
Write-induced latency problems
on Android systems

 Samuele Zecchini Paolo Valente
 (samuele.zecchini92@gmail.com) (paolo.valente@linaro.org)

1 – Introduction

In this report we show latency problems occurring in an Android system in the presence of write

requests. These problems are in their turn caused by issues related to the Linux kernel. The results

shown in this document have been obtained with a Nexus 7 2012, with Android Kitkat 4.4.4 and

linux kernel 3.1.0. But most likely they apply to other devices too.

To highlight latency problems, we have created a little app (latency probe, lprobe) that simply reads

approximately 200 MB, and performs an asynchronous 4KB write every 10 reads of 4 KB. We have

measured the completion time of the application with a background workload made by one

sequential reader and one sequential writer, both implemented with dd. Although the workload isn't

too high, with all stock I/O schedulers, as well as with BFQ, the completion time of lprobe

explodes. This explosion is strictly related to the increased latency that any interactive, or, in

general, time-sensitive process would experience if performing I/O while the above background

workload is being served.

We have apparently found the main cause of this explosion: every asynchronous write syscall may

take up to a few seconds to complete (lprobe prints the duration of every write that lasts more than

300 ms). To spot the causes of this problem, we have then instrumented almost all functions in the

write syscall path. In particular, we have added logging code that lets any such function signal,

through a message in the kernel ring, whether the function takes more than 300 milliseconds to

complete.

By leveraging this in-kernel function-latency tracing, we have discovered that the cause of the high

latency of the overall write syscall is the combination of a handful of more or less related

problems, occurring at different levels in the kernel. In more detail, the involved kernel

functionalities are virtual-memory throttling and journaling. In addition, a conflict frequently

occurs between the app and the page flusher. All these problems have a common characteristic:

they let an asynchronous write syscall become de fatcto synchronous, and thus block the issuing

process for a long time interval.

1

A short description of each of these problems follows.

2 – Write-out-throttling

This problem occurs at the virtual-memory-management level. If a write operation causes the

vm_dirty_ratio threshold to be exceeded, then the process performing this operation is likely to be

blocked inside either balance_dirty_pages() or vm_throttle_writeout()[1].

The first function is defined in mm/page-writeback.c. It is invoked by a process that dirties a

page, and controls whether the number of dirty pages exceeds vm_dirty_ratio. If the number of

dirty pages is above the threshold, then the writeback of pages is forced, and the process is blocked

inside the piece of code below:

for (;;) {

nr_reclaimable = global_page_state(NR_FILE_DIRTY) +

global_page_state(NR_UNSTABLE_NFS);

nr_dirty=nr_reclaimable + global_page_state(NR_WRITEBACK);

global_dirty_limits(&background_thresh, &dirty_thresh);

if (nr_dirty <= (background_thresh + dirty_thresh) / 2)

break;

....

__set_current_state(TASK_UNINTERRUPTIBLE);

io_schedule_timeout(pause);

....

}

As you can see, first, the process calculates the number of dirty pages nr_dirty, which is equal to the

sum of the number of pages reclaimable and the number of pages for which the writeback is in

progress (you can see the value of NR_WRITEBACK using /proc/vmstat). Afterwards, the process

checks if nr_dirty is less than (background_tresh + dirty_tresh) / 2, where background_thresh

differs from vm_dirty_tresh because it considers also other limits of the system. The process is

descheduled if it gets to the invocation of io_schedule_timeout(). If it happens, then, after the

expiration of the timeout slice, the process wakes up and checks again the same condition, i.e.,

whether the number of dirty pages is below the threshold. If it is not so, then the process is

descheduled again, and so on. Indeed, our in-kernel tracing highlights that the process often iterates

even for seconds before exiting this loop, because the system remains over the dirty_threshold for

such a long time (of course this happens if our read plus write background workload is being served

at the same time).

2

Moreover, in balance_dirty_pages() the process may have to make the writeback by itself (the

default writeback operation is made by the pdflush system daemon). In this case, the write would

become truly synchronous as you can see from the code below:

 if (bdi_nr_reclaimable > task_bdi_thresh) {

 pages_written += writeback_inodes_wb(&bdi->wb,

 write_chunk);

 trace_balance_dirty_written(bdi, pages_written);

 if (pages_written >= write_chunk)

 break;

 }

Fortunately, such an event never occurred in our tests.

The second function that happened to inflate the duration of a write is vm_throttle_writeout(),

defined in mm/page-writeback.c[1]. The involved code, for this function, is similar to the

involved code for the first function:

for (; ;) {

global_dirty_limits(&background_thresh, &dirty_thresh);

dirty_thresh += dirty_thresh / 10;

/* wheeee... */

if (global_page_state(NR_UNSTABLE_NFS) +

global_page_state(NR_WRITEBACK) <= dirty_thresh)

break;

congestion_wait(BLK_RW_ASYNC, HZ/10);

...

}

Inside the for loop the process checks whether the sum of NR_UNSTABLE_NFS, which is a value

related to network file system, and NR_WRITEBACK (already explained above) is over

dirty_thresh and, if it is, the process is descheduled by congestion_wait()[2], which adds the process

to a waitqueue and calls io_schedule_timeout(). Also in this case the process happens to remain

trapped in the for loop for a long time, because the system remains over the threshold for a long

time. This function differs from balance_dirty_pages() in that the process can't happen to have to

perform the writeback on its own. Therefore the process must be descheduled and the pdflush

3

daemon must be waken up for doing writeback.

3 – Journaling-related problems

In this section, we explain the latency problems generated by the interaction of the process with the

journaling operation. In its default configuration (the one we used), our Nexus 7 (2012) uses an

EXT4 filesystem, and JBD2 journal as journal daemon. In particular, a high latency is caused by

two problems.

To introduce both problems, we start by recapping how jbd2 works in EXT4. jbd2 operates in a

transaction-based fashion. In a transaction, the system puts all the modifications that must be

recorded by the journal to maintain the integrity of the filesystem. A transaction is a complex

structure, consisting of handles and log records, as shown in the next figure.

Log records are the smallest data units used by the journal. Each of them represents a single

modification of the metadata of a file made by a single process, and has is associated with its own

buffer_head structure. A buffer_head, defined in include/linux/buffer_head.h [6], is

utilized to map a block inside a page, where a block is a chunk of logically-contiguous sectors on

the storage device. Essentially, the buffers pointed by a buffer_head list allow the part of the content

of a page to be mapped to sectors on the storage device. The buffer_head structure was the I/O unit

between the filesystem and the block layer, now replaced by the bio structure.

The handles are used to group together log records of the same process. The association between a

handle and a process is made through a void pointer inside the task_struct structure, named

journal_info and converted to handle_t by jbd2 when necessary (handle_t is a typedef of

4

Figure 1: Structure of a journal transaction

jbd2_journal_handle defined in the file /include/linux/jbd2.h[3]).

Every transaction groups many handles together, to obtain better performance during the commit

phase of the handles.

The structure of a transaction, as described above, is seen only by the processes performing

operations that cause transactions to be updated. In contrast, the jbd2 thread doesn't see the handle

structure, it uses only the transaction main structure (transaction_t), and the buffer_head of each log

record.

jbd2 periodically takes a lock on the transaction, commits all modifications to the storage device

and then releases the lock.

The first cause of a high latency related to journal is the following. When a process needs to

perform an operation that must be journaled (for example, a write syscall), it tries to get a handle for

the current transaction. But if the current transaction happens to be already in the commit phase,

then the process is put to sleep until the commit is completed. More precisely, the process is blocked

inside start_this_handle()[4]. The following snippet shows where the process is sent to sleep:

if (transaction->t_state == T_LOCKED) {

DEFINE_WAIT(wait);

prepare_to_wait(

&journal->j_wait_transaction_locked,&wait,

TASK_UNINTERRUPTIBLE);

read_unlock(&journal->j_state_lock);

schedule();

finish_wait(&journal->j_wait_transaction_locked, &wait);

goto repeat;

}

The goto repeat causes the repetition of the function, except for the allocation of the

transaction.

The above statements may cause a high latency if the process must sleep until the commit of the

current transaction is completed. Indeed (and again, if our workload is being served in the

background), the commit time can be very high with any I/O scheduler. However, BFQ causes the

longest commit times: since jbd2 issues asynchronous write requests in a bursty way, BFQ doesn't

grant weight-raising to jbd2 (weight-raising is the main mechanism by which BFQ privileges the

I/O of the processes to which it wants to guarantee a low latency); therefore, jbd2 is guaranteed only

5

a limited fraction of the throughput, which increases the completion time of transaction commits,

and indirectly the latency of a process performing writes.

The second problem can be highlighted with the following log of function durations, where each

line reports the name of an invoked function, followed by the time it takes to execute the function in

microseconds (functions are completed in the same order as in the log):

do_get_write_acces 11380

jdb2_journal_get_write_access 11380

ext4_journal_get_write_access 11380

ext4_reserve_inode_write 11380

ext4_mark_inode_dirty 11380

ext4_dirty_inode 11380

sb->s_op->dirty_inode 11380

mark_inode_dirty 11380

generic_write_end: 11380

ext4_da_write_end: 11380

write_end 11380

… write sys_call

In this case, the process has already successfully obtained a handle, but can still be blocked in

do_get_write_acces()[5] (defined in fs/jbd2/transaction.c), for the following reason: this

function checks whether the involved buffer_head structure (log record) is inside the currently

committing transaction. If it is, the process is blocked until the end of the commit, as detailed

below.

do_get_write_access() is invoked by jbd2_journal_get_write_access() and has three parameters: a

pointer to an handle (handle_t *handle), a pointer to a journal (journal_head *jh) and an int,

force_copy. The jh parameter contains the following relevant field for the possible blocking of the

process: unsigned int b_jlist, set by __jbd2_journal_file_buffer()[7] to one of five possible values:

BJ_None, BJ_Metadata, BJ_Forget, BJ_IO, BJ_Shadow, BJ_LogCtl, BJ_Reserved. The following

piece of code is where the process is blocked:

if (jh->b_jlist == BJ_Shadow) {

DEFINE_WAIT_BIT(wait, &bh->b_state, BH_Unshadow);

wait_queue_head_t *wqh;

6

wqh = bit_waitqueue(&bh->b_state, BH_Unshadow);

JBUFFER_TRACE(jh, "on shadow: sleep");

jbd_unlock_bh_state(bh);

/* commit wakes up all shadow buffers after IO */

for (; ;) {

prepare_to_wait(wqh, &wait.wait,

TASK_UNINTERRUPTIBLE);

if (jh->b_jlist != BJ_Shadow)

break;

schedule();

}

goto repeat;

}

Also in this case the goto repeat statement causes the repetition of the function operations.

If b_jlist is equal to BJ_Shadow, then the process is added to a waitqueue and descheduled inside

the for loop.

In fact, if the condition holds true, then the process can't modify the content of the buffer because

the same buffer is going to be written to storage by the journal. Therefore the process must sleep

until the journaling operation is over, to prevent a corruption of the content of the buffer. The

asynchronous requests made by jbd2 are penalized by BFQ, and their high completion times

increase the latency of our application.

4 – Conflict between app and flusher

You can see this last problem illustrated in the below function-duration log, log related, as usual, to

a write syscall:

down_read: 5050us

ext4_map_blocks: 5050us

get_block: 5050us

__block_write_begin: 5060us

ext4_da_write_begin: 5060us

write_begin 5060us

7

generic_perform_write: 5060us

generic_file_buffered_write_inside_else: 5060us

__generic_file_aio_write 5060us

blk,generic,unlock 5060us

generic_file_aio_write 5060us

filp->f_op_aio_write 5060us

f_op->write duration: 5060us

From the above log, it is evident that the cause of the high latency in this case is the execution of

down_read(), whose code follows:

void __sched down_read(struct rw_semaphore *sem) {

might_sleep();

rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_);

LOCK_CONTENDED(sem, __down_read_trylock, __down_read);

}

As you can see, this function takes, as a parameter, a pointer to a rw_semaphore structure, which is

passed to the function by ext4_map_blocks() in the following invocation:

down_read((&EXT4_I(inode)->i_data_sem));

From the above statement, we can see that the semaphore is related to the inode interested by the

write syscall.

ext4_map_blocks() handles this inode semaphore through four function calls:

-down_read()

-up_read()

-down_write()

-up_write()

These functions determine which processes are waken up, using two different flags

“RWSEM_WAITING_FOR_READ” and “RWSEM_WAITING_FOR_WRITE”.

By tracing the execution of these functions, we have found a conflict, on this semaphore, between

lprobe, while executing down_read(), and the flusher. In fact, during writeback, the flusher takes

the semaphores of the interested inodes one after the others, and releases each of these semaphores

8

only when the writeback related to the corresponding inode is over. BFQ causes writeback to last a

lot of time, in the presence of our background I/O workload, because the flusher makes async (at

the block-layer level) write requests to perform writeback, and these requests are penalized by BFQ.

The problem then arises for lprobe when the flusher starts to writeback the pages that lprobe has

dirtied. These pages belong to the same file for which lprobe is still dirtying further pages. As a

consequence, until the flusher is done with this file, both lprobe and the flusher conflict on the same

semaphore. For this reason, lprobe is likely to have to wait a lot of time in down_read().

References:

[1] http://androidxref.com/kernel_3.0/xref/mm/page-writeback.c

[2] http://androidxref.com/kernel_3.0/xref/mm/backing-dev.c#770

[3] http://androidxref.com/kernel_3.0/xref/include/linux/jbd2.h#97

[4] http://androidxref.com/kernel_3.0/xref/fs/jbd2/transaction.c#117

[5] http://androidxref.com/kernel_3.0/xref/fs/jbd2/transaction.c#117

[6] http://androidxref.com/kernel_3.0/xref/include/linux/buffer_head.h#59

[7] http://androidxref.com/kernel_3.0/xref/fs/jbd2/transaction.c#1962

[8] http://androidxref.com/kernel_3.0/xref/include/linux/jbd2.h#513

9

http://androidxref.com/kernel_3.0/xref/mm/page-writeback.c
http://androidxref.com/kernel_3.0/xref/include/linux/jbd2.h#513
http://androidxref.com/kernel_3.0/xref/fs/jbd2/transaction.c#1962
http://androidxref.com/kernel_3.0/xref/include/linux/buffer_head.h#59
http://androidxref.com/kernel_3.0/xref/fs/jbd2/transaction.c#117
http://androidxref.com/kernel_3.0/xref/fs/jbd2/transaction.c#117
http://androidxref.com/kernel_3.0/xref/include/linux/jbd2.h#97
http://androidxref.com/kernel_3.0/xref/mm/backing-dev.c#770

10

