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Abstract: A linear scaling implementation of the trust-region self-consistent field (LS-
TRSCF) method is described for the Hartree-Fock and Kohn-Sham calculations. The
convergence of the method is examined and is in general smooth and robust and of equal
quality for small and large systems. The LS-TRSCF calculations converge in several cases
where conventional DIIS calculations diverge. The LS-TRSCF method may be recom-
mended as the standard method for both small and large molecular systems.
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1 Introduction

In Hartree-Fock (HF) and Kohn-Sham (KS) density functional theory (DFT), the electronic energy
FEscr is minimized with respect to the density of a single-determinantal wave function. In its
original formulation, the minimization was carried out using the self-consistent field (SCF) method
consisting of a sequence of Roothaan-Hall iterations. At each iteration, the Fock/KS matrix F is
constructed from the current atomic-orbital (AO) density matrix D; next, the Fock/KS matrix is
diagonalized and finally an improved AO density matrix is determined from the molecular orbitals
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(MOs) obtained by this diagonalization. Unfortunately, this simple SCF scheme converges only in
simple cases.

To improve upon the convergence, the optimization is modified by constructing the Fock/KS
matrix not directly from the AO density matrix of the last iteration, but rather from an averaged
density matrix, obtained as a linear combination of the density matrices of the current and previous
iterations. Typically, the averaged density matrix is obtained using the DIIS method of Pulay [1],
by minimizing the norm of the corresponding linear combination of the gradients. The SCF/DIIS
method has been implemented in most electronic-structure programs and has been successfully
used to obtain optimized HF /KS energies. However, in some cases the DIIS procedure fails to
converge.

During the last decade, much effort has been directed towards developing linear scaling SCF
methods. In particular, the computational scaling for the evaluation of the Fock/KS matrix has
been successfully reduced by use of the fast multipole method (FMM) for the Coulomb contribution
[2]-[6], the order-N exchange (ONX) method and the linear exchange K (LinK) method for the
exact (Hartree—Fock) exchange contribution [7]-[12], and efficient numerical quadrature methods
for the exchange—correlation (XC) contribution [13]-[15]. Our SCF code uses FMM combined with
density fitting for the Coulomb contribution, LinK for the exact exchange contribution, and linear-
scaling numerical quadrature for the XC contribution. In the optimization of the SCF energy,
the diagonalization of the Fock/KS matrix, which scales cubically with the system size (N?), may
therefore become the time dominating step for large molecules. In this paper, we discuss how the
SCF method with DIIS may be improved upon by using an algorithm where the diagonalization
of the Fock/KS matrix is avoided in favour of a method of linear complexity.

In the SCF/DIIS method, the minimization of the energy is carried out in two separate steps:
the diagonalization of the Fock/KS matrix and the averaging of the density matrix. In neither step
an energy lowering is enforced on Escp. It is simply hoped that, at the end of the SCF iterations,
an optimized state is determined. We discuss improvements to both the diagonalization and the
density matrix averaging, where a lowering of the energy Escr is enforced at each iteration. For
both steps, we construct a local energy model to Egcy with the current density matrix as the
expansion point. At the expansion point, these models have the exact Egcp gradient, but only
an approximate Hessian. They are therefore valid only in a restricted region about the expansion
point - the trust region. When these local models are used, it is essential that steps are only
generated within the trust region, as otherwise no energy lowering is guaranteed.

Diagonalization is avoided by recognizing that the density matrix obtained by diagonalizing
the Fock/KS matrix represents the global minimum of the Roothaan-Hall energy function ERH =
TrFD (with fixed F) [16]. The diagonalization may therefore be replaced by a minimization of
ERH_ However, since ERH is only a crude model of the true energy FEscr, a complete minimization
of ERH (as obtained for example by diagonalization) may give steps that are too long to be trusted.
When minimizing ER® we require the steps to be inside the trust region, solving a set of level
shifted Newton equations where the level shift controls the size of the steps. The level shifted
Newton equations may be solved using iterative algorithms where the time-dominating step is the
multiplication of the Hessian by trialvectors. Linear complexity is therefore obtained by using
sparse matrix algebra. The obtained algorithm will be denoted the linear scaling trust-region
Roothaan-Hall (LS-TRRH) method.

To improve on the DIIS scheme we construct an energy function where the expansion coefficients
of the averaged density matrix are the variational parameters. Carrying out a second-order expan-
sion of this energy, using the quasi-Newton condition and neglecting terms that require evaluation
of new Fock/KS matrices, we arrive at the density-subspace minimization (DSM) approximation
to the energy EPSM [17, 18]. At the expansion point, EP5M has the same gradient as Escr and
a good approximation to the Hessian. Again, trust-region optimization may be used to determine
the optimal expansion coefficients, ensuring also an energy lowering at this step of the iteration
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procedure. The obtained algorithm is denoted the trust-region density subspace minimization
(TRDSM) method. Combining the LS-TRRH and TRDSM we obtain the LS-TRSCF method.

In the next section we describe the LS-TRRH algorithm while in section 3 the TRDSM al-
gorithm is discussed. Section 4 contains numerical results which demonstrate the convergence
of LS-TRSCF calculations and that linear scaling is obtained. The last section contains some
concluding remarks.

2 Optimization of the Roothaan—Hall energy

2.1 Parametrization of the density matrix

Let D be a valid Kohn—Sham density matrix of an N-electron system, which together with the
AO overlap matrix S satisfies the symmetry, trace and idempotency relations:

DT =D (1)
TrTDS=N (2)
DSD =D (3)

Introducing the projectors P, and P, on the occupied and virtual spaces

P, =DS (4)
P,=1-DS (5)

we may, from the reference density matrix D, generate any other valid density matrix by the
transformation [16, 20, 21]

D(X) = exp [-P(X)S] D exp [SP(X)] (6)
where X is an anti-Hermitian matrix and where
P(X) = P,XP! + P, XP] (7)

project out the redundant occupied-occupied and virtual-virtual components of X.
The density-matrix D(X) may be expanded in orders of X as

D(X) =D + [D,P(X)]s + 3 [D, P(X)]g, P(X)]g + -+ (8)
where we have introduced the S commutator

[A,B]; = ASB — BSA (9)

2.2 The Roothaan—Hall Newton equations in the AO basis

In an SCF optimization, the diagonalization of the Fock/KS matrix F is equivalent to the mini-
mization of the Roothaan—Hall energy [16]

E*(X) = Tr [FD(X)] (10)

in the sense that both approaches yield the same density matrix. Inserting the S-commutator
expansion of the density matrix D(X), we obtain

Tr[FD(X)] = Tr (FD) + Tr (F°X — M°'X)
+ Tr (F°XSX — FYVXS%°X) + - -- (11)
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where we have made repeated use of the idempotency relations P2 = P, and P2 = P, and of
the orthogonality relations P,P, = P,P, = 0 and PTSP, = PISP, = 0 and introduced the
short-hand notation

F** = PI'FP, (12)

Note that, whereas the off-diagonal projections F° and F¥° of F contribute to the terms linear in
X, the diagonal projections F°° and FYV contribute to the quadratic terms.

The Roothaan-Hall energy ERH is only a crude model of the true HF /KS energy Escr, having
the correct gradient but an approximate Hessian at the point of expansion; this can be understood
from the observation that, whereas ER! depends linearly on D(X), the true energy Escr depends
quadratically on D(X). Therefore, a complete minimization of ERH (as achieved, for example,
by diagonalization of the Fock/KS matrix), may give steps that are too long to be trusted. Such
steps may, for example, increase rather than decrease the total SCF energy. We therefore impose
on the energy minimization the constraint that the new occupied space does not differ appreciably
from the old occupied space. The step must therefore be inside or on the boundary of the trust
region of ERH, which we define as a hypersphere with radius h around the density at the current
expansion point. In the S metric norm, the length of the step

IPX)lls = Te[P(X)SP(X)S] (13)

is thus restricted to h2. To satisfy this constraint, we introduce an undetermined multiplier y and
set up the Lagrangian

LRH(X) = Tr [FD(X)] — %u (Te[P(X)SXS] — h?) (14)
Expanding this Lagrangian to second order in X using Eq. (11), we obtain
LR(X) =Tr (FD) + Tr (F°X — F°'X)

1
+ Tr (F°XSVX — FWYXS%X) + p | Tr (S°°XSVVX) — §h2 e (15)

Differentiating this function with respect to the elements of X, we obtain

aLzI:_IXFX) — FOV _ FVO — SVVXFOO — FOOXSVV + FVVXSOO + SOOXFVV
- (vaXSoo + Sooxsvv) N (16)
where we have used the relation 5Tx( )
Tr(AX
—ax  —A (17)

Finally, setting the right-hand side equal to zero and ignoring higher-order contributions, we obtain
the matrix equation

FVVXSOO — FOOXSVV _+_ SOOXFVV — SVVXFOO
— (SVVXSOO + SOOXSVV) — Vo _ Fov (18)

for the stationary points on the trust sphere of the Roothaan-Hall energy function.
Eq. (18) is equivalent to a level shifted sef of Newton equations

(H-pM)x =G (19)
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where
H=F" Q8% —F° g8 +8° g F'"W — SV g F°° (20)
M — SVV ® SOO _ SOO ® SVV (21)
G = Vec(F¥° — F%) (22)
x = VecX (23)

2.3 The Roothaan—Hall Newton equations in an orthonormal basis

The conditioning number of the level shifted Hessian matrix in Eq. (19) is greatly reduced by
transforming the equation to an orthogonal basis. We consider transformations based on the
factorization of the overlap in the form

Ss=viv (24)

Such a factorization may be accomplished in infinitely many ways — for example, by introducing a
Cholesky factorization (as employed by Shao et al. [22] in the curvy step method) or the principal
square root
V.=U (25)
V, =S'/2 (26)

where U is an nonsingular upper triangular matrix and where S/2 is a positive-definite symmetric
matrix. In the orthonormal basis, the Roothaan—Hall Newton equations Eq. (18) take the form

(B — T — )XY + XV(FY - F — D) =Y — FYY (27)

where we have introduced the notation
Ay=v Tav! (28)
AY = VAVT (29)

and where we have further assumed that XV contains only non-redundant components. When
solving Eq. (27) by the conjugate gradient method, it is advantageous to use a diagonal precondi-
tioner.

Eq. (27) represents the solution of a level shifted Newton set of linear equations

Hyx" — pIx¥ = Gy (30)
where
Hy = (F{Y - FY)I+1® (FYY —FY) (31)
x¥ = VecXV (32)
Gv = Vec(FY® — FY) (33)

In the global region of an SCF optimization, the boundary of the trust region is represented
by XPa* = k, where X is the largest component of XV and k is 0.35. Unlike || XV||g, X
is size-extensive, provided equal diagonal dominance of the Hessian matrix for small and large
systems.

To ensure that the minimum is determined on the boundary of the trust region, the level shift
must be restricted to the interval —oco < p < €min where en;, is the lowest eigenvalue of the
Hessian Eq. (31). In principle, the lowest Hessian eigenvalue should therefore be determined and
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a line search carried out in the interval —co < g < €pin to find the level shift u with X7** = 0.35.
However, a simpler strategy is obtained by recognizing that the solution of the level shifted Newton
equations can be determined from the eigenvectors of the augmented Hessian eigenvalue equation
[23, 24, 25]. If the solution with the lowest eigenvalue is determined, the level shift is restricted to
the interval —oo < p < €min-

The level shifted Newton equations may be solved using an iterative procedure where the
reduced space Hessians and gradients are set up in each iteration. At each iteration, the augmented
Hessian may therefore also be set up at essentially no cost and the lowest eigenvalue determined.
Consequently the level shift may be updated by solving the reduced space augmented Hessian
eigenvalue problem at no extra cost. With the updated level shift, a new Newton iteration may be
carried out and the iterations continued until convergence is obtained with respect to level shift
and the residual of the Newton equations (see Ref. [26]).

When the level shifted Newton equations are solved using iterative algorithms, the time con-
suming step is the linear transformation of the Hessian matrix on trial vectors. Using sparse matrix
algebra, linear scaling may be obtained in these linear transformations.

3 The density-subspace minimization (DSM) algorithm

After a sequence of Roothaan—Hall iterations, we have determined a set of density matrices D;
and a corresponding set of Fock/KS matrices F; = F(D;). We now discuss how to make the best
use of the information contained in these matrices.

3.1 Parametrization of the DSM density matrix

Using Dy as the reference density matrix, the improved density matrix may be expressed as a
linear combination of the current and previous density matrices [17, 18]

n
=0

Ideally D should satisfy the symmetry, trace and idempotency conditions Eqgs. (1-3). The symmetry
condition Eq. (1) is trivially satisfied while the trace condition Eq. (2) holds only if

co=— i G- (35)
i=1

Using ¢; with 1 <4 < n as independent parameters the density matrix D may be expressed as

D =Dy + Dy, (36)
where we have introduced the notation
D_|_ = ZCiDz’O; (37&)
i=1
D;o = D; — Dy. (37b)

While D satisfies the symmetry and trace conditions Eqgs. (1) and (2), the idempotency condition
Eq. (3) is not fulfilled. A smaller idempotency error may be obtained using the purified density
matrix of McWeeny [19, 27]

D = 3DSD — 2DSDSD. (38)
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Emphasizing that Dy is the reference density matrix, the first-order purified density matrix may
be expressed as B
D =D+ D, + Ds. (39)

where we have introduced the idempotency correction

D, =D -D. (40)

3.2 Construction of the DSM energy function

Expanding the energy for the purified averaged density matrix, Eq. (39), around the reference
density matrix Dy, we obtain to second order

- 1
E(D) = E(Dy) + (D4 +D;)"EY + 5 (D + D;)"E(?) (D, + Dy) (41)

To evaluate the terms containing E(()l) and E(()Z), we first recall that the Fock/KS matrix is defined
as

E{" = 2F, (42)
Next we carry out an expansion of Egl) with Do as expansion point
EY = B + E(D; — Do) + O(D; — Do)’ (43)
Neglecting terms of order O(D; — DO)2 we obtain the quasi-Newton condition
E{?(D; — Do) = 2F; — 2F, = 2F (44)
which may be used to obtain
E{'D, = 2F, + O(D2), (45)
where we have generalized the notation Eq. (37a) to the Fock/KS matrix
F,=) cFy (46)
i=1
Using Eq. (42) and Eq. (45) and ignoring the terms quadratic in Dys in Eq. (41) and quadratic in
D, in Eq. (45), we then obtain the DSM energy
EPM(¢) = E(Dg) + 2Tr D, Fo + Tr D, F, + 2TrD;Fo + 2 Tr DsF .. (47)

Note that EPSM(c) is expressed solely in terms of the density and Fock/KS matrices of the current
and previous iterations. For a more compact notation, we introduce the weighted Fock/KS matrix

F= Fo+F; =Fp+ Z ciFio (48)
i=1
and find that the DSM energy may be written in the form

EPM(c) = E(D) + 2 Tr DsF, (49)



8 P. Jorgensen

where the first term is quadratic in the expansion coefficients c;
E(D) = E(Dy) +2TrD, Fy+ Tr D, F,, (50)
and the second (idempotency correction) term is quartic in these coefficients:
2Tr DsF = Tr(6DSD — 4DSDSD — 2D)F. (51)

The derivatives of EP5M(c) are straightforwardly obtained by inserting the expansions of F and D,
using the independent parameter representation and the minimization of EPSM(c) may straight-
forwardly be carried out using the trust-region method.

4 Numerical Illustrations

4.1 Convergence of test calculations

We now describe the convergence of test calculations for Hartree-Fock and DFT LDA using the
LS-TRSCF algorithm where the level shifted Newton equations are solved in the basis defined by
the principal square root in Eq. (26). For comparison, the convergence of the standard SCF/DIIS
calculations (diagonalization + DIIS, no level shift) will also be reported. In both DIIS and
TRDSM a maximum of eight densities and Fock/KS matrices stored.

In Fig. 1 we display the convergence (the difference between the energy of a given iteration and
the converged energy) of Hartree-Fock calculations using LS-TRSCF (left panel) and SCF/DIIS
(right panel) on six molecules representing different types of chemical compounds: 1). Water,
stretched: HyO where the O—H bond is twice its equilibrium value (d-aug-pVTZ basis). 2). Zn
complex: The zinc-EDDS complex of Ref. [18] (6-31G basis). 3). Rh complex: The rhodium
complex of Ref. [17] (AhlrichsVDZ basis [28], STO-3G on Rh). 4). Cd complex: The cadmium-
imidazole complex of Ref. [18] (3-21G basis). 5). Polysaccharide: A polysaccharide containing
438 atoms (6-31G basis). 6). Polyalanine, 24 units: A polypeptide containing 24 alanine residues
(6-31G basis). Smooth convergence to 1078 a.u. is obtained in all LS-TRSCF calculations. Con-
vergence is obtained in between 12-30 iterations. The convergence is very similar for the SCF/DIIS
and the LS-TRSCF calculations except for the rhodium complex, where the SCF /DIIS calculation
diverges while smooth convergence is obtained using the TRSCF algorithm. The local convergence
is very similar for SCF/DIIS and LS-TRSCF reflecting that in both DIIS and DSM, the local
convergence is determined by the fact that the quasi Newton condition is satisfied [18]. In Fig.
2, we report calculations similar to those in Fig. 1 but where the Hartree-Fock model is replaced
by LDA. The convergence of the LS-TRSCF Hartree-Fock and LDA calculations is very similar
with the exception of the Rh complex where the LDA calculation has a rather erratic behaviour
from about iteration 20 to 80 after which fast convergence is obtained. The SCF/DIIS LDA cal-
culations in the left panel in Fig. 2 show erratic convergence behaviour in particular for the Cd
complex and polyalanine where the calculations diverge, and for the polysaccharide calculation in
the initial 25 iterations. The erratic behaviour which is in general observed in the initial itera-
tions of SCF/DIIS calculations reflects that energy lowering is not an agenda in the SCF/DIIS
scheme. Surprisingly, the SCF/DIIS LDA calculation on the rhodium complex converges, while
the corresponding Hartree-Fock calculation diverges. To sum it up, similar convergence is seen in
Hartree-Fock SCF/DIIS and the LS-TRSCF calculations, whereas for LDA, a much more smooth
and robust convergence is obtained by using the LS-TRSCF scheme. Particularly in the initial iter-
ations, a more erratic behaviour is seen with the SCF/DIIS algorithm. In several cases LS-TRSCF
calculations converge, where SCF/DIIS calculations diverge.
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Figure 1: Convergence of the Hartree-Fock LS-TRSCF (left panel) and SCF/DIIS (right panel)
calculations for the rhodium complex, the zinc complex, the cadmium complex, the stretched
water, the polysaccharide and the polyalanine. The energy error (a.u.) in each iteration is plotted
versus number of iterations.
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Figure 2: Convergence of the LDA LS-TRSCF (left panel) and SCF/DIIS (right panel) calcula-
tions for the rhodium complex, the zinc complex, the cadmium complex, the stretched water, the
polysaccharide and the polyalanine. The energy error (a.u.) in each iteration is plotted versus
number of iterations.
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4.2 Linear scaling using the LS-TRSCF algorithm

In this subsection, we will illustrate that linear scaling is obtained using the LS-TRSCF algorithm.
We consider calculations on a polyalanine chain where we extend the number of alanine residues.
We consider both Hartree-Fock and B3LYP calculations in a 6-31G basis. The largest alanine chain
contains 119 alanine residues (a total of 1192 atoms). The convergence of an alanine calculation
with 24 alanine units is given in Figs. 1-2.

In Fig. 3 we have shown the CPU time used in the different parts of the LS-TRSCF algorithm
for the Hartree-Fock calculations using the sparse matrix representation. In all figures, the timings
are for the first iteration in the local region, except for the DSM time, which is dependent on the
number of previous densities. Therefore, the DSM time is always given for iteration 8, where we
have the maximum number of previous densities involved. The timings are given for the evaluation
of the Coulomb (Fock J) and exchange (Fock X) parts of the Fock/KS matrix, respectively, and
for the LS-TRRH step and for the TRDSM step. The curve for the most expensive step — the
exchange part of the Fock matrix — has a bend due to an N? scaling sorting routine. For both
the LS-TRRH and TRDSM steps, the time consuming part of the calculations consists mainly
of matrix multiplications. Both LS-TRRH and TRDSM scale linearly with system size in the
calculations in Fig. 3, where sparsity is exploited in the matrix multiplications. The benefits from

60000

50000

40000

30000

CPU time / seconds

20000 Fock (J)

10000
TRDSM

T,
T,

0 200 400 600 800 1000 1200
Atoms

Figure 3: CPU timings for one iteration of a Hartree-Fock calculation using a 6-31G basis plotted
as a function of the number of atoms in a polyalanine peptide. The considered contributions are
the exchange (X) and Coulomb (J) contributions to Fock matrix in addition to the LS-TRRH and
TRDSM optimization steps where sparse matrix algebra is used.

exploiting the sparsity of the involved matrices become evident from Fig. 4, where we have plotted
the CPU times for the LS-TRRH and TRDSM steps from Fig. 3 in combination with timings for
calculations where the matrix multiplications involve full (dense) matrices. The timings for full
matrix representations increase with system size in accorcance with cubic scaling, but become linear
when the sparsity is exploited. As seen on the figure, the advantage of going to the sparse matrix
representation has an earlier onset for TRDSM than for LS-TRRH, because TRDSM contains more
matrix multiplications than LS-TRRH. Fig. 5 shows the CPU timings for the B3LYP calculations
in the sparse matrix representation. The timings shown are the same as in Fig. 3, with the
addition of the timing for the exchange-correlation (Kohn-Sham XC) contribution. Like the other
contributions to the KS matrix (Coulomb and exchange), the exchange-correlation contribution
has reached the linear scaling regime. In general, the behaviour of the B3LYP curves is similar to
the one observed for the HF curves.
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Figure 4: CPU timings for one iteration of a Hartree-Fock calculation using a 6-31G basis for the
LS-TRRH and TRDSM steps for sparse and dense matrices plotted as a function of the number
of atoms in a polyalanine peptide.
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Figure 5: CPU timings for one iteration of a BSLYP calculation using a 6-31G basis plotted as a
function of the number of atoms in a polyalanine peptide. The same contributions as in Fig. 3 are
considered, in addition to the exchange correlation (XC) contribution.
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5 Conclusion

We have described a linear scaling implementation of the trust-region self-consistent field (LS-
TRSCF) method. In the LS-TRSCF method, each iteration consists of a crude optimization of the
Roothaan-Hall energy giving a new density matrix (see Section 2.3) followed by the determination
of an improved density matrix in the subspace containing the current and previous density matrices.
A linear scaling algorithm is obtained using iterative methods to solve the level shifted Newton
equations and sparse matrix algebra.

The convergence of the LS-TRSCF method is examined and for comparison the convergence
of conventional SCF/DIIS calculations have been reported. The LS-TRSCF calculations show
smooth and robust convergence and in several cases, the LS-TRSCF calculations converge where
the SCF/DIIS calculations diverge. The convergence of the LS-TRSCF method is in general
equally good for small and large systems. For small systems, a TRSCF implementation based
on an explicit diagonalization of the Fock/KS matrix may be more efficient. However, for small
systems the computational time for optimizing the density matrix is insignificant compared to the
computational time for setting up the Fock/KS matrix. Consequently we recommend using the
LS-TRSCF method for calculations on both small and large systems.
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