is a generic repository for customizing several aspects of the

functioning of jformat. Its main uses are to identify the dump plug-ins and

command plug-ins that are available (the DumpPlugins= and CommandPlugins= lines

respectively). The properties file DvSetDefaults.properties controls the initial

variables that jformat defines. You can edit this file. For example, you can:

v Establish shortcuts for commands you use regularly

v Set your display width

Hints

Hints are values that are set when a dump is opened and when memory is being

explored. Hints enable jformat to access common fields easily and to remember

their location when found. When a dump is first opened, the execenv for the active

task is examined and used to access the JVM (by means of jvmP field), which is

then used to evaluate various other important fields that are in the dump. The

Display Hints command shows what hints are in place at any time. Typically after

accessing a dump, the output should look like this:

STGLOBALPTR = 403229c0

ALLOCBITS = 40571000

CURHEAPMAX = 103ffbfc

JVM = 40321b80

LOCKINTERFACE = 40321b94

CURHEAPMIN = 100001fc

Example session

An example of the use of jformat is shown below. Note that the output has been

edited for compactness. Lines that are in italics are those that were entered on the

command line.

===

* This is an annotated jformat session with comments

* enclosed in boxes like this -user input is bold italicised

* and command output is in plain text.Some of the output

* is shortened for clarity and replaced with an indicator

* that lines have been cut out.

*

* jformat is an evolving entity so don ’t be suprised

* if the output differs slightly in future upgrades

*

* It all starts with the user typing jformat,which can

* be found in sdk \bin ,,,,,,,,,,,,,,,,,,,,,,,

===

jformat

*** Loading plugins ***

loaded com.ibm.jvm.dump.plugins.DvBaseCommands

*** All plugins loaded successfully ***

analyzing dumps with jformat

276 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

Ready......

*===

* The "set dump="command identifies the dump that we

* will use.This command queries the available dump

* plugins to see which one handles this types of dump

* In this case its in sdff format. This command also

* loads other command plugins relevent to this dump

*===

set dump=e:\windump.sdff

command executing

Extracting windump.sdff.hdr (1 tick = 327680 bytes) .../

Dump recognised as a new format SDFF dump

Confirmed that permissions allow names index file to be written.

Dump successfully opened

Suffix established as sov

 Will now attempt load of Dvsov.properties

 to find supplemental command plugins

Dvsov.properties found

*** Loading plugins ***

loaded com.ibm.jvm.dump.plugins.DvBaseCommands

loaded com.ibm.jvm.dump.plugins.DvGeneralSov

loaded com.ibm.jvm.dump.plugins.DvMonitorsSov

.............. lines removed for clarity

loaded com.ibm.jvm.dump.plugins.DvStorageCommands

loaded com.ibm.jvm.dump.plugins.DvHeapDumpPlugin

*** All plugins loaded successfully ***

===

* The processing invoked by "set dump="will normally

* establish the typedefs to use for formatting control

* blocks from that held in memory and there output "Using

* typedefs from core".If the typedefs are not present

* in the dump then you can use "set FORMATFILE="to

* identify a typedefs file that corresponds to this

* dump’s level.

===

Using typedefs from core...

===

* The dump you have loaded is given a quick check (sanity

* check)to make sure that it is not obviously corrupt.

===

Sanity check passed (use "SANCHK Verbose" for details)

STANDALONE JVM:

 address: 0x1015da40

 currently_in_GC0: false

 signal received: 21

fullVersion: J2RE 1.4.2 IBM Windows 32 build cndev-20040408

Ready......

===

*

* "dis system"and "dis proc"show assorted information

* about the general nature of the dump being handled

===

dis system

analyzing dumps with jformat

Chapter 29. Using the dump formatter 277

......command executing

 System Summary

 ==============

fullVersion: J2RE 1.4.2 IBM Windows 32 build cndev-20040408

 32 bit - Little Endian

 Number of Address Spaces: 1

 Number of Processes : 1

 System : Windows

 SubSystem : Windows 2000

 Processor (number) : ?(?)

 Processor subtype : ?

 Current process id : ?

 Number of JVMs found : 1

Ready......

dis proc

command executing

Process Information

===================

Architecture: 32 bit - Little Endian

AddressSpace: 0 Process: 0

Signal : 00000000............

 Thread: 0x394 ExecEnv: 0x00235170 Thread name: main

 Thread: 7d8 Not a java thread

 Thread: 0x730 ExecEnv: 0x0b1e30d8 Thread name: Signal dispatcher

 Thread: 0x45c ExecEnv: 0x0b1f2650 Thread name: Reference Handler

 Thread: 0x330 ExecEnv: 0x0034d588 Thread name: Finalizer

 Thread: 3b4 Not a java thread

 Thread: 0x708 ExecEnv: 0x0b2beed0 Thread name: DG event write thread

Environment Variables

=====================

ALLUSERSPROFILE=C:\Documents and Settings\All Users

APPDATA=C:\Documents and Settings\philr\Application Data

CLASSPATH=.;e:\sdk\bin

.............. lines removed for clarity

windir=C:\WINNT

_NT_SYMBOL_PATH=SRV*D:\MS_Symbols*http://msdl.microsoft.com/download/symbols

IBM_JAVA_COMMAND_LINE=jformat

Loaded data

==============

 E:\sdk\bin\jformat.exe

 at 0x400000 length=36864(0x9000)

 C:\WINNT\system32\ntdll.dll

 at 0x77f80000 length=503808(0x7b000)

.............. lines removed for clarity

 at 0xb110000 length=73728(0x12000)

 E:\sdk\jre\bin\jitc.dll

 at 0xb3f0000 length=3809280(0x3a2000)

 E:\sdk\jre\bin\DBGHELP.DLL

 at 0xbf40000 length=733184(0xb3000)

 C:\WINNT\system32\PSAPI.DLL

 at 0x690a0000 length=45056(0xb000)

Ready......

analyzing dumps with jformat

278 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

===

* The "dis cls"command can be used to display the current

* set of loaded classes or can be used with filters (as

* shown)to limit the information shown.Without the

* filter summary information for all 360 classes would

* have been output.

===

dis cls

command executing

 Classes Summary

 ===============

 Number of classes found via loadedClasses = 0

 Number of classes found via loadedACSClasses = 0

 Number of classes found via loadedSystemClasses = 405

Class:com/ibm/jvm/dump/format/DvConsole$DvCommand

 @0xb27eb38 version:48.0

 super:java/lang/Object @0x290278

 methods:@0xbaf8498 method count:1

 Class Loader Initialized: true

 fields:@0xbaf83c0 fields count:9 instance size:36

 statics:@0xbaf8510 statics count:0

Class:java/util/Observable

 @0xb27ea08 version:48.0

 super:java/lang/Object @0x290278

 methods:@0xbc2e7b0 method count:10

 Class Loader Initialized: true

 fields:@0xbc2e780 fields count:2 instance size:8

 statics:@0xbc2ec38 statics count:0

.............. lines removed for clarity

Class:java/lang/Class

 @0x290148 version:48.0

 super:java/lang/Object @0x290278

 methods:@0xb134020 method count:86

 Class Loader Initialized: true

 fields:@0xb133e70 fields count:18 instance size:40

 statics:@0xb136820 statics count:9

Class:java/lang/NoClassDefFoundError

 @0x290018 version:48.0

 super:java/lang/LinkageError @0x293a48

 methods:@0x34ba30 method count:2

 Class Loader Initialized: true

 fields:@0x0 fields count:0 instance size:16

 statics:@0x34bb18 statics count:0

Ready......

===

* "Dis os"(which is often run under the covers by other

* commands)traverses the various heaps and records the

* position of all object instances.The dump used here

* is a small one and hence scanning is relatively fast,

* but for larger dumps with larger numbers of objects

* then this command can take a large amount of time!!

* Since this is the first time this dump was used then

* the "nidx"file has been created this is used to allow

* fast access to individual objects on subsequent uses

* of jformat thus avoiding the need to completely

* retraverse the heaps

===

dis os

analyzing dumps with jformat

Chapter 29. Using the dump formatter 279

......command executing

Invalid or non-existant class names index file

Dump must be scanned (dis os) and index created

Traversing Thread Local Heaps

 MH-TLH cache block located at 0x2a6b698 for thread 394 ee=0x235170

 4 of 5 java threads did not have TLH cache blocks

 5 of 5 java threads did not have TH-TLH cache blocks

TLH finished - 195 objects

Traversing the Middleware heap

 12:05:56 5000 objects processed...(10% of range scanned so far)

 12:06:05 10000 objects processed...(14% of range scanned so far)

 12:06:13 15000 objects processed...(17% of range scanned so far)

Mid traversal finished - 17317 objects

Traversing the transient heap

Event traverseHeap min value not in dump

Traversing the system heaps

Sys 0 traversal finished - 199 objects

Sys 1 traversal finished - 215 objects

Analysis of Monitors started....

Analysis of Monitors ended.

 Objects Summary

 ===============

MH-main

 start address: 0x2a6b698

 end address: 0x2a7a69c

 heap size : 0xf004 61444

 Objects found : 195

Mid

 start address: 0x28c01fc

 end address: 0x30bfbfc

 heap size : 0x7ffa00 8387072

 Objects found : 17317

Sys 0

 start address: 0xb270014

 end address: 0xb27ec64

 heap size : 0xec50 60496

 Objects found : 199

analyzing dumps with jformat

280 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

Sys 1

 start address: 0x290014

 end address: 0x29ff64

 heap size : 0xff50 65360

 Objects found : 215

ACS Heap

 start address: 0x0

 end address: un-measured (non meaningful)

 Objects found : 0

 Total number of objects found via all Heaps = 17926

 *** The JVM does not seem to be in Garbage Collection (not within GC0).

 Total number of "Swapped" objects = 0 (0 bytes)

 Total number of "Locked" objects = 4

 Total number of Hashed and Moved objects = 0

 Total number of Hashed objects = 0

 Total number of Arrays = 8458

0000000001 (=0000000016 bytes) of : arrObj java/security/Principal

0000000001 (=0000000016 bytes) of : arrObj java/security/cert/Certificate

0000000001 (=0000000016 bytes) of : arrObj java/text/FieldPosition

0000000001 (=0000000016 bytes) of : com/ibm/jvm/io/LocalizedInputStream$1

0000000001 (=0000000016 bytes) of : com/ibm/misc/BASE64Decoder

.............. lines removed for clarity

0000000262 (=0000953456 bytes) of : array byte

0000000414 (=0000125856 bytes) of : java/lang/Class

0000000478 (=0000009792 bytes) of : arrObj java/lang/Class

0000000504 (=0000012096 bytes) of : java/lang/StringBuffer

0000000550 (=0000017600 bytes) of : java/util/HashMap$Entry

0000000641 (=0000025280 bytes) of : arrObj java/lang/Object

0000000747 (=0000023904 bytes) of : java/util/Hashtable$Entry

0000001086 (=0000037608 bytes) of : arrObj java/lang/String

0000005560 (=0000177920 bytes) of : java/lang/String

0000005675 (=0000409264 bytes) of : array char

 Total number of objects = 17926

 Total byte count = 1912032

Finished..

Ready......

===

* Having scanned the heaps it ’s now possible to show the

* details of individual object instances using the dis obj

* command.In the example shown there is only one instance

* of DvObjectsCommands in the heap -so dis obj 0x910460

* would have given the same result.Note that super

* classes get expanded.

===

dis obj(com/ibm/jvm/dump/plugins/DvBaseCommands)

command executing

==

 @ 0x292b6d0 (com/ibm/jvm/dump/plugins/DvBaseCommands) (heap: Mid)

 ===== Super Class expansion for: com/ibm/jvm/dump/plugins/CommandPlugin

(76) method instance of Ljava/lang/reflect/Method; @ 0x0

(80) paramString instance of Ljava/lang/String; @ 0x0

analyzing dumps with jformat

Chapter 29. Using the dump formatter 281

Null String <<>>

(84) verb instance of Ljava/lang/String; @ 0x0

 Null String <<>>

(88) verbModifier instance of Ljava/lang/String; @ 0x0

 Null String <<>>

(92) verbModifierForFind instance of Ljava/lang/String; @ 0x0

 Null String <<>>

(96) seperator instance of Ljava/lang/String; @ 0x0

 Null String <<>>

(100) enhancers instance of Ljava/util/Vector; @ 0x0

(104) forcedEnd boolean: false (0x0)

(108) addReady boolean: false (0x0)

(112) cpr instance of Lcom/ibm/jvm/dump/plugins/CommandPluginResponse; @ 0x2a69360

(116) cpInProgress boolean: true (0x1)

(120) hasOnDumpIdentified boolean: false (0x0)

 ===== Super Class expansion for: java/lang/Thread

(0) name Array of char @ 0x2a6b468

 <Thread 0>

(4) priority integer: 5 (0x5)

(8) threadQ instance of Ljava/lang/Thread; @ 0x0

(16) eetop long: 0 (0x0)

(24) single_step boolean: false (0x0)

(28) daemon boolean: false (0x0)

(32) userDaemon boolean: false (0x0)

(36) started boolean: false (0x0)

(40) target instance of Ljava/lang/Runnable; @ 0x0

(44) group instance of Ljava/lang/ThreadGroup; @ 0x2938390

(48) contextClassLoader instance of Ljava/lang/ClassLoader; @ 0x292b7b0

(52) inheritedAccessControlContext instance of Ljava/security/AccessControlContext; @ 0x2a6b43

0

(56) threadLocals instance of Ljava/lang/ThreadLocal$ThreadLocalMap; @ 0x0

(60) inheritableThreadLocals instance of Ljava/lang/ThreadLocal$ThreadLocalMap; @ 0x0

(64) stackSize long: 0 (0x0)

(72) blocker instance of Lsun/nio/ch/Interruptible; @ 0x0

Ready......

===

* "Dis cb" shows what control block names can be used

* with the "format addr as controlblock" command.

* "dis cbo(name) allows the structure of a particular

* control block to be investigated.

===

dis cb

command executing

AFrameInterface

ArrayOfChar

ArrayOfObject

AssertionList

BTEntry

.............. lines removed for clarity

utTraceCfg

utTraceControl

utTraceFileHdr

utTraceListener

utTraceRecord

utTraceSection

utf8_bucket_t

Ready......

dis cbo(utf8_bucket_t)

command executing

utf8_bucket_t

analyzing dumps with jformat

282 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

Offset Name Type

------ ---- ----

0(0) next

4(4) hash

8(8) length

c(c) status

10(10) from_cb....

14(14) utf8

Ready......

===

* You can of course display memory as shown below.There

* are various variations on the theme to show integers

* longs and pointers taking due account of endianess and

* whether the system was 32 or 64 bit.

* The example below also shows use of "set formatas" to

* force the display of ascii or ebcdic.

===

dis mem 10000,64

command executing

00010000: 3D003A00 3A003D00 3A003A00 5C000000 | =.:.:.=.:.:.\...

00010010: 3D004300 3A003D00 43003A00 5C004400 | =.C.:.=.C.:.\.D.

00010020: 6F006300 75006D00 65006E00 74007300 | o.c.u.m.e.n.t.s.

00010030: 20006100 6E006400 20005300 65007400 | .a.n.d. .S.e.t.

Ready......

set formatas=e

command executing

Ready......

dis mem 10000,64

command executing

00010000: 3D003A00 3A003D00 3A003A00 5C000000 |*...

00010010: 3D004300 3A003D00 43003A00 5C004400 |*...

00010020: 6F006300 75006D00 65006E00 74007300 | ?....._...>.....

00010030: 20006100 6E006400 20005300 65007400 | ../.>...........

Ready......

===

* There are also commands for looking at locks,such as

* dis ls (lock summary)shown below....

===

dis ls

......command executing

LOCKING INFORMATION:

Inflated Object-Monitors:

 Information is from a table of inflated monitors:

 monitor_index_cb_t 0x1015c8d0

(0x235760)

 (0x2940598) java/lang/ref/Reference$Lock

 <unowned>

 Waiting to be notified:

 0x45c "Reference Handler"

(0x2357b0)

 (0x29402d0) java/lang/ref/ReferenceQueue$Lock

analyzing dumps with jformat

Chapter 29. Using the dump formatter 283

<unowned>

 Waiting to be notified:

 0x330 "Finalizer"

Registered Monitors:

 Pointer to first registry monitor (0x1015af64)

(0xb2ba398) JITC PIC Lock

(0xb2b1318) JITC CHA lock

 lines removed for clarity

(0x236c18) Namespace Cache subpool lock

(0x236bd8) Class Storage subpool lock

(0x236b98) CL Tables subpool lock

(0x27afe8) JIT General subpool lock

Thread Identifiers:

0x394 "main"

0x730 "Signal dispatcher"

0x45c "Reference Handler"

0x330 "Finalizer"

0x708 "DG event write thread"

Flat & Inflated Object-Monitors:

 (0x29402d0) java/lang/ref/ReferenceQueue$Lock

 <unowned>

 Waiting to be notified:

 0x330 "Finalizer"

 (0x2940598) java/lang/ref/Reference$Lock

 <unowned>

 Waiting to be notified:

 0x45c "Reference Handler"

 (0x29450e8) java/io/BufferedInputStream

 flat locked by 0x394 "main", entry count 0

 (0x2a16c78) java/io/InputStreamReader

 flat locked by 0x394 "main", entry count 1

No deadlocks detected

Finished..

Ready......

===

*and commands for looking at threads.....

* and their stack details

===

dis t

analyzing dumps with jformat

284 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

......command executing

 ASID: 0 PROCESS: 0 THREAD: 394

Info for thread - 394

==

 Name : main

 Id : 394

 Use "dis ns" and "dis js" to display stacks

 ExecEnv: 235170

 jvmP : 0x1015da40

 cs 0000001b ds 00000023 eax 00290608 ebp 0006f380

 ebx 00000000 ecx 0000001d edi 00170688 edx 00000000

 eip 77f8917a es 00000023 esi 0006f3b0 esp 0006f364

 flags 00000246 fs 00000038 gs 000000000 ss 00000023

 ASID: 0 PROCESS: 0 THREAD: 394

Ready......

dis js

command executing

 Java stack for thread 394 - main

 ==========================

 at java.io.FileInputStream.readBytes(Native method)

 at java.io.FileInputStream.read(FileInputStream.java:219)

 at java.io.BufferedInputStream.read1(BufferedInputStream.java:236)

 at java.io.BufferedInputStream.read(BufferedInputStream.java:293)

 at java.io.FilterInputStream.read(FilterInputStream.java:107)

 at sun.nio.cs.StreamDecoder$ConverterSD.implRead(StreamDecoder.java:324)

 at sun.nio.cs.StreamDecoder.read(StreamDecoder.java:222)

 at java.io.InputStreamReader.read(InputStreamReader.java:207)

 at java.io.BufferedReader.fill(BufferedReader.java:152)

 at java.io.BufferedReader.readLine(BufferedReader.java:315)

 at java.io.BufferedReader.readLine(BufferedReader.java:378)

 at com.ibm.jvm.dump.format.DvConsole.<init>(DvConsole.java:371)

 at com.ibm.jvm.dump.format.DvConsole.main(DvConsole.java:822)

Ready......

dis ns

command executing

 Native stack for thread 394 - main

 ============================

 at 0x77f8917a in ZwRequestWaitReplyPort+0xb (C:\WINNT\system32\ntdll.dll)

 at 0x77f891d2 in CsrClientCallServer+0x55 (C:\WINNT\system32\ntdll.dll)

 at 0x7c5aa3e7 in OpenConsoleW+0x244 (C:\WINNT\system32\KERNEL32.DLL)

 at 0x7c5aa4dc in ReadConsoleA+0x2b (C:\WINNT\system32\KERNEL32.DLL)

 at 0x7c586134 in ReadFile+0x80 (C:\WINNT\system32\KERNEL32.DLL)

 at 0x7801bd9c in putch+0x9c (C:\WINNT\system32\MSVCRT.dll)

 at 0x7801bf5c in read+0x72 (C:\WINNT\system32\MSVCRT.dll)

 at 0x3a6725 in _sysRead+0x15 (E:\sdk\jre\bin\hpi.dll)

 at 0xb544aef in _reserve_m_block+0x1df

(E:\sdk\jre\bin\jitc.dll)

 at 0xb544c7d in _jit_mem_alloc+0xad (E:\sdk\jre\bin\jitc.dll)

 at 0xb54562f in _jit_code_mem_alloc+0x1f (E:\sdk\jre\bin\jitc.dll)

 at 0xb40c251 in _register_committed_code+0x31 (E:\sdk\jre\bin\jitc.dll)

 at 0x10042c25 in _classLoaderLink+0x185 (E:\sdk\jre\bin\classic\jvm.dll)

Ready......

analyzing dumps with jformat

Chapter 29. Using the dump formatter 285

===

* The "whatis"command can be used to establish whether

* something is an address and if it is whether it points

* to anything interesting...as below ...this feature

* will be enhanced in future releases....

===

w 0x292b6dc

command executing

 Its an address

 Address "0x292b6dc" is present in this dump

 "0x292b6dc" is in heap "Mid"

 found object (com/ibm/jvm/dump/plugins/DvBaseCommands) at 292b6d0 (length:136)

 that covers this address (offset 0xc)

Ready......

===

* And finally you use the q (quit)command to get out!

*

* The above session has missed out on many aspects

* of jformat - there are a lots more fcommands available.

===

q

command executing

E:\sdk\bin>

Dumpviewer

Dumpviewer is the graphical version of the jformat application. It uses Swing. To

start Dumpviewer, use the -g option on the jformat command:

jformat -g

This command starts Dumpviewer and creates this display:

analyzing dumps with jformat

286 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

Notes:

1. If Javahelp™ is not installed on your machine, this display is preceded by a

dialog box that tells you that the display is for information only and that help

is not available for this session of Dumpviewer. You can download the Javahelp

package from http://java.sun.com/products/javahelp.

2. To run Dumpviewer under the Unix (instead of Windows), you need a

graphics-enabled environment (XWindows).

The first Dumpviewer display (see Figure 8) shows the general layout. At the top

of the display is a set of pulldown menus that, when activated, display a list of

selectable menu items. When Dumpviewer is in its initial state, many of these

menus are inactive (grayed out). When you identify a dump by using the Open

menu item or by choosing a file from the history list at the bottom of the pulldown

(see Figure 9 on page 288), those menus become active.

Figure 8. First Dumpviewer display

analyzing dumps with jformat

Chapter 29. Using the dump formatter 287

http://java.sun.com/products/javahelp

In addition to the menu bar that is at the at the top of the display, Dumpviewer

always has a status line at the bottom of the display and a (movable) Window

Manager internal frame. When menu items are selected and used, additional

internal frames become active. Figure 10 on page 289 shows what the display

might look like when a dump file has been opened.

Figure 9. Menu items and history list

analyzing dumps with jformat

288 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

In Figure 10, the status line shows the name of the dump and information about

the architecture of the dump. It shows also the currently-active address space,

process, thread, and JVM that are in that dump. You can have only one dump

open at a time in any one instance of Dumpviewer. Also in the display is the

Asid-Process-Threads frame that is created when the dump is opened. In the

example shown, the initial tree structure that is presented has been navigated and

the native stack information for thread e88 is being examined.

Note: Many menu items cannot execute until the various object storage heaps that

are in the JVM have been scanned. When such a condition occurs, a dialog

box (see Figure 11 on page 290) is opened. After the scan of the heaps is

completed, you must use the dialog box to reinvoke the menu item. How

long the scan of the heaps takes to run depends on how many objects are

stored in the heaps. With many objects, the scan can take a very long time to

run.

Figure 10. The display after a dump file has been opened

analyzing dumps with jformat

Chapter 29. Using the dump formatter 289

Dumpviewer has many items under the menubar. This book does not describe all

those items. The menu bar supports menu items that allow equivalent functions

for all the commands that are available in the console version. When you use more

and more menu items, the screen can become very busy unless you close some

frames (see Figure 12). You can use double left mouse clicks on the Window

Manager panel to navigate. Many frames are available, some text based, some

containing trees, some containing tables, and some with navigation controls of

their own.

 Note that you can run multiple instances of jformat, both graphical (-g) and

console based, against the same dump.

Figure 11. Dialog box

Figure 12. A busy screen

analyzing dumps with jformat

290 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

Analyzing dumps with Dumpviewer

Dumpviewer is the GUI-based version of jformat, which is pure Java that uses

Swing constructs and makes extensive use of JInternalFrames. You invoked

Dumpviewer by using the -g parameter on the jformat command. Various menu

items are related to the commands that are available in the console version of

jformat. Table 22 shows the relationship between the console and GUI mechanisms.

Note: Dumpviewer is still being developed. Although new functions are being

added all the time, the levels of those functions often lag behind the levels

of the equivalent functions that are in the console-based version (jformat).

 Table 22. GUI menu items and console commands for jformat

Menu Item Matching console

command

Notes

File System.err Trace SET TRACE=ON Trace goes to

System.err

Print Current Frame -- None -- Put the current frame

out to the printer

Quit -- None -- Ends dumpviewer

Open SET DUMP= Choose a dump with

which to work. Gives

the

Asid-Process-Threads

view which allows

display of registers,

native stacks, and

Java stacks.

Set FormatFile SET FORMATFILE= What to use if no

imbedded ctypes file

Set WorkDir SET WORKDIR= Where to put nidx

files

analyzing dumps with jformat

Chapter 29. Using the dump formatter 291

Table 22. GUI menu items and console commands for jformat (continued)

Menu Item Matching console

command

Notes

System Set JVM SET JVM= Switch to another

JVM in this address

space.

Set Thread SET THREAD= Set the current

thread.

Set Process SET PROC= Set the current

process

Set Address Space SET AS= Set the current

address space.

Dump info DIS SYS

Sanity Check SANCHK Display the sanity

check verbose

output.

Windows Window Manager -- None -- Double clicking on a

window jumps to it.

Iconify all --None -- Tidy desktop.

DeIconify all -- None --

Close all -- None -- Close closeable

windows.

Memory Map DIS MMAP Display a table of

memory ranges and

sizes. Double click to

launch memory

display at that

position

Display DIS MEM Scrollable display of

memory

Find FIND Find something in

memory.

Format Format..as.. FORMAT xxs as... Format an address;

gives a tree.

Execenv FOR ee Format the current

threads execenv.

Jvm FOR jvm Format the current

JVM.

Objects Object Summary Dis OS Scan the heaps.

Object tree Dis OS Tree view of objects

in heaps. Right

mouse allows

instances for a

particular class to be

displayed.

Heap Analysis -- None -- --- future ----

Locks Lock Summary Dis ls Lock summary in

text.

Locked Objects Dis lo Locked objects as

tree.

analyzing dumps with jformat

292 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

Table 22. GUI menu items and console commands for jformat (continued)

Menu Item Matching console

command

Notes

Locked Threads Dis lt Locked objects (by

thread id)

Registered Monitors Dis lr List registered

monitors.

Deadlock detection DEADLOCK Detect deadlocks.

Classes Class Summary tree DIS cls Double click displays

class

details/methods/

fields.

Javacore Javacore (tree) Javacore Builds simulated

Javacore and displays

as a tree.

Trace Extract TRACE EXTRACT Extracts the trace

from the dump.

Format TRACE FORMAT Formats the extracted

trace.

Summary TRACE SUMMARY Gives a trace

summary.

Display Trace TRACE DISPLAY Displays the trace as

a scrollable window.

Spawn trace browser -- None -- Spawns Notepad

(windows) or vi

(unix) against the

formatted trace

JIT JIT’d methods Dis JITM Displays JIT’d

methods from in the

trace.

Help Help -- None -- Gives access to

structured help (uses

JavaHelp).

About -- None --

The Dumpviewer display consists of the following main areas:

v Menu bar (at the top of the screen)

v Window Manager window (at the bottom right-hand corner of screen)

v Status bar (at the bottom of the screen)

v Working area in whatever part of the screen is not covered by the previous three

items)

When each menu item is selected (or in some cases, when items in existing

windows are selected or double clicked), a new JInternalFrame is launched in the

working area. This frame contains the information that is relevant to your task in a

relevant format (straight text, JTree, JTable). Until a dump is identified, many of the

menu choices are unavailable (grayed out); they become available only when the

dump is identified. Other menu items (such as displaying the object tree) are not

available until the heaps have been scanned. (This operation can take a long time.)

analyzing dumps with jformat

Chapter 29. Using the dump formatter 293

The contents of the menu bar and menu items are detailed in Table 22 on page 291.

The Window Manager window is permanent and cannot be closed. It allows

control to be maintained when numerous other windows (JInternalFrames) are

launched. When a dump has been opened, the status bar displays the architecture

of the currently-open dump, the dump name, current JVM, current thread, current

address space, and current process.

Note: This chapter does not describe all the menu items that you can use in

Dumpviewer. Neither does it describe the resulting frames of those menu

items. It is intended that the help that is available in Dumpviewer will be

updated to provide a sample session that better describes the functions that

are available.

analyzing dumps with jformat

294 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

Chapter 30. JIT diagnostics

A basic diagnostic test is to determine whether or not the problem is in the

Just-In-Time (JIT) compiler or elsewhere in the JVM.

The JIT is tightly bound to the JVM, but is not part of it. The JIT converts Java

bytecodes, which execute slowly, into native code, which executes quickly.

Occasionally, valid bytecodes might compile into invalid native code. By

determining whether the JIT is faulty and, if it is, where it is faulty, you can

provide valuable help to the Java service team.

This chapter describes how you can determine with reasonable certainty whether

your problem is JIT related, and suggests some possible quick workarounds and

advance bugging techniques that you can use if your problem is JIT related:

v “Disabling the JIT”

v “Introducing the MMI”

v “Disabling the MMI” on page 296

v “Selecting the MMI threshold” on page 296

v “Selectively disabling the JIT” on page 297

v “Performance of short-running applications” on page 298

v “Identifying JIT compilation failures” on page 298

v “Advanced JIT diagnostics” on page 298

Disabling the JIT

First, you must disable the whole JIT compiler. To disable the JIT compiler:

1. Note the current setting of the environment variable JAVA_COMPILER.

2. Set the variable to NONE.

3. Run the program again.

4. When the program has run, change JAVA_COMPILER back to its original

setting.

After you have disabled the JIT, either of two conditions can exist:

v The problem remains. It is, therefore, not in the JIT. Go no further in this

chapter.

v The problem disappears. It is most probably, although not definitely, in the JIT.

Introducing the MMI

When you have disabled the whole JIT, as described in “Disabling the JIT,” your

program is running in purely-interpreted mode. However, when the JIT is switched

on, your program is not necessarily running in purely-compiled mode. This is

because the IBM JVM runs in mixed-mode interpretation (MMI) by default. The

MMI is used because a large amount of Java code must be executed to start up the

JVM. If all this code is compiled immediately, it takes a very long time for the JVM

to start up because of the overhead in compiling all the initial methods.

© Copyright IBM Corp. 2003, 2006 295

The MMI maintains a threshold count for Java methods. Every time a method is

called, the threshold count for that method is decremented. Until the count reaches

zero, the method code is not compiled. The effect of this is to spread the

compilation of methods throughout the life of an application. Some

infrequently-used methods might never be compiled at all.

With the MMI switched on, therefore, at any given moment, your application

consists of a mix of bytecode methods and compiled methods.

You can change the MMI threshold or even switch off the MMI completely. If the

MMI is switched off, the JIT compiles every method the first time that it is called.

Therefore. the JVM can run in three JIT/MMI modes:

v JIT on, MMI on: The default setting. JVM starts up reasonably quickly.

Runtime performance improves over the lifetime of the JVM.

v JIT off, MMI off: The MMI is automatically switched off if the JIT is disabled.

Java runs in interpretive mode only. The JVM starts up quickly, but runtime

performance is poor.

v JIT on, MMI off: Java runs in compiled mode only. The JVM starts up slowly,

but runtime performance is satisfactory.

Disabling the MMI

It is useful to know whether the behavior of the JIT changes depending on

whether the JVM is running in mixed mode.

To disable the MMI:

1. Set the MMI threshold to zero. You set the threshold through the

IBM_MIXED_MODE_THRESHOLD environment variable.

2. Record the setting of the IBM_MIXED_MODE_THRESHOLD variable, and set

it to zero.

3. Ensure that the JIT is on.

4. Run your programme and check whether the fault remains consistent, changes

its characteristic, or disappears completely.

5. Record the results.

Selecting the MMI threshold

You can change the behavior of the MMI by adjusting the threshold value. If the

problem disappeared when you disabled the JIT or the MMI, or if the problem

characteristics changed, try changing the MMI threshold. Recommended threshold

values are: 8, 20, 50, 100, and 200.

Record the behavior for each value.

Working with MMI

If you set the environment variable IBM_MIXED_MODE_THRESHOLD to a

value n, each method will be interpreted n times. Subsequent invocations cause the

method to be compiled. However, if the method contains a loop, each iteration of

the loop is considered to be an invocation of the method.

JIT diagnostics

296 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

Selectively disabling the JIT

If you think that you have a problem with the JIT, you can try more diagnostics.

The JIT provides a comprehensive set of conditional code points that you can

switch in and out by using environment variables. These variables are called the

JIT compile options. All these options have a name of the form

JITC_COMPILEOPT=<value>.

By setting a value, you disable a specific part of the JIT. For example,

JITC_COMPILEOPT=NALL disables all the functions of the JIT and causes the JIT to

generate native code without doing any of the optimizations listed in “How the JIT

optimizes code” on page 38.

The purpose of these options is first of all to determine whether a problem is really

a JIT problem, and then to drill down by successively reducing the amount of

function that is disabled. You can instruct the JIT to ignore a specific method, class,

or package. Wild cards allow you to instruct the JIT not to compile methods that

observe a particular pattern. For example, you can instruct the JIT not to compile

any method in any class that has the name ″getItAllOn″.

The JIT compile options give you a powerful tool that enables you to determine

the location of a JIT problem; whether it is in the JIT itself or in a few lines of code

that cause the JIT to fail. In addition, when you have identified a problem area,

you are automatically given a workaround so that you can continue to develop or

deploy code while losing only a fraction of JVM performance.

To summarize, the JIT compile options give you a relatively easy-to-use way to

diagnose a fault and to obtain a workaround.

The basic JIT compile options are:

1. JITC_COMPILEOPT=NMMI2JIT

2. JITC_COMPILEOPT=NINLINING

3. JITC_COMPILEOPT=NQOPTIMIZE

4. JITC_COMPILEOPT=NDOPT

5. JITC_COMPILEOPT=NBCOPT

6. JITC_COMPILEOPT=NALL (a superset of all the above options)

Try each of these in turn. For example, to try the second option, set

JITC_COMPILEOPT=NINLINING. If you want to try combining all three of the first

three options, set JITC_COMPILEOPT=NINLINING;NMMI2JIT;NQOPTIMIZE, using the

semicolon (;) as the separator for Windows. Instead of the semicolon, use the colon

(:) for UNIX platforms.

Record your observations. If one of these settings causes your problem to

disappear, you have a quick workaround that you can use while the Java service

team are analyzing your problem.

JIT diagnostics

Chapter 30. JIT diagnostics 297

Performance of short-running applications

The IBM JIT is tuned for long-running applications typically used on a server. So,

if the performance of short-running applications is worse than expected, try the

-Xquickstart command-line parameter (refer to the -Xquickstart option in

“Nonstandard command-line parameters” on page 489), especially for those

applications in which execution time is not concentrated into a small number of

methods.

Also try adjusting the MMI to a value (using trial and error) for short-running

applications to improve performance. Refer to “Selecting the MMI threshold” on

page 296.

Identifying JIT compilation failures

If the JVM crashes, and you can see that the failure has occurred in the JIT library

(libjitc), the JIT might have failed during an attempt to compile a method. For

example, you might see a line like this in the Javadump file:

1HPSIGRECV SIGSEGV received in ?? at 0xa27894f5 in /usr/IBMJava2-131/jre/bin/libjitc.so.

 Processing terminated.

A good way to see what the JIT is doing is to use the COMPILING option of the

JIT compiler; that is, JITC_COMPILEOPT=COMPILING. This option tells you

when the JIT starts to compile a method, and when it ends. If the JIT seems to fail

on a particular method (that is, it starts compiling, but never ends), use the other

JIT compiler options to exclude the method, class, or package from the compilation

(see “Advanced JIT diagnostics”). If one of these other options prevents the crash,

you have an excellent workaround that you can use while the service team correct

your problem.

Advanced JIT diagnostics

 Many more JIT compile options are available that, if used, give you a very good

workaround and indicate the location of the problem to the Java service team. The

JIT team maintain a comprehensive website that gives detailed instructions on all

aspects of JIT debugging, including the more advanced compiler options.

Your IBM service representative can obtain a zip file of HTML of the JIT team’s

website. Unzip the files and point your browser at the top level HTML page

(index.html). Follow the guide that is given there.

Note: The zip file is provided as-is. IBM does not provide updates automatically. It

might be wise to request regular updates of this service.

JIT diagnostics

298 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

Chapter 31. Garbage Collector diagnostics

This chapter describes how to diagnose the garbage collection operation. The

topics that are discussed in this chapter are:

v “How does the Garbage Collector work?”

v “Common causes of perceived leaks”

v “Basic diagnostics (verbosegc)” on page 300

v “Advanced diagnostics” on page 306

v “Tracing” on page 308

v “Heap and native memory use by the JVM” on page 318

How does the Garbage Collector work?

You are strongly advised to read Chapter 2, “Understanding the Garbage

Collector,” on page 7 to get a full understanding of the Garbage Collector. A very

short introduction to the Garbage Collector is given here.

The IBM JVM components include a storage manager component named “st”. The

st component is a memory manager, but because 99% of the complexity of memory

management in the JVM is concerned with garbage collection, the term “garbage

collection” is largely synonymous with memory management.

The storage component basically hands out chunks of heap space on demand.

When storage runs out, (that is, the st component cannot satisfy a memory

request), a memory fault occurs and garbage collection is started.

Garbage collection identifies and frees up previously-allocated chunks of heap

space that are no longer being used. When this operation has been done, the

storage component returns to the memory allocation request that it should now be

able to satisfy.

Note that garbage collecting does not occur naturally unless, and until, a memory

allocation fault occurs. The term “naturally”’ refers to normal JVM operation. An

application can start Garbage collection at any time, but this action is not

recommended. See “How to coexist with the Garbage Collector” on page 23.

Common causes of perceived leaks

The Garbage Collector has a record of objects that are allocated. However, the JVM

cannot be notified when an application has finished with an object. Therefore,

when a garbage collection cycle starts, the Garbage Collector must find in the heap

all objects that are in use. When this has been done, any objects that are in the

allocated records, but not in the list of in-use objects, are unreachable. They are

garbage, and can be collected.

The key here is the condition unreachable. The Garbage Collector traces all

references that an object makes to other objects. Any such reference automatically

means that an object is reachable and not garbage. So, if the objects of an

application make reference to other objects, those other objects are live and cannot

be collected. Such a condition is normal. However, obscure references sometimes

exist that the application overlooks. These references are reported as memory leaks.

© Copyright IBM Corp. 2003, 2006 299

Listeners

By installing a listener, you effectively attach your object to a static reference that is

in the listener. Your object cannot be collected while the listener is active. You must

explicitly uninstall a listener when you have finished using the object to which you

attached it.

Hash tables

Anything that is added to a hash table, either directly or indirectly, from an

instance of your object, creates a reference to your object from the hashed object.

Hashed objects cannot be collected unless they are explicitly removed from any

hash table to which they have been added.

Hash tables are common causes of perceived leaks. If an object is placed into a

hash table, that object and all the objects that it references are reachable.

Static data

This exists independently of instances of your object. Anything that it points to

cannot be collected even if no instances of your class are present that contain the

static data.

JNI references

Objects that are passed from the JVM to an application across the JNI interface

have a reference to them that is held in the JNI code of the JVM. Without this

reference, the Garbage Collector cannot trace live native objects. Such references

must be explicitly cleared by the native code application before they can be

collected. See the JNI documentation on the Sun website (java.sun.com) for more

information.

Premature expectation

You instantiate a class, finish with it, tidy up all listeners, and so on. You have a

finalizer in the class, and you use that finalizer to report that the finalizer has been

called. On all the later garbage collection cycles, your finalizer is not called. It

seems that your unused object is not being collected and that a memory leak has

occurred, but this is not so.

The IBM Garbage Collector does not collect garbage unless it needs to. It does not

necessarily collect all garbage when it does run. It might not collect garbage if you

manually invoke it (by using System.gc ()), and no memory allocation failure

occurs. This is because Garbage Collector is a stop-the-world heavy operation. The

Garbage Collector is designed to run as infrequently as possible and for as a short

time as possible.

Objects with finalizers

Objects that have finalizers cannot be collected until the finalizer has run. The

Garbage Collector might delay execution of finalizers, or not run them at all. This

is allowed. See “How to coexist with the Garbage Collector” on page 23 for more

details.

Basic diagnostics (verbosegc)

A good way to see what is going on with garbage collection is to use verbosegc,

which is enabled by the -verbosegc option. Note that verbosegc can, and usually

does, change between releases.

Garbage Collector - common causes of perceived leaks

300 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

java.sun.com

verbosegc output from a System.gc()

<GC(3): GC cycle started Tue Mar 19 08:24:34 2002

<GC(3): freed 58808 bytes, 27% free (1163016/4192768), in 14 ms>

<GC(3): mark: 13 ms, sweep: 1 ms, compact: 0 ms>

<GC(3): refs: soft 0 (age >= 32), weak 0, final 0, phantom 0>

The above verbosegc output is an example of a System.gc collection, or forced

garbage collection. All the lines start with GC(3), indicating that this was the third

garbage collection in this JVM. The first line shows the date and time of the start

of the collection. The second line shows that 58808 bytes were freed in 14 ms,

resulting in 27% free space in the heap. The figures in parentheses show the actual

number of bytes that are free, and the total bytes that are available in the heap.

The third line shows the times for the mark, sweep, and compaction phases. In this

case, no compaction occurred, so the time is zero. The last line shows the reference

objects that were found during this garbage collection, and the threshold for

removing soft references. In this case, no reference objects were found.

verbosegc output when pinnedFreeList is exhausted

<AF[5]: Allocation Failure. need 524 bytes, 31726137 ms since last AF>

<AF[5]: managing allocation failure, action=0 (496330792/536869376)>

<GC(612): GC cycle started Mon Mar 22 07:15:56 2004

<GC(612): freed 2213344 bytes, 92% free (498544136/536869376), in 66 ms>

<GC(612): mark: 54 ms, sweep: 12 ms, compact: 0 ms>

<GC(612): refs: soft 4 (age >= 32), weak 175, final 46, phantom 0>

<AF[5]: completed in 68 ms>

In release 1.4.1 and above, the Garbage Collector allocates a pCluster as the second

object on the heap. A pCluster is an area of storage that is used to allocate any

pinned objects. It is 16 KB long. A pinnedFreeList is also introduced. After every

GC, an amount of storage is taken off the bottom of the free list and chained to the

pinnedFreeList. Allocation requests for pClusters use the pinnedFreeList, while

other allocation requests use the free list. When either free list is exhausted, an

allocation failure and a GC occur. If the verbosegc output shows action=0, the

pinnedFreeList was exhausted. For more details on pCluster, refer to “Pinned

clusters” on page 12.

verbosegc output from an allocation failure

<AF[5]: Allocation Failure. need 32 bytes, 286 ms since last AF>

<AF[5]: managing allocation failure, action=1 (0/6172496) (247968/248496)>

 <GC(6): GC cycle started Tue Mar 19 08:24:46 2002

 <GC(6): freed 1770544 bytes, 31% free (2018512/6420992), in 25 ms>

 <GC(6): mark: 23 ms, sweep: 2 ms, compact: 0 ms>

 <GC(6): refs: soft 1 (age >= 4), weak 0, final 0, phantom 0>

<AF[5]: completed in 26 ms>

The above verbosegc output is an example of an allocation failure (AF) collection.

An allocation failure does not mean that an error has occurred in the code; it is the

name that is given to the event that triggers when it is not possible to allocate a

large enough chunk from the heap. The output contains the same four lines that

are in the System.gc verbose output, and some additional lines. The lines that start

with AF[5] are the allocation failure lines and indicate that this was the fifth AF

collection in this JVM. The first line shows how many bytes were required by the

allocation that had a failure, and how long it has been since the last AF. The

second line shows what action the Garbage Collector is taking to solve the AF, and

how much free space is available in the main part of the heap, and how much is

available in the wilderness. The possible AF actions are:

Garbage Collector - basic diagnostics (verbosegc)

Chapter 31. Garbage Collector diagnostics 301

0 This action means that the Garbage Collector tried, but failed, to allocate

from the pinned free list.

1 This action performs a garbage collection without using the wilderness. It

is designed to avoid compactions by keeping the wilderness available for a

large allocation request.

2 This action means that the Garbage Collector has tried to allocate out of

the wilderness and failed.

3 This action means that the Garbage Collector is going to attempt to expand

the heap.

4 This action means that the Garbage Collector is going to clear any

remaining soft references. This occurs only if less than 12% free space is

available in a fully-expanded heap.

5 This action applies only to resettable mode and means that garbage

collection is going to try to take some space from the transient heap.

6 This is not an action. It outputs a verbosegc message to say that the JVM is

very low on heap space, or totally out of heap space.

 The last line shows how long the AF took. This includes the time it took to stop

and start all the application threads.

verbosegc output from a heap expansion

<AF[11]: Allocation Failure. need 24 bytes, 182 ms since last AF>

<AF[11]: managing allocation failure, action=1 (0/6382368) (10296/38624)>

 <GC(12): GC cycle started Tue Mar 19 08:24:49 2002

 <GC(12): freed 1877560 bytes, 29% free (1887856/6420992), in 21 ms>

 <GC(12): mark: 19 ms, sweep: 2 ms, compact: 0 ms>

 <GC(12): refs: soft 0 (age >= 32), weak 0, final 0, phantom 0>

<AF[11]: managing allocation failure, action=3 (1887856/6420992)>

 <GC(12): need to expand mark bits for 7600640-byte heap>

 <GC(12): expanded mark bits by 16384 to 118784 bytes>

 <GC(12): need to expand alloc bits for 7600640-byte heap>

 <GC(12): expanded alloc bits by 16384 to 118784 bytes>

 <GC(12): expanded heap by 1179648 to 7600640 bytes, 40% free>

<AF[11]: completed in 31 ms>

The above verbosegc output is an example of an AF collection that includes a heap

expansion. The output is the same as a verbosegc output for an AF, with some

additional lines for the expansion. It shows by how much the mark bits, the alloc

bits, and the heap are expanded, and how much free space is available. In the

example, the heap was expanded by 1179648 bytes, which gave 40% free space.

verbosegc output from a heap shrinkage

<AF[9]: Allocation Failure. need 32 bytes, 92 ms since last AF>

<AF[9]: managing allocation failure, action=1 (0/22100560) (1163184/1163184)>

 <GC(9): may need to shrink mark bits for 22149632-byte heap>

 <GC(9): shrank mark bits to 348160>

 <GC(9): may need to shrink alloc bits for 22149632-byte heap>

 <GC(9): shrank alloc bits to 348160>

 <GC(9): shrank heap by 1114112 to 22149632 bytes, 79% free>

 <GC(9): GC cycle started Tue Mar 19 11:08:18 2002

 <GC(9): GC cycle started Tue Mar 19 11:08:18 2002

 <GC(9): mark: 4 ms, sweep: 3 ms, compact: 0 ms>

 <GC(9): refs: soft 0 (age >= 6), weak 0, final 0, phantom 0>

<AF[9]: completed in 8 ms>

Garbage Collector - basic diagnostics (verbosegc)

302 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

This output is very similar to the verbosegc output for heap expansion. It shows

by how much the mark bits, the alloc bits, and the heap are shrunk, and how

much free space is available. In the example, the heap shrank by 1114112 bytes,

resulting in 79% free space. One other difference between the verbosegc output for

heap expansion and heap shrinkage is the sequence of the output. This difference

is because expansion happens after all the threads have been restarted and

shrinkage happens before all the threads have been restarted.

verbosegc output from a compaction

<AF[2]: Allocation Failure. need 88 bytes, 5248 ms since last AF>

<AF[2]: managing allocation failure, action=1 (0/4032592) (160176/160176)>

 <GC(2): GC cycle started Tue Mar 19 11:32:28 2002

 <GC(2): freed 1165360 bytes, 31% free (1325536/4192768), in 63 ms>

 <GC(2): mark: 13 ms, sweep: 1 ms, compact: 49 ms>

 <GC(2): refs: soft 0 (age >= 32), weak 0, final 3, phantom 0>

 <GC(2): moved 32752 objects, 2511088 bytes, reason=2, used 8 more bytes>

<AF[2]: completed in 64 ms>

The above verbosegc example shows a compaction. The main difference between

this and the outputs for expansion and shrinkage is the additional line that shows

how many objects have been moved, how many bytes have been moved, the

reason for the compaction, and how many additional bytes have been added. It is

possible to have additional bytes because if the Garbage Collector moves an object

that has been hashed, it has to store the hash value in the object. That action might

mean increasing the object size. The possible reasons for a compaction are as

follows:

v Following the mark and sweep phase, not enough free space is available for the

allocation request.

v The heap is fragmented and will benefit from a compaction.

v Less than half the -Xminf value is free space (the default is 30% in which case

this will be less than 15% free space), and the free space plus the dark matter is

not less than -Xminf.

v A System.gc collection.

v Less than 5% free space is available.

v Less than 128 KB free space is available.

v The -Xcompactgc parameter has been specified.

v The transient heap has less than 5% free space available.

v A compaction is attempted before an attempt to shrink the heap.

v An incremental compaction is needed because of ″dark matter″.

v The -Xpartialcompactgc parameter has been specified.

v An incremental compaction is needed because of wilderness expansion.

v An incremental compaction is needed because not enough space is available for

the wilderness.

verbosegc output from a concurrent mark kickoff

<CONCURRENT GC Free= 379544 Expected free space= 378884 Kickoff=379406>

<Initial Trace rate is 8.01>

The above two lines are the verbosegc output that indicate that the concurrent

phase has started. The first line shows how much free space is available, and how

much will be available after this heap lock allocation. The Kickoff value is the level

at which concurrent mark starts. In this example, the expected space is 378884,

which is less than the Kickoff value of 379406. The second line shows the initial

Garbage Collector - basic diagnostics (verbosegc)

Chapter 31. Garbage Collector diagnostics 303

trace rate. In this example, it is 8.01, which means that for every byte that is

allocated in a heap lock allocation, the Garbage Collector must trace 8.01 bytes of

live data.

verbosegc output from a concurrent mark System.gc

collection

<GC(23): Bytes Traced =0 (Foreground: 0+ Background: 0) State = 3 >

 <GC(23): GC cycle started Fri Oct 11 08:45:34 2002

 <GC(23): freed 12847376 bytes, 94% free (127145208/134216192), in 975 ms>

 <GC(23): mark: 408 ms, sweep: 70 ms, compact: 497 ms>

 <GC(23): refs: soft 0 (age >= 32), weak 0, final 0, phantom 0>

 <GC(23): moved 95811 objects, 6316896 bytes, reason=4>

Line 1 shows the state as a numeric value. The possible values for this field are:

v HALTED (0)

v EXHAUSTED (1)

v EXHAUSTED_BK_HELPER (2)

v ABORTED (3)

In the example, it is 3, which means ABORTED, to show that concurrent mark

did not complete the initialization phase and was therefore aborted.

Line 1 also shows the foreground and background trace values.

Line 2 shows the date and time of the start of the collection. Line 3 shows that

12847376 bytes were freed in 975 ms, resulting in 94% free space in the heap. The

figures in parentheses show the actual number of bytes that are free, and the total

bytes that are available in the heap. Line 4 shows the times for the mark, sweep,

and compaction phases. Line 5 shows the reference objects that were found during

this garbage collection, and the threshold for removing soft references. In this

example, no reference objects were found. Line 6 shows the number of objects that

were moved, the total size of those objects, and the reason why they were moved;

in this example because of a system garbage collection.

verbosegc output from a concurrent mark AF collection

<AF[7]: Allocation Failure. need 528 bytes, 493 ms since last AF or CON>

<AF[7]: managing allocation failure, action=1 (0/3983128) (209640/209640)>

<GC(8): Bytes Traced =670940 (Foreground: 73725+ Background: 597215) State = 0

 <GC(8): GC cycle started Tue Oct 08 13:43:14 2002

 <GC(8): freed 2926496 bytes, 74% free (3136136/4192768), in 8 ms>

 <GC(8): mark: 7 ms, sweep: 1 ms, compact: 0 ms>

 <GC(8): refs: soft 0 (age >= 32), weak 0, final 0, phantom 0>

<AF[7]: completed in 10 ms>

The above example shows an AF collection that has occurred while concurrent

mark is running. This collection is for SDK 1.4.1.

The Traced figures in parentheses show how much is traced by the application

threads and how much is traced by the background thread. The total bytes traced

is the sum of the work done by the background and foreground traces. State is 0

(see above), which means that concurrent is HALTED.

verbosegc output from a concurrent mark AF collection with

:Xgccon

<AF[19]: Allocation Failure. need 65552 bytes, 106 ms since last AF or CON>

<AF[19]: managing allocation failure, action=1 (83624/16684008) (878104/878104)>

Garbage Collector - basic diagnostics (verbosegc)

304 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

<GC(20): Bytes Traced =1882061 (Foreground: 1292013+ Background: 590048) State =0 >

 <GC(20): Card Cleaning Done. Cleaned:27 (0 skipped). Estimation 593 (Factor 0 .017)>

 <GC(20): GC cycle started Fri Oct 11 10:23:49 2002

 <GC(20): freed 8465280 bytes, 53% free (9427008/17562112), in 9 ms>

 <GC(20): mark: 7 ms, sweep: 2 ms, compact: 0 ms>

 <GC(20): In mark: Final dirty Cards scan: 41 cards

 <GC(20): refs: soft 0 (age >= 6), weak 0, final 0, phantom 0>

<AF[19]: completed in 13 ms>

The above is an example of an AF collection that has occured while concurrent

mark is running with the :Xgccon parameter set. Line 3 shows a state of 0, which

means that concurrent is HALTED. Line 4 shows that concurrent card cleaning was

performed for 27 cards, while estimation is the number of dirty cards found.

verbosegc output from a concurrent mark collection

<CON[41]: Concurrent collection, (284528/8238832) (17560/17168), 874 ms since last CON or AF>

<GC(45): Bytes Traced =5098693 (Foreground: 555297+ Background: 4543396) State =2 >

 <GC(45): GC cycle started Tue Oct 08 12:31:14 2002

 <GC(45): freed 2185000 bytes, 30% free (2487088/8256000), in 7 ms>

 <GC(45): mark: 5 ms, sweep: 2 ms, compact: 0 ms>

 <GC(45): refs: soft 0 (age >= 32), weak 0, final 0, phantom 0>

<CON[41]: completed in 9 ms>

The above verbosegc output is an example of a collection that is initiated by

concurrent mark in SDK 1.4.1. It is very similar to the AF concurrent collection,

except that instead of AF at the start of the lines, the trace is preceded by CON. In

this example, the state is EXHAUSTED_BK_HELPER, which means that no more work

was available for the background threads to do.

verbosegc output from a concurrent mark collection with

:Xgccon

<CON[20]: Concurrent collection, (397808/131070464) (3145728/3145728), 5933 ms since last CON or AF>

<GC(26): Bytes Traced =11845976 (Foreground: 4203037+ Background: 7642939) State= 1 >

 <GC(26): Card Cleaning Done. Cleaned:4127 (0 skipped). Estimation 3896 (Factor 0.015)>

 <GC(26): GC cycle started Fri Oct 11 09:45:32 2002

 <GC(26): wait for concurrent tracers: 1 ms>

 <GC(26): freed 117639824 bytes, 90% free (121183360/134216192), in 20 ms>

 <GC(26): mark: 10 ms, sweep: 10 ms, compact: 0 ms>

 <GC(26): In mark: Final dirty Cards scan: 838 cards

 <GC(26): refs: soft 0 (age >= 32), weak 0, final 0, phantom 0>

<CON[20]: completed in 21 ms>

The addition of the :Xgccon parameter to the verbose command returns the card

cleaning information that was automatically generated in version 1.3.1. In this

example, state=1 means that no more work is available for concurrent mark to do.

An extra line (line 5) has been added, to display the time that was spent waiting

for concurrent tracers to complete.

verbosegc output from resettable (z/OS only)

<TH_AF[8]: Transient heap Allocation Failure. need 64 bytes, 9716 ms since last TH_AF>

<TH_AF[8]: managing TH allocation failure, action=3 (0/4389888)>

 <GC(25): need to expand transient mark bits for 4586496-byte heap>

 <GC(25): expanded transient mark bits by 3072 to 71672 bytes>

 <GC(25): need to expand transient alloc bits for 4586496-byte heap>

 <GC(25): expanded transient alloc bits by 3072 to 71672 bytes>

 <GC(25): expanded transient heap fully by 196608 to 4586496 bytes>

<TH_AF[8]: completed in 1 ms>

Garbage Collector - basic diagnostics (verbosegc)

Chapter 31. Garbage Collector diagnostics 305

When running resettable, the JVM has a middleware heap and a transient heap.

The verbosegc for the transient heap is slightly different. In the above example,

note the use of TH_AF instead of AF. The policy when running resettable is to

expand the transient heap when an allocation failure occurs, instead of to garbage

collect it. The above example shows a successful expansion. The example below

shows what happens when the expansion is not successful. Here a garbage

collection must be performed. The output shows how much space is freed from

each of the heaps.

TH_AF[11]: Transient heap Allocation Failure. need 32 bytes, 16570 ms since last TH_AF>

<TH_AF[11]: managing TH allocation failure, action=3 (0/4586496)>

<TH_AF[11]: managing TH allocation failure, action=2 (0/4586496)>

 <GC(29): GC cycle started Tue Mar 19 14:47:42 2002

 <GC(29): freed 402552 bytes from Transient Heap 8% free (402552/4586496) and...>

 <GC(29): freed 1456 bytes, 38% free (623304/1636864), in 1285 ms>

 <GC(29): mark: 1263 ms, sweep: 22 ms, compact: 0 ms>

 <GC(29): refs: soft 0 (age >= 6), weak 0, final 0, phantom 0>

<TH_AF[11]: completed in 1287 ms>

Documentation for the JVMSet JVM can be found in New IBM Technology featuring

Persistent Reusable Java Virtual Machines, SC34-6034-0. This is available at

http://www.s390.ibm.com/Java

Advanced diagnostics

The verbosegc option is the main diagnostic that is available for runtime analysis

of the Garbage Collector. However, another set of command line options is

available that can affect the behavior of the Garbage Collector, and that might aid

diagnostics. These options are:

 -Xcompactexplicitgc

 -Xdisableexplicitgc

 -Xgcpolicy

 -Xgcthreads

 -Xnoclassgc

 -Xnocompactgc

 -Xnocompactexplicitgc

 -Xnopartialcompactgc

-Xcompactexplicitgc

This option runs full compaction each time System.gc() is called. Its default

behavior with a system.gc call is to perform a compaction only if an allocation

failure triggered a garbage collection since the last system.gc call.

-Xdisableexplicitgc

This option converts Java application call to java.lang.System.gc() into no-ops.

Many applications still make an excessive number of explicit calls to System.gc to

request garbage collection. In some cases, these calls can degrade performance time

through premature garbage collection and compactions. However, it is not always

possible to remove the calls at source.

The -Xdisableexplicitgc parameter allows the JVM to ignore these garbage

collection suggestions. Typically, system administrators would use this parameter

in applications that show some benefit from its use. -Xdisableexplicitgc is a

nondefault setting.

Garbage Collector - basic diagnostics (verbosegc)

306 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

http://www.s390.ibm.com/Java

-Xdisableexplicitgc should be used only in production where testing had shown

this to be beneficial; for example, from performance testing in conjunction with

verbose:gc output. The new flag should not be set when one of the following is

running:

v The zSeries JVM with CICS in resettable mode or with DB/2 stored procedures

v Performance profilers that make explicit garbage collection calls to detect object

freeing and memory leaks

v Performance benchmarks in which explicit garbage collection calls are made

between measurement intervals

-Xgcpolicy:<optthruput | optavgpause | subpool>

Note that the subpool option is for AIX only.

When -Xgcpolicy is set to optthruput, concurrent mark is disabled. If you do not

have pause time problems (as seen by erratic application response times) you

should get the best throughput with this option. Optthruput is the default setting.

When -Xgcpolicy is set to optavgpause, concurrent mark is enabled with its

default values. If you are having problems with erratic application response times

that are caused by normal garbage collections, you can correct those problems, at

the cost of some throughput, with the optavgpause option.

When -Xgcpolicy is set to subpool (introduced for AIX only in Version 1.4.1

Service Refresh 1), an improved algorithm for object allocation that aims to achieve

better performance in allocating objects on the heap is used. This algorithm might

provide additional throughput optimization because it tries to improve the

efficiency of object allocation and reduce lock contention on large SMP systems.

Concurrent mark is disabled when this policy is enabled.

-Xgcthreads<n>

This option sets the number of threads (<n>) that are used by garbage collection

for concurrent operations. The default is to use as many threads as there are

processors. A reduction in the number of threads reduces concurrent operations, at

the cost of performance, and might avoid potential problems in this area. No

advantage is gained if you increase the number of threads above the default

setting; you are strongly recommended not to do so.

-Xnoclassgc

This option disables collection of class objects. Collecting class objects is a difficult

operation. This option might expose problems in this area.

-Xnocompactgc

This option disables heap compaction. If a problem exists in compaction, this

option avoids that problem.

-Xnocompactexplicitgc

This option never runs compaction when System.gc() is called. Its default behavior

with a system.gc call is to perform a compaction only if an allocation failure

triggered a garbage collection since the last system.gc call.

Garbage Collector - advanced diagnostics

Chapter 31. Garbage Collector diagnostics 307

-Xnopartialcompactgc

Never run an incremental compaction. The default is ″false″; that is, incremental

compaction is enabled.

Tracing

This section describes the garbage collection trace facilities. For instructions about

how to activate these traces, see Chapter 33, “Tracing Java applications and the

JVM,” on page 321.

The most exhaustive garbage collection diagnostic is garbage collection trace. Take

care what you choose to trace because enormous amounts of trace data can be

generated. From JVM version 1.4.1, garbage collection trace options (earlier known

as tracegc) have been merged with the JVM RAS trace. Therefore, although the

information that is available from this trace has remained mostly unchanged, usage

of the trace has changed. Table 23 compares the tracegc options that are available

in version 1.4 with the new ST trace options that are provided from JVM 1.4.1.

 Table 23. Comparison of tracegc options

Old tracegc option Corresponding JVM trace option

TRACEGC_TERSE st_terse

TRACEGC_VERIFY st_verify

TRACEGC_MARK st_mark

TRACEGC_COMPACT st_compact

TRACEGC_COMPACT_VERBOSE st_compact_verbose

TRACEGC_COMPACT_DUMP st_compact_dump

TRACEGC_DUMP st_dump

TRACEGC_ALLOC st_alloc

TRACEGC_REFS st_refs

TRACEGC_BACKTRACE st_backtrace

TRACEGC_LOGFILE Not applicable

TRACEGC_FREELIST st_freelist

TRACEGC_CALLOC st_calloc

TRACEGC_PARALLEL st_parallel

TRACEGC_TRACE st_trace

TRACEGC_CONCURRENT st_concurrent

TRACEGC_CONCURRENT_PCK st_concurrent_pck

TRACEGC_ICOMPACT st_icompact

TRACEGC_CONCURRENT_SHADOW_HEAP st_concurrent_shadow_heap

TRACEGC_LOGFILE is not implemented in version 1.4.2, because JVM trace uses

-Dibm.dg.trc.outputto to redirect trace outputs to a file. Also,

IBM_JVM_ST_VERIFYHEAP, which checks the integrity of the heap, has been

replaced with -Dibm.dg.trc.print=st_verify_heap.

To activate the TRACEGC_MARK trace, for example, use

-Dibm.dg.trc.print=st_mark. If you want to activate more than one trace, add the

Garbage Collector - advanced diagnostics

308 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

identifiers to the command line together. For example, if you want the

TRACEGC_ALLOC and the TRACEGC_REFS, use

-Dibm.dg.trc.print=st_alloc,st_refs.

st_terse

This trace dumps the contents of the heap before and after a garbage collection. If

running with the -Xresettable option, the transient heap is also dumped. The

system heaps are not dumped. This can be a very large trace.

DH(1) 0x10063064 a x0x58 java.lang.Thread@10063068/10063070

DH(1) 0x100630bc a x0x58 java.lang.ref.Finalizer$FinalizerThread@100630C0/100630C8

DH(1) 0x10063114 a x0x58 java.lang.ref.Reference$ReferenceHandler@10063118/10063120

DH(1) 0x1006316c a x0x58 java.lang.Thread@10063170/10063178

DH(1) 0x100631c4 a x0x58 java.lang.Thread@100631C8/100631D0

DH(1) 0x1006321c f x0x28

DH(1) 0x10063244 a x0x50 java.util.HashMap$Entry[16]

DH(1) 0x10063294 a x0x20 java.lang.String@10063298/100632A0

DH(1) 0x100632b4 a x0x18 "float"

DH(1) 0x100632cc a x0x30 java.util.HashMap@100632D0/100632D8

DH(1) 0x100632fc a x0x10 java.lang.Object@10063300/10063308

DH(1) 0x1006330c a x0x10 java.lang.ref.ReferenceQueue$Lock@10063310/10063318

DH(1) 0x1006331c a x0x20 java.lang.ref.ReferenceQueue@10063320/10063328

DH(1) 0x1006333c a x0x10 java.lang.ref.ReferenceQueue$Lock@10063340/10063348

DH(1) 0x1006334c a x0x20 java.lang.ref.ReferenceQueue$Null@10063350/10063358

DH(1) 0x1006336c a x0x10 java.lang.ref.ReferenceQueue$Lock@10063370/10063378

DH(1) 0x1006337c a x0x20 java.lang.ref.ReferenceQueue$Null@10063380/10063388

The above example shows a small part of this trace. Each line is either an object or

a free chunk. The first field indicates that this is a heap dump by the letters DH.

The number in parentheses is the garbage collection number. The next field is the

address of the object followed by an indication of whether this is an allocated

object or a free chunk, a for allocated and f for free. The next field is the length of

the object. The final field is the class of the object, or blank if it is a free chunk.

st_verify

This trace verifies the integrity of the heap before and after a compaction. Some

messages are displayed for error conditions, but most of the checking is done via

sysAsserts, so therefore this trace should be run with the debug build. If you run

this with the -Xresettable option, the transient heap is also verified. This is a small

trace.

GC(VFY-SUM): pinned=79(classes=2/freeclasses=0) dosed=85 movable=4609 free=1886

GC(VFY-SUM): freeblocks: max=37080 ave=184 (347384/1886)

GC(VFYAC-SUM): freeblocks: max=94504 ave=7389 (347328/47)

The above example shows the output from a healthy heap.

The first line displays the state before a compaction. In this example are 79 pinned

objects, of which two are classes. The freeclasses field is not used and is always

zero. The example also has 85 dosed objects. The movable field is the count of all

objects that are not pinned or dosed. The free field shows the number of free

chunks.

The second line also shows the state before a compaction. The freeblocks field

shows the maximum and average sizes of the free blocks. The numbers in

parentheses are the total amount of free space and the number of free chunks.

The third line shows the state after a compaction. The freeblocks field shows the

maximum and average size of the free blocks. The numbers in parenthesis are the

total amount of free space and the number of free chunks.

Garbage Collector - tracing

Chapter 31. Garbage Collector diagnostics 309

st_mark

This trace traces all the objects that are found during the conservative part of

marking. This is a small to medium sized trace.

1--> pinned(jh) allocator@10061F50/10061F58

1J> jframe(822f48c)

1--> pinned(ch) x0xb99ff884 java.lang.String@103A6460/103A6468

cch java.lang.String@103A6460/103A6468

1--> pinned(ch) x0xb99ff888 java.io.PrintStream@10074770/10074778

The above example shows a small section of this trace.

The first line is displayed for a pinned object, whether it is going to be marked or

not. The number at the start is the garbage collection cycle number. The letters (jh)

show that this pinned object was found as a reference to a handle on a Java frame.

Other possibilities are:

v ch: A reference to a handle on a C frame.

v co: A reference to an object on a C frame.

The last field is the name of the object.

The second line is displayed when a Java frame is traced. The address of the Java

frame is displayed.

The third line shows another pinned object, this time found as a reference to a

handle on a C frame. In this case, the address of the object is displayed in addition

to the name.

The fourth line is displayed for objects that are about to be marked. The letters cch

show that this object was found as a reference to a handle on a C frame. Other

possibilities are:

v cch: A reference to a handle on a C frame.

v cco: A reference to an object on a C frame.

The last field is the name of the object.

st_compact

This trace traces all the moves that occur during a compaction. Virtual moves are

traced from reverseHandlesAndUpdateForwardRefs() and actual moves are traced

from MoveObjectsAndUpdateBackwardRefs(). If running with the -Xresettable

option, the transient-heap moves are also traced. This can be a large trace.

The above example shows a small part of the trace of the virtual move. The first

field is the garbage collection cycle number. The word (slide) shows that this object

is to be slid down the heap so that it is moved down to be adjacent to another

object. The other possibility is (lift), which would show that this object is to be

moved to a free space that is lower down the heap. The next field shows where the

object is, to where the object is going to move, and the size of the object. The last

field is the name of the object.

<GC(1): to move(slide) 0x100674a4 (x0x30) to 0x10067364 (x0x30) java.util.Hashtable@100674A8/100674B0>

<GC(1): to move(slide) 0x100674d4 (x0x20) to 0x10067394 (x0x20) java.util.Hashtable$Entry[4]>

<GC(1): moving(slide) 0x10063244 (x0x50) to 0x1006321c (x0x50) java.util.HashMap$Entry[16]>

<GC(1): moving(slide) 0x10063294 (x0x20) to 0x1006326c (x0x20) java.lang.String@10063270/10063278>

Garbage Collector - tracing

310 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

The above example shows a small part of the trace of the actual move. The only

difference between this and the virtual trace move is the word moving instead of

the words to move.

st_compact_verbose

This trace can be run only with st_verify. Therefore, you invoke it by using

-Dibm.dg.trc.print=st_verify,st_compact_verbose. It shows all the pinned and dosed

objects that are on the heap before a compaction. This is a small to medium sized

trace.

<GC(VFY): pinned java.lang.Thread@10063068/10063070>

<GC(VFY): pinned java.lang.ref.Finalizer$FinalizerThread@100630C0/100630C8>

<GC(VFY): pinned java.lang.ref.Reference$ReferenceHandler@10063118/10063120>

<GC(VFY): pinned java.lang.Thread@10063170/10063178>

<GC(VFY): dosed java.lang.ref.ReferenceQueue$Null@10063300/10063308>

<GC(VFY): dosed java.lang.ref.ReferenceQueue$Lock@1006EE78/1006EE80>

<GC(VFY): dosed java.lang.ref.ReferenceQueue@1006EE88/1006EE90>

The above example shows a portion of this trace. Each pinned or dosed object is

displayed along with its name.

st_compact_dump

This trace can be run only with st_verify. Therefore, you use

-Dibm.dg.trc.print=st_verify,st_compact_dump to invoke it. It dumps the contents

of the heap before a compaction and after a compaction. This can be a very large

trace.

The format of the output is the same as for st_terse.

st_dump

This trace can be run only with st_verify. Therefore, you use

-Dibm.dg.trc.print=st_verify,st_dump to invoke it. It displays every free chunk that

is in the heap, including dark matter (free chunks that are too small to be on the

free list). If it runs with the -Xresettable option, the transient-heap free chunks are

also displayed. This is a medium sized trace.

<GC(75) Dumping Middleware Heap free blocks

<GC(75) 0x1006f13c freelen=x0x8 -- x0x10 java.lang.ref.Reference$Lock@1006F140/1006F148

<GC(75) 0x100cf334 freelen=x0x29b30 -- x0xfb0 [Lgt;[1000]

<GC(75) 0x103c5134 freelen=x0x2f2c00 p- x0x20 byte[][20]

<GC(75) 0x103cb434 freelen=x0x6280 -- x0x60 gt[20]

<GC(75) 0x103ffbfc freelen=x0x332e8

The above example shows part of this trace. The first field is the garbage collection

cycle number. The next two fields show the address of the free chunk and its

length. The next field shows information about the live object that follows the free

chunk. In the example are the characters “—” (dashes). These are replaced by p

and d if the object is pinned or dosed. The last field shows the length and name of

the live object that follows the free chunk. In this example, the last free chunk does

not have a live object after it.

st_alloc

This trace traces every heap lock allocation. This is a large trace.

77 alc-mwo 0x10383948 java.lang.String

77 alc 0x40516508 *ClassClass*

77 alc-tma 10383908 5[24]

Garbage Collector - tracing

Chapter 31. Garbage Collector diagnostics 311

77 alc-mwo 0x103838e8 java.lang.String

77 alc-mwo 0x103838d8 java.util.HashMap$KeySet

77 alc 0x40516638 *ClassClass*

77 alc-tma 10383890 5[29]

The above example shows a small portion of this trace. The first field shows the

number of garbage collection cycles that have taken place so far. The functions that

can issue the allocation are:

v alc

v allocSystemApplicationClass

v allocSystemClass

v allocSystemPrimitiveArray

v allocSystemStringObject

v clonePrimitiveArrayToSystemHeap

v allocTransientClass

v allocTransientArray

v alc-mwc - allocMiddlewareClass

v alc-tma - targetedAllocMiddlewareArray

v alc-mwo - allocMiddlewareObject

v alc-mca - allocMiddlewareContextArray

v alc-mco - allocMiddlewareContextObject

v alc-pba - allocatePinnedByteArray

v alc-arr - allocArray

v alc-obj - allocObject

v alc-cxa - allocContextArray

v alc-cob - allocContextObject

v alc-ash - allocArrayInSameHeap

The address of the allocated object is displayed after the function. Following this,

one of these is displayed:

v If it is an array, the type code of the array and the number of elements in the

array (in square brackets) are displayed.

v If it is a class block, *ClassClass* is displayed.

v If it is a normal object, the object name is displayed.

st_refs

This trace traces reference handling during garbage collection. The size of this trace

depends on how many reference objects are found.

ref java.lang.ref.SoftReference@10084838/10084840

 -> java.lang.reflect.Constructor[1]

 skip java.lang.reflect.Constructor[1]

ref java.lang.ref.SoftReference@10095398/100953A0

 -> java.lang.reflect.Constructor[1]

 skip java.lang.reflect.Constructor[1]

ref java.lang.ref.SoftReference@10092960/10092968

 -> java.lang.reflect.Constructor[1]

 skip java.lang.reflect.Constructor[1]

processRefList: Dropping java.lang.ref.WeakReference@10085E90/10085E98

processRefList: Dropping java.lang.ref.Finalizer@100966E8/100966F0

processRefList: Dropping java.lang.ref.Finalizer@1009A460/1009A468

processRefList: Enqueuing java.lang.ref.Finalizer@10085740/10085748

processRefList: Enqueuing java.lang.ref.Finalizer@100D2988/100D2990

Garbage Collector - tracing

312 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

The above example shows three reference objects being processed.

The first part of the traces shows the references that are found during the marking

phase. For each reference found, three lines are displayed (wrapped in the above

example). The first line, starting with ref, together with the second line shows the

reference object, and the third line, starting with skip, shows the referent.

The second part of the trace shows how each of these references is processed after

marking has completed. If the referent is marked, the reference is dropped, as

indicated by the word Dropping. If the referent is not marked, the reference is

enqueued for further processing, as indicated by the word Enqueuing.

st_backtrace

This trace can be run only with st_terse. Therefore, you use

-Dibm.dg.trc.print=st_backtrace,st_terse to invoke it. It adds one line to the

beginning of the st_terse trace, an example of which follows:

"Thread-1"(0x8274030)

This shows the name of the thread that is running garbage collection, followed by

the address of the sys_thread_t structure.

st_freelist

This trace traces information about the freelist during garbage collection. This is a

small trace.

1 free: 0 deferred: 1 total: 1

Alloc TLH: count 93, size 35352, discard 1752

non-TLH: count 0, search 0, size 0, discard 0

The above example is the output from one garbage collection cycle. The number

that is displayed as *1* is the garbage collection cycle number.

In the first line, the free field shows the number of free chunks that are on the

freelist at the beginning of a garbage collection cycle. The deferred field shows the

number of free chunks that are on the deferredlist at the beginning of a garbage

collection cycle. The total field shows the total number of free chunks that are on

both lists.

The second line shows the activity of TLH allocations since the last garbage

collection. The count field shows the number of TLH allocations. The size field

shows the average size of TLH allocated. The discard field shows the amount of

space that is discarded when a TLH is completed.

The third line shows the activity of heap lock allocations since the last garbage

collection. The count field shows the number of heap lock allocations. The search

field shows the average number of free chunks that had to be searched before one

that was big enough was found. The size field shows the average size of heap

lock allocations. The discard field shows the amount of space that was discarded

because it was less than the minimum free chunk size.

st_calloc

This trace traces successful calls to realObjCalloc() and transientRealObjCalloc().

This is a small trace. It generates some traces very early in the JVM initialization

Garbage Collector - tracing

Chapter 31. Garbage Collector diagnostics 313

process, at which time the tracing thread is not yet initialized. Therefore, to get all

the information from this trace, you must pass the -Dibm.dg.trc.initialization

option to Java.

<GC(0): tried to calloc, java.lang.Thread(0x0x100631c8:72)>

<GC(0): tried to calloc, java.lang.Thread(0x0x10063170:72)>

<GC(0): tried to calloc, java.lang.ref.Reference$ReferenceHandler(0x0x10063118:72)>

<GC(0): tried to calloc, java.lang.ref.Finalizer$FinalizerThread(0x0x100630c0:72)>

<GC(0): tried to calloc, java.lang.Thread(0x0x10063068:72)>

<GC(0): tried to calloc, java.lang.Thread(0x0x10063010:72)>

<GC(0): tried to calloc, java.util.logging.LogManager$Cleaner(0x0x10062fb8:76)>

<GC(0): tried to calloc, sun.misc.Launcher$ExtClassLoader(0x0x10062f40:108)>

<GC(0): tried to calloc, sun.misc.Launcher$AppClassLoader(0x0x10062ec8:104>

<GC(0): tried to calloc, java.lang.Thread(0x0x10062e70:72)>

<GC(0): tried to calloc, gc5(0x0x10062e18:72)>

<GC(0): tried to calloc, gc5(0x0x10062dc0:72)>

<GC(0): tried to calloc, java.lang.Thread(0x0x10062d68:72)>

The above example shows the output from this trace. For every successful call to

one of the calloc() functions, a line is displayed that shows the name of the object,

the address at which the object was allocated, and the size of the object.

st_parallel

This trace traces the activity of parallel mark and parallel sweep, producing some

statistics. Invoke it by using -verbosegc. This is a small trace.

Mark: busy stall tail ---publish--- ----steal--- --withdraw--

 0: 2 0 0 298/ 1 0/ 0 49/ 1

 1: 2 0 0 0/ 0 249/ 2 0/ 0

Sweep: busy idle sections 64 merge 0

 0: 0 1 31

 1: 0 1 33

The above example shows the output from a garbage collection cycle. It has one

master thread and one helper thread. All times are in milliseconds.

The statistics for parallel mark are displayed first:

Mark The identification of the thread (the master thread will be 0).

busy The time that was spent scanning references.

stall The amount of time that was spent without work (either waiting for the

other threads to finish or waiting for data to steal).

tail The time that it took to terminate when all the threads have completed.

publish

The total number of references that were moved to the Mark Queue, and

the number of times references were moved to the Mark Queue.

steal The total number of references that were taken off the Mark Queues of

other threads, and the number of times references were taken off the Mark

Queues of other threads.

withdraw

The total number of references that were removed from the Mark Queue of

the thread, and the number of times references were removed from the

Mark Queue of the thread.

Next, the statistics for parallel sweep are displayed. The first line displays how

many sections exist and the time it took to merge the sections:

Garbage Collector - tracing

314 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

Sweep

The identification of the thread (the master thread will be 0).

busy The time that was spent sweeping sections.

idle The amount of time that was spent without work.

sections

The number of sections that were swept.

merge The amount of time that was spent merging sections.

st_trace

This trace traces all the work that is done by the mark phase. This is a very large

trace.

****** Starting trace for GC ******

0x8274acc Scanning Clusters

0x8274acc 0x10081ae0 =java.lang.ref.Finalizer@10081AE0/10081AE8

0x8274acc 0x1006f140 =java.lang.ref.Reference$Lock@1006F140/1006F148

0x8274acc 0x100d0638 = java.io.FileDescriptor@100D0638/100D0640

...

...

...

0x8274acc Scanning Threads

0x8274acc scan thread 0x8051388...

0x813ad74 0x100841b8 = java.lang.String@100841B8/100841C0

0x8274acc scan saved registers...

0x813ad74 0x10084550 = java.lang.String@10084550/10084558

0x8274acc scan native stack...

0x813ad74 0x10074738 = java.lang.String@10074738/10074740

0x8274acc scan Java stack...

0x813ad74 0x100871c8 = java.lang.String@100871C8/100871D0

0x8274acc .. get exception object...

0x813ad74 0x100844f8 = java.lang.String@100844F8/10084500

0x8274acc .. get pending async exception...

The above example parts of one of these traces.

The first field is the address of the ExecEnv of the thread that is doing the

marking.

At the start, all the roots are gathered; in this case, only one root from scanning

threads. For each object that is pushed to the mark stack, the address is displayed,

followed by an equal sign, followed by the name.

Then, local marking is started by popping an object, scanning it, and pushing any

references that are found. For each object that is popped, the address is displayed,

followed by a comma, followed by the name. Then, all pushed objects are

displayed, as were pushed root objects. All pushed objects are indented.

st_concurrent

This trace traces the state of WorkPackets that are in concurrent mark. In nondebug

mode, this is a small trace. In debug mode, this is a large trace. Data is displayed

as follows:

v When a background thread is activated after a start of concurrent collection. This

requires -verbosegc. Here is an example:

<CONCURRENT GC BK thread 0x00d45678 activated after GC(7)>

Garbage Collector - tracing

Chapter 31. Garbage Collector diagnostics 315

v When a background thread returns to waiting for the next concurrent garbage

collection. This requires -verbosegc. Here is an example:

<CONCURRENT GC BK thread x00d45678 (started after GC(7)) traced 25678>

v When concurrent collection performs a small stop-all-threads, to scan all the

stacks of threads that have not yet scanned their own stacks. Here is an

example:

< 0x00d45678 scanned 5 stacks (30 -> 35) trace total=25678>

– 0x00d45678 is the ExecEnv pointer of the thread that is initiating this

stop-all-threads.

– It scanned 5 stacks.

– 35 stacks are now scanned.

– 25678 bytes were traces by the concurrent collection.

– 30 threads have scanned their own stacks before this.
v When the attempt to stop-all-thread above failed. Here is an example:

< failed to suspend threads for stacks scan>

In addition, st_concurrent traces various types of operations that were done on

WorkPackets while it was performing the concurrent collection. These messages

differ in the starting and ending symbol. They do not appear in separate lines,

because many of them are expected. This requires the debug build.

The following trace is done when WorkPackets are reset at the end of the final

STW phase:

#msg,next_ptr , packet_ptr,packet_mode#

v msg can be all kinds of headers, describing the list from which the packets are

returned.

v next_ptr is the logical pointer user to point to next packet, shifted left 8 (to save

screen space).

v packet_ptr is the physical pointer of the packet.

v packet_mode is the mode of the packet.

This trace should happen once for each WorkPacket, for each garbage collection.

The following trace should happen very rarely; that is, when a referent (that was

valid when this object was linked into the reference object’s list) becomes NULL:

?? Found NULL referent,ee,pkt_ptr,pk_mode (reference_obj_ptr->referent_ptr)??

v ee is the ExecEnv, shifted left 8 (to save screen space).

v pkt_ptr is the physical pointer of the packet.

v pkt_mode is the mode of the packet

v reference_obj_ptr is the reference object.

v referent_ptr is the referent.

st_concurrent_pck

This trace traces frequent operations on WorkPackets, such as getting, or returning.

It is an extremely large trace. Here is the format of each trace item:

[msg, ee, packet_ptr, packet_mode]

v msg can be various states of get or put operation (for example, GRF represents

“Get Relatively Full”, GN represents “Get Non Empty”).

v ee is the ExecEnv, shifted left 8 (to save screen space).

v packet_ptr is the pointer of the packet.

Garbage Collector - tracing

316 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

v packet_mode is the desired mode of the packet (in case of get) or actual mode (in

case of put).

st_icompact

This trace traces, by an incremental compaction, all the work that has been done.

This is a small trace. It generates some traces very early in the JVM initialization

process, at which time the tracing thread is not yet initialized. Therefore, to get all

the information from this trace, you must pass the -Dibm.dg.trc.initialization

option to Java. Here is an example trace:

ICOMPACT Compaction region size is 33554432 bytes

ICOMPACT INITIAL er_log_area_size 25

ICOMPACT Started. Compaction region is now from 0x10000200 to 0x12000000.

 ICOMPACT Before trace 594 objects in Compaction Region

ICOMPACT-HEAP Started with 4410 objects in Compaction Region after trace

ICOMPACT Section 0 starts at 0x10000200 and ends at 0x11000100 (16383KB)

ICOMPACT Section 1 starts at 0x11000100 and ends at 0x12000000 (16383KB)

ICOMPACT-HEAP Thread 1 icBuildAllBreakTables begins

ICOMPACT Thread 0 used 758 entries in break table

ICOMPACT Thread 0 buildBreakTableForOneSection: 0 ms

ICOMPACT Thread 1: Empty section. Nothing done to break table

ICOMPACT Thread 1 buildBreakTableForOneSection: 2 ms

ICOMPACT-HEAP Thread 1 icBuildAllBreakTables complete: 2 ms

ICOMPACT-HEAP Thread 1 icFixup begins

ICOMPACT Thread 0 icFixUpClasses: 14 ms

ICOMPACT Thread 1 icFixUpClasses: 1 ms

ICOMPACT Thread 1 icFixUpRootRefs: 1 ms

ICOMPACT Thread 1 icFixUpClasses: 0 ms

ICOMPACT-HEAP Thread 1 icFixUp complete: 16 ms

ICOMPACT-HEAP Thread 1 icMoveAllObjects begins

ICOMPACT Thread 0 moveObjectsInOneSection: 2 ms

ICOMPACT-HEAP Thread 1 icMoveAllObjects complete: 3 ms

ICOMPACT-HEAP complete in 28 ms

ICOMPACT Started. Compaction region is now from 0x12000000 to 0x14000000.

 ICOMPACT Before trace 3 objects in Compaction Region

The example shows the start of one of these traces. The actions that are displayed

in the first paragraph are performed only once.

The first line output shows the size of a compaction region during this run of

incremental compaction. The second line shows the log value of the compaction

area. This value is used in later calculations. This example output has one main

thread (1) and one helper thread (0).

The boundaries of the first region that are to be compacted are displayed. The

following lines show how many objects are in the area that is to be compacted. The

number of objects is calculated by the number of allocbits that are on in the region,

firstly before the mark phase has run, then before the incremental compaction is

performed. These two calculations show whether the number of objects in the

compaction region is increasing or decreasing before the compaction is performed.

The compaction region is divided by the number of active threads, and a line is

output to show each section.

Incremental compaction builds a break table to denote the blocks of active objects

that are in the region. In this case, thread 0 has built a table with 758 blocks and

taken 0 milliseconds to do so. Thread 1 has found an empty section. The main

thread then summarizes the time that was taken to complete the break table.

Garbage Collector - tracing

Chapter 31. Garbage Collector diagnostics 317

The FixUp phase fixes all references in the system that point to the compaction

region. GCHelper threads are used to aid in the identification of heap references to

objects that are in the compaction region. These references must be fixed when the

objects are moved by the compaction phase. The main thread does the fixup of all

the roots. This fixup scans all nonsystem classes and performs all needed

nonconservative marking. It then fixes references from the root set references to

moved objects. Finally it helps with the fixup of heap objects in parallelFRFixup

and a summary of total time take for the fixup phase is output.

Now that it has been determined what can be moved and where, it remains only

to actually move the blocks of objects. Each thread moves the objects in its own

section, and the main thread then issues a summary message. Finally, a summary

message for this iteration of incremental compaction is issued, and the boundaries

of the next incremental compaction region are displayed.

st_concurrent_shadow_heap

To use this trace, you must also be running the debug build. You can find

information about the use of the Shadow Heap in the Java2Wave2 database at ’ST

Team room/Service Transfer and other education/Shadow Heap and Stored Card

Table’.

Heap and native memory use by the JVM

The JVM itself makes little use of the heap except for class objects. Class objects

also use native memory.

The JVM does use native memory, but, for efficiency, does not use standard stack

frames. The JIT (see Chapter 4, “Understanding the JIT,” on page 37), the MMI (see

Chapter 30, “JIT diagnostics,” on page 295), and the JVM all have their own styles

of stack frames. The only tool that can walk the stack is the dump formatter (see

Chapter 29, “Using the dump formatter,” on page 261). The only other users of

native memory are native code and some types of large native objects.

Native Code

The term “native code ” refers to native code (usually C or C++) that is compiled

into a library and accessed through the JNI. Alternatively, native code can load an

encapsulated JVM. Either way, the native code uses standard OS stack frames,

unless it manages the stack itself. The JVM keeps track of the portion of the stack

that it uses, because it needs this information to find a set of root objects for

garbage collection.

The JVM has no knowledge of and cannot control the native stack in this scenario.

Growth of the native stack is not normally due to JVM code.

Large native objects

On some platforms, the JVM can recognize large native objects (such as bitmaps)

and keep them in native memory. A small object is placed onto the heap, which

acts as an anchor for the native data (wherever it is). Clearly, such native memory

tends to consist of large chunks that can grow quickly unless the owning

application strictly controls the anchoring objects.

Garbage Collector - tracing

318 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

Chapter 32. Class-loader diagnostics

This chapter describes some diagnostics that are available for class-loading. The

topics that are discussed in this chapter are:

v “Class-loader command-line options”

v “Class loader runtime diagnostics”

v “Loading from native code” on page 320

Class-loader command-line options

These extended command-line options are available:

-Xverify

This option enforces strict class-loading checks on classes that are loaded

by way of the extensions and application class loaders. The default is that

strict checking is not performed.

-Xverify:none

This option disables strict class-loading checks on all class loaders. The

default is that strict checks are enforced except on the JVM internal class

loaders.

-Xverify:remote

This option enables strict class-loading checks on remotely loaded classes.

Class loader runtime diagnostics

An extremely useful command-line definition is available that lets you trace the

way the class loaders find and load a given class. The command line definition is:

-Dibm.cl.verbose=<name>

For example:

C:\tests>java -Dibm.cl.verbose=Dick Tom

might produce output that is similar to this:

 ExtClassLoader attempting to find Dick

 ExtClassLoader using classpath D:\jre\lib\ext\gskikm.jar;D:\jre\lib\ext\ibmjceprovider.jar;

 D:\jre\lib\ext\indicim.jar;D:\jre\lib\ext\jaccess.jar;D:\jre\lib\ext\ldapsec.jar;

 D:\jre\lib\ext\oldcertpath.jar

 ExtClassLoader could not find Dick.class in D:\jre\lib\ext\gskikm.jar

 ExtClassLoader could not find Dick.class in D:\jre\lib\ext\ibmjceprovider.jar

 ExtClassLoader could not find Dick.class in D:\jre\lib\ext\indicim.jar

 ExtClassLoader could not find Dick.class in D:\jre\lib\ext\jaccess.jar

 ExtClassLoader could not find Dick.class in D:\jre\lib\ext\ldapsec.jar

 ExtClassLoader could not find Dick.class in D:\jre\lib\ext\oldcertpath.jar

 ExtClassLoader could not find Dick

 AppClassLoader attempting to find Dick

 AppClassLoader using classpath C:\tests;C:\tests;D:\lib\tools.jar

 AppClassLoader could not find Dick.class in C:\tests

 AppClassLoader could not find Dick.class in D:\lib\tools.jar

 AppClassLoader could not find Dick

 Exception in thread "main" java.lang.NoClassDefFoundError: Dick

 at Tom.main(Tom.java:6)

© Copyright IBM Corp. 2003, 2006 319

The sequence of the loaders output is due to the ″delegate first″ convention of the

class loaders. In this convention, each loader checks its cache, then delegates to its

parent loader. Then, if the parent returns null, the loader checks the file system or

equivalent. This is the part of the process that is reported in the example above. In

the command-line definition, the classname can be given as any Java regular

expression. ″Dic*″ will produce output on all classes whose names begin with the

letters ″Dic″, and so on.

Loading from native code

When a native library is being loaded, how the class that makes the native call is

loaded determines where the loader looks to load the libraries.

v If the class that makes the native call is loaded by the Bootstrap Classloader, this

loader looks in the ’sun.boot.library.path’ to load the libraries.

v If the class that makes the native call is loaded by the Extensions Classloader,

this loader looks in the ’java.ext.dirs’ first, then ’sun.boot.library.path,’ and

finally the ’java.library.path’, to load the libraries.

v If the class that makes the native call is loaded by the Application Classloader,

this loader looks in the ’sun.boot.library.path’, then the ’java.library.path’, to load

the libraries.

320 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

Chapter 33. Tracing Java applications and the JVM

JVM Trace is a low-overhead trace facility that is provided in all IBM-supplied

JVMs. In most cases, the trace data is kept in compact binary format, with

variable-length trace records from 8 to 64 KB. A cross-platform Java formatter is

supplied to format the trace. You can enable tracepoints at runtime by using levels,

components, group names, or individual tracepoint identifiers.

This chapter describes JVM trace in:

v “What can be traced?”

v “Where does the data go?” on page 322

v “Controlling the trace” on page 323

v “Determining the tracepoint ID of a tracepoint” on page 341

v “Using trace to debug memory leaks” on page 341

The trace tool provides an extremely powerful ability to diagnose the JVM. It is

simple to understand and simple to use effectively.

What can be traced?

What can be traced depends on:

v Tracing methods

v Tracing applications

v Internal trace

Tracing methods

You can trace entry to and exit from methods for selected classes. Using the

ibm.dg.trc.methods property, you can select method trace by class, method name,

or both. Wildcards can be used, and a not operator is provided to allow for

complex selection criteria. Note that this property selects only the methods that are

to be traced. The MT trace component must be selected for a given trace

destination. For example:

-Dibm.dg.trc.methods=*.*,!java/lang/*.*

-Dibm.dg.trc.print=mt

This routes method trace to stderr for all methods for all classes except those that

start with java/lang. On some platforms, input parameters and return values can

also be traced provided that the JIT is disabled.

Tracing applications

JVM trace contains an application trace facility that allows tracepoints to be placed

in Java code to provide trace data that will be combined with the other forms of

trace. API in the com.ibm.jvm.Trace class is provided to register a Java application

for trace and later to make trace entries. You can control the tracepoints at startup

or enable them dynamically by using Java or C API. When trace is not enabled,

little overhead is caused. Note that an instrumented Java application runs only on

an IBM-supplied JVM.

© Copyright IBM Corp. 2003, 2006 321

Internal trace

IBM JVMs are extensively instrumented for trace, as described in this chapter.

Interpretation of this trace data requires knowledge of the internal operation of the

JVM, and is provided for support personnel who diagnose JVM problems.

Note: No guarantee is given that tracepoints will not vary from release to release

and from platform to platform.

Where does the data go?

Trace data can go into:

v In-storage buffers that can be dumped or snapped when a problem occurs

v One or more files that are using buffered I/O

v An external agent in real-time

v stderr in real time

v A combination of the above

Placing trace data into in-storage buffers

The use of in-storage buffers for trace is a very efficient method of running trace

because no explicit I/O is performed until either a problem is detected, or an API

is used to snap the buffers to a file. Buffers are allocated on a per-thread principle.

This principle removes contention between threads and prevents trace data for

individual threads from being swamped by other threads. For example, if one

particular thread is not being dispatched, its trace information is still available

when the buffers are dumped or snapped. Use the ibm.dg.trc.buffers system

property to control the size of the buffer that is allocated to each thread.

Note: On some computers, power management affects the timers that trace uses,

and gives misleading information. This problem affects mainly Intel-based

mobiles, but it can occur on other architectures. For reliable timing

information, disable power management.

To examine the trace data, you must snap or dump, then format the buffers.

Snapping buffers

Buffers are snapped when:

v An uncaught Java exception occurs

v An operating system signal or exception occurs

v The com/ibm/jvm/Trace.snap() Java API is called

v The JVMRI TraceSnap function is called

The resulting snap file is placed into the current working directory with a name of

the format Snapnnnn.yyyymmdd.hhmmssth.process.trc, where nnnn is a sequence

number starting at 0001 (at JVM startup), yyyymmdd is the current date, hhmmssth

is the current time, and process is the process identifier.

Dumping buffers

You can also dump the buffers by using the operating system dump services. You

can then extract the buffers from the dump by using the Dump Viewer.

Placing trace data into a file

You can write trace data to a file continuously as an extension to the in-storage

trace, but, instead of one buffer per thread, at least two buffers per thread are

tracing methods, applications, and data

322 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

allocated. This allows the thread to continue to run while a full trace buffer is

written to disk. Depending on trace volume, buffer size, and the bandwidth of the

output device, multiple buffers might be allocated to a given thread to keep pace

with trace data that is being generated.

A thread is never stopped to allow trace buffers to be written. If the rate of trace

data generation greatly exceeds the speed of the output device, excessive memory

usage might occur and cause out-of-memory conditions. To prevent this, use the

nodynamic option of the ibm.dg.trc.buffers system property. For long running

trace runs, a wrap option is available to limit the file to a given size. See the

ibm.dg.trc.output property for details. You must use the trace formatter to format

trace data from the file.

Note: Because of the buffering of trace data, if the normal JVM termination is not

performed, residual trace buffers might not be flushed to the file. Snap

dumps do not occur, and the trace bytes are not flushed except when a fatal

operating-system signal is received. The buffers can, however, be extracted

from a system dump if that is available.

External tracing

You can route trace to an agent by using JVMRI TraceRegister. This allows a

callback routine to be invoked when any of the selected tracepoints is found in real

time; that is, no buffering is done. The trace data is in raw binary form.

Tracing to stderr

For lower volume or non-performance-critical tracing, the trace data can be

formatted and routed to stderr in real time. See Chapter 28, “Using method trace,”

on page 257.

Trace combinations

Most trace destinations can be combined, with the same or different trace data

going to different destinations. The exception to this is in-storage trace and trace to

a file, which are mutually exclusive.

Controlling the trace

You can control the trace in several ways:

v Through system properties at startup

v By using a trace properties file

v By dynamically using Java API

v By using trace trigger events

v By using the C API from inside the JVM

v From an external agent, by using JVMRI

Notes:

1. By default, trace is disabled and cannot be enabled later in the same run. To

use trace, you must specify at least one trace system property at startup. If you

have done this, you can then control trace by using various mechanisms later

in the run. Note that by specifying unresettable event logging, you also enable

trace.

2. Whenever the JVM is run, it uses IBM_JAVA_OPTIONS if set.

IBM_JAVA_OPTIONS includes any Java utilities, such as the trace formatter, the

dump extractor, and the dump formatter. If the JVM uses

tracing methods, applications, and data

Chapter 33. Tracing Java applications and the JVM 323

IBM_JAVA_OPTIONS, unwanted effects or loss of diagnostic data can occur.

For example, if you are Using IBM_JAVA_OPTIONS to trace to a file, that file

might be overwritten when the trace formatter is called. To avoid this problem,

add %d, %p, or %t into the filename to make it unique. Go to “Detailed

property descriptions” on page 326 and see the appropriate trace property

description for more information.

Specifying trace system properties

The primary way to control trace is through system properties that you specify on

the launcher command line or in the IBM_JAVA_OPTIONS environment variable.

Some trace system properties are of the form system.property.name, while others

are of the form system.property.name=value, where system.property.name is case

sensitive. Except where stated, value is case insensitive; the exceptions to this rule

are filenames on some platforms, class names, and method names.

The syntax for specifying system properties depends on the launcher. Usually, it is:

java -Dsystem.property.name -Danother.property.name=value HelloWorld

but for some launchers, it might be:

javac -J-Dsystem.property.name -J-Danother.property.name=value HelloWorld.java

Depending on the platform and command line shell, properties that contain special

characters must be enclosed in double quotes, as shown here:

 java -D"property.with.special.characters=x(y)" HelloWorld

When you use the IBM_JAVA_OPTIONS environment variable, use this syntax:

set IBM_JAVA_OPTIONS=-Dsystem.property.name -Danother.property.name=value

or

export IBM_JAVA_OPTIONS=-Dsystem.property.name -Danother.property.name=value

Note: The JVM ignores misspelled properties. For this reason, the trace facility

echoes the properties that it has found during startup, in the following way:

JVMDG200: Diagnostics system property ibm.dg.trc.buffers=20k

JVMDG200: Diagnostics system property ibm.dg.trc.print=dg

It is worthwhile looking at the stderr output stream to check whether the

requested options have been recognized. Note that the content of a

properties file is not echoed, but any errors that are in the file are indicated,

and the JVM fails to initialize.

Trace property summary

This section describes:

v “Properties that control tracepoint selection”

v “Properties that indirectly affect tracepoint selection” on page 325

v “Triggering and suspend or resume” on page 325

v “Properties that specify output files” on page 326

v “MiscellaneousTrace control properties” on page 326

Properties that control tracepoint selection

These properties enable and disable tracepoints. They also determine the

destination for the trace data. In some cases, you must use them with other

properties. For example, if you specify maximal or minimal tracepoints, the trace

controlling the trace

324 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

data is put into in-core buffers. If you are going to send the data to a file, you

must use an output property to specify the destination filename.

These properties have equivalents in the Java and JVMRI API that was mentioned

earlier.

 Table 24. Properties that control tracepoint selection

ibm.dg.trc.minimal Trace selected tracepoints (identifier and

timestamp only) to in-core buffer. Associated

trace data is not recorded.

ibm.dg.trc.maximal Trace selected tracepoints (identifier and

timestamp and associated data) to in-core

buffer.

ibm.dg.trc.count Count the number of times selected

tracepoints are called in the life of the JVM.

ibm.dg.trc.print Trace selected tracepoints to stderr with no

indentation.

ibm.dg.trc.iprint Trace selected tracepoints to stderr with

indentation.

ibm.dg.trc.platform Route selected tracepoints to the platform

trace engine (z/OS only).

ibm.dg.trc.external Route selected tracepoints to a JVMRI

listener.

ibm.dg.trc.exception Trace selected tracepoints to an in-core

buffer reserved for exceptions.

Properties that indirectly affect tracepoint selection

These properties affect the availability of particular tracepoints but unless you

specify them with a tracepoint selection property, they have no effect other than

possibly degraded performance. For example, if you specify the initialization

property, tracing occurs during JVM startup, but you must activate the actual

tracepoints by using a tracepoint selection property.

 Table 25. Properties that indirectly affect tracepoint selection

ibm.dg.trc.methods Select classes and methods to trace.

ibm.dg.trc.highuse Select components for which high use trace

data is to be collected.

ibm.dg.trc.initialization Enable trace during JVM initialization.

ibm.dg.trc.applids Select Java applications that are

instrumented for application trace.

Triggering and suspend or resume

These system properties provide mechanisms to tailor trace and trigger actions at

specified times

 Table 26. Triggering and suspend or resume

ibm.dg.trc.trigger Trigger events by tracepoint, group or

method entry/exit.

ibm.dg.trc.suspend Suspend tracepoints globally (for all

threads).

controlling the trace

Chapter 33. Tracing Java applications and the JVM 325

Table 26. Triggering and suspend or resume (continued)

ibm.dg.trc.resume Resume tracepoints globally (not really

useful, but here for completeness).

ibm.dg.trc.suspendcount Initial thread suspend count.

ibm.dg.trc.resumecount Initial thread resume count.

Properties that specify output files

These properties determine whether trace data is directed to a file. For the first two

properties, you must activate tracepoints by using a tracepoint selection property

or through the various API that were mentioned earlier. If you specify the

state.output property, state trace is enabled automatically.

 Table 27. Properties that specify output files

ibm.dg.trc.output Select output file name and options for trace

data from tracepoints that were selected

through the minimal and maximal

properties.

ibm.dg.trc.exception.output Select output file name and options for trace

data from tracepoints that were selected

through the exception property.

ibm.dg.trc.state.output Select output file name and options for state

trace.

MiscellaneousTrace control properties

 Table 28. MiscellaneousTrace control properties

ibm.dg.trc.properties Specify a file containing system properties

tor trace.

ibm.dg.trc.buffers Modify buffer size and allocation.

ibm.dg.trc.format Specify the path for TraceFormat.dat.

Detailed property descriptions

The properties are processed in the sequence in which they are described here.

ibm.dg.trc.properties[=properties_filespec]

 This system property allows you to specify in a file any of the other trace

properties, thereby reducing the length of the invocation command line. The

format of the file is a flat ASCII/EBCDIC file that contains trace properties; the

property names that are in the file can be abbreviated to the name that follows

the string ibm.dg.trc. If properties_filespec is not specified, a default name of

IBMTRACE.properties is searched for in the java.home directory. Nesting is

not supported; that is, the file cannot contain a properties property. If any

error is found when the file is accessed, DG initialization fails with an

explanatory error message and return code. All properties that are in the file

are processed in the sequence in which they appear in the file, before the next

system property that is obtained through the normal mechanism is processed.

Therefore, a command-line property always overrides a property that is in the

file.

controlling the trace

326 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

Note: An existing restriction means that properties that take the form

name=value cannot be left to default if they are specified in the

property file; that is, you must specify a value, for example

maximal=all.

 You can make comments as follows:

// This is a comment. Note that it starts in column 1

Examples:

 Use IBMTRACE.properties in java home:

-Dibm.dg.trc.properties

 Use trace.prop in the current directory:

-Dibm.dg.trc.properties=trace.prop

 Use c:\trc\gc\trace.props:

-Dibm.dg.trc.properties=c:\trc\gc\trace.prop

Here is an example property file:

minimal=all

// maximal=st

maximal=cl

buffers=20k

output=c:\traces\classloader.trc

print=tpid(4002,4005)

ibm.dg.trc.buffers=nnnk|nnnm[,dynamic|nodynamic]

 This property specifies the size of the buffer as nnn KB or MB. This buffer is

allocated for each thread that makes trace entries. If external trace is enabled,

this value is doubled; that is, each thread allocates two or more buffers. The

same buffer size is used for state and exception tracing, but, in this case,

buffers are allocated globally. The default is 8 KB per thread.

 The dynamic and nodynamic options have meaning only when tracing to an

output file. If dynamic is specified, buffers are allocated as needed to match

the rate of trace data generation to the output media. Conversely, if nodynamic

is specified, a maximum of two buffers per thread is allocated. The default is

dynamic. The dynamic option is effective only when you are tracing to an

output file.

Important: If nodynamic is specified, you might lose trace data if the volume

of trace data that is produced exceeds the bandwidth of the trace

output file. Message UTE115 is issued after the first trace entry is

lost, and message UTE018 is issued at JVM termination. For

example:

UTE115: At least one trace record lost

UTE018: n trace records lost

Where n is the number of trace records lost.

Examples:

 Dynamic buffering with 8 KB buffers:

-Dibm.dg.trc.buffers=8k

or in a properties file:

buffers=8k

controlling the trace

Chapter 33. Tracing Java applications and the JVM 327

Trace buffers 2 MB per thread:

-Dibm.dg.trc.buffers=2m

or in a properties file:

buffers=2m

 Trace to only two buffers per thread, each of 128 KB:

-Dibm.dg.trc.buffers=128k,nodynamic

or in a properties file:

buffers=128k,nodynamic

ibm.dg.trc.applids=application_name[,...]

This system property prepares for trace to be enabled for one or more Java

applications that have been instrumented for application trace. The identifier

application_name must match the name under which the application will

register itself. This name can later be used as a component name for tracepoint

selection.

ibm.dg.trc.initialization

 This property allows you to trace JVM initialization. Trace initialization occurs

immediately after the XM component initializes the primordial ExecEnv. This

action occurs before any classes are loaded or JNI is initialized. As a result,

tracing everything for the most simple HelloWorld would produce many MB

of output. In most cases, all this information is only noise, so by default,

initialization is not traced. If you want to trace initialization, you must specify

this system property.

 Note that this property allows trace to start before any threads can be created,

including the trace write thread. For maximal, minimal, exception, and state

tracing, the data has to be buffered until the write thread is started. Ensure

therefore that you do not specify the nodynamic option on the

ibm.dg.trc.buffers system property. Depending on what is being traced, this

might cause a large increase in memory usage.

 If the failure that is being traced prevents the trace write thread from starting

successfully, you can user the print form of trace.

 Example:

 Start trace during initialization:

-Dibm.dg.trc.initialization

ibm.dg.trc.minimal[=[[!]tracepoint_specification[,...]],

ibm.dg.trc.maximal[=[[!]tracepoint_specification[,...]],

ibm.dg.trc.count[=[[!]tracepoint_specification[,...]],

ibm.dg.trc.print[=[[!]tracepoint_specification[,...]],

ibm.dg.trc.iprint[=[[!]tracepoint_specification[,...]],

ibm.dg.trc.platform[=[[!]tracepoint_specification[,...]],

ibm.dg.trc.exception[=[[!]tracepoint_specification[,...]],

ibm.dg.trc.external[=[[!]tracepoint_specification[,...]]

 Summary

 These properties control which individual tracepoints are activated at runtime

and the implicit destination of the trace data. Minimal and maximal trace data

is placed into internal trace buffers that can then be written to a snap file or

written to the files that are specified in an ibm.dg.trc.output system property.

controlling the trace

328 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

Tracepoints that are activated with count are only counted. The totals are

written to dgTrcCounters in the current directory at JVM termination.

 Tracepoints that are activated with print or iprint are routed to stderr.

 Tracepoints that are activated with platform are routed to the XHPI.

 When exception trace is enabled, the trace data is collected in internal buffers

that are separate from the normal buffers. These internal buffers can then be

written to a snap file or written to the file that is specified in an

ibm.dg.trc.exception.output system property.

 External trace data is passed to a registered trace listener (see Chapter 35,

“Using the Reliability, Availability, and Serviceability interface,” on page 355).

Note that all these properties are independent of each other and can be mixed

and matched in any way that you choose.

 Multiple statements of each type of trace are allowed and their effect is

cumulative. Of course, you would have to use a trace properties file for

multiple system properties of the same name.

 See “ibm.dg.trc.state.output” on page 335 for information about state trace,

which is enabled in a different way, independently of these properties.

 Types of trace

 The minimal property records only the timestamp and tracepoint identifier.

When the trace is formatted, missing trace data is replaced with ??? in the

output file. The maximal property specifies that all associated data is traced. If

a tracepoint is activated by both system properties, maximal trace data is

produced. Note that these types of trace are completely independent from any

types that follow them. For example, if the minimal property is specified, it

does not affect a later property such as print.

 The count property requests that a count of the selected tracepoints is kept. At

JVM termination, all non-zero totals of tracepoints (sorted by tracepoint id) are

written to a file, called dgTrcCounters, in the current directory. This

information is useful if you want to determine the overhead of particular

tracepoints, but do not want to produce a large amount (GB) of trace data.

 The print property causes the specified tracepoints to be routed to stderr in

real-time. The tracepoints are formatted by TraceFormat.dat, which must be

available at runtime. TraceFormat.dat is shipped in sdk/jre/lib and is

automatically found by the runtime.

 The platform property routes trace data to the XHPI in real-time. Currently,

none of the XHPI implementations supports this form of tracing, but the

infrastructure is in place in the IBM JVM.

 The exception property allows low-volume tracing in buffers and files that are

distinct from the higher-volume information that minimal and maximal

tracing have provided. In most cases, this information is exception-type data,

but you can use this property to capture any trace data that you want.

 This form of tracing is channeled through a single set of buffers, as opposed to

the buffer-per-thread approach for normal trace, and buffer contention might

occur if high volumes of trace data are collected. A difference exists in the

tracepoint_specification defaults for exception tracing; see “Tracepoint

selection” on page 330.

Note: When exception trace is entered for an active tracepoint, the current

thread id is checked against the previous caller’s thread id. If it is a

controlling the trace

Chapter 33. Tracing Java applications and the JVM 329

different thread, or this is the first call to exception trace, a context

tracepoint is put into the trace buffer first. This context tracepoint

consists only of the current thread id. This is necessary because of the

single set of buffers for exception trace. (The formatter identifies all trace

entries as coming from the ″Exception trace pseudo thread″ when it

formats exception trace files.)

The external property channels trace data to registered trace listeners in

real-time. The JMVRAS interface is used to register or deregister as a trace

listener. If no listeners are registered, this form of trace does nothing except

waste machine cycles on each activated tracepoint.

 Tracepoint selection:

 If no qualifier parameters are entered, all tracepoints are enabled, except for

exception trace, where the default is all (exception).

 The tracepoint_specification is as follows:

v [!][backtrace[,depth]]component[(type[,...])] or

[!][backtrace[,depth]]tpid(tracepoint_id[,...]) where

 ! is a logical not. That is, the tracepoints that are specified immediately

following the ! are turned off.

backtrace indicates that backtrace is activated.

On some platforms, a C stack-trace can be generated for any

tracepoint. By default, 4 levels of call leading to the tracepoint are

recorded, but this can be changed by modifying the depth value. This

option is of particular use in tracing memory leaks because all

memory allocations in the JVM are handled by the dbgmalloc

component. By tracing this component, you can identify memory

allocations without corresponding frees, and then you can use the

stack trace to discover the code where the unmatched memory

allocations - the memory leak - are made. The dbgmalloc routines

may also be linked into JNI libraries to uncover memory leaks in

native code.

Note that dbgmalloc is meant for IBM use only.

The backtrace specification applies to all components or tracepoints

subsequently selected.

depth is the number of levels of backtrace to record. A depth of 0 indicates

that no backtrace is recorded.

controlling the trace

330 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

component is one of:

v ALL.

v The JVM subcomponent (that is, ci, cl, dc, dg, lk, st, xe, xm, hpi,

dbgmalloc, java,awt, awt_dnd_datatransfer, Audio, jit, jdwp, mt,

fontmanager, net, awt_java2d, awt_print, core, or nio).

Note that dbgmalloc is meant for IBM use only.

v A group of tracepoints that have been specified by use of a group

name. For example, nativeMethods would select the group of

tracepoints in MT (Method Trace) that relate to native methods. The

following groups are supported:

 checkedjni, compiledMethods, jitCl, jitCompCtrl, jitEh,

 jitError, jitInit, jitSt, jni, jvmmi, nativeMethods, st_alloc,

 st_backtrace, st_calloc, st_compact, st_compact_dump,

 st_compact_verbose, st_concurrent, st_concurrent_pck,

 st_concurrent_shadow_heap, st_dump, st_freelist,

 st_icompact, st_loaAdjustTargetSize, st_mark, st_parallel,

 st_refs, st_terse, st_trace, st_verbosegc, st_verify,

 st_verify_heap, staticMethods, threadSR, wrappedjni

type is the tracepoint type or all. The default is all, except for exception

tracing, where the default is exception. The following types are

supported:

v Entry

v Exit

v Event

v Exception

v Mem

tracepoint_id is the hexadecimal global tracepoint identifier. You can omit leading

zeroes. You can specify a range of tracepoints by using a hyphen

(dash, minus); for example, tpid(18007,c003-c01f).

Note: Some tracepoints can be both an exit and an exception; that is, the

function ended with an error. If you specify either exit or exception,

these tracepoints will be included.

Examples:

 All tracepoints:

-Dibm.dg.trc.maximal

 Eight levels of stack trace to all trace points in the JVM subcomponent

dbgmalloc:

 -Dibm.dg.trc.print=backtrace,8,dbgmalloc

Note that dbgmalloc is meant for IBM use only.

 All tracepoints except DC and LK:

-Dibm.dg.trc.minimal=all,!dc,!lk

 All entry and exit tracepoints in CL:

-Dibm.dg.trc.maximal=cl(entry,exit)

 All tracepoints in ST except 4000, 4001, 4002, 4003:

-Dibm.dg.trc.maximal=st,!tpid(4000,4001,4002,4003)

 Tracepoints 18005 through 1801f and c003:

-Dibm.dg.trc.print=tpid(18005-1801f,c003)

controlling the trace

Chapter 33. Tracing Java applications and the JVM 331

All LK tracepoints:

-Dibm.dg.trc.count=lk

 Tracepoints in ST, LK, XE:

-Dibm.dg.trc.platform=st,lk,xe

 All entry and exit tracepoints:

-Dibm.dg.trc.external=all(entry,exit)

 All exception tracepoints:

-Dibm.dg.trc.exception

 All exception tracepoints:

-Dibm.dg.trc.exception=all(exception)

 All exception tracepoints in CL:

 -Dibm.dg.trc.exception=cl

 Tracepoints c03e through c113:

-Dibm.dg.trc.exception=tpid(c03e-c113)

Trace levels

 Tracepoints have been assigned levels 0 through 9 that are based on the

importance of the tracepoint. A level 0 tracepoint is very important and is

reserved for extraordinary events and errors; a level 9 tracepoint is in-depth

component detail. To specify a given level of tracing, the level0 through level9

keywords are used. You can abbreviate these keywords to l0 through l9. For

example, if level5 is selected, all tracepoints that have levels 0 through 5 are

included. Level specifications do not apply to explicit tracepoint specifications

that use the TPID keyword.

 The default is level 9.

 You can use these keywords either before the tracepoint selection, or as a type

modifier. When a keyword is used before a tracepoint selection, that keyword

applies to all tracepoint selection criteria that follow it in the system property.

For example:

-Dibm.dg.trc.maximal=level5,st,lk,cl,level1,all

or

 -Dibm.dg.trc.maximal=l5,st,lk,cl,l1,all

In this example, tracepoints that have a level of 5 or below are enabled for the

st, lk, and cl components. Tracepoints that have a level of 1 or below are

enabled for all the other components. Note that the level applies only to the

current statement, so if multiple trace selection statements appear in a trace

properties file, the level is reset to the default for each new statement.

 Alternatively, you can specify levels as a type modifier. In this case, the level

applies only to the component with which it is associated. The following

example is functionally equivalent to the global example that is shown above:

-Dibm.dg.trc.maximal=st(level5),lk(level5),cl(level5),all(level1)

or

-Dibm.dg.trc.maximal=st(l5),lk(l5),cl(l5),all(l1)

Level specifications do not apply to explicit tracepoint specifications that use

the TPID keyword.

controlling the trace

332 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

When the not operator is specified, the level is inverted; that is, !st(level5)

disables all tracepoints of level 6 or above for the st component. For example:

 -Dibm.dg.trc.print=all,!lk(l5),!st(l6)

enables trace for all components at level 9 (the default), but disables level 6

and above for the locking component, and level 7 and above for the storage

component.

 Examples:

 Count all level zero and one tracepoints hit:

-Dibm.dg.trc.count=all(l1)

 Produce maximal trace of all components at level 5 and ST at level 9:

-Dibm.dg.trc.maximal=LeVeL5,all,st(L9)

 Trace all components at level 6, but do not trace dc at all, and do not trace

level 0 through 3 entry and exit tracepoints in the XE component:

-Dibm.dg.trc.minimal=all(l6),!dc,!xe(level3,entry,exit)

ibm.dg.trc.methods=method_specification[,...]

 This system property identifies which classes and methods are to be prepared

to be traced. You can then trace these methods by selecting the MT component

though the normal trace selection mechanism. When more than one

specification is made, it is cumulative, as if processed from left to right.

Although method trace works with the JIT on, input parameters cannot be

traced if the JIT is active.

Important: This system property selects only the methods that are to be traced.

You must use one of the trace selection properties to select the

tracepoints that are in the MT component.

The method_specification is:

v [!][*]class[*][.[*]method[*]][()], where

 ! is a logical not. That is, the class or methods that are specified

immediately following the ! are deselected for method trace.

* is a wildcard that can appear at the beginning, end, or both, of the

class and method names.

class is the package or class name. Note that the delimiter between parts of

the package name is a forward slash, ’/’, even on platforms like

Windows that use a backward slash as a path delimiter.

. is the delimiter between the class and method.

method is the method name.

() are left and right parentheses. This specifies that input parameters

should be traced where possible.

Examples:

 Select all methods for all classes:

-Dibm.dg.trc.methods=*

 All methods that are in java/lang/String. In addition, input parameters and

return values should be traced:

-Dibm.dg.trc.methods=java/lang/String.*()

 All methods that contain a ″y″ in classes that start with com/ibm:

-Dibm.dg.trc.methods=com/ibm*.*y*

controlling the trace

Chapter 33. Tracing Java applications and the JVM 333

All methods that contain a ″y″ and do not start with an ″n″ in classes that

start with com/ibm:

-Dibm.dg.trc.methods=com/ibm*.*y*,!n*

ibm.dg.trc.format=TraceFormat_path

 This property overrides the location of TraceFormat.dat when the

ibm.dg.trc.print system property is specified. Do not specify this property for

other forms of tracing, because it uses a large amount of memory with no

benefit.

 Example:

 Use c:\formats\122\TraceFormat.dat:

-Dibm.dg.trc.format=c:\formats\122

ibm.dg.trc.output=trace_filespec[,nnnm[,generations]]

This property indicates that minimal, or maximal trace data, or both, must be

sent to trace_filespec. If the file does not already exist, it is created

automatically. If it does already exist, it is overwritten.

 Optionally:

v You can limit the file to nnn MB, at which point it wraps nondestructively to

the beginning. If you do not limit the file, it grows until all disk space has

been used.

v If you want the final trace filename to contain today’s date, the PID number

that produced the trace, or the time, do one of the following steps as

appropriate (see also the examples at the end of this section).

– To include today’s date (in ″yyyymmdd″ format) in the trace filename,

specify ″%d″ as part of the trace_filespec.

– To include the pidnumber of the process that is generating the tracefile,

specify ″%p″ as part of the trace_filespec.

– To include the time (in 24-hour hhmmss format) in the trace filename,

specify ″%t″ as part of the trace_filespec.
v You can specify generations as a value 2 through 36. These values cause up

to 36 files to be used in a round-robin way when each file reaches its size

threshold. When a file needs to be reused, it is overwritten. Therefore, if x

generations of n MB files are specified, the worst case is that only ((x - 1) * n

÷ x) MB of trace data might be available. If generations is specified, the

filename must contain a ″#″ (hash, pound symbol), which will be substituted

with its generation identifier, the sequence of which is 0 through 9 followed

by A through Z.

Note: When tracing to a file, buffers for each thread are written when the

buffer is full or when the JVM terminates. If a thread has been inactive

for a period of time before JVM termination, what seems to be ’old’

trace data is written to the file. When formatted, it then seems that trace

data is missing from the other threads, but this is an unavoidable

side-effect of the buffer-per-thread design. This effect becomes especially

noticeable when you use the generation facility, and format individual

earlier generations.

 Examples:

 Trace output goes to /u/traces/gc.problem; no size limit:

 -Dibm.dg.trc.output=/u/traces/gc.problem

 Output goes to trace and will wrap at 2 MB:

-Dibm.dg.trc.output= trace,2m

controlling the trace

334 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

Output goes to gc0.trc, gc1.trc, gc2.trc, each 10 MB in size:

-Dibm.dg.trc.output=gc#.trc,10m,3

 Output filename contains today’s date in yyyymmdd format (for example,

traceout.20031225.trc):

-Dibm.dg.trc.output=traceout.%d.trc

 Output file contains the number of the process (the PID number) that

generated it (for example, tracefrompid2112.trc):

-Dibm.dg.trc.output=tracefrompid%p.trc

 Output filename contains the time in hhmmss format (for example,

traceout.080312.trc):

-Dibm.dg.trc.output=traceout.%t.trc

ibm.dg.trc.exception.output=exception_trace_filespec[,nnnm]

 This property indicates that exception trace data should be directed to

exception_trace_filespec. If the file does not already exist, it is created

automatically. If it does already exist, it is overwritten. Optionally, you can

limit the file to nnn MB, at which point it wraps nondestructively to the

beginning. If you do not limit the file, it grows until all disk space has been

used.

 Optionally, if you want the final trace filename to contain today’s date, the PID

number that produced the trace, or the time, do one of the following steps as

appropriate (see also the examples at the end of this section).

v To include today’s date (in ″yyyymmdd″ format) in the trace filename,

specify ″%d″ as part of the exception_trace_filespec.

v To include the pidnumber of the process that is generating the tracefile,

specify ″%p″ as part of the exception_trace_filespec.

v To include the time (in 24-hour hhmmss format) in the trace filename,

specify ″%t″ as part of the exception_trace_filespec.

Examples:

 Trace output goes to /u/traces/exception.trc. No size limit:

-Dibm.dg.trc.exception.output=/u/traces/exception.trc

 Output goes to except and wraps at 2 MB:

-Dibm.dg.trc.exception.output=except,2m

 Output filename contains today’s date in yyyymmdd format (for example,

traceout.20031225.trc):

-Dibm.dg.trc.exception.output=traceout.%d.trc

 Output file contains the number of the process (the PID number) that

generated it (for example, tracefrompid2112.trc):

-Dibm.dg.trc.exception.output=tracefrompid%p.trc

 Output filename contains the time in hhmmss format (for example,

traceout.080312.trc):

-Dibm.dg.trc.exception.output=traceout.%t.trc

ibm.dg.trc.state.output=state_trace_filespec[,nnnm]

 This property indicates that “state” information should be captured in

state_trace_filespec. The state trace captures information about the JVM that

could be useful later, when the normal trace files or internal buffers have

wrapped many times.

 Examples of state data might be:

v Interned string values and ids

controlling the trace

Chapter 33. Tracing Java applications and the JVM 335

v Classblock address or name correlation

v Methodblock address or name correlation

A tracepoint is designated as a state-type tracepoint in the TDF at build time.

Note that you can also route the tracepoint to another trace destination, such

as print, if specified.

 State trace differs from other forms of trace in that it is either totally on or off.

You cannot control which individual tracepoints are enabled at runtime. By

specifying this system property, you turn it on. If state_trace_filespec does not

already exist, it is created automatically. If it does already exist, it is

overwritten. If nnn is not specified, the size of the file is not limited. If nnn is

specified, two files are created. The first file is named state_file_filespec with a

0 (zero) suffix and contains up to nnn MB of state information that is never

lost; that is, it never wraps. The second file is named state_file_filespec with a

1 (one) suffix and contains up to nnn MB of state information that wraps; that

is, state information might be lost. State trace captures all the startup state

information and all the latest state information. The file 0 and 1 filename

qualifiers position can optionally be controlled by the inclusion of a # (hash or

pound sign) in the filename; the # will be replaced by 0 or 1 respectively.

Under normal conditions, nnn should not be specified, but in the case of

long-running JVMs, its use might be unavoidable to limit the file size. In this

case, some useful state data could be lost.

 Optionally, if you want the final trace filename to contain today’s date, the PID

number that produced the trace, or the time, do one of the following steps as

appropriate (see also the examples at the end of this section).

v To include today’s date (in ″yyyymmdd″ format) in the trace filename,

specify ″%d″ as part of the state_trace_filespec.

v To include the pidnumber of the process that is generating the tracefile,

specify ″%p″ as part of the state_trace_filespec.

v To include the time (in 24-hour hhmmss format) in the trace filename,

specify ″%t″ as part of the state_trace_filespec.

Examples:

 Trace output goes to /u/traces/state; no size limit:

-Dibm.dg.trc.state.output=/u/traces/state

 Output goes to state0 for 4 MB, then state1, wrapping at 4 MB:

-Dibm.dg.trc.output= state,4m

 Output goes to state0.trc for 4 MB, then state1.trc:

-Dibm.dg.trc.state.output= state#.trc,4m

 Output filename contains today’s date in yyyymmdd format (for example,

traceout.20031225.trc):

-Dibm.dg.trc.state.output=traceout.%d.trc

 Output file contains the number of the process (the PID number) that

generated it (for example, tracefrompid2112.trc):

-Dibm.dg.trc.state.output=tracefrompid%p.trc

 Output filename contains the time in hhmmss format (for example,

traceout.080312.trc):

-Dibm.dg.trc.state.output=traceout.%t.trc

ibm.dg.trc.suspend

controlling the trace

336 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

Suspends tracing globally (for all threads and all forms of tracing) but leaves

tracepoints activated.

 Example:

 Tracing suspended:

-Dibm.dg.trc.suspend

ibm.dg.trc.resume

 Resumes tracing globally. Note that suspend and resume are not recursive.

That is, two suspends that are followed by a single resume cause trace to be

resumed.

 Example: Trace resumed (not much use as a start-up option):

-Dibm.dg.trc.resume

ibm.dg.trc.highuse

 Some routines in the JVM are very frequently entered. Any tracepoints in them

would adversely affect performance. So, under normal conditions, it is not

possible to trace these routines. To overcome this, you can, at runtime, use the

highuse property to select duplicate routines that have tracepoints

incorporated. You can set this for all, or single, components. Activate the trace

points in the standard way. The components that have highuse trace

incorporated are: cl, dc, lk, st, jni, and hpi.

 Examples:

-Dibm.dg.trc.highuse=all

-Dibm.dg.trc.highuse=st,cl

ibm.dg.trc.suspendcount=count

This system property is for use with the ibm.dg.trc.trigger property (see

“ibm.dg.trc.trigger” on page 338).

 This ibm.dg.trc.suspendcount=count system property determines whether

tracing is enabled for each thread. If count is greater than zero, each thread

initially has its tracing enabled and must receive count suspendthis actions

before it stops tracing.

Note: You cannot use resumecount and suspendcount together because they

both set the same internal counter.

 Example:

 Start with all tracing turned on. Each thread stops tracing when it has had

three suspendthis actions performed on it:

-Dibm.dg.trc.suspendcount=3

ibm.dg.trc.resumecount=count

This system property is for use with the ibm.dg.trc.trigger property (see

“ibm.dg.trc.trigger” on page 338).

 This ibm.dg.trc.resumecount=count system property determines whether

tracing is enabled for each thread. If count is greater than zero, each thread

initially has its tracing disabled and must receive count resumethis actions

before it starts tracing.

Note: You cannot use resumecount and suspendcount together because they

both set the same internal counter.

 Example:

controlling the trace

Chapter 33. Tracing Java applications and the JVM 337

Start with all tracing turned off. Each thread starts tracing when it has had

three resumethis actions performed on it:

 -Dibm.dg.trc.resumecount=3

ibm.dg.trc.trigger=clause[,clause][,clause]...

This property determines when various triggered trace actions should occur.

Supported actions include turning tracing on and off for all threads, turning

tracing on or off for the current thread, or producing a variety of dumps.

Note: This property does not control what is traced. It controls only whether

what has been selected by the other trace properties is produced as

normal or is blocked.

Each clause of the trigger property can be tpid(...), method(...), group(...), or

threshold(). You can specify multiple clauses of the same type if required, but

you do not need to specify all types. The clause types are:

method(methodspec,[entryAction],[exitAction][,delayCount][,matchcount])

On entering a method that matches methodspec, perform the specified

entryAction. On leaving it, perform the specified exitAction. If you specify

a delayCount, the actions are performed only after a matching methodspec

has been entered that many times. If you specify a matchCount,

entryAction and exitAction will be performed at most that many times.

group(groupname,action[,delayCount][,matchcount])

On finding any active tracepoint that is defined as being in trace group

groupname, perform the specified action. If you specify a delayCount, the

action is performed only after that many active tracepoints from group

groupname have been found. If you specify a matchCount, action will be

performed at most that many times.

tpid(tpid|tpidRange,action[,delayCount][,matchcount])

On finding the specified active tpid (tracepoint id) or a tpid that falls

inside the specified tpidRange, perform the specified action. If you specify

a delayCount, the action is performed only after the JVM finds such an

active tpid that many times. If you specify a matchCount, action will be

performed at most that many times.

threshold(thresholdType,thresholdValue,[actionOn],

[actionOff][,delayCount][,matchcount])

Triggering occurs depending on the value of the thresholdType. For v1.4.2,

the only supported thersholdType is ″heapfree″. When the percentage of

the heap that is free falls to thresholdValue or below, after a GC cycle,

actionOn is performed; when the percentage of the heap that is free rises

again to above the thresholdValue, actionOff is performed. If you specify

a delayCount, the actions are performed only after the time it would take

for actionOn to perform that many times. If you specify a matchCount,

actionOn and actionOff will be performed at most that many times.

 Actions:

 Wherever an action must be specified, you must select from the following

choices:

suspend

Suspend ALL tracing (except for special trace points).

controlling the trace

338 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

resume

Resume ALL tracing (except for threads that are suspended by the

action of the ibm.dg.trc.resumecount property and Trace.suspendThis()

calls).

suspendthis

Increment the suspend count for this thread. If the suspend-count is

greater than zero, all tracing for this thread is prevented.

resumethis

Decrement the suspend count for this thread. If the suspend-count is

zero or below, tracing for this thread is resumed.

coredump (or sysdymp)

Produce a coredump.

javadump

Produce a javadump or javacore.

heapdump

Produce a heap dump (see Chapter 26, “Using Heapdump,” on page

245).

snap Snap all active trace buffers to a file in the current working directory.

The name of the file is in the format

Snapnnnn.yyyymmdd.hhmmssth.ppppp.trc, where nnnn is the sequence

number of the snap file since JVM startup, yyyymmdd is the date,

hhmmssth is the time, and ppppp is the process id in decimal with

leading zeroes removed.

abort Halt the execution of the JVM.

segv Cause a segmentation violation. (Intended for use in debugging)

 Examples:

v Start tracing this thread when it enters any method in java/lang/String and

stop tracing when it leaves it:

-Dibm.dg.resumecount=1

-Dibm.dg.trc.trigger=method(java/lang/String.*,resumethis,suspendthis)

v Resume all tracing when any thread enters a method in any class that starts

with “error”:

-Dibm.dg.trc.trigger=method(*.error*,resume)

v When you reach the 1000th and 1001st tracepoint from the ″jvmmi″ trace

group, produce a core dump.

Note: Without matchcount there would be a risk of filling your disk with

coredump files.
-Dibm.dg.trc.trigger=group(jvmmi,coredump,1000,2)

v Trace (all threads) while my application is active only; that is, not startup or

shutdown. (The application name is “HelloWorld”):

-Dibm.dg.trc.suspend

-Dibm.dg.trc.trigger=method(HelloWorld.main,resume,suspend)

v The first time (only) that there is less than or equal to 25% heap free, snap

the trace, when the percentage of heap free climbs back above 25%, take a

coredump:

-Dibm.dg.trc.trigger=threshold(heapfree,25,snap,sysdump,1)

controlling the trace

Chapter 33. Tracing Java applications and the JVM 339

Using the trace formatter

The trace formatter is a Java program that runs on any platform and can format a

trace file from any platform. The formatter, which is shipped with the SDK in

core.jar, also requires a file called TraceFormat.dat, which contains the formatting

templates. This file is shipped in jre/lib.

Invoking the trace formatter

Type:

java com.ibm.jvm.format.TraceFormat input_filespec [output_filespec] [options]

where com.ibm.jvm.format.TraceFormat is the traceformatter class, input_filespec

is the name of the binary trace file to be formatted, output_filespec is the optional

output filename. If it is not specified, the default output file name is

input_filespec.fmt.

The options are:

v summary specifies that a summary of the trace file is printed.

v entries:comp[,...] specifies that only trace entries for component comp are to

be formatted.

v thread:threadid,... specifies that only entries for threadid are to be formatted

(threadid is specified as 0xnnnnnnnn).

v indent specifies that the trace data is to be indented on entry type tracepoints

and outdented on exit type tracepoints. This might produce undesirable results

on selective traces where, for example, exits from a function are not traced, but

entries are.

v symbolic specifies that the symbolic name of the tracepoint is embedded in the

trace output. This is useful where the descriptive text for a particular tracepoint

does not make clear what is being traced.

Examples of formatting binary trace file trace1:

v Produce a summary of the trace file:

java com.ibm.jvm.format.TraceFormat trace1 -summary

v Format trace1 using the formatting templates (TraceFormat.dat) that are in

d:\formats:

java -Dibm.dg.trc.format=d:\formats com.ibm.jvm.format.TraceFormat trace1

v Format trace1 indenting for entry tracepoints and outdenting for exits:

java com.ibm.jvm.format.TraceFormat trace1 -indent

v Format only the trace information in trace1 that originated from the XE

component:

java com.ibm.jvm.format.TraceFormat trace1 -entries:xe

v Format only the trace information in trace1 that originated from the thread that

has an execenv address of 0x7ffee00:

java com.ibm.jvm.format.TraceFormat trace1 -thread:0x7ffee00 -indent

Trace properties

The use of properties files for controlling trace not only saves typing, but, over

time, causes a library of these files to be created, with each file tailored to solving

problems in a particular area. Especially useful is the ability to remove unwanted

tracepoints by using the !TPID(xxxxxx) parameter.

controlling the trace

340 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

What to trace

JVM trace can produce large amounts of data in a very short time. Before running

trace, carefully think about what information you require to solve the problem. In

many cases, only the trace information that is produced shortly before the problem

needs to be captured, so using the wrap option on the output trace file should be

considered. In many cases, it is enough to use internal trace with an increased

buffer size, and snap the trace when the problem occurs. If the problem results in a

thread stack dump or operating system signal or exception, trace buffers are

automatically snapped to a file that is in the current directory. The file is called:

Snapnnnn.yyyymmdd.hhmmssth.process.trc.

Also carefully think about which components need to be traced and what level of

tracing is required. For example, if a suspected garbage collection problem is being

traced, it might be enough to trace all components at level 1 or 3, and ST at level 9,

while maximal can be used to show parameters and other information for the

failing component.

Determining the tracepoint ID of a tracepoint

Each tracepoint has a unique 3-byte identifier (6 hex digits). This identifier relates

the tracepoint in the code to its entry in the format file (jre/lib/TraceFormat.dat).

You can use the identifier to select individual tracepoints at runtime by using the

TPID keyword. The tracepoint ID can be looked up in the format file, which has

the following format:

The first line is an internal version number.

Following the version number is a component name, followed by a line for each

tracepoint defined in that component, the format of which for this JVM is: nnnnnn

t o l e symbolic_name ″tracepoint_formatting_template″ where nnnnnn is the hex

tracepoint ID, t is the tracepoint type (0 through 11), o is the overhead (0 through

10) , l is the level of the tracepoint (0 through 9, or - if the tracepoint is obsolete) , e

is the explicit setting flag (Y/N), symbolic_name is the name of the tracepoint,

tracepoint_formatting_template is the template used to format the entry.

Note that this is subject to change without notice, but the version number will be

different.

Using trace to debug memory leaks

The JVM comes with a library dbgmalloc, which wraps the calls to memory

routines such as malloc() and free(). Used with the JVM trace facility, all calls to

memory routines from libraries linked with dbgmalloc can be logged. By

post-processing the trace output, memory allocations that do not have a

corresponding free() can be identified. The backtrace trace option is also very

useful to identify the caller of the relevant memory allocations.

Note that dbgmalloc is meant for IBM use only.

Dbgmalloc is linked in with the JVM and most of the native libraries and can be

linked in to customer libraries. The platform-specific sections for debugging

memory leaks tell you how to do this. The method varies according to the

operating system. See:

v “Debugging memory leaks” on page 103 for AIX

v “Debugging memory leaks” on page 138 for Linux

controlling the trace

Chapter 33. Tracing Java applications and the JVM 341

v “Debugging memory leaks” on page 161 for Windows

v “Debugging memory leaks” on page 182 for z/OS

Note that when the JVM starts up, a lot of memory is allocated for its own

purposes. Much of this memory will never be deallocated, but this does not

constitute a leak. Also, the JIT allocates memory whenever it decides that a method

should be compiled. Again, this does not constitute a leak.

Enabling memory tracing

Run the jvm with -Dibm.dg.trc.print=dbgmalloc and direct the standard error to a

large file. When this file is analyzed to find a memory leak, the start of the file

may be discarded because the file will largely consist of memory required for JVM

startup.

Another approach is to collect trace in memory; a fixed size buffer is used and

older data is overwritten. For example, the settings

-Dibm.dg.trc.minimal=dbgmalloc -Dibm.dg.trc.buffers=2M will use 2 MB of

buffer for each thread. To write out the memory buffers, trace must be snapped by

sending a signal to the Java process.

Enabling backtrace

Backtrace is enabled by preceding the dbgmalloc specification with backtrace; for

example -Dibm.dg.trc.print=backtrace,dbgmalloc. If the default number of

routines traced is insufficient to identify the caller, the depth of the stack trace may

be increased. For example, to set the depth to 8, type:

-Dibm.dg.trc.print=backtrace,8,dbgmalloc.

Linking with dbgmalloc

dbgmalloc must be linked in to JNI libraries so that its versions of the memory

routines are called before the system ones. No change is required to the JNI code.

The linker options to do this differ by operating system.

controlling the trace

342 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

Chapter 34. Using the JVM monitoring interface (JVMMI)

The JVM Monitoring Interface (JVMMI) is a lightweight interface for monitoring

the behavior of the JVM. It is similar to the JVM Profiling Interface (JVMPI).

However, JVMPI is a ″heavyweight″ diagnostic tool that is unlikely to be used in a

production environment. JVMMI provides the basic monitoring of JVMPI without

its performance overhead; thus, you can leave it running throughout the lifecycle

of a JVM.

JVMMI allows you to monitor JVM activity. For example, you might want to know:

v When garbage collection starts or finishes

v When the heap is expanded

v When a thread is created, started, or ended

v When the JVM initialization is complete

v When the JVM is ending

Events are coded at these points and others. (See “Events produced by JVMMI” on

page 348 for a full list.) When an enabled event is reached, a registered function in

a user-provided agent DLL is called back.

Because JVMMI must be very lightweight, callbacks are run on the thread that

caused the event. Therefore, the thread does not continue its normal activity until

the callback function returns. For this reason, your callback functions should be as

brief as possible.

Note that you need some programming skills to use this interface. To use the

JVMMI, you must be able to build a native library, add the code for JVMMI

callbacks (described below), and to interface the code to the JVM via the JNI. This

book provides the callback code and gives simple examples of how to build a

JVMMI agent (see “Building the agent” on page 346). It does not provide the other

programming information.

This chapter describes how to use the JVMMI in:

v “Using JVMMI for problem determination”

v “Preparing to use JVMMI” on page 344

v “API calls provided by JVMMI” on page 347

v “Events produced by JVMMI” on page 348

v “Enumerations supported by JVMMI” on page 351

Using JVMMI for problem determination

Although the interface is primarily for monitoring, it can also be useful in problem

determination. Here are some situations and some possible uses for JVMMI:

The JVM appears to be running more and more slowly

Possibly the heap is filling up. Try tracking the events for heap size changes,

garbage collection start and finish, area alloc, heap low and heap full. If the

JVM continues to allocate objects (area alloc events), heap full events are

occurring regularly, and the time between garbage collections is constantly

decreasing, there could be a problem with the design of the application. The

© Copyright IBM Corp. 2003, 2006 343

application might be generating too much data or is keeping references to

out-of-date data that could otherwise have been garbage collected.

A server fails to respond to a client connection

If the server starts a thread to talk to each client, check the threads (creation,

starting, stopping, and thread enumeration) to see how many threads are

running at a given time. If you know what the session threads are called, check

whether the session’s thread is being created and whether it is being started.

A Java program does not start (appears to hang)

Enable the JVM Init Done event to see whether the problem is during

initialization or during the running of your application. Check class load

events to see if your classes are being loaded.

Preparing to use JVMMI

The following sections explain how to extract monitoring information from the

JVM.

Writing an agent

To use the JVMMI interface, you must first write an agent DLL. The following

code is a complete JVMMI agent. It enables one event

(JVMMI_EVENT_JVM_INIT_DONE) and prints a message to stdout when this

event is received. The code demonstrates how to obtain the JVMMI interface and

enable an event. (Furthermore, as you can see, writing a JVMMI agent does not

have to be a big project).

#include <stdio.h>

#include <jni.h>

#include <jvmmi.h>

/* This is a piece of user data. I’m not really using it in this agent. */

char ud[] = "Not really used in this example";

/*

 * This routine will be called back when a JVMMI_EVENT_JVM_INIT_DONE event

 * is received.

*/

int JNICALL JVMInitDone(JNIEnv *env, JVMMI_Event *evt, void *userData, int tid)

{

 printf("----- JVM_INIT_DONE -----\n");

 return JVMMI_OK;

}

/*

 * This routine will be called immediately the agent DLL is loaded by java

 * with the -Xrun option. It registers the above function as a callback for

 * the JVM init done event.

 */

JNIEXPORT jint JNICALL JVM_OnLoad(JavaVM *vm, char *options, void *reserved)

{

 JNIEnv *JNI_env;

 JVMMI_Interface *JVMMI_env;

 jint JVMMIversion = JVMMI_VERSION_1;

 jint JNIversion = JNI_VERSION_1_2;

 /* Obtain the JNI interface */

 if (JNI_OK != (*vm)->GetEnv(vm, (void **)&JNI_env, JNIversion)) {

 printf(stderr,"Failed to get JNI Env\n");

 return JVMMI_ERR

JVMMI - problem determination

344 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

}

 /* Obtain the JVMMI interface */

 if (JNI_OK != (*vm)->GetEnv(vm, (void **)&JVMMI_env, JVMMIversion)) {

 printf(stderr,"Failed to get JVMMI Env\n");

 return JVMMI_ERR

 }

 /* Enable the JVM Init Done event */

 if (JVMMI_OK != JVMMI_env->EnableEvent(JNI_env,

 JVMInitDone,

 ud,

 JVMMI_EVENT_JVM_INIT_DONE)) {

 printf(stderr,"EnableEvent JVMMI_EVENT_JVM_INIT_DONE failed");

 return JVMMI_ERR

 }

 return JVMMI_OK;

}

To run this program, type: java -Xrunmyagent HelloWorld. If it is working correctly

you will receive the following output:

----- JVM_INIT_DONE -----

Hello World.

Using Detail information in a JVMMI agent

You will find a definition of the Detail information that accompanies the events in

jvmmi.h (in the sdk/include/ directory). Here is an example of how you might use

it.

First add the following code into the JVM_OnLoad function to enable the Thread

Created event (JVMMI_EVENT_THREAD_CREATED) in the simple agent above:

 /* Enable the Thread Created event */

 if (JVMMI_OK != JVMMI_env->EnableEvent(JNI_env,

 ThreadCreated,

 ud,

 JVMMI_EVENT_THREAD_CREATED)) {

 printf(stderr,"EnableEvent JVMMI_EVENT_THREAD_CREATED failed");

 return JVMMI_ERR

 }

Then add the new function below to the simple agent:

int JNICALL ThreadCreated(JNIEnv *env, JVMMI_Event *evt, void *userData,int tid)

{

 printf("\nTHREAD CREATED event received\n");

 printf("name of creating thread: %s\n",

 evt->detail.thread_info.name);

 printf("id of creating thread: 0x%p\n",

 evt->detail.thread_info.id);

 printf("id of creating thread’s parent: 0x%p\n",

 evt->detail.thread_info.parent_id);

 printf("id of new (child) thread: 0x%p\n",

 evt->detail.thread_info.child_id);

 return JVMMI_OK;

}

JVMMI - problem determination

Chapter 34. Using the JVM monitoring interface (JVMMI) 345

Now, every time that a thread is created you will obtain information about it. The

output from the event above might look like this:

THREAD CREATED event received

name of creating thread: "main"

id of creating thread: 0x00235190

id of creating thread’s parent: 0x00000000

id of new (child) thread: 0x3224AB68

The parent of the main thread always has an id of 0. In a complex program, the

thread id’s can be used to build a thread hierarchy. However, in a simple program

like ’HelloWorld’, everything (except ″main″) is started by ″main″.

Using user data in a JVMMI agent

When you enable an event you must provide a (void *) pointer to a piece of user

data. In the example above, there is only a placeholder, but it gives the agent some

flexibility. For example, you might want to modify the ThreadCreated code above

to store the id’s of the threads you see being created.

Using Detail information on EBCDIC platforms

On z/OS, the Detail information that is returned with events contains a (char *)

pointer. This is a pointer to an ASCII string. To use the information on z/OS, copy

the data to your own storage and perform an ASCII-to-EBCDIC conversion on it.

You can write something like this:

#include <unistd.h>

char buffer[128]="";

...

strcpy(buffer, evt->detail.thread_info.name);

__atoe(buffer);

Obtaining the JVMMI interface

Before you can make any JVMMI calls, you must obtain the JVMMI interface (this

is very similar to obtaining the JNI interface). Use the VM GetEnv function, for

example:

JNIEnv *JNI_env;

 rc = (*vm)->GetEnv(vm, (void **)&JNI_env, JVMMI_VERSION_1);

Specifying the agent name

When you start the JVM, you specify the name of the agent DLL that uses the

-Xrun option. For example:

Java -Xrunmyagent HelloWorld

Inside the agent

When the JVM starts, it loads your agent and calls its JVM_OnLoad function. This

acquires the JVMMI interface as above. The function then enables some, or all, of

the provided events, supplying a callback function for each of the ones it enables.

Building the agent

Windows

Before you can build a JVMMI agent, ensure that:

v The agent is contained in a C file called myagent.c.

v You have Microsoft Visual C/C++ installed.

JVMMI - problem determination

346 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

v The directories sdk\include\ and sdk\include\win32 have been added to the

environment variable INCLUDE.

To build a JVMMI agent, enter the command:

cl /MD /Femyagent.dll myagent.c /link /DLL

Linux

To build a JVMMI agent, write a shell script similar to this:

export SDK_BASE=<sdk directory>

export INCLUDE_DIRS="-I. -I$SDK_BASE/include"

export JVM_LIB=-L$SDK_BASE/jre/bin/classic

gcc $INCLUDE_DIRS $JVM_LIB -ljvm -o libmyagent.so -shared myagent.c

Where <sdk directory> is the directory where your SDK is installed.

AIX PPC32

To build a JVMMI agent, write a shell script similar to this:

export SDK_BASE=<sdk directory>

export INCLUDE_DIRS="-I. -I$SDK_BASE/include"

export JVM_LIB=-L$SDK_BASE/jre/bin/classic

xlC_r -bM:UR -qcpluscmt $INCLUDE_DIRS $JVM_LIB -ljvm -o libmyagent.so myagent.c

AIX PPC64

To build a JVMMI agent, write a shell script similar to this:

export SDK_BASE= <sdk directory>

export INCLUDE_DIRS="-I. -I$SDK_BASE/include"

export JVM_LIB=-L$SDK_BASE/jre/bin/classic

gcc $INCLUDE_DIRS $JVM_LIB -ljvm -o libmyagent.so myagent.c

z/OS

To build a JVMMI agent, write a shell script similar to this:

SDK_BASE= <sdk directory>

USER_DIR= <user agent’s source directory>

c++ -c -g -I$SDK_BASE/include -I$USER_DIR -W "c,float(ieee)"

 -W "c,langlvl(extended)" -W "c,expo,dll" myagent.c

c++ -W "l,dll" -o libmyagent.so myagent.o

chmod 755 libmyagent.so

This builds a non-xplink library.

API calls provided by JVMMI

The JVMMI interface contains three functions:

EnableEvent

int JNICALL EnableEvent(JNIEnv *env,

 jvmmi_callback_t func,

 void *userData,

 int eventId);

Description

Enables an event

Parameters

v A pointer to the JNI environment.

v The function you want to be called whenever the event occurs.

v A pointer to a piece of user data.

JVMMI - problem determination

Chapter 34. Using the JVM monitoring interface (JVMMI) 347

v The number of the event in which you are interested (for example,

JVMMI_EVENT_CLASS_LOAD).

Returns

If the callback is successfully registered, the function returns JVMMI_OK. If the

registration is unsuccessful, the function returns JVMMI_ERR.

DisableEvent

int JNICALL DisableEvent(JNIEnv *env,

 jvmmi_callback_t func,

 void *userData,

 int eventId);

Description

Disables an event.

Parameters

v A pointer to the JNI environment.

v The function you no longer want to be called whenever the event occurs.

v The pointer to the user data you supplied when you enabled the event.

v The number of the event in which you are no longer interested.

Returns

If the callback is successfully deregistered, the function returns JVMMI_OK. If the

deregistration is unsuccessful, the function returns JVMMI_ERR.

EnumerateOver

int JNICALL EnumerateOver(JNIEnv *env,

 int itemType,

 int limit,

 jvmmi_callback_t func,

 void *userData);

Description

Finds all items of the specified type (itemType) and calls the supplied callback

function (func()) for each one.

Parameters

v A pointer to the JNI environment.

v The type of object you want to enumerate (for example,

JVMMI_LIST_MONITOR).

v The maximum number of times you want to be called back.

v The function you want to be called for each item found.

v A pointer to a piece of user data.

Returns

If the enumeration is performed successfully, the function returns JVMMI_OK. If

the enumeration is unsuccessful, the function returns JVMMI_ERR.

Events produced by JVMMI

A typical call to enable an event (in this case, garbage collection start) might look

like this:

JVMMI_env->EnableEvent(env, // JNI environment

 agentGCStart, // call agentGCStart func when hit

 userData, // supplying this user data

 JVMMI_EVENT_GC_START); // which event?

JVMMI - API calls

348 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

The JVMMI interface is self-describing. To find out which events your build of the

JVM supports, use the enumeration JVMMI_LIST_EVENTS. This enumeration

returns information about the events, including detailed information returned with

them and the values of the JVMMI_EVENT_* constants. In this way, if further

events are added in a service PTF, or in future development releases, you will be

able to use them.

The events are of the following types:

v Thread-related events

v Class-related events

v Heap and garbage collection events

v Miscellaneous events

Thread-related events

JVMMI_EVENT_THREAD_CREATION_REQUESTED

This special event is produced by the JVM before it attempts to create a new

thread. If enabled, your callback function must return TRUE if you want to

allow the thread to be created. If it returns anything else, the thread is not

created and a Java SecurityException is thrown.

 Detailed information identifies the id and name (for example, ″main″) of the

creating thread, and the id of its parent.

JVMMI_EVENT_THREAD_CREATED

This event is produced when a thread is created. It is produced by the creating

thread after it has created the child thread but before is starts it.

 Detailed information identifies the id and name of the creating thread, the id of

its parent, and the id of the new (child) thread.

JVMMI_EVENT_THREAD_START

This event is produced by a new thread, confirming that it has begun.

 Detailed information identifies the id and name of the starting thread and the

id of its parent.

JVMMI_EVENT_THREAD_STOP

This event is produced by a thread just before it terminates.

 Detailed information identifies the id and name of the stopping thread and the

id of its parent.

Class-related events

JVMMI_EVENT_CLASS_LOAD

This event informs you that a class has been loaded into the heap.

 Detailed information identifies the class name, the source file name, the

number of interfaces, the number of methods, and the number of fields.

JVMMI_EVENT_CLASS_UNLOAD

This event informs you that a class has been removed from the heap.

 Detailed information identifies the class name, the source file name, the

number of interfaces, the number of methods, and the number of fields.

JVMMI - events

Chapter 34. Using the JVM monitoring interface (JVMMI) 349

Heap and garbage collection events

JVMMI_EVENT_GC_MARK_START

This event informs you that the storage manager has begun a parallel mark of

the heap preceding a garbage collection.

 Detailed information identifies the free space, the expected free space (and the

kickoff threshold).

JVMMI_EVENT_GC_MARK_STACK_OVERFLOW (new for 1.4.1)

This event tells you that a mark stack overflow was detected during concurrent

mark.

 Detailed information contains a counter for the number of mark stack

overflows that have occurred.

JVMMI_EVENT_GC_START

This event informs you that a garbage collection has commenced.

 Detailed information identifies the heap that is being collected, the size of the

heap before garbage collection, the size of the heap after garbage collection, the

amount of free space in the heap, the number of the garbage collection, the

number of the allocation failure, the percentage time in garbage collection

(over the previous 10 garbage collections), and the largest available free chunk

of memory.

JVMMI_EVENT_GC_COMPACT (new for 1.4.1)

This event tells you that the garbage collector has compacted the heap.

 Detailed information identifies the heap that is being collected, the size of the

heap, and the amount of free space in the heap.

JVMMI_EVENT_GC_FINISH

This event informs you that the garbage collection has ended.

 Detailed information identifies the heap that is being collected, the size of the

heap, and the amount of free space in the heap.

JVMMI_EVENT_AREA_ALLOC

This event is produced periodically, each time 1 MB of storage has been used

for object allocation.

 Detailed information identifies how much memory has been allocated since the

last area alloc event (or, for the first such event, since the event has been

enabled).

JVMMI_EVENT_HEAP_LOW

This event informs you that one of the heaps is running low on available

memory. An object allocation request to this heap resulted in extensive garbage

collection to fit in the new object.

 Detailed information identifies the heap that is running low on memory, the

size of the heap, and the amount of free space in the heap.

JVMMI_EVENT_HEAP_SIZE

This event informs you that the size of one of the heaps has been modified.

 Detailed information identifies the heap that has altered in size, the size of the

heap before this alteration, the size of the heap after it, and the amount of free

space in the heap.

JVMMI_EVENT_HEAP_FULL

This event informs you that one of the heaps is full. An object allocation

request to this heap has just failed.

JVMMI - events

350 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

Detailed information identifies the heap that is full, the size of the heap, and

the amount of free space in the heap.

JVMMI_EVENT_OUT_OF_MEMORY

This event is produced whenever a Java out-of-memory error is thrown.

 Detailed information identifies the amount of memory allocated, the maximum

size of the heap, the amount of free memory remaining on the freelist, the

number of garbage collection cycles performed, and the detail string

accompanying the exception.

JVMMI_EVENT_GC_OBJECT_ENUMERATE (new for 1.4.1)

This event follows the enumeration of objects.

 Detailed information tells you whether the type of enumeration that was

performed (standard or accurate) and the number of objects that were found in

each of the regular (main) heap, the transient heap, the system heap, the ACS

heap, and the transient local heaps.

JVMMI_EVENT_OBJECT_REFERENCES

If enabled, this event follows each JVMMI_LIST_OBJECT event. It contains the

references from this object to other objects for use in heap analysis. If the object

has many references, this event might occur multiple times. Detailed

information includes the references themselves, whether further

JVMMI_EVENT_OBJECT_REFERENCES will follow, and the summary

information about the object itself.

Miscellaneous events

JVMMI_EVENT_JVM_INIT_DONE

This event is produced when the JVM has finished its initialization and is

ready to start processing a user program.

 No detailed information accompanies this event.

JVMMI_EVENT_JVM_SHUTDOWN

This event is produced when the JVM is shutting down, at the last point it can

guarantee to get an event out before shutdown. Because of multithreading

issues, it is usually not the last event produced.

 No detailed information accompanies this event.

JVMMI_SERVICE_EVENT_HEAPDUMP

This event is produced when the JVM gets a signal, and the

JAVA_DUMP_OPTIONS environment variable requires a Heapdump to be

generated for this signal.

 No detailed information accompanies this event.

 To use this event, you must include this #define in your agent:

#define JVMMI_SERVICE_EVENT_HEAPDUMP 1001

Enumerations supported by JVMMI

A typical call to perform an enumeration (in this case of threads) might look

something like this:

JVMMI_env->EnumerateOver(env, // JNI environment

 JVMMI_LIST_THREAD, // type of enumeration, enum threads

 30, // callback a maximum of 30 times

 agentThreads, // call agentThread func each time

 userData); // supplying this user data

JVMMI - events

Chapter 34. Using the JVM monitoring interface (JVMMI) 351

The JVMMI interface is self-describing. To find out which enumerations your build

of the JVM supports, use the enumeration JVMMI_LIST_DEFINITION. This returns

information about the enumerations, including the values of the JVMMI_LIST_*

constants. In this way, if further enumerations are added in a service PTF, or in

future development releases, you will be able to use them.

This is the full list of enumerations that are currently supported:

JVMMI_LIST_COMPONENT

The supplied routine is called back once for each JVM component (for

example, ST, XE, CI).

JVMMI_LIST_DEFINITION

The supplied routine is called back once for each type of enumeration

supported by JVMMI.

JVMMI_LIST_EVENT

The supplied routine is called back once for each event supported by JVMMI.

JVMMI_LIST_MONITOR

The supplied routine is called back once for each monitor found. Note that this

call must scan all the objects on the heap and so might take some time to

complete.

JVMMI_LIST_OBJECT

The supplied routine is called back once for each object found on the heaps.

This call must scan the heap and so might take some time to complete. The

simplest ″HelloWorld″ program generates several thousand objects, so you

must expect a lot of calls.

JVMMI_LIST_THREAD

The supplied routine is called back once for each current thread.

JVMMI_LIST_SYSLOCK

The supplied routine is called back once for each JVM internal system lock.

Sample JVMMI Heapdump agent

The example program shown below is a basic Heapdump agent. When the heap

becomes full, or when a signal occurs for which JAVA_DUMP_OPTS specifies

″HEAPDUMP″, this agent is called. The agent creates and writes to a file called

heapdump.txt that contains a list of the objects on the heap, along with their

references to other objects.

You can post-process this file using HeapRoots (for more information, see “Using

the HeapRoots post-processor to process Heapdumps” on page 249).

For instructions on how to build JVMMI agents, see “Writing an agent” on page

344.

#include <stdio.h>

#include <jni.h>

#include <jvmmi.h>

#define FALSE 0

#define TRUE 1

FILE *hdfile;

JavaVM *vm = NULL;

JNIEnv *JNI_env;

JVMMI_Interface *JVMMI_env;

char ud[] = "Not_Used";

int heapdumpObjectLimit=1000000;

int new_object;

JVMMI - enumerations

352 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

int JNICALL callbacks(JNIEnv *env, JVMMI_Event *evt, void *userData, int tid) {

 switch(evt->type) {

 case (JVMMI_EVENT_HEAPDUMP) :

 fprintf(stderr, "JVMMI agent - HEAPDUMP started\n");

 hdfile = fopen("heapdump.txt", "w");

 /*

 * Enumerate over all the objects on the heap

 */

 JVMMI_env->EnumerateOver(env,

 JVMMI_LIST_OBJECT,

 heapdumpObjectLimit,

 callbacks,

 userData);

 fprintf(stderr, "JVMMI agent - HEAPDUMP complete\n");

 fclose(hdfile);

 break;

 case (JVMMI_LIST_OBJECT) :

 /*

 * called once per object.

 * Set a flag to say this is a new object.

 */

 new_object=TRUE;

 break;

 case (JVMMI_EVENT_OBJECT_REFERENCES) :

 /*

 * Write out the object description only on the first time

 * here for each object. This contains address and type.

 */

 if(new_object) {

 fprintf(hdfile, "%s",

 evt->detail.reference_info.object_description);

 new_object = FALSE;

 }

 /*

 * print out the references from this object to other objects

 * if more_follow is set in the detail information, then

 * another event will follow, containing more references.

 */

 fprintf(hdfile, "%s", evt->detail.reference_info.refs);

 /*

 * if we’re done throw a newline

 */

 if(!evt->detail.reference_info.more_follow)

 fprintf(hdfile, "\n");

 break;

 }

 return JVMMI_OK;

}

/* This is run when the DLL is loaded */

JNIEXPORT jint JNICALL JVM_OnLoad(JavaVM *vm, char *options, void *reserved) {

 jint JVMMIversion = JVMMI_VERSION_1;

 jint JNIversion = JNI_VERSION_1_2;

 /*

 * Get the JNI and JVMMI interfaces

 */

JVMMI - enumerations

Chapter 34. Using the JVM monitoring interface (JVMMI) 353

(*vm)->GetEnv(vm, (void **) &JNI_env, JNIversion);

 (*vm)->GetEnv(vm, (void **) &JVMMI_env, JVMMIversion);

 /*

 * Enable events for heapdump and object references

 */

 JVMMI_env->EnableEvent(JNI_env, callbacks, ud,

 JVMMI_EVENT_HEAPDUMP);

 JVMMI_env->EnableEvent(JNI_env, callbacks, ud,

 JVMMI_EVENT_OBJECT_REFERENCES);

 return JVMMI_OK;

}

JVMMI - enumerations

354 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

Chapter 35. Using the Reliability, Availability, and

Serviceability interface

The JVM Reliability, Availability, and Serviceability Interface (JVMRI) allows an

agent or plug-in to access reliability, availability, and serviceability (RAS) functions

by using a facade (a structure of pointers to functions). You can use the interface

to:

v Determine the trace capability that is present

v Set and intercept trace data

v Produce various dumps

v Inject errors

Note that you need some programming skills to use this interface. To use the

JVMRI, you must be able to build a native library, add the code for JVMRI

callbacks (described below), and interface the code to the JVM via the JNI. This

book provides the callback code but does not provide the other programming

information.

This chapter describes the JVMRI in:

v “Preparing to use JVMRI”

v “JVMRI functions” on page 358

v “API calls provided by JVMRI” on page 358

v “RasInfo structure” on page 364

v “RasInfo request types” on page 365

v “Intercepting trace data” on page 365

v “Calling external trace” on page 365

v “Formatting” on page 366

Note: The JVMRI was originally called JVMRAS. You might find references to

JVMRAS in the code.

Preparing to use JVMRI

Before you can use the JVMRI Trace API, you must enable at least one of the

–Dibm.dg.trc.<nnnn> options.

Writing an agent

The following piece of code demonstrates how to write a very simple JVMRI

agent. When an agent is loaded by the JVM, the first thing that gets called is the

entry point routine JVM_OnLoad(). Therefore, your agent must have a routine

called JVM_OnLoad(). This routine then must obtain a pointer to the JVMRI

function table. This is done by making a call to the GetEnv() function.

/* jvmri - jvmri agent source file. */

#include "jni.h"

#include "jvmras.h"

DgRasInterface *jvmri_intf = NULL;

JNIEXPORT jint JNICALL

© Copyright IBM Corp. 2003, 2006 355

JVM_OnLoad(JavaVM *vm, char *options, void *reserved)

{

 int rc;

 JNIEnv *env;

 /*

 * Get a pointer to the JNIEnv

 */

 rc = (*vm)->GetEnv(vm, (void **)&env, JNI_VERSION_1_2);

 if (rc != JNI_OK) {

 fprintf(stderr, "RASplugin001 Return code %d obtaining JNIEnv\n", rc);

 fflush(stderr);

 return JNI_ERR;

 }

 /*

 * Get a pointer to the JVMRI function table

 */

 rc = (*vm)->GetEnv(vm, (void **)&jvmri_intf, JVMRAS_VERSION_1_3);

 if (rc != JNI_OK) {

 fprintf(stderr, "RASplugin002 Return code %d obtaining DgRasInterface\n", rc);

 fflush(stderr);

 return JNI_ERR;

 }

 /*

 * Now a pointer to the function table has been obtained we can make calls to any

 * of the functions in that table.

 */

 ...

 return rc;

}

Registering a trace listener

Before you start using the trace listener, you must set the -Dibm.dg.trc.external

option to inform the object of the tracepoints for which it should listen.

An agent can register a function that is called back when the JVM makes a trace

point. The following example shows a trace listener that only increments a counter

each time a trace point is taken.

void JNICALL

listener(void *env, void ** tl, unsigned int traceId, const char * format,

va_list var)

{

 int *counter;

 if (*tl == NULL) {

 fprintf(stderr, "RASplugin100 first tracepoint for thread %p\n", env);

 *tl = (void *)malloc(4);

 counter = (int *)*tl;

 *counter = 0;

 }

 counter = (int *)*tl;

 (*counter)++;

 fprintf(stderr, "Trace point total = %d\n", *counter);

}

preparing to use JVMRI

356 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

Add this code to the JVM_Onload() function or a function that it calls.

The following example is used to register the above trace listener.

 /*

 * Register the trace listener

 */

 rc = jvmri_intf->TraceRegister(env, listener);

 if (rc != JNI_OK) {

 fprintf(stderr, "RASplugin003 Return code %d registering listener\n", rc);

 fflush(stderr);

 return JNI_ERR;

 }

You can also do more difficult operation with a trace listener, including formatting

the trace point information yourself then displaying this or perhaps recording it in

a file or database

Changing Trace Options

This example uses the TraceSet() function to change the JVM trace setting. It makes

the assumption that the options string that is specified via the -Xrun option and

passed to JVM_Onload() is a trace setting.

 /*

 * If an option was supplied, assume it is a trace setting

 */

 if (options != NULL && strlen(options) > 0) {

 rc = jvmri_intf->TraceSet(env, options);

 if (rc != JNI_OK) {

 fprintf(stderr, "RASplugin004 Return code %d setting trace options\n", rc);

 fflush(stderr);

 return JNI_ERR;

 }

 }

To set Maximal tracing for ’st’, use the following command when launching the

JVM and your agent:

java -Xrunjvmri:maximal=st -Dibm.dg.trc.external=ci App.class

Note: Trace must be enabled before the agent can be used. To do this, specify the

trace option on the command line: -Dibm.dg.trc.external=ci.

Launching the Agent

To launch the agent when the JVM starts up, use the –Xrun command line option.

For example if your agent is called jvmri, specify -Xrunjvmri: <options> on the

command line.

Building the agent

The procedure for building a JVMRI agent is the same as the procedure for

JVMMI. For information on how to build an agent, see the section JVMMI —

Building the agent in Chapter 34, “Using the JVM monitoring interface (JVMMI),”

on page 343.

Plug-in design

The plug-in must reference the header files jni.h and jvmras.h, which are shipped

with the SDK and are in the sdk\include subdirectory. To launch the plug-in, use

the –Xrun command-line option. The JVM parses the –Xrunlibrary_name[:options]

preparing to use JVMRI

Chapter 35. Using the Reliability, Availability, and Serviceability interface 357

switch and loads library_name if it exists. A check for an entry point that is called

JVM_OnLoad is then made. If the entry point exists, it is called to allow the library to

initialize. This processing occurs after the initialization of all JVM subcomponents.

The plug-in can then call the functions that have been initialized, by using the

JVMRI facade.

JVMRI functions

At startup, the JVM initializes RI functions. You access these functions with the JNI

GetEnv routine to obtain an interface (facade) pointer. For example:

JNIEXPORT jint JNICALL

JVM_OnLoad(JavaVM *vm, char *options, void *reserved)

{

 DgRasInterface *ri;

 (*vm)->GetEnv(vm, (void **)&ri, JVMRAS_VERSION_1_3)

 rc = jvmras_intf->TraceRegister(env, listener);

}

API calls provided by JVMRI

The functions are listed in the sequence in which they appear in the facade.

TraceRegister

int TraceRegister(JNIEnv *env, void (JNICALL *func)(JNIEnv *env2,

 void **threadLocal, int traceId, const char * format,

 va_list var))

Description

Registers a trace listener.

Parameters

v Pointer to a JNIEnv.

v Function pointer to trace function to register.

Returns

JNI Return code JNI_OK or JNI_ENOMEM.

TraceDeregister

int TraceDeregister(JNIEnv *env, void (JNICALL *func)(JNIEnv *env2,

 void **threadLocal, int traceId, const char *

 format, va_list varargs))

Description

Deregisters an external trace listener.

Parameters

v Pointer to a JNIEnv.

v Function pointer to a previously-registered trace function.

Returns

JNI Return code JNI_OK or JNI_EINVAL.

TraceSet

int TraceSet(JNIEnv *env, const char *cmd)

preparing to use JVMRI

358 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

Description

Sets the trace configuration options.

Parameters

v Pointer to a JNIEnv.

v Trace configuration command.

Returns

JNI Return code JNI_OK, JNI_ERR, JNI_ENOMEM, JNI_EXIST and JNI_EINVAL.

TraceSnap

void TraceSnap(JNIEnv *env, char *buffer)

Description

Takes a snapshot of the current trace buffers.

Parameters

v Pointer to a JNIEnv, if set to NULL current Execenv is used.

v The second parameter is no longer used, but still exists to prevent changing

the function interface. It can safely be set to NULL.

Returns

Nothing

TraceSuspend

void TraceSuspend(JNIEnv *env)

Description

Suspends tracing.

Parameters

v Pointer to a JNIEnv. Must be valid, if MULTI_JVM; otherwise, it can be

NULL.

Returns

Nothing.

TraceResume

void TraceResume(JNIEnv *env)

Description

Resumes tracing.

Parameters

v Pointer to a JNIEnv. Must be valid, if MULTI_JVM; otherwise, it can be

NULL.

Returns

Nothing.

DumpRegister

int DumpRegister(JNIEnv *env, int (JNICALL *func)(JNIEnv *env2,

 void **threadLocal, int reason))

Description

Registers a function that is called back when the JVM is about to generate a

JavaCore file.

Parameters

JVMRI - API calls

Chapter 35. Using the Reliability, Availability, and Serviceability interface 359

v Pointer to a JNIEnv.

v Function pointer to trace function to register.

Returns

JNI return codes JNI_OK and JNI_ENOMEM.

DumpDeregister

int DumpDeregister(JNIEnv *env, int (JNICALL *func)(JNIEnv *env2,

 void **threadLocal, int reason))

Description

Deregisters a dump call back function that was previously registered by a call

to DumpRegister.

Parameters

v Pointer to a JNIEnv.

v Function pointer to trace function to register.

Returns

JNI return codes JNI_OK and JNI_EINVAL.

NotifySignal

void NotifySignal(JNIEnv *env, int signal)

Description

Raises a signal in the JVM.

Parameters

v Pointer to a JNIEnv. This parameter is reserved for future use.

v Signal number to raise.

Returns

Nothing.

GetRasInfo

int GetRasInfo(JNIEnv * env,

 RasInfo * info_ptr)

Description

This function fills in the supplied RasInfo structure, based on the request type

that is initialized in the RasInfo structure. (See details of the RasInfo structure

in “RasInfo structure” on page 364.

Parameters

v Pointer to a JNIEnv. This parameter is reserved for future use.

v Pointer to a RasInfo structure. This should have the type field initialized to a

supported request.

Returns

JNI Return codes JNI_OK, JNI_EINVAL and JNI_ENOMEM.

ReleaseRasInfo

int ReleaseRasInfo(JNIEnv * env,

 RasInfo * info_ptr)

JVMRI - API calls

360 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

Description

This function frees any areas to which the RasInfo structure might point after a

successful GetRasInfo call. The request interface never returns pointers to ’live’

JVM control blocks or variables.

Parameters

v Pointer to a JNIEnv. This parameter is reserved for future use.

v Pointer to a RasInfo structure. This should have previously been set up by a

call to GetRasInfo. An error occurs if the type field has not been initialized

to a supported request. (See details of the RasInfo structure in “RasInfo

structure” on page 364.)

Returns

JNI Return codes JNI_OK or JNI_EINVAL.

CreateThread

int CreateThread(JNIEnv *env, void JNICALL (*startFunc)(void*),

 void *args, int GCSuspend)

Description

Creates a thread. If GCSuspend is not 0, the thread is not suspended when

garbage collection is performed. A thread can be created only after the JVM

has been initialized. Calls to CreateThread can take place before initialization,

but the threads are created only after initialization by a callback function.

Parameters

v Pointer to a JNIEnv.

v Pointer to start function for the new thread.

v Pointer to argument that is to be passed to start function.

v Flag that indicates whether or not thread will be suspended when garbage

collection occurs.

Returns

JNI Return code JNI_OK if thread creation is successful; otherwise, JNI_ERR.

GenerateJavacore

int GenerateJavacore(JNIEnv *env)

Description

Generates a Javacore file.

Parameters

v Pointer to a JNIEnv.

Returns

JNI Return code JNI_OK if running dump is successful; otherwise, JNI_ERR.

RunDumpRoutine

int RunDumpRoutine(JNIEnv *env, int componentID, int level, void (*printrtn)

 (void *env, const char *tagName, const char *fmt, ...))

Description

Runs one of the individual registered dump routines. Output is sent to the

supplied print routine.

Parameters

v Pointer to a JNIEnv.

v Id of component to dump.

JVMRI - API calls

Chapter 35. Using the Reliability, Availability, and Serviceability interface 361

v Detail level of dump.

v Print routine to which dump output is directed.

Returns

JNI Return code JNI_OK if running dump is successful; otherwise, JNI_ERR.

InjectSigsegv

int InjectSigsegv(JNIEnv *env)

Description

Changes the facade pointer for

hpi_system_interface->GetMilliticks(sysGetMilliTicks)

to point to a routine that generates a SIGSEGV the next time it is called. This is

intended only for testing purposes, to inject an error condition into the JVM,

which results in JVM termination

Parameters

v Pointer to a JNIEnv.

Returns

JNI Return code JNI_OK if facade is successfully updated; otherwise, JNI_ERR.

InjectOutOfMemory

int InjectOutOfMemory(JNIEnv *env)

Description

Changes the facade pointers for hpi_memory_interface->Malloc and

hpi_memory_interface->Calloc to point at routines that will return a NULL

pointer. This is intended only for testing purposes, to inject an out of memory

error condition into the JVM.

Parameters

v Pointer to a JNIEnv.

Returns

JNI Return code JNI_OK if facade is successfully updated; otherwise, JNI_ERR.

GetComponentDataArea

int GetComponentDataArea(JNIEnv *env, char *componentName,

 void **dataArea, int *dataSize)

Description

Gets the address and size of the global data area for the required JVM

component. The component is identified by two characters. Valid components

are ’ci’, ’cl’, ’dc’, ’dg’, ’lk’, ’xe’, ’xm’ and ’st’.

Parameters

v Pointer to a JNIEnv.

v Component name.

v Pointer to the component data area.

v Size of the data area.

Returns

JNI Return code JNI_OK if valid component information is available; otherwise,

JNI_ERR.

JVMRI - API calls

362 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

SetOutOfMemoryHook

int SetOutOfMemoryHook(JNIEnv *env, void (*rasOutOfMemoryHook)

 (void))

Description

Registers a callback function for an out-of-memory condition. It is called when

xmPanic is called with a PANIC_OUT_OF_MEMORY reason code.

Parameters

v Pointer to a JNIEnv.

v Pointer to callback function.

Returns

JNI Return code JNI_OK if facade is successfully updated; otherwise, JNI_ERR.

InitiateSystemDump

int JNICALL InitiateSystemDump(JNIEnv *env)

Description

Initiates a system dump. The dumps and the output that are produced depend

on the settings for JAVA_DUMP_OPTS and JAVA_DUMP_TOOL and on the

support that is offered by each platform.

Parameters

v Pointer to a JNIEnv.

Returns

JNI Return code JNI_OK if dump initiation is successful; otherwise, JNI_ERR. If a

specific platform does not support a system-initiated dump, JNI_EINVAL is

returned.

DynamicVerbosegc

void JNICALL *DynamicVerbosegc (JNIEnv *env, int vgc_switch,

 int vgccon, char* file_path, int number_of_files,

 int number_of_cycles);

Description

Switches verbosegc on or off dynamically.

Parameters

v Pointer to a JNIEnv

v Integer that indicates the direction of switch (JNI_TRUE = on, JNI_FALSE =

off)

v Integer that indicates the level of verbosegc (0 = -verbosegc, 1 =

-verbose:Xgccon)

v Pointer to string that indicates file name for file redirection

v Integer that indicates the number of files for redirection

v Integer that indicates the number of cycles of verbosegc per file

Returns

None.

TraceSuspendThis

void TraceSuspendThis(JNIEnv *env);

Description

Suspend tracing from the current thread. This action decrements the

suspendcount for this thread. When it reaches zero (or below) the thread stops

JVMRI - API calls

Chapter 35. Using the Reliability, Availability, and Serviceability interface 363

tracing (see Chapter 33, “Tracing Java applications and the JVM,” on page 321).

This function was added in the JVMRAS_1_3 interface.

Parameters

v Pointer to a JNIEnv.

Returns

None.

TraceResumeThis

void TraceResumeThis(JNIEnv *env);

Description

Resume tracing from the current thread. This action decrements the

resumecount for this thread. When it reaches zero (or below) the thread starts

tracing (see Chapter 33, “Tracing Java applications and the JVM,” on page 321).

This function was added in the JVMRAS_1_3 interface.

Parameters

v Pointer to a JNIEnv.

Returns

None.

GenerateHeapdump

int GenerateHeapdump(JNIEnv *env)

Description

Generates a Heapdump file.This function was added in the JVMRAS_1_3

interface.

Parameters

v Pointer to a JNIEnv.

Returns

JNI Return code JNI_OK if running dump is successful; otherwise, JNI_ERR.

RasInfo structure

The RasInfo structure that is used by GetRasInfo () takes the following form.

(Fields that are initialized by GetRasInfo are underscored):

typedef struct RasInfo {

 int type;

 union {

 struct {

 int number;

 char **names;

 } query;

 struct {

 int number;

 char **names;

 } trace_components;

 struct {

 char *name

 int first;

 int last;

 unsigned char *bitMap;

 } trace_component;

 } info;

 } RasInfo;

JVMRI - API calls

364 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

RasInfo request types

The following request types are supported:

RASINFO_TYPES

Returns the number of request types that are supported and an array of

pointers to their names in the enumerated sequence. The names are in

codepage ISO8859-1.

RASINFO_TRACE_COMPONENTS

Returns the number of components that can be enabled for trace and an array

of pointers to their names in the enumerated sequence. The names are in

codepage ISO8859-1.

RASINFO_TRACE_COMPONENT

Returns the first and last tracepoint ids for the component name (code page

ISO8859-1) and a bitmap of those tracepoints, where a 1 signifies that the

tracepoint is in the build. The bitmap is big endian (tracepoint id first is the

most significant bit in the first byte) and is of length ((last-first)+7)/8 bytes.

Intercepting trace data

To receive trace information from the JVM, the TraceRegister() routine must

register a trace listener. In addition, you must specify the system property

ibm.dg.trc.external to route trace information to an external trace listener.

The ibm.dg.trc.external property

The format of this property is:

ibm.dg.trc.external[=[[!]tracepoint_specification[,...]]

This system property controls what is traced. Multiple statements are allowed and

their effect is cumulative.

The tracepoint_specification is as follows:

Component[(Class[,...])]

Where component is the JVM subcomponent or all. If no component is

specified, all is assumed.

 class is the tracepoint type or all. If class is not specified, all is assumed.

TPID(tracepoint_id[,...])

Where tracepoint_id is the hexadecimal global tracepoint identifier.

 If no qualifier parameters are entered, all tracepoints are enabled; that is, the

equivalent of specifying all.

The ! (exclamation mark) is a logical not. It allows complex tracepoint selection.

Calling external trace

If an external trace routine has been registered and a tracepoint has been enabled

for external trace, it is called with the following parameters:

env

Pointer to the JNIEnv for the current thread.

traceid

Trace identifier

RasInfo, trace, and formatting

Chapter 35. Using the Reliability, Availability, and Serviceability interface 365

format

A zero-terminated string that describes the format of the variable argument list

that follows. Current possible values for each character position:

0x01 One character

0x02 Short

0x04 Int

0x08 Double or long long

0xff ASCII string pointer (may be NULL)

0x00 End of format string

 If the format pointer is NULL, no trace data follows.

varargs

A va_list of zero or more arguments as defined in format argument.

Formatting

You can use TraceFormat.dat to format JVM-generated tracepoints that are

captured by the agent. TraceFormat.dat is shipped with the SDK. It consists of a

flat ASCII or EBCDIC file of the following format:

1.2

dg

000100 8 00 0 N DgTrcRecordsLost "***** %d records lost *****"

000101 0 00 0 N dgTraceLock_Event1 "dgTraceLock() Trace suspended and locked "

000102 0 00 0 N dgTraceUnlock_Event1 "dgTraceUnlock() Trace resumed and unlocked"

The first line contains the version number of the format file. A new version

number reflects changes to the layout of this file. The second line contains the

internal JVM component name. Following the component name are the tracepoint

formatting records for the named component. These formatting records continue

until another component name is found. (Component name entries can be

distinguished from format records, because they always contain only one field.)

The format of each tracepoint entry is as follows:

 nnnnnn t o l e symbolic_name .tracepoint_formatting_template

where:

v nnnnnn is the hex tracepoint ID.

v t is the tracepoint type (0 through 11).

v o is the overhead (0 through 10).

v l is the level of the tracepoint (0 through 9, or - if the tracepoint is obsolete).

v e is the explicit setting flag (Y/N).

v symbolic_name is the name of the tracepoint.

v tracepoint_formatting_template is the template in double quotes that is used to

format the entry in double quotes.

Tracepoint types are as follows:

Type 0 Event

Type 1 Exception

Type 2 Entry

Type 4 Exit

RasInfo, trace, and formatting

366 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

Type 5 Exit-with-Exception

Type 6 Mem

Any other type is reserved for development use; you should not find any on a

retail build. Note that this condition is subject to change without notice. The

version number will be different for each change.

RasInfo, trace, and formatting

Chapter 35. Using the Reliability, Availability, and Serviceability interface 367

RasInfo, trace, and formatting

368 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

Chapter 36. Using the JVMPI

The JVMPI is a 2-way interface that allows communication between the JVM and a

profiler. JVMPI allows third parties to develop profiling tools based on this

interface. The interface contains mechanisms for the profiling agent to notify the

JVM about the kinds of information it wants to receive as well as a means of

receiving the relevant notifications. Several tools are based on this interface, such

as Jprobe, OptimizeIt, TrueTime, and Quantify. These are all third-party commercial

tools, so IBM cannot make any guarantees or recommendations with regard to

their use. IBM does provide a simple profiling agent, based on this interface called

HPROF.

The HPROF profiler

HPROF is a profiler shipped with the IBM SDK that uses the JVMPI to collect and

record information about Java execution. Use it to work out which parts of a

program are using the most memory or processor time. To improve the efficiency

of your applications, you should know what parts of the code are using large

amounts of memory and CPU resources. HPROF is one of the nonstandard options

to java, and is invoked like this:

java -Xrunhprof[<option>=<value>,...] <classname>

When you run Java with HPROF, an output file is created at the end of program

execution. This file is placed in the current working directory and is called

java.hprof.txt (java.hprof if binary format is used) unless a different filename has

been given. This file contains a number of different sections, but the exact format

and content depend on the selected options.

The command java -Xrunhprof:help displays the options available:

heap=dump|sites|all

This option helps in the analysis of memory usage. It tells HPROF to generate

stack traces, from which you can see where memory was allocated. If you use

the heap=dump option, you get a dump of all live objects in the heap. With

heap=sites, you get a sorted list of sites with the most heavily allocated objects

at the top.

cpu=samples|times|old

The cpu option outputs information that is useful in determining where the

CPU spends most of its time. If cpu is set to ″samples″, the JVM pauses

execution and identifies which method call is active. If the sampling rate is

high enough, you get a good picture of where your program spends most of

its time. If cpu is set to ″timing″, you receive precise measurements of how

many times each method was called and how long each execution took.

Although this is more accurate, it slows down the program. If cpu is set to

″old″, the profiling data is output in the old hprof format. For more

information, go to http://java.sun.com/j2se/, and follow the appropriate links.

monitor=y|n

The monitor option can help you understand how synchronization affects the

performance of your application. Monitors are used to implement thread

synchronization, so getting information on monitors can tell you how much

© Copyright IBM Corp. 2003, 2006 369

http://java.sun.com/j2se/

time different threads are spending when trying to access resources that are

already locked. HPROF also gives you a snapshot of the monitors in use. This

is very useful for detecting deadlocks.

format=a|b

The default is for the output file to be in ASCII format. Set format to ’b’ if you

want to specify a binary format (which is required for some utilities such as

the Heap Analysis Tool).

file=<filename>

The file option lets you change the name of the output file. The default name

for an ASCII file is java.hprof.txt. The default name for a binary file is

java.hprof.

net=<host>:<port>

To send the output over the network rather than to a local file, use the net

option.

depth=<size>

The depth option indicates the number of method frames to display in a stack

trace (the default is 4).

thread=y|n

If you set the thread option to ″y″, the thread id is printed beside each trace.

This option is useful if it is not clear which thread is associated with which

trace. This can be an issue in a multi-threaded application.

doe=y|n

The default behavior is to collect profile information when an application exits.

To collect the profiling data during execution, set doe (dump on exit) to ″n″.

Explanation of the HPROF output file

The top of the file contains general header information such as an explanation of

the options, copyright, and disclaimers. A summary of each thread appears next.

You can see the output after using HPROF with a simple program, as shown

below. This test program creates and runs two threads for a short time. From the

output, you can see that the two threads called respectively ″apples″ and ″oranges″

were created after the system-generated ″main″ thread. Both threads end before the

″main″ thread. For each thread its address, identifier, name, and thread group

name are displayed. You can see the order in which threads start and finish.

THREAD START (obj=11199050, id = 1, name="Signal dispatcher", group="system")

THREAD START (obj=111a2120, id = 2, name="Reference Handler", group="system")

THREAD START (obj=111ad910, id = 3, name="Finalizer", group="system")

THREAD START (obj=8b87a0, id = 4, name="main", group="main")

THREAD END (id = 4)

THREAD START (obj=11262d18, id = 5, name="Thread-0", group="main")

THREAD START (obj=112e9250, id = 6, name="apples", group="main")

THREAD START (obj=112e9998, id = 7, name="oranges", group="main")

THREAD END (id = 6)

THREAD END (id = 7)

THREAD END (id = 5)

The trace output section contains regular stack trace information. The depth of

each trace can be set and each trace has a unique id:

TRACE 5:

 java/util/Locale.toLowerCase(Locale.java:1188)

 java/util/Locale.convertOldISOCodes(Locale.java:1226)

 java/util/Locale.<init>(Locale.java:273)

 java/util/Locale.<clinit>(Locale.java:200)

JVMPI - HPROF profiler

370 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

A trace contains a number of frames, and each frame contains the class name,

method name, filename, and line number. In the example above you can see that

line number 1188 of Local.java (which is in the toLowerCase method) has been

called from the convertOldISOCodes() function in the same class. These traces are

useful in following the execution path of your program. If you set the monitor

option, a monitor dump is output that looks like this:

MONITOR DUMP BEGIN

 THREAD 8, trace 1, status: R

 THREAD 4, trace 5, status: CW

 THREAD 2, trace 6, status: CW

 THREAD 1, trace 1, status: R

 MONITOR java/lang/ref/Reference$Lock(811bd50) unowned

 waiting to be notified: thread 2

 MONITOR java/lang/ref/ReferenceQueue$Lock(8134710) unowned

 waiting to be notified: thread 4

 RAW MONITOR "_hprof_dump_lock"(0x806d7d0)

 owner: thread 8, entry count: 1

 RAW MONITOR "Monitor Cache lock"(0x8058c50)

 owner: thread 8, entry count: 1

 RAW MONITOR "Monitor Registry lock"(0x8058d10)

 owner: thread 8, entry count: 1

 RAW MONITOR "Thread queue lock"(0x8058bc8)

 owner: thread 8, entry count: 1

MONITOR DUMP END

MONITOR TIME BEGIN (total = 0 ms) Thu Aug 29 16:41:59 2002

MONITOR TIME END

The first part of the monitor dump contains a list of threads, including the trace

entry that identifies the code the thread executed. There is also a thread status for

each thread where:

v R — Runnable

v S — Suspended

v CW — Condition Wait

v MW — Monitor Wait

Next is a list of monitors along with their owners and an indication of whether

there are any threads waiting on them.

The Heapdump is the next section. This is a list of different areas of memory and

shows how they are allocated:

CLS 1123edb0 (name=java/lang/StringBuffer, trace=1318)

 super 111504e8

 constant[25] 8abd48

 constant[32] 1123edb0

 constant[33] 111504e8

 constant[34] 8aad38

 constant[115] 1118cdc8

CLS 111ecff8 (name=java/util/Locale, trace=1130)

 super 111504e8

 constant[2] 1117a5b0

 constant[17] 1124d600

 constant[24] 111fc338

 constant[26] 8abd48

 constant[30] 111fc2d0

 constant[34] 111fc3a0

 constant[59] 111ecff8

 constant[74] 111504e8

 constant[102] 1124d668

 ...

CLS 111504e8 (name=java/lang/Object, trace=1)

 constant[18] 111504e8

JVMPI - HPROF profiler

Chapter 36. Using the JVMPI 371

CLS tells you that memory is being allocated for a class. The hexadecimal number

following it is the actual address where that memory is allocated.

Next is the class name followed by a trace reference. Use this to cross reference the

trace output and see when this is called. If you refer back to that particular trace,

you can get the actual line number of code that led to the creation of this object.

The addresses of the constants in this class are also displayed and, in the above

example, the address of the class definition for the superclass. Both classes are

children of the same superclass (with address 11504e8). Looking further through

the output you can see this class definition and name. It turns out to be the Object

class (a class that every class inherits from). The JVM loads the entire superclass

hierarchy before it can use a subclass. Thus, class definitions for all superclasses

are always present. There are also entries for Objects (OBJ) and Arrays (ARR):

OBJ 111a9e78 (sz=60, trace=1, class=java/lang/Thread@8b0c38)

 name 111afbf8

 group 111af978

 contextClassLoader 1128fa50

 inheritedAccessControlContext 111aa2f0

 threadLocals 111bea08

 inheritableThreadLocals 111bea08

ARR 8bb978 (sz=4, trace=2, nelems=0, elem type=java/io/ObjectStreamField@8bac80)

If you set the heap option to ″sites″ or ″all″ (″dump″ and ″sites″), you also get a list

of each area of storage allocated by your code. This list is ordered with the sites

that allocate the most memory at the top:

SITES BEGIN (ordered by live bytes) Thu Aug 29 16:30:31 2002

 percent live alloc’ed stack class

 rank self accum bytes objs bytes objs trace name

 1 18.18% 18.18% 32776 2 32776 2 1332 [C

 2 9.09% 27.27% 16392 2 16392 2 1330 [B

 3 8.80% 36.08% 15864 92 15912 94 1 [C

 4 4.48% 40.55% 8068 1 8068 1 31 [S

 5 4.04% 44.59% 7288 4 7288 4 1130 [C

 6 3.12% 47.71% 5616 36 5616 36 1 <Unknown>

 7 2.51% 50.22% 4524 29 4524 29 1 java/lang/Class

 8 2.05% 52.27% 3692 1 3692 1 806 [L<Unknown>;

 9 2.01% 54.28% 3624 90 3832 94 77 [C

 10 1.40% 55.68% 2532 1 2532 1 32 [I

 11 1.37% 57.05% 2468 3 2468 3 1323 [C

 12 1.31% 58.36% 2356 1 2356 1 1324 [C

 13 1.14% 59.50% 2052 1 2052 1 95 [B

 14 1.02% 60.52% 1840 92 1880 94 1 java/lang/String

 15 1.00% 61.52% 1800 90 1880 94 77 java/lang/String

 16 0.64% 62.15% 1152 10 1152 10 1390 [C

 17 0.57% 62.72% 1028 1 1028 1 30 [B

 18 0.52% 63.24% 936 6 936 6 4 <Unknown>

 19 0.45% 63.70% 820 41 820 41 79 java/util/Hashtable$Entry

In this example, Trace 1332 allocated 18.18% of the total allocated memory. This

works out to be 32776 bytes.

The cpu option gives profiling information on the CPU. If cpu is set to samples,

you get an output containing the results of periodic samples during execution of

the code. At each sample, the code path being executed is recorded and a report

such as this is output:

CPU SAMPLES BEGIN (total = 714) Fri Aug 30 15:37:16 2002

rank self accum count trace method

1 76.28% 76.28% 501 77 MyThread2.bigMethod

2 6.92% 83.20% 47 75 MyThread2.smallMethod

...

CPU SAMPLES END

JVMPI - HPROF profiler

372 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

You can see that the bigMethod() was responsible for 76.28% of the CPU execution

time and was being executed 501 times out of the 714 samples. If you use the trace

IDs, you can see the exact route that led to this method being called.

JVMPI - HPROF profiler

Chapter 36. Using the JVMPI 373

JVMPI - HPROF profiler

374 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

Chapter 37. Using DTFJ

The Diagnostic Tooling Framework for Java (DTFJ) is a Java application

programming interface (API) from IBM used to support the building of Java

diagnostics tools.

DTFJ works with system dumps produced on a number of platforms; see “Which

JVMs are DTFJ enabled?.”

The system dumps generated by a JVM must be processed by the jextract tool and

then you pass the resultant sdff file to DTFJ. For z/OS, you pass the generated

dump file directly to DTFJ.

The DTFJ API helps diagnostics tools access the following (and more) information:

v Memory locations stored in the dump

v Relationships between memory locations and Java internals

v Java threads running within the JVM

v Native threads held in the dump

v Java classes and objects that were present in the heap

v Details of the machine on which the dump was produced

v Details of the Java version that was being used

v The command line that launched the JVM

DTFJ is implemented in pure Java and tools written using DTFJ can be

cross-platform. Therefore, it is possible to analyze a dump taken from one machine

on another (remote and more convenient) machine. For example, a dump produced

on an AIX PPC machine can be analyzed on a Windows Thinkpad.

This chapter describes DTFJ in:

v “Which JVMs are DTFJ enabled?”

v “Overview of the DTFJ interface” on page 376

v “DTFJ example application” on page 379

The full details of the DTFJ Interface are provided with the SDK as Javadoc in

sdk/docs/dtfj.zip. DTFJ classes are accessible without modification to the class

path.

Which JVMs are DTFJ enabled?

For Java 1.4.2 Service Refresh 4 from IBM and above, the following platforms are

supported:

v AIX PPC 32-bit

v Linux IA 32-bit

v Linux PPC 32-bit

v zLinux 32-bit

v z/OS 32-bit

v Windows IA 32-bit

© Copyright IBM Corp. 2003, 2006 375

Overview of the DTFJ interface

To create applications that use DTFJ, you must use the DTFJ interface.

Implementations of this interface have been written that work with various JVMs.

All implementations support the same interface and therefore a diagnostic tool that

works against a Version 1.4.2 dump will generally work with a Version 5.0 dump

unless it is using knowledge of Version 1.4.2 specific internals in some way.

Figure 13 on page 378 illustrates the DTFJ interface. The starting point for working

with a dump is to obtain an Image instance by using the ImageFactory class

supplied with the concrete implementation of the API.

The following example shows how to work with a dump.

import java.io.File;

import java.util.Iterator;

import java.io.IOException;

import com.ibm.dtfj.image.CorruptData;

import com.ibm.dtfj.image.Image;

import com.ibm.dtfj.image.ImageFactory;

public class DTFJEX1 {

 public static void main(String[] args) {

 Image image = null;

 if (args.length > 0) {

 File f = new File(args[0]);

 try {

 Class factoryClass = Class

 .forName("com.ibm.dtfj.image.sov.ImageFactory");

 ImageFactory factory = (ImageFactory) factoryClass

 .newInstance();

 image = factory.getImage(f);

 } catch (ClassNotFoundException e) {

 System.err.println("Could not find DTFJ factory class");

 e.printStackTrace(System.err);

 } catch (IllegalAccessException e) {

 System.err.println("IllegalAccessException for DTFJ factory class");

 e.printStackTrace(System.err);

 } catch (InstantiationException e) {

 System.err.println("Could not instantiate DTFJ factory class");

 e.printStackTrace(System.err);

 } catch (IOException e) {

 System.err.println("Could not find/use required file(s)");

 e.printStackTrace(System.err);

 }

 } else {

 System.err.println("No filename specified");

 }

 if (image == null) {

 return;

 }

 Iterator asIt = image.getAddressSpaces();

 int count = 0;

 while (asIt.hasNext()) {

 Object tempObj = asIt.next();

 if (tempObj instanceof CorruptData) {

 System.err.println("Address Space object is corrupt: "

 + (CorruptData) tempObj);

 } else {

 count++;

 }

Overview of the DTFJ interface

376 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

}

 System.out.println("The number of address spaces is: " + count);

 }

}

In this example, the only section of code that ties the dump to a particular

implementation of DTFJ is the generation of the factory class – it would be a

straightforward task to amend this code to cope with handling different

implementations.

The getImage() methods in ImageFactory expect at least one file. The files must be

the dump itself and (optional and with the guidance of IBM service personnel) the

.xml metadata file. If there is a problem with the file specified, an IOException is

thrown by getImage() and can be caught and (in the example above) an

appropriate message issued. If a missing file was passed to the above example, the

following output would be produced:

Could not find/use required file(s)

java.io.IOException: Currently can only handle SDFF files, which _MUST have a suffix of ".sdff"_

or svcdumps

 at com.ibm.dtfj.image.sov.ImageFactory.getImage(ImageFactory.java:79)

 at com.ibm.dtfj.image.sov.ImageFactory.getImage(ImageFactory.java:171)

 at DTFJEX1.main(DTFJEX1.java:23)

In the case above, the DTFJ implementation is expecting a dump file to exist.

Different errors would be caught if the file existed but was not recognized as a

valid dump file.

After you have obtained an Image instance, you can begin analyzing the dump.

The Image instance is the second instance in the class hierarchy for DTFJ

illustrated by Figure 13 on page 378.

Overview of the DTFJ interface

Chapter 37. Using DTFJ 377

The hierarchy displays some major points of DTFJ. Firstly, there is a separation

between the Image (the dump, a sequence of bytes with different contents on

different platforms) and the Java internal knowledge.

Some things to note from the diagram:

ImageFactory

CorruptData
PP

PP

P

PP

P

P

P

S

SS

S

S

S

Image

ImageAddressSpace

ImageProcess

ManagedRuntime

JavaRuntime

JavaClassLoader

JavaClass

JavaField

JavaMethod

JavaMember

JavaHeap

JavaObject

ImageRegister

ImageThread

ImageStackFrame

JavaThread

JavaStackFrame

JavaLocation

ImageModule

ImageSymbol

JavaMonitor

runtime Package

java Package

All iterators can return
CorruptData objects

Returns Image Section
Returns Image Pointer
Inheritance
Returns
Iterator

KEY

S
P

Figure 13. Diagram of the DTFJ interface

Overview of the DTFJ interface

378 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

v The DTFJ interface is separated into two parts: classes with names that start with

Image and classes with names that start with Java.

v Image and Java classes are linked using a ManagedRuntime (which is extended

by JavaRuntime).

v An Image object contains one ImageAddressSpace object (or, on z/OS, possibly

more).

v An ImageAddressSpace object contains one ImageProcess object (or, on z/OS,

possibly more).

v Conceptually, you can apply the Image model to any program running with the

ImageProcess, although for the purposes of this document discussion is limited

to the IBM JVM implementations.

DTFJ example application

This example is a fully working DTFJ application. For clarity, it does not perform

full error checking when constructing the main Image object and does not perform

CorruptData handling in all of the iterators. In a production environment, you

would use the techniques illustrated in the example in the “Overview of the DTFJ

interface” on page 376.

In this example, the program iterates through every available Java thread and

checks whether it is equal to any of the available image threads. When they are

found to be equal, the program declares that it has, in this case, "Found a match".

The example demonstrates:

v How to iterate down through the class hierarchy.

v How to handle CorruptData objects from the iterators.

v The use of the .equals method for testing equality between objects.
import java.io.File;

import java.util.Iterator;

import com.ibm.dtfj.image.CorruptData;

import com.ibm.dtfj.image.CorruptDataException;

import com.ibm.dtfj.image.Image;

import com.ibm.dtfj.image.ImageAddressSpace;

import com.ibm.dtfj.image.ImageFactory;

import com.ibm.dtfj.image.ImageProcess;

import com.ibm.dtfj.java.JavaRuntime;

import com.ibm.dtfj.java.JavaThread;

import com.ibm.dtfj.image.ImageThread;

public class DTFJEX2 {

 public static void main(String[] args) {

 Image image = null;

 if (args.length > 0) {

 File f = new File(args[0]);

 try {

 Class factoryClass = Class

 .forName("com.ibm.dtfj.image.sov.ImageFactory");

 ImageFactory factory = (ImageFactory) factoryClass

 .newInstance();

 image = factory.getImage(f);

 } catch (Exception ex) { /*

 * Should use the error handling as

 * shown in DTFJEX1.

 */

 System.err.println("Error in DTFJEX2");

 ex.printStackTrace(System.err);

 }

Overview of the DTFJ interface

Chapter 37. Using DTFJ 379

} else {

 System.err.println("No filename specified");

 }

 if (null == image) {

 return;

 }

 MatchingThreads(image);

 }

 public static void MatchingThreads(Image image) {

 ImageThread imgThread = null;

 Iterator asIt = image.getAddressSpaces();

 while (asIt.hasNext()) {

 System.out.println("Found ImageAddressSpace...");

 ImageAddressSpace as = (ImageAddressSpace) asIt.next();

 Iterator prIt = as.getProcesses();

 while (prIt.hasNext()) {

 System.out.println("Found ImageProcess...");

 ImageProcess process = (ImageProcess) prIt.next();

 Iterator runTimesIt = process.getRuntimes();

 while (runTimesIt.hasNext()) {

 System.out.println("Found Runtime...");

 JavaRuntime javaRT = (JavaRuntime) runTimesIt.next();

 Iterator javaThreadIt = javaRT.getThreads();

 while (javaThreadIt.hasNext()) {

 Object tempObj = javaThreadIt.next();

 /* Should use CorruptData

 * handling for all iterators

 */

 if (tempObj instanceof CorruptData) {

 System.out.println("We have some corrupt data");

 } else {

 JavaThread javaThread = (JavaThread) tempObj;

 System.out.println("Found JavaThread...");

 try {

 imgThread = (ImageThread) javaThread

 .getImageThread();

 // Now we have a Java thread we can iterator

 // through the image threads

 Iterator imgThreadIt = process.getThreads();

 while (imgThreadIt.hasNext()) {

 ImageThread imgThread2 = (ImageThread) imgThreadIt

 .next();

 if (imgThread.equals(imgThread2)) {

 System.out.println("Found a match:");

 System.out.println("\tjavaThread "

 + javaThread.getName()

 + " is the same as "

 + imgThread2.getID());

 }

 }

 } catch (CorruptDataException e) {

 System.err.println("ImageThread was corrupt: " + e.getMessage());

 }

DTFJ example application

380 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

}

 }

 }

 }

 }

 }

}

Many DTFJ applications will follow much the same model.

 ll pop over.

DTFJ example application

Chapter 37. Using DTFJ 381

382 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

Chapter 38. Using third-party tools

This chapter introduces third-party diagnostic tools, in:

v “GlowCode”

v “Heap analysis tool (HAT)” on page 384

v “HeapWizard” on page 386

v “Jinsight” on page 388

v “JProbe” on page 390

v “JSwat” on page 391

v “Process Explorer” on page 392

The tools that are described in this chapter have proved useful to the IBM Java

service team. The team does not support the tools. The tools are presented in

alphabetical sequence, and IBM does not recommend any of these tools in

preference to other tools or give any warranty for them.

This chapter provides brief descriptions of the tools, the conditions in which you

might find the tools useful, and brief instructions on how to use them. For more

detailed information, refer to the documentation that is provided with the tools.

GlowCode

GlowCode is a complete diagnostic and performance tool for C++ and applications

that are running on Windows involving JNI. You can attach a running application

to GlowCode to detect memory and resource leaks, isolate performance

bottlenecks, profile and trace program execution, and find unexecuted code.

Supported platforms

v Windows NT 4.0

v Windows 2000

v Windows XP

v Windows 95 and its derivatives

v Windows 98 and ME, are not supported

Applicability

v Leaks

v Performance

Summary

GlowCode provides a complete set of diagnostic tools.

The Profile tool provides a real-time hierarchical view of your program’s execution.

This tool gives you a time-aware overview of your program’s execution.

The Report tool provides a real-time file, function, and line summary of your

program’s execution. This tool helps you find function bottlenecks quickly.

© Copyright IBM Corp. 2003, 2006 383

The Trace tool provides a real-time sequential view of your program’s execution.

This tool can insert trace statements into your running program’s code to allow

you to watch important variables. This tool also shows thread changes that can

help you find thread synchronization bottlenecks.

The Profile, Report, and Trace tools use hooks that you can install in your

application as it runs. You can selectively install hooks at a granularity of module,

source file, function, or source code line, by using debug information in a .PDB file

or exported symbol information in a .DLL file. Go to http://www.glowcode.com/
summary.htm to view Hooks screenshots.

An Execution Analysis Details window is provided in the Profile, Report, and

Trace tools. The Execution Analysis Details window lists all callers and callees of a

function, along with count and time metrics. Go to http://www.glowcode.com/
summary.htm to view screenshots of the Details tool.

The Memory tool:

v Uses counter hooks (that are automatically installed on the runtime heap) and

important Win32 resources when GlowCode attaches itself to your application.

v Provides a real-time summary of allocations, and an expandable tree view of

allocation details including the call stack that is active during each allocation. Go

to http://www.glowcode.com/summary.htm to view Memory screenshots.

v Includes a heap leak detector, which, at your request, will recursively search

heap and static memory for unreferenced heap allocations. Go to

http://www.glowcode.com/summary.htm to view Leaks screenshots.

With GlowCode, you can zero in on an application method that might be causing a

possible memory leak. Select the memory tab in the GlowCode window and click

the Leaks button. This displays a Leak Result dialog that lists functions that might

be responsible for memory leaks. These methods are a possible cause of memory

leaks or memory consumption.

For more details about GlowCode, go to http://www.glowcode.com

Running GlowCode

1. Open the GlowCode window that lists all the processes running on a system.

2. Select a process.

3. Click the Attach button.

Heap analysis tool (HAT)

This tool relies on a JVMPI plug-in to profile the heap. The plug-in (start it with

the JVM command-line option -Xhprof) creates a dump that you can analyze with

Heap Analysis Tool (HAT). The plug-in is provided as part of the IBM SDK.

Download HAT from http://java.sun.com/people/billf/heap/index.html. Note

that JVMPI (the profiling agent) is an IBM-supplied product that is maintained by

the Java team.

HAT enables you to read and analyze the -Xhprof files. HAT helps to debug

applications that unnecessarily retain objects (that is, they have memory leaks) by

providing a convenient means to browse the object topology in a heap snapshot.

HAT also allows you to trace the references to a given object from the rootset.

GlowCode

384 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

http://www.glowcode.com/summary.htm
http://www.glowcode.com/summary.htm
http://www.glowcode.com/summary.htm
http://www.glowcode.com/summary.htm
http://www.glowcode.com/summary.htm
http://www.glowcode.com/summary.htm
http://www.glowcode.com
http://java.sun.com/people/billf/heap/index.html

Applicability

v Leaks

v Performance

Generating a .hprof file

To generate a .hprof file:

v Run Java with the -Xhprof flag: java -Xhprof:file=dump.hprof,format=b <class

name>

v To add a Heapdump to a .hprof file:

– On *nix platforms, press Ctrl+V.

– On Windows, press Ctrl+BREAK.

When the JVM receives these signals, it writes a Heapdump file in its working

directory.

Running the program

HAT runs a Web server on your computer. Connect to it with your favorite

browser.

To run the HAT server program, use the run shell script that is provided in the bin

directory within hat.zip. Download hat.zip from http://java.sun.com/people/billf/
heap/index.html.

 ./hat -port=7002 <.hprof file>

If you do not specify a port, the default is 7000. Point your browser to

http://localhost:7000/.

The HAT server program compares two Heapdumps. You can specify a numbered

Heapdump in the file. For example, to compare the first and second Heapdump in

slotCar.hprof, use this command: ./hat -baseline= <application name>.hprof:1

<application name>..hprof:2

The heap profile file that you give to HAT must be in binary format. Use the

format=b modifier on the -Xhprof command line. For example, to see all hprof

options:

java -Xrunhprof:help

Use hprof to get information about the heap. You can profile the following with

respect to heap:

v Dump -> Gives a dump of the heap. This will have the following distinctions:

– ROOT : Root set by the Garbage Collector

– ARR : Arrays

– CLS : Classes

– OBJ : Instances
v Sites -> Gives a dump of the allocation sites.

v All -> Gives the heap dump and the sites.

When the profiler has the output, run HAT on the profiler: hat myClass.hprof.

The output of this analysis will be available as an html page on localhost. To view

the report, go to http://localhost:7000/. With this report, you can see the members

of the rootset, that can give information about static references, JNI local references,

heap analysis tool (HAT)

Chapter 38. Using third-party tools 385

http://java.sun.com/people/billf/heap/index.html
http://java.sun.com/people/billf/heap/index.html
http://localhost:7000/
http://localhost:7000/

JNI global references, and system class references. You can view the instance

counts for all the classes through a difference form in a generated report. The

information about memory used and number of bytes for classes can help in

finding the memory leak and improving the performance of your application.

HeapWizard

The HeapWizard utility program is a product of IBM WebSphere L2 Support. This

program is provided “as is”, without guarantee or warranty of suitability of any

sort. If you have questions about this product, or want to report a problem or

suggest a new feature, e-mail ronv@us.ibm.com. For a copy of the tool, e-mail

jvmcookbook@uk.ibm.com

Note: Currently, this utility works only on IBM JDK heapdump<pid>.<ts>.txt files.

Future versions might handle other manufacturer’s heap dumps.

HeapWizard reads and analyzes a heapdump.txt file. It can run from the

command-line (to provide an XML format file) or work as a GUI to provide an

expandable tree view. The suggested method of operation is the GUI. To output

the results in XML format you need Xerces v1.4 or later.

To start HeapWizard in GUI mode, use the following:

 java -Xms128M -Xmx512M -jar HeapWizard.jar

In most cases, you want to examine heapdumps one at a time. You can do this if

you have two heapdumps from the same JVM instance; you can subtract an earlier

(base) heapdump from a later one to get a heap difference.

Terms

Tree A parent-child reference structure where a parent object holds references to

one or more child objects that, in turn, might hold references to other

objects, and so on.

Note: Where two or more objects reference each other (for example,

X->A->B->C->A), HeapWizard breaks the loop at the last reference.

Therefore, an object might appear to be at the top of a subtree

although another object is referencing it in the heap.

Root-level

The top level of a tree. An object at the root-level does not have any other

objects holding a reference to it.

Rootsize

The accumulated size of a root-level object’s tree. This value is counted for

root-level objects only.

Heap view

HeapWizard displays two different perspectives of the Heapdump, Objects, and

Classes. The Objects view, walks the tree of each root-level object and displays the

objects to which the tree makes reference, subsequent referenced objects, and the

accumulated size going down the tree.

The Classes view displays a flat list of all object types (classes) that were found in

the Heapdump. It lists the total number of objects of that type, the accumulated

subtree sizes, and the total accumulated size of root-level objects of that class type.

heap analysis tool (HAT)

386 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

ronv@us.ibm.com
jvmcookbook@uk.ibm.com

You should:

1. Check the Classes count= value. If you have more than 4000, it is probably

suspect. For example, cases have occurred in which 20,000 JSP classes were

displayed because a customer was dynamically generating JSPs with a script at

the rate of a couple hundred per hour.

2. Check the first few rootsize values under Classes. This is probably the most

useful value. Usually, a memory leak is caused when a single type of object is

allocated repeatedly with a global reference that does not get cleared.

3. If step 2 shows that a generic class (such as java/util/Hashtable) is holding a

large amount of memory, look in the Objects view to expand a few objects of

the offending class type to see what objects it is holding. This helps you

identify from where the objects are coming.

4. Generally, the finalizer thread is not very likely to be the cause of the memory

leak unless it shows up repeatedly (across different heapdumps) with the same

objects below it. The finalizer thread is where complex objects are cleaned up.

So, on a very busy system, you might see many objects in the finalizer thread.

Command-line options

Most of the options that are show here allow you to run HeapWizard without the

GUI.

Usage:

java [jvm-options] HeapWizard [<infile>] [-<options>]

where <infile> is input heapdumpXXXXX.txt file and -<options> is one or more of

the following:

-noview

Disable opening the GUI to display output.

-xmlout=<xmlfile>

Write xml output to file <xmlfile>.

-base=<heapdump>

Subtract <heapdump> as the baseline for <infile>.

-encoding=<enc>

Input file encoding name (default to system default).

-trace=<level>

Enable trace statements to stderr:

v 0 = Silent mode

v 1 = Show each phase

v 2 = Show object counts and memory usage (default)

v 3 = Level 2 plus show object names as tracing

-classBySize=<len>

The maximum number of classes that are displayed in the Classes By Size GUI

tree (default 100).

-objectBySize=<len>

The maximum number of object trees that are displayed in the Objects By Size

GUI tree (default 500).

-noClassList

Disable output of class name list.

HeapWizard

Chapter 38. Using third-party tools 387

-jdk118

Heapdump is from a 1.1.8 SDK.

-help

Display this listing.

Note: If -noview is set, and -xmlout is not set, XML output is to stdout.

Examples:

Jinsight

Jinsight is an IBM tool that is freely available. It is not a product of the IBM Java

Technology Center or part of the SDK and is supported by its authors only. See the

Jinsight Web site, referred to later in this section, for communication with this

tool’s support team.

Supported platforms

Windows, AIX, and OS/390

Applicability

v Leaks

v Performance

Summary

Jinsight is a tool for analyzing and visualizing how Java programs execute. Jinsight

has two parts:

v Java instrumentation, which generates trace data as your Java program runs.

v Jinsight visualizer, which reads the trace data and presents views for analysis.

Jinsight can be used:

v In scenarios where a big application is consuming a large amount of memory

which results in ″out of memory″ exceptions or abnormal usage of memory.

v To detect memory leaks.

v To find the root cause of memory consumption.

v To analyze performance problems like CPU utilization.

Jinsight views

The views of Jinsight outputs much application-related information like:

v Methods that are frequently called while the application and also the

constructors are executing.

v Objects created in the sequence of application execution (in the form of trees)

and also the total memory usage for those objects. These objects include

class/static objects, JNI references, Java Objects, and Java stacks.

Here are the views that Jinsight outputs, and their usage.

Execution view

Explore the detailed program execution sequence per thread.

java -Xms32M -Xmx512M -jar HeapWizard.jar

java -Xms32M -Xmx512M -jar HeapWizard.jar heapdump2.txt -trace=3

-base=heapdump1.txt

java -Xms32M -Xmx512M -jar HeapWizard.jar heapdump1.txt -xmlout=heapdump1.xml -noview

HeapWizard

388 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

Execution pattern view

Browse recurring execution patterns in aggregated form.

Table view

See summary information about a run in tabular form. Table views exist

for classes, objects, methods, invocations, threads, packages, and

user-defined slices.

Call tree view

Study summary statistics for call paths that lead from or to selected

method invocations.

Object histogram view

Examine instances of objects that are grouped by class, and their level of

activity.

Method histogram view

Examine methods that are grouped by class, and their level of activity.

Reference pattern view

Explore patterns of references to or from a set of objects, in varying detail;

this is useful for studying data structures and finding memory leaks.

 You can use various Jinsight functions to answer questions such as:

v What are calling relationships among a group of methods?

v Why is a method taking so long?

v Why is a method being called?

v Where are all the places in which a method is called?

v What is the context of each individual method invocation?

v Are repetitive sequences in summary form or individual?

v Which are expensive methods?

v Which methods are taking a long time?

Also for analyzing memory related problem like memory leaks or huge memory

consumption, look for the following details:

v Look for activity in constructors.

v Look for the objects that are created the most frequently.

v Find the objects that create the objects that you are studying.

For more details, refer to http://www.alphaworks.ibm.com/tech/jinsight.

Running Jinsight

To use Jinsight, do these two steps:

1. Generate the Application Trace data. Set CLASSPATH=<path where your program

is>. Run Jinsight with your application as a parameter:

 jinsight_trace -tracemethods <yourProgram> <yourProgramArgs>

A trace file yourprogram.trc is created as your program runs.

2. Take the snapshot of the Memory Heap with set CLASSPATH=<path where your

program is>. Run JInsight: jinsight_trace <yourProgram> <yourProgramArgs>

To take a snapshot of all the objects, or the objects and their references during an

execution:

v On *nix platforms, press Ctrl+\.

Jinsight

Chapter 38. Using third-party tools 389

http://www.alphaworks.ibm.com/tech/jinsight

v On Windows, press Ctrl+BREAK.

You will see a prompt:

trace:yourprogram.trc, Tracing status: CORE

Jinsight Tracing Options:

[tm] - start tracing methods

[sm] - stop tracing methods

[tp] - start tracing population events

[sp] - stop tracing population events

[S] - stop tracing

[g] - force synchronous garbage collection

[dp] - dump a generation’s population

[dr] - dump a generation’s references

[ps] - print system state

[q] - quit program

[u <string>] - user event

[<Enter>] - exit command handler

>

Use the commands above on the command line as required.

Visualizing an application trace

1. Run jinsight.bat, and specify a trace file as a parameter: jinsight

GCExample1.trc.

2. The Jinsight workspace window is displayed.

3. Click on the Load button for loading the trace file.

JProbe

The suite of JProbe products consists of:

v The JProbe Profiler with memory debugger

v JProbe ThreadAnalyser

v Jprobe Coverage

Applicability

v Leaks

v Hangs

Supported platforms

Windows, Linux, and AIX

Summary

With JProbe ThreadAnalyser, you can identify possible deadlocks, data races, and

stalled threads.

JProbe Coverage helps you to understand exactly what code your current tests

cover, including how many times a line of code executes and what code is missed

completely. You can then streamline your tests by focusing on the critical path,

reducing redundancies, and improving coverage.

Using Memory Debugger you can trace objects that are consuming more memory

(which can lead to out-of-memory conditions). Memory Debugger also traces the

Jinsight

390 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

objects that the Garbage Collector might not be able to reach and that could

therefore cause memory leaks. The output is useful for analyzing the Java heap.

JProbe’s Memory Debugger outputs memory-related information, such as:

v All the Java objects that are allocated with the name of the class, package,

number of instances, and total memory occupied

v Referrers and references of all the objects

v All objects that have been garbage collected, live objects, and from where these

objects are allocated

v A graphical representation of the heap that shows how the Java heap is growing,

when the Garbage Collector is started, and the behavior of the heap

v When the Garbage Collector comes into action, the decrease in the count of

objects

v Live objects being created whenever an application creates objects; for example,

adding a dynamic button to a panel

v A snapshot of the heap at various instances of the application’s execution

v Force garbage collection

By using the above functions, you can detect objects that might be consuming

memory, or objects that the Garbage Collector might not be able to reach. Also,

using JProbe’s Thread Analyzer, you can detect possible deadlock conditions or

data races that might lead an application to hang.

For more details on JProbe, see http://www.sitraka.com/software/jprobe.

Using the Memory Debugger

1. Go to the JProbe LaunchPad.

2. In the Program Tab, give the details of the application.

3. In the VM Tab, give the details of Java VirtualMachine that you are using.

4. In the Heap and Performance tabs, select the information that you want to

view.

5. Select Run.

JSwat

JSwat is a graphical Java debugger. You can use it instead of jdb to debug any Java

applications. JSwat is more useful for debugging your application than it is for

debugging faults in the JVM. JSwat, should therefore help you to find bugs.

Typically, Java application programmers can use JSwat to debug their Java

applications during the development stage. In large Java applications, you can use

JSwat to narrow down to the failing area of code.

Documentation on JSwat is included with the distributable package of JSwat.

Download it from http://www.bluemarsh.com/java/jswat/.

Applicability

Use JSwat for Java source-level debugging for any kind of problem. It is

particularly useful for identifying the area of Java code that is causing the problem.

JProbe

Chapter 38. Using third-party tools 391

http://www.sitraka.com/software/jprobe
http://www.bluemarsh.com/java/jswat/

Summary

JSwat supports console and graphical modes of debugging. Console mode is more

useful when the AWT/JFC classes are not provided in your runtime environment,

or if you prefer a quicker interface for debugging.

JSwat debugger supports:

v Threads display

v Tree display of classes, including inner classes

v Local variables display

v Watchpoints display

v Stack frames display

v Source code viewer

v Breakpoints controlling

v Remote debugging

v Applet debugging

v Servlet debugging

Preparing for JSwat debugging

To debug any Java application in JSwat, first compile your Java application with -g

option (javac -g Testcase.java). In the case of a huge Java application, if the area of

code to be debugged is known, only that part of the code can be compiled with -g

option.

Running your application in JSwat debugger

v Add the files<<sdk_home>\lib\tool.jar and <jswat_home>\jswat-20011027.jar to

your CLASSPATH.

v Run your application in the JSwat debugger using the command java

com.bluemarsh.jswat.Main TestCase.

If the source code of the application that is being debugged is not in the current

directory, JSwat can locate the source code only if you use the option

-Djava.source.path=<directory of application>. For example,

java -Djava.source.path=C:\nprashan\src com.bluemarsh.jswat.Main TestCase

Process Explorer

This a Windows tool that runs on all Windows platforms. It is freeware and is

available for download from http://www.sysinternals.com.

Process Explorer shows you information about the handles and DLLs processes

that have opened or loaded.

The Process Explorer display consists of two sub-windows. The top window

always shows a list of the currently active processes, including the names of their

owning accounts. The information that is displayed in the bottom window

depends on the mode that Process Explorer is in:

v If PE is in Handle mode, the handles that were opened by the process that was

selected in the top window are displayed.

v If PE is in DLL mode, the DLLs and memory-mapped files that the process has

loaded are displayed.

JSwat

392 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

http://www.sysinternals.com

PE also has a powerful search capability that quickly shows which processes have

particular handles opened or DLLs loaded.

The unique capabilities of Process Explorer make it useful for tracking down

DLL-version problems or handle leaks, and provide insight into the way Windows

and applications work. Here is a screenshot of Process Explorer Version 5.2.

To use PE:

1. Bring it up and select the process you want to view: java.exe.

2. From the View menu, select either DLLs or handles. The bottom window will

refresh appropriately.

3. In DLL mode the path section of the display will show the JVM DLLs (they are

located in the \bin directory of your Java path).

Note: If you are running the WebSphere Application Server, more than one

java.exe process might be running.

Figure 14. Screenshot of Process Explorer

process explorer

Chapter 38. Using third-party tools 393

process explorer

394 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

Part 5. Appendixes

© Copyright IBM Corp. 2003, 2006 395

396 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

Appendix A. Compatibility tables

WebSphere Application Server and JVM/SDK levels

Before release 5 of the IBM WebSphere Application Server, the SDK and the ORB

levels did not match. This table shows the version of the embedded JVM that ships

with the corresponding version of the WebSphere Application Server.

 WebSphere Application

Server

SDK ORB

3.5.4 1.2.2 1.2.2

3.5.5 1.2.2 1.2.2

4.0.1 1.3.0 1.3.0

4.0.2 1.3.0 1.3.0

4.0.3 1.3.1 1.3.0

4.0.4 1.3.1 1.3.0

4.0.5 1.3.1 1.3.1

5.0 1.3.1 1.3.1

5.0.1 1.3.1 1.3.1

5.0.2 1.3.1 1.3.1

5.1 1.4.1 1.4.1

5.1.0 1.4.1 Service Refresh 1 1.4.1

5.1.1 1.4.2 1.4.2

© Copyright IBM Corp. 2003, 2006 397

398 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

Appendix B. ORB tracing for WebSphere Application Server

version 5

The diagnostic trace configuration settings for a server process determine the initial

trace state for that server process. The configuration settings are read at server

startup and are used to configure the trace service, either at server startup or while

the server is running. You can select whether to enable or disable ORB trace, and

you can change many of the trace service properties or settings while the server

process is running. This appendix describes:

v “Enabling trace at server startup”

v “Changing the trace on a running server” on page 400

v “Selecting ORB traces” on page 400

For more information, see:

Enabling trace at server startup

The diagnostic trace configuration settings for a server process determine the initial

trace state for that server process. The configuration settings are read at server

startup and are used to configure the trace service. To enable the trace:

 1. Start the AdminConsole.

 2. In the console navigation tree, click Troubleshooting > Logging and Tracing.

 3. Click Server > Diagnostic Trace.

 4. Click Configuration.

 5. Select the Enable Trace check box to enable trace, or clear the check box to

disable trace.

 6. Set the trace specification to the desired state by entering the correct

TraceString:

ORBRas=all=enabled

 7. Select whether to send trace output to a file, or to an in-memory circular

buffer.

If you select a file, go to step 8.

If you select an in-memory circular buffer, go to step 11.

 8. If you have selected a file for trace output, set the maximum size in MB to

which the file is allowed to grow. When the file reaches this size, the existing

file is closed, renamed, and a new file with the original name is opened. The

new name of the original file is the original name with a timestamp qualifier

added to it.

 9. Specify how many history files you want to keep.

10. Go to step 12 on page 400.

11. If you have selected an in-memory circular buffer for the trace output, set the

size of the buffer. The size of the buffer determines the maximum number of

entries that are to be kept in the buffer at any given time. Specify the size of

ftp://ftp.software.ibm.com/software/webserver/appserv/library/wasv5base_pd.pdf

or

http://www-3.ibm.com/software/webservers/appserv/was/library/

or the WAS problem determination guide:

http://www.redbooks.ibm.com/abstracts/sg246798.html

© Copyright IBM Corp. 2003, 2006 399

ftp://ftp.software.ibm.com/software/webserver/appserv/library/wasv5base_pd.pdf
http://www-3.ibm.com/software/webservers/appserv/was/library/
http://www.redbooks.ibm.com/abstracts/sg246798.html

the buffer in thousands of entries. For example, if you want 1000 entries,

specify 1; if you want 3000 entries, specify 3.

12. Select the desired format for the generated trace.

13. Save the changed configuration.

14. Start the server.

Changing the trace on a running server

You can change the trace service state that determines which components are being

actively traced for a running server. To do this:

1. Start the AdminConsole.

2. In the console navigation tree, click Troubleshooting > Logging and Tracing.

3. Click Server > Diagnostic Trace.

4. Select the Runtime tab.

5. If you want to write your changes back to the server configuration, select the

Save Trace check box.

6. Change the existing trace state by changing the trace specification to the

desired state.

7. If you want to change from the existing trace output, configure a new one.

8. Click Apply.

Selecting ORB traces

You can select to enable or disable the ORB traces. To do this:

 1. Start the AdminConsole.

 2. In the console navigation tree, click Servers > Application Server.

 3. Click Server.

 4. Click Configuration

 5. In the Additional Properties panel, click ORB Service.

 6. Select the Enable Trace check box to enable ORB trace, or clear the check box

to disable ORB trace.

 7. If you have chosen to disable ORB trace, go no further with these instructions.

If you have chosen to enable ORB trace, go to the next step.

 8. In the Additional Properties panel, select Custom Properties.

 9. Ensure that these two property names and values are present:

com.ibm.CORBA.Debug , true

com.ibm.CORBA.CommTrace , true

10. Add them if they are not present.

enabling trace at server startup

400 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

Appendix C. CORBA GIOP message format

Table 29 shows:

v All types of messages

v The values of those messages as an integer number

v Whether those messages contain only a header or a header and a body

v Whether those messages are supported in GIOP versions 1.0, 1.1, and 1.2

 Table 29. CORBA GIOP messages

Message Value Header Body 1.0 or 1.1

supported

1.2 supported

Request 0 X X X X

Reply 1 X X X X

Cancel

Request

2 X X X

Locate

request

3 X X X

Locate reply 4 X X X X

Close

connection

5 X X

Message error 6 X X

Fragment 7 X X X

Note: From now and on in this chapter, each cell (table column) represents 1 byte

unless specified otherwise. Alignment of fields is not specified in the

following byte description. In a GIOP message, some fields need to start at a

4- or 8-byte boundary. Extra bytes of padding are present (always set to 0).

GIOP header

All types of messages that are described in Appendix C, “CORBA GIOP message

format” start with the GIOP Message Header:

 47=G 49=I 4F=0 50=P Major; for

example,

01

Minor; for

example,

02

Flags Value (4 bytes)

length of

the rest of

the

message

In GIOP1.0, the least-significant bit of the Flags byte (that is, the first bit on the

right of the byte) indicates the byte sequence (big endian or little endian). In GIOP

1.1 and 1.2, the least-significant bit indicates the byte sequence that is used in later

elements of the message. A value of false (0) indicates a big-endian byte

sequencing; true (1) indicates little-endian byte sequencing.

The bit that is immediately to the left of the least-significant bit indicates whether

or not more fragments follow. A value of false (0) indicates that this message is the

last fragment; true (1) indicates that more fragments follow this message. The

© Copyright IBM Corp. 2003, 2006 401

most-significant six bits are reserved; for GIOP 1.2 (1.1) they must be set to zero.

The Value field is the field that is indicated in Appendix C, “CORBA GIOP

message format,” on page 401.

Request header

 Request id (4 bytes) Response Expected Reserved Reserved Reserved

The Response Expected flag indicates whether this request expects a reply from the

server. Values 1 = WITH_SERVER and 3 = WITH_TARGET correspond to a true

value. Therefore, the client expects a reply. A value of 0 = NONE or

WITH_TRANSPORT means that no reply is required. The reserved bytes are for

future use.

After this first 8 bytes, the header continues with the specification of the remote

reference. This specification, however, differs in different version of the GIOP. In

GIOP 1.0 and 1.1, the specification is:

 Length of the Object Key (4 bytes) Object key (see previous length in bytes)

In GIOP 1.2, the specification is more complex. The next value of Addressing

Disposition index decides whether to insert an object key, a profile, or a full IOR

(one row corresponds to one value):

 Addressing disposition (2

bytes):

 0=object key

1=profile

2=IOR

Object key length (4 bytes) Object key

IOR profile ID (4 bytes) IOR profile length IOR profile data

IOR profile index Full IOR

Then for all versions of GIOP the header continues with:

 Length of operation name Operation name N= Number of service contexts

present (4 bytes)

and a sequence of N service contexts must come next. The following describes how

one of these service contexts is written. N of them are written consecutively.

 Service context ID (4 bytes) Service context length (4 bytes) Service context data

Request body

 Marshaled parameters (CORBA valuetype) Context pseudo object (for GIOP 1.0/1.1 only)

Reply header

For GIOP 1.2:

 Request ID (4 bytes) Reply status (4 bytes)

CORBA GIOP message format

402 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

The reply status can be:

v 0 = NO_EXCEPTION

v 1 = USER_EXCEPTION

v 2 = SYSTEM_EXCEPTION

v 3 = LOCATE_FORWARD

v 4 = (deprecated)

v 5 = NEEDS_ADDRESSING_MODE (GIOP 1.2 only)

Request ID and reply status are then followed by:

 Number of service contexts (4 bytes) < sequence of service contexts as before >

Note: In GIOP 1.0/1.1, the request ID and the reply status comes after the service

context list.

Reply body (based on reply status)

v NO_EXCEPTION:

 Marshaled parameters

v USER_EXCEPTION: Varies (see CORBA specification)

v SYSTEM_EXCEPTION:

 Exception ID length

(4 bytes)

Exception ID Minor code (4 bytes) Completion status (4

bytes)

v LOCATE_FORWARD:

 IOR (starts with type ID)

v NEEDS_ADDRESSING_MODE (GIOP 1.2 only):

 Addressing Disposition (2 bytes)

Cancel request header

This contains only the request ID coded in 4 bytes.

Locate request header

 Request ID Addressing

disposition

(GIOP 1.2 only)

Object key

length (4 bytes)

Object key

IOR Profile ID (4

bytes)

IOR profile

length

IOR profile data

IOR profile

index

Full IOR

GIOP 1.0/1.1 supports only the object key version (first row only) and no

addressing disposition is specified.

CORBA GIOP message format

Appendix C. CORBA GIOP message format 403

Locate reply header

 Request ID (4 bytes) Reply Status (4 bytes)

Locate reply body

v UNKNOWN_OBJECT = 0: No locate reply body

v OBJECT_HERE = 1: No locate reply body

v OBJECT_FORWARD = 2: IOR starting with the type ID

v Skip 3 (now deprecated)

v LOC_SYSTEM_EXCEPTION = 4: (Same as SYSTEM_EXCEPTION in reply body)

v NEEDS_ADDRESSING_MODE = 5: Addressing disposition index in two bytes

(short)

Fragment message

The fragment message observes these rules:

v The fragment length plus the GIOP header length (12 bytes) is a multiple of 8

for all but last message.

v All fragments must include at least the GIOP header and the request ID (total

length 16 bytes).

v In the GIOP header of the first fragment, the message type can be request,

reply, locate request, and locate reply. The fragment flag is set to 1.

v In the fragments that follow the first one, the message type is Fragment, and

the fragment flag is set to 1, except in the last fragment where the flag is set to

0.

Fragment header (GIOP 1.2 only)

The fragment header is made of only four bytes that represent the request ID.

CORBA GIOP message format

404 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

Appendix D. CORBA minor codes

This appendix gives definitions of the most common OMG- and IBM-defined

CORBA system exception minor codes that the IBM Java ORB uses. (See

“Completion status and minor codes” on page 191 for more information about

minor codes.)

When an error occurs, you might find additional details in the ORB FFDC log. By

default, the IBM Java ORB creates an FFDC log whose name is of the form

orbtrc.DDMMYYY.HHmm.SS.txt. If the IBM Java ORB is operating in the WebSphere

Application Server or other IBM product, see the publications for that product to

determine the location of the FFDC log.

CONNECT_FAILURE_1

Explanation: The client attempted to open a

connection with the server, but failed. The reasons for

the failure can be many; for example, the server might

not be up or it might not be listening on that port. If a

BindException is caught, it shows that the client could

not open a socket locally (that is, the local port was in

use or the client has no local address).

Applicable CORBA exception class:

 org.omg.CORBA.TRANSIENT

User response: As with all TRANSIENT exceptions, a

retry or restart of the client or server might solve the

problem. Ensure that the port and server host names

are correct, and that the server is running and allowing

connections. Also ensure that no firewall is blocking the

connection, and that a route is available between client

and server.

CONN_CLOSE_REBIND

Explanation: An attempt has been made to write to a

TCP/IP connection that is closing.

Applicable CORBA exception class:

 org.omg.CORBA.COMM_FAILURE

User response: Ensure that the completion status that

is associated with the minor code is NO, then reissue

the request.

CONN_PURGE_ABORT

Explanation: An unrecoverable error occurred on a

TCP/IP connection. All outstanding requests are

canceled. Errors include:

v A GIOP MessageError or unknown message type

v An IOException that is received while data was

being read from the socket

v An unexpected error or exception that occurs during

message processing

Applicable CORBA exception class:

org.omg.CORBA.COMM_FAILURE

User response: Investigate each request and reissue if

necessary. If the problem reoccurs, run with ORB,

network tracing, or both, active to determine the cause

of the failure.

CREATE_LISTENER_FAILED

Explanation: An exception occurred while a TCP/IP

listener was being created.

Applicable CORBA exception class:

 org.omg.CORBA.INTERNAL

User response: The details of the caught exception are

written to the FFDC log. Review the details of the

exception, and take any further action that is necessary.

LOCATE_UNKNOWN_OBJECT

Explanation: The server has no knowledge of the

object for which the client has asked in a locate request.

Applicable CORBA exception class:

 org.omg.CORBA.OBJECT_NOT_EXIST

User response: Ensure that the remote object that is

requested resides in the specified server and that the

remote reference is up-to-date.

NULL_PI_NAME

Explanation: One of the following methods has been

called:

org.omg.PortableInterceptor.ORBInitInfoOperations.

add_ior_interceptor

org.omg.PortableInterceptor.ORBInitInfoOperations.

add_client_request_interceptor

org.omg.PortableInterceptor.ORBInitInfoOperations

.add_server_request_interceptor

The name() method of the interceptor input parameter

returned a null string.

© Copyright IBM Corp. 2003, 2006 405

Applicable CORBA exception class:

 org.omg.CORBA.BAD_PARAM

User response: Change the interceptor implementation

so that the name() method returns a non-null string.

The name attribute can be an empty string if the

interceptor is anonymous, but it cannot be null.

ORB_CONNECT_ERROR_6

Explanation: A servant failed to connect to a

server-side ORB.

Applicable CORBA exception class:

 org.omg.CORBA.OBJ_ADAPTER

User response: See the FFDC log for the cause of the

problem, then try restarting the application.

POA_DISCARDING

Explanation: The POA Manager at the server is in the

discarding state. When a POA manager is in the

discarding state, the associated POAs discard all

incoming requests (whose processing has not yet

begun). For more details, see the section that describes

the POAManager Interface in the http://
www.omg.org/cgi-bin/doc?formal/99-10-07.

Applicable CORBA exception class:

 org.omg.CORBA.TRANSIENT

User response: Put the POA Manager into the active

state if you want requests to be processed.

RESPONSE_INTERRUPTED

Explanation: The client has enabled the

AllowUserInterrupt property and has called for an

interrupt on a thread currently waiting for a reply from

a remote method call.

Applicable CORBA exception class:

 org.omg.CORBA.NO_RESPONSE

User response: None.

TRANS_NC_LIST_GOT_EXC

Explanation: An exception was caught in the

NameService while the NamingContext.List() method

was executing.

Applicable CORBA exception class:

 org.omg.CORBA.INTERNAL

User response: The details of the caught exception are

written to the FFDC log. Review the details of the

original exception, and any further action that is

necessary.

UNEXPECTED_CHECKED_EXCEPTION

Explanation: An unexpected checked exception was

caught during the servant_preinvoke method. This

method is called before a locally optimized operation

call is made to an object of type class. This exception

does not occur if the ORB and any Portable Interceptor

implementations are correctly installed. It might occur

if, for example, a checked exception is added to the

Request interceptor operations and these higher level

interceptors are called from a back level ORB.

Applicable CORBA exception class:

 org.omg.CORBA.UNKNOWN

User response: The details of the caught exception are

written to the FFDC log. Check whether the class from

which it was thrown is at the expected level.

UNSPECIFIED_MARSHAL_25

Explanation: This error can occur at the server side

while the server is reading a request, or at the client

side while the client is reading a reply. Possible causes

are that the data on the wire is corrupted, or the server

and client ORB are not communicating correctly.

Communication problems can caused when one of the

ORBs has an incompatibility or bug that prevents it

from conforming to specifications.

Applicable CORBA exception class:

 org.omg.CORBA.MARSHAL

User response: Check whether the IIOP levels and

CORBA versions of the client and server are

compatible. Try disabling fragmentation (set

com.ibm.CORBA.FragmentationSize to zero) to

determine whether it is a fragmentation problem. In

this case, analysis of CommTraces

(com.ibm.CORBA.CommTrace) might give extra

information.

CORBA minor codses

406 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

http://www.omg.org/cgi-bin/doc?formal/99-10-07
http://www.omg.org/cgi-bin/doc?formal/99-10-07

Appendix E. Environment variables

This appendix provides the following information about environment variables:

v “Displaying the current environment”

v “Setting an environment variable”

v “Separating values in a list”

v “JVM environment settings”

v “z/OS environment variables” on page 411

Displaying the current environment

To show the current environment, run:

 set (Windows)

 env (Unix)

 set (z/OS)

To show a particular environment variable, run:

 echo %ENVNAME% (Windows)

 echo $ENVNAME (Unix)

Use values exactly as shown in the documentation. The names of environment

variables are case-sensitive in Unix but not in Windows.

Setting an environment variable

To set the environment variable LOGIN_NAME to Fred, run:

 set LOGIN_NAME=Fred (Windows)

 export LOGIN_NAME=Fred (Unix ksh or bash shells)

These variables are set only for the current shell or command line session.

Separating values in a list

If the value of an environment variable is to be a list:

v On Unix the separator is normally a colon (:).

v On Windows the separator is usually a semicolon (;).

JVM environment settings

Table 30 on page 408 summarizes common environment settings. It is not a

definitive guide to all the settings. Also, the behavior of individual platforms might

vary. Refer to individual sections for a more complete description of behavior and

availability of these variables.

© Copyright IBM Corp. 2003, 2006 407

Table 30. JVM environment settings — general options

Variable Name Variable Values Notes

CLASSPATH A list of directories for the JVM to find user

class files, paths, or both to individual .jar

or .zip files that contain class files; for

example, /mycode:/utils.jar (Unix),

D:\mycode;D:\utils.jar (Windows)

Any classpath that is set in this way is

completely replaced by the -cp or

-classpath Java argument if used.

IBM_JAVA_

COMMAND_LINE

Set by the JVM after it starts, to enable you

to find the command-line parameters set

when the JVM started.

IBMJAVA_

INPUTMETHOD_

SWITCHKEY

See SDK User Guide. Unix only.

IBMJAVA_

INPUTMETHOD_

SWITCHKEY_

MODIFIERS

See SDK User Guide. Unix only.

IBM_JAVA_OPTIONS This variable can be used to store default

Java options. These can include -X, -D or

-verbose:gc style options; for example,

-Xms256m -Djava.compiler=NONE

-verbose:gc

Any options are overridden by

equivalent options that are specified

when Java is started.

Does not support ’showversion’.

Note that if you specify the name of a

trace output file either directly, or

indirectly, through a properties file, that

output file might be accidentally

overwritten if you run utilities such as

the trace formatter, dump extractor, or

dump formatter. For information about

how to avoid this problem, see

Controlling the trace, Note 2 on page

323.

IBM_USE_FLOATING_

STACKS

Enable the JVM to use the floating stacks Linux only.

JAVA_ASSISTIVE To prevent the JVM from loading Java

Accessibility support, set the

JAVA_ASSISTIVE environment variable to

OFF.

JAVA_DEBUG_PROG JAVA_DEBUG_PROG=<prog_exe>

This option starts the JVM through

<prog_exe> executable. Usually used to

debug; for example:

JAVA_DEBUG_PROG=gdb

Linux only.

JAVA_FONTS Define the font directory.

JAVA_MMAP_MAXSIZE Specifies the maximum size of zip or jar

files in MB for which the JVM will use

memory mapping to open those files. Files

below this size are opened with memory

mapping; files above this size with normal

I/O.

Default=0. This default disables memory

mapping.

JAVA_PLUGIN_AGENT Specify the vesion of Mozilla Unix only.

environment variables

408 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

Table 30. JVM environment settings — general options (continued)

Variable Name Variable Values Notes

JAVA_PLUGIN_REDIRECT If this variable is set to a non-null value,

JVM output, while serving as a plug-in, is

redirected to files. The standard output and

error are redirected to files plugin.out and

plugin.err respectively.

Unix only.

JAVA_ZIP_DEBUG Setting this to any value displays memory

map information as it is created.

LANG Specify a locale to use by default. Unix only.

LD_LIBRARY_PATH This variable contains a colon-separated list

of the directories from where system and

user libraries are loaded. You can change

which versions of libraries are loaded, by

modifying this list.

Linux only.

LIBPATH This variable contains a colon-separated list

of the directories from where system and

user libraries are loaded. You can change

which versions of libraries are loaded, by

modifying this list.

AIX and z/OS only.

PLUG_IN HOME Set the Java plug-in path AIX only.

SYS_LIBRARY_PATH Specify the library path. Linux and Unix only.

 Table 31. Basic JIT options

Variable Name Variable Values Notes

IBM_MIXED_

MODE_THRESHOLD

Threshold for method compilation. This is

the number of times a method or loop is

executed before it is considered for

compiling. A value of 0 means that the

compiler attempts to compile every method

on its first invocation.

The default values are around 500

through 1000, depending on platform.

JAVA_COMPILER The runtime Java compiler to use. Default

value is jitc, the Just-In-Time compiler. A

value of NONE causes the Java bytecode to

be interpreted only, not compiled.

Any unknown value behaves like

NONE, and prints a message to say that

the bytecode will be interpreted only.

You can override this by setting the

-Djava.compiler property on the

command line.

JITC_COMPILEOPT Specify debugging options to the JIT

compiler. These include: COMPILING:

Output which methods are compiled or are

skipped while being compiled. SKIP: Skip

compiling all methods. SKIP{P/C}{M}: Skip

the M method from the C class in the P

package. SKIP{P1/C1}{M1}{P2/C2}{M2}:

Skip compiling both P1.C1.M1() and

P2.C2.M2() methods. NALL: Syntax as with

SKIP except that it disables only

optimization of methods. The options can

be combined with : (colon) on Unix and ;

(semicolon) on Windows.

The C and M can be a wildcard

specification. For example,

JITC_COMPILEOPT=

COMPILING:SKIP{P1/*}{*}

{P2/Q2/C2}{M2}:NALL{P3/C3}{*}

shows what is compiled,

skips everything in

package P1 and the

P2.Q2.C2.M2() method, and

disables optimization of every

method in the P3.C3 class.

environment variables

Appendix E. Environment variables 409

Table 32. Javadump and Heapdump options

Variable Name Variable Values Notes

DISABLE_JAVADUMP Disables Javadump creation by setting to

true (case-sensitive).

Can use command line parameter

-Xdisablejavadump instead. Avoid

using this environment variable because

it makes it more difficult to diagnose

failures.

On z/OS, JAVA_DUMP_OPTS should

be used in preference.

IBM_HEAPDUMP or

IBM_HEAP_DUMP

Enables heapdump. See Chapter 26, “Using Heapdump,” on

page 245.

IBM_HEAPDUMP_

OUTOFMEMORY

Generates a heapdump when an

out-of-memory exception is thrown. Set to

any value.

Set to FALSE to turn off this option.

IBM_NOSIGHANDLER Disables Java dump creation by setting to

true.

AIX only. To be used in conjunction

with the DISABLE_JAVADUMP option

for builds subsequent to the January

2003 builds.

IBM_JAVACOREDIR Specify an alternative location for

Javadump files; for example, on Linux

IBM_JAVACOREDIR=/dumps

On z/OS _CEE_DMPTARG is used

instead.

IBM_JAVADUMP

_OUTOFMEMORY

Trigger a Javadump on heap

exhaustion/OutOfMemory error. Set to any

value to turn this event trigger on.

JAVA_DUMP_OPTS Controls how diagnostic data are dumped. Recommended default value is

described in Chapter 12, “First steps in

problem determination,” on page 97.

_JVM_THREAD

_DUMP_BUFFER_SIZE

Specify maximum size of Javadump file in

bytes.

Default is 512 KB.

TMPDIR Specify an alternative temporary directory.

This is used only in the case when

Javadumps and Heapdumps can be written

only to a temporary directory.

Defaults to /tmp on Unix and \tmp on

Windows.

 Table 33. Diagnostics options

Variable Name Variable Values Notes

IBM_JVM_DEBUG_PROG Launches the JVM under the specified

debugger.

Linux only.

IBM_JVM_MONITOR_OLD Allows you to restore the old algorithm

when you are using SLES 8. See “Scheduler

limitation on SLES 8” on page 145.

IBM_MALLOCTRACE Setting this variable to a nonnull value

enables the tracing of memory allocation in

the JVM. It is used with the

MALLOC_TRACE environment variable.

See http://www.gnu.org/manual/glibc-
2.2.3 /html_node/libc_37.html for details of

how to use MALLOC_TRACE. See

“Tracing” on page 133.

Linux only.

environment variables

410 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

Table 33. Diagnostics options (continued)

Variable Name Variable Values Notes

IBM_XE_COE_NAME This environment variable generates a

system dump when the specified exception

occurs. The value supplied is the package

description of the exception; for example,

java/lang/InternalError

_JAVA_LAUNCHER

_DEBUG

Specifying

_JAVA_LAUNCHER_DEBUG=TRUE prints

debug information on JVM environments

and on loaded libraries while initializing

the JVM.

Default is FALSE. Output is written to

standard out.

JAVA_PLUGIN_TRACE To take a Java plug-in trace, set

JAVA_PLUGIN_TRACE=1 in a session in

which the application will be run. This

setting produces traces from both the Java

and Native layer.

By default, this setting is disabled.

JAVA_VM_PREWAIT This option causes the JVM when acting as

a plug-in to wait for 30 seconds at startup.

This time could for example be used to

attach a debugger before initialization

starts.

Unix only.

LD_ASSUME_KERNEL Can be set to 2.2.5 for Linuxthreads with

fixed stacks. Can be set to 2.4.19 on RedHat

or 2.4.21 on SuSE for Linuxthreads with

floating stacks.

Controls which threading library is

used. Use fixed stacks on RedHat distros

with kernel levels 2.4.0 through 2.4.10.

Otherwise, use the default (Linuxthreads

on older distros, NPTL on newer

distros) unless you are investigating a

possible problem in the threading

libraries.

ALLOCATION

_THRESHOLD

Enables a user to identify the Java stack of

a thread making an allocation request of

larger than the value of this environment

variable.

The output is:

Allocation request for

<allocation request> bytes

<java stack>

If there is no Java stack, <java stack>

becomes No Java Stack.

z/OS environment variables

JAVA_DUMP_OPTS

See Chapter 27, “JVM dump initiation,” on page 251 for details.

JAVA_DUMP_TDUMP_PATTERN=string

Result: The specified string is passed to IEATDUMP to use as the data/set

name for the Transaction Dump. The default string is:

%s.JVM.TDUMP.&JOBNAME..D&YYMMDD..T&HHMMSS

where the hlq is found from the following C code fragment:

pwd = getpwuid(getuid());

pwd->pw_name;

environment variables

Appendix E. Environment variables 411

JAVA_LOCAL_TIME

The z/OS JVM does not look at the offset part of the TZ environment

variable and will therefore incorrectly show the local time. Where local

time is not GMT, you can set the environment variable

JAVA_LOCAL_TIME to display the correct local time as defined by TZ.

JAVA_PROPAGATE=NO

Application programs and middleware products can use the JNI calls

AttachCurrentThread and DetachCurrentThread to attach and detach

respectively the current z/OS native thread to a JVM. These calls cause

internal JVM data areas, that are associated with the thread, to be created

and destroyed.

 During normal thread creation in the JVM; that is, when a Java program

creates a new thread, the security and workload (WLM) context that is

associated with the parent thread is propagated to the new thread. In the

case of a thread being attached to the JVM from native code, as described

above, the thread is treated as a new parent. A token to its security and

workload context is saved and propagated to any threads that this thread

creates while running in the JVM.

 This default behavior closes a possible security problem that is caused

because, by default, when Java code creates a new thread, a new z/OS

USS pthread is created without a security context associated with it. This

means that the new pthread inherits the authority of the address space.

This is not always desirable.

 To support those cases in which middleware is handling security concerns,

the environment variable JAVA_PROPAGATE can be set to NO before

starting the JVM, therefore turning off the default propagation of context

behavior. The environment variable JAVA_PROPAGATE is tested by the

JVM code that is concerned with thread creation only during JVM

initialization, to assure that this behavior cannot be modified by Java

application code during JVM operation.

 For performance reasons, the IBM WebSphere Application Server supports

a nodetach mode of operation. In this case, threads are not detached from

the JVM between separate units of work. In general, nodetach does not

work with the JVM’s default propagation because it is the

DetachCurrentThread that causes the JVM to unset the osenv USS block on

changing of thread identity. This means that if the middleware, for

example the WebSphere Application Server, wants to change the userid

that is associated with the thread between units of work (JVM invocations),

it cannot.

 When the WebSphere Application Server was initially available, this was

the operation: the WebSphere Application Server did not use the default

propagation behavior of the JVM, and so detach and nodetach both

worked. In later releases the WebSphere Application Server began to use

JVM propagation for the case where a client or surrogate id needed to be

used for a thread accessing DB2, for example.

 From WebSphere Application Server 4.0, the environment variable

JAVA_PROPAGATE is set to NO before starting the JVM, so that

propagation of context behavior is turned off.

JAVA_THREAD_MODEL

JAVA_THREAD_MODEL can be defined as one of:

environment variables

412 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

GREEN

JVM uses the pthread replacement routines (referred to as green

threads).

NATIVE

JVM uses the standard, POSIX-compliant thread model that is

provided by the JVM. All threads are created as __MEDIUM_WEIGHT

threads.

HEAVY

JVM uses the standard thread package, but all threads are created as

__HEAVY_WEIGHT threads.

MEDIUM

Same as NATIVE.

NULL

Default case: Same as NATIVE/MEDIUM.

environment variables

Appendix E. Environment variables 413

environment variables

414 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

Appendix F. Messages and codes

This chapter lists error messages in numeric sequence in:

v “JVM error messages for JVMCI”

v “JVM error messages for JVMCL” on page 432

v “JVM error messages for JVMDBG” on page 439

v “JVM error messages for JVMDC” on page 439

v “JVM error messages for JVMDG” on page 440

v “JVM error messages for JVMHP” on page 456

v “JVM error messages for JVMLK” on page 459

v “JVM error messages for JVMST” on page 462

v “JVM error messages for JVMXE” on page 471

v “JVM error messages for JVMXM” on page 472

v “Universal Trace Engine error messages” on page 474

These are messages, error codes, and exit codes that are generated by the JVM. You

are unlikely to see these because the JVM generates them only when it finds an

unrecoverable internal processing fault.

If the JVM fills all its memory, it might not be able to produce a message and a

description for the error that caused the problem. Under such a condition, only the

message might be produced; for example, ″OUT OF MEMORY JVMCI003″.

Where do the messages appear?

Each message has a ’system action’ description.

If the system action says that the JVM throws an exception, you see the message as

part of the exception trace, which is directed to the stderr output stream. Therefore,

you will see the message on the console or in a file that has captured stderr.

If the system action is not to throw an exception, the message appears on stderr

unless otherwise stated.

JVM error messages for JVMCI

JVMCI001 OutOfMemoryError, allocating a JNI

global ref

Explanation: A call to jni_NewGlobalRef() has failed

because not enough memory is available.

System action: The JVM throws an

OutOfMemoryError.

User response: Use a larger maximum heap when you

start the JVM; for example, by using the Java -Xmx

option.

JVMCI002 OutOfMemoryError, stAllocObject for

jni_AllocObject failed

Explanation: A call to jni_AllocObject() has failed

because not enough memory is available.

System action: The JVM throws an

OutOfMemoryError.

User response: Use a larger maximum heap when you

start the JVM; for example, by using the Java -Xmx

option.

JVMCI003 OutOfMemoryError, stAllocArray for

jni_NewString failed

Explanation: A call to jni_NewString() has failed

because not enough memory is available.

© Copyright IBM Corp. 2003, 2006 415

System action: The JVM throws an

OutOfMemoryError.

User response: Use a larger maximum heap when you

start the JVM; for example, by using the Java -Xmx

option.

JVMCI004 OutOfMemoryError, stAllocObject for

jni_NewString failed

Explanation: A call to jni_NewString() has failed

because not enough memory is available.

System action: The JVM throws an

OutOfMemoryError.

User response: Use a larger maximum heap when you

start the JVM; for example, by using the Java -Xmx

option.

JVMCI005 OutOfMemoryError, dcUTF2JavaString

failed

Explanation: A call to jni_NewStringUTF() has failed

because not enough memory is available.

System action: The JVM throws an

OutOfMemoryError.

User response: Use a larger maximum heap when you

start the JVM; for example, by using the Java -Xmx

option.

JVMCI006 OutOfMemoryError, dcUnicode2UTF

failed

Explanation: A call to jni_GetStringUTFChars() has

failed because not enough memory is available.

System action: The JVM throws an

OutOfMemoryError.

User response: Use a larger maximum heap when you

start the JVM; for example, by using the Java -Xmx

option.

JVMCI007 OutOfMemoryError, stAllocArray for

jni_NewObjectArray failed

Explanation: A call to jni_NewObjectArray() has failed

because not enough memory is available.

System action: The JVM throws an

OutOfMemoryError.

User response: Use a larger maximum heap when you

start the JVM; for example, by using the Java -Xmx

option.

JVMCI008 OutOfMemoryError, eeGetFromJNIEnv

failed

Explanation: A call to jni_New##type##Array() has

failed because not enough memory is available.

##type## can be any of: Boolean, Byte, Short, Char, Int,

Long, Float, or Double.

System action: The JVM throws an

OutOfMemoryError.

User response: Use a larger maximum heap when you

start the JVM; for example, by using the Java -Xmx

option.

JVMCI009 OutOfMemoryError,

IBMJVM_NewArray - stAllocArray for

new array failed

Explanation: A call to IBMJVM_NewArray() has failed

because not enough memory is available.

System action: The JVM throws an

OutOfMemoryError.

User response: Use a larger maximum heap when you

start the JVM; for example, by using the Java -Xmx

option.

JVMCI010 OutOfMemoryError, sysMalloc failed

Explanation: The invocation of a native method

needed a buffer that is larger then the default

preallocated 256 bytes, but was unable to get enough

storage.

System action: The JVM throws an

OutOfMemoryError.

User response: The C-runtime heap of the process

(not the Java object heap) is full. Increase the heap if

that is possible in your environment.

JVMCI011 OutOfMemoryError, can’t create a new

array

Explanation: JVM_GetClassSigners failed to get

storage by way of stAllocArray.

System action: The JVM throws an

OutOfMemoryError.

User response: Use a larger maximum heap when you

start the JVM; for example, by using the Java -Xmx

option.

JVMCI012 OutOfMemoryError, stAllocArray failed

Explanation: JVM_GetStackAccessControlContex

failed to get storage by way of stAllocArray.

System action: The JVM throws an

OutOfMemoryError.

User response: Use a larger maximum heap when you

start the JVM; for example, by using the Java -Xmx

option.

JVM error messages for JVMCI

416 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

JVMCI013 OutOfMemoryError, create clone failed

Explanation: Object.clone() failed to get storage for an

object.

System action: The JVM throws an

OutOfMemoryError.

User response: Use a larger maximum heap when you

start the JVM; for example, by using the Java -Xmx

option.

JVMCI014 OutOfMemoryError, stAllocArray failed

Explanation: Object.clone() failed to get storage for an

array.

System action: The JVM throws an

OutOfMemoryError.

User response: Use a larger maximum heap when you

start the JVM; for example, by using the Java -Xmx

option.

JVMCI015 OutOfMemoryError, cannot create any

more threads due to memory or resource

constraints

Explanation: JVM_StartThread() call to

xmCreateThread() returned either SYS_NOMEM or

SYS_NORESOURCE.

System action: The JVM throws an

OutOfMemoryError.

User response: Either not enough resources are

available to create a new threads, or the C-runtime

heap of the process (not the Java object heap) is full.

Increase the heap if that is possible in your

environment.

JVMCI016 OutOfMemoryError, stAllocArray failed

Explanation: JVM_GetClassContext failed to get

storage by way of stAllocArray.

System action: The JVM throws an

OutOfMemoryError.

User response: Use a larger maximum heap when you

start the JVM; for example, by using the Java -Xmx

option.

JVMCI017 OutOfMemoryError, can’t allocate new

object

Explanation: JVM_AllocateNewObject failed to get

storage by way of stAllocArray.

System action: The JVM throws an

OutOfMemoryError.

User response: Use a larger maximum heap when you

start the JVM; for example, by using the Java -Xmx

option.

JVMCI018 OutOfMemoryError, can’t allocate new

array

Explanation: JVM_AllocateNewArray failed to get

storage by way of stAllocArray.

System action: The JVM throws an

OutOfMemoryError.

User response: Use a larger maximum heap when you

start the JVM; for example, by using the Java -Xmx

option.

JVMCI019 OutOfMemoryError, can’t allocate object

Explanation: JVM_NewInstanceFromConstructor

failed to get storage by way of stAllocArray.

System action: The JVM throws an

OutOfMemoryError.

User response: Use a larger maximum heap when you

start the JVM; for example, by using the Java -Xmx

option.

JVMCI020 OutOfMemoryError, stInternString

failed

Explanation: JVM_InternString failed to either locate a

matching string, or add a new string.

System action: The JVM throws an

OutOfMemoryError.

User response: Use a larger maximum heap when you

start the JVM; for example, by using the Java -Xmx

option.

JVMCI021 OutOfMemoryError, translating

exception message

Explanation: Either not enough Java Stack is available,

or cannot find C-to-Java-string converter

NewStringJVMPlatform.

System action: The JVM throws an

OutOfMemoryError.

User response: Specify a larger Java stack size when

you start the JVM; for example, by using the Java -Xoss

option.

JVMCI022 Cannot allocate memory in jvmpi_calloc

Explanation: Profiler Interface could not get enough

storage.

System action: The JVM prints the message ″**Out of

Memory, aborting**″ and terminates abnormally.

User response: The C-runtime heap of the process

(not the Java object heap) is full. Increase the heap if

that is possible in your environment.

JVM error messages for JVMCI

Appendix F. Messages and codes 417

JVMCI023 Cannot allocate memory to collect heap

dump in jvmpi_heap_dump

Explanation: Profiler Interface could not get enough

storage.

System action: The JVM prints the message ″**Out of

Memory, aborting**″ and terminates abnormally.

User response: The C-runtime heap of the process

(not the Java object heap) is full. Increase the heap if

that is possible in your environment.

JVMCI024 Cannot allocate memory to collect heap

dump in jvmpi_monitor_dump

Explanation: Profiler Interface could not get enough

storage.

System action: The JVM prints the message .**Out of

Memory, aborting**. and terminates abnormally.

User response: The C-runtime heap of the process

(not the Java object heap) is full. Increase the heap if

that is possible in your environment.

JVMCI025 Unable to open options file %filename

Explanation: JNI_CreateJVM initialization detected the

-Xoptionsfile option, but could not open the specified

file.

System action: JNI_CreateJVM returns -1, to indicate

that initialization of the JVM failed.

User response: Ensure that -Xoptionsfile specifies a

valid file that the JVM can read.

JVMCI026 Unable to determine the size of the

options file %filename

Explanation: JNI_CreateJVM initialization detected the

-Xoptionsfile option, but could not obtain size

information about the specified file by using

fseek(fd,0L,SEEK_END) and ftell(fd).

System action: JNI_CreateJVM returns -1 to indicate

that initialization of the JVM failed.

User response: Ensure that -Xoptionsfile specifies a

valid file that is not a socket or PIPE.

JVMCI027 Unable to obtain memory to process

%filename

Explanation: JNI_CreateJVM initialization detected the

-Xoptionsfile option, but could not allocate memory

that is equal to the size of the specified file.

System action: JNI_CreateJVM returns -4 to indicate

that initialization of the JVM failed.

User response: Check the size of the file that

-Xoptionsfile specifies. The C-runtime heap of the

process (not the Java object heap) is full. Increase the

heap if that is possible in your environment.

JVMCI028 Error reading options file: %filename

fread() returns %filesize:

%strerror(errno)

Explanation: JNI_CreateJVM initialization detected the

-Xoptionsfile option, but could not read the specified

file by using fread().

System action: JNI_CreateJVM returns -1 to indicate

that initialization of the JVM failed.

User response: Investigate the description for the

given errno, and ensure that -Xoptionsfile specifies a

valid file that is not a socket or PIPE.

JVMCI029 Unable to obtain memory

Explanation: JNI_CreateJVM initialization detected the

-Xoptionsfile option, but could not allocate memory

that is equal to the size of the specified file plus the

string ″ -Xoptionsfile=″.

System action: JNI_CreateJVM returns -4 to indicate

that initialization of the JVM failed.

User response: Check the size of the file that

-Xoptionsfile specified. The C-runtime heap of the

process (not the Java object heap) is full. Increase the

heap if that is possible in your environment.

JVMCI030 Bad entry in options file: %filename

Explanation: JNI_CreateJVM initialization parsed the

contents of the file that the -Xoptionsfile option

specified, and expected to find an option string

beginning with the character ″-″.

System action: JNI_CreateJVM returns -1 to indicate

that initialization of the JVM failed.

User response: Check the contents of the file that

-Xoptionsfile specified.

JVMCI031 Bad entry in options file: %filename

Explanation: JNI_CreateJVM initialization parsed the

contents of the file that the -Xoptionsfile option

specified, and expected to find an option string

beginning with the character ″-″.

System action: JNI_CreateJVM returns -1 to indicate

that initialization of the JVM failed.

User response: Check the contents of the file that

-Xoptionsfile specified.

JVMCI032 Error parsing system properties within

options file - rc=%rc

Explanation: JNI_CreateJVM initialization parsed the

contents of the file that the -Xoptionsfile option

JVM error messages for JVMCI

418 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

specified, and found a problem while parsing a system

property.

System action: JNI_CreateJVM returns a negative

number to indicate that initialization of the JVM failed.

User response: Check the contents of the file that

-Xoptionsfile specified.

JVMCI033 Error parsing java options within

options file - rc=%rc

Explanation: JNI_CreateJVM initialization parsed the

contents of the file that the -Xoptionsfile option

specified, and found a problem while parsing a Java

option setting.

System action: JNI_CreateJVM returns a negative

number to indicate that initialization of the JVM failed.

User response: Check the contents of the file that

-Xoptionsfile specified.

JVMCI034 Cannot allocate memory during JVM

initialization

Explanation: JVM_StartThread attempted to create a

new thread before JNI_CreateJVM was complete.

System action: The JVM prints the message ″**Out of

Memory, aborting**″ and terminates abnormally.

User response: Determine why Thread.start() has been

invoked before initialization of the JVM is complete.

JVMCI035 Cannot override bootclasspath in

Worker JVM

Explanation: In a shared class environment,

JNI_CreateJVM initialization parsed the properties that

were specified for a Worker JVM, and found a setting

for either ″java.endorsed.dirs″ or

″ibm.jvm.bootclasspath″.

System action: JNI_CreateJVM returns -1 to indicate

that initialization of the JVM failed.

User response: Check the properties that are specified

for Worker JVMs.

JVMCI037 Cannot use debugger (-Xdebug) with

shared classes (-Xjvmset)

Explanation: In a shared class environment,

JNI_CreateJVM initialization does not allow -Xdebug to

be specified.

System action: JNI_CreateJVM returns -1 to indicate

that initialization of the JVM failed.

User response: Do not specify the java -Xdebug

option in conjunction with -Xjvmset.

JVMCI038 Out of Shared Memory on property

storage allocation

Explanation: In a shared class environment,

JNI_CreateJVM initialization failed to allocate shared

memory for the purpose of copying shared system

properties across the JVMSet.

System action: JNI_CreateJVM returns -1 to indicate

that initialization of the JVM failed.

User response: Refer to the shared classes User Guide

for options that control shared memory.

JVMCI039 Out of Shared Memory on property

storage allocation

Explanation: In a shared class environment,

JNI_CreateJVM initialization failed to allocate shared

memory for the purpose of copying shared system

properties across the JVMSet.

System action: JNI_CreateJVM returns -1 to indicate

that initialization of the JVM failed.

User response: Refer to the shared classes User Guide

for options that control shared memory.

JVMCI040 Cannot configure system property

%sharedpropertyname in Worker JVM

Explanation: In a shared class environment,

JNI_CreateJVM initialization found, for the specified

property, an existing entry that is not allowed to be

overwritten.

System action: JNI_CreateJVM returns -1 to indicate

that initialization of the JVM failed.

User response: Remove duplicate references to the

specified system property.

JVMCI041 unsafe get/set

Explanation: A trusted system class has invoked

Unsafe.getObject() with a NULL object.

System action: The JVM throws a

NullPointerException.

User response: Contact your IBM service

representative.

JVMCI042 unsafe get/set

Explanation: A trusted system class has invoked

Unsafe.putObject() with a NULL object.

System action: The JVM throws a

NullPointerException.

User response: Contact your IBM service

representative.

JVM error messages for JVMCI

Appendix F. Messages and codes 419

JVMCI043 unsafe get/set

Explanation: A trusted system class has invoked

Unsafe.get##type() with a NULL object. ##type## can

be any of: Boolean, Byte, Short, Char, Int, or Float.

System action: The JVM throws a

NullPointerException.

User response: Contact your IBM service

representative.

JVMCI044 unsafe get/set

Explanation: A trusted system class has invoked

Unsafe.put##type() with a NULL object. ##type## can

be any of: Boolean, Byte, Short, Char, Int, or Float.

System action: The JVM throws a

NullPointerException.

User response: Contact your IBM service

representative.

JVMCI045 Illegal size passed to allocateMemory

Explanation: A trusted system class has invoked

Unsafe.allocateMemory() with a negative size.

System action: The JVM throws an

IllegalArgumentException.

User response: Contact your IBM service

representative.

JVMCI046 allocateMemory failed

Explanation: A trusted system class has invoked

Unsafe.allocateMemory(), but it could not get enough

storage.

System action: The JVM throws an

OutOfMemoryError.

User response: The C-runtime heap of the process

(not the Java object heap) is full. Increase the heap if

that is possible in your environment.

JVMCI047 Illegal size passed to reallocateMemory

Explanation: A trusted system class has invoked

Unsafe.reallocateMemory() with a negative size.

System action: The JVM throws an

IllegalArgumentException.

User response: Contact your IBM service

representative.

JVMCI048 reallocateMemory failed

Explanation: A trusted system class has invoked

Unsafe.reallocateMemory(), but it could not get enough

storage.

System action: The JVM throws an

OutOfMemoryError.

User response: The C-runtime heap of the process

(not the Java object heap) is full. Increase the heap if

that is possible in your environment.

JVMCI049 Illegal size passed to copyMemory

Explanation: A trusted system class has invoked

Unsafe.copyMemory() with a negative size.

System action: The JVM throws an

IllegalArgumentException.

User response: Contact your IBM service

representative.

JVMCI050 Illegal size passed to setMemory

Explanation: A trusted system class has invoked

Unsafe.setMemory() with a negative size.

System action: The JVM throws an

IllegalArgumentException.

User response: Contact your IBM service

representative.

JVMCI051 Null field passed to staticFieldOffset

Explanation: A trusted system class has invoked

Unsafe.staticFieldOffset() with a NULL field object.

System action: The JVM throws a

NullPointerException.

User response: Contact your IBM service

representative.

JVMCI052 defineClass

Explanation: A trusted system class has invoked

Unsafe.defineClass() with a NULL byte array.

System action: The JVM throws a

NullPointerException.

User response: Contact your IBM service

representative.

JVMCI053 defineClass

Explanation: A trusted system class has invoked

Unsafe.defineClass() with a with a negative length

argument.

System action: The JVM throws an

ArrayIndexOutOfBoundsException.

User response: Contact your IBM service

representative.

JVM error messages for JVMCI

420 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

JVMCI054 defineClass

Explanation: A trusted system class has invoked

Unsafe.defineClass(), but could not get enough storage.

System action: The JVM throws an

OutOfMemoryError.

User response: The C-runtime heap of the process

(not the Java object heap) is full. Increase the heap if

that is possible in your environment.

JVMCI055 Cannot allocate assertion directives

Explanation: Cannot allocate space for an instance of

class AssertionStatusDirectives.

System action: The JVM throws an

OutOfMemoryError.

User response: Use a larger maximum heap when you

start the JVM; for example, by using the Java -Xmx

option.

JVMCI056 Cannot allocate assertion directives

Explanation: Cannot allocate space for an instance of

class AssertionStatusDirectives.

System action: The JVM throws an

OutOfMemoryError.

User response: Use a larger maximum heap when you

start the JVM; for example, by using the Java -Xmx

option.

JVMCI057 Cannot allocate assertion directives

Explanation: Cannot allocate space for an instance of

class AssertionStatusDirectives.

System action: The JVM throws an

OutOfMemoryError.

User response: Use a larger maximum heap when you

start the JVM; for example, by using the Java -Xmx

option.

JVMCI058 Unsafe_StaticFieldBase

Explanation: A trusted system class has invoked

Unsafe.staticFieldBase() with a NULL field object.

System action: The JVM throws a

NullPointerException.

User response: Contact your IBM service

representative.

JVMCI059 Unsafe_EnsureClassInitialized

Explanation: A trusted system class has invoked

Unsafe.ensureClassInitialized() with a NULL class

object.

System action: The JVM throws a

NullPointerException.

User response: Contact your IBM service

representative.

JVMCI060 Unsafe_ArrayBaseOffSet

Explanation: A trusted system class has invoked

Unsafe.arrayBaseOffSet() with a non-array class.

System action: The JVM throws an

InvalidClassException.

User response: Contact your IBM service

representative.

JVMCI061 Unsafe_ArrayIndexScale

Explanation: A trusted system class has invoked

Unsafe.arrayIndexScale() with a non-array class.

System action: The JVM throws an

InvalidClassException.

User response: Contact your IBM service

representative.

JVMCI062 holdsLock

Explanation: Thread.holdsLock() has been invoked

with a NULL object argument.

System action: The JVM throws a

NullPointerException.

User response: Examine invocations of

Thread.holdsLock(). If you cannot solve the problem,

contact your IBM service representative.

JVMCI063 OutOfMemoryError, GetStringChars

failed

Explanation: A call to jni_getStringChars() has failed

because not enough memory is available.

System action: The JVM throws an

OutOfMemoryError.

User response: The C-runtime heap of the process

(not the Java object heap) is full. Increase the heap if

that is possible in your environment.

JVMCI064 unsafe getLong

Explanation: A trusted system class has invoked

Unsafe.getLong() with a NULL object.

System action: The JVM throws a

NullPointerException.

User response: Contact your IBM service

representative.

JVM error messages for JVMCI

Appendix F. Messages and codes 421

JVMCI065 unsafe putLong

Explanation: A trusted system class has invoked

Unsafe.putLong() with a NULL object.

System action: The JVM throws a

NullPointerException.

User response: The C-runtime heap of the process

(not the Java object heap) is full. Increase the heap if

that is possible in your environment.

JVMCI066 unsafe getDouble

Explanation: A trusted system class has invoked

Unsafe.getDouble() with a NULL object.

System action: The JVM throws a

NullPointerException.

User response: Contact your IBM service

representative.

JVMCI067 unsafe putDouble

Explanation: A trusted system class has invoked

Unsafe.putDouble() with a NULL object.

System action: The JVM throws a

NullPointerException.

User response: Contact your IBM service

representative.

JVMCI068 Cannot set system assertion status in

Worker JVM

Explanation: In a shared class environment,

JNI_CreateJVM initialization parsed the properties that

were specified for a Worker JVM, and found either

-enablesystemassertions or -disablesystemassertions.

Worker JVMs are not permitted to set these options.

System action: JNI_CreateJVM returns -1 to indicate

that initialization of the JVM failed.

User response: Ensure that the properties that are

specified for Worker JVMs do not include Java assert

options. For help on assert options, run java -assert.

JVMCI069 Cannot set shared class maximum

option -Xscmax in a Worker JVM

Explanation: In a shared class environment,

JNI_CreateJVM initialization parsed the properties that

were specified for a Worker JVM, and found -Xscmax.

Worker JVMs are not permitted to set this option.

System action: JNI_CreateJVM returns -1 to indicate

that initialization of the JVM failed.

User response: Ensure that the properties that are

specified for Worker JVMs do not include the Java

option -Xscmax.

JVMCI070 JVMMI object enumeration - invalid

class found at 0x%objectpointer

Explanation: The monitoring interface was invoked to

list objects in the heap, but could not obtain class

information for an object.

System action: The callback function for this object is

not called and no further information is produced for

this object. Enumeration continues with the next object

in the heap.

User response: Contact your IBM service

representative.

JVMCI071 JVMMI object enumeration - object at

0x%objectpointer has null class block

Explanation: The monitoring interface was invoked to

list objects in the heap, but found a NULL class block

for an object.

System action: The callback function for this object is

not called and no further information is produced for

this object. Enumeration continues with the next object

in the heap.

User response: Contact your IBM service

representative.

JVMCI072 JVMMI object enumeration -

unrecognized array object at

0x%objectpointer

Explanation: The monitoring interface was invoked to

list objects in the heap, and determined that an object

was a multidimensional primitive array, but could not

determine the type of one of the dimensions.

System action: The callback function for this object is

not called, and enumeration continues.

User response: Contact your IBM service

representative.

JVMCI073 JVMMI object enumeration -

unrecognized primitive array at

0x%objectpointer

Explanation: The monitoring interface was invoked to

list objects in the heap, and determined that an object

was an array, but could not determine the type of array.

System action: The callback function for this object is

not called, and enumeration continues.

User response: Contact your IBM service

representative.

JVM error messages for JVMCI

422 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

JVMCI074 Cannot allocate memory in

jvmpi_interface

Explanation: The monitoring interface could not get

enough storage.

System action: The JVM prints the message ″**Out of

Memory, aborting**″ and terminates abnormally.

User response: The C-runtime heap of the process

(not the Java object heap) is full. Increase the heap if

that is possible in your environment.

JVMCI075 Cannot allocate memory in

jvmpi_dump_object_event

Explanation: The monitoring interface could not get

enough storage.

System action: The JVM prints the message ″**Out of

Memory, aborting**″ and terminates abnormally.

User response: The C-runtime heap of the process

(not the Java object heap) is full. Increase the heap if

that is possible in your environment.

JVMCI076 JVM is requesting a heap dump

Explanation: The monitoring interface was invoked to

generate a dump of the heap.

System action: A heap dump is requested.

User response: None.

JVMCI077 Heap dump complete

Explanation: The monitoring interface has generated a

dump of the heap.

System action: A heap dump has been generated.

User response: None.

JVMCI078 NullPointerException,

mangleMethodName passed NULL

MethodBlock

Explanation: During the invocation of a native

method, a NULL method block was found.

System action: The JVM throws a

NullPointerException.

User response: Contact your IBM service

representative.

JVMCI079 NullPointerException,

maxMangledMethodNameLength passed

NULL MethodBlock

Explanation: During the invocation of a native

method, a NULL method block was found.

System action: The JVM throws a

NullPointerException.

User response: Contact your IBM service

representative.

JVMCI080 SetMirroredProtectionDomains NULL cb

Explanation:

 SecureClassLoader.setMirroredProtectionDomain() was

invoked with a NULL class.

System action: The JVM throws a

NullPointerException.

User response: Contact your IBM service

representative.

JVMCI081 Clone NULL this pointer

Explanation: Object.clone() ″this″ instance is NULL.

System action: The JVM throws a

NullPointerException.

User response: Contact your IBM service

representative.

JVMCI082 GetClassLoader NULL cb

Explanation: Class.getClassLoader() ″this″ instance is

NULL.

System action: The JVM throws a

NullPointerException.

User response: Contact your IBM service

representative.

JVMCI083 IsInterface NULL cb

Explanation: Class.isInterface() ″this″ instance is

NULL.

System action: The JVM throws a

NullPointerException.

User response: Contact your IBM service

representative.

JVMCI084 GetClassSigners NULL cb

Explanation: Class.getClassSigners() ″this″ instance is

NULL.

System action: The JVM throws a

NullPointerException.

User response: Contact your IBM service

representative.

JVMCI085 SetClassSigners NULL cb

Explanation: Class.setClassSigners() ″this″ instance is

NULL.

System action: The JVM throws a

NullPointerException.

JVM error messages for JVMCI

Appendix F. Messages and codes 423

User response: Contact your IBM service

representative.

JVMCI086 GetProtectionDomain NULL cb

Explanation: Class.getProtectionDomain() ″this″

instance is NULL.

System action: The JVM throws a

NullPointerException.

User response: Contact your IBM service

representative.

JVMCI087 SetProtectionDomain NULL cb

Explanation: Class.setProtectionDomain() ″this″

instance is NULL.

System action: The JVM throws a

NullPointerException.

User response: Contact your IBM service

representative.

JVMCI088 OutOfMemoryError, _CharToByteLength

cannot obtain TLS

Explanation: A call to _CharToByteLength() has failed

because it could not get thread local storage.

System action: The JVM throws an

OutOfMemoryError. _CharToByteLength() returns -2.

User response: The C-runtime heap of the process

(not the Java object heap) is full. Increase the heap if

that is possible in your environment.

JVMCI089 OutOfMemoryError, _CharToByteLength

cannot allocate cache

Explanation: A call to _CharToByteLength() has failed

because it could not allocate storage.

System action: The JVM throws an

OutOfMemoryError. _CharToByteLength() returns -2.

User response: The C-runtime heap of the process

(not the Java object heap) is full. Increase the heap if

that is possible in your environment.

JVMCI090 OutOfMemoryError, _CharToByteLength

cannot allocate buffer

Explanation: A call to _CharToByteLength() has failed

because it could not allocate storage.

System action: The JVM throws an

OutOfMemoryError. _CharToByteLength() returns -2.

User response: The C-runtime heap of the process

(not the Java object heap) is full. Increase the heap if

that is possible in your environment.

JVMCI091 Null field passed to objectFieldOffset

Explanation: Unsafe.ObjectFieldOffset() was invoked

with a NULL field.

System action: The JVM throws a

NullPointerException.

User response: Contact your IBM service

representative.

JVMCI092 Out of Shared Memory on property

storage allocation.

Explanation: In a shared class environment,

JNI_CreateJVM initialization failed to allocate shared

memory for the copying of shared system properties

across the JVMSet.

System action: JNI_CreateJVM returns -1 to indicate

that initialization of the JVM failed.

User response: Refer to the shared classes User Guide

for options that control shared memory.

JVMCI093 Unable to load Core Interface - JVM

Anchor Reference is missing

Explanation: JNI_CreateJVM initialization found a null

pointer to the JVM Anchor block.

System action: JNI_CreateJVM returns -1 to indicate

that initialization of the JVM failed.

User response: Contact your IBM service

representative.

JVMCI094 Unable to load Core Interface - JVM

initialization argument is missing

Explanation: JNI_CreateJVM initialization found a null

pointer to the JVM initialization arguments.

System action: JNI_CreateJVM returns -1 to indicate

that initialization of the JVM failed.

User response: Contact your IBM service

representative.

JVMCI095 JavaVM Init Args is not present, jvm

pointer = %p

Explanation: JNI_CreateJVM initialization found a null

pointer to the JVM initialization arguments.

System action: JNI_CreateJVM returns -1 to indicate

that initialization of the JVM failed.

User response: Contact your IBM service

representative.

JVM error messages for JVMCI

424 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

JVMCI096 Unable to load HPI - JVM initialization

arguments missing

Explanation: JNI_CreateJVM initialization found a null

pointer to the JVM initialization arguments.

System action: JNI_CreateJVM returns -1 to indicate

that initialization of the JVM failed.

User response: Contact your IBM service

representative.

JVMCI097 JVM Instance is not present

Explanation: JNI_CreateJVM initialization found a null

pointer to the JVM Anchor block.

System action: JNI_CreateJVM returns -1 to indicate

that initialization of the JVM failed.

User response: Contact your IBM service

representative.

JVMCI098 xmloadJVMHelperLib %s %s, failed

Explanation: JNI_CreateJVM initialization could not

load the indicated shared library with its associated

options. Message JVMCI158 might also be printed.

System action: JNI_CreateJVM returns -1 to indicate

that initialization of the JVM failed.

User response: Contact your IBM service

representative.

JVMCI099 Unable to trace user arguments - JVM

Instance is not present

Explanation: JNI_CreateJVM initialization found a null

pointer to the JVM Anchor block.

System action: JNI_CreateJVM continues, but without

tracing user arguments.

User response: Contact your IBM service

representative.

JVMCI100 Unable to trace user arguments - no

arguments supplied, jvm pointer = %p

Explanation: JNI_CreateJVM initialization found a null

pointer to the JVM initialization arguments.

System action: JNI_CreateJVM continues, but without

tracing user arguments.

User response: Contact your IBM service

representative.

JVMCI101 Property Table is not present

Explanation: JNI_CreateJVM initialization found a null

pointer to the JVM property table.

System action: JNI_CreateJVM returns -4 to indicate

that initialization of the JVM failed.

User response: Contact your IBM service

representative.

JVMCI102 Out of Memory on property storage

allocation

Explanation: JNI_CreateJVM initialization could not

allocate storage for a property table entry.

System action: JNI_CreateJVM returns -4 to indicate

that initialization of the JVM failed.

User response: The C-runtime heap of the process

(not the Java object heap) is full. Increase the heap if

that is possible in your environment.

JVMCI103 Out of Memory on property add

Explanation: JNI_CreateJVM initialization could not

allocate storage for a property table entry name or

value field.

System action: JNI_CreateJVM returns -4 to indicate

that initialization of the JVM failed.

User response: The C-runtime heap of the process

(not the Java object heap) is full. Increase the heap if

that is possible in your environment.

JVMCI104 Failed to locate entry point %s

Explanation: JNI_CreateJVM initialization could not

locate an entry point named ciInit in the Core Interface

Library that was specified with the -Dibm.load.ci=

argument.

System action: JNI_CreateJVM continues, but with the

default core interface.

User response: Check whether the library that was

specified by -Dibm.load.ci= contains an entry point for

ciInit.

JVMCI106 Failed to find library %s

Explanation: JNI_CreateJVM initialization could not

locate the core interface library that was specified with

the -Dibm.load.ci= argument.

System action: JNI_CreateJVM continues, but with the

default core interface.

User response: Check whether the library that was

specified by -Dibm.load.ci= is accessible to the JVM.

JVMCI107 Unable to allocate memory for Library

Name Property

Explanation: JNI_CreateJVM initialization could not

allocate storage to store the string ibm.load.XX.nt.

System action: JNI_CreateJVM returns -4 to indicate

that initialization of the JVM failed.

User response: The C-runtime heap of the process

JVM error messages for JVMCI

Appendix F. Messages and codes 425

(not the Java object heap) is full. Increase the heap if

that is possible in your environment.

JVMCI108 Unable to allocate memory for Initial

Function Name

Explanation: JNI_CreateJVM initialization could not

allocate storage to store the string xxInit.

System action: JNI_CreateJVM returns -4 to indicate

that initialization of the JVM failed.

User response: The C-runtime heap of the process

(not the Java object heap) is full. Increase the heap if

that is possible in your environment.

JVMCI109 No initialization point found for sub

component %s

Explanation: JNI_CreateJVM initialization could not

locate a default initialization entry point of the form

xxInit for the indicated sub component xx.

System action: JNI_CreateJVM attempts to continue.

User response: Contact your IBM service

representative.

JVMCI110 ciFacade is not present

Explanation: JNI_CreateJVM initialization found a null

pointer to the JVM core interface facade.

System action: JNI_CreateJVM returns -1 to indicate

that initialization of the JVM failed.

User response: Contact your IBM service

representative.

JVMCI111 ciFacade version is not supported %d

Explanation: JNI_CreateJVM initialization found an

nonvalid version number as indicated.

System action: JNI_CreateJVM returns -1 to indicate

that initialization of the JVM failed.

User response: Contact your IBM service

representative.

JVMCI112 Unrecognized JNI version: 0x%08x

Explanation: JNI_CreateJVM initialization found an

nonvalid version number as indicated.

System action: JNI_CreateJVM returns -3 to indicate

that initialization of the JVM failed.

User response: Contact your IBM service

representative.

JVMCI113 Cannot obtain iconv converters

Explanation: JNI_CreateJVM initialization could not

initialize iconv converters.

System action: JNI_CreateJVM returns -1 to indicate

that initialization of the JVM failed.

User response: Contact your IBM service

representative.

JVMCI114 Cannot obtain system-specific

information

Explanation: JNI_CreateJVM initialization could not

obtain system properties (home directory/DLL

directory/system classpath, calculated from the location

of libjava.so).

System action: JNI_CreateJVM returns -1 to indicate

that initialization of the JVM failed.

User response: Contact your IBM service

representative.

JVMCI115 IBM_JAVA_OPTIONS error

Explanation: JNI_CreateJVM initialization could not

obtain storage to store the value of the

IBM_JAVA_OPTIONS environment variable.

System action: JNI_CreateJVM returns -1 to indicate

that initialization of the JVM failed.

User response: The C-runtime heap of the process

(not the Java object heap) is full. Increase the heap if

that is possible in your environment.

JVMCI116 Error setting JVM default options -

rc=%d

Explanation: JNI_CreateJVM initialization detected an

error while parsing JVM options. This message might

be preceded by other, more-specific messages.

System action: JNI_CreateJVM returns the code that is

shown in the message, to indicate that initialization of

the JVM failed.

User response: Check the options that are passed to

the JVM. If you cannot solve the problem, contact your

IBM service representative.

JVMCI117 Bad IBM_JAVA_OPTIONS: %s

Explanation: JNI_CreateJVM initialization expects

options to begin with a “-” (hyphen).

System action: JNI_CreateJVM returns -1 to indicate

that initialization of the JVM failed.

User response: Check the options that are passed to

the JVM. If you cannot solve the problem, contact your

IBM service representative.

JVM error messages for JVMCI

426 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

JVMCI118 Error parsing IBM_JAVA_OPTIONS

system properties - rc=%d

Explanation: JNI_CreateJVM initialization detected an

error while parsing JVM options. This message might

be preceded by other, more-specific messages.

System action: JNI_CreateJVM returns the code that is

shown in the message, to indicate that initialization of

the JVM failed.

User response: Check the options that are passed to

the JVM. If you cannot solve the problem, contact your

IBM service representative.

JVMCI119 Error parsing IBM_JAVA_OPTIONS java

options - rc=%d

Explanation: JNI_CreateJVM initialization detected an

error while parsing JVM options. This message might

be preceded by other, more-specific messages.

System action: JNI_CreateJVM returns the code that is

shown in the message, to indicate that initialization of

the JVM failed.

User response: Check the options that are passed to

the JVM. If you cannot solve the problem, contact your

IBM service representative.

JVMCI120 Unable to parse System Properties - no

argument supplied, jvm pointer = %p

Explanation: JNI_CreateJVM initialization found a null

pointer to the JVM initialization arguments.

System action: JNI_CreateJVM returns -1 to indicate

that initialization of the JVM failed.

User response: Contact your IBM service

representative.

JVMCI121 Unable to parse 1.2 format System

Properties - rc=%d

Explanation: JNI_CreateJVM initialization detected an

error while parsing JVM options. This message might

be preceded by other, more-specific messages.

System action: JNI_CreateJVM returns the code that is

shown in the message, to indicate that initialization of

the JVM failed.

User response: Check the options that are passed to

the JVM. If you cannot solve the problem, contact your

IBM service representative.

JVMCI122 Unable to parse supplied options - no

argument supplied, jvm pointer = %p

Explanation: JNI_CreateJVM initialization found a null

pointer to the JVM initialization arguments.

System action: JNI_CreateJVM returns -6 to indicate

that initialization of the JVM failed.

User response: Contact your IBM service

representative.

JVMCI123 Unable to parse 1.2 format supplied

options - rc=%d

Explanation: JNI_CreateJVM initialization detected an

error while parsing JVM options. This message might

be preceded by other, more-specific messages.

System action: JNI_CreateJVM returns the code that is

shown in the message, to indicate that initialization of

the JVM failed.

User response: Check the options that are passed to

the JVM. If you cannot solve the problem, contact your

IBM service representative.

JVMCI124 Bad Service Option: %s

Explanation: JNI_CreateJVM initialization expects

individual options to begin with a “-” (hyphen).

System action: JNI_CreateJVM returns -1 to indicate

that initialization of the JVM failed.

User response: Examine the -Xservice= options that

are indicated in the message. Correct as necessary.

JVMCI125 Bad Service Option: %s

Explanation: JNI_CreateJVM initialization expects

individual options to begin with a “-” (hyphen).

System action: JNI_CreateJVM returns -1 to indicate

that initialization of the JVM failed.

User response: Examine the -Xservice= options that

are indicated in the message. Correct as necessary.

JVMCI126 Error parsing Service system properties -

rc=%d

Explanation: JNI_CreateJVM initialization detected an

error while parsing JVM options. This message might

be preceded by other, more-specific messages.

System action: JNI_CreateJVM returns the code that is

shown in the message, to indicate that initialization of

the JVM failed.

User response: Examine the -Xservice= options that

are indicated in the message. Correct as necessary.

JVMCI127 Error parsing Service java options -

rc=%d

Explanation: JNI_CreateJVM initialization detected an

error while parsing JVM options. This message might

be preceded by other, more-specific messages.

System action: JNI_CreateJVM returns the code that is

shown in the message, to indicate that initialization of

the JVM failed.

JVM error messages for JVMCI

Appendix F. Messages and codes 427

User response: Examine the -Xservice= options that

are indicated in the message. Correct as necessary.

JVMCI128 Illegal option: %s

Explanation: JNI_CreateJVM initialization detected a

-verbose option that had no following “.” (period)

character. The string that follows -verbose is shown in

the message.

System action: JNI_CreateJVM returns -6 to indicate

that initialization of the JVM failed.

User response: Examine the -verbose: options that are

passed to the JVM. Correct as necessary.

JVMCI129 Unrecognized verbose option: %s

Explanation: JNI_CreateJVM initialization detected a

-verbose option that had no valid option following the

“.” (period) character. The string that follows -verbose

is shown in the message

System action: JNI_CreateJVM returns -6 to indicate

that initialization of the JVM failed.

User response: Examine the -verbose options that are

passed to the JVM. Correct as necessary. You can list

valid options by running java -?.

JVMCI130 Illegal option: %s

Explanation: JNI_CreateJVM initialization detected an

-verify option that had no valid option following. The

string following -verify is shown in the message.

System action: JNI_CreateJVM returns -6 to indicate

that initialization of the JVM failed.

User response: Examine the -verify option that is

passed to the JVM. Correct as necessary. You can list

valid options by running java -?.

JVMCI131 Invalid number of threads: %s

Explanation: JNI_CreateJVM initialization detected an

-Xgcthreads option that had no positive integer

following. The string that follows -Xgcthreads is shown

in the message.

System action: JNI_CreateJVM returns -6 to indicate

that initialization of the JVM failed.

User response: Examine the -Xgcthreads option that is

passed to the JVM. Correct as necessary.

JVMCI133 Bad concurrent GC level: %s

Explanation: JNI_CreateJVM initialization detected an

-Xconcurrentlevel option that had no valid size

following. You can specify sizes as a positive integers

that are optionally suffixed with K, M or G to indicate

units of KB, MB, or GB. The string that follows

-Xconcurrentlevel is shown in the message.

System action: JNI_CreateJVM returns -6 to indicate

that initialization of the JVM failed.

User response: Examine the -Xconcurrentlevel option

that is passed to the JVM. Correct as necessary.

JVMCI134 Incorrect usage of -Xverbosegclog

Explanation: JNI_CreateJVM initialization detected an

-Xverbosegclog option that had no valid suboptions

following. The string that follows -Xverbosegclog is

shown in the message.

System action: JNI_CreateJVM returns -6 to indicate

that initialization of the JVM failed.

User response: Examine the -Xverbosegclog option

that is passed to the JVM. Correct as necessary.

JVMCI135 Illegal option: %s

Explanation: JNI_CreateJVM initialization detected an

-Xgcpolicy option that had no suboptions following.

The string that follows -Xgcpolicy is shown in the

message.

System action: JNI_CreateJVM returns -6 to indicate

that initialization of the JVM failed.

User response: Examine the -Xgcpolicy option that is

passed to the JVM. Correct as necessary. You can list

valid options by running java -?.

JVMCI136 Illegal option: %s

Explanation: JNI_CreateJVM initialization detected an

-Xgcpolicy option that had no valid suboption

following. The string that follows -Xgcpolicy is shown

in the message.

System action: JNI_CreateJVM returns -6 to indicate

that initialization of the JVM failed.

User response: Examine the -Xgcpolicy option that is

passed to the JVM. Correct as necessary. You can list

valid options by running java -?.

JVMCI137 Bad native stack size: %s

Explanation: JNI_CreateJVM initialization detected an

-Xss option that had no valid size following. You can

specify sizes as a positive integers that are optionally

suffixed with K, M or G to indicate units of KB, MB, or

GB. Size must be equivalent to, or greater than, 1000

bytes. The string that follows -Xss is shown in the

message.

System action: JNI_CreateJVM returns -6 to indicate

that initialization of the JVM failed.

User response: Examine the -Xss option that is passed

to the JVM. Correct as necessary. You can list valid

options by running java -?.

JVM error messages for JVMCI

428 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

JVMCI138 Bad Java stack size: %s

Explanation: JNI_CreateJVM initialization detected an

-Xoss option that had no valid size following. You can

specify sizes as a positive integers that are optionally

suffixed with K, M or G to indicate units of KB, MB, or

GB. Size must be equivalent to, or greater than, 1000

bytes. The string that follows -Xoss is shown in the

message.

System action: JNI_CreateJVM returns -6 to indicate

that initialization of the JVM failed.

User response: Examine the -Xoss option that is

passed to the JVM. Correct as necessary. You can list

valid options by running java -?.

JVMCI139 Bad init heap size: %s

Explanation: JNI_CreateJVM initialization detected an

-Xms option that had no valid size following. You can

specify sizes as a positive integers that are optionally

suffixed with K, M or G to indicate units of KB, MB, or

GB. The string that follows -Xms is shown in the

message.

System action: JNI_CreateJVM returns -6 to indicate

that initialization of the JVM failed.

User response: Examine the -Xms option that is

passed to the JVM. Correct as necessary. You can list

valid options by running java -?.

JVMCI140 Bad max heap size: %s

Explanation: JNI_CreateJVM initialization detected an

-Xmx option that had no valid size following. You can

specify sizes as a positive integers that are optionally

suffixed with K, M or G to indicate units of KB, MB, or

GB. The string that follows -Xmx is shown in the

message.

System action: JNI_CreateJVM returns -6 to indicate

that initialization of the JVM failed.

User response: Examine the -Xmx option that is

passed to the JVM. Correct as necessary. You can list

valid options by running java -?.

JVMCI141 Bad maxHeapFreePercent size: %s

Explanation: JNI_CreateJVM initialization detected an

-Xmaxf option that had no valid value following. Valid

values are 0 and 1.

System action: JNI_CreateJVM returns -6 to indicate

that initialization of the JVM failed.

User response: Examine the -Xmaxf option that is

passed to the JVM. Correct as necessary.

JVMCI142 Bad minHeapFreePercent size: %s

Explanation: JNI_CreateJVM initialization detected an

-Xminf option that had no valid value following. Valid

values are 0 and 1.

System action: JNI_CreateJVM returns -6 to indicate

that initialization of the JVM failed.

User response: Examine the -Xminf option that is

passed to the JVM. Correct as necessary.

JVMCI143 Bad maxHeapExpansion size: %s

Explanation: JNI_CreateJVM initialization detected an

-Xmaxe option that had no valid size following. You

can specify sizes as a positive integers that are

optionally suffixed with K, M or G to indicate units of

KB, MB, or GB. The string that follows -Xmaxe is

shown in the message.

System action: JNI_CreateJVM returns -6 to indicate

that initialization of the JVM failed.

User response: Examine the -Xmaxe option that is

passed to the JVM. Correct as necessary.

JVMCI144 Bad minHeapExpansion size: %s

Explanation: JNI_CreateJVM initialization detected an

-Xmine option that had no valid size following. You

can specify sizes as a positive integers that are

optionally suffixed with K, M or G to indicate units of

KB, MB, or GB. The string that follows -Xmine is

shown in the message.

System action: JNI_CreateJVM returns -6 to indicate

that initialization of the JVM failed.

User response: Examine the -Xmine option that is

passed to the JVM. Correct as necessary.

JVMCI146 Bad initial Transient heap size: %s

Explanation: In a shared class environment,

JNI_CreateJVM initialization detected an -Xinitth

option that had no valid size following. You can specify

sizes as a positive integers that are optionally suffixed

with K, M or G to indicate units of KB, MB, or GB. The

string that follows -Xinitth is shown in the message.

System action: JNI_CreateJVM returns -6 to indicate

that initialization of the JVM failed.

User response: Examine the -Xinitth option that is

passed to the JVM. Correct as necessary. You can list

valid options by running java -?.

JVMCI147 Bad initial System heap size: %s

Explanation: In a shared class environment,

JNI_CreateJVM initialization detected an -Xinitsh

option that had no valid size following. You can specify

sizes as a positive integers that are optionally suffixed

JVM error messages for JVMCI

Appendix F. Messages and codes 429

with K, M or G to indicate units of KB, MB, or GB. The

string that follows -Xinitsh is shown in the message.

System action: JNI_CreateJVM returns -6 to indicate

that initialization of the JVM failed.

User response: Examine the -Xinitsh option that is

passed to the JVM. Correct as necessary. You can list

valid options by running java -?.

JVMCI148 Bad initial ACS heap size: %s

Explanation: In a shared class environment,

JNI_CreateJVM initialization detected an -Xinitacsh

option that had no valid size following. You can specify

sizes as a positive integers that are optionally suffixed

with K, M or G to indicate units of KB, MB, or GB. The

string that follows -Xinitacsh is shown in the message.

System action: JNI_CreateJVM returns -6 to indicate

that initialization of the JVM failed.

User response: Examine the -Xinitacsh option that is

passed to the JVM. Correct as necessary. You can list

valid options by running java -?.

JVMCI149 Bad shared memory size: %s

Explanation: In a shared class environment,

JNI_CreateJVM initialization detected a Master JVM

-Xjvmset option that had no valid size following. You

can specify sizes as a positive integers that are

optionally suffixed with K, M or G to indicate units of

KB, MB, or GB. The string that follows -Xjvmset is

shown in the message.

System action: JNI_CreateJVM returns -6 to indicate

that initialization of the JVM failed.

User response: Examine the -Xjvmset option that is

passed to the JVM. Correct as necessary. You can list

valid options by running java -?.

JVMCI150 Invalid use of %s option

Explanation: In a shared class environment,

JNI_CreateJVM initialization detected a Worker JVM

-Xjvmset option that had suboptions following. You

must not specify suboptions for a Worker JVM. The

string that follows -Xjvmset is shown in the message.

System action: JNI_CreateJVM returns -6 to indicate

that initialization of the JVM failed.

User response: Examine the -Xjvmset option that is

passed to the JVM. Correct as necessary. You can list

valid options by running java -?.

JVMCI151 Invalid shared class option setting: %s

Explanation: JNI_CreateJVM initialization detected an

-Xscmax option that had no valid size following. Size

must be a positive integer 2048 through 1048576. The

string that follows -Xscmax is shown in the message.

System action: JNI_CreateJVM returns -6 to indicate

that initialization of the JVM failed.

User response: Examine the -Xscmax option that is

passed to the JVM. Correct as necessary.

JVMCI152 Invalid option : %s

Explanation: JNI_CreateJVM initialization detected

one of the -ea, -enableassertions, -da, or

-disableassertions options that had no following “.”

(period) character.

System action: JNI_CreateJVM returns -6 to indicate

that initialization of the JVM failed.

User response: Examine the assert options that are

passed to the JVM. Correct as necessary. You can list

valid options by running java -assert.

JVMCI153 Invalid option, optionString pointer is

null

Explanation: JNI_CreateJVM initialization detected an

option that started with -X, but had no further value.

System action: JNI_CreateJVM returns -6 to indicate

that initialization of the JVM failed.

User response: Examine the assert options that are

passed to the JVM. Correct as necessary. You can list

valid options by running java -assert.

JVMCI155 Specified options prevent use of JIT

Explanation: JNI_CreateJVM initialization detected

either the -Xt or the -Xmt option, and has disabled the

JIT compiler..

System action: JNI_CreateJVM continues with the JIT

compiler disabled.

User response: None.

JVMCI156 OutOfMemoryError,

IBMJVM_ResizeArray - stAllocArray for

new array failed

Explanation: A call to ExtendedSystem.resizeArray()

has failed because not enough memory is available.

System action: The JVM throws an

OutOfMemoryError.

User response: Use a larger maximum heap when you

start the JVM; for example, by using the Java -Xmx

option.

JVMCI157 OutOfMemoryError,

stClonePrimitiveArrayToSystemHeap for

GetSystemHeapArray() failed

Explanation: A call to

ClassLoader.getSystemHeapArray() has failed because

not enough memory is available.

JVM error messages for JVMCI

430 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

System action: The JVM throws an

OutOfMemoryError.

User response: Use a larger maximum heap when you

start the JVM; for example, by using the Java -Xmx

option.

JVMCI158 Can’t load %s, because %s

Explanation: JNI_CreateJVM initialization could not

load the indicated shared library because of the reason

indicated. Message JVMCI098 might also be printed.

System action: JNI_CreateJVM returns -1 to indicate

that initialization of the JVM failed.

User response: Contact your IBM service

representative.

JVMCI159 Unable to initialize JVM helper library

%s

Explanation: JNI_CreateJVM initialization could not

call the OnLoad() entry point for the indicated shared

library.

System action: JNI_CreateJVM returns -1 to indicate

that initialization of the JVM failed.

User response: Contact your IBM service

representative.

JVMCI160 Corrupted JVM helper library %s

Explanation: JNI_CreateJVM initialization could not

call the OnLoad() entry point for the indicated shared

library.

System action: JNI_CreateJVM returns -1 to indicate

that initialization of the JVM failed.

User response: Contact your IBM service

representative.

JVMCI161 FATAL ERROR in native method: %s

Explanation: A JNI function has found an

unrecoverable error. Information that is specific to the

error is included in the message.

System action: The JVM prints a Java stack trace and

ends. Dumps might be produced, depending upon the

setting of the JAVA_DUMP_OPTS environment

variable.

User response: Examine the message detail and Java

stack trace to determine the possible cause of the error.

If you cannot solve the problem, contact your IBM

service representative.

JVMCI162 Profiler error

Explanation: JNI_CreateJavaVM has determined that

the profiling interface is not initialized.

System action: JNI_CreateJavaVM returns -1 to

indicate that initialization of the JVM failed.

User response: Contact your IBM service

representative.

JVMCI163 Illegal string length in JVMMI

heapdump

Explanation: A string is greater than the maximum

JVMMI reference buffer size of 1024 bytes.

System action: The string is ignored and the JVM

attempts to continue.

User response: Contact your IBM service

representative.

JVMCI164 Illegal option: %s

Explanation: JNI_CreateJVM initialization detected a

-Xifa option that had no valid value following. Valid

values are on, off, force & project.

System action: JNI_CreateJVM returns -6 to indicate

that initialization of the JVM failed.

User response: Examine the -Xifa option that is

passed to the JVM. Correct as necessary

JVMCI165 Illegal option specified %s

Explanation: JNI_CreateJVM initialization detected a

-Xk option that had an invalid number of classes

specified.

System action: JNI_CreateJVM returns -6 to indicate

that initialization of the JVM failed.

User response: Examine the -Xk option that is passed

to the JVM. Correct as necessary.

JVMCI166 Illegal option specified %s

Explanation: JNI_CreateJVM initialization detected a

-Xp option that had an invalid format for the following

pCluster specification. The expected format is

-Xpiiii[K][,oooo[K]].

System action: JNI_CreateJVM returns -6 to indicate

that initialization of the JVM failed.

User response: Examine the -Xp option that is passed

to the JVM. Correct as necessary.

JVM error messages for JVMCI

Appendix F. Messages and codes 431

JVMCI167 Bad pCluster initial size %s

Explanation: JNI_CreateJVM initialization detected a

-Xp option that had an invalid initial pCluster size

specified.

System action: JNI_CreateJVM returns -6 to indicate

that initialization of the JVM failed.

User response: Examine the -Xp option that is passed

to the JVM. Correct as necessary.

JVMCI168 Bad pCluster overflow size %s

Explanation: JNI_CreateJVM initialization detected a

-Xp option that had an invalid overflow pCluster size

specified.

System action: JNI_CreateJVM returns -6 to indicate

that initialization of the JVM failed.

User response: Examine the -Xp option that is passed

to the JVM. Correct as necessary.

JVMCI169 Initial pCluster size less than pCluster

overflow %s

Explanation: JNI_CreateJVM initialization detected a

-Xp option of the form -Xpiiii[K][,oooo[K]] where iiii

is less than oooo.

System action: JNI_CreateJVM returns -6 to indicate

that initialization of the JVM failed.

User response: Examine the -Xp option that is passed

to the JVM. Correct as necessary.

JVM error messages for JVMCL

JVMCL001 OutOfMemoryError, dcUTF2JavaString

failed

Explanation: During the resolution of a Java constant

pool string, the function that converts a UTF string

type to an internal Java string type failed and returned

a NULL value because of a lack of Java heap memory.

System action: The JVM throws a

java.lang.OutOfMemoryError.

User response: Use a larger maximum heap when you

start the JVM; for example, by using the Java -Mx

option.

JVMCL002 OutOfMemoryError, stInternString

failed

Explanation: During the resolution of a Java constant

pool string, the function that resolves a Java string to a

single and unique equivalent inside the JVM failed and

returned a NULL value because of a lack of Java heap

memory.

System action: The JVM throws a

java.lang.OutOfMemoryError.

User response: Use a larger maximum heap when you

start the JVM; for example, by using the Java -Mx

option.

JVMCL003 OutOfMemoryError, unable to allocate

storage for MethodTable

Explanation: The system memory calloc (or shared

memory alloced for a shared class in the sharable JVM)

that was used to get storage for a method table has

returned NULL.

System action: The JVM throws a

java.lang.OutOfMemoryError.

User response: The C-runtime heap of the process

(not the Java object heap) is full. In a shared classes

environment, see the shared classes User Guide for

options that control shared memory.

JVMCL004 OutOfMemoryError, unable to allocate

storage for offset vector

Explanation: While laying out the fields of a Java class

in memory, storage is requested for the list of offsets of

each field in the class. Not enough memory is available

to honor this request.

System action: The JVM throws a

java.lang.OutOfMemoryError.

User response: The C-runtime heap of the process

(not the Java object heap) is full. In a shared classes

environment, see the shared classes User Guide for

options that control shared memory, because the

storage is managed by the JVM in this case.

JVMCL005 OutOfMemoryError, unable to allocate

storage for interface table

Explanation: The system memory calloc (or shared

memory allocated for a shared classes environment in

the sharable JVM) that was used to get storage for a

interface table has returned NULL.

System action: The JVM throws a

java.lang.OutOfMemoryError.

User response: The C-runtime heap of the process

(not the Java object heap) is full. Increase the heap if

that is possible in your environment. In a shared

classes environment, see the shared classes User Guide

for options that control shared memory, because the

storage is managed by the JVM in this case.

JVMCL006 OutOfMemoryError, unable to allocate

storage for MethodBlock

JVM error messages for JVMCI

432 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

Explanation: The system memory calloc (or shared

memory alloced for a shared classes in the sharable

JVM) that was used to get storage for a (miranda)

method block has returned NULL.

System action: The JVM throws a

java.lang.OutOfMemoryError.

User response: The C-runtime heap of the process

(not the Java object heap) is full. Increase the heap if

that is possible in your environment. In a shared

classes environment, see the shared classes User Guide

for options that control shared memory, because the

storage is managed by the JVM in this case.

JVMCL007 OutOfMemoryError, mbName returned

NULL

Explanation: The system memory alloc (or shared

memory allocated for a shared classes in the sharable

JVM) that was used to get storage for an entry in the

cache of UTF8 strings has returned NULL during the

preparation of a class-implemented method.

System action: The JVM throws a

java.lang.OutOfMemoryError.

User response: The C-runtime heap of the process

(not the Java object heap) is full. Increase the heap if

that is possible in your environment. In a shared

classes environment, see the shared classes User Guide

for options that control shared memory, because the

storage is managed by the JVM in this case.

JVMCL008 OutOfMemoryError,

stAddToLoadedClasses failed

Explanation: The function that adds a class object to

the internal list in the JVM has failed.

System action: The JVM throws a

java.lang.OutOfMemoryError.

User response: The C-runtime heap of the process

(not the Java object heap) is full. Increase the heap if

that is possible in your environment. In a shared

classes environment, see the shared classes User Guide

for options that control shared memory, because the

storage is managed by the JVM in this case.

JVMCL009 OutOfMemoryError, sysMalloc for

loading classes (file) failed

Explanation: The malloc function that was used in

class loading to create an internal buffer has returned

NULL.

System action: The JVM throws a

java.lang.OutOfMemoryError.

User response: The C-runtime heap of the process

(not the Java object heap) is full. Increase the heap if

that is possible in your environment.

JVMCL010 OutOfMemoryError, sysMalloc for

loading classes (zip) failed

Explanation: The malloc function that was used in

class loading to create an internal buffer has returned

NULL.

System action: The JVM throws a

java.lang.OutOfMemoryError.

User response: The C-runtime heap of the process

(not the Java object heap) is full. Increase the heap if

that is possible in your environment.

JVMCL011 OutOfMemoryError, putPackage for

loading classes (zip) failed

Explanation: Adding a package table entry failed

because of a lack of system memory (shared memory

segment space in a shared classes environment).

System action: The JVM throws a

java.lang.OutOfMemoryError.

User response: The C-runtime heap of the process

(not the Java object heap) is full. Increase the heap if

that is possible in your environment. In a shared

classes environment, the shared memory segment is

full. See the sharable JVM documentation for

information about how to increase the segment.

JVMCL012 OutOfMemoryError, allocation failed

Explanation: Class allocation has failed for an array or

primitive class.

System action: The JVM throws a

java.lang.OutOfMemoryError.

User response: Start the JVM with a larger maximum

heap; for example, by using the Java -Mx option. In a

shared classes environment the storage area that is full

depends on the type of class that is being allocated. See

the sharable JVM documentation for further

information.

JVMCL013 OutOfMemoryError, unable to allocate

storage for pool buffer

Explanation: The calloc system function (or

classSharedMalloc in a sharable JVM environment) has

returned NULL.

System action: The JVM throws a

java.lang.OutOfMemoryError.

User response: The C-runtime heap of the process

(not the Java object heap) is full. Increase the heap if

that is possible in your environment. In a shared

classes environment, see the shared classes User Guide

for options that control shared memory, because the

storage is managed by the JVM in this case.

JVM error messages for JVMCL

Appendix F. Messages and codes 433

JVMCL014 OutOfMemoryError, cbName returned

NULL

Explanation: Setting the class name of a class has

failed, probably because of the inability to create a new

UTF8 cache entry.

System action: The JVM throws a

java.lang.OutOfMemoryError.

User response: The C-runtime heap of the process

(not the Java object heap) is full. Increase the heap if

that is possible in your environment. In a shared

classes environment, see the shared classes User Guide

for options that control shared memory, because the

storage is managed by the JVM in this case.

JVMCL015 OutOfMemoryError, allocation of class

mirror failed

Explanation: The function that was used to allocate an

unmovable byte array in the JVM has returned NULL.

System action: The JVM throws a

java.lang.OutOfMemoryError.

User response: Use a larger maximum heap to start

the JVM; for example, by using the java -Mx option. In

a shared classes environment, the storage area that is

full depends on the type of class that is being allocated.

See the sharable JVM documentation for more

information about how to increase the memory that is

available for class storage.

JVMCL016 OutOfMemoryError,

jvmpi_load_class_hook returned NULL

pointer

Explanation: The JVMPI user-pluggable code has

returned NULL in response to a class load event.

System action: The JVM throws a

java.lang.OutOfMemoryError.

User response: If this is an unexpected result,

investigate the code that uses the JVMPI interface to

listen for the JVMPI CLASS_LOAD event.

JVMCL017 OutOfMemoryError, loading classes

Explanation: A generic out of memory error has

occurred.

System action: The JVM throws a

java.lang.OutOfMemoryError.

User response: Use a larger maximum heap to start

the JVM; for example, by using the Java -Mx option. In

a shared classes environment, the storage area that is

full depends on the type of class that is being allocated.

See the sharable JVM documentation for more

information about how to increase the memory that is

available for class storage. If this does not solve the

problem, increase the process C-heap that is allocated

to the JVM process, if possible.

JVMCL018 OutOfMemoryError, stAllocObject for

new field instance failed

Explanation: The Java heap is full.

System action: The JVM throws a

java.lang.OutOfMemoryError.

User response: Use a larger maximum heap to start

the JVM; for example, by using the Java -Mx option. In

a shared classes environment, the storage area that is

full depends on the type of class that is being allocated.

See the sharable JVM documentation for more

information about how to increase the memory that is

available for class storage.

JVMCL019 OutOfMemoryError, stAllocArray for

new array failed

Explanation: The Java heap is full.

System action: The JVM throws a

java.lang.OutOfMemoryError.

User response: Use a larger maximum heap to start

the JVM; for example, by using the Java -Mx option. In

a shared classes environment, the storage area that is

full depends on the type of class that is being allocate.

See the sharable JVM documentation for more

information about how to increase the memory that is

available for class storage.

JVMCL020 OutOfMemoryError, stAllocObject for

new method failed

Explanation: The Java heap is full.

System action: The JVM throws a

java.lang.OutOfMemoryError.

User response: Use a larger maximum heap to start

the JVM; for example, by using the Java -Mx option. In

a shared classes environment, the storage area that is

full depends on the type of class that is being allocated.

See the sharable JVM documentation for more

information about how to increase the memory that is

available for class storage.

JVMCL021 OutOfMemoryError, stAllocObject for

new constructor failed

Explanation: The Java heap is full.

System action: The JVM throws a

java.lang.OutOfMemoryError.

User response: Use a larger maximum heap to start

the JVM; for example, by using the Java -Mx option. In

a shared classes environment, the storage area that is

full depends on the type of class that is being allocated.

See the sharable JVM documentation for more

JVM error messages for JVMCL

434 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

information about how to increase the memory that is

available for class storage.

JVMCL022 OutOfMemoryError, sysMalloc for inner

classes failed

Explanation: The malloc system function has returned

NULL.

System action: The JVM throws a

java.lang.OutOfMemoryError.

User response: Contact your IBM service

representative.

JVMCL023 OutOfMemoryError, stAllocObject for

new class failed

Explanation: The Java heap is full.

System action: The JVM throws a

java.lang.OutOfMemoryError.

User response: Use a larger maximum heap to start

the JVM; for example, by using the Java -Mx option. In

a shared classes environment, the storage area that is

full depends on the type of class that is being allocated.

See the sharable JVM documentation for more

information about how to increase the memory that is

available for class storage.

JVMCL024 OutOfMemoryError, add package to

shared NameSpace failed

Explanation: Both the Java system heap and alloced

memory are needed to add a package to the shared

name space and one of this cannot provide enough

storage to do so.

System action: The JVM throws a

java.lang.OutOfMemoryError.

User response: Use a larger maximum heap to start

the JVM; for example, by using the Java -Mx option. In

a shared classes environment, the storage area that is

full depends on the type of class that is being allocated.

See the sharable JVM documentation for more

information about how to increase the memory that is

available for class storage.

JVMCL027 OutOfMemoryError, allocating an array

of objects

Explanation: An unrecoverable internal processing

error has occurred in the JVM.

System action: The JVM throws a

java.lang.OutOfMemoryError.

User response: Use a larger maximum heap to start

the JVM; for example, by using the Java -Mx option. In

a shared classes environment, the storage area that is

full depends on the type of class that is being allocated.

See the sharable JVM documentation for more

information about how to increase the memory that is

available for class storage.

JVMCL028 OutOfMemoryError, name of inner array

class is NULL

Explanation: An unrecoverable internal processing

error has occurred in the JVM.

System action: The JVM throws a

java.lang.OutOfMemoryError.

User response: Contact your IBM service

representative.

JVMCL029 OutOfMemoryError, inner class name is

NULL (multi-D array)

Explanation: An unrecoverable internal processing

error has occurred in the JVM.

System action: The JVM throws a

java.lang.OutOfMemoryError.

User response: Contact your IBM service

representative.

JVMCL030 OutOfMemoryError, add into loader

cache failed

Explanation: An unrecoverable internal processing

error has occurred in the JVM.

System action: The JVM throws a

java.lang.OutOfMemoryError.

User response: Use a larger maximum heap to start

the JVM; for example, by using the Java -Mx option. In

a shared classes environment, the storage area that is

full depends on the type of class that is being allocated.

See the sharable JVM documentation for more

information about how to increase the memory that is

available for class storage.

JVMCL031 Maximum number of shared classes

exceeded, use -Xscmax command eline

option to increase the limit.

Explanation: This message is issued if an application

attempts to load more than the specified number (or

the default number, if the option was not specified) of

shareable classes. These include shareable application

classes, middleware classes, and system classes. A JVM

set normally loads at least 1500 system classes during

initialization.

System action: The JVM set is terminated.

User response: Review the number of shared classes

that are being loaded by the application, and, if

necessary, set the -Xscmax <n> command line option

on the Master JVM to increase the limit.

JVM error messages for JVMCL

Appendix F. Messages and codes 435

JVMCL032 OutOfMemoryError, clAddUTF8String

failed

Explanation: The operation to add a string to the JVM

internal cache failed.

System action: The JVM throws a

java.lang.OutOfMemoryError.

User response: The C-runtime heap of the process

(not the Java object heap) is full. Increase the heap if

that is possible in your environment. In a shared

classes environment, see the shared classes User Guide

for options that control shared memory, because the

storage is managed by the JVM in this case.

JVMCL033 OutOfMemoryError, creation of loader

shadow failed, or promoteLoaderCaches

failed

Explanation: The system calloc function that was used

to get storage from the system has returned NULL.

System action: The JVM throws a

java.lang.OutOfMemoryError.

User response: The C-runtime heap of the process

(not the Java object heap) is full. Increase the heap if

that is possible in your environment. In a shared

classes environment, see the shared classes User Guide

for options that control shared memory, because the

storage is managed by the JVM in this case.

JVMCL034 OutOfMemoryError, sysMalloc for

bigger buffer failed

Explanation: The system malloc function has returned

NULL.

System action: The JVM throws a

java.lang.OutOfMemoryError.

User response: The C-runtime heap of the process

(not the Java object heap) is full. Increase the heap if

that is possible in your environment.

JVMCL035 OutOfMemoryError, allocation failed

Explanation: The loading of a Java class has failed

because not enough storage is available.

System action: The JVM throws a

java.lang.OutOfMemoryError.

User response: Use a larger maximum heap to start

the JVM; for example, by using the Java -Mx option. In

a shared classes environment, the storage area that is

full depends on the type of class that is being allocated.

See the sharable JVM documentation for more

information about how to increase the memory that is

available for class storage.

JVMCL036 OutOfMemoryError, stAllocObject

failed in WRAP

Explanation: The loading of a Java class has failed

because not enough storage is available.

System action: The JVM throws a

java.lang.OutOfMemoryError.

User response: Use a larger maximum heap to start

the JVM; for example, by using the Java -Mx option. In

a shared classes environment, the storage area that is

full depends on the type of class that is being allocated.

See the sharable JVM documentation for more

information about how to increase the memory that is

available for class storage.

JVMCL037 OutOfMemoryError, stAllocObject

failed in WRAP2

Explanation: The loading of a Java class has failed

because not enough storage is available.

System action: The JVM throws a

java.lang.OutOfMemoryError.

User response: Use a larger maximum heap to start

the JVM; for example, by using the Java -Mx option. In

a shared classes environment, the storage area that is

full depends on the type of class that is being allocated.

See the sharable JVM documentation for more

information about how to increase the memory that is

available for class storage.

JVMCL038 OutOfMemoryError, unable to allocate a

loader cache entry

Explanation: The JVM has been unable to allocate

storage during Java class loading.

System action: The JVM throws a

java.lang.OutOfMemoryError.

User response: The C-runtime heap of the process

(not the Java object heap) is full. Increase the heap if

that is possible in your environment. In a shared

classes environment, see the shared classes User Guide

for options that control shared memory, because the

storage is managed by the JVM in this case.

JVMCL039 OutOfMemoryError, failure allocating

constraint spill area

Explanation: The JVM has been unable to allocate

storage during Java class loading. The system malloc

function has returned NULL.

System action: The JVM throws a

java.lang.OutOfMemoryError.

User response: The C-runtime heap of the process

(not the Java object heap) is full. Increase the heap if

that is possible in your environment.

JVM error messages for JVMCL

436 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

JVMCL042 OutOfMemoryError, unable to allocate

NameSpace storage

Explanation: The JVM has run out of memory during

class loading.

System action: The JVM throws a

java.lang.OutOfMemoryError.

User response: The C-runtime heap of the process

(not the Java object heap) is full. Increase the heap if

that is possible in your environment. In a shared

classes environment, see the shared classes User Guide

for options that control shared memory, because the

storage is managed by the JVM in this case.

JVMCL044 OutOfMemoryError, unable to add

name space cache entry

Explanation: The JVM has run out of memory during

class loading.

System action: The JVM throws a

java.lang.OutOfMemoryError.

User response: The C-runtime heap of the process

(not the Java object heap) is full. Increase the heap if

that is possible in your environment. In a shared

classes environment, see the shared classes User Guide

for options that control shared memory, because the

storage is managed by the JVM in this case.

JVMCL045 OutOfMemoryError, stInternString

failed

Explanation: The JVM has run out of memory during

class loading.

System action: The JVM throws a

java.lang.OutOfMemoryError.

User response: The C-runtime heap of the process

(not the Java object heap) is full. Increase the heap if

that is possible in your environment. In a shared

classes environment, see the shared classes User Guide

for options that control shared memory, because the

storage is managed by the JVM in this case.

JVMCL046 OutOfMemoryError, stInternString

failed

Explanation: The JVM has run out of memory during

class loading.

System action: The JVM throws a

java.lang.OutOfMemoryError.

User response: The C-runtime heap of the process

(not the Java object heap) is full. Increase the heap if

that is possible in your environment. In a shared

classes environment, see the shared classes User Guide

for options that control shared memory, because the

storage is managed by the JVM in this case.

JVMCL048 Illegal re-definition of class

Explanation: Two concurrent attempts to load a class

have caused different class objects to be resolved. The

error has occurred because a race condition exists

between two threads that have loaded the same class,

and because an unstable underlying source of class

definitions, such as .class files, has been changed.

System action: A Java linkageError exception is

thrown.

User response: You can either synchronize or control

the multithreaded nature of the class loading, or

prevent loading from occurring while the underlying

class sources are being changed. Because class loading

in one class loader is synchronized, this error is more

likely to occur if multiple class-loaders in a delegation

chain become the defining loader for the class over

time because of changes in the underlying bytecode

source location.

JVMCL049 Illegal re-definition of class

Explanation: Two concurrent attempts to load a class

have caused different class objects to be resolved. The

error has occurred because a race condition exists

between two threads that have loaded the same class,

and because an unstable underlying source of class

definitions, such as .class files, has been changed.

System action: A Java linkageError exception is

thrown.

User response: You can either synchronize or control

the multithreaded nature of the class loading, or

prevent loading from occurring while the underlying

class sources are being changed. Because class loading

in one class loader is synchronized, this error is more

likely to occur if multiple class-loaders in a delegation

chain become the defining loader for the class over

time because of changes in the underlying bytecode

source location.

JVMCL050 OutOfMemoryError, stInternString

failed

Explanation: The JVM has run out of memory during

class loading.

System action: The JVM throws a

java.lang.OutOfMemoryError.

User response: The C-runtime heap of the process

(not the Java object heap) is full. Increase the heap if

that is possible in your environment. In a shared

classes environment, see the shared classes User Guide

for options that control shared memory, because the

storage is managed by the JVM in this case.

JVM error messages for JVMCL

Appendix F. Messages and codes 437

JVMCL051 OutOfMemoryError, stInternString

failed

Explanation: The JVM has run out of memory during

class loading.

System action: The JVM throws a

java.lang.OutOfMemoryError.

User response: The C-runtime heap of the process

(not the Java object heap) is full. Increase the heap if

that is possible in your environment. In a shared

classes environment, see the shared classes User Guide

for options that control shared memory, because the

storage is managed by the JVM in this case.

JVMCL052 Cannot allocate memory in

initializeHeap for heap segment

Explanation: The malloc function that was used to

initialize a Heap segment has returned NULL.

System action: The JVM throws a

java.lang.OutOfMemoryError.

User response: The C-runtime heap of the process

(not the Java object heap) is full. Increase the heap if

that is possible in your environment. In a shared

classes environment, see the shared classes User Guide

for options that control shared memory, because the

storage is managed by the JVM in this case.

JVMCL053 Cannot allocate memory in allocHeap

for heap segment

Explanation: The malloc function that was used to

allocate a Heap segment has returned NULL.

System action: The JVM throws a

java.lang.OutOfMemoryError.

User response: The C-runtime heap of the process

(not the Java object heap) is full. Increase the heap if

that is possible in your environment. In a shared

classes environment, see the shared classes User Guide

for options that control shared memory, because the

storage is managed by the JVM in this case.

JVMCL054 Cannot allocate memory in allocHeap

for heap segment

Explanation: The malloc function that was used to

allocate a Heap segment has returned NULL.

System action: The JVM throws a

java.lang.OutOfMemoryError.

User response: The C-runtime heap of the process

(not the Java object heap) is full. Increase the heap if

that is possible in your environment. In a shared

classes environment, see the shared classes User Guide

for options that control shared memory, because the

storage is managed by the JVM in this case.

JVMCL055 Cannot allocate memory in

initializeClassCache for context class

table

Explanation: The calloc function that was used to

allocate memory for the class cache for the context class

table has returned NULL.

System action: The JVM throws a

java.lang.OutOfMemoryError.

User response: The C-runtime heap of the process

(not the Java object heap) is full. Increase the heap if

that is possible in your environment. In a shared

classes environment, see the shared classes User Guide

for options that control shared memory, because the

storage is managed by the JVM in this case.

JVMCL056 Cannot allocate memory in

expandClassTable for Class cache

Explanation: The calloc function that was used to

allocate memory for the newly expanded class cache

table has returned NULL.

System action: The JVM throws a

java.lang.OutOfMemoryError.

User response: The C-runtime heap of the process

(not the Java object heap) is full. Increase the heap if

that is possible in your environment. In a shared

classes environment, see the shared classes User Guide

for options that control shared memory, because the

storage is managed by the JVM in this case.

JVMCL057 Cannot allocate memory in

initializeCPTable for context shadow

table

Explanation: The calloc function that was used to

allocate memory for the backing shadow table has

returned NULL.

System action: The JVM throws a

java.lang.OutOfMemoryError.

User response: The C-runtime heap of the process

(not the Java object heap) is full. Increase the heap if

that is possible in your environment. In a shared

classes environment, see the shared classes User Guide

for options that control shared memory, because the

storage is managed by the JVM in this case.

JVMCL200 Classloader system property

Explanation: The calloc function that was used to

allocate memory for the backing shadow table has

returned NULL.

System action: The JVM throws a

java.lang.OutOfMemoryError.

User response: The C-runtime heap of the process

(not the Java object heap) is full. Increase the heap if

JVM error messages for JVMCL

438 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

that is possible in your environment. In a shared

classes environment, see the shared classes User Guide

for options that control shared memory, because the

storage is managed by the JVM in this case.

JVM error messages for JVMDC

JVMDC001 OutOfMemoryError, stAllocArray for

cString2JavaString failed

Explanation: The Java heap is full. An attempt to

allocate an array of characters from the Java heap

failed.

System action: The JVM throws a

java.lang.OutOfMemoryError.

User response: Use a larger maximum heap to start

the JVM; for example, by using the java -Mx option.

JVMDC002 OutOfMemoryError, makeByteString

failed

Explanation: The Java heap is full. An attempt to

allocate an array of bytes from the Java heap failed.

System action: The JVM throws a

java.lang.OutOfMemoryError.

User response: Use a larger maximum heap to start

the JVM; for example, by using the java -Mx option.

JVMDC003 OutOfMemoryError, stAllocArray for

utf2JavaString failed

Explanation: The Java heap is full. An attempt to

allocate an array of characters from the Java heap

failed.

System action: The JVM throws a

java.lang.OutOfMemoryError.

User response: Use a larger maximum heap to start

the JVM; for example, by using the Java -Mx option.

JVMDC004 OutOfMemoryError, stAllocObject for

utf2JavaString failed

Explanation: The Java heap is full. An attempt to

allocate a java/lang/String object failed.

System action: The JVM throws a

java.lang.OutOfMemoryError.

User response: Use a larger maximum heap to start

the JVM; for example, by using the Java -Mx option.

JVMDC005 OutOfMemoryError, stAllocArray for

utfClassName2JavaString failed

Explanation: The Java heap is full. An attempt to

allocate an array of characters from the Java heap

failed.

System action: The JVM throws a

java.lang.OutOfMemoryError.

User response: Use a larger maximum heap to start

the JVM; for example, by using the Java -Mx option.

JVMDC006 OutOfMemoryError, stInternString

failed

Explanation: During the conversion of a utf string to a

Java string, the function that resolves a Java string to a

single and unique equivalent inside the JVM failed and

returned a NULL value because of a lack of java heap

memory.

System action: The JVM throws a

java.lang.OutOfMemoryError.

User response: Use a larger maximum heap to start

the JVM; for example, by using the Java -Mx option.

JVMDC007 OutOfMemoryError, stAllocObject for

utfClassName2JavaString failed

Explanation: The Java heap is full. An attempt to

allocate a java/lang/String object failed.

System action: The JVM throws a

java.lang.OutOfMemoryError.

User response: Use a larger maximum heap to start

the JVM; for example, by using the Java -Mx option.

JVMDC008 OutOfMemoryError, sysMalloc failed

Explanation: The malloc function that was used to

create a new buffer has returned NULL.

System action: The JVM throws a

java.lang.OutOfMemoryError.

User response: The C-runtime heap of the process

(not the Java object heap) is full. Increase the heap if

that is possible in your environment.

JVMDC009 OutOfMemoryError, sysMalloc failed

Explanation: The malloc function that was used to

create a buffer used while converting a platform string

to a utf8 class name has returned NULL.

System action: The JVM throws a

java.lang.OutOfMemoryError.

User response: The C-runtime heap of the process

(not the Java object heap) is full. Increase the heap if

that is possible in your environment.

JVM error messages for JVMDBG

JVM error messages for JVMCL

Appendix F. Messages and codes 439

JVMDBG001 malloc failed to allocate <allocation

request size> bytes, time <date and

time>

Explanation: The system malloc function has returned

NULL

System action: None for this message. The JVM might

issue a further message.

User response: Increase the available native storage.

JVMDBG002 strndup failed to allocate <allocation

request size> bytes, time <date and

time>

Explanation: The system strndup function has

returned NULL

System action: None for this message. The JVM might

issue a further message.

User response: Increase the available native storage.

JVMDBG003 strdup failed, time <date and time>

Explanation: The system strdup function has returned

NULL

System action: None for this message. The JVM might

issue a further message.

User response: Increase the available native storage.

JVMDBG004 calloc failed to allocate an array of

<number of array elements> elements at

<each array element size> bytes each,

time <date and time>

Explanation: The system calloc function has returned

NULL

System action: None for this message. The JVM might

issue a further message.

User response: Increase the available native storage.

JVMDBG005 realloc failed to allocate <allocation

request size> bytes, time <date and

time>

Explanation: The system realloc function has returned

NULL

System action: None for this message. The JVM might

issue a further message.

User response: Increase the available native storage.

JVM error messages for JVMDG

JVMDG009 RC %d from sysMonitorEnter in

getTraceLock

Explanation: Internal error.

System action: None.

User response: Contact your IBM service

representative.

JVMDG010 RC %d from sysMonitorExit in

freeTraceLock

Explanation: Internal error.

System action: None.

User response: Contact your IBM service

representative.

JVMDG011 RC %d from sysMonitorEnter in

postWriteThread

Explanation: Internal error.

System action: None.

User response: Contact your IBM service

representative.

JVMDG012 RC %d from sysMonitorNotify in

postWriteThread

Explanation: Internal error.

System action: None.

User response: Contact your IBM service

representative.

JVMDG013 RC %d from sysMonitorExit in

postWriteThread

Explanation: Internal error.

System action: None.

User response: Contact your IBM service

representative.

JVMDG015 Malloc failure in addTraceCmd

Explanation: During processing of the user-supplied

trace options, a call to malloc was made to obtain a

block of memory. This call failed.

System action: The JVM is terminated.

User response: Try running the JVM with a larger

maximum heap size (by using the -Xmx option). If the

problem remains, contact your IBM service

representative.

JVM error messages for JVMDBG

440 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

JVMDG032 Unable to open properties file %s

Explanation: The JVM was unable to open the

properties file that was listed in the message.

System action: The JVM is terminated.

User response: Ensure that the properties file that you

have specified really exists. If the problem remains,

contact your IBM service representative.

JVMDG033 Unable to determine size of properties

file %s

Explanation: Having opened the trace properties file

mentioned in the message, the JVM was unable to

determine its size.

System action: The JVM is terminated.

User response: Ensure that the file that you specified

is a valid properties file, and that it is readable. If the

problem remains, contact your IBM service

representative.

JVMDG034 Cannot obtain memory to process %s

Explanation: To process the trace properties file, it is

read into memory. Unfortunately, the call to obtain the

memory for this failed.

System action: The JVM is terminated.

User response: Try running the JVM with a larger

maximum heap size (by using the -Xmx option). If the

problem remains, contact your IBM service

representative.

JVMDG035 Error reading properties file %s

Explanation: To process the trace properties file, it is

read into memory. Unfortunately, the call to read it into

memory has failed.

System action: The JVM is terminated.

User response: Contact your IBM service

representative.

JVMDG037 Unrecognized line in %s: ″%s″

Explanation: While reading the trace properties file, a

line has been found that contains a keyword that is not

recognized. The properties file name and the offending

line are included in the text of the message.

System action: The JVM is terminated.

User response: Correct the line in error and try again.

JVMDG046 RC %d from sysMonitorEnter in trace

write thread

Explanation: Internal error.

System action: None.

User response: Contact your IBM service

representative.

JVMDG047 RC %d from sysMonitorWait in trace

write thread

Explanation: Internal error.

System action: None.

User response: Contact your IBM service

representative.

JVMDG048 RC %d from sysMonitorExit in trace

write thread

Explanation: Internal error.

System action: None.

User response: Contact your IBM service

representative.

JVMDG060 Error starting trace write thread

Explanation: The trace write thread is responsible for

writing trace data to disk. It could not be started.

System action: The trace data is not written to disk.

User response: Ensure that you are not running into a

system thread limit. If the problem remains, contact

your IBM service representative.

JVMDG070 Syntax error encountered at offset %d

in:%s

Explanation: The way in which you have specified

which components are to have high use tracing enabled

has caused a problem.

System action: The JVM is terminated.

User response: Correct the -Dibm.dg.trc.highuse=...

parameter and try again.

JVMDG078 RC %d from sysMonitorEnter in

dgTraceLock

Explanation: Internal error.

System action: None.

User response: Contact your IBM service

representative.

JVM error messages for JVMDG

Appendix F. Messages and codes 441

JVMDG079 RC %d from sysMonitorExit in

dgTraceUnlock

Explanation: Internal error.

System action: None.

User response: Contact your IBM service

representative.

JVMDG080 Cannot find class %s

Explanation: The JVM was attempting to initialize the

(named) Trace class, but it cannot find it.

System action: The JVM is terminated.

User response: Handle this problem in the same way

that you would any other class-not-found condition.

JVMDG081 Exception %s occurred during trace

initialization

Explanation: The JVM was attempting to initialize the

Trace class, but its initializeTrace() method has thrown

the specified exception.

System action: The JVM is terminated.

User response: Depends on the exception that was

thrown.

JVMDG082 Out of memory while processing

properties file

Explanation: The JVM was trying to allocate a block

of memory to hold the traceFileSpec, but the malloc

failed.

System action: The JVM is terminated.

User response: Try running the JVM with a larger

maximum heap size (by using the -Xmx option). If the

problem remains, contact your IBM service

representative.

JVMDG100 Cannot allocate memory for line

terminator char(1)

Explanation: The JVM was trying to malloc memory

to hold a system specific line terminator character, but

the malloc failed.

System action: The JVM terminates.

User response: Try running the JVM with a larger

maximum heap size (by using the -Xmx option). If the

problem remains, contact your IBM service

representative.

JVMDG101 Cannot allocate memory for line

terminator char(2).

Explanation: The JVM was trying to malloc memory

to hold a system specific line terminator character, but

the malloc failed.

System action: The JVM terminates.

User response: Try running the JVM with a larger

maximum heap size (by using the -Xmx option). If the

problem remains, contact your IBM service

representative.

JVMDG102 Cannot allocate memory for filename.

Explanation: The JVM was trying to get a piece of

memory to store the event output file name, but the

malloc failed.

System action: The JVM terminates.

User response: Try running the JVM with a larger

maximum heap size (by using the -Xmx option). If the

problem remains, contact your IBM service

representative.

JVMDG103 Cannot allocate memory in

dgEventQueueAdd

Explanation: The JVM was trying to get a piece of

memory to store an event queue item, but the malloc

failed.

System action: The JVM terminates.

User response: Try running the JVM with a larger

maximum heap size (by using the -Xmx option). If the

problem remains, contact your IBM service

representative.

JVMDG104 Cannot allocate memory for printing a

stack trace

Explanation: The JVM was trying to get a piece of

memory to store a Java stack trace, but the malloc

failed.

System action: The JVM terminates.

User response: Try running the JVM with a larger

maximum heap size (by using the -Xmx option). If the

problem remains, contact your IBM service

representative.

JVMDG105 Cannot allocate memory for new event

list item

Explanation: The JVM was trying to get a piece of

memory to store an event list item, but the malloc

failed.

System action: The JVM terminates.

User response: Try running the JVM with a larger

JVM error messages for JVMDG

442 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

maximum heap size (by using the -Xmx option). If the

problem remains, contact your IBM service

representative.

JVMDG106 Cannot allocate memory for adding an

event class

Explanation: The JVM was trying to get a piece of

memory to store an event class, but the malloc failed.

System action: The JVM terminates.

User response: Try running the JVM with a larger

maximum heap size (by using the -Xmx option). If the

problem remains, contact your IBM service

representative.

JVMDG107 Cannot allocate memory for printing a

stack trace

Explanation: The JVM was trying to get a piece of

memory to store a Java stack trace, but the malloc

failed.

System action: The JVM terminates.

User response: Try running the JVM with a larger

maximum heap size (by using the -Xmx option). If the

problem remains, contact your IBM service

representative.

JVMDG109 Cannot allocate memory for data in

initDgData

Explanation: On startup, the DG subcomponent has

attempted to malloc three blocks of memory for the

traceLock, traceTerminated, and writeEvent monitors.

One or more of these mallocs has failed.

System action: The JVM terminates.

User response: Try running the JVM with a larger

maximum heap size (by using the -Xmx option). If the

problem remains, contact your IBM service

representative.

JVMDG124 Cannot allocate memory in

dgRegisterDumpRoutine — Out of

memory in rasDumpRegister

Explanation: Each subcomponent registers its dump

routine at startup so that it can be called back in the

event of a Javadump. However, the malloc that was to

add this routine to the list has failed.

System action: The JVM terminates.

User response: Try running the JVM with a larger

maximum heap size (using the -Xmx option). If the

problem remains, contact your IBM service

representative.

JVMDG125 Null method trace specification

Explanation: The property -Dibm.dg.trc.methods=

requires a following value that indicates which

methods to trace. This value was omitted.

System action: The JVM terminates.

User response: Correct the parameter (for example,

-Dibm.dg.trc.methods=*), then retry.

JVMDG126 Length of dgMethodFmt exceeded

Explanation: The specification of the methods to trace

is too long for the available buffer.

System action: The JVM terminates.

User response: Use fewer characters to specify the

methods that you want to trace, then retry.

JVMDG127 Misplaced parentheses in method trace

specification

Explanation: The method specification cannot begin

with (or).

System action: The JVM terminates.

User response: Correct the method specification and

retry.

JVMDG128 Out of memory handling methods

Explanation: Method trace requires a table of

methods, but the malloc that was to create it failed.

System action: The JVM terminates.

User response: Try running the JVM with a larger

maximum heap size (by using the -Xmx option). If the

problem remains, contact your IBM service

representative.

JVMDG129 At least one method is required

Explanation: The property -Dibm.dg.trc.methods

requires a following value that indicates which

methods to trace. This value was omitted.

System action: The JVM terminates.

User response: Correct the parameter (for example,

-Dibm.dg.trc.methods=*) and retry.

JVMDG130 Invalid wildcard in method trace

Explanation: A wildcard has been detected at an

illegal position in the methods property

(″-Dibm.dg.trc.methods″).

System action: The JVM terminates.

User response: Correct the specification and retry.

JVM error messages for JVMDG

Appendix F. Messages and codes 443

JVMDG135 Error %d from JVMPI EnableEvent

Explanation: Method trace uses the JVMPI method

entry and exit events. One or both of these could not

be enabled.

System action: The JVM terminates.

User response: Method trace and JVMPI cannot be

used at the same time. If you were attempting to do

this, this error message was to be expected. If not,

contact your IBM service representative.

JVMDG136 Invalid method trace match flag %d

Explanation: This message should never be issued.

System action: None.

User response: Contact your IBM service

representative.

JVMDG137 Invalid Signature type = %d

SIGNATURE_VOID = %c

Explanation: This message should never be issued.

System action: None.

User response: Contact your IBM service

representative.

JVMDG138 Invalid Signature type = %c

Explanation: This message should never be issued.

System action: None.

User response: Contact your IBM service

representative.

JVMDG139 Cannot obtain memory for

dgMethodfmt

Explanation: Method trace required a block of

memory, but the malloc for it failed.

System action: The JVM terminates.

User response: Try running the JVM with a larger

maximum heap size (by using the -Xmx option). If the

problem remains, contact your IBM service

representative.

JVMDG140 Invalid applid specified

Explanation: The property -Dibm.dg.trc.applids must

be followed by a list of applids, all of which must be of

length greater than zero; for example,

-Dibm.dg.trc.applids=applid1,,applid2 is not valid.

System action: The JVM terminates.

User response: Correct the list of applids and retry.

JVMDG141 Out of memory handling applids

Explanation: Processing the list of applids includes

mallocing a block of storage, but this malloc failed.

System action: The JVM terminates.

User response: Try running the JVM with a larger

maximum heap size (using the -Xmx option). If the

problem remains, contact your IBM service

representative.

JVMDG142 At least one applid is required

Explanation: The property -Dibm.dg.trc.applids must

be followed by at least one applids.

System action: The JVM terminates.

User response: Retry, providing at least one applid.

JVMDG147 Illegal subcomponent id in dump

routine registration

Explanation: An unexpected error has occurred

during dump routine registration.

System action: This dump routine is not registered

and will not be called in the event of a Javadump.

User response: Contact your IBM service

representative.

JVMDG148 Malloc failure in dg_main

Explanation: A buffer was being malloced for use

during a Javadump. The malloc failed.

System action: The JVM terminates.

User response: Try running the JVM with a larger

maximum heap size (using the -Xmx option). If the

problem remains, contact your IBM service

representative.

JVMDG157 Cannot obtain memory for Java stack

trace

Explanation: The JVM was invoked with the callstack

option (-Dibm.dg.trc.callstack). On entry into a method,

the saved stack of references to Java methods must be

expanded, but the malloc to do this has failed.

System action: The JVM terminates.

User response: Try running the JVM with a larger

maximum heap size (by using the -Xmx option). If the

problem remains, contact your IBM service

representative.

JVM error messages for JVMDG

444 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

JVMDG158 Error in Java call stack trace

Explanation: The JVM was invoked with the callstack

option (-Dibm.dg.trc.callstack). On exit from a method,

a sanity check of what had been stored away has failed.

System action: The JVM terminates.

User response: Contact your IBM service

representative.

JVMDG159 Malloc failure in dg_main

Explanation: The malloc of a block of memory that

was required during DG subcomponent initialization

has failed.

System action: The JVM terminates.

User response: Try running the JVM with a larger

maximum heap size (by using the -Xmx option). If the

problem remains, contact your IBM service

representative.

JVMDG160 Cannot obtain memory for

utcAppFormat

Explanation: In utcAppFormat, a malloc request was

unable to be satisfied.

System action: The JVM terminates.

User response: This message indicates that native

memory was exhausted. Increase the available memory

or remove any extraneous memory usage.

JVMDG161 Tracepoint %6.6X truncated

Explanation: During the expansion of an application

trace tracepoint, the string buffer length was exceeded

System action: The substitution of variables into the

tracepoint stops at this point and the part-formatted

string is returned.

User response: Substitute less data into the

application trace point. Consider splitting it into

multiple trace points or validating data before invoking

the tracepoint

JVMDG162 Could not allocate buffer

Explanation: While checking whether backtrace was

enabled, a malloc failure occurred.

System action: The JVM terminates.

User response: This message indicates that native

memory was exhausted. Increase the available memory

or remove any extraneous memory usage.

JVMDG163 The Backtrace trace option is not

supported on this platform

Explanation: ″backtrace″ was specified in one of the

trace options. Not all platforms support this option.

This platform does not.

System action: The JVM terminates.

User response: Remove the ″backtrace″ keyword from

all command-line trace options and any trace properties

file in use. Then reissue the command.

JVMDG200 Diagnostics system property %s%s%s

Explanation: System properties that are associated

with trace are echoed to stderr on startup so that you

can be sure that they have been set.

System action: This message is displayed for each

trace property set.

User response: This message is for information. It is

not an error.

JVMDG201 Keyword abbreviation too short

Explanation: Trace properties can be abbreviated to

three characters but no fewer.

System action: The JVM terminates.

User response: Correct your specification of trace

properties in the trace properties file to use no

abbreviations that are shorter than three characters.

Then retry.

JVMDG202 Invalid short form keyword

Explanation: One of the supplied trace properties was

not a recognized property name.

System action: The JVM terminates.

User response: Correct the property definitions and

retry.

JVMDG203 Exception occurred while running user

thread

Explanation: A user thread that was started by JVMRI

caused an exception that has been caught.

System action: The user thread is terminated but the

JVM continues.

User response: Examine the code that your user

thread was running, to determine the location of the

problem.

JVM error messages for JVMDG

Appendix F. Messages and codes 445

JVMDG205 Out of memory in rasCreateThread

Explanation: An attempt was made to allocate the

memory that is required to create your JVMRI user

thread, but the malloc failed.

System action: JNI_ENOMEM is returned to the

calling agent.

User response: Try running the JVM with a larger

maximum heap size (using the -Xmx option). If the

problem remains, contact your IBM service

representative.

JVMDG206 Out of memory in rasCreateThread

Explanation: An attempt was made to allocate the

memory that is required to store the name of your

JVMRI user thread, but the malloc failed.

System action: JNI_ENOMEM is returned to the

calling agent.

User response: Try running the JVM with a larger

maximum heap size by using the -Xmx option). If the

problem remains, contact your IBM service

representative.

JVMDG207 Cannot create thread in rasCreateThread

Explanation: A JVMRI call was made to create the

user thread, but for it failed for unspecified reasons.

System action: JNI_ERR is returned to the calling

agent.

User response: Investigate the reasons why this thread

creation might have failed; for example, system limits,

security settings.

JVMDG208 Cannot create special thread in

rasCreateThread

Explanation: A JVMRI call was made to create the

special user thread, but for it failed for unspecified

reasons.

System action: JNI_ERR is returned to the calling

agent.

User response: Investigate the reasons why this thread

creation might have failed; for example, system limits,

security settings.

JVMDG209 No Javacore, JVM is not initialized

rasGenerateJavacore

Explanation: A JVMRI call to create a Javadump was

received, but because the JVM has not yet finished

initializing, this is not permitted.

System action: JNI_ERR is returned to the calling

agent.

User response: Modify your agent so that you do not

attempt to take a Javadump until the system has

finished initializing.

JVMDG210 Exception %d received during dump

routine.

Explanation: A JVMRI call to run a dump routine was

actioned, but the dump routine found an exception.

System action: The dump routine will be truncated at

this point.

User response: If the exception is persistent and

unexpected, contact your IBM service representative.

JVMDG211 Invalid component ID

rasRunDumpRoutine

Explanation: A JVMRI call was made to run a

specified dump routine but the dump routine that was

specified does not exist.

System action: JNI_ERR is returned to the calling

agent.

User response: Correct the error, specifying the ID of

an existing component.

JVMDG212 Invalid component Name specified

Explanation: The JVMRI call

rasGetComponentDataArea() was made to get

information about a specified component data area, but

the specified component does not exist.

System action: JNI_ERR is returned to the calling

agent.

User response: Allowable components are: ″ci″, ″dg″,

″cl″, ″dc″, ″lk″, ″xe″, ″xm″, and ″st″. The component

names can also be supplied in uppercase, but NOT in

mixed case.

JVMDG213 Cannot create thread in rasStartThreads

Explanation: A JVMRI call was made to start a user

thread. It was deferred until initialization was

complete, but now it has been actioned and has failed

for unspecified reasons.

System action: The thread is not started.

User response: Investigate the reasons why this thread

creation might have failed; for example, system limits,

security settings.

JVMDG214 Cannot create special thread in

rasStartThreads

Explanation: A JVMRI call was made to start a special

user thread. It was deferred until initialization was

complete, but now it has been actioned and has failed

for unspecified reasons.

System action: The thread is not started.

JVM error messages for JVMDG

446 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

User response: Investigate the reasons why this thread

creation might have failed; for example, system limits,

security settings.

JVMDG215 Dump Handler has Processed %s Signal

%i.

Explanation: The Dump Handler has successfully

handled the signal (specified). The selected dumps have

been produced.

System action: For information only.

User response: The dumps that you selected (by use

of the environment variable JAVA_DUMP_OPTS)

should now be available for your use in debugging

your problem or for sending to your IBM service

representative.

JVMDG217 Dump Handler is Processing a Signal -

Please Wait.

Explanation: A signal has been raised and is being

processed by the dump handler.

System action: At this point, depending upon the

options that have been set, Javadump, core dump, and

CEEDUMP (z/OS only) can be taken. This message is

for information only and does not indicate a further

failure.

User response: None.

JVMDG218 Dump Handler Caught Internal

Exception %d Processing Signal %i.

Explanation: An exception (specified) was found

during an attempt to process the original signal

(specified).

System action: Diagnostic information (dumps) might

have been lost.

User response: Contact your IBM service

representative.

JVMDG219 Dump Handler Caught Internal

Exception %d Processing SYSDUMP for

Signal %i.

Explanation: An exception (specified) was found

during an attempt to generate a SYSDUMP for the

original signal (specified). A SYSDUMP varies in nature

from platform to platform; for example, a minidump on

windows, a core dump on AIX.

System action: The SYSDUMP might have been lost.

User response: Contact your IBM service

representative.

JVMDG220 Dump Handler Caught Internal

Exception %d Processing CEEDUMP for

Signal %i The JVM may now be in an

Unusable State.

Explanation: An exception (specified) was found

during an attempt to generate a CEEDUMP for the

original signal (specified). This should occur only on

z/OS.

System action: The CEEDUMP might have been lost.

User response: Contact your IBM service

representative.

JVMDG221 Dump Handler Caught Internal

Exception %d Processing JAVADUMP

for Signal %i.

Explanation: An exception (specified) was found

during an attempt to generate a JAVADUMP for the

original signal (specified).

System action: The Javadump might have been lost.

User response: Contact your IBM service

representative.

JVMDG222 Dump Handler Caught Internal

Exception %d Processing jvmpi_dump()

for Signal %i.

Explanation: An exception (specified) was found

during an attempt to generate a JVMPI Heap Dump for

the original signal (specified).

System action: The JVMPI Heap Dump might have

been lost.

User response: Contact your IBM service

representative.

JVMDG223 Dump Handler Caught Internal

Exception %d processing HEAPDUMP

for Signal %i

Explanation: A JVMMI heap dump event was been

generated (JVMMI_SERVICE_EVENT_HEAPDUMP).

During the processing of this event by the attached

JVMMI agent, the named operating system signal was

received.

System action: Dump processing continues.

User response: Find the cause of the failure in your

JVMMI agent.

JVMDG224 Invalid character(s) encountered in hex

number ″%s″

Explanation: When a tpid clause in the system

property -Dibm.dg.trc.trigger was being processed, a

hexadecimal tracepoint id (tpid) was expected, but the

JVM found a nonhexadecimal character.

JVM error messages for JVMDG

Appendix F. Messages and codes 447

System action: The JVM fails to initialize.

User response: Check the contents of the

trigger=tpid(...) clauses. It must be of the form

tpid(hexnumber) or tpid(hexnumber1-hexnumber2)

JVMDG225 Hex number too long or too short ″%s″

Explanation: When a tpid clause in the system

property -Dibm.dg.trc.trigger was being processed, a

specified tpid was found to be of incorrect length.

System action: The JVM fails to initialize.

User response: Check the contents of the

trigger=tpid(...) clauses. It must be of the form

tpid(hexnumber) or tpid(hexnumber1-hexnumber2),

and the hexadecimal numbers must each be between

one and eight digits in length.

JVMDG226 Signed number not permitted in this

context ″%s″

Explanation: When a clause in the system property

-Dibm.dg.trc.trigger was being processed, a negative

delay count was found.

System action: The JVM fails to initialize.

User response: Check the contents of the

trigger=tpid(...), method(...), and group(...) clauses. If a

delaycount is specified, it must be a positive number.

JVMDG227 Invalid character(s) encountered in

decimal number ″%s″

Explanation: When a clause in the system property

-Dibm.dg.trc.trigger was being processed, a

non-numeric character was found.

System action: The JVM fails to initialize.

User response: Check the contents of the

trigger=tpid(...), method(...), and group(...) clauses. If a

delaycount is specified, it must contain only the

characters 0 through 9.

JVMDG228 Number too long or too short ″%s″

Explanation: When a clause in the system property

-Dibm.dg.trc.trigger was being processed, a bad delay

count was found.

System action: The JVM fails to initialize.

User response: Check the contents of the

trigger=tpid(...), method(...), and group(...) clauses. If a

delaycount is specified, it must be between one and

eight digits long.

JVMDG229 Invalid trigger action ″%s″ selected

Explanation: When a clause in the system property

-Dibm.dg.trc.trigger was being processed, an

unrecognized action was found.

System action: The JVM fails to initialize.

User response: Check the contents of the

trigger=tpid(...), method(...), and group(...) clauses.

Where an action is specified, it must be one of the

following: suspend, resume, suspendthis, resumethis,

javadump, coredump, heapdump, or snap.

JVMDG230 Invalid tpid clause, usage:

tpid(tpid|tpidrange,action[,delaycount])

\n clause is: tpid(%s)

Explanation: When a tpid clause in the system

property -Dibm.dg.trc.trigger was being processed, the

clause was found to have too many parameters.

System action: The JVM fails to initialize.

User response: Correct the tpid clause. Its format is

displayed in the message.

JVMDG231 Invalid tpid range - start value cannot

be higher than end value

Explanation: When a tpid clause in the system

property -Dibm.dg.trc.trigger was being processed, the

clause was found to contain an illegal tpid range.

System action: The JVM fails to initialize.

User response: Correct the tpid clause. For a tpid

range, the end of the range cannot be lower than the

start.

JVMDG232 Out of memory processing trigger

property

Explanation: During an attempt to process a trace

option, a malloc failed.

System action: The JVM fails to initialize.

User response: System memory (not the Java heap) is

full. Close down some other running applications to

save space.

JVMDG233 Error occurred while activating tpid %X

(rc=%d)

Explanation: During an attempt to activate the

displayed tpid, an error was received.

System action: The JVM fails to initialize.

User response: Ensure that the tpid is correct and

retry the operation. If the problem remains, check

TraceFormat.dat to ensure that the tpid is present in the

build.

JVM error messages for JVMDG

448 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

JVMDG234 Out of memory processing trigger

property

Explanation: During an attempt to process a trace

option, a malloc failed.

System action: The JVM fails to initialize.

User response: System memory (not Java the heap) is

full. Close down some other running applications to

save space.

JVMDG235 WARNING: This trigger method spec

results in 100+ trigger entries.\n. For

performance reasons, you may want to

narrow the selected scope.

Explanation: The method spec that you provided on

the method clause of the trigger property is very wide.

It will cause much memory to be allocated for control

structures.

System action: Information only; this message is

issued, but no action is taken.

User response: You can ignore this warning and

continue. However, to save memory, you should refine

the trigger method spec to something that is more

compact.

JVMDG236 Out of memory processing trigger

property

Explanation: During an attempt to process a trace

option, a malloc failed.

System action: The JVM fails to initialize.

User response: System memory (not the Java heap) is

full. Close down some other running applications to

save space.

JVMDG237 Failure initializing triggering on

methods

Explanation: Trigger trace has failed to initialize.

System action: The JVM fails to initialize.

User response: Check the parameters that you

supplied. Note that method trace and trigger trace do

not work alongside JVMPI.

JVMDG238 Too many parameters on trigger

property method clause \n usage:

method(methodSpec[,entryAction]

[,exitAction][,delay])

Explanation: When a method clause in the system

property -Dibm.dg.trc.trigger was being processed, the

clause was found to have too many parameters.

System action: The JVM fails to initialize.

User response: Correct the method clause. Its format

is displayed in the message.

JVMDG239 Method Spec on trigger property

(method clause) may not be null

Explanation: When the method spec that is in a

method clause in the system property

-Dibm.dg.trc.trigger was being processed, the clause

was found to be empty.

System action: The JVM fails to initialize.

User response: Insert the desired method spec, and

retry the operation.

JVMDG240 Method spec for trigger may not include

’!’, ’(’ or ’)’

Explanation: When the method spec that is in a

method clause in the system property

-Dibm.dg.trc.trigger was being processed, the clause

was found to contain illegal characters.

System action: The JVM fails to initialize.

User response: Correct the method spec, and retry the

operation.

JVMDG241 You must specify an entry action, an exit

action or both.

Explanation: When the method clause in the system

property -Dibm.dg.trc.trigger was being processed, the

clause was found to contain neither an entry action, nor

an exit action.

System action: The JVM fails to initialize.

User response: Correct the method clause, and retry

the operation. You must specify at least one of the two

actions.

JVMDG242 Out of memory processing trigger

property

Explanation: During an attempt to process a trace

option, a malloc failed.

System action: The JVM fails to initialize.

User response: System memory (not the Java heap) is

full. Close down some other running applications to

save space.

JVMDG243 Trigger groups clause has the following

usage: \n

group(<groupname>,<action>[,<delay>])

Explanation: When the group clause in the system

property -Dibm.dg.trc.trigger was being processed, the

clause was found to be in error.

System action: The JVM fails to initialize.

User response: Change the group clause in line with

JVM error messages for JVMDG

Appendix F. Messages and codes 449

the usage text that is in the message. Then retry the

operation.

JVMDG244 Delay counts must be integer values

from -99999 to +99999: \n

group(%s,%s,%s)

Explanation: A delay count can be -99999 through

+99999. You supplied one that was not in this range.

System action: The JVM fails to initialize.

User response: Correct the group clause in your

trigger property, then retry the operation.

JVMDG245 Undefined Group ″%s″ specified in

trigger property

Explanation: When the group clause in the system

property -Dibm.dg.trc.trigger was being processed, the

clause was found to reference a group that not exist.

System action: The JVM fails to initialize.

User response: Correct the group clause, then retry

the operation.

JVMDG246 Out of memory processing trigger

property

Explanation: During an attempt to process a trace

option, a malloc failed.

System action: The JVM fails to initialize.

User response: System memory (not the Java heap) is

full. Close down some other running applications to

save space.

JVMDG247 Error occurred while activating trigger

Group ″%s″

Explanation: When the group clause in the system

property -Dibm.dg.trc.trigger was being processed, the

specified trigger group could not be processed.

System action: The JVM fails to initialize.

User response: Ensure that the group clause is correct,

then retry the operation.

JVMDG248 Zero length clause in trigger statement

Explanation: One of the clauses of the trigger property

was null.

System action: The JVM fails to initialize.

User response: Check your input, then retry the

operation.

JVMDG249 Malformed clause, requires ’)’ at the

end: \n ″s″

Explanation: Internal error. The system should never

reach this point.

System action: The JVM fails to initialize.

User response: Contact your IBM service

representative.

JVMDG250 Out of memory processing trigger

property

Explanation: During an attempt to process a trace

option, a malloc failed.

System action: The JVM fails to initialize.

User response: System memory (not the Java heap) is

full. Close down some other running applications to

save space.

JVMDG251 Internal Error

Explanation: None.

System action: The JVM fails to initialize.

User response: If the problem remains, contact your

IBM service representative.

JVMDG252 Empty trigger clause ″%s″ not permitted

Explanation: The quoted command-line fragment is in

error. A clause of the trigger property is null.

System action: The JVM fails to initialize.

User response: Correct the trigger property, then retry

the operation.

JVMDG253 Missing closing bracket(s) in trigger

property

Explanation: The trigger property did not end in a

closing bracket.

System action: The JVM fails to initialize.

User response: Correct the brackets on the trigger

property, then retry the operation.

JVMDG254 Out of memory processing trigger

property

Explanation: During an attempt to process a trace

option, a malloc failed.

System action: The JVM fails to initialize.

User response: System memory (not the Java heap) is

full. Close down some other running applications to

save space.

JVM error messages for JVMDG

450 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

JVMDG255 Usage error:

trigger=([method(args)],[tpid(args)],

[group(args)],...)

Explanation: A null trigger property was found.

System action: The JVM fails to initialize.

User response: Correct the trigger property in line

with the usage text that is in the message, then retry

the operation.

JVMDG256 Empty clauses not allowed in trigger

property

Explanation: A null clause was found in a trigger

property.

System action: The JVM fails to initialize.

User response: Correct the trigger property, then retry

the operation. This error probably occurred because

you entered something like trigger=method,,tpid (that

is, you entered too many commas).

JVMDG257 Trigger clauses can be tpid, method or

group. This is invalid: \n ″%s″

Explanation: Clauses in the trigger property can begin

with ″method(″, ″tpid(″, or ″group(″. Anything else is

rejected.

System action: The JVM fails to initialize.

User response: Correct the trigger clauses, then retry

the operation.

JVMDG258 resumecount takes a (single) integer

value from -99999 to +99999

Explanation: The ibm.dg.trc.resumecount property is

an integer value -99999 through +99999. The value that

you specified was not in this range.

System action: The JVM fails to initialize.

User response: Correct the resumecount property, then

retry the operation.

JVMDG259 suspendcount takes a (single) integer

value from -99999 to +99999

Explanation: The ibm.dg.trc.suspendcount property is

an integer value -99999 through +99999. The value that

you specified was not in this range.

System action: The JVM fails to initialize.

User response: Correct the suspendcount property,

then retry the operation.

JVMDG260 resumecount and suspendcount may not

both be set

Explanation: You attempted to set the resumecount

and suspendcount properties at the same time. This is

not allowed.

System action: The JVM fails to initialize.

User response: Decide which property you want to

use, then remove the other

JVMDG261 Trace Buffer snap requested by triggered

trace action

Explanation: Trigger trace has requested that the

internal trace buffers be flushed to a Snap file.

System action: The JVM fails to initialize.

User response: Check whether a file with a name that

starts with ″Snap″ (commonly ″Snap0001......″) is

present. This file contains the most up-to-date JVM

trace information.

JVMDG262 Internal Error

Explanation: None.

System action: The JVM fails to initialize.

User response: If the problem remains, contact your

IBM service representative.

JVMDG263 Internal Error

Explanation: None.

System action: The JVM fails to initialize.

User response: If the problem remains, contact your

IBM service representative.

JVMDG264 Internal Error

Explanation: None.

System action: The JVM fails to initialize.

User response: If the problem remains, contact your

IBM service representative.

JVMDG265 Unknown trigger action encountered

(action=%d)

Explanation: When an attempt is made to perform a

trigger action, the stored trigger type is an

unrecognized value.

System action: The JVM fails to initialize.

User response: This error should not occur. If it does,

and occurs repeatedly, contact your IBM service

representative.

JVM error messages for JVMDG

Appendix F. Messages and codes 451

JVMDG266 Cannot allocate memory in

dgRegisterDumpRoutine

Explanation: During dump routine initialization, a

block of memory is required, but the malloc has failed.

System action: The JVM terminates.

User response: Try running the JVM with a larger

maximum heap size (by using the -Xmx option). If the

problem remains, contact your IBM service

representative.

JVMDG267 Cannot suspend tracing from

unidentified thread

Explanation: A call was made to suspend the tracing

for a thread, but the thread id was null.

System action: The JVM fails to initialize.

User response: This error should not occur. If it does,

and occurs repeatedly, contact your IBM service

representative.

JVMDG268 Cannot resume tracing from

unidentified thread

Explanation: A call was made to resume the tracing

for a thread, but the thread id was null.

System action: The JVM fails to initialize.

User response: This error should not occur. If it does,

and occurs repeatedly, contact your IBM service

representative.

JVMDG269 Unknown JVMRAS interface version or

modification level

Explanation: When the JVMRAS interface (JVMRI)

was being initialized, a problem occurred.

System action: The JVM fails to initialize.

User response: If the problem remains, contact your

IBM service representative.

JVMDG270 Unknown JVMRAS interface version or

modification level

Explanation: When the JVMRAS interface (JVMRI)

was being initialized through JNI, a problem occurred.

System action: The JVM fails to initialize.

User response: If the problem remains, contact your

IBM service representative.

JVMDG271 Unknown JVMRAS interface version or

modification level

Explanation: When the JVMRAS interface (JVMRI)

was being initialized from the HPI, a problem occurred.

System action: The JVM fails to initialize.

User response: If the problem remains, contact your

IBM service representative.

JVMDG272 No Heapdump, JVM is not initialized

rasGenerateHeapdump

Explanation: A JVMRI request to take a heapdump

has been refused because the JVM is not yet initialized.

Taking a heapdump before there is a heap, for example,

would not make sense.

System action: No heapdump is produced, but, in

other respects, operation continues as before.

User response: If the request came from your agent

code, do not issue a heapdump request before you are

sure that the JVM is initialized. You can determine that

the JVM is initialized, for example, by registering a

callback on the JVMMI event,

JVMMI_EVENT_INIT_DONE.

JVMDG273 Heapdump invoked by dgDumpHandler

Explanation: A heap dump is being taken as part of

the signal handling process.

System action: A heapdump is taken.

User response: For information only.

JVMDG274 Dump Handler has Processed

OutOfMemory

Explanation: The Dump Handler has successfully

handled an out-of-memory condition. The selected

dumps have been produced.

System action: For information only.

User response: Investigate why your application

might have run out of memory. For example, the

specified heap size might be too small or references to

unrequired objects are being retained, preventing them

from being garbage collected.

JVMDG275 Heapdump invoked by

rasJniHeapDump

Explanation: rasJniHeapDump calls a user agent to

take a heapdump.

System action: This message is passed to JVMMI for

inclusion in the JVMMI_EVENT_HEAP_DUMP detail

information, to tell you why your agent has been

requested to take a heap dump.

User response: For information only.

JVMDG276 Heapdump invoked by

rasGenerateHeapdump

Explanation: rasGenerateHeapdump calls a user agent

to take a heapdump.

System action: This message is passed to JVMMI for

JVM error messages for JVMDG

452 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

inclusion in the JVMMI_EVENT_HEAP_DUMP detail

information, telling you why your agent has been

requested to take a heap dump.

User response: For information only.

JVMDG277 Match counts must be integer values

from -99999 to +99999:

group(%s,%s,%s,%s)

Explanation: On the -Dibm.dg.trc.trigger=group(...)

property, the matchcount parameter (the fourth one) is

out of range.

System action: The JVM terminates.

User response: Retry, specifying a different value for

matchcount

JVMDG278 Too many parameters on trigger

property threshold clause usage:

threshold(thresholdType,thresholdValue

[,entryAction][,exitAction][,delay]

[,matchcount])

Explanation: There are too many parameters on the

-Dibm.dg.trc.trigger=threshold(...) property.

System action: The JVM terminates.

User response: Correct the command and retry.

JVMDG279 Threshold Type on trigger property

(threshold clause) may not be null

Explanation: You must specify a threshold type on the

-Dibm.dg.trc.trigger=threshold(...) property.

System action: The JVM terminates.

User response: Correct the command and retry.

JVMDG280 Threshold Value on trigger property

(threshold clause) may not be null

Explanation: You must specify a threshold value on

the -Dibm.dg.trc.trigger=threshold(...) property.

System action: The JVM terminates.

User response: Correct the command and retry.

JVMDG281 ThresholdType for trigger may not

include ’!’, ’(’ or ’)’

Explanation: On the

-Dibm.dg.trc.trigger=threshold(...) property, the

threshold type must not include the listed characters.

System action: The JVM terminates.

User response: Correct the command and retry.

JVMDG282 ThresholdValue for trigger may not

include ’!’, ’(’ or ’)’

Explanation: On the

-Dibm.dg.trc.trigger=threshold(...) property, the

threshold value must not include the listed characters.

System action: The JVM terminates.

User response: Correct the command and retry.

JVMDG283 You must specify an entry action, an exit

action or both

Explanation: No entry or exit action was specified on

the -Dibm.dg.trc.trigger=threshold(...) property.

System action: The JVM terminates.

User response: Correct the command, adding an entry

action, an exit action, or both.

JVMDG284 Out of memory processing trigger

property

Explanation: While trying to store information about a

trigger property, a malloc failed.

System action: The JVM terminates.

User response: This message indicates that native

memory was exhausted. Increase the available memory

or remove any extraneous memory usage.

JVMDG285 Threshold direction undefined

Explanation: This message should never be issued.

System action: The JVM terminates.

User response: Contact your IBM support

representative.

JVMDG286 Threshold direction undefined

Explanation: This message should never be issued.

System action: The JVM terminates.

User response: Contact your IBM support

representative.

JVMDG287 Internal error.

Explanation: This message should never be issued.

System action: Undefined.

User response: Contact your IBM support

representative.

JVM error messages for JVMDG

Appendix F. Messages and codes 453

JVMDG288 Cannot create semaphore in initDgData

Explanation: DG initialization attempted to create a

semaphore, but the operation failed.

System action: The JVM terminates.

User response: Investigate whether you have reached

a system limit on semaphores.

JVMDG289 Unknown Universal Trace Client

interface version or modification.

Explanation: Internal error.

System action: The JVM terminates.

User response: Contact your IBM support

representative.

JVMDG290 Syntax error in early trace options

environment variable

Explanation:

System action: The JVM terminates.

User response: Correct the command and retry.

JVMDG291 Syntax error in early trace options

environment variable

Explanation: The early trace environment variable is

incorrectly specified.

System action: The JVM terminates.

User response: Correct the environment variable and

retry.

JVMDG292 Unsupported trace option in early trace

options environment variable

Explanation: The early trace environment variable is

incorrectly specified.

System action: The JVM terminates.

User response: Correct the environment variable and

retry.

JVMDG293 Dump Handler Caught Internal

Exception %d Processing HEAPDUMP

for Signal %i.

Explanation: During the creation of a heapdump an

operating system signal occurred.

System action: The heapdump might be truncated.

User response: Be aware that the heapdump might

not be useful or usable.

JVMDG294 Error writing Java core buffer to file

Explanation: Javacore processing was unable to obtain

the name to use for the Javacore file.

System action: The Javacore is written to stderr

instead of to file.

User response: None.

JVMDG303 JVM Requesting Java core file

Explanation: The JVM has started to generate a

Javadump.

System action: For information only.

User response: None.

JVMDG304 Java core file written to %s

Explanation: The JVM has finished generating a

Javadump.

System action: For information only.

User response: The Javadump is now available. Its

name is specified in the message.

JVMDG305 Java core not written, unable to allocate

memory for print buffer.

Explanation: Javadump processing needs a large

buffer to create the Javadump. If this memory is not

available, a Javadump is not produced.

System action: Javadump processing is skipped.

User response: This message is for information. It is

not an error.

JVMDG306 Exception %d received during dump

routine processing, section truncated.

Explanation: During the creation of the Javadump,

each subcomponent is asked to provide its own dump

information. In one of the components, a severe error

has occurred and the production of its section of the

Javadump has been terminated.

System action: The dump information is written to

the Javadump file, but the contents of the current

section ends prematurely. This message is written at

that point in the Javadump and the next section

continues as normal.

User response: Review the contents of the Javadump

file and, if the truncation of the section prevents you

using the Javadump for its intended purpose, contact

your IBM service representative.

JVM error messages for JVMDG

454 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

JVMDG307 Exception %d received during dump

routine processing, dump truncated.

Explanation: During creation of the Javadump, a

severe error has occurred and the production of the

Javadump has been terminated.

System action: The dump information that has been

generated so far is written to the Javadump file.

Following that, this message is written into the file and

the file ends prematurely.

User response: Contact your IBM service

representative.

JVMDG308 Error writing Java core buffer to file

Explanation: Writing the Javadump to the expected

file has failed for unspecified reasons.

System action: The Javadump file is written to stderr

instead.

User response: If this problem remains, contact your

IBM service representative.

JVMDG310 Javacore cannot be taken by a system

thread because of possible deadlocks

Explanation: An internal system thread has attempted

to generate a Javacore (Javadump) file, but it cannot.

Before the JVM can generate a Javadump, it needs to

quiesce all running threads to collect coherent data. It

does this by obtaining system monitors and suspending

all threads except the current one and some special

threads such as Garbage Collector helper threads. The

Garbage Collector does a similar action when a garbage

collection is done. A problem occurs when these two

events coincide. Typically this can happen if a Garbage

Collector helper thread finds a problem while a

garbage collection is in progress. If one of these threads

attempts to generate a Javacore during a garbage

collection, a deadlock almost certainly occurs. This

deadlock is a design restriction.

System action: The Javadump file is not produced and

processing continues. If the reason for the failed

Javadump is a fatal error, the JVM terminates.

User response: If this problem remains, see

Chapter 27, “JVM dump initiation,” on page 251.

JVMDG311 Set JAVA_DUMP_OPTS to request a

SYSDUMP if diagnostic information is

required

Explanation: This is an informational message that

always accompanies JVMDG310.

System action: None.

User response: See Chapter 27, “JVM dump

initiation,” on page 251.

JVMDG312 Dump handler forcing garbage

collection for Heapdump

Explanation: This is an informational message that

shows that a garbage collection cycle is being

performed before a Heapdump is generated.

System action: A garbage collection cycle is

performed.

User response: None.

JVMDG313 Heapdump cannot be taken by a system

thread because of possible deadlocks

Explanation: An internal system thread has attempted

to generate a Heapdump file, but it cannot. Before the

JVM can generate a Heapdump, it needs to quiesce all

running threads to collect coherent data. It does this by

obtaining system monitors and suspending all threads

except the current one and some special threads such

as Garbage Collector helper threads. The Garbage

Collector does a similar action when a garbage

collection is done. A problem occurs when these two

events coincide. Typically this can happen if a Garbage

Collector helper thread finds a problem while a

garbage collection is in progress. If one of these threads

attempts to generate a Heapdump during a garbage

collection, a deadlock almost certainly occurs. This

deadlock is a design restriction.

System action: The Javadump file is not produced and

processing continues. If the reason for the failed

Javadump is a fatal error, the JVM terminates.

User response: If this problem remains, see

Chapter 27, “JVM dump initiation,” on page 251.

JVMDG314 Set JAVA_DUMP_OPTS to request a

SYSDUMP if diagnostic information is

required

Explanation: This is an informational message that

always accompanies JVMDG310.

System action: None.

User response: See Chapter 27, “JVM dump

initiation,” on page 251.

JVMDG315 JVM Requesting Heapdump file

Explanation: The JVM has started to generate a

Heapdump.

System action: For information only.

User response: None.

JVM error messages for JVMDG

Appendix F. Messages and codes 455

JVMDG316 Unable to write Heapdump - unable to

create file %s

Explanation: The JVM cannot open the file.

System action: The Heapdump is not generated, and

processing continues.

User response: Check whether the JVM has the correct

permission to write to the output file.

JVMDG317 Error % writing Heapdump to file

Explanation: The write operation failed while it was

writing the Heapdump.

System action: The Heapdump write operation is

stopped, and processing continues.

User response: Determine why the Heapdump write

operation failed.

JVMDG318 Heapdump file written to %s

Explanation: The JVM has finished generating a

Heapdump.

System action: For information only.

User response: The Heapdump is now available. Its

name is specified in the message.

JVM error messages for JVMHP

JVMHP002 JVM requesting Transaction Dump

Explanation: During handling of a fatal signal, the

JVM requests that the system produces a call BCP

service IEATDUMP to produce a transaction dump.

System action: The JVM calls BCP service IEATDUMP

to produce a transaction dump.

User response: See the text of system message

IEA820I on the system log to determine the name of

the dynamically allocated dataset. The service allocates

the dataset into the normal MVS filesystem, not into

the z/OS UNIX HFS. If you do not want transaction

dumps to be created, set code environment variable

IBM_JAVA_ZOS_TDUMP=NO.

JVMHP004 Transaction dump service IEATDUMP

failed with rc=0x%x (%d), reason

code=0x%x (%d)

Explanation: The IEATDUMP service that is called by

the JVM has failed. If the rc is 4, a partial dump has

been taken. If the rc is higher, the dump service

completely failed.

System action: The JVM takes other actions that are

suitable for this signal.

User response: Console messages that have prefix IEA

have been written to the system log with more

information about the failure. Look up the return code

and reason code in z/OS MVS Auth Assm Services

Reference ENF-IXG, SA22-7610.

JVMHP006 JVM requesting CEEDUMP

Explanation: The JVM calls the LE Service CEE3DMP

to request a formatted application level dump.

System action: The JVM takes other actions that are

suitable for this signal.

User response: None.

JVMHP008 CEE3DMP failed with msgno 0x%x (%d)

Explanation: The LE service CE3DMP failed. The

message prints the hex and decimal value of the

fc.tok_msgno returned.

User response: No CEEDUMP was created. Look up

the meaning of the msgno in the appropriate LE

documentation.

JVMHP009 Complete CEEDUMP was written to

process ID %i

Explanation: A complete CEEDUMP was written into

the z/OS UNIX HFS. The message indicates the

complete writing of the CEEDUMP.

User response: None

JVMHP010 No TDUMP requested, request

threshold of %d reached

Explanation: The user-specified or default limit for the

number of transaction dumps has been reached.

System action: The JVM takes no further transaction

dumps.

User response: If a Transaction Dump is required for

diagnosis of a later program check, increase the limit

by using the environment variable

IBM_JAVA_ZOS_TDUMP_COUNT.

JVMHP012 System Transaction Dump written to %s

Explanation: The JVM called the IEATDUMP macro to

write a dump a dataset.

System action: The JVM can gather other

documentation in the form of CEEDUMPs, core dumps,

JAVADUMPs, or all of these.

User response: Examine dumps to determine cause of

failure.

JVMHP013 JVM requesting USERABEND

Explanation: The JVM call the LE Service CEE3ABD

JVM error messages for JVMDG

456 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

for the JAVA_DUMP_OPTS USERABEND option.

System action: The JVM takes a CEEDUMP.

User response: This message verifies that a dump was

taken in response to a user request. Examine the dump

to find the cause of the failure.

JVMHP014 JVM requesting user dump tool [%s]

Explanation: A system dump has been requested and

the dump tool that the user has specified is being run.

The user specified this tool by using the environment

setting JAVA_DUMP_TOOL=

System action: The JVM is requesting a system dump

through the user-specified dump tool.

User response: This message verifies that a dump was

taken in response to a user request. Examine the dump

to find the cause of the failure.

JVMHP015 JVM passing exception to Operating

System

Explanation: The JVM is passing an exception to

Operating System.

System action: None

User response: None; this message is for information

only.

JVMHP016 JVM requesting System Dump

Explanation: The JVM is taking a dump either as a

response to a user signal, or as the result of an

exception.

System action: The system attempts to produce a core

file.

User response: None; this message is for information

only.

JVMHP017 System Dump written to <filename>

Explanation: This message follows JVMHP016, and

contains the filename of the core file that was

produced. The message indicates that the core file was

successfully produced.

System action: None

User response: None; this message is for information

only.

JVMHP018 Coredump() failed with errno: <errno>

<file name>

Explanation: This message is the alternative message

to JVMHP017. It indicates that the core file was not

successfully produced. The coredump system call failed

and the errno returned is contained in the message

along with the filename of the core file. A file might or

might not be produced, depending on the error that

was found.

System action: None

User response: Determine which errno was returned,

and correct the error.

JVMHP020 Unable to find entry point

MiniDumpWriteDump

Explanation: A system dump has been requested, and

the JVM is trying to generate a minidump. The dll

dbghelp.dll that generates the minidump has been

loaded, but the function that is needed to generate the

dump MiniDumpWriteDump does not exist.

System action: The system cannot find the function

MiniDumpWriteDump in dbghelp.dll that it needs to

generate the minidump.

User response: Check whether the dbghelp.dll that

was supplied with the JVM is the first one that is

found on the system path. If it is and the error still

occurs, it might have been corrupted. Reload the

dbghelp.dll onto the system.

JVMHP021 Unable to load DbgHelp.dll for system

dump

Explanation: A system dump has requested, but the

JVM cannot load the dll dbghelp, which is used to

generate a minidump.

System action: The Microsoft debug dll dbghelp

cannot be loaded.

User response: Ensure that dbghelp.dll is available on

the path. It should have been installed with the JVM

into the <java_home>\jre\bin directory.

JVMHP022 Error creating system dump file: %s,

GetlastError = %d

Explanation: The dump file that is to contain the

minidump information could not be created.

System action: The system call to create the dump file

has failed.

User response: Ensure that the drive has enough disk

space for the dump file. (For some applications, the

dump file can be large.) If disk space does not seem to

be the cause of problem, make a note of the error

number, and contact your IBM Service representative.

JVMHP023 Creating system dump file: %s

Explanation: The dump file that contains the

minidump information is being written to the named

file.

System action: The dump file is about to be written.

JVM error messages for JVMHP

Appendix F. Messages and codes 457

User response: None; this message is for information

only.

JVMHP024 Dump to %s successful

Explanation: The minidump information has been

written to the named file successfully

System action: The system call to write the minidump

information to the named file has completed

successfully.

User response: None; this message is for information

only.

JVMHP025 Dump to %s failed, GetLastError = %d

Explanation: The writing of the minidump

information to the named file has failed.

System action: The system call to write the minidump

information to the named file has failed.

User response: Ensure that the drive has enough disk

space for the dump file. (For some applications, the

dump file can be large.) Also ensure that the version of

dbghelp.dll that is shipped with the JDK is the first one

that is found on the path. If neither disk space nor

dbghelp.dll seem to be the cause of problem, make a

note of the error number, and contact your IBM Service

representative.

JVMHP026 Unique dump file not created

Explanation: A unique dump file name could not be

created.

System action: The system was trying to create a

unique name and a path for the dump file into which

the minidump information is to be written, but the

length of the combined name and path exceeds the

maximum filename/path length that is allowed.

User response: You cannot control the filename, but

you can change the path/directory name. If the

directory from which the application is being run has a

very long path, that path is causing the problem. By

setting the environment string IBM_JAVACOREDIR,

you can set to an alternative directory the location to

which the dump file will be written.

JVMHP027 Path and filename too long

Explanation: The path and filename that were

generated for the minidump file exceed the maximum

length allowed. The message JVMHP026 is displayed

immediately before this message.

System action: The system was trying to create a

unique name and a path for the dump file into which

the minidump information is to be written, but the

length of the combined name and path exceeds the

maximum filename/path length that is allowed.

User response: You cannot control the filename, but

you can change the path/directory name. If the

directory from which the application is being run has a

very long path, that path is causing the problem. By

setting the environment string IBM_JAVACOREDIR,

you can set to an alternative directory the location to

which the dump file will be written.

JVMHP028 Error switching to IFA processor rc:

%08x

Explanation: The JVM attempted unsuccessfully to

switch to an IFA (Integrated Facility for Applications)

processor. This is caused by an error condition

indicated by the return code shown.

System action: The JVM disables further attempts to

switch between IFA and standard processors and

continues normally.

User response: Contact you IBM Service

representative for further information.

JVMHP029 Error switching from IFA processor rc:

%08x

Explanation: The JVM attempted unsuccessfully to

switch from an IFA (Integrated Facility for

Applications) processor back to a standard processor.

This is caused by an error condition indicated by the

return code shown.

System action: The JVM disables further attempts to

switch between IFA and standard processors and

continues normally.

User response: Contact you IBM Service

representative for further information.

JVMHP030 Unable to switch to IFA processor -

libhpi.so needs extattr +a

Explanation: The JVM attempted unsuccesfully to

switch to an IFA (Integrated Facility for Applications)

processor. This is because the JVM library file libhpi.so

requires APF-authorisation.

System action: The JVM disables further attempts to

switch between IFA and standard processors and

continues normally.

User response: Ensure that file libhpi.so has extended

attributes set using command ″extattr +a″.

JVMHP031 Malloc for <integer> bytes failed

Explanation: The JVM failed to allocate the native

storage required to hold details about the Java Threads.

System action: The JVM was about to suspend all the

Java threads ahead of Garbage Collection. The thread

details would be passed to the C runtime call

pthread_quiesce_and_get_np(), which would perform

the thread suspension.

JVM error messages for JVMHP

458 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

User response: Increase the size of available storage.

JVMHP032 Unable to UNFREEZE suspended

threads, rc: <integer> errno: <integer>

errno2: <integer>

Explanation: The JVM was unable to unfreeze all the

Java threads .

System action: The JVM is trying to suspend all the

Java threads ahead of Garbage Collection. A call to

pthread_quiesce_and_get_np() to suspend the threads

has been unsuccessful; a further call to

pthread_quiesce_and_get_np() to unsuspend (unfreeze)

the threads before another attempt to suspend has also

been unsuccessful. The JVM exits at this point.

User response: Check that all LE maintenance has

been installed by checking symptoms against the APAR

database.

JVMHP033 Unable to suspend threads, rc: <integer>

errno: <integer> errno2: <integer>

Explanation: The JVM was unable to suspend all the

Java threads.

System action: The JVM is trying to suspend all the

Java threads ahead of Garbage Collection. A call to

pthread_quiesce_and_get_np() to suspend the threads

has been unsuccessful. The JVM exits at this point.

User response: Check that all LE maintenance has

been installed by checking symptoms against the APAR

database.

JVM error messages for JVMLK

JVMLK001 Current thread not owner

Explanation: A thread has attempted to exit an

inflated monitor when it does not own that monitor.

System action: The JVM throws a

java.lang.IllegalMonitorStateException.

User response: Contact your IBM service

representative.

JVMLK002 Current thread not owner

Explanation: A thread has attempted to exit a flat

monitor when it does not own that monitor.

System action: The JVM throws a

java.lang.IllegalMonitorStateException.

User response: Contact your IBM service

representative.

JVMLK003 Current thread not owner

Explanation: A thread has attempted to call a notify()

method on an object when it does not own the flat lock

on that object.

System action: The JVM throws a

java.lang.IllegalMonitorStateException.

User response: Correct the Java application code. Use

a synchronized block or method so that the thread

owns the lock on the object before it calls the notify()

method.

JVMLK004 Current thread not owner

Explanation: A thread has attempted to call a notify()

method on an object when it does not own the inflated

lock on that object

System action: The JVM throws a

java.lang.IllegalMonitorStateException.

User response: Correct the Java application code. Use

a synchronized block or method so that the thread

owns the lock on the object before it calls the notify()

method.

JVMLK005 Current thread not owner

Explanation: A thread has attempted to call a

notifyAll() method on an object when it does not own

the flat lock on that object.

System action: The JVM throws a

java.lang.IllegalMonitorStateException.

User response: Correct the Java application code. Use

a synchronized block or method so that the thread

owns the lock on the object before it calls the

notifyAll() method.

JVMLK006 Current thread not owner

Explanation: A thread has attempted to call a

notifyAll() method on an object when it does not own

the inflated lock on that object.

System action: The JVM throws a

java.lang.IllegalMonitorStateException.

User response: Correct the Java application code. Use

a synchronized block or method so that the thread

owns the lock on the object before it calls the

notifyAll() method.

JVMLK007 Operation interrupted

Explanation: A thread has been interrupted during a

wait() method by another thread that was calling the

interrupt() method on the thread class.

System action: The JVM throws a

java.lang.InterruptedException.

User response: Correct the Java application code so

JVM error messages for JVMHP

Appendix F. Messages and codes 459

that it handles the InterruptedException.

JVMLK008 Current thread not owner

Explanation: A thread has attempted to call a wait()

method on an object when it does not own the lock on

that object.

System action: The JVM throws a

java.lang.IllegalMonitorStateException.

User response: Correct the Java application code. Use

a synchronized block or method, so that the thread

owns the lock on the object before it calls the wait()

method.

JVMLK010 Current thread not owner

Explanation: A thread has attempted to call a wait()

method on an object when it does not own the flat lock

on that object.

System action: The JVM throws a

java.lang.IllegalMonitorStateException.

User response: Correct the Java application code. Use

a synchronized block or method, so that the thread

owns the lock on the object before it calls the

notifyAll() method.

JVMLK011 Totally out of thread IDs

Explanation: The maximum number of threads that

are allowed in the JVM has been exceeded.

System action: The JVM is terminated.

User response: Reduce the number of threads that

have started by the Java application.

JVMLK012 Expanding monitor pool by <n>

monitors to <m>

Explanation: The number of inflated monitors (locks)

that are required by the Java application has exceeded

the number that are available in the monitor pool. The

size of the pool has been increased as indicated in the

message. This message is issued only if verbose

monitor garbage collection mode (command line option

-Xverbosemongc) is specified.

System action: The number of monitors that are in the

pool is increased.

User response: This message is for information only

and can be ignored.

JVMLK013 Expanding monitor pool by <n>

monitors to <m>

Explanation: The number of inflated monitors (locks)

that are available in the JVM has been increased. The

hash table that is used to index the monitor pool is

about to be expanded as indicated in the message. This

message is issued only if verbose monitor garbage

collection mode (command line option

-Xverbosemongc) is specified.

System action: The size of the monitor pool hash table

is increased as indicated.

User response: This message is for information only

and can be ignored.

JVMLK014 Monitor cache GC freed <n> of <m>

monitors in <t> ms (<x> total free)

Explanation: During garbage collection, a scan of the

monitor cache in the JVM has found the indicated

number of unused inflated monitors. This message is

issued only if verbose monitor garbage collection mode

(command line option -Xverbosemongc) is specified.

System action: The indicated number of inflated

monitors are freed.

User response: This message is for information only

and can be ignored.

JVMLK015 Unlocking <o> - Flat locked when

Thread <x> exited

Explanation: A thread has terminated while still

holding the flat lock on the object indicated. This

message is issued only by the PD build.

System action: The flat lock on the object is released

and thread termination continues.

User response: Contact your IBM service

representative.

JVMLK016 Unlocking <o> - Locked when Thread

<x> exited

Explanation: A thread has terminated while still

holding the inflated lock on the object indicated. This

message is issued only by the PD build.

System action: The inflated lock on the object is

released and thread termination continues.

User response: Contact your IBM service

representative.

JVMLK017 obj <o> mid <m> monIndex(mid) <p1>

monIndexToMonitor(monIndex(mid))

<p2>

Explanation: A thread has terminated while still

holding the inflated lock on the object indicated. This

message is issued only by the PD build.

System action: An internal consistency check on object

monitor pointers has failed.

User response: Contact your IBM service

representative.

JVM error messages for JVMLK

460 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

JVMLK018 OutOfMemoryError, sysMalloc returned

NULL

Explanation: A system memory allocation call has

failed while the JVM was initializing its internal

monitors.

System action: The JVM throws a

java.lang.OutOfMemoryError.

User response: Increase the runtime (heap) memory

that is available in the process that is running the JVM.

JVMLK019 OutOfMemoryError, sysMalloc returned

NULL

Explanation: A system memory allocation call has

failed while the JVM was initializing its internal

monitors.

System action: The JVM throws a

java.lang.OutOfMemoryError.

User response: Increase the runtime (heap) memory

that is available in the process that is running the JVM.

JVMLK020 Cannot allocate memory for micb table

in monPoolInit

Explanation: A system memory allocation call has

failed while the JVM was initializing its monitor pool.

System action: The JVM is terminated.

User response: Increase the runtime (heap) memory

that is available in the process that is running the JVM.

JVMLK021 Cannot allocate memory for monitor

buffer monPoolExpand

Explanation: A system memory allocation call has

failed while the JVM was expanding its monitor pool.

System action: The JVM is terminated.

User response: Increase the runtime (heap) memory

that is available in the process that is running the JVM.

JVMLK022 Cannot allocate memory for new buffer

in monPoolExpand

Explanation: A system memory allocation call has

failed while the JVM was expanding its monitor pool.

System action: The JVM is terminated.

User response: Increase the runtime (heap) memory

that is available in the process that is running the JVM.

JVMLK023 Cannot allocate memory in

inflMonitorInit

Explanation: A system memory allocation call has

failed while the JVM was initializing an inflated

monitor.

System action: The JVM is terminated.

User response: Increase the runtime (heap) memory

that is available in the process that is running the JVM.

JVMLK024 Failed to obtain local monitor

Explanation: Internal error.

System action: The JVM is terminated.

User response: Contact your IBM service

representative.

JVMLK025 Failed to obtain global monitor

Explanation: Internal error.

System action: The JVM is terminated.

User response: Contact your IBM service

representative.

JVMLK026 Failed to release global monitor

Explanation: Internal error.

System action: The JVM is terminated.

User response: Contact your IBM service

representative.

JVMLK027 Failed to release local monitor

Explanation: Internal error.

System action: The JVM is terminated.

User response: Contact your IBM service

representative.

JVMLK028 Failed to obtain local monitor

Explanation: Internal error.

System action: The JVM is terminated.

User response: Contact your IBM service

representative.

JVMLK029 Failed to release local monitor

Explanation: Internal error.

System action: The JVM is terminated.

User response: Contact your IBM service

representative.

JVMLK030 Cannot allocate memory in

lkGetLocalProxy()

Explanation: An out-of-memory condition occurred

while memory was being allocated for shared JVM

locks.

System action: The JVM is terminated.

JVM error messages for JVMLK

Appendix F. Messages and codes 461

User response: Increase the runtime (heap) memory that is available in the process that is running the JVM.

JVM error messages for JVMST

JVMST001 Cannot allocate memory in

initWorkPackets

Explanation: Not enough virtual storage was available

to allocate the concurrent data structures. The call to

sysMalloc() failed. This can happen only during

initialization.

System action: The JVM is terminated.

User response: Allocate more virtual storage to the

JVM region. If the problem remains, contact your IBM

service representative.

JVMST010 Cannot allocate memory for ACS area

Explanation: Not enough virtual storage was available

to allocate the ACS heap. The call to

sharedMemoryAlloc() failed. This can happen during

the initialization or expansion of the ACS heap.

System action: The JVM is terminated.

User response: Allocate more virtual storage to the

JVM region. If the problem remains, contact your IBM

service representative.

JVMST011 JVMST011

Explanation: Not enough virtual storage was available

to allocate the mirrored card table. The call to

sysMapMem() failed. This can happen only in the

debug build during initialization.

System action: The JVM is terminated.

User response: Allocate more virtual storage to the

JVM region. If the problem remains, contact your IBM

service representative.

JVMST012 Cannot allocate memory in

concurrentInit()

Explanation: Not enough virtual storage was available

to allocate the stop_the_world_mon monitor. The call to

sysMalloc() failed. This can happen only during

initialization.

System action: The JVM is terminated.

User response: Allocate more virtual storage to the

JVM region. If the problem remains, contact your IBM

service representative.

JVMST013 Cannot allocate memory in

initGcHelpers(2)

Explanation: Not enough virtual storage was available

to allocate the ack_mon monitor. The call to sysMalloc()

failed. This can happen only during initialization.

System action: The JVM is terminated.

User response: Allocate more virtual storage to the

JVM region. If the problem remains, contact your IBM

service representative.

JVMST014 Cannot allocate memory in

initConBKHelpers(3)

Explanation: Not enough virtual storage was available

to start a concurrent background thread. The call to

xmCreateSystemThread() failed. This can happen only

during initialization.

System action: The JVM is terminated.

User response: Allocate more virtual storage to the

JVM region. If the problem remains, contact your IBM

service representative.

JVMST015 Cannot commit memory in

initConcurrentRAS

Explanation: An error occurred during an attempt to

commit memory for the mirrored card table. The call to

sysCommitMem() failed. This only happen only in the

debug build during initialization.

System action: The JVM is terminated.

User response: Contact your IBM service

representative.

JVMST016 Cannot allocate memory for initial Java

heap

Explanation: Not enough virtual storage was available

to allocate the Java heap. The call to sysMapMem()

failed. This can happen only during initialization.

System action: The JVM is terminated.

User response: Allocate more virtual storage to the

JVM region. If the problem remains, contact your IBM

service representative

JVMST017 Cannot allocate memory in

initializeMarkAndAllocBits(markbits1)

Explanation: Not enough virtual storage was available

to allocate the markbits vector. The call to

sysMapMem() failed. This can happen only during

initialization.

System action: The JVM is terminated.

User response: Allocate more virtual storage to the

JVM region. If the problem remains, contact your IBM

service representative.

JVM error messages for JVMLK

462 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

JVMST018 Cannot allocate memory for

initializeMarkAndAllocBits(allocbits1)

Explanation: Not enough virtual storage was available

to allocate the allocbits vector. The call to

sysMapMem() failed. This can happen only during

initialization.

System action: The JVM is terminated.

User response: Allocate more virtual storage to the

JVM region. If the problem remains, contact your IBM

service representative.

JVMST019 Cannot allocate memory in

allocateToMiddlewareHeap

Explanation: An error occurred during an attempt to

commit memory for the Java heap. The call to

sysCommitMem() failed. This can happen during

initialization or during expansion of the heap.

System action: The JVM is terminated.

User response: Contact your IBM service

representative.

JVMST020 Cannot allocate memory in

allocateToTransientHeap

Explanation: An error occurred during an attempt to

commit memory for the transient heap. The call to

sysCommitMem() failed. This can happen during

initialization or during expansion of the transient heap.

System action: The JVM is terminated.

User response: Contact your IBM service

representative.

JVMST021 Cannot allocate memory in

initParallelMark(stackEnd

Explanation: Not enough storage was available in the

Java heap to allocate the stackEnd object. The call to

allocMiddlewareArray() failed. This can happen only

during initialization.

System action: The JVM is terminated.

User response: Allocate more Java heap storage by

increasing the -Xmx value. If the problem remains,

contact your IBM service representative.

JVMST022 Cannot allocate memory in

initParallelMark(pseudoClass

Explanation: Not enough storage was available in the

Java heap to allocate the pseudoClass object. The call to

allocMiddlewareObject() failed. This can happen only

during initialization.

System action: The JVM is terminated.

User response: Allocate more Java heap storage by

increasing the -Xmx value. If the problem remains,

contact your IBM service representative.

JVMST023 Cannot allocate memory in

initializeGCFacade

Explanation: Not enough virtual storage was available

to allocate the verbosegc buffer. The call to sysMalloc()

failed. This can happen only during initialization.

System action: The JVM is terminated.

User response: Allocate more virtual storage to the

JVM region. If the problem remains, contact your IBM

service representative.

JVMST024 Cannot allocate memory in

concurrentInit(base-Malloc)

Explanation: Not enough virtual storage was available

to allocate the concurrent data structures. The call to

sysMalloc() failed. This can happen only during

initialization.

System action: The JVM is terminated.

User response: Allocate more virtual storage to the

JVM region. If the problem remains, contact your IBM

service representative

JVMST025 Cannot allocate memory in

icDoseThread

Explanation: Not enough virtual storage was available

to allocate a sys_thread_stack_segment. The call to

sysCalloc() failed. This can happen only during garbage

collection.

System action: The JVM is terminated.

User response: Allocate more virtual storage to the

JVM region. If the problem remains, contact your IBM

service representative.

JVMST026 Cannot allocate memory in

initializeMiddlewareHeap (not enough

memory)

Explanation: An error occurred during an attempt to

allocate storage to the middleware heap. The call to

allocateToMiddlewareHeap() failed. This can happen

only during initialization.

System action: The JVM is terminated.

User response: Contact your IBM service

representative.

JVMST027 Cannot allocate memory for System

Heap area in

allocateSystemHeapMemory

Explanation: Not enough virtual storage was available

to allocate storage for the system heap. The call to

JVM error messages for JVMST

Appendix F. Messages and codes 463

sharedMemoryAlloc() failed. This can happen during

initialization or during expansion of the system heap.

System action: The JVM is terminated.

User response: Allocate more virtual storage to the

JVM region. If the problem remains, contact your IBM

service representative.

JVMST028 Cannot commit memory in

RASinitShadowHeap

Explanation: An error occurred during an attempt to

commit memory for the shadow heap. The call to

sysCommitMem() failed. This can happen only during

initialization when the trace option

-Dibm.dg.trc.print=st_concurrent_shadow_heap is used.

System action: The JVM is terminated.

User response: Contact your IBM service

representative.

JVMST029 Cannot allocate memory in

jvmpi_scan_thread_roots

Explanation: Not enough virtual storage was available

to allocate a sys_thread_stack_segment. The call to

sysCalloc() failed. This can happen only during garbage

collection when JVMPI is running.

System action: The JVM is terminated.

User response: Allocate more virtual storage to the

JVM region. If the problem remains, contact your IBM

service representative.

JVMST030 Cannot allocate memory in

initializeCardTable

Explanation: Not enough virtual storage was available

to allocate the card table. The call to sysMapMem()

failed. This can happen only during initialization.

System action: The JVM is terminated.

User response: Allocate more virtual storage to the

JVM region. If the problem remains, contact your IBM

service representative.

JVMST031 Cannot commit memory in

initializeCardTable

Explanation: An error occurred during an attempt to

commit memory for the card table. The call to

sysCommitMem() failed. This can happen only during

initialization.

System action: The JVM is terminated.

User response: Contact your IBM service

representative.

JVMST032 Cannot allocate memory in

initializeTransientHeap

Explanation: An error occurred during an attempt to

allocate storage to the transient heap. The call to

allocateToTransientHeap() failed. This can happen only

during initialization.

System action: The JVM is terminated.

User response: Contact your IBM service

representative.

JVMST033 Cannot allocate memory in

initializeMarkAndAllocBits(markbits2)

Explanation: An error occurred during an attempt to

commit memory for the markbits vector. The call to

sysCommitMem() failed. This can happen only during

initialization when -Xresettable is running.

System action: The JVM is terminated.

User response: Contact your IBM service

representative.

JVMST034 Cannot allocate memory in

initializeMarkAndAllocBits(allocbits2)

Explanation: An error occurred during an attempt to

commit memory for the allocbits vector. The call to

sysCommitMem() failed. This can happen only during

initialization when -Xresettable is running.

System action: The JVM is terminated.

User response: Contact your IBM service

representative.

JVMST035 Cannot allocate memory in

initializeMiddlewareHeap (markbits)

Explanation: An error occurred during an attempt to

commit memory for the markbits vector. The call to

sysCommitMem() failed. This can happen only during

initialization when -Xresettable is not running.

System action: The JVM is terminated.

User response: Contact your IBM service

representative.

JVMST036 Cannot allocate memory in

initializeMiddlewareHeap (allocbits)

Explanation: An error occurred during an attempt to

commit memory for the allocbits vector. The call to

sysCommitMem() failed. This can happen only during

initialization when -Xresettable is not running.

System action: The JVM is terminated.

User response: Contact your IBM service

representative.

JVM error messages for JVMST

464 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

JVMST039 Cannot allocate Shared Memory

segment in initializeSharedMemory

Explanation: An error occurred during an attempt to

create shared memory. The call to

xhpiSharedMemoryCreate() failed. This can happen

only during initialization when -Xjvmset is running.

System action: A return code of JNI_ENOMEM is

passed back to the JNI_CreateJavaVM call.

User response: Allocate more virtual storage to the

JVM region. If the problem remains, contact your IBM

service representative.

JVMST040 Cannot initialize Java heap in

allocateToMiddlewareHeap

Explanation: An error occurred during an attempt to

commit memory for the Java heap. The call to

sysCommitMem() failed. This can happen only during

initialization.

System action: The JVM is terminated.

User response: Contact your IBM service

representative.

JVMST042 Cannot allocate memory in

initParallelMark(base-Malloc)

Explanation: Not enough virtual storage was available

to allocate the parallel mark data structures. The call to

sysMalloc() failed. This can happen only during

initialization.

System action: The JVM is terminated.

User response: Allocate more virtual storage to the

JVM region. If the problem remains, contact your IBM

service representative.

JVMST043 Cannot allocate memory in

concurrentScanThread

Explanation: Not enough virtual storage was available

to allocate a sys_thread_stack_segment. The call to

sysCalloc() failed. This can happen only during

concurrent marking.

System action: The JVM is terminated.

User response: Allocate more virtual storage to the

JVM region. If the problem remains, contact your IBM

service representative.

JVMST044 Cannot allocate memory in

concurrentInitLogCleaning

Explanation: Not enough virtual storage was available

to allocate the cleanedbits vector. The call to

sysMapMem() failed. This can happen only during

initialization.

System action: The JVM is terminated.

User response: Allocate more virtual storage to the

JVM region. If the problem remains, contact your IBM

service representative.

JVMST045 Cannot commit memory in

concurrentInitLogCleaning

Explanation: An error occurred during an attempt to

commit memory for the cleanedbits. The call to

sysCommitMem() failed. This can happen only during

initialization.

System action: The JVM is terminated.

User response: Contact your IBM service

representative.

JVMST046 Cannot allocate storage for standalone

jab in initializeSharedMemory

Explanation: Not enough virtual storage was available

to allocate the JAB. The call to sysCalloc() failed. This

can happen only during initialization when -Xjvmset is

not running.

System action: A return code of JNI_ENOMEM is be

passed back to the JNI_CreateJavaVM call.

User response: Allocate more virtual storage to the

JVM region. If the problem remains, contact your IBM

service representative.

JVMST047 Cannot allocate memory in

initParallelSweep

Explanation: Not enough virtual storage was available

to allocate the parallel sweep data structure

PBS_ThreadStat. The call to sysMalloc() failed. This can

happen only during initialization.

System action: The JVM is terminated.

User response: Allocate more virtual storage to the

JVM region. If the problem remains, contact your IBM

service representative.

JVMST048: Could not establish access to shared

storage in openSharedMemory

Explanation: An error occurred during an attempt to

access shared memory. The call to

xhpiSharedMemoryOpen() failed. This can happen only

during initialization when -Xjvmset is running.

System action: A return code of JNI_ENOMEM is

passed back to the JNI_CreateJavaVM call.

User response: Check that the correct token is being

passed in the JavaVMOption. If the problem remains,

contact your IBM service representative.

JVM error messages for JVMST

Appendix F. Messages and codes 465

JVMST049

Worker and Master JVM versions

differ

Worker JVM version is <version>

build type is <build>

Master JVM version is <version>

build type is <build>

Where version is the JVM version

(for example 1.3) and build is the

 build type (DEV, COL, or INT).

Explanation: A mismatch has occurred between the

Master JVM and a Worker JVM. This can happen only

during initialization when -Xjvmse is running.

System action: A return code of JNI_ERR is passed

back to the JNI_CreateJavaVM call.

User response: Ensure that the Master and all Worker

JVMs are at the same version level, and all are of the

same build type. If the problem remains, contact your

IBM service representative.

JVMST050 Cannot allocate memory for initial Java

heap

Explanation: An error occurred during an attempt to

query memory availability. The call to

DosQuerySysInfo() failed. This can happen only during

initialization on OS/2.

System action: The JVM is terminated.

User response: Contact your IBM service

representative.

JVMST051 Cannot allocate memory for initial Java

heap

Explanation: Not enough virtual storage was available

to allocate the Java heap. The call to sysMapMem()

failed. This can happen only during initialization on

OS/2.

System action: The JVM is terminated.

User response: Allocate more virtual storage to the

JVM region. If the problem remains, contact your IBM

service representative.

JVMST052 Cannot allocate memory for initial Java

heap

Explanation: Not enough virtual storage was available

to allocate the Java heap. The call to sysMapMem()

failed. This can happen only during initialization on

OS/2 and when JAVA_HIGH_MEMORY has been

specified.

System action: The JVM is terminated.

User response: Allocate more virtual storage to the

JVM region. If the problem remains, contact your IBM

service representative.

JVMST055 Cannot allocate memory in

initParallelSweep

Explanation: Not enough virtual storage was available

to allocate the parallel sweep data structure

pbs_scoreboard. The call to sysMalloc() failed. This can

happen only during initialization.

System action: The JVM is terminated.

User response: Allocate more virtual storage to the

JVM region. If the problem remains, contact your IBM

service representative.

JVMST056 Cannot allocate memory in

initConBKHelpers(1)

Explanation: Not enough virtual storage available to

allocate the bk_activation_mon monitor. The call to

sysMalloc() failed. This can happen only during

initialization.

System action: The JVM is terminated.

User response: Allocate more virtual storage to the

JVM region. If the problem remains, contact your IBM

service representative.

JVMST057 Cannot allocate memory in

initGcHelpers(1)

Explanation: Not enough virtual storage was available

to allocate the request_mon monitor. The call to

sysMalloc() failed. This can happen only during

initialization.

System action: The JVM is terminated.

User response: Allocate more virtual storage to the

JVM region. If the problem remains, contact your IBM

service representative.

JVMST058 Cannot allocate memory in

initGcHelpers(3)

Explanation: Not enough virtual storage available to

start a gcHelper thread. The call to

xmCreateSpecialSystemThread() failed. This can happen

only during initialization.

System action: The JVM is terminated.

User response: Allocate more virtual storage to the

JVM region. If the problem remains, contact your IBM

service representative.

JVM error messages for JVMST

466 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

JVMST059 Cannot allocate memory in scanThread

Explanation: Not enough virtual storage was available

to allocate a sys_thread_stack_segment. The call to

sysCalloc() failed. This can happen only during garbage

collection.

System action: The JVM is terminated.

User response: Allocate more virtual storage to the

JVM region. If the problem remains, contact your IBM

service representative.

JVMST060 Cannot allocate memory in

concurrentInit() - bk_threads-sysCalloc

Explanation: Not enough virtual storage was available

to allocate concurrent background thread(s). The call to

sysCalloc() failed. This can happen only during

initialization.

System action: The JVM is terminated.

User response: Allocate more virtual storage to the

JVM region. If the problem remains, contact your IBM

service representative.

JVMST061 Cannot allocate memory in

concurrentInit

Explanation: Not enough virtual storage was available

to allocate the concurrent tracer_mon monitor. The call

to sysMalloc() failed. This can happen only during

initialization.

System action: The JVM is terminated.

User response: Allocate more virtual storage to the

JVM region. If the problem remains, contact your IBM

service representative.

JVMST062 Cannot allocate memory in

initializeFRBits

Explanation: Not enough virtual storage was available

to allocate the FRBits. The call to sysMapMem() failed.

This can happen only during initialization.

System action: The JVM is terminated.

User response: Allocate more virtual storage to the

JVM region. If the problem remains, contact your IBM

service representative.

JVMST063 Cannot allocate memory in

initializeFRBits

Explanation: Not enough virtual storage was available

to commit the FRBits in resettable code. The call to

sysCommitMem() failed. This can happen only during

initialization.

System action: The JVM is terminated.

User response: Contact your IBM service

representative.

JVMST064 Cannot allocate memory in

initializeMiddlewareHeap

Explanation: Not enough virtual storage was available

to commit the FRBits in resettable code. The call to

sysCommitMem() failed. This can happen only during

initialization.

System action: The JVM is terminated.

User response: Allocate more virtual storage to the

JVM region. If the problem remains, contact your IBM

service representative.

JVMST065 Cannot allocate memory for break tables

in initializeIncrementalCompaction

Explanation: Not enough virtual storage was available

to create the break tables for incremental compaction.

The call to sysMalloc() failed. This can happen only

during initialization.

System action: The JVM is terminated.

User response: Allocate more virtual storage to the

JVM region. If the problem remains, contact your IBM

service representative.

JVMST066 Exception (sysGetExceptionCode())

received during openSharedMemory

with token(token)

Explanation: Cannot access shared storage that is

defined by the token that xhpiSharedMemoryOpen

returns. This can happen only during initialization.

System action: The JVM is terminated.

User response: Check whether the token that is being

passed by -Xjvmset is valid. If the problem remains,

contact your IBM service representative.

JVMST067 Invalid method_type detected in heap

allocation(allocObject)

Explanation: A class type that was detected during

object allocation was not Middleware, Primordial, or

Application.

System action: The JVM is terminated.

User response: If the problem remains, contact your

IBM service representative.

JVMST068 Invalid method_type detected in heap

allocation (allocArray)

Explanation: A class type that was detected during

array allocation was not Middleware or Application.

System action: The JVM is terminated.

JVM error messages for JVMST

Appendix F. Messages and codes 467

User response: If the problem remains, contact your

IBM service representative.

JVMST069 Invalid method_type detected in heap

allocation (allocConextArray)

Explanation: A class type that was detected during

context array allocation was not Middleware or

Application.

System action: The JVM is terminated.

User response: If the problem remains, contact your

IBM service representative.

JVMST070 Invalid method_type detected in heap

allocation (allocConextObject)

Explanation: A class type that was detected during

context object allocation was not Middleware or

Application.

System action: The JVM is terminated.

User response: If the problem remains, contact your

IBM service representative.

JVMST080 -verbose:gc flag is set

Explanation: The JVM was started with switch

-verbose:gc

System action: During garbage collection cycles,

informational messages are written to stderr (or to a

file that you specify).

User response: None.

JVMST081 File open failed for verbose:gc output

file %s

Explanation: An error occurred during the opening of

the file for verbose:gc output.

System action: The JVM directs verbose garbage

collection messages to stderr instead. JVM initialization

continues.

User response: Review stderr for verbose:gc messages.

Ensure that environment variable

IBM_JVM_ST_VERBOSEGC_LOG specifies a valid

filename.

JVMST082 -verbose:gc output will be written to %s

Explanation: verbose:gc output will be written to the

names HFS file.

System action: The JVM sends verbose:gc messages to

the names file. JVM initialization continues.

User response: Review stderr for verbose:gc messages.

JVMST083 Exception occurred while calculating

freeList size for JVMMI

Explanation: An exception occurred while the

jvmmiOutOfMemoryEvent was being set up.

System action: The JVM is terminated.

User response: If the problem remains, contact your

IBM service representative.

JVMST084 Cannot allocate memory in stInit for

segment_info

Explanation: Not enough virtual storage was available

to create the sys_thread_stack_segment. The call to

sysCalloc() failed. This can happen only during

initialization.

System action: The JVM is terminated.

User response: Allocate more virtual storage to the

JVM region. If the problem remains, contact your IBM

service representative.

JVMST085 Cannot suspend threads in gc0

Explanation: An attempt by xmSuspendAllThreads to

lock all threads before garbage collection was not

successful.

System action: The JVM is terminated.

User response: If the problem remains, contact your

IBM service representative.

JVMST086 verifyHeap() not supported in single

thread mode

Explanation: ST facade function for heap verification

called during GC.

System action: The JVM is terminated.

User response: Contact your IBM service

representative.

JVMST088 Cannot allocate memory in

″initializeSCCardTable″

Explanation: Not enough virtual storage was available

to allocate the shared class card table. The call to

sysMapMem() failed. This can happen only during

initialization.

System action: The JVM is terminated.

User response: Allocate more virtual storage to the

JVM region. If the problem remains, contact your IBM

service representative.

JVM error messages for JVMST

468 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

JVMST089 Cannot commit memory in

″initializeSCCardTable″

Explanation: An error occurred during an attempt to

commit memory for the shared class card table. The

call to sysCommitMem() failed. This can happen only

during initialization.

System action: The JVM is terminated.

User response: Contact your IBM service

representative.

JVMST090 Incorrect usage of -Xverbosegclog

Explanation: The parameters that were passed with

-Xverbosegclog are not correct.

System action: The JVM is terminated.

User response: Refer to the information about

-Xverbosegclog (see Appendix G, “Command-line

parameters,” on page 487). If the problem remains,

contact your IBM service representative.

JVMST092 Cannot allocate memory in

initializeGCFacade

Explanation: Not enough virtual storage was available

to allocate the verbosegc trace buffer. The call to

sysMalloc() failed. This can happen only during

initialization.

System action: The JVM is terminated.

User response: Allocate more virtual storage to the

JVM region. If the problem remains, contact your IBM

service representative.

JVMST093 file open failed for verbose:gc output

file

Explanation: Cannot open the verbosegc log file.

System action: Verbosegc log output is written to the

stderr log.

User response: Check whether the entered file name is

valid and whether open is a valid operation on this file.

JVMST094 file open failed for verbose:gc output

file

Explanation: Cannot open the verbosegc log file.

System action: Verbosegc log output is written to the

stderr log.

User response: Check whether the entered file name is

valid and whether open is a valid operation on this file.

JVMST095 Incorrect usage of -Xverbosegclog

Explanation: The parameters that were passed with

-Xverbosegclog are not correct.

System action: The JVM is terminated.

User response: Refer to the information about

-Xverbosegclog (see Appendix G, “Command-line

parameters,” on page 487). If the problem remains,

contact your IBM service representative.

JVMST096 Out of memory in

setVerbosegcRedirectionFormatScreen

Explanation: Not enough virtual storage was available

to allocate the verbosegc buffer. The call to sysMalloc()

failed. This can happen only during initialization.

System action: The JVM is terminated.

User response: Allocate more virtual storage to the

JVM region. If the problem remains, contact your IBM

service representative.

JVMST097 Concurrent GC is disabled

Explanation: An attempt has been made to turn on

concurrent verbosegc by using the dynamic switching

interface when concurrent gc is not enabled.

System action: The JVM is terminated.

User response: Review the dynamic switching

interface.

JVMST099 Live Memory count inaccuracy, traced

%d bytes, STW %d bytes

Explanation: The counter that tracks total number of

bytes consumed by live objects contains inaccurate

value. This inaccurate value can affect the heuristics

used in some GC algorithms.

System action: The JVM is terminated.

User response: If the problem remains, contact your

IBM service representative.

JVMST100 Unable to allocate an array object. Array

element exceeds IBM JDK limit of

268435455 elements

Explanation: The array could not be allocated in the

requested heap because the size requested for the array

exceeds the maximum size that is permitted by the IBM

JDK.

System action: JVM terminated.

User response: Reduce the array size to less than 256

MB.

JVM error messages for JVMST

Appendix F. Messages and codes 469

JVMST101 Unable to allocate an array object. Array

element exceeds IBM JDK limit of

268435455 elements

Explanation: The array could not be allocated in the

middleware heap because the size requested for the

array exceeds the maximum size that is permitted by

the IBM JDK.

System action: JVM terminated.

User response: Reduce the array size to less than 256

MB.

JVMST102 Unable to allocate an array object. Array

element exceeds IBM JDK limit of

268435455 elements

Explanation: The array could not be pinned and

allocated from the pinned cluster because the size

requested for the array exceeds the maximum size that

is permitted by the IBM JDK.

System action: JVM terminated.

User response: Reduce the array size to less than 256

MB.

JVMST103 Unable to allocate an array object. Array

element exceeds IBM JDK limit of

268435455 elements

Explanation: The array could not be allocated from

the middleware or transient heap because the size

requested for the array exceeds the maximum size that

is permitted by the IBM JDK.

System action: JVM terminated.

User response: Reduce the array size to less than 256

MB.

JVMST104 Unable to allocate an array object. Array

element exceeds IBM JDK limit of

268435455 elements

Explanation: The array could not be allocated from

the middleware or transient heap according to the

current method context because the size requested for

the array exceeds the maximum size that is permitted

by the IBM JDK.

System action: JVM terminated.

User response: Reduce the array size to less than 256

MB.

JVMST105 Unable to allocate an array object. Array

element exceeds IBM JDK limit of

268435455 elements

Explanation: The array could not be allocated from

the same heap as the object that has been passed as one

of the parameters, because the size requested for the

array exceeds the maximum size that is permitted by

the IBM JDK.

System action: JVM terminated.

User response: Reduce the array size to less than 256

MB.

JVMST106 Unable to allocate an object. Object size

is bigger than 1073741824 bytes

Explanation: Cannot allocate a chunk of storage to use

as an object, array, or one of a variety of ’special’

objects such as pinned object clusters.

System action: JVM terminated.

User response: Reduce the object size to less than 1

GB.

JVMST107 Unable to allocate an object. Object size

is bigger than 1073741824 bytes

Explanation: Cannot allocate a chunk of storage to use

as an object, array, or one of a variety of ’special’

objects such as pinned object clusters in the target heap

specified.

System action: JVM terminated.

User response: Reduce the object size to less than 1

GB.

JVMST108 Insufficient space in Java heap to satisfy

allocation request

Explanation: Cannot allocate a chunk of storage for

use in the Java heap when concurrent is enabled.

System action: JVM terminated.

User response: Contact your IBM service

representative.

JVMST109 Insufficient space in Java heap to satisfy

allocation request

Explanation: Cannot allocate a chunk of storage for

use in the Java heap when concurrent is disabled.

System action: JVM terminated.

User response: Contact your IBM service

representative.

JVMST110 Insufficient space in transient Java heap

to satisfy allocation request

Explanation: Cannot allocate a chunk of storage for

use in the Java heap.

System action: JVM terminated.

User response: Contact your IBM service

representative.

JVM error messages for JVMST

470 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

JVM error messages for JVMXE

JVMXE001 OutOfMemoryError, stAllocObject

failed

Explanation: The JVM cannot create a new java (class)

object.

System action: The JVM throws a

java.lang.OutOfMemoryError.

User response: Review the memory that the

application requires.

JVMXE002 OutOfMemoryError, xeCreateStack

failed

Explanation: The JVM cannot create a new stack to

expand an existing Java stack.

System action: The JVM throws a

java.lang.OutOfMemoryError.

User response: Review the Java stack size that is

specified for the application. Increase the Java stack

size through the -Xss parameter if required.

JVMXE003 OutOfMemoryError, stAllocObject for

executeJava failed

Explanation: The JVM cannot create a new Java (class)

object.

System action: The JVM throws a

java.lang.OutOfMemoryError.

User response: Review the memory that the

application requires.

JVMXE004 OutOfMemoryError, stAllocArray for

executeJava failed

Explanation: The JVM cannot create a new Java

(newArray_quick) object.

System action: The JVM throws a

java.lang.OutOfMemoryError.

User response: Review the memory that the

application requires.

JVMXE005 OutOfMemoryError, multiArrayAlloc for

executeJava failed. Unable to create the

Java (multiArray) object due to

Out_Of_Memory condition (inside

interpreter)

Explanation: The JVM cannot create a new Java

(multiArray) object.

System action: The JVM throws a

java.lang.OutOfMemoryError.

User response: Review the memory that the

application requires.

JVMXE006 OutOfMemoryError, stAllocArray for

executeJava failed

Explanation: The JVM cannot create a new Java

(newArray) object.

System action: The JVM throws a

java.lang.OutOfMemoryError.

User response: Review the memory that the

application requires.

JVMXE007 OutOfMemoryError, multiArrayAlloc

failed for x86_multianewarray_quick

Explanation: The JVM cannot create a new Java

(newMultiArray) object.

System action: The JVM throws a

java.lang.OutOfMemoryError.

User response: Review the memory that the

application requires.

JVMXE008 Cannot allocate memory for temporary

array in remapLocals

Explanation: The JVM cannot allocate a temporary

array for remapping of Locals.

System action: The JVM issues an ″Out of memory,

aborting″ message, and is terminated.

User response: Review the memory that the

application requires.

JVMXE015 Cannot allocate memory for XeData in

getXeDataAddress

Explanation: The JVM cannot allocate memory for a

Xedata area in a multi-JVM environment.

System action: The JVM issues an ″Out of memory,

aborting″ message, and is terminated.

User response: Review the memory that the

application requires.

JVMXE016 Invalid JIT setting for Worker JVM

Explanation: A Worker JVM has been started with a

-Djava.compiler value that is different from the one that

is specified for the Master JVM in a multi-JVM

environment.

System action: The JVM issues the message and

continues processing.

User response: Review and correct the start up

parameter -Djava.compiler for the Worker JVM.

JVM error messages for JVMXE

Appendix F. Messages and codes 471

JVMXE017 JVM will terminate at user request,

Exception match

Explanation: The JVM has received a signal to

terminate for an exception.

System action: The JVM issues the message and is

terminated.

User response: Review the exception request from the

application, and correct the detected error.

JVMXE018 StackOverflowError, expandJavaStack

failed due to Insufficient Java stack size

Explanation: Java Stack usage exceeded the limit or

size of the Java stack.

System action: The JVM throws

java.lang.StackOverflowError.

User response: Check for any Recursions, unreleased

JNI references.

JVM error messages for JVMXM

JVMXM001 OutOfMemoryError, can’t create new

thread

Explanation: This message is issued if the JVM cannot

create a new system thread.

System action: The JVM throws a

java.lang.OutOfMemoryError.

User response: Review the number of threads and

memory that the application requires.

JVMXM002 Cannot set resettable mode in a Worker

JVM

Explanation: This message is issued if a Worker JVM

is started with the -Xresettable option.

System action: The JVM is terminated.

User response: Do not specify the -Xresettable option

for a Worker JVM, because it always inherits the

resettable option from the Master.

JVMXM003 Exception %d Caught during Abort

Processing

Explanation: Here, %d is a JVM exception code. This

message is issued during the abort of a failed JVM, if

the abort processing itself finds a secondary failure.

System action: The JVM is aborted, but the abort

processing is incomplete.

User response: None. The usual cause of this error is

that the original JVM failure was severe enough to

cause the abort processing to fail.

JVMXM004 Error in global locking initialization

Explanation: A master or worker JVM has failed to

initialize because it cannot create or access the

cross-process semaphores that are needed in a

shareable JVM environment. Possible reasons for this

message are:

v Not enough system semaphores are available. Each

master JVM gets a set of 32 semaphores that its

worker JVMs subsequently use.

v You are running shareable JVMs from different user

IDs, and the default file permissions that are used for

semaphore files are not correct.

System action: The JVM is terminated.

User response:

1. Use the ipcs and ipcs -y commands to check the

use and availability of system semaphores, as

follows:

v The MNIDS value must be enough for the

maximum number of semaphore IDs that are in

use at one time. Each master JVM uses a single

semaphore ID; other processes might use more.

You can change the MNIDS value by using the

IPCSEMNIDS parameter that is in the BPXPRM

parmlib.

v The MNSEMS value must be enough for the

maximum number of semaphores that are

requested in a semaphore set. The master JVM

requests a set of 32 semaphores, so the MNSEMS

value must be 32 or greater. You can change the

MNSEMS value by using the IPCSEMNSEMS

parameter that is in the BPXPRM parmlib. For

additional information see z/OS V1R2.0 UNIX

System Services Programming: Assembler Callable

Services Reference .

2. Check whether the user’s umask setting is 011. This

sets default permissions of new files to rw-rw-rw-.

JVMXM005 Unable to initialize threads

Explanation: The JVM could not initialize the main

thread.

System action: The JVM is terminated.

User response: Review system resources and Java

heap settings. They might be too small. Review the

Java installation.

JVMXM006 Unable to initialize signal handler,

thread create failed

Explanation: Cannot create the signal dispatcher

thread.

System action: The JVM is terminated.

JVM error messages for JVMXE

472 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

User response: Review system resources and the Java

installation.

JVMXM007 Error occurred while initializing System

or Runtime class

Explanation: The initialization of mirrored system

classes has failed. (This error is applicable to shared

classes only.)

System action: The JVM is terminated.

User response: Review system resources and the Java

installation. Other system messages that give more

specific information might accompany this message.

Running with -Xverbose might also be helpful.

JVMXM008 Error occurred while initializing System

Class

Explanation: The Java System class initialization

method has failed.

System action: The JVM is terminated.

User response: Review system resources and the Java

installation. Other system messages that give more

specific information might accompany this message.

JVMXM009 Error occurred while initializing extra

classes

Explanation: Additional class initialization for shared

classes mode has failed.

System action: The JVM is terminated.

User response: Review system resources and the Java

installation. Other system messages that give more

specific information might accompany this message.

JVMXM010 Cannot allocate memory in

eeReserveSlot()

Explanation: Internal JVM request for thread data area

has failed due to out of memory condition.

System action: The JVM is terminated.

User response: Allocate more virtual storage to the

JVM region. If the problem remains, contact your IBM

service representative.

JVMXM011 Cannot allocate memory in xmPush()

Explanation: An internal JVM request has failed

because of an out-of-memory condition.

System action: The JVM is terminated.

User response: Allocate more virtual storage to the

JVM region. If the problem remains, contact your IBM

service representative.

JVMXM012 Error occurred in diagnostics

initialization(2)

Explanation: The JVM RAS trace component

initialization has failed.

System action: The JVM is terminated.

User response: Review system resources and the Java

installation. Other system messages that give more

specific information might accompany this message.

JVM error messages for JVMXM

Appendix F. Messages and codes 473

Universal Trace Engine error messages

UTE001 Error starting trace write thread

Explanation: The trace write thread is responsible for

writing trace data to disk. It could not be started.

System action: The trace data is not written to disk

User response: Ensure that you are not running into a

system thread limit. If the problem remains, contact

your IBM service representative.

UTE002 Cannot open trace control file: %s

Explanation: As part of initialization, the Trace

Control File is loaded. This time, it cannot be opened.

System action: The JVM is terminated.

User response: If the problem remains, contact your

IBM service representative.

UTE003 Cannot obtain size of trace control file:

%s

Explanation: As part of initialization, when the Trace

Control File is loaded, its size is calculated. This time,

querying the file size has returned an error.

System action: The JVM is terminated.

User response: If the problem remains, contact your

IBM service representative.

UTE004 Trace control file %s is too large

Explanation: As part of initialization, the Trace

Control File is loaded into memory. However, the file is

too large.

System action: The JVM is terminated.

User response: If the problem remains, contact your

IBM service representative.

UTE005 Out of memory condition processing %s

Explanation: As part of initialization, the Trace

Control File is loaded into memory. However, the

attempt to allocate a block of memory to contain the

file contents has failed because of a lack of memory.

System action: The JVM is terminated.

User response: Try running the JVM with a larger

maximum heap size (by using the -Xmx option). If the

problem remains, contact your IBM service

representative.

UTE006 Error reading %s

Explanation: As part of initialization, the Trace

Control File is loaded into memory. However, an error

was reported while trying to read the file

System action: The JVM is terminated.

User response: If the problem remains, contact your

IBM service representative.

UTE008 Out of memory in rasTraceRegister

Explanation: While registering an external trace

listener, the JVM attempted to malloc memory to hold

the listener’s address, but the malloc failed

System action: JNI_ENOMEM is returned to the calling

program.

User response: Try running the JVM with a larger

maximum heap size (by using the -Xmx option). If the

problem remains, contact your IBM service

representative

UTE009 Invalid module number (%d) for %

Explanation: Internal error in trace initialization.

System action: Tracing will not be enabled for this

executable.

User response: Contact your IBM service

representative.

UTE010 Name mismatch for module number

%d; is %s, should be %s

Explanation: Internal error in trace initialization.

System action: Tracing will not be enabled for this

executable.

User response: Contact your IBM service

representative.

UTE011 Active tracepoint array length for %s is

%d; should be %d

Explanation: Internal error in trace initialization.

System action: Tracing will not be enabled for this

executable.

User response: Contact your IBM service

representative.

UTE012 Trace configuration mismatch for %s

Explanation: The CRC for the named executable does

not match the previously stored value.

System action: Trace is not enabled for this

executable.

User response: Contact your IBM service

representative.

Universal Trace Engine error messages

474 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

UTE013 Invalid module number (%d) for %s

Explanation: Internal error in trace termination.

System action: Tracing will not be terminated for this

executable.

User response: Contact your IBM service

representative.

UTE014 Name mismatch for module number

%d; is %s, should be %s

Explanation: Internal error in trace termination.

System action: Tracing will not be terminated for this

executable.

User response: Contact your IBM service

representative.

UTE016 utcMemAlloc failure in utsTraceSet

Explanation: While trying to process a trace option, a

malloc failed.

System action: The JVM may fail as a result of this

error.

User response: System memory (not Java heap) is full.

Consider reducing the size of the Java heap to save

space.

UTE017 Unable to purge trace buffer for thread

%p

Explanation: While external trace (trace to a file) was

running, trace records were lost. When the buffers were

flushed at the point a signal was received, this buffer

could not be written.

System action: The indicated trace buffer will not be

written to disk.

User response: Be aware when processing trace files

that, because of this error, the files might not be

complete. If the problem remains, contact your IBM

service representative.

UTE018 %d trace records lost

Explanation: Trace records are lost when the trace

buffers option (-Dibm.dg.trc.buffers) is set to

nodynamic, both buffers are full, and the first buffer has

not yet been written to disk when the second buffer

fills up. The JVM wants to switch back to tracing into

the first buffer, but because it has not been written to

disk, new records are lost. When the first buffer is

written, it is reused for new trace records, but this

warning tells you how many records were lost before

that happened.

System action: None.

User response: When specifying the buffers property,

specify dynamic or remove the specification of

nodynamic (for example,

-Dibm.dg.trc.buffers=16k,dynamic).

UTE019 Unable to obtain storage for thread

control block

Explanation: While processing the startup of a new

thread, no storage was available to allocate a trace

thread control block.

System action: Memory for this process is either

fragmented or exhausted. If possible the JVM will

continue to run, but may fail as a result of this

condition.

User response: If running with a very large Java heap,

try reducing its size to allow allocation of non-Java

objects.

UTE020 Unable to obtain storage for excluded

command list

Explanation: While processing trace initialization, no

storage was available to allocate an internal structure.

System action: Memory for this process is either

fragmented or exhausted. If possible the JVM will

continue to run, but may fail as a result of this

condition.

User response: If running with a very large Java heap,

try reducing its size to allow allocation of non-Java

objects.

UTE021 Unable to obtain storage for excluded

command

Explanation: While processing trace initialization, no

storage was available to allocate an internal structure.

System action: Memory for this process is either

fragmented or exhausted. If possible the JVM will

continue to run, but may fail as a result of this

condition.

User response: If running with a very large Java heap,

try reducing its size to allow allocation of non-Java

objects.

UTE022 Initialization of traceLock failed

Explanation: Internal error.

System action: None.

User response: Contact your IBM service

representative.

Universal Trace Engine error messages

Appendix F. Messages and codes 475

UTE023 Initialization of writeEvent failed

Explanation: Internal error.

System action: None.

User response: Contact your IBM service

representative.

UTE024 Initialization of traceTerminated

semaphore failed

Explanation: Internal error.

System action: None.

User response: Contact your IBM service

representative.

UTE025 Initialization of writeInititialized

semaphore failed

Explanation: Internal error.

System action: None.

User response: Contact your IBM service

representative.

UTE026 Unable to obtain storage for global

control block

Explanation: While processing trace initialization, no

storage was available to allocate an internal structure.

System action: Memory for this process is either

fragmented or exhausted. If possible the JVM will

continue to run, but may fail as a result of this

condition.

User response: If running with a very large Java heap,

try reducing its size to allow allocation of non-Java

objects.

UTE027 Error processing early options

Explanation: An invalid trace option was detected

during trace initialization.

System action: JVM initialization may fail due to this

error.

User response: Check the syntax of any trace options

specified in the JVM startup options and system

properties. If the options are correct, contact your IBM

service representative.

UTE028 Error processing control file

Explanation: Internal error.

System action: None.

User response: Contact your IBM service

representative.

UTE029 Error initializing module blocks

Explanation: Internal error.

System action: None.

User response: Contact your IBM service

representative.

UTE030 Error processing options

Explanation: An invalid trace option was detected

during trace initialization.

System action: JVM initialization may fail due to this

error.

User response: Check the syntax of any trace options

specified in the JVM startup options and system

properties. If the options are correct, contact your IBM

service representative.

UTE031 AddComponent failed to allocate

memory for %d applids

Explanation: While processing trace initialization, no

storage was available to allocate an internal structure.

System action: Memory for this process is either

fragmented or exhausted. If possible the JVM will

continue to run, but may fail as a result of this

condition.

User response: If running with a very large Java heap,

try reducing its size to allow allocation of non-Java

objects.

UTE032 AddComponent failed to allocate

memory for applid

Explanation: While processing trace initialization, no

storage was available to allocate an internal structure.

System action: Memory for this process is either

fragmented or exhausted. If possible the JVM will

continue to run, but may fail as a result of this

condition.

User response: If running with a very large Java heap,

try reducing its size to allow allocation of non-Java

objects.

UTE033 Out of memory handling applids

Explanation: While processing trace initialization, no

storage was available to allocate an internal structure.

System action: Memory for this process is either

fragmented or exhausted. If possible the JVM will

continue to run, but may fail as a result of this

condition.

User response: If running with a very large Java heap,

try reducing its size to allow allocation of non-Java

objects.

Universal Trace Engine error messages

476 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

UTE101 RC %d from utcEventWait in waitEvent

Explanation: Internal error.

System action: None.

User response: Contact your IBM service

representative.

UTE102 RC %d from utcEventPost in postEvent

Explanation: Internal error.

System action: None.

User response: Contact your IBM service

representative.

UTE103 Out of memory in initTraceHeader

Explanation: While processing trace initialization, no

storage was available to allocate an internal structure.

System action: Memory for this process is either

fragmented or exhausted. If possible the JVM will

continue to run, but may fail as a result of this

condition.

User response: If running with a very large Java heap,

try reducing its size to allow allocation of non-Java

objects.

UTE104 Error opening tracefile: %s

Explanation: The JVM tried to open a trace output file

(name supplied in message), but the open failed.

System action: Various.

User response: Check whether your problem with

opening the file is caused by, for example, disk space or

security settings. If the problem remains, contact your

IBM service representative.

UTE105 Error writing header to tracefile: %s

Explanation: The JVM attempted to write the trace file

header to disk but the operation was unsuccessful or

only partially successful.

System action: Various.

User response: Check whether your problem with

opening the file is caused by, for example, disk space or

security settings. If the problem remains, contact your

IBM service representative.

UTE106 Error from utcFileSetLength for tracefile:

%s

Explanation: The JVM attempted to write a trace

buffer to disk, but the operation was unsuccessful or

only partially successful.

System action: None.

User response: Check whether your problem with

opening the file is caused by, for example, disk space or

security settings. If the problem remains, contact your

IBM service representative.

UTE107 Error writing to tracefile: %s

Explanation: The JVM attempted to write a trace

buffer to disk, but the operation was unsuccessful or

only partially successful.

System action: None.

User response: Check whether your problem with

opening the file is caused by, for example, disk space or

security settings. If the problem remains, contact your

IBM service representative.

UTE108 Error opening next generation: %s

Explanation: The trace is moving on to the next

generation file and so needs to open the file that is

suffixed for this new generation. Unfortunately it

cannot open the new file.

System action: When running with the PD build, the

JVM terminates with an assertion failure.

User response: Check whether your problem with

opening the file is caused by, for example, disk space or

security settings. If the problem remains, contact your

IBM service representative.

UTE109 Error performing seek in tracefile: %s

Explanation: The JVM has attempted to skip past the

header of a trace file so that it can write more trace

data into it. Unfortunately, this failed.

System action: When running with the PD build, the

JVM terminates with an assertion failure.

User response: Check whether your problem with

opening the file is caused by, for example, disk space or

security settings. If the problem remains, contact your

IBM service representative.

UTE110 Error performing seek in tracefile: %s

Explanation: The JVM has attempted to skip past the

header of a trace file so that it can write more trace

data into it. Unfortunately, this failed.

System action: When running with the PD build, the

JVM terminates with an assertion failure.

User response: Check whether your problem with

opening the file is caused by, for example, disk space or

security settings. If the problem remains, contact your

IBM service representative.

Universal Trace Engine error messages

Appendix F. Messages and codes 477

UTE111 Error opening next state file: %s

Explanation: When filling one state trace file and

switching to the other, an error occurred while the new

(named) file was being opened.

System action: When running with the PD build, the

JVM terminates with an assertion failure.

User response: Consider enabling fewer state trace

tracepoints. If the problem remains, contact your IBM

service representative.

UTE112 Error performing seek in tracefile: %s

Explanation: The JVM has attempted to skip past the

header of a trace file so that it can write more trace

data into it. Unfortunately, this failed.

System action: When running with the PD build, the

JVM terminates with an assertion failure.

User response: Check whether your problem with

opening the file is caused by, for example, disk space or

security settings. If the problem remains, contact your

IBM service representative.

UTE113 RC %d from utsThreadStop in

traceWrite

Explanation: Internal error.

System action: None.

User response: Contact your IBM service

representative.

UTE114 RC %d from utsThreadStop in

traceWrite

Explanation: Internal error.

System action: None.

User response: Contact your IBM service

representative.

UTE115 At least one trace record lost

Explanation: Trace Buffers are set to nodynamic and

both buffers are full. Before the first buffer could be

written to disk, the second one has filled up and the

system now wants to write trace records to the first

buffer again. However, it cannot do this without

overwriting trace data that is already present.

System action: All new trace data is discarded until

the first buffer can be written to disk.

User response: Specify the keyword dynamic on the

buffers option (for example,

-Dibm.dg.trc.buffers=16k,dynamic), or remove the

nodynamic keyword that is there.

UTE116 Out of memory obtaining trace buffer

Explanation: An attempt to obtain an additional trace

buffer failed; no storage was available.

System action: Trace data will be lost for the thread

that encountered this error. If possible, the JVM will

continue to run, but may fail as a result of this

condition.

User response: If running with a very large Java heap,

try reducing its size to allow allocation of non-Java

objects. Also, consider reducing the volume of data

being traced, or moving the output file to a faster

medium, or both.

UTE117 Counter wrap for tracepoint %6.6X

Explanation: When you were using the trace count

option (-Dibm.dg.trc.count), a tracepoint was

incremented so many times that the count has wrapped

back to zero.

System action: The counter for the specified

tracepoint has wrapped to zero and will count upwards

again from there.

User response: Determine the action to take.

UTE201 utcMemAlloc failure in addTraceCmd

Explanation: While trying to process a trace option, a

malloc failed.

System action: The JVM may fail as a result of this

error.

User response: System memory (not Java heap) is full.

Consider reducing the size of the Java heap to save

space.

UTE202 Invalid multiplier specified for buffer

size

Explanation: Buffer size can be specified in multiples

of KB or MB. For example, buffers=16k. Note that only

lowercase k or m is used. All other letters in this

position are not valid.

System action: The JVM is terminated.

User response: Try again, this time specifying k or m.

UTE203 Length of buffer size parameter invalid

Explanation: A buffer size must be between two and

five characters in length including the k or m. The one

that you specified was too short or too long.

System action: The JVM is terminated.

User response: Try again, this time specifying a value

between two and five characters in length for the buffer

size (for example -Dibm.dg.trc.buffers=1234k).

Universal Trace Engine error messages

478 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

UTE204 Buffer size not specified

Explanation: The buffers system property expects a

buffer size to be specified. You did not provide one.

System action: The JVM is terminated.

User response: Try again, this time specifying a size

for the buffer (for example, -Dibm.dg.trc.buffers=8k).

UTE205 Dynamic or Nodynamic keyword

expected

Explanation: The buffers system property takes an

optional second argument (after the size). The only

allowed values for this are dynamic or nodynamic.

System action: The JVM is terminated.

User response: Try again, this time specifying a

second argument of dynamic or nodynamic on the

buffers property (for example,

-Dibm.dg.trc.buffers=16k,nodynamic) or by omitting

the argument entirely.

UTE206 Unrecognized keyword in buffer

specification

Explanation: The buffers system property contains an

unrecognized keyword.

System action: The JVM is terminated.

User response: Correct the syntax and try again.

UTE207 Too many keywords in buffer

specification

Explanation: The buffers system property contains too

many keywords.

System action: The JVM is terminated.

User response: Correct the syntax and try again

UTE208 Usage: buffers=nnnn{k|m}

[,dynamic|nodynamic]

Explanation: This explanatory message describes the

syntax for the buffers system property.

System action: The JVM is terminated.

User response: Correct the syntax and try again

UTE209 Out of memory handling exception

property

Explanation: While processing trace initialization, no

storage was available to allocate an internal structure.

System action: Memory for this process is either

fragmented or exhausted. If possible, the JVM will

continue to run, but may fail as a result of this

condition.

User response: If running with a very large Java heap,

try reducing its size to allow allocation of non-Java

objects.

UTE210 Filename not supplied in exception

specification

Explanation: When specifying the exception output

file (-Dibm.dg.trc.exception.output), you did not

provide a file name.

System action: The JVM is terminated.

User response: Try again, specifying a file name for

the exception.output property (for example,-

Dibm.dg.trc.exception.output=fred.trc).

UTE211 Invalid multiplier for exception wrap

limit

Explanation: Wrap limit can be specified in multiples

of KB (k) or MB (m); for example,

-Dibm.dg.trc.exception.output=except,2m.

System action: The JVM is terminated.

User response: Try again, this time specifying k or m.

UTE212 Length of wrap limit parameter invalid

Explanation: A wrap limit must be between two and

five characters in length including the k or m. The one

that you specified was too short or too long.

System action: The JVM is terminated.

User response: Try again, this time specifying a value

two through five characters long for the buffer size (for

example,

-Dibm.dg.trc.exception.output=fred.trc,1234k).

UTE213 Too many keywords in exception

specification

Explanation: Only two allowable parameters can

follow the exception.output parameter. They are

filename and wrap limit. Because you tried to put more

options there, this is an error.

System action: The JVM is terminated.

User response: Remove the third (and later) keywords

that are following on the exception.output

specification, then retry.

UTE214 Usage:

exception.output=filename[,nnnn{k|m}]

Explanation: The way in which you have attempted to

specify exception.output does not match the displayed

usage.

System action: The JVM is terminated.

Universal Trace Engine error messages

Appendix F. Messages and codes 479

User response: Correct your specification of

exception.output and retry.

UTE215 Out of memory handling state.output

property

Explanation: While processing trace initialization, no

storage was available to allocate an internal structure.

System action: Memory for this process is either

fragmented or exhausted. If possible, the JVM will

continue to run, but may fail as a result of this

condition.

User response: If running with a very large Java heap,

try reducing its size to allow allocation of non-Java

objects.

UTE216 Filename not supplied in state.output

specification

Explanation: State trace output requires a filename,

but none was supplied.

System action: The JVM terminates.

User response: When you specify the state trace

output, ensure that you provide a filename (for

example, -Dibm.dg.trc.state.output=fred.trc).

UTE217 Invalid multiplier for state wrap limit

Explanation: State trace output file wrap size can be

specified in multiples of KB (k) or MB (m) only.

System action: The JVM terminates.

User response: Retry, specifying state trace output file

wrap size in multiples of KB (k) or MB (m); for

example, state.output=filename.trc,2m.

UTE218 Length of wrap limit parameter invalid

Explanation: The length of the state trace wrap limit

must be two through five characters (including the

multiplier k or m, if specified). This rule was broken.

System action: The JVM terminates.

User response: Retry, specifying state trace output file

wrap size in two through five characters including the

multiplier (for example,

-Dibm.dg.trc.state.output=filename.trc,1234k).

UTE219 Too many keywords in state.output

specification

Explanation: State.output is followed by a maximum

of two parameters: the file name and the file wrap size.

A third parameter is not valid.

System action: The JVM terminates.

User response: Remove the invalid third (and later)

parameters on the state.output specification, and retry.

UTE220 Usage:

state.output=filename[,nnnn{k|m}]

Explanation: The usage for a state.output parameter is

as shown.

System action: The JVM terminates.

User response: Correct your input to match the usage

displayed and retry.

UTE221 Out of memory handling output

property

Explanation: While processing trace initialization, no

storage was available to allocate an internal structure.

System action: Memory for this process is either

fragmented or exhausted. If possible the JVM will

continue to run, but may fail as a result of this

condition.

User response: If running with a very large Java heap,

try reducing its size to allow allocation of non-Java

objects.

UTE222 Filename not supplied in output

specification

Explanation: State trace output requires a filename,

but none was supplied.

System action: The JVM terminates.

User response: When you specify the state trace

output, ensure that you provide a filename (for

example, -Dibm.dg.trc.state.output=fred.trc).

UTE223 Invalid multiplier for trace wrap limit

Explanation: Output file wrap size can be specified in

multiples of KB or MB; for example,

output=filename.trc,2m. Note that only lowercase k or

m is used. All other letters in this position are not valid.

System action: The JVM is terminated.

User response: Try again, this time specifying k or m.

UTE224 Length of wrap limit parameter invalid

Explanation: A wrap limit must be between two and

five characters in length including the k or m. The one

that you specified was too short or too long.

System action: The JVM is terminated.

User response: Try again, this time specifying a value

two through five characters long for the buffer size (for

example,

-Dibm.dg.trc.exception.output=fred.trc,1234k).

Universal Trace Engine error messages

480 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

UTE225 Invalid number of trace generations

Explanation: When specified, the number trace

generations must be 2 through 36. The number that

you specified falls outside these limits.

System action: The JVM is terminated.

User response: Try again, this time specifying a value

2 through 36 for the number of trace generations (for

example, -Dibm.dg.trc.output=trace.out,2m,10).

UTE226 Invalid filename for generation mode

Explanation: When trace generations are specified, the

trace output file name must contain a # character. This

is replaced with the generation character in each trace

generation file. The name that you specified does not

contain a #.

System action: The JVM is terminated.

User response: Try again, this time specifying a

filename that contains a # (for example,

-Dibm.dg.trc.output=trace#.out,2m,10).

UTE227 Length of generation parameter invalid

Explanation: Because the number of trace generations

must be 2 through 36, it makes no sense for the length

of the trace generations parameter to be anything other

than 1 or 2 characters long. The argument that you

supplied was less than 1, or greater than 2 characters

long.

System action: The JVM is terminated.

User response: Try again, this time specifying a value

2 through 36 for the number of trace generations (for

example, -Dibm.dg.trc.output=trace.out,2m,10).

UTE228 Too many keywords in output

specification

Explanation: The output specification supplies an

output filename, (optionally) an output file wrap size,

and (optionally) several generations. Further arguments

are meaningless and should not be specified.

System action: The JVM is terminated.

User response: Try again, this time omitting the fourth

(and following) meaningless arguments.

UTE229 Usage: output=filename[,nnnn{k|m}[,n]]

Explanation: The output specification that you

supplied does not meet the described usage.

System action: The JVM is terminated.

User response: Correct the output specification so that

it meets the described usage, and try again.

UTE230 Empty clauses not allowed in trigger

property.

Explanation: A null clause was found in a trigger

property.

System action: The JVM fails to initialize.

User response: Correct the trigger property, then retry

the operation. This error probably occurred because

you entered something like trigger=method,,tpid (that

is, you entered too many commas).

UTE231 utcMemAlloc failure for

FormatSpecPath

Explanation: While trying to process a trace option, a

malloc failed.

System action: The JVM may fail as a result of this

error.

User response: System memory (not Java heap) is full.

Consider reducing the size of the Java heap to save

space.

UTE232 utcMemAlloc failure for Suffix

Explanation: While trying to process a trace option, a

malloc failed.

System action: The JVM may fail as a result of this

error.

User response: System memory (not Java heap) is full.

Consider reducing the size of the Java heap to save

space.

UTE233 utcMemAlloc failure for

traceControlPath

Explanation: While trying to process a trace option, a

malloc failed.

System action: The JVM may fail as a result of this

error.

User response: System memory (not Java heap) is full.

Consider reducing the size of the Java heap to save

space.

UTE234 Trace control already loaded

Explanation: Internal error.

System action: None.

User response: Contact your IBM service

representative.

Universal Trace Engine error messages

Appendix F. Messages and codes 481

UTE235 Incorrect TRACECONTROL value

Explanation: Internal error.

System action: None.

User response: Contact your IBM service

representative.

UTE236 LIBPATH and TRACECONTROL

options are mutually exclusive

Explanation: Internal error.

System action: None.

User response: Contact your IBM service

representative.

UTE237 resumecount takes a single integer value

from -99999 to +99999

Explanation: The ibm.dg.trc.resumecount property is

an integer value -99999 through +99999. The value that

you specified was not in this range.

System action: The JVM fails to initialize.

User response: Correct the resumecount property,

then retry the operation.

UTE238 suspendcount takes a single integer

value from -99999 to +99999

Explanation: The ibm.dg.trc.suspendcount property is

an integer value -99999 through +99999. The value that

you specified was not in this range.

System action: The JVM fails to initialize.

User response: Correct the suspendcount property,

then retry the operation.

UTE239 resumecount and suspendcount may not

both be set.

Explanation: You attempted to set the resumecount

and suspendcount properties at the same time. This is

not allowed.

System action: The JVM fails to initialize.

User response: Decide which property you want to

use, then remove the other

UTE240 Out of memory while processing

properties file

Explanation: While processing trace initialization, no

storage was available to allocate an internal structure.

System action: Memory for this process is either

fragmented or exhausted. If possible the JVM will

continue to run, but may fail as a result of this

condition.

User response: If running with a very large Java heap,

try reducing its size to allow allocation of non-Java

objects.

UTE241 Unable to open properties file %s

Explanation: The JVM was unable to open the

properties file that was listed in the message.

System action: The JVM is terminated.

User response: Ensure that the properties file that you

have specified really exists. If the problem remains,

contact your IBM service representative.

UTE242 Unable to determine size of properties

file %s

Explanation: Having opened the trace properties file

mentioned in the message, the JVM was unable to

determine its size.

System action: The JVM is terminated.

User response: Ensure that the file that you specified

is a valid properties file, and that it is readable. If the

problem remains, contact your IBM service

representative.

UTE243 Cannot obtain memory to process %s

Explanation: While processing trace initialization, no

storage was available to allocate an internal structure.

System action: Memory for this process is either

fragmented or exhausted. If possible the JVM will

continue to run, but may fail as a result of this

condition.

User response: If running with a very large Java heap,

try reducing its size to allow allocation of non-Java

objects.

UTE245 Error reading properties file %s

Explanation: To process the trace properties file, it is

read into memory. Unfortunately, the call to read it into

memory has failed.

System action: The JVM is terminated.

User response: Contact your IBM service

representative.

UTE246 utcMemAlloc failure for FormatSpec

Explanation: While trying to process a trace option, a

malloc failed.

System action: The JVM may fail as a result of this

error.

User response: System memory (not Java heap) is full.

Consider reducing the size of the Java heap to save

space.

Universal Trace Engine error messages

482 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

UTE247 Unrecognized line in %s: ″%s″

Explanation: While reading the trace properties file, a

line has been found that contains a keyword that is not

recognized. The properties file name and the offending

line are included in the text of the message.

System action: The JVM is terminated.

User response: Correct the line in error and try again.

UTE248 Unrecognized option : ″%s″

Explanation: While processing the trace options, an

unrecognized keyword has been encountered.

System action: The JVM is terminated.

User response: Correct or remove the option in error

and try again.

UTE249 utcMemAlloc failure for UtSpecial

Explanation: While trying to process a trace option, a

malloc failed.

System action: The JVM may fail as a result of this

error.

User response: System memory (not Java heap) is full.

Consider reducing the size of the Java heap to save

space.

UTE250 utcMemAlloc failure for UtSpecial

Explanation: While trying to process a trace option, a

malloc failed.

System action: The JVM may fail as a result of this

error.

User response: System memory (not Java heap) is full.

Consider reducing the size of the Java heap to save

space.

UTE251 utcMemAlloc failure for UtItem

Explanation: While trying to process a trace option, a

malloc failed.

System action: The JVM may fail as a result of this

error.

User response: System memory (not Java heap) is full.

Consider reducing the size of the Java heap to save

space.

UTE252 utcMemAlloc for trace array for %s

failed

Explanation: While trying to process a trace option, a

malloc failed.

System action: The JVM may fail as a result of this

error.

User response: System memory (not Java heap) is full.

Consider reducing the size of the Java heap to save

space.

UTE253 Invalid range: %6.6X-%6.6X

Explanation: You can specify ranges of tracepoints; for

example, tpid(c001-c01f). However if you do, the

second number must be bigger than the first.

System action: The JVM is terminated.

User response: Correct the tpid range and retry.

UTE254 Tracepoint id is not a valid hex string

Explanation: Tpids (trace point ids) are expressed as a

hex number 1 through 6 characters long and including

only the characters 0 through 9 and a through f (also A

through F). The tpid that you specified does not meet

these criteria.

System action: The JVM is terminated.

User response: Correct the tpid and try again.

UTE255 Invalid range: %6.6X-%6.6X

Explanation: Tpids (trace point ids) are expressed as a

hex number 1 through 6 characters long and including

only the characters 0 through 9 and a through f (also A

through F). The tpid that you specified does not meet

these criteria.

System action: The JVM is terminated.

User response: Correct the tpid and try again.

UTE256 Invalid tracepoint id: %6.6X

Explanation: The specified tracepoint does not exist in

this build.

System action: The JVM may terminate.

User response: Modify the trace properties, removing

or correcting the reference to this tpid.

UTE257 Tracepoint %6.6X is not included in this

build

Explanation: Internal error.

System action: None.

User response: Contact your IBM service

representative.

UTE258 Tracepoint id is not a valid hex string

Explanation: You used an invalid hex number when

specifying tracepoint ids for application trace

System action: The JVM terminates.

User response: Correct the specification and retry.

Universal Trace Engine error messages

Appendix F. Messages and codes 483

UTE259 utcMemAlloc failure in setTraceState

Explanation: While trying to process a trace option, a

malloc failed.

System action: The JVM may fail as a result of this

error.

User response: System memory (not Java heap) is full.

Consider reducing the size of the Java heap to save

space.

UTE260 Trace selection specification

incomplete:\n%s

Explanation: The input line shown above ends at an

unexpected point.

System action: The JVM is terminated.

User response: Correct the line that is indicated in the

message and try again.

UTE261 Syntax error encountered at offset %d

in:\n%s

Explanation: A syntax error is at the indicated

position in the line displayed.

System action: The JVM is terminated.

User response: Correct the line that is indicated in the

message, and try again.

UTE262 Error processing options

Explanation: An invalid trace option was detected

during trace initialization.

System action: JVM initialization may fail due to this

error.

User response: Check the syntax of any trace options

specified in the JVM start-up options and system

properties. If the options are correct, contact your IBM

service representative.

UTE263 Error processing options

Explanation: An invalid trace option was detected

during trace initialization.

System action: JVM initialization may fail due to this

error.

User response: Check the syntax of any trace options

specified in the JVM startup options and system

properties. If the options are correct, contact your IBM

service representative.

UTE301 RC %d from utcMutexEnter in

getTraceLock

Explanation: Internal error.

System action: None.

User response: Contact your IBM service

representative.

UTE302 RC %d from utcMutexExit in

freeTraceLock

Explanation: Internal error.

System action: None.

User response: Contact your IBM service

representative.

UTE303 Invalid special character ’%c’ in a trace

filename. Only %p, %d and %t are

allowed.

Explanation: Trace output file naming can be modified

using special operators. The only supported operators

are %p, %d and %t (process ID, date, and time,

respectively).

System action: The JVM fails to initialize.

User response: Remove any % characters from the

filename and retry.

UTE304 Missing closing bracket(s) in trigger

property.

Explanation: The trigger property did not end in a

closing bracket.

System action: The JVM fails to initialize.

User response: Correct the brackets on the trigger

property, then retry the operation.

UTE305 Out of memory processing trigger

property.

Explanation: While processing trace initialization, no

storage was available to allocate an internal structure.

System action: Memory for this process is either

fragmented or exhausted. If possible the JVM will

continue to run, but may fail as a result of this

condition.

User response: If running with a very large Java heap,

try reducing its size to allow allocation of non-Java

objects.

Universal Trace Engine error messages

484 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

UTE306 TraceFormat.dat is incorrect version

Explanation: The Trace format file, TraceFormat.dat,

contains a version field. During trace initialization, the

contents of this field have been checked and are not

what the JVM expected. This could mean that you are

picking up the Trace format file from a different release

of the JVM.

System action: Warning only. This message is issued,

but no action is taken.

User response: Specify the location of the correct

version of the Trace Format file by using the

-Dibm.dg.trc.format=<filename> system property.

UTE307 TraceFormat.dat is incorrect format

Explanation: The Trace format file TraceFormat.dat

contains a version field. During trace initialization, the

JVM could not locate this version number because the

file is in an unexpected format.

System action: The JVM terminates.

User response: Specify the location of the correct

version of the Trace Format file by using the

-Dibm.dg.trc.format=<filename> system property.

UTE308 TraceFormat.dat is incorrect version

Explanation: The Trace format file TraceFormat.dat

contains a version field. During trace initialization, the

contents of this field have been checked and were not

what this JVM expected. This could mean that you are

picking up the Trace format file from a different release

of the JVM.

System action: Warning only. This message is issued

but no action is taken.

User response: Specify the location of the correct

version of the Trace Format file by using the

-Dibm.dg.trc.format=<filename> system property.

UTE309 Cannot obtain memory for format table

Explanation: While processing trace initialization, no

storage was available to allocate an internal structure.

System action: Memory for this process is either

fragmented or exhausted. If possible the JVM will

continue to run, but may fail as a result of this

condition.

User response: If running with a very large Java heap,

try reducing its size to allow allocation of non-Java

objects.

UTE310 Unable to open trace format file %s

Explanation: During trace initialization, the JVM reads

the Trace format file into memory. It was unable to

open the file, so was unable to do this.

System action: Trace format file is not read. Trace is

not initialized.

User response: Specify the location of the correct

version of the Trace format file by using the

-Dibm.dg.trc.format=<filename> system property. If

the problem remains, contact your IBM service

representative.

UTE311 Unable to determine size of trace format

file %s

Explanation: During trace initialization, the JVM reads

the Trace format file into memory. It was unable to

open the file, so was unable to do this.

System action: Trace format file is not read. Trace is

not initialized.

User response: Specify the location of the correct

version of the Trace Format file by using the

-Dibm.dg.trc.format=<filename> system property. If

the problem remains, contact your IBM service

representative.

UTE312 Cannot obtain memory to process %s

Explanation: While processing trace initialization, no

storage was available to allocate an internal structure.

System action: Memory for this process is either

fragmented or exhausted. If possible the JVM will

continue to run, but may fail as a result of this

condition.

User response: If running with a very large Java heap,

try reducing its size to allow allocation of non-Java

objects.

UTE313 Error reading trace format file %s

Explanation: During trace initialization, the JVM has

attempted to create an in-memory copy of the Trace

format file. An error occurred while the file was being

read.

System action: The JVM terminates.

User response: Specify the location of the correct

version of the Trace format file by using the

-Dibm.dg.trc.format=<filename> system property. If

the problem remains, contact your IBM service

representative.

Universal Trace Engine error messages

Appendix F. Messages and codes 485

UTE314 Unable to open tracepoint counter file

Explanation: The tracepoint count option has been

specified and an attempt was made to open the count

output file, but this failed.

System action: The JVM continues.

User response: If the problem remains, contact your

IBM service representative.

UTE315 Counters redirected to stderr

Explanation: The tracepoint count option has been

specified but the attempt to open the count output file

failed. The output is being redirected to stderr instead

System action: The JVM continues.

User response: None.

UTE316 Signed number not permitted in this

context ″%s″

Explanation: When a clause in the system property

-Dibm.dg.trc.trigger was being processed, a negative

delay count was found.

System action: The JVM fails to initialize.

User response: Check the contents of the

trigger=tpid(...), method(...), and group(...) clauses. If a

delaycount is specified, it must be a positive number.

UTE317 Invalid character(s) encountered in

decimal number ″%s″

Explanation: When a clause in the system property

-Dibm.dg.trc.trigger was being processed, a

non-numeric character was found.

System action: The JVM fails to initialize.

User response: Check the contents of the

trigger=tpid(...), method(...), and group(...) clauses. If a

delaycount is specified, it must contain only the

characters 0 through 9.

UTE318 Number too long or too short ″%s″

Explanation: When a clause in the system property

-Dibm.dg.trc.trigger was being processed, a bad delay

count was found.

System action: The JVM fails to initialize.

User response: Check the contents of the

trigger=tpid(...), method(...), and group(...) clauses. If a

delaycount is specified, it must be between one and

eight digits long.

UTE319 Cannot allocate memory for trace

module blocks

Explanation: While processing trace initialization, no

storage was available to allocate an internal structure.

System action: Memory for this process is either

fragmented or exhausted. If possible the JVM will

continue to run, but may fail as a result of this

condition.

User response: If running with a very large Java heap,

try reducing its size to allow allocation of non-Java

objects.

Universal Trace Engine error messages

486 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

Appendix G. Command-line parameters

You can specify the options on the command line while you are starting Java. They

override any relevant environment variables. For example, using -cp <dir1> with

the Java command completely overrides setting the environment variable

CLASSPATH=<dir2>.

This chapter provides the following information:

v “General command-line parameters”

v “System property command-line parameters”

v “Nonstandard command-line parameters” on page 489

v “Garbage Collector command-line parameters” on page 491

General command-line parameters

-cp, -classpath<directories and zip or jar files separated by ;> (or : on Unix)

Sets search path for application classes and resources.

-help, -?

Prints a usage message.

-showversion

Prints product version and continues.

-verbose[:class | gc | jni]

Enables verbose output.

-verbose:Xclassdep

Traces all the class loading and the method and classnames with line numbers.

-version

Prints product version.

System property command-line parameters

-D<name>=<value>

Sets a system property.

-Dcom.ibm.cacheLocalHost=true

Multiple calls to the java.net.InetAddress.getLocalHost() can impact JVM

performance. Set this property to enable caching of the local host name.

-Dibm.ci.verbose

This system property traces the initialization routines and is useful for

debugging any problems occurring during JVM creation.

-Dibm.cl.eagerresolution

Requires no value to turn on eager class resolution

-Dibm.jvm.bootclasspath

The value of this property is used as an additional search path, which is

inserted between any value that is defined by -Xbootclasspath/p: and the

bootclass path. The bootclass path is either the default, or that which you

defined by using the -Xbootclasspath: option.

© Copyright IBM Corp. 2003, 2006 487

-Dibm.jvm.events.output={stderr|filename}, -Dibm.jvm.crossheap.events,

-Dibm.jvm.resettrace.events, -Dibm.jvm.unresettable.events.level={min|max}

(z/OS only)

Setting these properties and running the PD build with JIT disabled produces

more information whenever an Unresettable Event occurs. This information

helps in debugging the problem. The output is redirected to STDERR if the

value of ibm.jvm.events.output is set to stderr. This applies only for a

resettable JVM.

-Dibm.stream.nio={true|false}

From v1.4.1 onwards, by default the IO converters are used. This option

addresses the ordering of IO and NIO converters. When this option is set to

true, the NIO converters are used instead of the IO converters.

-Dibm.xe.coe.name={exception}

The value of the property is the package description of the exception. Setting

this property generates a system dump when the specified exception occurs.

-Djava.compiler={ NONE | jitc }

Disable the Java compiler by setting to NONE. Enable JIT compilation by

setting to jitc.

-Djava.net.connectiontimeout={n}

’n’ is the number of seconds to wait for the connection to be established with

the server. If this option is not specified in the command line, the default value

of 0 (infinity) is used. The value can be used as a timeout limit when an

asynchronous java-net application is trying to establish a connection with its

server. If this value is not set, a java-net application waits until the default

connection timeout value is met. For instance, java

-Djava.net.connectiontimeout=2 TestConnect causes the java-net client

application to wait only 2 seconds to establish a connection with its server.

-Djava.net.preferIPv4Stack={true|false}

When set to true, the Java Virtual Machine uses only the IPv4 stack, and will

not be able to communicate with IPv6 hosts. By default, this parameter is set to

false.

-Djava.net.preferIPv6Address={true|false}

When set to true, the Java Virtual Machine will connect using IPv6 in

preference to IPv4. By default, this parameter is set to false.

-Djava.rmi.server.logCalls={true|false}

If this property is true, incoming calls and exceptions thrown from incoming

calls will be logged to System.err.

-Dsun.net.client.defaultConnectTimeout=<value in milliseconds>

This property specifies the default value for the connect timeout for the

protocol handlers used by the java.net.URLConnection class. The default value

set by the protocol handlers is -1, which means there is no timeout set.

 When a connection is made by an applet to a server and the server does not

respond properly, the applet might appear to hang and might also cause the

browser to hang. This apparent hang occurs because there is no network

connection timeout. To avoid this problem, the Java Plug-in has added a

default value to the network timeout of 2 minutes for all HTTP connections.

You can override the default by setting this property.

-Dsun.net.client.defaultReadTimeout=<value in milliseconds>

This property specifies the default value for the read timeout for the protocol

handlers used by the java.net.URLConnection class when reading from an

general, system property, and nonstandard command-line parameters

488 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

input stream when a connection is established to a resource. The default value

set by the protocol handlers is -1, which means there is no timeout set.

-Dsun.rmi.transport.tcp.connectionPool={true | any non-null value}

Enables thread pooling for the RMI ConnectionHandlers in the TCP transport

layer implementation.

-Dswing.useSystemFontSettings= {false}

From v1.4.1 onwards, by default Swing programs running with the Windows

Look and Feel render with the system font set by the user instead of a

Java-defined font. As a result, fonts for v1.4.1 differ from those in prior

releases. This option addresses compatibility problems like these for programs

that depend on the old behavior. By setting this option, v1.4.1 fonts and those

of prior releases will be same for Swing programs running with the Windows

Look and Feel.

Nonstandard command-line parameters

The -X parameters are nonstandard and subject to change without notice.

Parameters that relate to the Garbage Collector are listed under “Garbage Collector

command-line parameters” on page 491.

-X

Prints help on nonstandard options.

-Xbootclasspath:<directories and zip or jar files separated by ;> (or : on Unix)

Sets search path for bootstrap classes and resources.

-Xbootclasspath/a:<directories and zip or jar files separated by ;> (or : on Unix)

Appends to the bootstrap class path.

-Xbootclasspath/p:<directories and zip or jar files separated by ;> (or : on Unix)

Prepends to the bootstrap class path.

-Xcheck:jni

Performs additional checks for JNI functions.

-Xcheck:nabounds

Performs additional checks for JNI array operations.

-Xdebug

Starts the JVM with the debugger enabled. Used with -Xrunjdwp. On AIX

PPC32 and PPC64 and Linux PPC32 and PPC64, from Service Refresh 5, this

option starts the JVM using the alternative debug environment, described in

Appendix I, “Using the alternative JVM for Java debugging,” on page 499.

-Xdisablejavadump

Disables the Javadump facility.

-Xfuture

Enables strictest checks, anticipating future default.

-Xifa:<on | off | force | projectn> (z/OS only)

z/OS R6 provides the ability to run Java applications on a new type of

special-purpose assist processors called the eServer zSeries Application Assist

Processor (zAAP). The zSeries Application Assist Processor is also known as an

IFA (Integrated Facility for Applications). The term IFA appears in panels,

messages, and other z/OS information relating to the zSeries Application

Assist Processor, including this publication.

general, system property, and nonstandard command-line parameters

Appendix G. Command-line parameters 489

The -Xifa setting is assumed to be on by default. It enables Java work to be

run on IFAs if these are available. Only Java code and system native methods

may be on IFA processors; this is achieved by requesting a switch to an IFA for

qualifying work and a switch from IFA to a general-purpose processor when

non-qualifying work is encountered.

 Setting off disables the use of IFA processors. When -Xifa:off is specified, no

other -Xifa options will be honored.

 Setting force causes Java to continue calling the switch service, even when no

IFA processors are available. You would typically set force to collect RMF data

to assess potential IFA processor use. This option will have an affect only on

version 1.6 or later of z/OS.

 Setting projectn calculates projected IFA usage and prints this information to

standard error at intervals no shorter than n minutes. When project without a

time value is specified, the default is 5 minutes (project5). A value of 0

indicates that information is written only when Java terminates. The interval

requested is not honored exactly; data is written whenever a potential switch

to or from an IFA has been detected after the specified interval has elapsed.

This option is honored on all versions of z/OS, but is primarily intended for

assessing potential IFA processor use on versions below 1.6.

 The -Xifa option can be specified multiple times and with combinations of

options. For example:

-Xifa:on -Xifa:projectn

-Xlp (AIX only)

Requests the SDK to allocate the Java heap (the heap from which Java objects

get allocated) with 16 MB large pages. For the 64 bit SDK, -Xlp requests also

that mark and alloc bits are allocated with large pages. If large pages are not

available, allocations use the standard 4 KB pages of AIX. AIX requires special

configuration to enable large pages. For more information about how to

configure AIX support for large pages, see http://www.ibm.com/servers/aix/
whitepapers/large_page.html.

 When the SDK attempts to allocate large page segments, it uses shmget() and

shmatt() with the SHM_LGPG and SHM_PIN flags. As a result, this memory is

allocated in mapped segments. This characteristic must be shown in any

explicit setting of the LDR_CNTRL=MAXDATA environment variable. You

might, however, no longer need to set LDR_CNTRL=MAXDATA, because the

SDK automatically selects a value that allows for the required mappings. The

-Xlp option replaces the environment variable

IBM_JAVA_LARGE_PAGE_SIZE, which is now ignored if set.

-Xnoagent

Disables support for the oldjdb debugger.

-Xoss<size>

Sets maximum Java stack size for any thread (format = nn[K|M|G]).

-Xpd

Starts the Problem Determination build, as described in Appendix J, “Using a

Problem Determination build of the JVM,” on page 503, rather than the regular

build.

-Xquickstart

Used for improving startup time of some Java applications. -Xquickstart causes

the JIT to run with a subset of optimizations; that is, a quick compile. This

quick compile allows for improved startup time. -Xquickstart is appropriate

for shorter running applications, especially those where execution time is not

general, system property, and nonstandard command-line parameters

490 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

http://www.ibm.com/servers/aix/whitepapers/large_page.html
http://www.ibm.com/servers/aix/whitepapers/large_page.html

concentrated into a small number of methods. -Xquickstart can degrade

performance if it is used on longer-running applications that contain hot

methods. The implementation of -Xquickstart is subject to change in future

releases.

-Xrs

Reduces the use of operating system signals. This prevents the JVM from

installing signal handlers for all but exception type signals (such as SIGSEGV,

SIGILL, SIGFPE).

Note: Linux always uses SIGU3R1 and SIGU3R2.

-Xrunhprof[:help] | [:<option>=<value>, ...]

Performs heap, CPU, or monitor profiling.

-Xrunjdwp[:help] | [:<option>=<value>, ...]

Loads debugging libraries to support remote debug applications.

-Xss<size>

Sets maximum native stack size for any thread (format = nn[K|M|G]).

-Xnosigchain

Disables JVM signal handler chaining. The default is -Xnosigchain for z/OS,

-Xsigchain for all other platforms.

-Xsigchain

Enables JVM signal handler chaining.

-Xnosigcatch

Disables JVM signal catching. The default is -Xsigcatch. This is useful for

debugging problems in code that is protected by an

IBM_HEAVYWEIGHT_TRY - CATCH block, where normally the problem is

masked.

-Xsigcatch

Enables JVM signal catching.

Garbage Collector command-line parameters

You might need to read Chapter 2, “Understanding the Garbage Collector,” on

page 7 to understand some of the references that are given here. The following list

contains all the Garbage Collector command-line parameters that are available in

this release.

Note that reference to resettable JVM applies only to the z/OS operating system.

Other platforms are not resettable and can never run in resettable mode.

-verbosegc, -verbose:gc

Prints garbage collection information. The format for the generated information

is not architected and therefore varies from platform to platform and release to

release.

-Xcompactgc

Compacts the heap every garbage collection cycle. The default is false (that is,

the heap is not compacted). This is not recommended.

-Xcompactexplicitgc

Runs full compaction each time System.gc() is called. Its default behavior with

a system.gc call is to perform a compaction only if an allocation failure

triggered a garbage collection since the last system.gc call.

general, system property, and nonstandard command-line parameters

Appendix G. Command-line parameters 491

-Xdisableexplicitgc

Converts Java application call to java.lang.System.gc() into no-ops.

-Xgcpolicy:<optthruput|optavgpause|subpool>

Note that the subpool option was introduced in Version 1.4.1 Service Refresh 1

for AIX only.

 Setting gcpolicy to optthruput disables concurrent mark. If you do not have

pause time problems (as seen by erratic application response times), you

should get the best throughput with this option. Optthruput is the default

setting.

 Setting gcpolicy to optavgpause enables concurrent mark with its default values.

If you are having problems with erratic application response times that are

caused by normal garbage collections, you can remove those problems at the

cost of some throughput when running with the optavgpause option.

 Setting gcpolicy to subpool enables improved object allocation that aims to

achieve better performance in allocating objects on the heap. This setting might

provide additional throughput optimization because it can improve the

efficiency of object allocation and reduce lock contention on large SMP

systems. Concurrent mark is disabled when this policy is enabled.

-Xgcthreads<n>

Sets the total number of threads that are used for garbage collection. On a

system with n processors, the default setting for -Xgcthreads is 1 when the

JVM is in resettable mode, and n when it is not in resettable mode.

-Xinitacsh<size>

Sets the initial size of the application-class system heap. This option is

available only in the resettable JVM. Classes in this heap exist for the lifetime

of the JVM. They are reset during a ResetJavaVM(), so are serially reusable by

applications that are running in the JVM. Only one application-class system

heap is present per Persistent Reusable JVM. In nonresettable mode, this

option is ignored.

 Example: -Xinitacsh256k

 Default: 128K on 32-bit architecture, and 8M on 64-bit architecture.

-Xinitsh<size>

Sets the initial size of the system heap. Classes in this heap exist for the

lifetime of the JVM. The system heap is never subjected to garbage collection.

The maximum size of the system heap is unbounded.

 Example: -Xinitsh256k

 Default: 128K on 32-bit architecture, and 8M on 64-bit architecture.

-Xinitth<size>

Sets the initial size of the transient heap in the nonsystem heap. This option is

available only in the resettable JVM. If this is not specified and -Xms is, the

initial size is taken to be half the -Xms value. If -Xms is not specified, a value

of half the platform-dependent default value is used.

 Example: -Xinitth2M

 Default: 1M÷2 = 512K

-Xjvmset<size>

Creates a master JVM. This option refers only to the resettable JVM. An

optional size in MB can be specified to set the total size of the shared memory

segment. The default is 1 MB. When JNI_CreateJavaVM() returns successfully,

Garbage Collector command-line parameters

492 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

the extrainfo field of the JavaVMOption contains the token that is to be passed

to each worker. An attempt to create two master JVMs with the same token

fails. The -Xresettable option must be used with this option when starting a

master JVM.

-Xjvmset

This option relates only to the resettable JVM. It creates a worker JVM. The

extrainfo field of the JavaVMOption must contain the token that is returned

on the -Xjvmset option that was used to create the master JVM.

-Xmaxdirectmemorysize<size>

This option specifies the maximum amount of native memory allocated

through DirectByteBuffer objects. System.gc is called after the limit is reached

to clear unreferenced DirectByteBuffer objects from the Java heap.

-Xmaxe<size>

Specifies the maximum expansion size of the heap. The default is 0. When the

JVM is in resettable mode, this option sets the a maximum expansion size of

<size>÷2 for the middleware and transient heaps.

-Xmaxf<number>

This is a floating point number between 0 and 1, which specifies the maximum

percentage of free space in the heap. The default is 0.6, or 60%. When this

value is set to 0, heap contraction is a constant activity. With a value of 1, the

heap never contracts. In resettable mode, this parameter applies to the

middleware heap only.

-Xmine<size>

Specifies the minimum expansion size of the heap. The default is 1 MB. When

the JVM is in resettable mode, this option sets a minimum expansion size of

<size>÷2 for the middleware and transient heaps.

-Xminf<number>

This is a floating point number, 0 through 1, that specifies the minimum free

heap size percentage. The heap grows if the free space is below the specified

amount. In resettable mode, this option specifies the minimum percentage of

free space for the middleware and transient heaps. The default is .3 (that is

30%).

-Xms<size>

Sets the initial size of the heap. If this option is not specified, it defaults as

follows:

 Windows, AIX, and Linux: 4 MB.

 OS/390: 1 MB

-Xmx<size>

Sets the maximum size of the heap. When the JVM is in resettable mode, this

option sets the maximum size of the combined middleware and transient

heaps. The middleware heap grows from the bottom of this region, and the

transient heap grows from the top of the region. If this option is not specified,

it defaults as follows:

v Windows: Half the real storage, but not less than 16 MB or more than 2 GB.

v OS/390 and AIX: 64 MB.

v Linux: Half the real storage, but not less than 16 MB or more than 512 MB.

Examples of the use of -Xms and -Xmx are:

-Xms2m -Xmx64m

Heap starts at 2 MB and grows to a maximum of 64 MB.

Garbage Collector command-line parameters

Appendix G. Command-line parameters 493

-Xms100m -Xmx100m

Heap starts at 100 MB and never grows.

-Xms20m -Xmx1024m

Heap starts at 20 MB and grows to a maximum of 1 GB.

-Xms50m

Heap starts at 50 MB and grows to the default maximum.

-Xmx256m

Heap starts at default initial value and grows to a maximum of 256 MB.

-Xnoclassgc

Disables class garbage collection.

-Xnocompactgc

Never compact the heap. Default is false.

-Xnocompactexplicitgc

Never runs compaction when System.gc() is called. Its default behavior with a

system.gc call is to perform a compaction only if an allocation failure triggered

a garbage collection since the last system.gc call.

-Xresettable

Specifies that this instance of the JVM can support the resettable JVM. Applies

to the z/OS platform only.

-Xtlhs

Controls the minimum Thread Local Heap (TLH) size when

-Xgcpolicy:subpool is specified . It is ignored for other gc policies. Possible

values are from 512 to 8 KB. The default minimum TLH size is 768. For

example:

-Xtlhs4k

-Xtlhs800

-Xverbosegclog:<path to file><filename>

Causes verboseGC output to be written to the specified file. If the file cannot

be found, verboseGC tries to create the file, and then continues as normal if it

is successful. If it cannot create the file (for example, if an invalid filename is

passed into the command), it will redirect the output to stderr.

Note: The environment variable IBM_JVMST_VERBOSEGC_LOG has been

removed from V1.4.1 and above.

-Xverbosegclog:<path to file><filename, X, Y>

Filename must contain a ″#″ (hash symbol), which is substituted with a

generation identifier, starting at 1. X and Y are integers. This option works

similarly to -Xverbosegclog:<path to file><filename>, but, in addition, the

verboseGC output is redirected to X files, each containing verboseGC output

from Y GC cycles.

Note: The environment variable IBM_JVMST_VERBOSEGC_LOG has been

removed from 1.4.1 and above.

Garbage Collector command-line parameters

494 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

Appendix H. Default settings for the JVM

This appendix shows the default settings that the JVM uses; that is, how the JVM

operates if you do not apply any changes to its environment. The tables show the

JVM operation and the default setting.

The last column shows how the operation setting is affected and is set as follows:

v e – setting controlled by environment variable only

v c – setting controlled by command-line parameter or the IBM_JAVA_OPTIONS

environment variable

v ec– setting controlled by both (command line always takes precedence) All the

settings are described elsewhere in this document. These tables are only a quick

reference to the JVM vanilla state

 Table 34. Cross platform defaults

JVM setting Default Setting

affected by

Javadumps Enabled e

Javadumps on out of memory Enabled e

Heapdumps Disabled e

Heapdumps on out of memory Enabled e

Coredumps (not z/OS) Disabled e

Coredumps (z/OS only) Enabled e

Where Javadump and Coredump files appear Current directory e

Verbose output Disabled c

Boot classpath search Disabled c

JNI function checks Disabled c

JNI bound checks Disabled c

Remote debugging Disabled c

Strict conformancy checks Disabled c

Default thread stack size 400 KB c

Quickstart Disabled c

Reduced signalling Disabled c

Signal handler chaining Enabled c

Signal catching Enabled c

Concurrent garbage collection mark Disabled c

Garbage collection heap compaction Enabled c

Number of garbage collection helper threads (Number of

processors − 1)

c

Initial size of system heap 128 KB on 32-bit

8 MB on 64-bit

c

Maximum heap expansion size/ratio Zero c

Maximum heap free space ratio 60% c

Minimum heap expansion size/ratio 1 MB c

© Copyright IBM Corp. 2003, 2006 495

Table 34. Cross platform defaults (continued)

JVM setting Default Setting

affected by

Minimum heap free space ratio 30% c

Garbage collection of classes Enabled c

Classpath Not set ec

Java options cache Not used e

Accessibility support Enabled e

JIT Enabled ec

JIT debug options Disabled e

MMI Enabled e

Java2D max size of fonts with algorithmic bold 14 point e

Java2D use rendered bitmaps in scalable fonts Enabled e

Java2D freetype font rasterizing Enabled e

Java2D use AWT fonts Disabled e

 Table 35. Platform specific defaults

JVM Setting AIX Linux Windows z/OS Setting

affected

by

Minimum heap size 4 MB 4 MB 4 MB 1 MB c

Maximum heap size 64 MB Note 1 Note 2 64 MB c

Native stack size for any thread 512 KB 256 KB 1 MB 524 KB c

Default locale None None N/A None e

Path for code library load None None N/A None e

Time to wait before starting

plug-in

N/A Zero N/A N/A e

Debug malloc trace Off Off N/A Off e

Temporary directory /tmp /tmp \tmp /tmp e

Size of application class system

heap

N/A N/A N/A Note 3 c

Initial transient heap size N/A N/A N/A Note 4 c

Master JVM initial size N/A N/A N/A 1 MB c

Plug-in redirection None None N/A None e

IM switching Disabled Disabled N/A Disabled e

IM modifiers Disabled Disabled N/A Disabled e

Transaction dumps N/A N/A N/A Enabled e

Max transaction dumps N/A N/A N/A 2 e

Transaction dump data/set

name

N/A N/A N/A Note 5 e

Inherit thread address space N/A N/A N/A Enabled e

Thread model N/A N/A N/A Native e

Redirect JVM stderr output N/A N/A N/A Disabled e

Assume kernel N/A Not set N/A N/A e

default settings for the JVM

496 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

Notes:

1. The heap grows to half of physical memory, but always to a minimum of 16

MB and not beyond (512 MB − 1).

2. The heap grows to half of physical memory, but always to a minimum of 16

MB and not beyond (2 GB − 1).

3. Resettable JVM only. 128 KB on 32-bit, 8 MB on 64-bit.

4. Resettable JVM only. Half of minimum heap if specified: otherwise, 512 KB.

5. Default setting is %s.JVM.TDUMP.&JOBNAME..D&YYMMDD..T& HHMMSS.

default settings for the JVM

Appendix H. Default settings for the JVM 497

default settings for the JVM

498 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

Appendix I. Using the alternative JVM for Java debugging

The IBM SDK contains a distinct alternative debug environment that is provided,

for some platforms, to be used only for Java application debugging. This debug

environment is provided on:

v AIX PPC32 and PPC64

v Linux PPC32 and PPC64

It is also provided on Linux IA32 and Windows IA32 when they are shipped as

products based on IBM Rational Application Developer for WebSphere, and is used

as the debugging environment for WebSphere Application Server.

The debug environment is very similar to the default environment in the way that

it uses the Java class libraries. It differs, however, in its JVM and JIT characteristics,

to the extent that many of the options and facilities that are described in this

Diagnostics Guide are not directly applicable. In the debug environment:

v A different garbage collection algorithm is used.

v The dump format is different.

v Some command-line options are different.

v Some command-line options have a different effect.

A few classes (such as Object, Class, and Thread) are intrinsically linked to the

implementation of the runtime environment. When the Java launcher is invoked

with the alternative debug configuration, a replacement set of these classes is

prepended to the BOOTCLASSPATH. These alternatives override the default

implementations.

The alternative environment is enabled when:

v The -Xdebug command-line option is specified (AIX and Linux PPC32 and

PPC64 architectures only).

v The -Xj9 command-line option is specified (Linux IA32 and Windows IA32 only,

when they are shipped with IBM Rational Application Developer for

WebSphere).

To determine which environment you are using and its build date, use the java

-version command. Here is an example of the output that you can expect from the

default runtime environment on Windows IA32:

C:\>java -version

java version "1.4.2"

Java(TM) 2 Runtime Environment, Standard Edition (build 1.4.2)

Classic VM (build 1.4.2, J2RE 1.4.2 IBM Windows 32 build cn142-20060330 (JIT enabled: jitc))

Here is an example of the output you can expect from the alternative debug

environment on Windows IA32:

C:\>java -Xj9 -version

java version "1.4.2"

Java(TM) 2 Runtime Environment, Standard Edition (build 2.2)

IBM J9SE VM (build 2.2, J2RE 1.4.2 IBM J9 2.2 Windows 2000 x86-32 j9n142-20060330 (JIT enabled)

J9VM - 20060325_1559_lHdSMR

JIT - r7_level20060321_1801)

© Copyright IBM Corp. 2003, 2006 499

Here is an example of the output you can expect from the alternative debug

environment on AIX PPC64:

$ java -Xdebug -version

java version "1.4.2"

Java(TM) 2 Runtime Environment, Standard Edition (build 2.3)

IBM J9 VM (build 2.3, J2RE 1.4.2 IBM J9 2.3 AIX ppc64-64 j9ap64142-20060329 (JIT enabled)

J9VM - 20060327_05972_BHdSMr

JIT - 20060323_1800_r8

GC - 20060323_AA)

Note: The java -fullversion command always returns the version information for

the default runtime environment. You must use the -version flag to return

the debug environment. You can get this information at runtime by using

System.getProperties() or by using the system properties that are shown in

Table 36. In the table, the values for the system properties are examples only.

 Table 36. System properties

Command Default Alternative

java.vm.name Classic VM IBM J9SE VM

java.fullversion J2RE 1.4.1 IBM Windows 32

build cn141–20030711 (JIT

enabled:jitc)

J2RE 1.4.1 IBM J9 build

20030705 (JIT enabled)

The debug environment runs with most of the optimizations provided by the JIT.

To disable the JIT, use the -Xint option

How the debug environment relates to other components

Serviceability features in the debug environment differ from the ones in the default

runtime environment.

Dumps

The debug environment supports the production of diagnostics files using the

-Xdump option. For more information, use -Xdump:help. For detailed information

about using dumps on the Intel debug platforms, see the Diagnostics Guide, 1.4.2,

for z/OS64 and AMD™64 platforms, and, for the PPC platforms, see the Diagnostics

Guide, 5.0 at http://www.ibm.com/developerworks/java/jdk/diagnosis.

To analyze core dumps produced in the debug environment, use the j9jextract tool

instead of the jextract tool to process the dump and the jdmpview tool instead of

the jformat tool.

Trace

The debug environment supports the production of trace output using the -Xtrace

option. However, tracing of class library natives and application trace are not

supported. For detailed information about using trace on the Intel debug

platforms, see the Diagnostics Guide, 1.4.2, for z/OS64 and AMD™64 platforms, and,

for the PPC platforms, see the Diagnostics Guide, 5.0 at http://www.ibm.com/
developerworks/java/jdk/diagnosis.

Any trace files produced using the debug environment must also be formatted

using the debug environment. For example, if you generate a trace file using the

debug environment, like this: java -Xj9

-Xtrace:maximal=all,output=debugEnvTraceFile HelloWorld, you must format it

Using the alternative JVM for Java debugging

500 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

http://www.ibm.com/developerworks/java/jdk/diagnosis
http://www.ibm.com/developerworks/java/jdk/diagnosis
http://www.ibm.com/developerworks/java/jdk/diagnosis

using the debug environment as follows: java -Xj9

com.ibm.jvm.format.TraceFormat debugEnvTraceFile. If you try to format a debug

environment generated trace file using the non-debug environment, the JVM will

cause runtime errors and the file will not be formatted.

Verbose garbage collection

In the debug environment, the -verbose:gc option produces garbage collection

information. The format of this verbose GC output is different from the output

produced in the default environment. For detailed information about verbose

garbage collection on the Intel debug platforms, see the Diagnostics Guide, 1.4.2, for

z/OS64 and AMD™64 platforms, and, for the PPC platforms, see the Diagnostics

Guide, 5.0 at http://www.ibm.com/developerworks/java/jdk/diagnosis.

JNIChk utility

The debug environment provides the -Xcheck:jnioption to add sanity checking to

the Java Native Interface (JNI). Performance is affected because every JNI call does

extra checks on the parameters. This check can, however, be very useful when you

suspect that the JNI code that is associated with the framework or application

might have bugs. For detailed information about the JNIChk utility on the Intel

debug platforms, see the Diagnostics Guide, 1.4.2, for z/OS64 and AMD™64 platforms,

and, for the PPC platforms, see the Diagnostics Guide, 5.0 at http://www.ibm.com/
developerworks/java/jdk/diagnosis.

The JIT

In the debug environment, you can disable the JIT by using the -Xint

command-line option. If a problem no longer occurs after you have used the -Xint

command-line option to disable the JIT, the problem is probably related to the JIT

or to one of its optimizations. For instructions about how to isolate JIT problems

on the Intel debug platforms, see the Diagnostics Guide, 1.4.2, for z/OS64 and

AMD™64 platforms, and, for the PPC platforms, see the Diagnostics Guide, 5.0 at

http://www.ibm.com/developerworks/java/jdk/diagnosis.

Command-line options in the debug environment

Appendix G, “Command-line parameters,” on page 487 describes the

command-line and system properties supported by the default runtime

environment. In general, the same set of options and properties are supported by

the alternative debug environment. Differences are described in Table 37.

For the full description of options available in the debug environment, on the Intel

debug platforms, see the Diagnostics Guide, 1.4.2, for z/OS64 and AMD™64 platforms,

and, for the PPC platforms, see the Diagnostics Guide, 5.0 at http://www.ibm.com/
developerworks/java/jdk/diagnosis.

 Table 37. Command-line differences

Command line arguments Debug environment behavior

-Dibm.ci.verbose Ignored.

-Dibm.cl.eagerresolution Ignored.

-Dibm.dg.trc.* Ignored. Use -Xtrace options.

-Djava.compiler={ NONE

| jitc }

Deprecated. Use -Xint and -Xjit.

-verbose:Xclassdep Not supported. JVM will terminate with error message.

Using the alternative JVM for Java debugging

Appendix I. Using the alternative JVM for Java debugging 501

http://www.ibm.com/developerworks/java/jdk/diagnosis
http://www.ibm.com/developerworks/java/jdk/diagnosis
http://www.ibm.com/developerworks/java/jdk/diagnosis
http://www.ibm.com/developerworks/java/jdk/diagnosis
http://www.ibm.com/developerworks/java/jdk/diagnosis
http://www.ibm.com/developerworks/java/jdk/diagnosis

Table 37. Command-line differences (continued)

Command line arguments Debug environment behavior

-version Prints version information for the alternative runtime

environment.

-showversion Prints version information for the alternative runtime

environment.

-Xcheck:nabounds Equivalent to -Xchecxk:jni.

-Xinitsh Ignored.

-Xoss Deprecated. Use -Xmso.

-Xpd Not supported. JVM will terminate with error message.

-Xtlhs Not supported. JVM will terminate with error message.

Using the alternative JVM for Java debugging

502 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

Appendix J. Using a Problem Determination build of the JVM

The Problem Determination (PD) build of the JVM comprises a set of libraries built

with additional PD function to help IBM support deal with some categories of

customer problems. These libraries are fully compatible with the Java launchers

and with customer launchers built with the JNI invocation function. The PD build

has passed Java Compatibility testing and has been system tested, and is therefore

of comparable quality to the normal build of the JVM.

The PD build is a build of the native libraries in the JVM. When it is used, the

normal Java classes are executed from their normal locations.

When to use the PD build

The PD build is intended to be used under the guidance of IBM support to assist

in resolving problems that seem to relate to the native libraries in the core JVM

and the supporting libraries containing native methods for the standard Java

classes (for example, the java/net package). The PD build is not a

customer-orientated tool and should be used only when an IBM support team

requests it.

Why is the PD build necessary?

For performance reasons, only a limited amount of tracing and sanity-checking

code is included in the normal build of the IBM virtual machine for Java. Some

situations can be more quickly resolved by a build with more PD function.

Previously, the ″_g″ build provided this function, but it was difficult to use in

many situations because both launchers and libraries had nonstandard names

(″java_g″, ″libjvm_g.a″, ...). These libraries were also built with different compiler

optimization levels to the normal build, which affected performance and often

changed timing enough to ″chase away″ problems under investigation.

The PD build addresses these limitations by using the normal launchers and the

same library names as the normal build, and the libraries are compiled with the

normal level of optimization.

Where to find the PD build

The PD build will be supplied by IBM support when required.

The PD build libraries have the same names as the normal JVM libraries, but are

installed into a different directory subtree:

v The normal libraries reside in the bin subdirectory of your JRE installation and

the classic subdirectory of bin. So, for example, on AIX you would find

.../jre/bin/classic/libjvm.a.

v The PD build libraries add another layer of subdirectory at the top of the tree,

called pd. So, on AIX again, you would find .../jre/pd/bin/classic/libjvm.a.

© Copyright IBM Corp. 2003, 2006 503

How to enable the PD build

To run a standard Java launcher command with the PD build, add the -Xpd option

to the command-line arguments for the launcher. For example java -Xpd class or

jformat -J-Xpd sdff_file. The -Xpd option must be specified before any other

parameter; if it is not placed first, the JVM might report an unrecognized option

error.

If you have a custom launcher using the JNI invocation interface, you must ensure

that your launcher loads the JVM libraries from the pd subdirectories of the JRE

installation, normally by adjusting the environment variable controlling how the

operating system finds shared libraries for loading. On AIX and z/OS, you would

prepend the .../jre/pd/bin and .../jre/pd/bin/classic directories to your LIBPATH,

for example, while on Linux you would change your LD_LIBRARY_PATH

Problem Determination build of the JVM

504 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

Appendix K. Some notes on jformat and the jvmdcf file

This appendix is likely to be of interest to you only if you are involved in

advanced, low-level debugging activities. The information is subject to change

without notice, and there is no guarantee it will be maintained or provided in

future.

To allow the jformat utility to understand the structures (control blocks and the

fields within them) in specific builds, file jvmdcf in the jre/bin directory provides

layout information. This file is a zip file containing jvmdcf.X, which is a file

obtained from the debug compile/link steps of a simple file that contains #include

and various typedef information. The jformat tool uses jvmdcf.X to understand the

layout and types of fields within control blocks. jvmdcf is loaded into memory in a

compressed form when the jvm is established and thus is present in the dump.

You find it by scanning memory looking for the ASCII characters JVMRAS starting

on an 8-byte boundary, followed by X’000055AA55AA55AA55AA’ on little-endian

platforms and X’0000AA55AA55AA55AA55’ on big-endian platforms. The

examples here are from a little-endian system. The JVMRAS is code in the

extractors that finds and stores away the address in memory and size of the jvmdcf

image.

The internal structure of jvmdcf.X is logically equivalent to an 8-byte character

field containing the value JVMSYMS, flowed by unsigned integer fields for version,

encoding, number of symbols, symbol offset, symbol size, string offset, and string

size.

The value JVMSYMS can be seen from this display showing the start of a jvmdcf.X

file:

 In the example above, the number of symbols is 0x000006CE (= 1742) and the

symbol offset is x24. Starting at the end of the symbol header is an array of symbol

table entries, where each entry is based on a structure of integers for type number,

base type, size, name offset, and description offset.

Base types as referenced in this appendix are:

* pointer (5)

Figure 15. The start of a jvmdcf.X file

© Copyright IBM Corp. 2003, 2006 505

s structure (2)

u union (3)

e enum (4)

a array (6)

f function (7)

- primitives (int, char, long, unsigned long...) (1)

Numbers refer to the value in the individual symbol table entries and the letters

are used in the null-terminated strings area.

Here, 1742*20+36 = 0x883C (which is the string offset field within the symbol

header structure). The string offset points to an array of null-terminated strings,

the structure of which is described below.

 Examining the first symbol table entry above:

v The type number is 0x6CD - 1741 (this is a reference count so that structures can

be linked together).

v The base type is 4 (meaning enum).

Figure 16. A symbol table entry

jformat and the jvmdcf file

506 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

v The size is 0.

v The name offset is 0 (this is an offset from the start of the strings pointed to by

string offset).

v The description offset is 0x18 (=24) from the string offset.

Displaying position 0x883c in the jvmdcf.X file, you can see that this position

points to a structure definition (of zero size because it is recording some constant

values) for _JVMConstantDefinitions. Next is a manufactured string (at offset

0x18 from the start of the strings) representing the fields (constant values) within

there (the e-1 indicates that an enum values list follows). Then there is a large

string (terminated with 0x00 at 0x8d08 into this particular jvmdcf.X) which is

essentially a list of constants and their values. The description is given with the

definition of value for the enum list, thus:

e-1CONSTANT_Utf8:1,CONSTANT_Unicode:2..

as exemplified in Figure 16 on page 506 means that the symbol CONSTANT_Utf8

is an integer 1, CONSTANT_Unicode is 2, and so on.

It is more interesting to find the entry for a ″well-known″ control block in the JVM

and look for that. One such is ″Jvm″. You can use the jformat command dis CB to

find the control blocks known to a dump which relies on the information within

the memory embedded jvmdcf). The Jvm control blocks expand to a complex

structure – the commands jformat for jvm or dis cbo(Jvm), described in “Using

jformat to display the JVM control block” on page 508, demonstrate this.

The null-terminated string ″Jvm″ is at offset 0x1cf40 into this particular jvmdcf.X,

so it should have a name offset in an symbol table entry of 0x14704

(0x1cf40-0x883C), and there is a symbol table entry that matches this at 0x6690

into jvmdcf.X, which looks like:

 You can see from this symbol table entry that:

v The type number is 0x12A.

v The base type is 2 (meaning structure).

v The length is 0xad4 (2772).

v The name offset is 0x14704 (from 0x883c).

v The description offset is 0x14708.

Now consider what the base type in the symbol table entry shows.

The file from offset 0x1cf40 onwards is displayed below.

jformat and the jvmdcf file

Appendix K. Some notes on jformat and the jvmdcf file 507

Figure 17 shows starts with S2772, indicating that it is a structure of length 2772.

Next, the first major stanza in the description string is header:332,0,128, which

identifies the first field within the JVM control block named ″header″, and is

defined further using the symbol table entry with type number 332 (0x14C). You

can find this symbol table entry at position 0x667C into the file and it points to

information at 0x0001CEE4, which contains the structure details for a field called

JvmDataHeader. And so the chain continues until you reach fields that are not

structures (or unions).

The 0 and 128 in the field entry for the header field are intended to be offsets and

length, but these are not currently reliable.

Using jformat to display the JVM control block

For details about jformat, see “Analyzing dumps with jformat” on page 263.

The information given here should enable you to understand the format of the

jvmdcf.X file. This file is effectively read in jformat from dump memory. (Note that

it is compressed in memory.) When the jformat dis cb and dis cbo(cbname)

commands are used to look at control blocks, the deconstructed information from

jvmdcf.X is used to produce the output. Similarly, jformat with for address as

controlblock causes stored objects built at dump open time to be used for display of

the specified control block. For example, the command for 0x10144a40 as Jvm on

Mywin1.sdff might give the following output (shortened for convenience as the

JVM is a large control block).

for 0x10144a40 as Jvm

command executing

Jvm @ 0x10144a40

 header : @ 0x10144a40

 eyecatcher @ 0x10144a40 (array)

 length = 0xae4

 version = 0x1

 modification = 0x0

 vm = 0x1010aa7c

 facade : @ 0x10144a54

 lk : @ 0x10144a54

 header : @ 0x10144a54

 eyecatcher @ 0x10144a54 (array)

 ...

 ...

 ...

 jab = 0x235568

 mode = 0x0

Figure 17. The file from offset 0x1cf40

jformat and the jvmdcf file

508 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

fullVersion = 0x1010a4a4

 suffix = 0x1012e690

 as Jvm finished

Ready......

The version level held within memory will be a C-style string (null terminated)

and, depending on the build level, will be J2RE 1.4.2 IBM Windows 32 build

cn142-20040608 as returned by the command java -version:

java version "1.4.2"

Java(TM) 2 Runtime Environment, Standard Edition (build 1.4.2)

Classic VM (build 1.4.2, J2RE 1.4.2 IBM Windows 32 build cn142-20040608

(JIT enabled: jitc))

jformat and the jvmdcf file

Appendix K. Some notes on jformat and the jvmdcf file 509

jformat and the jvmdcf file

510 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

Appendix L. Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in

other countries. Consult your local IBM representative for information on the

products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM

product, program, or service may be used. Any functionally equivalent product,

program, or service that does not infringe any IBM intellectual property right may

be used instead. However, it is the user’s responsibility to evaluate and verify the

operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter

described in this document. The furnishing of this document does not give you

any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM

Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation

Licensing

2-31 Roppongi 3-chome, Minato-ku

Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other

country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS

PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS

FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or

implied warranties in certain transactions, therefore, this statement may not apply

to you.

This information could include technical inaccuracies or typographical errors.

Changes are periodically made to the information herein; these changes will be

incorporated in new editions of the publication. IBM may make improvements

and/or changes in the product(s) and/or the program(s) described in this

publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for

convenience only and do not in any manner serve as an endorsement of those Web

sites. The materials at those Web sites are not part of the materials for this IBM

product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it

believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 2003, 2006 511

Licensees of this program who wish to have information about it for the purpose

of enabling: (i) the exchange of information between independently created

programs and other programs (including this one) and (ii) the mutual use of the

information which has been exchanged, should contact IBM United Kingdom

Laboratories, MP146, Hursley Park, Winchester, Hampshire, SO21 2JN, United

Kingdom. Such information may be available, subject to appropriate terms and

conditions, including in some cases, payment of a fee.

The licensed program described in this information and all licensed material

available for it are provided by IBM under terms of the IBM Customer Agreement,

IBM International Program License Agreement, or any equivalent agreement

between us.

Information concerning non-IBM products was obtained from the suppliers of

those products, their published announcements or other publicly available sources.

IBM has not tested those products and cannot confirm the accuracy of

performance, compatibility or any other claims related to non-IBM products.

Questions on the capabilities of non-IBM products should be addressed to the

suppliers of those products.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which

illustrate programming techniques on various operating platforms. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM, for the purposes of developing, using, marketing or distributing application

programs conforming to the application programming interface for the operating

platform for which the sample programs are written. These examples have not

been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or

imply reliability, serviceability, or function of these programs. You may copy,

modify, and distribute these sample programs in any form without payment to

IBM for the purposes of developing, using, marketing, or distributing application

programs conforming to IBM’s application programming interfaces.

Each copy or any portion of these sample programs or any derivative work, must

include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.

Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights

reserved.

If you are viewing this information softcopy, the photographs and color

illustrations may not appear.

Trademarks

The following terms are trademarks or registered trademarks of International

Business Machines Corporation in the United States, or other countries, or both.

 AIX AS/400

CICS DB/2

IBM OS/2

OS/2 Warp OS/390

WebSphere z/OS

Notices

512 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the

United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of

Microsoft Corporation in the United States, other countries, or both.

Linux is a trademark of Linus Torvalds in the United States, other countries, or

both.

Other company, product and service names may be trademarks or service marks of

others.

Trademarks

Appendix L. Notices 513

514 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

Index

Special characters
-J-Djavac.dump.stack=1 189

-Xcompactexplicitgc
garbage collection 306

-Xdisableexplicitgc
garbage collection 306

-Xgcpolicyc
garbage collection 307

-Xgcthreads
garbage collection 307

-Xnoclassgc
garbage collection 307

-Xnocompactexplicitgc
garbage collection 307

-Xnocompactgc
garbage collection 307

-Xnopartialcompactgc
garbage collection 308

-Xtrace 189

/3GB switch 152

*.nix platforms
font utilities 203

Numerics
32- and 64-bit JVMs

AIX 115

32-bit AIX Virtual Memory Model, AIX 115

64-bit AIX Virtual Memory Model, AIX 116

A
about this book xv

Addr Range, AIX segment type 106

advanced diagnostics, garbage collection 306

-Xcompactexplicitgc 306

-Xdisableexplicitgc 306

-Xgcpolicy 307

-Xgcthreads 307

-Xnoclassgc 307

-Xnocompactexplicitgc 307

-Xnocompactgc 307

-Xnopartialcompactgc 308

heap and native memory use by the JVM 318

large native objects 318

native code 318

tracing 308

st_alloc 311

st_backtrace 313

st_calloc 313

st_compact 310

st_compact_dump 311

st_compact_verbose 311

st_concurrent 315

st_concurrent_pck 316

st_concurrent_shadow_heap 318

st_dump 311

st_freelist 313

st_icompact 317

st_mark 310

advanced diagnostics, garbage collection (continued)
tracing (continued)

st_parallel 314

st_refs 312

st_terse 309

st_trace 315

st_verify 309

advanced JIT diagnostics 298

advanced options, method trace 258

agent, Heapdump
how to write 249

agent, JVMMI
building

AIX PPC32 347

AIX PPC64 347

Linux 347

Windows 346

z/OS 347

Detail information 345

EBCDIC platforms 346

inside 346

name 346

user data 346

writing 344

agent, JVMRI
launching 357

writing 355

AIX
checking environment 101

crashes 111

debugging commands 103

archon 105

band 105

bindprocessor 107

bindprocessor –q 107

bootinfo 107

cmd 104

cp 105

Esid 106

f 105

iostat 107

lsattr 107

netpmon 107

netstat 108

nmon 109

pid 104

ppid 104

pri 105

ps 103

sar 109

sc 105

st 104

stime 104

svmon 105

tat 105

tid 104

time 104

topas 109

tprof 109

trace 110

truss 110

© Copyright IBM Corp. 2003, 2006 515

AIX (continued)
debugging commands (continued)

tty 104

Type 106

uid 104

user 104

vmstat 110

Vsid 106

debugging hangs 112

AIX deadlocks 112

AIX infinite loops 112

investigating busy hangs 113

poor performance 115

debugging memory leaks 103

32- and 64-bit JVMs 115

32-bit AIX Virtual Memory Model 115

64-bit AIX Virtual Memory Model 116

changing the Memory Model (32-bit JVM) 116

changing the memory models 118

fragmentation problems 122

Java heap exhaustion 121

Java or native heap exhausted 121

Java2 32-Bit JVM default memory models 117

monitoring the Java heap 119

monitoring the native heap 118

native and Java heaps 117

native heap exhaustion 121

native heap usage 119

receiving OutOfMemory errors 120

submitting a bug report 123

debugging performance problems 123

collecting data from a fault condition 127

CPU bottlenecks 124

finding the bottleneck 123

getting AIX technical support 128

I/O bottlenecks 127

memory bottlenecks 126

debugging techniques 102

other sources of information 103

diagnosing crashes 111

documents to gather 111

interpreting the stack trace 111

sending an AIX core file to IBM Support 112

enabling full AIX core files 102

Heapdumps 103

Javadump sample output 239

Javadumps 103

JVM dump initiation 254

problem determination 101

setting up and checking AIX environment 101

stack trace 111

subpool for garbage collection 18

technical support 128

understanding memory usage 115

allocation failure, verbosegc output 301

allocation of cache, garbage collection 10

allocation of heap lock, garbage collection 10

allocation, (LOA) 11

allocation, garbage collection 10

allocation, wilderness 11

alternative debug environment 499

how it relates to other components 500

analyzing deadlocks, Windows 160

analyzing dumps, dump formatter
command plug-ins 265

commands from DvBaseCommands 267

commands from DvBaseFmtCommands 270

analyzing dumps, dump formatter (continued)
commands from DvClassCommands 272

commands from DvHeapDumpPlugin 274

commands from DvJavaCore 273

commands from DvObjectsCommands 272

commands from DvTraceFmtPlugin 270

commands from DvXeCommands 273

control block formatting 275

dump plug-ins 275

Dumpviewer 291

example session 276

hints 276

installing jformat 264

jformat 263

minimum requirements 264

opening the dump 264

property files 276

settings 275

shortened command forms 266

shortened modifier forms 266

starting jformat 264

supported commands 267

analyzing the dump, Windows 157

API calls, JVMMI 347

DisableEvent 348

EnableEvent 347

EnumerateOver 348

API calls, JVMRI 358

CreateThread 361

DumpDeregister 360

DumpRegister 359

dynamic verbosegc 363

GenerateHeapdump 364

GenerateJavacore 361

GetComponentDataArea 362

GetRasInfo 360

InitiateSystemDump 363

InjectOutOfMemory 362

InjectSigsegv 362

NotifySignal 360

ReleaseRasInfo 360

RunDumpRoutine 361

SetOutOfMemoryHook 363

TraceDeregister 358

TraceRegister 358

TraceResume 359

TraceResumeThis 364

TraceSet 358

TraceSnap 359

TraceSuspend 359

TraceSuspendThis 363

applications trace, cross-platform tools 216

archon, AIX 105

AS/400
problem determination 207

avoidance of compaction, garbage collection 17

B
bad performance hangs, z/OS 181

BAD_OPERATION 190

BAD_PARAM 190

band, AIX 105

basic diagnostics (verbosegc), garbage collection 300

output from a compaction 303

output from a concurrent mark AF collection 304

516 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

basic diagnostics (verbosegc), garbage collection (continued)
output from a concurrent mark AF collection with

:Xgccon 304

output from a concurrent mark collection 305

output from a concurrent mark collection with

:Xgccon 305

output from a concurrent mark kickoff 303

output from a concurrent mark System.gc collection 304

output from a heap expansion 302

output from a heap shrinkage 302

output from a System.gc() 301

output from an allocation failure 301

output from resettable (z/OS only) 305

output when pinnedFreeList exhausted 301

basic heap sizing problems, garbage collection 9

before you read this book xv

before you submit a problem report 85

bindprocessor –q, AIX 107

bindprocessor, AIX 107

bootinfo , AIX 107

bottlenecks, AIX
CPU 124

finding 123

I/O 127

memory 126

browser plug-in
Windows 165

buffers, in-storage 322

dumping buffers 322

snapping buffers 322

bug report
garbage collection 25

busy hangs, AIX (investigating) 113

bytecode optimization, JIT 38

C
cache allocation, garbage collection 10

cache option, z/OS 171

cancel request header 403

categorizing problems 213

changing the Memory Model (32-bit JVM), AIX 116

changing the memory models, AIX 118

changing the trace on a running server, ORB 400

check:jni 75

check:nabounds 75

checking and setting up environment, Windows 151, 153

checklist for problem submission 85

before you submit 85

data to include 85

factors that affect JVM performance 86

performance problem questions 86

test cases 86

checklist, JNI 76

class (CL) 5

class loader
Eeager and lazy loading 31

how to write a custom class loader 33

name spaces and the runtime package 32

parent-delegation model 32

Persistent Reusable JVM 34

understanding 31

WebSphere Application Server overview 35

why write a custom class loader? 33

class loader diagnostics
loading from native code 320

runtime 319

class name, Windows 159

class-loader diagnostics 319

command-line options 319

class-related events, JVMMI 349

classifying leaks, Windows 162

classloaders and classes, Javadump
AIX 241

Linux 239

Windows 231

z/OS 243

client and server running, not naming service, ORB 197

client side interception points, ORB 60

receive_exception (receiving reply) 60

receive_other (receiving reply) 60

receive_reply (receiving reply) 60

send_poll (sending request) 60

send_request (sending request) 60

client side, ORB 51

getting hold of the remote object 52

bootstrap process 53

ORB initialization 52

remote method invocation 54

delegation 54

servant 54

stub creation 51

client, ORB 195

clnt , AIX segment type 106

cmd, AIX 104

codes, minor (CORBA) 405

coexisting with the Garbage Collector 23

finalizers 25

how they are run 26

nature of 25

summary 26

finalizers and the garbage collection contract 26

manual invocation 26

predicting Garbage Collector behavior 23

bug reports 25

thread local heap 24

collecting additional diagnostic data, Linux 143

collecting data from a fault condition
AIX 127

Linux 142

collecting additional diagnostic data 143

core files 142

determining the operating environment 142

proc file system 143

producing Javadumps 142

sending information to Java Support 143

strace, ltrace, and mtrace 143

using system logs 142

Windows 164

z/OS 185

com.ibm.CORBA.AcceptTimeout 48

com.ibm.CORBA.AllowUserInterrupt 48

com.ibm.CORBA.BootstrapHost 48

com.ibm.CORBA.BootstrapPort 48

com.ibm.CORBA.BufferSize 48

com.ibm.CORBA.CommTrace 189

com.ibm.CORBA.ConnectTimeout 48

com.ibm.CORBA.Debug 189

com.ibm.CORBA.Debug.Output 189

com.ibm.CORBA.enableLocateRequest 49

com.ibm.CORBA.FragmentSize 49

com.ibm.CORBA.FragmentTimeout 49

com.ibm.CORBA.GIOPAddressingDisposition 49

com.ibm.CORBA.InitialReferencesURL 49

Index 517

com.ibm.CORBA.ListenerPort 49

com.ibm.CORBA.LocalHost 49

com.ibm.CORBA.LocateRequestTimeout 49, 196

com.ibm.CORBA.MaxOpenConnections 49

com.ibm.CORBA.MinOpenConnections 49

com.ibm.CORBA.NoLocalInterceptors 50

com.ibm.CORBA.ORBCharEncoding 50

com.ibm.CORBA.ORBWCharDefault 50

com.ibm.CORBA.RequestTimeout 50, 196

com.ibm.CORBA.SendingContextRunTimeSupported 48

com.ibm.CORBA.SendVersionIdentifier 50

com.ibm.CORBA.ServerSocketQueueDepth 50

com.ibm.CORBA.ShortExceptionDetails 50

com.ibm.tools.rmic.iiop.Debug 50

com.ibm.tools.rmic.iiop.SkipImports 50

comm trace , ORB 194

COMM_FAILURE 190

command forms (shortened), jformat 266

command line parameters, JVM
cross-platform tools 217

command plug-ins, dump formatter 265

command plug-ins, jformat 265

command-line options, class loader 319

command-line options, HeapWizard 387

command-line parameters 487

garbage collector 491

general 487

nonstandard 489

system property 487

command-line similarities and differences, debug

environment 501

commands (supported), jformat 267

commands from DvBaseCommands, jformat 267

commands from DvBaseFmtCommands, jformat 270

commands from DvClassCommands, jformat 272

commands from DvHeapDumpPlugin, jformat 274

commands from DvJavaCore, jformat 273

commands from DvObjectsCommands, jformat 272

commands from DvTraceFmtPlugin, jformat 270

commands from DvXeCommands, jformat 273

commands, (IPCS), z/OS 173

common causes of perceived leaks, garbage collection
hash tables 300

JNI references 300

listeners 300

objects with finalizers 300

premature expectation 300

static data 300

common causes of perceived leaks, Garbage Collector 299

common problems, NLS fonts 204

common problems, ORB 196

client and server running, not naming service 197

hanging 196

com.ibm.CORBA.LocateRequestTimeout 196

com.ibm.CORBA.RequestTimeout 196

running the client with client unplugged 198

running the client without server 197

compaction avoidance, garbage collection 17

compaction phase, garbage collection 9, 17

compaction, verbosegc output 303

compatibility tables 397

WebSphere Application Server and JVM/SDK levels 397

compilation failures, JIT 298

COMPLETED_MAYBE 191

COMPLETED_NO 191

COMPLETED_YES 191

completion status, ORB 191

component dump (LK), Javadump 224

compressed Heapdump text file 247

concurrent mark
collection

verbosegc output 305

collection (AF)
verbosegc output 304

garbage collection 15

kickoff
verbosegc output 303

System.gc collection
verbosegc output 304

concurrent mark AF
collection with :Xgccon

verbosegc output 304

concurrent mark with :Xgccon
collection

verbosegc output 305

connection handlers
RMI 78

conservative and type-accurate garbage collection 13

control block formatting, dump formatter
jformat 275

control properties, MiscellaneousTrace 326

conventions and terminology in book xvi

copying and pinning, JNI 70

CORBA
client side interception points 60

receive_exception (receiving reply) 60

receive_other (receiving reply) 60

receive_reply (receiving reply) 60

send_poll (sending request) 60

send_request (sending request) 60

examples 42

fragmentation 59

further reading 42

interfaces 42

interoperable naming service (INS) 62

introduction 41

Java IDL or RMI-IIOP, choosing 42

Linux 144

minor codes 405

portable interceptors 59

portable object adapter 57

remote object implementation or servant 43

RMI and RMI-IIOP 41

RMI-IIOP limitations 42

server code 44

differences between RMI (JRMP) and RMI-IIOP 47

summary of differences in client development 47

summary of differences in server development 47

server side interception points 60

receive_request (receiving request) 60

receive_request_service_contexts (receiving request) 60

send_exception (sending reply) 60

send_other (sending reply) 60

send_reply (sending reply) 60

stub and ties generation 43

CORBA GIOP message format 401

cancel request header 403

fragment header 404

fragment message 404

GIOP header 401

locate reply body 404

locate reply header 404

locate request header 403

reply body 403

518 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

CORBA GIOP message format (continued)
reply header 402

request body 402

request header 402

CORBA limitations, Linux 144

core dumps, Linux 131

core files, Linux 129, 142

core interface 4

cp, AIX 105

CPU bottlenecks, AIX 124

CPU section, vmstat command 133

CPU usage, Linux 139

crash dump, Dr, Watson 153

crashes
AIX 111

Linux 136

Windows 155

z/OS 174

documents to gather 174

failing function 175

crashes, diagnosing
Linux

checking the system environment 136

finding out about the Java environment 137

gathering process information 136

Windows
analyzing the dump 157

finding the class name 159

finding the end of the JIT frame 158

finding the method name 159

finding the method signature 159

finding the return address in the stack 157

identifying JIT’d code 156

map file 156

Process Explorer 157

sending data to IBM 159

tracing back from JIT’d code 156

CreateThread, JVMRI 361

cross-platform tools
application trace 216

command line parameters, JVM 217

dump formatter 214

Heapdump 214

Javacore 214

Javadump 214

JVM environment variables 217

JVM trace 215

JVMDI tools 215

JVMMI 216

JVMPI tools 215

JVMRI 216

method trace 216

D
DAG optimization, JIT 39

data conversion (DC) 5

data conversion, Javadump
AIX 240

Linux 237

Windows 227

z/OS 242

data in a file, trace 322

external tracing 323

trace combinations 323

tracing to stderr 323

data in in-storage buffers, trace 322

data in in-storage buffers, trace (continued)
dumping buffers 322

snapping buffers 322

data submission with problem report 91

javaserv (IBM internal only) 91

sending an AIX core file to IBM support 93

sending files to IBM support 92

data to be collected, ORB 199

DATA_CONVERSION 190

deadlocked hangs, z/OS 181

deadlocks 112, 222

deadlocks, Windows
debugging 160

debug environment
command-line similarities and differences 501

controlling the JIT 501

diagnosing 499

how it relates to other components 500

debug properties, ORB 189

com.ibm.CORBA.CommTrace 189

com.ibm.CORBA.Debug 189

com.ibm.CORBA.Debug.Output 189

debugging commands
AIX 103

bindprocessor –q 107

bootinfo 107

iostat 107

lsattr 107

netpmon 107

netstat 108

nmon 109

sar 109

topas 109

tprof 109

trace 110

truss 110

vmstat 110

Linux 133

debugging hangs, AIX 112

AIX deadlocks 112

AIX infinite loops 112

investigating busy hangs 113

poor performance 115

debugging hangs, Linux 137

debugging hangs, Windows 160

debugging memory leaks
AIX 103

using trace 341

debugging memory leaks, AIX
32- and 64-bit JVMs 115

32-bit AIX Virtual Memory Model 115

64-bit AIX Virtual Memory Model 116

changing the Memory Model (32-bit JVM) 116

changing the memory models 118

fragmentation problems 122

Java heap exhaustion 121

Java or native heap exhausted 121

Java2 32-Bit JVM default memory models 117

monitoring the Java heap 119

monitoring the native heap 118

native and Java heaps 117

native heap exhaustion 121

native heap usage 119

receiving OutOfMemory errors 120

submitting a bug report 123

debugging memory leaks, Linux 138

debugging memory leaks, Windows 161

Index 519

debugging memory leaks, Windows (continued)
classifying leaks 162

memory model 161

tracing leaks 162

Verbose GC 163

debugging performance problem, AIX
collecting data from a fault condition 127

CPU bottlenecks 124

finding the bottleneck 123

getting AIX technical support 128

I/O bottlenecks 127

memory bottlenecks 126

debugging performance problems, AIX 123

debugging performance problems, Linux 139

CPU usage 139

JIT 142

JVM performance 141

memory usage 140

network problems 140

system performance 139

debugging performance problems, Windows 163

data for bug report 164

frequently reported problems 164

debugging techniques, AIX 102

bindprocessor –q 107

bootinfo 107

debugging commands 103

debugging memory leaks 103

iostat 107

lsattr 107

netpmon 107

netstat 108

nmon 109

other sources of information 103

sar 109

starting Heapdumps 103

starting Javadumps 103

topas 109

tprof 109

trace 110

truss 110

vmstat 110

debugging techniques, Linux 131

debugging commands 133

gdb 134

ltrace tool 134

mtrace tool 134

ps 133

strace tool 133

tracing 133

ps command 132

starting heapdumps 131

starting Javadumps 131

top command 132

using core dumps 131

using system logs 132

using the dump extractor 131

vmstat command 132

CPU section 133

io section 132

memory section 132

processes section 132

swap section 132

system section 133

debugging techniques, Windows 154

Dump Extractor 154

Heapdumps 154

debugging techniques, Windows (continued)
Javadumps 154

Microsoft tools 154

default memory models, Java2 32-Bit JVM (AIX) 117

default settings, JVM 495

delegation, ORB client side 54

deprecated Sun properties 50

description string, ORB 192

Description, AIX segment type 106

determining the operating environment, Linux 142

df command, Linux 142

diagnosing crashes, AIX 111

documents to gather 111

interpreting the stack trace 111

sending an AIX core file to IBM Support 112

diagnosing crashes, Linux 136

checking the system environment 136

finding out about the Java environment 137

gathering process information 136

diagnostic settings, Javadump
Linux 237

Windows 227

z/OS 242

diagnostic tools, ORB
-J-Djavac.dump.stack=1 189

-Xtrace 189

diagnostics 211

diagnostics (DG) 5

diagnostics options, JVM environment 410

diagnostics settings, Javadump
AIX 240

diagnostics, advanced
garbage collection 306

-Xcompactexplicitgc 306

-Xdisableexplicitgc 306

-Xgcpolicy 307

-Xgcthreads 307

-Xnoclassgc 307

-Xnocompactexplicitgc 307

-Xnocompactgc 307

-Xnopartialcompactgc 308

heap and native memory use by the JVM 318

st_alloc 311

st_backtrace 313

st_calloc 313

st_compact 310

st_compact_dump 311

st_compact_verbose 311

st_concurrent 315

st_concurrent_pck 316

st_concurrent_shadow_heap 318

st_dump 311

st_freelist 313

st_icompact 317

st_mark 310

st_parallel 314

st_refs 312

st_terse 309

st_trace 315

st_verify 309

tracing 308

diagnostics, basic
garbage collection 300

output from a compaction 303

output from a concurrent mark AF collection 304

output from a concurrent mark AF collection with

:Xgccon 304

520 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

diagnostics, basic (continued)
garbage collection (continued)

output from a concurrent mark collection 305

output from a concurrent mark collection with

:Xgccon 305

output from a concurrent mark kickoff 303

output from a concurrent mark System.gc

collection 304

output from a heap expansion 302

output from a heap shrinkage 302

output from a System.gc() 301

output from an allocation failure 301

output from resettable (z/OS only) 305

output when pinnedFreeList exhausted 301

diagnostics, class loader
command-line options 319

loading from native code 320

runtime 319

diagnostics, class-loader 319

diagnostics, JIT 295

advanced 298

disabling the JIT 295

disabling the MMI 296

introducing the MMI 295

selecting the MMI threshold 296

selectively disabling the JIT 297

short-running applications 298

working with MMI 296

diagnostics, overview 213

categorizing problems 213

cross-platform tools 214

applications trace 216

command line parameters, JVM 217

dump formatter 214

Heapdump 214

Javadump (or Javacore) 214

JVM environment variables 217

JVM trace 215

JVMDI tools 215

JVMMI 216

JVMPI tools 215

JVMRI 216

method trace 216

platforms 213

third-party tools 214

differences between RMI (JRMP) and RMI-IIOP, ORB 47

dis <addr> <n> option, z/OS 172

DisableEvent, JVMMI 348

disabling the JIT 295

disabling the MMI 296

Distributed Garbage Collection
RMI 78

documents to gather
AIX 111

z/OS 174

Dr. Watson
crash dump 153

for a hung process 160

overview 155

setting up 153

DTFJ
counting threads example 379

diagnostics 375

interface diagram 377

overview 376

supported platforms 375

working with a dump 376

dump
AIX 254

events 251

initiation 251

overview 251

JVM
settings 252

Linux 255

platform-specific variations 253

types 251

Windows 254

z/OS 253

dump (LK component), Javadump 224

dump <addr> <n> option, z/OS 172

dump extraction
Windows 153

Dump Extractor
Windows 154

dump extractor, using
Linux 131

dump formatter 261

analyzing dumps
Dumpviewer 291

jformat 263

command plug-ins 265

commands from DvBaseCommands 267

commands from DvBaseFmtCommands 270

commands from DvClassCommands 272

commands from DvHeapDumpPlugin 274

commands from DvJavaCore 273

commands from DvObjectsCommands 272

commands from DvTraceFmtPlugin 270

commands from DvXeCommands 273

control block formatting 275

cross-platform tools 214

dump plug-ins 275

dumps 262

Dumpviewer 262, 286

example session 276

hints 276

how to use 262

installing jformat 264

jextract 262

jformat 262

minimum requirements 264

opening the dump 264

property files 276

settings 275

shortened command forms 266

shortened modifier forms 266

starting jformat 264

supported commands 267

what it is 262

dump plug-ins, dump formatter (jformat) 275

dump tool, z/OS 170

dump, generated (Javadump) 219

dump, system monitor (JVM) 223

DumpDeregister, JVMRI 360

dumping buffers 322

DumpRegister, JVMRI 359

dumps, setting up (z/OS) 169

Dumpviewer 286

analyzing dumps 291

dump formatter 262

DvBaseCommands, commands from
jformat 267

Index 521

DvBaseFmtCommands, commands from
jformat 270

DvClassCommands, commands from
jformat 272

DvHeapDumpPlugin, commands from
jformat 274

DvJavaCore, commands from
jformat 273

DvObjectsCommands, commands from
jformat 272

DvTraceFmtPlugin, commands from
jformat 270

DvXeCommands, commands from
jformat 273

dynamic verbosegc, JVMRI 363

E
eager and lazy loading 31

EBCDIC platforms, JVMMI 346

EnableEvent, JVMMI 347

enabling full AIX core files 102

enabling trace at server startup, ORB 399

end of the JIT frame, Windows 158

EnumerateOver, JVMMI 348

enumerations, JVMMI 351

environment
checking on AIX 101

checking on Linux 129

core files 129

floating stacks 130

threading libraries 130

working directory 129

displaying current 407

JVM settings 407

basic JIT options 409

diagnostics options 410

general options 408

Javadump and Heapdump options 410

Linux 136

setting up and checking on Windows 151, 153

setting up on Windows
dump extraction 153

native tools 153

environment variables 407

JVM
cross-platform tools 217

separating values in a list 407

setting 407

XHPI, Javadump
AIX 240

Linux 234

z/OS 241

z/OS 411

environment variables,
z/OS 167

environment, determining
Linux 142

df command 142

free command 142

lsof command 143

ps-ef command 142

top command 143

uname -a command 142

vmstat command 143

error message IDs
z/OS 174

error messages for JVMCI, JVM 415

error messages for JVMCL, JVM 432

error messages for JVMDBG, JVM 440

error messages for JVMDC, JVM 439

error messages for JVMDG, JVM 440

error messages for JVMHP, JVM 456

error messages for JVMLK, JVM 459

error messages for JVMST, JVM 462

error messages for JVMXE, JVM 471

error messages for JVMXM, JVM 472

error messages for Universal Trace Engine 474

errors (OutOfMemory), receiving (AIX) 120

eServer zSeries Application Assist Processor (zAAP) 489

Esid, AIX 106

events, JVMMI 348

class related 349

heap and garbage collection related 350

miscellaneous 351

thread related 349

example of real method trace 259

example session, dump formatter (jformat) 276

examples of method trace 258

exception option, z/OS 172

exceptions, JNI 72

exceptions, ORB 190

completion status and minor codes 191

nested 193

system 190

BAD_OPERATION 190

BAD_PARAM 190

COMM_FAILURE 190

DATA_CONVERSION 190

MARSHAL 190

NO_IMPLEMENT 190

UNKNOWN 190

user 190

execution engine (XE) 4

execution engine, Javadump
AIX 241

Linux 237

Windows 228

z/OS 242

execution management (XM) 4

exhaustion of Java heap, AIX 121

exhaustion of native heap, AIX 121

expansion of heap, garbage collection 19

expansion, wilderness (large object area) 11

explicit generation of a Heapdump 246

external trace, JVMRI 365

external tracing 323

F
f, AIX 105

failing function, z/OS 175

fault condition in AIX
collecting data from 127

features, ORB 57

client side interception points 60

receive_exception (receiving reply) 60

receive_other (receiving reply) 60

receive_reply (receiving reply) 60

send_poll (sending request) 60

send_request (sending request) 60

fragmentation 59

interoperable naming service (INS) 62

portable interceptors 59

522 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

features, ORB (continued)
portable object adapter 57

server side interception points 60

receive_request (receiving request) 60

receive_request_service_contexts (receiving request) 60

send_exception (sending reply) 60

send_other (sending reply) 60

send_reply (sending reply) 60

file header, Javadump
AIX 239

Linux 234

Windows 226

z/OS 241

final section, Javadump
AIX 241

Linux 239

Windows 232

z/OS 243

finalizers, garbage collection 25

common causes of perceived leaks 300

contract 26

how they are run 26

nature of 25

summary 26

finding out about the Java environment, Linux 137

fine tune options, garbage collection 23

first steps in problem determination 97

flat monitors, Javadump
Java object monitor dump 224

thread identifiers 224

floating stacks limitations, Linux 144

floating stacks, Linux 130

font limitations, Linux 144

font, NLS
properties file 202

*nix font 202

Windows font 203

font.properties file
*nix font 202

Windows font 203

fonts, NLS 201

common problems 204

installed 202

properties 201

utilities 203

*.nix platforms 203

Windows systems 203

formatting, control block (jformat) 275

formatting, JVMRI 366

fragment header 404

fragment message 404

fragmentation
AIX 122

ORB 59, 188

fragmentation, garbage collection 22

free command, Linux 142

frequently reported problems, Windows 164

frequently-asked questions, JIT 39

functions (facade), JVMRI 358

G
garbage collection 8

advanced diagnostics 306

-Xcompactexplicitgc 306

-Xdisableexplicitgc 306

-Xgcpolicy 307

garbage collection (continued)
advanced diagnostics (continued)

-Xgcthreads 307

-Xnoclassgc 307

-Xnocompactexplicitgc 307

-Xnocompactgc 307

-Xnopartialcompactgc 308

tracing 308

allocation 10

avoiding fragmentation 22

basic diagnostics (verbosegc) 300

output from a compaction 303

output from a concurrent mark AF collection 304

output from a concurrent mark AF collection with

:Xgccon 304

output from a concurrent mark collection 305

output from a concurrent mark collection with

:Xgccon 305

output from a concurrent mark kickoff 303

output from a concurrent mark System.gc

collection 304

output from a heap expansion 302

output from a heap shrinkage 302

output from a System.gc() 301

output from an allocation failure 301

output from resettable (z/OS only) 305

output when pinnedFreeList exhausted 301

basic heap sizing problems 9

cache allocation 10

coexisting with the Garbage Collector 23

bug reports 25

finalizers 25

finalizers and the garbage collection contract 26

finalizers, summary 26

how finalizers are run 26

manual invocation 26

nature of finalizers 25

predicting Garbage Collector behavior 23

summary 27

thread local heap 24

common causes of perceived leaks 299

hash tables 300

JNI references 300

listeners 300

objects with finalizers 300

premature expectation 300

static data 300

compaction avoidance 17

compaction phase 9, 17

concurrent mark 15

conservative and type-accurate garbage collection 13

detailed description 13

fine tuning options 23

frequently asked questions 27

heap and native memory use by the JVM 318

large native objects 318

native code 318

heap expansion 19

heap lock allocation 10

heap shrinkage 20

heap size 9

how to do heap sizing 21

initial and maximum heap sizes 21

interaction with applications 23

JNI weak reference 19

large object area 11

allocation 11

Index 523

garbage collection (continued)
large object area (continued)

expansion and shrinkage 11

initialization 11

mark phase 8, 14

mark stack overflow 14

object allocation 7

overview 7

parallel bitwise sweep 16

parallel mark 15

pinned clusters 12

reachable objects 8

reference objects 18

resettable JVM (z/OS only) 21

subpool 18

sweep phase 8, 16

system heap 10

tracing
st_alloc 311

st_backtrace 313

st_calloc 313

st_compact 310

st_compact_dump 311

st_compact_verbose 311

st_concurrent 315

st_concurrent_pck 316

st_concurrent_shadow_heap 318

st_dump 311

st_freelist 313

st_icompact 317

st_mark 310

st_parallel 314

st_refs 312

st_terse 309

st_trace 315

st_verify 309

understanding the Garbage Collector 7

using verbosegc 22

Verbose GC, Windows 163

verbose, heap information 250

wilderness 11

allocation 11

expansion and shrinkage 11

initialization 11

garbage collection-related events, JVMMI 350

Garbage Collector
command-line parameters 491

how does it work? 299

interaction with JNI 68

global references 69

object references 68

retained garbage 69

gathering process information, Linux 136

gdb, Linux 134

general debugging techniques, z/OS 169

cache option 171

dis <addr> <n> option 172

dump <addr> <n> option 172

dump tool 170

exception option 172

IPCS commands 173

r<n> option 173

GenerateHeapdump, JVMRI 364

GenerateJavacore, JVMRI 361

generating .hprof file, heap analysis tool (HAT) 385

generating a user dump file in a hang condition,

Windows 154

generation of a Heapdump
explicit 246

location 247

triggered 246

GetComponentDataArea, JVMRI 362

GetRasInfo, JVMRI 360

getting a dump from a hung JVM, Windows 160

getting AIX technical support 128

getting files from IBM support 92

GIOP header 401

glibc limitations, Linux 144

global references, JNI 72

capacity 72

GlowCode 383

applicability 383

running 384

summary 383

supported platforms 383

H
hanging, ORB 196

com.ibm.CORBA.LocateRequestTimeout 196

com.ibm.CORBA.RequestTimeout 196

hangs
AIX

investigating busy hangs 113

z/OS 181

bad performance 181

deadlocked 181

looping 181

hangs, AIX
debugging

AIX infinite loops 112

hangs, debugging
AIX 112

AIX deadlocks 112

poor performance 115

Linux 137

Windows 160

hardware platform interface (HPI) 5

hash tables 300

heap (Java) exhaustion, AIX 121

heap analysis tool (HAT) 384

applicability 385

generating .hprof file 385

running 385

heap and garbage collection-related events, JVMMI 350

heap and native memory use by the JVM
garbage collection

large native objects 318

native code 318

heap and native memory use by the JVM, garbage

collection 318

heap expansion, garbage collection 19

heap expansion, verbosegc output 302

heap lock allocation, garbage collection 10

heap shrinkage, garbage collection 20

heap shrinkage, verbosegc output 302

heap size, garbage collection 9

heap sizing problems, garbage collection 9

heap sizing, garbage collection 21

fine tuning options 23

initial and maximum heap sizes 21

using verbosegc 22

heap, verbose GC 250

Heapdump 245

524 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

Heapdump (continued)
agent

how to write 249

AIX, starting 103

compressed Heapdump text file 247

cross-platform tools 214

enabling 245

explicit generation of 246

HeapRoots 249

Linux, starting 131

location of 247

memory leaks 249

Out Of Memory exceptions 249

sample output 248

steady memory leaks 249

summary 245

triggered generation of 246

Windows
starting 154

Heapdump and Javadump options
JVM environment 410

HeapRoots 249

processing Heapdump 249

heaps, native and Java
AIX 117

HeapWizard 386

command-line options 387

heap view 386

terms 386

Hewlett-Packard
problem determination 149

hints, dump formatter 276

how does the Garbage Collector work ? 299

how the JIT optimizes code 38

bytecode optimization 38

DAG optimization 39

native code generation 39

quad optimization 38

how to read this book xv

how to use the dump formatter 262

Dumpviewer 262

jextract 262

jformat 262

how to write a custom class loader 33

HPROF 369

output file 370

hprof file, generating (heap analysis tool) 385

hung JVM
getting a dump from

Windows 160

I
I/O bottlenecks, AIX 127

IBM pluggable ORB 63

development tools 64

runtime 64

ibm.dg.trc.applids=application_name[,...] 328

ibm.dg.trc.buffers=nnnk|nnnm[,dynamic|nodynamic] 327

ibm.dg.trc.count[=[[!]tracepoint_specification[,...]] 328

ibm.dg.trc.exception.output=exception_trace_filespec

[,nnnm] 335

ibm.dg.trc.exception[=[[!]tracepoint_specification[,...]] 328

ibm.dg.trc.external property 365

ibm.dg.trc.external[=[[!]tracepoint_specification[,...]] 328

ibm.dg.trc.format=TraceFormat_path 334

ibm.dg.trc.highuse 337

ibm.dg.trc.initialization 328

ibm.dg.trc.iprint[=[[!]tracepoint_specification[,...]] 328

ibm.dg.trc.maximal[=[[!]tracepoint_specification[,...]] 328

ibm.dg.trc.methods=method_specification[,...] 333

ibm.dg.trc.minimal[=[[!]tracepoint_specification[,...]] 328

ibm.dg.trc.output=trace_filespec[,nnnm[,generations]] 334

ibm.dg.trc.platform[=[[!]tracepoint_specification[,...]] 328

ibm.dg.trc.print[=[[!]tracepoint_specification[,...]] 328

ibm.dg.trc.properties[=properties_filespec] 326

ibm.dg.trc.resume 337

ibm.dg.trc.resumecount=count 337

ibm.dg.trc.state.output=state_trace_filespec[,nnnm] 335

ibm.dg.trc.suspend 336

ibm.dg.trc.suspendcount=count 337

ibm.dg.trc.trigger=clause[,clause][,clause]... 338

identifying JIT’d code, Windows 156

map file 156

Process Explorer 157

IFA (Integrated Facility for Applications) 489

in-storage buffers, trace 322

dumping buffers 322

snapping buffers 322

infinite loops, AIX 112

inflated object monitors, Javadump 224

initial and maximum heap sizes, garbage collection 21

initialization, wilderness (large object area) 11

InitiateSystemDump, JVMRI 363

InjectOutOfMemory, JVMRI 362

InjectSigsegv, JVMRI 362

INS, ORB
See interoperable naming service

installing jformat, dump formatter 264

Integrated Facility for Applications (IFA) 489

interaction of the Garbage Collector with applications 23

interceptors (portable), ORB 59

interoperable naming service (INS), ORB 62

interpreting the stack trace, AIX 111

introducing the MMI 295

Inuse, AIX segment type 106

investigating busy hangs, AIX 113

io section, vmstat command 132

iostat, AIX 107

IPCS commands, z/OS 173

isCopy flag, JNI 72

generic use 74

J
Java duty manager 83

Java environment, Linux 137

Java heap, AIX 117

exhaustion 121

monitoring 119

Java IDL, choosing against RMI-IIOP 42

Java Native Interface
understanding 67

Java object monitor dump, Javadump 224

Java or native heap exhausted, AIX 121

Java service
overview 83

IBM service 83

Java duty manager 83

submitting problem report to IBM 83

Java Virtual Machine 213

JAVA_DUMP_OPTS 97, 252, 411, 455

JAVA_LOCAL_TIME 412

JAVA_PROPAGATE=NO 412

Index 525

JAVA_TDUMP_PATTERN=string 411

JAVA_THREAD_MODEL 412

Java2 32-Bit JVM default memory models, AIX 117

Java2 security permissions for the ORB 191

Javacore (cross-platform tools) 214

Javadump 219

classes, Windows 231

classloader and classes
Linux 239

z/OS 243

classloaders 231

classloaders and classes
AIX 241

cross-platform tools 214

data conversion
AIX 240

Linux 237

Windows 227

z/OS 242

diagnostic settings
Linux 237

Windows 227

z/OS 242

diagnostics settings
AIX 240

enabling 219

environment variables 234

XHPI, AIX 240

z/OS 241

execution engine
AIX 241

Linux 237

Windows 228

z/OS 242

file header, title 226

AIX 239

Linux 234

z/OS 241

final section
AIX 241

Linux 239

Windows 232

z/OS 243

how it relates to the debug environment 500

interpreting 221

Java object monitor dump 224

JIT options, Windows 230

JVM system monitor dump 223

LK component dump 224

loaded libraries 242

XHPI 240

location of generated dump 219

locks, monitors, and deadlocks (LK) 222

memory information 234

memory map, XHPI (Linux) 235

operating environment 234

XHPI, AIX 239

z/OS 241

sample output
AIX 239

Linux 233

Windows 225

z/OS 241

signal handlers 234

XHPI, AIX 240

z/OS 241

stack trace 228, 230

Javadump (continued)
JIT options AIX 241

JIT options, Linux 239

JIT options, z/OS 243

Linux 237

storage management
AIX 241

Linux 237

Windows 228

z/OS 242

system properties
AIX 240

Linux 237

Windows 226

z/OS 242

tags 221

thread counts
z/OS 242

thread numbers 224

threads
Linux 237

threads and stack trace
AIX 241

Linux 237

z/OS 242

threads, Windows 228

triggering 220

user limits
Linux 234

XHPI, AIX 239

XHPI, z/OS 241

Windows 226

XHPI section 226

XHPI, Linux 234

Javadump and Heapdump options
JVM environment 410

Javadumps
AIX 103

Linux 131

Windows 154

Javadumps, producing (Linux) 142

jdkiv, z/OS 168

jextract, dump formatter 262

jformat 261, 505

analyzing dumps 263

command plug-ins 265

commands from DvBaseCommands 267

commands from DvBaseFmtCommands 270

commands from DvClassCommands 272

commands from DvHeapDumpPlugin 274

commands from DvJavaCore 273

commands from DvObjectsCommands 272

commands from DvTraceFmtPlugin 270

commands from DvXeCommands 273

control block formatting 275

dump plug-ins 275

example session 276

hints 276

installing 264

opening the dump 264

property files 276

settings 275

shortened command forms 266

shortened modifier forms 266

starting 264

supported commands 267

jformat, dump formatter 262

526 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

Jinsight 388

applicability 388

application trace 390

running 389

summary 388

supported platforms 388

views 388

JIT
bytecode optimization 38

controlling with the debug environment 501

DAG optimization 39

frequently-asked questions 39

how the JIT optimizes code 38

MMI 37

native code generation 39

overview 37

quad optimization 38

runtime modes 38

understanding 37

JIT compilation failures, identifying 298

JIT diagnostics 295

advanced 298

disabling 295

disabling the MMI 296

introducing the MMI 295

selecting the MMI threshold 296

selectively disabling 297

short-running applications 298

working with MMI 296

JIT options
Javadump 243

JVM environment 409

JIT options, Javadump
Windows 230

JIT problem, ORB 188

JIT, Linux 142

JIT’d code, tracing back from 156

analyzing the dump 157

finding the class name 159

finding the end of the JIT frame 158

finding the method name 159

finding the method signature 159

finding the return address in the stack 157

identifying JIT’d code 156

map file 156

Process Explorer 157

JNI
checklist 76

copying and pinning 70

debugging 75

check:jni 75

check:nabounds 75

exceptions 72

generic use of is Copy and mode flag 74

global references 72

interaction with Garbage Collector 68

global references 69

object references 68

retained garbage 69

isCopy flag 72

local references 70

mode flag 73

synchronization 74

understanding 67

JNI references 300

JNI weak reference, garbage collection 19

JNIChk utility
how it relates to the debug environment 501

JProbe 390

applicability 390

memory debugger 391

summary 390

supported platforms 390

JSwat 391

applicability 391

debugging 392

running in debugger 392

summary 392

JVM
subcomponents 3

class (CL) 5

core interface 4

data conversion (DC) 5

diagnostics (DG) 5

execution engine (XE) 4

execution management (XM) 4

hardware platform interface (HPI) 5

lock (LK) 5

storage (ST) 5

JVM dump initiation 251

AIX 254

Linux 255

overview 251

platform-specific variations 253

settings 252

Windows 254

z/OS 253

JVM error messages for JVMCI 415

JVM error messages for JVMCL 432

JVM error messages for JVMDBG 440

JVM error messages for JVMDC 439

JVM error messages for JVMDG 440

JVM error messages for JVMHP 456

JVM error messages for JVMLK 459

JVM error messages for JVMST 462

JVM error messages for JVMXE 471

JVM error messages for JVMXM 472

JVM monitoring interface (JVMMI) 343

JVM performance, Linux 141

JVM settings
environment 407

basic JIT options 409

diagnostics options 410

general options 408

Javadump and Heapdump options 410

JVM system monitor dump 223

JVM trace, cross-platform tools 215

JVMCI, error messages 415

JVMCL, error messages 432

JVMDBG, error messages 440

JVMDC, error messages 439

jvmdcf file 505

JVMDG, error messages 440

JVMDI tools, cross-platform tools 215

JVMHP, error messages 456

JVMLK, error messages 459

JVMMI 343

agent
Detail information 345

EBCDIC platforms 346

inside 346

name 346

user data 346

Index 527

JVMMI (continued)
agent (continued)

writing 344

API calls 347, 348

building the agent
AIX PPC32 347

AIX PPC64 347

Linux 347

Windows 346

z/OS 347

cross-platform tools 216

DisableEvent 348

EnableEvent 347

EnumerateOver 348

enumerations 351

events 348

class related 349

heap and garbage collection related 350

miscellaneous 351

thread related 349

interface 346

problem determination 343

JVMPI 369

HPROF profiler 369

output file 370

JVMPI tools, cross-platform tools 215

JVMRI 355

API calls 358

CreateThread 361

DumpDeregister 360

DumpRegister 359

dynamic verbosegc 363

GenerateHeapdump 364

GenerateJavacore 361

GetComponentDataArea 362

GetRasInfo 360

InitiateSystemDump 363

InjectOutOfMemory 362

InjectSigsegv 362

NotifySignal 360

ReleaseRasInfo 360

RunDumpRoutine 361

SetOutOfMemoryHook 363

TraceDeregister 358

TraceRegister 358

TraceResume 359

TraceResumeThis 364

TraceSet 358

TraceSnap 359

TraceSuspend 359

TraceSuspendThis 363

changing trace options 357

cross-platform tools 216

external trace 365

formatting 366

functions (facade) 358

launching the agent 357

plug-in design 357

RasInfo
request types 365

structure 364

registering a trace listener 356

writing an agent 355

JVMST, error messages 462

JVMXE, error messages 471

JVMXM, error messages 472

K
kernel, AIX segment type 106

known limitations, Linux 143

CORBA limitations 144

floating stacks limitations 144

font limitations 144

glibc limitations 144

scheduler limitation on SLES 8 145

threads as processes 143

L
large address aware 152

large native objects
heap and native memory use by the JVM

garbage collection 318

large object area (LOA), garbage collection 11

allocation 11

expansion and shrinkage 11

initialization 11

LE HEAP, z/OS 182

LE settings, z/OS 167

leaks, memory (Windows)
classifying 162

tracing 162

Verbose GC 163

libraries, loaded
XHPI, Javadump 240

limitations, Linux 143

CORBA limitations 144

floating stacks limitations 144

font limitations 144

glibc limitations 144

scheduler limitation on SLES 8 145

threads as processes 143

limits (user) for XHPI, Javadump
AIX 239

Linux 234

z/OS 241

Linux
checking the system environment 136

collecting data from a fault condition 142

collecting additional diagnostic data 143

core files 142

determining the operating environment 142

proc file system 143

producing Javadumps 142

sending information to Java Support 143

strace, ltrace, and mtrace 143

using system logs 142

CORBA 144

core files 129

crashes, diagnosing 136

checking the system environment 136

finding out about the Java environment 137

gathering process information 136

debugging commands 133

gdb 134

ltrace tool 134

mtrace tool 134

ps 133

strace tool 133

tracing 133

debugging hangs 137

debugging memory leaks 138

debugging performance problems 139

528 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

Linux (continued)
CPU usage 139

JIT 142

JVM performance 141

memory usage 140

network problems 140

system performance 139

debugging techniques 131

finding out about the Java environment 137

floating stacks 130

gathering process information 136

gdb 134

Javadump sample output 233

JVM dump initiation 255

known limitations 143

CORBA limitations 144

floating stacks limitations 144

font limitations 144

glibc limitations 144

scheduler limitation on SLES 8 145

threads as processes 143

ltrace 143

mtrace 143

nm command 131

objdump command 131

problem determination 129

ps command 132

setting up and checking the environment 129

core files 129

floating stacks 130

threading libraries 130

working directory 129

starting heapdumps 131

starting Javadumps 131

strace 143

threading libraries 130

top command 132

tracing 133

using core dumps 131

using system logs 132

using the dump extractor 131

vmstat command 132

CPU section 133

io section 132

memory section 132

processes section 132

swap section 132

system section 133

working directory 129

Linux problem determination 129

collecting data from a fault condition 142

core files 142

determining the operating environment 142

producing Javadumps 142

using system logs 142

debugging hangs 137

debugging memory leaks 138

debugging performance problems 139

CPU usage 139

JIT 142

JVM performance 141

memory usage 140

network problems 140

system performance 139

debugging techniques 131

commands 133

gdb 134

Linux problem determination (continued)
debugging techniques (continued)

ltrace tool 134

mtrace tool 134

nm command 131

objdump command 131

ps command 132, 133

starting heapdumps 131

starting Javadumps 131

strace tool 133

top command 132

tracing 133

using core dumps 131

using system logs 132

using the dump extractor 131

vmstat command 132

diagnosing crashes 136

checking the system environment 136

finding out about the Java environment 137

gathering process information 136

known limitations 143

CORBA limitations 144

floating stacks limitations 144

font limitations 144

glibc limitations 144

scheduler limitation on SLES 8 145

threads as processes 143

setting up and checking the environment 129

core files 129

floating stacks 130

threading libraries 130

working directory 129

listeners 300

LK component dump, Javadump 224

LOA
See large object area (LOA)

loaded libraries
XHPI, Javadump 240, 242

local references, JNI 70

capacity 71

manually handling 71

scope 70

locate reply body 404

locate reply header 404

locate request header 403

location of generated Heapdump 247

lock (LK) 5

locks, monitors, and deadlocks (LK), Javadump 222

looping hangs, z/OS 181

loops, infinite (AIX) 112

lsattr, AIX 107

lsof command, Linux 143

ltrace, Linux 134, 143

M
maintenance, z/OS 167

manual invocation of the Garbage Collector 26

map file, Windows 156

mark phase, garbage collection 8, 14

mark stack overflow, garbage collection 14

MARSHAL 190

maximum and initial heap sizes, garbage collection 21

memory bottlenecks, AIX 126

memory debugger, JProbe 391

memory information for XHPI, Javadump
Linux 234

Index 529

memory leaks
z/OS 182

LE HEAP 182

OutOfMemoryErrors 183

virtual storage 182

memory leaks, debugging
AIX

32- and 64-bit JVMs 115

32-bit AIX Virtual Memory Model 115

64-bit AIX Virtual Memory Model 116

changing the Memory Model (32-bit JVM) 116

changing the memory models 118

Java heap exhaustion 121

Java or native heap exhausted 121

Java2 32-Bit JVM default memory models 117

monitoring the Java heap 119

monitoring the native heap 118

native and Java heaps 117

native heap exhaustion 121

native heap usage 119

receiving OutOfMemory errors 120

Linux 138

Windows 161

memory leaks, Heapdump 249

memory leaks, Windows
classifying 162

tracing 162

Verbose GC 163

memory map, XHPI (Linux) 235

Memory Model (32-bit JVM), changing, AIX 116

memory model, Windows 161

memory models, changing (AIX) 118

memory models, Java2 32-Bit JVM default (AIX) 117

memory section, vmstat command 132

memory usage, Linux 140

memory usage, understanding
AIX 115

message format, CORBA GIOP 401

cancel request header 403

fragment header 404

fragment message 404

GIOP header 401

locate reply body 404

locate reply header 404

locate request header 403

reply body 403

reply header 402

request body 402

request header 402

message trace , ORB 193

method name, Windows 159

method signature, Windows 159

method trace 257

advanced options 258

cross-platform tools 216

examples 258

real example 259

running with 257

where output appears 258

Microsoft tools 154

Dr. Watson 155

user dumps 155

WinDbg 155

minimum requirements, dump formatter 264

minor codes , CORBA 405

minor codes, ORB 191

miscellaneous events, JVMMI 351

MiscellaneousTrace control properties 326

mmap, AIX segment type 106

MMI, JIT (overview) 37

mode flag, JNI 73

generic use 74

modifier forms (shortened), jformat 266

monitoring the Java heap, AIX 119

monitoring the native heap, AIX 118

monitors, flat (Javadump)
thread identifiers 224

monitors, flat and inflated object (Javadump)
Java object monitor dump 224

monitors, Javadump 222

monitors, registered (JVM system monitor dump) 223

mtrace, Linux 134, 143

MustGather
collecting the correct data to solve problems 85

N
name spaces and the runtime package, class loader 32

native code
heap and native memory use by the JVM

garbage collection 318

native code generation, JIT 39

native heap, AIX 117

exhaustion 121

monitoring 118

usage 119

native tools
Windows 153

Dr. Watson 153

nature of finalizers, garbage collection 25

nested exceptions, ORB 193

netpmon, AIX 107

netstat, AIX 108

network problems, Linux 140

NLS
font properties 201

font.properties file 202

*nix font 202

Windows font 203

fonts 201

installed fonts 202

problem determination 201

nm command, Linux 131

nmon, AIX 109

NO_IMPLEMENT 190

NotifySignal, JVMRI 360

O
objdump command, Linux 131

object allocation, garbage collection 7

objects with finalizers 300

objects, global
Garbage Collector interaction with JNI 69

objects, reachable (garbage collection) 8

objects, reference (garbage collection) 18

Garbage Collector interaction with JNI 68

opening the dump, dump formatter 264

operating environment for XHPI, Javadump
AIX 239

Linux 234

z/OS 241

530 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

optimization
bytecode 38

DAG 39

quad 38

optimization code, JIT 38

options
HeapWizard, command-line 387

JVM environment
basic JIT 409

diagnostics 410

general 408

Javadump and Heapdump 410

method trace, advanced 258

ORB
client side 51

bootstrap process 53

delegation 54

getting hold of the remote object 52

ORB initialization 52

remote method invocation 54

servant 54

stub creation 51

common problems 196

client and server running, not naming service 197

com.ibm.CORBA.LocateRequestTimeout 196

com.ibm.CORBA.RequestTimeout 196

hanging 196

running the client with client unplugged 198

running the client without server 197

completion status and minor codes 191

CORBA
differences between RMI (JRMP) and RMI-IIOP 47

examples 42

further reading 42

interfaces 42

introduction 41

Java IDL or RMI-IIOP? 42

remote object implementation or servant 43

RMI and RMI-IIOP 41

RMI-IIOP limitations 42

server code 44

stub and ties generation 43

summary of differences in client development 47

summary of differences in server development 47

debug properties 189

com.ibm.CORBA.CommTrace 189

com.ibm.CORBA.Debug 189

com.ibm.CORBA.Debug.Output 189

debugging 187

diagnostic tools
-J-Djavac.dump.stack=1 189

-Xtrace 189

exceptions 190

features 57

client side interception points 60

fragmentation 59

interoperable naming service (INS) 62

portable interceptors 59

portable object adapter 57

server side interception points 60

how it works 51

IBM ORB development tools 64

IBM ORB runtime 64

IBM pluggable 63

identifying a problem 187

fragmentation 188

JIT problem 188

ORB (continued)
identifying a problem (continued)

ORB versions 188

packaging 188

platform-dependent problem 188

what the ORB component contains 187

what the ORB component does not contain 188

Java IDL or RMI-IIOP?
choosing 42

properties 48

RMI and RMI-IIOP
differences between RMI (JRMP) and RMI-IIOP 47

examples 42

further reading 42

interfaces 42

introduction 41

remote object implementation or servant 43

server code 44

stub and ties generation 43

summary of differences in client development 47

summary of differences in server development 47

RMI-IIOP limitations 42

security permissions 191

server side 55

processing a request 56

servant binding 55

servant implementation 55

tie generation 55

service: collecting data 198

data to be collected 199

preliminary tests 198

stack trace 192

description string 192

nested exceptions 193

system exceptions 190

BAD_OPERATION 190

BAD_PARAM 190

COMM_FAILURE 190

DATA_CONVERSION 190

MARSHAL 190

NO_IMPLEMENT 190

UNKNOWN 190

traces 193

client or server 195

comm 194

message 193

service contexts 195

understanding 41

client side interception points 60

features 57

fragmentation 59

how it works 51

IBM pluggable 63

interoperable naming service (INS) 62

portable interceptors 59

portable object adapter 57

processing a request 56

servant binding 55

servant implementation 55

server side interception points 60

the client side 51

the server side 55

tie generation 55

using 48

user exceptions 190

versions 188

Index 531

ORB and WebSphere Application Server
selecting ORB traces 400

tracing 399

changing on a running server 400

enabling at server startup 399

ORB component
what it contains 187

what it does not contain 188

ORB properties
com.ibm.CORBA.AcceptTimeout 48

com.ibm.CORBA.AllowUserInterrupt 48

com.ibm.CORBA.BootstrapHost 48

com.ibm.CORBA.BootstrapPort 48

com.ibm.CORBA.BufferSize 48

com.ibm.CORBA.ConnectTimeout 48

com.ibm.CORBA.enableLocateRequest 49

com.ibm.CORBA.FragmentSize 49

com.ibm.CORBA.FragmentTimeout 49

com.ibm.CORBA.GIOPAddressingDisposition 49

com.ibm.CORBA.InitialReferencesURL 49

com.ibm.CORBA.ListenerPort 49

com.ibm.CORBA.LocalHost 49

com.ibm.CORBA.LocateRequestTimeout 49

com.ibm.CORBA.MaxOpenConnections 49

com.ibm.CORBA.MinOpenConnections 49

com.ibm.CORBA.NoLocalInterceptors 50

com.ibm.CORBA.ORBCharEncoding 50

com.ibm.CORBA.ORBWCharDefault 50

com.ibm.CORBA.RequestTimeout 50

com.ibm.CORBA.SendingContextRunTimeSupported 48

com.ibm.CORBA.SendVersionIdentifier 50

com.ibm.CORBA.ServerSocketQueueDepth 50

com.ibm.CORBA.ShortExceptionDetails 50

com.ibm.tools.rmic.iiop.Debug 50

com.ibm.tools.rmic.iiop.SkipImports 50

OS/2
problem determination 209

other sources of information xvi

other sources of information for debugging 103

Out Of Memory exceptions, Heapdump 249

OutOfMemory errors, receiving (AIX) 120

OutOfMemoryErrors, z/OS 183

output, verbosegc
from a concurrent mark AF collection 304

from a concurrent mark AF collection with :Xgccon 304

from a concurrent mark collection 305

from a concurrent mark collection with :Xgccon 305

from a concurrent mark kickoff 303

from a concurrent mark System.gc collection 304

from a heap compaction 303

from a heap expansion 302

from a heap shrinkage 302

from a System.gc() 301

from an allocation failure 301

from resettable (z/OS only) 305

when pinnedFreeList exhausted 301

overflow of mark stack, garbage collection 14

overview of diagnostics 213

categorizing problems 213

cross-platform tools 214

applications trace 216

command line parameters, JVM 217

dump formatter 214

Heapdump 214

Javadump (or Javacore) 214

JVM environment variables 217

JVM trace 215

overview of diagnostics (continued)
cross-platform tools (continued)

JVMDI tools 215

JVMMI 216

JVMPI tools 215

JVMRI 216

method trace 216

platforms 213

third-party tools 214

P
packaging, ORB 188

parallel bitwise sweep, garbage collection 16

parallel mark, garbage collection 15

parameters
command line

cross-platform tools, JVM 217

command-line 487

general 487

nonstandard 489

system property 487

parent-delegation model, class loader 32

performance factors, JVM 86

performance problem questions, JVM 86

performance problems, debugging
AIX 123

collecting data from a fault condition 127

CPU bottlenecks 124

finding the bottleneck 123

getting AIX technical support 128

I/O bottlenecks 127

memory bottlenecks 126

Linux 139

CPU usage 139

JIT 142

JVM performance 141

memory usage 140

network problems 140

system performance 139

Windows 163

data for bug report 164

frequently reported problems 164

performance problems, z/OS 184

pers, AIX segment type 106

Persistent Reusable JVM, class loader 34

Pgsp, AIX segment type 106

pid, AIX 104

Pin, AIX segment type 106

pinned clusters, garbage collection 12

pinning and copying 70

platform-dependent problem, ORB 188

platform-specific variations, JVM dump initiation 253

platforms supported in diagnostics 213

platforms, Jinsight 388

platforms, JProbe 390

plug-in design, JVMRI (launching) 357

poor performance, AIX 115

portable interceptors, ORB 59

portable object adapter
ORB 57

power management effect on timers, trace 322

ppid, AIX 104

preliminary tests for collecting data, ORB 198

premature expectation 300

pri, AIX 105

private storage usage, z/OS 167

532 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

problem determination
AIX 101

32- and 64-bit JVMs 115

32-bit AIX Virtual Memory Model 115

64-bit AIX Virtual Memory Model 116

Addr Range 106

AIX deadlocks 112

AIX infinite loops 112

archon 105

band 105

bindprocessor –q 107

bootinfo 107

changing the Memory Model (32-bit JVM) 116

changing the memory models 118

clnt 106

cmd 104

collecting data from a fault condition 127

cp 105

CPU bottlenecks 124

debugging commands 103

debugging hangs 112

debugging memory leakss 103

debugging performance problem 123

debugging techniques 102

Description parameter 106

diagnosing crashes 111

documents to gather 111

enabling full AIX core files 102

Esid 106

f 105

finding the bottleneck 123

fragmentation problems 122

getting AIX technical support 128

I/O bottlenecks 127

interpreting the stack trace 111

Inuse 106

investigating busy hangs 113

iostat 107

Java heap exhaustion 121

Java or native heap exhausted 121

Java2 32-Bit JVM default memory models 117

kernel 106

lsattr 107

memory bottlenecks 126

mmap 106

monitoring the Java heap 119

monitoring the native heap 118

native and Java heaps 117

native heap exhaustion 121

native heap usage 119

netpmon 107

netstat 108

nmon 109

other sources of information 103

pers 106

Pgsp 106

pid 104

Pin 106

poor performance 115

ppid 104

pri 105

process private 106

ps command 103

receiving OutOfMemory errors 120

sar 109

sc 105

setting up and checking AIX environment 101

problem determination (continued)
AIX (continued)

shared library 106

shmat/mmap 106

st 104

starting Heapdumps 103

starting Javadumps 103

stime 104

submitting a bug report 123

svmon 105

tat 105

tid 104

time 104

topas 109

tprof 109

trace 110

truss 110

tty 104

Type 106

uid 104

understanding memory usage 115

user 104

vmstat 110

Vsid 106

work 106

AS/400 207

first steps 97

Hewlett-Packard 149

Linux 129

checking the system environment 136

collecting additional diagnostic data 143

collecting data from a fault condition 142

CORBA limitations 144

core files 129, 142

CPU usage 139

debugging commands 133

debugging hangs 137

debugging memory leaks 138

debugging performance problems 139

debugging techniques 131

determining the operating environment 142

diagnosing crashes 136

finding out about the Java environment 137

floating stacks 130

floating stacks limitations 144

font limitations 144

gathering process information 136

gdb 134

glibc limitations 144

JIT 142

JVM performance 141

known limitations 143

ltrace tool 134

memory usage 140

mtrace tool 134

network problems 140

nm command 131

objdump command 131

proc file system 143

producing Javadumps 142

ps command 132, 133

scheduler limitation on SLES 8 145

sending information to Java Support 143

setting up and checking the environment 129

starting heapdumps 131

starting Javadumps 131

strace tool 133

Index 533

problem determination (continued)
Linux (continued)

strace, ltrace, and mtrace 143

system performance 139

threading libraries 130

threads as processes 143

top command 132

tracing 133

using core dumps 131

using system logs 132, 142

using the dump extractor 131

vmstat command 132

working directory 129

ORB 187

collecting data 198

common problems 196

debug properties 189

fragmentation 188

identifying the problem 187

interpreting ORB traces 193

interpreting the stack trace 192

JIT problem 188

ORB exceptions 190

ORB versions 188

packaging 188

platform-dependent problem 188

what ORB contains 187

what ORB does not contain 188

OS/2 209

Sun Solaris 147

Windows 151

analyzing deadlocks 160

analyzing the dump 157

classifying leaks 162

collecting data from a fault condition 164

data for bug report 164

debugging hangs 160

debugging memory leaks 161

debugging performance problems 163

debugging techniques 154

diagnosing crashes 155

Dump Extractor 154

finding the class name 159

finding the end of the JIT frame 158

finding the method name 159

finding the method signature 159

finding the return address in the stack 157

frequently reported problems 164

getting a dump from a hung JVM 160

Heapdumps 154

identifying JIT’d code 156

Javadumps 154

map file 156

memory model 161

Microsoft tools 154

native tools 153

Process Explorer 157

sending data to IBM 159

setting up and checking environment 151, 153

setting up for dump extraction 153

tracing back from JIT’d code 156

tracing leaks 162

Verbose GC 163

z/OS
allocations to LE HEAP 182

badly-performing process 181

cache option 171

problem determination (continued)
z/OS (continued)

collecting data 185

debugging hangs 181

debugging memory leaks 182

debugging performance problems 184

determining the failing function 175

diagnosing crashes 174

dis <addr> <n> option 172

documents to gather 174

dump <addr> <n> option 172

dump tool 170

environment variables 167

environment, checking 167

exception option 172

general debugging techniques 169

IPCS commands 173

jdkiv 168

LE settings 167

maintenance 167

OutOfMemoryErrors 183

private storage usage 167

process deadlocked 181

process looping 181

r<n> option 173

setting up dumps 169

TDUMPs 176

virtual storage 182

Problem Determination build 503

problem determination, JNI 75

check:jni 75

check:nabounds 75

problem report
advice 89

before you submit 85

checklist 85

contents 89

data to include 85

escalating problem severity 90

factors that affect JVM performance 86

getting files from IBM support 92

overview 83

IBM service 83

Java duty manager 83

performance problem questions 86

problem severity ratings 89

submitting data 91

javaserv (IBM internal only) 91

sending an AIX core file to IBM support 93

sending files to IBM support 92

using your own ftp server 93

submitting to IBM service 83

test cases 86

when you will receive your fix 93

problem severity ratings 89

escalating 90

problem submission
advice 89

before you submit 85

checklist 85

data 91

javaserv (IBM internal only) 91

sending an AIX core file to IBM support 93

sending files to IBM support 92

using your own ftp server 93

data to include 85

escalating problem severity 90

534 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

problem submission (continued)
factors that affect JVM performance 86

getting files from IBM support 92

overview 83

IBM service 83

Java duty manager 83

performance problem questions 86

problem severity ratings 89

raising a report 89

sending to IBM service 83

test cases 86

when you will receive your fix 93

problems, frequently reported (Windows) 164

problems, ORB 196

client and server running, not naming service 197

hanging 196

com.ibm.CORBA.LocateRequestTimeout 196

com.ibm.CORBA.RequestTimeout 196

running the client with client unplugged 198

running the client without server 197

proc file system, Linux 143

Process Explorer 392

Process Explorer, Windows 157

process information, gathering (Linux) 136

process private, AIX segment type 106

processes section, vmstat command 132

producing Javadumps, Linux 142

properties that control tracepoint selection 324

properties that indirectly affect tracepoint selection 325

properties that specify output files 326

properties, ORB 48

com.ibm.CORBA.AcceptTimeout 48

com.ibm.CORBA.AllowUserInterrupt 48

com.ibm.CORBA.BootstrapHost 48

com.ibm.CORBA.BootstrapPort 48

com.ibm.CORBA.BufferSize 48

com.ibm.CORBA.ConnectTimeout 48

com.ibm.CORBA.enableLocateRequest 49

com.ibm.CORBA.FragmentSize 49

com.ibm.CORBA.FragmentTimeout 49

com.ibm.CORBA.GIOPAddressingDisposition 49

com.ibm.CORBA.InitialReferencesURL 49

com.ibm.CORBA.ListenerPort 49

com.ibm.CORBA.LocalHost 49

com.ibm.CORBA.LocateRequestTimeout 49

com.ibm.CORBA.MaxOpenConnections 49

com.ibm.CORBA.MinOpenConnections 49

com.ibm.CORBA.NoLocalInterceptors 50

com.ibm.CORBA.ORBCharEncoding 50

com.ibm.CORBA.ORBWCharDefault 50

com.ibm.CORBA.RequestTimeout 50

com.ibm.CORBA.SendingContextRunTimeSupported 48

com.ibm.CORBA.SendVersionIdentifier 50

com.ibm.CORBA.ServerSocketQueueDepth 50

com.ibm.CORBA.ShortExceptionDetails 50

com.ibm.tools.rmic.iiop.Debug 50

com.ibm.tools.rmic.iiop.SkipImports 50

properties, system (Javadump), Windows 226

property files, dump formatter (jformat) 276

ps command
AIX 103

Linux 132, 133

ps-ef command, Linux 142

Q
quad optimization, JIT 38

R
r<n> option, z/OS 173

raising a problem report for submission 83

contents 89

escalating problem severity 90

problem severity ratings 89

RAS interface (JVMRI) 355

RasInfo, JVMRI
request types 365

structure 364

reachable objects, garbage collection 8

receive_exception (receiving reply) 60

receive_other (receiving reply) 60

receive_reply (receiving reply) 60

receive_request (receiving request) 60

receive_request_service_contexts (receiving request) 60

receiving OutOfMemory errors, AIX 120

reference objects, garbage collection 18

registered monitors
JVM system monitor dump 223

ReleaseRasInfo, JVMRI 360

reliability, availability, and serviceability interface

(JVMRI) 355

Remote Method Invocation
See RMI 77

remote object
ORB client side

bootstrap process 53

getting hold of 52

remote method invocation 54

remote object implementation or servant, ORB 43

reply body 403

reply header 402

ReportEnv
AIX 102

Linux 129

Windows 152

reporting problems in the JVM, summary xvi

request body 402

request header 402

request types, JVMRI (RasInfo) 365

resettable (z/OS only), verbosegc output 305

resettable JVM (z/OS only), garbage collection 21

resume or suspend and triggering 325

retained garbage
Garbage Collector interaction with JNI 69

return address in the stack, Windows 157

RMI
debugging applications 79

Distributed Garbage Collection 78

examples 42

further reading 42

interfaces 42

introduction 41

remote object implementation or servant 43

server code 44

differences between RMI (JRMP) and RMI-IIOP 47

summary of differences in client development 47

summary of differences in server development 47

stub and ties generation 43

thread pooling 78

understanding 77

RMI-IIOP
choosing against Java IDL 42

examples 42

further reading 42

interfaces 42

Index 535

RMI-IIOP (continued)
introduction 41

limitations 42

remote object implementation or servant 43

server code 44

differences between RMI (JRMP) and RMI-IIOP 47

summary of differences in client development 47

summary of differences in server development 47

stub and ties generation 43

root level, HeapWizard 386

rootsize, HeapWizard 386

RunDumpRoutine, JVMRI 361

running the client with client unplugged, ORB 198

running the client without server, ORB 197

runtime diagnostics, class loader 319

runtime modes, JIT 38

runtime package and name spaces, class loader 32

S
sample output

Heapdump 248

sample output, Javadump
AIX 239

Linux 233

Windows 225

sar, AIX 109

sc, AIX 105

scheduler limitation on SLES 8, Linux 145

see also dump formatter 261

selecting ORB traces 400

selecting the MMI threshold 296

selectively disabling the JIT 297

send_exception (sending reply) 60

send_other (sending reply) 60

send_poll (sending request) 60

send_reply (sending reply) 60

send_request (sending request) 60

sending an AIX core file to IBM support 93

sending data to IBM, Windows 159

sending files to IBM support
IBM internal only 91

outside IBM 92

using your own ftp server 93

sending information to Java Support, Linux 143

servant, ORB client side 54

server code, ORB 44

server side interception points, ORB 60

receive_request (receiving request) 60

receive_request_service_contexts (receiving request) 60

send_exception (sending reply) 60

send_other (sending reply) 60

send_reply (sending reply) 60

server side, ORB 55

processing a request 56

servant binding 55

servant implementation 55

tie generation 55

server, ORB 195

service contexts, ORB 195

service: collecting data, ORB 198

data to be collected 199

preliminary tests 198

SetOutOfMemoryHook, JVMRI 363

setting up and checking AIX environment 101

setting up and checking environment, Windows 151, 153

setting up for dump extraction
Windows 153

settings for diagnostics, Javadump (AIX) 240

settings, default (JVM) 495

settings, dump formatter (jformat) 275

settings, JVM
environment 407

basic JIT options 409

diagnostics options 410

general options 408

Javadump and Heapdump options 410

settings, JVM dump initiation 252

severity ratings for problems 89

escalating 90

shared library, AIX segment type 106

shmat/mmap, AIX segment type 106

shortened command forms, dump formatter (jformat) 266

shortened modifier forms, dump formatter (jformat) 266

shrinkage of heap, garbage collection 20

shrinkage, wilderness (large object area) 11

signal handlers
XHPI, Javadump

AIX 240

Linux 234

z/OS 241

signal information, Javadump
AIX 239

Linux 234

Windows 226

z/OS 241

skeletons, ORB 43

SLES 8
Linux scheduler limitation 145

snapping buffers 322

st_alloc 311

st_backtrace 313

st_calloc 313

st_compact 310

st_compact_dump 311

st_compact_verbose 311

st_concurrent 315

st_concurrent_pck 316

st_concurrent_shadow_heap 318

st_dump 311

st_freelist 313

st_icompact 317

st_mark 310

st_parallel 314

st_refs 312

st_terse 309

st_trace 315

st_verify 309

st, AIX 104

stack trace and threads, Javadump
Linux 237

z/OS 242

stack trace, interpreting (AIX) 111

stack trace, Javadump
AIX 241

JIT options
Linux 239

Windows 230

refining with JIT options
AIX 241

z/OS 243

Windows 228

stack trace, ORB 192

536 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

stack trace, ORB (continued)
description string 192

nested exceptions 193

standalone environment check, jdkiv (z/OS) 168

starting jformat, dump formatter 264

static data 300

stderr, tracing to 323

steady memory leaks, Heapdump 249

stime, AIX 104

storage (ST) 5

storage management, Javadump
AIX 241

Linux 237

Windows 228

z/OS 242

storage usage, private (z/OS) 167

storage, z/OS 182

strace, Linux 143

Linux 133

string (description), ORB 192

stub and ties generation, ORB 43

subcomponents, JVM 3

class (CL) 5

core interface 4

data conversion (DC) 5

diagnostics (DG) 5

execution engine (XE) 4

execution management (XM) 4

hardware platform interface (HPI) 5

lock (LK) 5

storage (ST) 5

submitting a bug report, AIX 123

submitting data
javaserv (IBM internal only) 91

sending files to IBM support 92

submitting data with a problem report 91

javaserv (IBM internal only) 91

sending an AIX core file to IBM support 93

sending files to IBM support 92

using your own ftp server 93

subpool, garbage collection 18

summary of differences in client development 47

summary of differences in server development 47

Sun properties, deprecated 50

Sun Solaris
problem determination 147

supported commands, dump formatter (jformat) 267

suspend or resume and triggering 325

svmon, AIX 105

swap section, vmstat command 132

sweep phase, garbage collection 8, 16

synchronization, JNI 74

system exceptions, ORB 190

BAD_OPERATION 190

BAD_PARAM 190

COMM_FAILURE 190

DATA_CONVERSION 190

MARSHAL 190

NO_IMPLEMENT 190

UNKNOWN 190

system heap, garbage collection 10

system logs, using (Linux) 132, 142

system monitor dump, JVM 223

system performance, Linux 139

system properties
command-line parameters 487

system properties (continued)
ibm.dg.trc.exception.output=exception_trace_filespec

[,nnnm] 335

ibm.dg.trc.format=TraceFormat_path 334

ibm.dg.trc.highuse 337

ibm.dg.trc.methods=method_specification[,...] 333

ibm.dg.trc.output=trace_filespec[,nnnm[,generations]] 334

ibm.dg.trc.resume 337

ibm.dg.trc.resumecount=count 337

ibm.dg.trc.state.output=state_trace_filespec[,nnnm] 335

ibm.dg.trc.suspend 336

ibm.dg.trc.suspendcount=count 337

ibm.dg.trc.trigger=clause[,clause][,clause]... 338

trace
properties that control tracepoint selection 324

properties that indirectly affect tracepoint selection 325

properties that specify output files 326

specifying 324

summary 324

triggering and suspend or resume 325

system properties, Javadump
AIX 240

Linux 237

Windows 226

z/OS 242

system properties, MiscellaneousTrace 326

system section, vmstat command 133

System.gc(), verbosegc output 301

T
tags, Javadump 221

tat, AIX 105

TDUMPs
z/OS 176

technical support for AIX 128

terminology and conventions in this book xvi

test cases, JVM 86

third-party tools 383

GlowCode 383

applicability 383

GlowCode 383

running 384

summary 383

heap analysis tool (HAT) 384

applicability 385

generating .hprof file 385

running 385

HeapWizard 386

command-line options 387

heap view 386

terms 386

Jinsight 388

applicability 388

application trace 390

running 389

summary 388

supported platforms 388

views 388

JProbe 390

applicability 390

memory debugger 391

summary 390

supported platforms 390

JSwat 391

applicability 391

debugging 392

Index 537

third-party tools (continued)
JSwat (continued)

running in debugger 392

summary 392

Process Explorer 392

third-party tools, diagnostics 214

thread counts, XHPI (z/OS) 242

thread identifiers, Javadump 224

thread local heap, garbage collection 24

thread pooling
RMI 78

thread-related events, JVMMI 349

threading libraries, Linux 130

threads and stack trace, Javadump
AIX 241

Linux 237

Windows 228

z/OS 242

threads as processes, Linux 143

tid, AIX 104

time, AIX 104

timers (trace), power management effect on 322

tools
cross-platform 214

platform-specific 217

third-party 383

GlowCode 383

heap analysis tool (HAT) 384

HeapWizard 386

Jinsight 388

JProbe 390

JSwat 391

Process Explorer 392

tools, native
Windows 153

Dr. Watson 153

tools, ReportEnv
AIX 102

Linux 129

Windows 152

top command, Linux 132, 143

topas, AIX 109

tprof, AIX 109

trace
AIX 110

applications 321

backtrace 342

control properties, MiscellaneousTrace 326

controlling 323

dbgmalloc 342

debugging memory leaks 341

how it relates to the debug environment 500

ibm.dg.trc.applids=application_name[,...] 328

ibm.dg.trc.buffers=nnnk|nnnm[,dynamic|nodynamic] 327

ibm.dg.trc.count[=[[!]tracepoint_specification[,...]] 328

ibm.dg.trc.exception.output=exception_trace_filespec

[,nnnm] 335

ibm.dg.trc.exception[=[[!]tracepoint_specification[,...]] 328

ibm.dg.trc.external[=[[!]tracepoint_specification[,...]] 328

ibm.dg.trc.format=TraceFormat_path 334

ibm.dg.trc.highuse 337

ibm.dg.trc.initialization 328

ibm.dg.trc.iprint[=[[!]tracepoint_specification[,...]] 328

ibm.dg.trc.maximal[=[[!]tracepoint_specification[,...]] 328

ibm.dg.trc.methods=method_specification[,...] 333

ibm.dg.trc.minimal[=[[!]tracepoint_specification[,...]] 328

ibm.dg.trc.output=trace_filespec[,nnnm[,generations]] 334

trace (continued)
ibm.dg.trc.platform[=[[!]tracepoint_specification[,...]] 328

ibm.dg.trc.print[=[[!]tracepoint_specification[,...]] 328

ibm.dg.trc.properties[=properties_filespec] 326

ibm.dg.trc.resume 337

ibm.dg.trc.resumecount=count 337

ibm.dg.trc.state.output=state_trace_filespec[,nnnm] 335

ibm.dg.trc.suspend 336

ibm.dg.trc.suspendcount=count 337

ibm.dg.trc.trigger=clause[,clause][,clause]... 338

internal 322

Java applications and the JVM 321

memory tracing 342

methods 321

placing data into a file 322

external tracing 323

trace combinations 323

tracing to stderr 323

placing data into in-storage buffers 322

dumping buffers 322

snapping buffers 322

power management effect on timers 322

properties 340

properties that control tracepoint selection 324

properties that indirectly affect tracepoint selection 325

properties that specify output files 326

property summary 324

system properties
specifying 324

trace formatter 340

invoking 340

tracepoint ID 341

triggering and suspend or resume 325

trace combinations 323

trace data, JVMRI
intercepting 365

trace data, JVMRI (ibm.dg.trc.external property) 365

trace formatter 340

invoking 340

trace listener, registering (JVMRI) 356

trace options, changing (JVMRI) 357

trace, external (JVMRI) 365

TraceDeregister, JVMRI 358

tracepoint specification 330

TraceRegister, JVMRI 358

TraceResume, JVMRI 359

TraceResumeThis, JVMRI 364

traces, ORB 193

client or server 195

comm 194

message 193

service contexts 195

TraceSet, JVMRI 358

TraceSnap, JVMRI 359

TraceSuspend, JVMRI 359

TraceSuspendThis, JVMRI 363

tracing
garbage collection 308

st_alloc 311

st_backtrace 313

st_calloc 313

st_compact 310

st_compact_dump 311

st_compact_verbose 311

st_concurrent 315

st_concurrent_pck 316

st_concurrent_shadow_heap 318

538 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

tracing (continued)
garbage collection (continued)

st_dump 311

st_freelist 313

st_icompact 317

st_mark 310

st_parallel 314

st_refs 312

st_terse 309

st_trace 315

st_verify 309

Linux 133

ltrace tool 134

mtrace tool 134

strace tool 133

ORB and WebSphere Application Server 399

changing on a running server 400

enabling at server startup 399

selecting ORB traces 400

tracing leaks, Windows 162

tracing to stderr 323

transaction dumps
z/OS 176

tree, HeapWizard 386

triggered generation of a Heapdump 246

triggering and suspend or resume 325

truss, AIX 110

tty, AIX 104

type-accurate and conservative garbage collection 13

Type, AIX 106

clnt 106

Description parameter 106

mmap 106

pers 106

work 106

typesfile 265

U
uid, AIX 104

uname -a command, Linux 142

understanding memory usage, AIX 115

understanding the class loader 31

eager and lazy loading 31

how to write a custom class loader 33

name spaces and the runtime package 32

parent-delegation model 32

Persistent Reusable JVM 34

why write a custom class loader? 33

understanding the Garbage Collector 7

allocation 10

avoiding fragmentation 22

basic heap sizing problems 9

cache allocation 10

coexisting with the Garbage Collector 23

bug reports 25

finalizers 25

finalizers and the garbage collection contract 26

finalizers, summary 26

how finalizers are run 26

manual invocation 26

nature of finalizers 25

predicting Garbage Collector behavior 23

thread local heap 24

compaction avoidance 17

compaction phase 9, 17

concurrent mark 15

understanding the Garbage Collector (continued)
conservative and type-accurate garbage collection 13

detailed description of garbage collection 13

fine tuning options 23

frequently asked questions 27

garbage collection 8

heap expansion 19

heap lock allocation 10

heap shrinkage 20

heap size 9

how to do heap sizing 21

initial and maximum heap sizes 21

interaction with applications 23

JNI weak reference 19

large object area (LOA) 11

allocation 11

expansion and shrinkage 11

initialization 11

mark phase 8, 14

mark stack overflow 14

object allocation 7

overview of garbage collection 7

parallel bitwise sweep 16

parallel mark 15

pinned clusters 12

reachable objects 8

reference objects 18

resettable JVM (z/OS only) 21

subpool 18

summary 27

sweep phase 8, 16

system heap 10

using verbosegc 22

wilderness 11

allocation 11

expansion and shrinkage 11

initialization 11

understanding the JIT 37

frequently-asked questions 39

how the JIT optimizes code 38

bytecode optimization 38

DAG optimization 39

native code generation 39

quad optimization 38

MMI overview 37

overview 37

runtime modes 38

Universal Trace Engine error messages 474

UNKNOWN 190

user dumps
generating in hang condition 154

user dumps, Windows
Microsoft tools 155

user exceptions, ORB 190

user limits for XHPI, Javadump
AIX 239

Linux 234

z/OS 241

user, AIX 104

using core dumps
Linux 131

using system logs, Linux 132, 142

using the dump extractor, Linux 131

UTE error messages 474

utilities
NLS fonts 203

*.nix platforms 203

Index 539

utilities (continued)
NLS fonts (continued)

Windows systems 203

V
verbose garbage collection

how it relates to the debug environment 501

verbosegc, garbage collection 22, 300

browser plug-in environment 165

output from a compaction 303

output from a concurrent mark AF collection 304

output from a concurrent mark AF collection with

:Xgccon 304

output from a concurrent mark collection 305

output from a concurrent mark collection with

:Xgccon 305

output from a concurrent mark kickoff 303

output from a concurrent mark System.gc collection 304

output from a heap expansion 302

output from a heap shrinkage 302

output from a System.gc() 301

output from an allocation failure 301

output from resettable (z/OS only) 305

output when pinnedFreeList exhausted 301

Windows 163

versions, ORB 188

virtual storage, z/OS 182

vmstat command, Linux 132, 143

CPU section 133

io section 132

memory section 132

processes section 132

swap section 132

system section 133

vmstat, AIX 110

Vsid, AIX 106

W
WebSphere Application Server

ClassLoader overview 35

environment, working in 99

WebSphere Application Server and ORB
selecting ORB traces 400

tracing 399

changing on a running server 400

enabling at server startup 399

when you will receive your fix, problem report 93

who should read this book xv

why write a custom class loader? 33

wilderness, garbage collection 11

allocation 11

expansion and shrinkage 11

initialization 11

WinDbg, Windows 155

Windows
analyzing deadlocks 160

browser plug-in 165

classifying leaks 162

collecting data 164

collecting data from a fault condition 164

deadlocks 160

debugging hangs 160

analyzing deadlocks 160

debugging memory leaks 161

Windows (continued)
classifying leaks 162

memory model 161

tracing leaks 162

Verbose GC 163

debugging performance problems 163

data for bug report 164

frequently reported problems 164

debugging techniques 154

diagnosing crashes 155

analyzing the dump 157

finding the class name 159

finding the end of the JIT frame 158

finding the method name 159

finding the method signature 159

finding the return address in the stack 157

identifying JIT’d code 156

map file 156

Process Explorer 157

sending data to IBM 159

tracing back from JIT’d code 156

Dr. Watson 155

for a crash dump 153

Dump Extractor 154

frequently reported problems 164

generating a user dump file in a hang condition 154

getting a dump from a hung JVM 160

hangs
getting a dump 160

Heapdumps 154

Javadump sample output 225

Javadumps 154

JVM dump initiation 254

memory model 161

Microsoft tools 154

Dr. Watson 155

user dumps 155

WinDbg 155

native tools 153

Dr. Watson 153

problem determination 151

sending data to IBM 159

setting up and checking environment 151, 153

setting up for data collection 153

dump extraction 153

native Windows tools 153

setting up for dump extraction 153

tracing leaks 162

user dumps 155

Verbose GC 163

WinDbg 155

Windows systems
font utilities 203

work, AIX segment type 106

working directory, Linux 129

X
XHPI section, Javadump

Windows 226

XHPI, Javadump
environment variables

AIX 240

Linux 234

z/OS 241

header
AIX 239

540 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

XHPI, Javadump (continued)
header (continued)

Linux 234

z/OS 241

loaded libraries 240, 242

memory information
Linux 234

operating environment
AIX 239

Linux 234

z/OS 241

signal handlers
AIX 240

Linux 234

z/OS 241

thread counts
z/OS 242

user limits
AIX 239

Linux 234

z/OS 241

XHPI, memory map (Linux) 235

Z
z/OS

collecting data 185

crashes 174

documents to gather 174

failing function 175

environment variables 167, 411

environment, checking 167

error message IDs 174

general debugging techniques 169

cache option 171

dis <addr> <n> option 172

dump <addr> <n> option 172

dump tool 170

exception option 172

IPCS commands 173

r<n> option 173

hangs 181

bad performance 181

deadlocked 181

looping 181

Javadump sample output 241

jdkiv utility 168

JVM dump initiation 253

LE settings 167

maintenance 167

memory leaks 182

LE HEAP 182

OutOfMemoryErrors 183

virtual storage 182

performance problems 184

private storage usage 167

problem determination
environment, checking 167

setting up dumps 169

standalone environment check, jdkiv 168

TDUMPs 176

zAAP (eServer zSeries Application Assist Processor) 489

Index 541

542 Java 2 Technology Edition Version 1.4.2 Diagnostics Guide

���

SC34-6358-06

	Contents
	Figures
	Tables
	About this book
	What does the "Java Virtual Machine (JVM)" mean?
	Who should read this book
	Before you read this book
	How to read this book
	Other sources of information
	Reporting problems in the JVM
	Conventions and terminology used in this book
	How to send your comments
	Contributors to this book
	Summary of changes for Version 1.4.2, Service Refresh 7
	Summary of changes for Version 1.4.2, Service Refresh 6
	Summary of changes for Version 1.4.2, Service Refresh 5
	Summary of changes for Version 1.4.2, Service Refresh 4
	Summary of changes for Version 1.4.2, Service Refresh 3
	Summary of changes for Version 1.4.2, Service Refresh 2
	Summary of changes for Version 1.4.2
	Summary of changes for the Version 1.4.1 April 2004 update
	Summary of changes for Version 1.4.1, Service Refresh 1
	Summary of changes for Version 1.4.1

	Part 1. Understanding the IBM JVM
	Chapter 1. The building blocks of the IBM JVM
	Core interface
	Execution engine (XE)
	Execution management (XM)
	Diagnostics (DG)
	Class Loader (CL)
	Data conversion (DC)
	Lock (LK)
	Storage (ST)
	Hardware platform interface (HPI)

	Chapter 2. Understanding the Garbage Collector
	Overview of garbage collection
	Object allocation
	Reachable objects
	Garbage collection
	Mark phase
	Sweep phase
	Compaction phase

	Heap size
	Some basic heap sizing problems

	The system heap

	Allocation
	Heap lock allocation
	Cache allocation
	The wilderness
	Initialization
	Expansion and shrinkage
	Allocation in the LOA

	Pinned clusters

	Detailed description of garbage collection
	Conservative and type-accurate garbage collection
	Mark phase
	Mark stack overflow
	Parallel Mark
	Concurrent mark

	Sweep phase
	Parallel bitwise sweep

	Compaction phase
	Compaction avoidance
	Subpool (AIX only)
	Reference objects
	JNI weak reference
	Heap expansion
	Heap shrinkage
	Resettable JVM (z/OS only)

	How to do heap sizing
	Initial and maximum heap sizes
	Avoiding fragmentation
	Using verbosegc
	Using fine tuning options

	Interaction of the Garbage Collector with applications
	How to coexist with the Garbage Collector
	Predicting Garbage Collector behavior
	Thread local heap
	Bug reports

	Finalizers
	Nature of finalizers
	Finalizers and the garbage collection contract
	How finalizers are run
	Summary

	Manual invocation
	Summary

	Frequently asked questions about the Garbage Collector

	Chapter 3. Understanding the class loader
	Eager and lazy loading
	The parent-delegation model
	Name spaces and the runtime package
	Why write a custom class loader?
	How to write a custom class loader
	The Persistent Reusable JVM (z/OS only)
	WebSphere 5.0 ClassLoader overview

	Chapter 4. Understanding the JIT
	JIT overview
	MMI overview
	Runtime modes
	How the JIT optimizes code
	Bytecode optimization
	Quad optimization
	DAG optimization
	Native code generation

	JIT frequently-asked questions

	Chapter 5. Understanding the ORB
	CORBA
	RMI and RMI-IIOP
	Java IDL or RMI-IIOP?
	RMI-IIOP limitations
	Further reading
	Examples
	Interfaces
	Remote object implementation (or servant)
	Stub and ties generation
	Server code
	Summary of major differences between RMI (JRMP) and RMI-IIOP
	Summary of differences in server development
	Summary of differences in client development

	Using the ORB
	How the ORB works
	The client side
	Stub creation
	ORB initialization
	Getting hold of the remote object
	Remote method invocation

	The server side
	Servant implementation
	Tie generation
	Servant binding
	Processing a request

	Features of the ORB
	Portable object adapter
	Fragmentation
	Portable interceptors
	Interoperable naming service (INS)
	Other features

	IBM pluggable ORB
	Using the IBM ORB runtime
	Using the IBM ORB development tools

	Chapter 6. Understanding the Java Native Interface
	The JNI and the Garbage Collector
	Garbage Collector and object references
	Garbage Collector and global references
	Garbage Collector and retained garbage

	Copying and pinning
	Handling local references
	Local reference scope
	Summary of local references
	Local reference capacity
	Manually handling local references

	Handling global references
	Global reference capacity

	Handling exceptions
	Using the isCopy flag
	Using the mode flag
	A generic way to use the isCopy and mode flags
	Synchronization
	Debugging the JNI
	check:jni
	check:nabounds

	JNI checklist

	Chapter 7. Understanding Java Remote Method Invocation
	The RMI implementation
	Thread pooling for RMI connection handlers
	Understanding Distributed Garbage Collection (DGC)
	Debugging applications involving RMI

	Part 2. Submitting problem reports
	Chapter 8. Overview of problem submission
	How does IBM service Java ?
	Submitting Java problem reports to IBM
	Java duty manager

	Chapter 9. MustGather: Collecting the correct data to solve problems
	Before you submit a problem report
	Data to include
	Things to try
	Factors that affect JVM performance
	Test cases
	Performance problems — questions to ask

	Chapter 10. Advice about problem submission
	Raising a problem report
	What goes into a problem report?
	Problem severity ratings
	Escalating problem severity

	Chapter 11. Submitting data with a problem report
	IBM internal only (javaserv)
	Sending files to IBM support
	Getting files from IBM support
	Using your own ftp server
	Sending an AIX core file to IBM support
	When you will receive your fix

	Part 3. Problem determination
	Chapter 12. First steps in problem determination
	Chapter 13. Working in a WebSphere Application Server environment
	Chapter 14. AIX problem determination
	Setting up and checking your AIX environment
	Enabling full AIX core files

	General debugging techniques
	Other sources of information for debugging
	Starting Javadumps in AIX
	Starting Heapdumps in AIX
	Debugging memory leaks
	AIX debugging commands
	ps
	svmon
	bindprocessor –q
	bootinfo –K
	bootinfo –y
	iostat
	lsattr
	netpmon
	netstat
	nmon
	sar
	tprof
	topas
	trace
	truss
	vmstat

	Diagnosing crashes
	Documents to gather
	Interpreting the stack trace
	Sending an AIX core file to IBM Support

	Debugging hangs
	AIX deadlocks
	AIX infinite loops
	Investigating busy hangs in AIX

	Poor performance on AIX

	Understanding memory usage
	32- and 64-bit JVMs
	The 32-bit AIX Virtual Memory Model
	The 64-bit AIX Virtual Memory Model
	Changing the Memory Model (32-bit JVM)
	The native and Java heaps
	The AIX Java2 32-Bit JVM default memory models
	Changing the memory models
	Monitoring the native heap
	Native heap usage
	Monitoring the Java heap
	Receiving OutOfMemory errors
	Is the Java or native heap exhausted?
	Java heap exhaustion
	Native heap exhaustion
	AIX fragmentation problems
	Submitting a bug report

	Debugging performance problems
	Finding the bottleneck
	CPU bottlenecks
	Memory bottlenecks

	I/O bottlenecks
	Collecting data from a fault condition in AIX
	Getting AIX technical support

	Chapter 15. Linux problem determination
	Setting up and checking your Linux environment
	Working directory
	Linux core files
	Threading libraries
	Floating stacks

	General debugging techniques
	Starting Javadumps in Linux
	Starting heapdumps in Linux
	Using the dump extractor on Linux
	Using core dumps
	Using system logs
	Linux debugging commands
	ps
	Tracing
	gdb

	Diagnosing crashes
	Checking the system environment
	Gathering process information
	Finding out about the Java environment

	Debugging hangs
	Debugging memory leaks
	Debugging performance problems
	System performance
	CPU usage
	Memory usage
	Network problems

	JVM performance
	JIT

	Collecting data from a fault condition in Linux
	Collecting core files
	Producing Javadumps
	Using system logs
	Determining the operating environment
	Sending information to Java Support
	Collecting additional diagnostic data
	proc file system
	strace, ltrace, and mtrace

	Known limitations on Linux
	Threads as processes
	Floating stacks limitations
	glibc limitations
	Font limitations
	CORBA limitations
	Scheduler limitation on SLES 8

	Chapter 16. Sun Solaris problem determination
	Chapter 17. Hewlett-Packard SDK problem determination
	Chapter 18. Windows problem determination
	Setting up and checking your Windows environment
	Windows 32-bit large address aware support
	Setting up your Windows environment for data collection
	Setting up for dump extraction
	Setting up for Javadump and Heapdump
	Native Windows tools

	General debugging techniques
	Starting Javadumps in Windows
	Starting Heapdumps in Windows
	Using the Windows Dump Extractor
	Microsoft tools
	Dr. Watson
	User dumps
	WinDbg

	Diagnosing crashes in Windows
	Tracing back from JIT'd code
	Identifying JIT'd code
	Analyzing the dump
	Finding the return address in the stack
	Finding the end of the JIT frame
	Finding the method name
	Finding the class name
	Finding the method signature

	Data to send to IBM

	Debugging hangs
	Analyzing deadlocks
	Getting a dump from a hung JVM
	Creating a user dump file for a hung process using the Dr. Watson utility

	Debugging memory leaks
	The Windows memory model
	Classifying leaks
	Tracing leaks
	Verbose GC
	Using HeapDump to debug memory leaks

	Debugging performance problems
	Data required for submitting a bug report
	Frequently reported problems

	Collecting data from a fault condition in Windows
	Controlling the JVM when used as a browser plug-in

	Chapter 19. z/OS problem determination
	Setting up and checking your z/OS environment
	Maintenance
	LE settings
	Environment variables
	Private storage usage
	Standalone environment checking utility program
	Setting up dumps

	General debugging techniques
	Starting Javadumps in z/OS
	Starting Heapdumps in z/OS
	The dump tool
	The -cache option
	The -exception option
	The -dis <addr> <n> option
	The -dump <addr> <n> option
	The -r<n> option
	Using IPCS commands
	Interpreting error message IDs

	Diagnosing crashes
	Documents to gather
	Determining the failing function
	Working with TDUMPs using IPCS
	Adding the dump file to the IPCS inventory
	Useful IPCS commands and some sample output

	Debugging hangs
	The process is deadlocked
	The process is looping
	The process is performing badly

	Debugging memory leaks
	Allocations to LE HEAP
	z/OS virtual storage
	OutOfMemoryErrors

	Debugging performance problems
	Collecting data from a fault condition in z/OS

	Chapter 20. Debugging the ORB
	Identifying an ORB problem
	What the ORB component contains
	What the ORB component does not contain
	Platform-dependent problem
	JIT problem
	Fragmentation
	Packaging
	ORB versions

	Debug properties
	ORB exceptions
	User exceptions
	System exceptions
	Completion status and minor codes
	Java2 security permissions for the ORB

	Interpreting the stack trace
	Description string
	Nested exceptions

	Interpreting ORB traces
	Message trace
	Comm traces
	Client or server
	Service contexts

	Common problems
	Hanging
	Running the client without the server running before the client is invoked
	Client and server are running, but not naming service
	Running the client with MACHINE2 (client) unplugged from the network

	IBM ORB service: collecting data
	Preliminary tests
	Data to be collected

	Chapter 21. NLS problem determination
	Overview of fonts
	Font specification properties
	Fonts installed in the system

	The font.properties file
	The *nix font.properties file
	The Windows font.properties file

	Font utilities
	Font utilities in *nix platforms
	Font utilities on Windows systems

	Common problems and possible causes

	Chapter 22. AS/400 problem determination
	Chapter 23. OS/2 problem determination
	Part 4. Using diagnostic tools
	Chapter 24. Overview of the available diagnostics
	Categorizing the problem
	Platforms
	Third-party tools
	Summary of cross-platform tools
	Javadump (or Javacore)
	Heapdump
	Cross-platform dump formatter
	JVMPI tools
	JVMDI tools
	JVM trace
	JVMRI
	JVMMI
	Application trace
	Method trace
	JVM command line parameters
	JVM environment variables

	Platform tools

	Chapter 25. Using Javadump
	Enabling a Javadump
	The location of the generated Javadump
	Triggering a Javadump
	Interpreting a Javadump
	Javadump tags
	Locks, monitors, and deadlocks (LK)
	JVM system monitor dump (registered monitors)
	Thread identifiers (as used in flat monitors)
	Java object monitor dump (flat & inflated object-monitors)
	Using the LK component dump to diagnose a deadlock

	Javadump sample output 1 (Windows)
	File header (TITLE) - signal information
	XHPI section
	System properties (CI)
	Data Conversion (DC)
	Diagnostics settings (DG)
	Storage Management (ST)
	Execution Engine (XE)
	Threads and stack trace (XM)
	Refining a stack trace using the JIT options (XM)
	Classloaders and Classes (CL)
	Final section

	Javadump sample output 2 (Linux)
	File header (TITLE) and XHPI header - signal information
	XHPI - operating environment
	XHPI - memory information
	XHPI - user limits
	XHPI - signal handlers
	XHPI - environment variables
	XHPI - memory map
	System properties (CI)
	Data conversion (DC)
	Diagnostics settings (DG)
	Storage management (ST)
	Execution engine (XE)
	Locks, monitors, and deadlocks (LK)
	Threads and stack trace (XM)
	Refining a stack trace using the JIT options (XM)
	Classloaders and classes (CL)
	Final section

	Javadump sample output 3 (AIX)
	File header (TITLE) and XHPI header - signal information
	XHPI - operating environment
	XHPI - user limits
	XHPI - signal handlers
	XHPI - environment variables
	XHPI - loaded libraries
	System properties (CI)
	Data conversion (DC)
	Diagnostics settings (DG)
	Storage management (ST)
	Execution engine (XE)
	Locks, monitors, and deadlocks (LK)
	Threads and stack trace (XM)
	Refining a stack trace using the JIT options (XM)
	Classloaders and classes (CL)
	Final section

	Javadump sample output 4 (z/OS)
	File header (TITLE) and XHPI header - signal information
	XHPI - operating environment
	XHPI - user limits
	XHPI - signal handlers
	XHPI - environment variables
	XHPI - loaded libraries
	XHPI - thread counts
	System properties (CI)
	Data conversion (DC)
	Diagnostics settings (DG)
	Storage management (ST)
	Execution engine (XE)
	Locks, monitors, and deadlocks (LK)
	Threads and stack trace (XM)
	Refining a stack trace using the JIT options (XM)
	Classloaders and classes (CL)
	Final section

	Chapter 26. Using Heapdump
	Information for users of previous releases of Heapdump
	Summary of Heapdump
	Enabling a Heapdump
	Explicit generation of a Heapdump
	Triggered generation of a Heapdump

	Location of the generated Heapdump
	Producing a compressed Heapdump text file from a System Dump
	Sample Heapdump output
	Finding memory leaks by using Heapdump
	Out Of Memory exceptions
	Steady memory leaks

	Using the HeapRoots post-processor to process Heapdumps
	How to write a JVMMI Heapdump agent
	Using VerboseGC to obtain heap information

	Chapter 27. JVM dump initiation
	Overview
	Settings
	Platform-specific variations
	z/OS
	AIX
	Windows
	Linux

	Chapter 28. Using method trace
	Running with method trace
	Examples of use
	Where does the output appear?
	Advanced options
	Real example

	Chapter 29. Using the dump formatter
	What the dump formatter is
	Dump formatter dumps
	How to use the dump formatter
	Analyzing dumps with jformat
	Minimum requirements and performance considerations
	Installing jformat
	Starting jformat
	Opening the dump
	Command plug-ins
	Shortened command forms
	Supported commands
	Commands from DvBaseCommands
	Commands from DvBaseFmtCommands
	Commands from DvTraceFmtPlugin
	Commands from DvClassCommands
	Commands from DvObjectsCommands
	Commands from DvJavaCore
	Commands from DvXeCommands
	Commands from DvHeapDumpPlugin

	Control block formatting
	Settings
	Dump plug-ins
	Property files
	Hints
	Example session

	Dumpviewer
	Analyzing dumps with Dumpviewer

	Chapter 30. JIT diagnostics
	Disabling the JIT
	Introducing the MMI
	Disabling the MMI
	Selecting the MMI threshold
	Working with MMI
	Selectively disabling the JIT
	Performance of short-running applications
	Identifying JIT compilation failures
	Advanced JIT diagnostics

	Chapter 31. Garbage Collector diagnostics
	How does the Garbage Collector work?
	Common causes of perceived leaks
	Listeners
	Hash tables
	Static data
	JNI references
	Premature expectation
	Objects with finalizers

	Basic diagnostics (verbosegc)
	verbosegc output from a System.gc()
	verbosegc output when pinnedFreeList is exhausted
	verbosegc output from an allocation failure
	verbosegc output from a heap expansion
	verbosegc output from a heap shrinkage
	verbosegc output from a compaction
	verbosegc output from a concurrent mark kickoff
	verbosegc output from a concurrent mark System.gc collection
	verbosegc output from a concurrent mark AF collection
	verbosegc output from a concurrent mark AF collection with :Xgccon
	verbosegc output from a concurrent mark collection
	verbosegc output from a concurrent mark collection with :Xgccon
	verbosegc output from resettable (z/OS only)

	Advanced diagnostics
	-Xcompactexplicitgc
	-Xdisableexplicitgc
	-Xgcpolicy:<optthruput | optavgpause | subpool>
	-Xgcthreads<n>
	-Xnoclassgc
	-Xnocompactgc
	-Xnocompactexplicitgc
	-Xnopartialcompactgc

	Tracing
	st_terse
	st_verify
	st_mark
	st_compact
	st_compact_verbose
	st_compact_dump
	st_dump
	st_alloc
	st_refs
	st_backtrace
	st_freelist
	st_calloc
	st_parallel
	st_trace
	st_concurrent
	st_concurrent_pck
	st_icompact
	st_concurrent_shadow_heap

	Heap and native memory use by the JVM
	Native Code
	Large native objects

	Chapter 32. Class-loader diagnostics
	Class-loader command-line options
	Class loader runtime diagnostics
	Loading from native code

	Chapter 33. Tracing Java applications and the JVM
	What can be traced?
	Tracing methods
	Tracing applications
	Internal trace

	Where does the data go?
	Placing trace data into in-storage buffers
	Snapping buffers
	Dumping buffers

	Placing trace data into a file
	External tracing
	Tracing to stderr
	Trace combinations

	Controlling the trace
	Specifying trace system properties
	Trace property summary
	Properties that control tracepoint selection
	Properties that indirectly affect tracepoint selection
	Triggering and suspend or resume
	Properties that specify output files
	MiscellaneousTrace control properties

	Detailed property descriptions
	Using the trace formatter
	Invoking the trace formatter

	Trace properties
	What to trace

	Determining the tracepoint ID of a tracepoint
	Using trace to debug memory leaks
	Enabling memory tracing
	Enabling backtrace
	Linking with dbgmalloc

	Chapter 34. Using the JVM monitoring interface (JVMMI)
	Using JVMMI for problem determination
	Preparing to use JVMMI
	Writing an agent
	Using Detail information in a JVMMI agent
	Using user data in a JVMMI agent
	Using Detail information on EBCDIC platforms
	Obtaining the JVMMI interface
	Specifying the agent name
	Inside the agent
	Building the agent
	Windows
	Linux
	AIX PPC32
	AIX PPC64
	z/OS

	API calls provided by JVMMI
	EnableEvent
	DisableEvent
	EnumerateOver

	Events produced by JVMMI
	Thread-related events
	Class-related events
	Heap and garbage collection events
	Miscellaneous events

	Enumerations supported by JVMMI
	Sample JVMMI Heapdump agent

	Chapter 35. Using the Reliability, Availability, and Serviceability interface
	Preparing to use JVMRI
	Writing an agent
	Registering a trace listener
	Changing Trace Options
	Launching the Agent
	Building the agent
	Plug-in design

	JVMRI functions
	API calls provided by JVMRI
	TraceRegister
	TraceDeregister
	TraceSet
	TraceSnap
	TraceSuspend
	TraceResume
	DumpRegister
	DumpDeregister
	NotifySignal
	GetRasInfo
	ReleaseRasInfo
	CreateThread
	GenerateJavacore
	RunDumpRoutine
	InjectSigsegv
	InjectOutOfMemory
	GetComponentDataArea
	SetOutOfMemoryHook
	InitiateSystemDump
	DynamicVerbosegc
	TraceSuspendThis
	TraceResumeThis
	GenerateHeapdump

	RasInfo structure
	RasInfo request types
	Intercepting trace data
	The ibm.dg.trc.external property

	Calling external trace
	Formatting

	Chapter 36. Using the JVMPI
	The HPROF profiler
	Explanation of the HPROF output file

	Chapter 37. Using DTFJ
	Which JVMs are DTFJ enabled?
	Overview of the DTFJ interface
	DTFJ example application

	Chapter 38. Using third-party tools
	GlowCode
	Supported platforms
	Applicability
	Summary
	Running GlowCode

	Heap analysis tool (HAT)
	Applicability
	Generating a .hprof file
	Running the program

	HeapWizard
	Terms
	Heap view
	Command-line options

	Jinsight
	Supported platforms
	Applicability
	Summary
	Jinsight views
	Running Jinsight
	Visualizing an application trace

	JProbe
	Applicability
	Supported platforms
	Summary
	Using the Memory Debugger

	JSwat
	Applicability
	Summary
	Preparing for JSwat debugging
	Running your application in JSwat debugger

	Process Explorer

	Part 5. Appendixes
	Appendix A. Compatibility tables
	WebSphere Application Server and JVM/SDK levels

	Appendix B. ORB tracing for WebSphere Application Server version 5
	Enabling trace at server startup
	Changing the trace on a running server
	Selecting ORB traces

	Appendix C. CORBA GIOP message format
	GIOP header
	Request header
	Request body
	Reply header
	Reply body (based on reply status)
	Cancel request header
	Locate request header
	Locate reply header
	Locate reply body
	Fragment message
	Fragment header (GIOP 1.2 only)

	Appendix D. CORBA minor codes
	Appendix E. Environment variables
	Displaying the current environment
	Setting an environment variable
	Separating values in a list
	JVM environment settings
	z/OS environment variables

	Appendix F. Messages and codes
	Where do the messages appear?
	JVM error messages for JVMCI
	JVM error messages for JVMCL
	JVM error messages for JVMDC
	JVM error messages for JVMDBG
	JVM error messages for JVMDG
	JVM error messages for JVMHP
	JVM error messages for JVMLK
	JVM error messages for JVMST
	JVM error messages for JVMXE
	JVM error messages for JVMXM
	Universal Trace Engine error messages

	Appendix G. Command-line parameters
	General command-line parameters
	System property command-line parameters
	Nonstandard command-line parameters
	Garbage Collector command-line parameters

	Appendix H. Default settings for the JVM
	Appendix I. Using the alternative JVM for Java debugging
	How the debug environment relates to other components
	Dumps
	Trace
	Verbose garbage collection
	JNIChk utility
	The JIT

	Command-line options in the debug environment

	Appendix J. Using a Problem Determination build of the JVM
	When to use the PD build
	Why is the PD build necessary?
	Where to find the PD build
	How to enable the PD build

	Appendix K. Some notes on jformat and the jvmdcf file
	Using jformat to display the JVM control block

	Appendix L. Notices
	Trademarks

	Index

