
Red Hat CloudForms 5.0-Beta

Scripting Actions in CloudForms

Real-time, bi-directional process integration for Red Hat CloudForms

Last Updated: 2019-09-20

Red Hat CloudForms 5.0-Beta Scripting Actions in CloudForms

Real-time, bi-directional process integration for Red Hat CloudForms

Red Hat CloudForms Documentation Team
cloudforms-docs@redhat.com

Legal Notice

Copyright © 2019 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, the Red Hat logo, JBoss, OpenShift,
Fedora, the Infinity logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States
and other countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat is not formally related to or endorsed by the
official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide provides instructions for scripting the method to implement adaptive automation for
management events and administrative or operational activities. If you have a suggestion for
improving this guide or have found an error, please submit a Bugzilla report at
http://bugzilla.redhat.com against Red Hat CloudForms Management Engine for the
Documentation component. Please provide specific details, such as the section number, guide
name, and CloudForms version so we can easily locate the content.

. .

. .

. .

. .

. .

Table of Contents

PREFACE

CHAPTER 1. UPDATES TO RAILS AND RUBY
1.1. UPDATES AND CHANGES IN RAILS
1.2. UPDATES AND CHANGES IN RUBY

CHAPTER 2. UNDERSTANDING THE AUTOMATE MODEL
2.1. AUTOMATE MODEL
2.2. CREATING A DOMAIN
2.3. EDITING A DOMAIN
2.4. DELETING A DOMAIN
2.5. IMPORTING A DOMAIN
2.6. CHANGING PRIORITY ORDER OF DOMAINS
2.7. CREATING A NAMESPACE
2.8. CREATING A CLASS
2.9. CREATING A SCHEMA FOR A CLASS
2.10. EDITING A FIELD IN A SCHEMA
2.11. EDITING SCHEMA SEQUENCE
2.12. ADDING AN INSTANCE TO A CLASS
2.13. COPYING A CLASS OR INSTANCE
2.14. RELATIONSHIPS
2.15. METHODS

2.15.1. Creating a Method
2.15.2. Creating a Dynamic Content Dialog
2.15.3. Creating a Playbook Automate Method

2.16. EXPRESSION METHODS
2.16.1. Input Parameters

2.16.1.1. Optional Input Parameters
2.16.2. Creating an Expression Method

2.17. SIMULATION
2.17.1. Simulating an Automate Model

2.18. IMPORTING, EXPORTING, AND RESETTING THE DATASTORE
2.18.1. Exporting All Datastore Classes
2.18.2. Importing Datastore Classes
2.18.3. Resetting Datastore to Default

CHAPTER 3. INVOKING AUTOMATE
3.1. AUTOMATE EXAMPLES
3.2. INVOKING AUTOMATE USING A CUSTOM BUTTON
3.3. CREATING A CUSTOM BUTTON GROUP
3.4. CREATING A CUSTOM BUTTON
3.5. CREATING AN ANSIBLE PLAYBOOK BUTTON
3.6. EDITING A CUSTOM BUTTON
3.7. DELETING A CUSTOM BUTTON
3.8. SETTING ENABLEMENT AND VISIBILITY FOR CUSTOM BUTTONS
3.9. USING A CUSTOM BUTTON
3.10. INITIATING AUTOMATE FROM AN EVENT
3.11. CREATING A POLICY FOR AUTOMATE
3.12. CREATING A CUSTOM AUTOMATE ACTION

APPENDIX A. OBJECTS
A.1. VIRTUAL MACHINE PROPERTIES

4

5
5
5

6
6
7
7
7
8
8
8
9
9

10
10
11
11
11

12
13
13
14
15
15
15
16
17
17
18
19
19
19

20
20
20
20
20
22
23
23
24
24
25
25
26

27
27

Table of Contents

1

. .

. .

. .

A.2. METHODS FOR USE IN RUBY SCRIPTS
A.3. HOST PROPERTIES
A.4. PROVIDER PROPERTIES
A.5. STORAGE PROPERTIES

APPENDIX B. FAQS AND FLOWS
B.1. PHASE 1: CREATE PROVISION REQUEST
B.2. PHASE 2: REQUEST APPROVAL
B.3. PHASE 3: QUOTA VALIDATION
B.4. PHASE 4: PROVISIONING
B.5. PHASE 5: RETIREMENT

APPENDIX C. INLINE METHOD TO CREATE A PROVISION REQUEST
C.1. RUBY METHOD

APPENDIX D. MIGRATING CUSTOM BUTTONS
D.1. MIGRATING CUSTOM BUTTONS

32
32
35
37

40
40
41

42
42
44

46
46

47
47

Red Hat CloudForms 5.0-Beta Scripting Actions in CloudForms

2

Table of Contents

3

PREFACE
The Automate model provides flexibility to not only change parts of the provisioning process, but also to
allow you to automate other operational tasks. Below are some scenarios where the Automate model
can help accomplish these tasks.

Intelligent Workload Management - An enterprise had a requirement that when a virtual
machine has reached a High CPU Percent Ready for a specified period of time, a vMotion should
occur to a more suitable host. For this reason, VMware’s Distributed Resource Scheduler (DRS)
was not practical, as the CPU Ready metric could not trigger DRS. The solution was to leverage
Red Hat CloudForms Control and Red Hat CloudForms Automate to drive the management of
this workflow.

Power on only during business hours - An organization which gave a group of self-service users
Red Hat CloudForms access had a requirement to only allow certain virtual machines to be
powered during business hours. This was solved with Red Hat CloudForms Automate.

Auto-Tagging virtual machines based on file contents - An IT organization needed a way to
consume information from a text file on a virtual machine and dynamically populate vCenter.
The data used to auto-tag virtual machines is also used to align unmanaged virtual machines to
the business.

Red Hat CloudForms 5.0-Beta Scripting Actions in CloudForms

4

CHAPTER 1. UPDATES TO RAILS AND RUBY
Changes within Ruby and Rails versions can create issues for custom code and automation in Red Hat
CloudForms environments.

Before proceeding with major upgrades that include changes to versions of Ruby and Rails, review the
below resources.

1.1. UPDATES AND CHANGES IN RAILS

See Rails Releases for information on each release of Rails. To compare versions of Rails, see
Comparing changes in Rails .

1.2. UPDATES AND CHANGES IN RUBY

See Ruby Releases for information on each release of Ruby by version number. To compare versions of
Ruby, see Comparing changes in Ruby .

CHAPTER 1. UPDATES TO RAILS AND RUBY

5

https://weblog.rubyonrails.org/releases/
https://github.com/rails/rails/compare
https://www.ruby-lang.org/en/downloads/releases/
https://github.com/ruby/ruby/compare

CHAPTER 2. UNDERSTANDING THE AUTOMATE MODEL
Automate enables real-time, bi-directional process integration. This provides users with a method to
implement adaptive automation for management events and administrative or operational activities.

2.1. AUTOMATE MODEL

The Automate model is arranged to provide an object oriented hierarchy to control automation
functions. The model uses the following organizational units arranged in a hierarchy:

Datastore - The main organization unit that stores the entire model.

Domains - Domains act as collection of automation functions. Functions are executed
depending on the order of Domain priority, which means a function in a Domain with a higher
priority overrides the same functions specified in a lower-priority Domain. This allows Red Hat
CloudForms to specify a core Domain (ManageIQ) but allow users to override automate
functions with custom Domains. Each Domain contains a set of Namespaces.

Namespaces - Containers that organize and categorize functions of the model. Namespaces
can contain child Namespaces as well as Classes.

Classes - Templates for a specific function of the model. Each Class uses a Schema to apply to
Instances to populate with default values. Each class also can contain a set of methods.

Instances - An instance is a version of a class populated with initial configuration data. An
instance can include a collection of any number of attributes, calls to methods, and relationships.

Methods - Methods are functions within the model. Methods use Ruby code to execute various
operations needed for a Class.

Red Hat CloudForms contains a set of preconfigured Domains for users:

ManageIQ - The core domain for Red Hat CloudForms Automate operations. This domain is
locked with the following Namespaces:

Cloud - General cloud instance lifecycle from provisioning, retirement, methods, email.

Control - Control contains email alerts for policy controls.

Infrastructure - General infrastructure VM lifecycle from provisioning, retirement, methods,
email.

Service - Service lifecycle from provisioning, retirement, methods, email.

System - System contains classes that can provide the start points for all Red Hat
CloudForms Automate activities.

RedHat - Domain containing advanced operations, specifically interactions with supported
cloud and infrastructure providers. This domain is locked with the following Namespaces:

Cloud - Red Hat-supported cloud instance lifecycle from provisioning, retirement, methods,
email.

Infrastructure - Red Hat-supported cloud instance lifecycle from provisioning, retirement,
methods, email.

Integration - Used to interface with systems outside of Red Hat CloudForms. Use this

Red Hat CloudForms 5.0-Beta Scripting Actions in CloudForms

6

Integration - Used to interface with systems outside of Red Hat CloudForms. Use this
namespace to integrate with additional systems.

You can copy classes and instances from locked Domains into your own custom domains.

NOTE

Changing the existing classes or instances shipped with the product is not recommended
because this may hinder the operation of Red Hat CloudForms. You can link to these
methods using relationships.

To reset the Automate model to default settings, navigate to Automate → Import/Export and click the
Reset option.

2.2. CREATING A DOMAIN

1. Navigate to Automation → Automate → Explorer. The default view is the Datastore.

2. Click (Configuration), then (Add a New Domain).

3. Type in a unique Name and Description. Choose if the Domain is Enabled.

4. Click Add.

The new domain is created.

2.3. EDITING A DOMAIN

1. Navigate to Automation → Automate → Explorer. The default view is the Datastore.

2. Select the Domain you want to edit.

3. Click (Configuration), then (Edit Selected Domain).

4. Make the required edits.

5. Click Save.

You have edited the selected domain.

2.4. DELETING A DOMAIN

1. Navigate to Automation → Automate → Explorer. The default view is the Datastore.

2. Select the Domain that you want to delete.

3. Click (Configuration), then (Remove This Domain).

4. A window to confirm the removal of Domain appears.

5. Click OK.

The selected Domain is deleted.

CHAPTER 2. UNDERSTANDING THE AUTOMATE MODEL

7

2.5. IMPORTING A DOMAIN

Red Hat CloudForms adds the ability to import an Automate domain from a Git repository by specifying
a repository and branch, along with user details. Currently, you can only add git domains via the
Import/Export option of the user interace.

1. Navigate to Automation → Automate → Import/Export.

2. In Import Datastore via git, enter the Git URL. Select the branch or tag to use.

3. Optionally, enter a Username and Password.

4. Click Submit.

The new domain is imported via Git repository. Note that the domain is validated on import.

2.6. CHANGING PRIORITY ORDER OF DOMAINS

Functions are executed depending on the order of Domain priority. Use this procedure to change the
priority order of domains.

1. Navigate to Automation → Automate → Explorer. The default view is the Datastore.

2. Select the Domains you want to change the priority order for.

3. Click (Configuration), then (Edit Priority Order of Domains).

4. The list of Domains selected shows up. Note that you cannot change the priority of locked
Domains and therefore locked Domains do not show up on the list.

5. Select one or more consecutive groups to move up or down to change their priority as required.

6. Click Save.

2.7. CREATING A NAMESPACE

1. Navigate to Automation → Automate → Explorer. The default view is the Datastore.

2. Navigate through the various Domains and Namespaces until you reach the desired location for

Red Hat CloudForms 5.0-Beta Scripting Actions in CloudForms

8

2. Navigate through the various Domains and Namespaces until you reach the desired location for
your new Namespace.

3. Click (Configuration), then (Add a New Namespace).

4. Type in a unique Name and Description.

5. Click Add.

The new Namespace is created.

2.8. CREATING A CLASS

1. Navigate to Automation → Automate → Explorer, navigate to the namespace you want to add
a class to.

2. Click (Configuration), then (Add a new Class).

3. Type in a unique Name and Description.

4. If you want to use the schema from a class that has already been created, select it from the
Inherits From dropdown. If the class that the new class inherits from changes, the new class will
also change.

5. Click Add.

The new class is created and you can create a schema, add instances and methods.

NOTE

For each class, create a schema if you did not choose to inherit from an existing class. The
schema can include attributes, methods, assertions, and relationships.

2.9. CREATING A SCHEMA FOR A CLASS

This procedure shows you how to create a schema.

1. Navigate to Automation → Automate → Explorer, and click the class you want to define a
schema for.

2. Click on the Schema tab.

3. Click (Configuration), then (Edit selected Schema).

4. Click (Click to add a new field) to create a new field.

5. Type in a Name for the new field.

6. From Type, select Assertion, Attribute, Method, Relationship, or State.

7. If applicable, select a Data Type and set a Default Value.

8. Type in a user friendly Display Name and Description.

CHAPTER 2. UNDERSTANDING THE AUTOMATE MODEL

9

9. Check Sub to enable the substitution syntax of ${}. Uncheck it if you want to use that syntax as
a regular string.

10. Fill in Collect and Message as required. Collect is used to roll up values from resolved
relationships. For example, a relationship can resolve to a large object tree. Use collect to
specify how to pull out data from those child objects into the current object. If you give collect a
name value, it will store the method result in an attribute of the current object with that name.

11. On Entry, On Exit, On Error, Max Retries, and Max Time are fields used mostly for state
machines. Leave blank if not applicable. For more information, see Provisioning Virtual Machines
and Hosts.

12. Click (Add this entry) to confirm the fields values.

13. For each new field, repeat steps 4 through 10.

14. When you have created all of the fields, click Save.

The class schema is created, and you can now add instances to it.

NOTE

You may need to edit a class schema to reorder, add, edit, or remove a field. Classes
define the order in which fields are processed and you may need to process some items
before others.

2.10. EDITING A FIELD IN A SCHEMA

This procedure describes how to edit schema fields.

1. Navigate to Automation → Automate → Explorer.

2. Click the class you want to define a schema for.

3. Click the Schema tab.

4. Click (Configuration), then (Edit selected Schema).

5. Make required changes to any of the definitions for the field.

6. To remove a field, click (Click to delete this field from the schema).

7. Click Save when you are finished editing the schema.

Once the schema is created, you can add instances and methods to the class.

2.11. EDITING SCHEMA SEQUENCE

This procedure shows you how to change schema sequence.

1. Navigate to Automation → Automate → Explorer.

2. Click the class you want to change the schema sequence for.

Red Hat CloudForms 5.0-Beta Scripting Actions in CloudForms

10

3. Click the Schema tab.

4. Click (Configuration), then (Edit Sequence).

5. In the Class Schema Sequencing area, click the field you want to change the sequence for.

To move a field up in the order of resolving an instance, click (Move selected field
up).

To move a field down in the order of resolving an instance, click (Move selected field
down).

6. Click Save when you are finished editing the sequence.

2.12. ADDING AN INSTANCE TO A CLASS

This procedure shows you how to create an instance.

1. Navigate to Automation → Automate → Explorer.

2. Click the class you want to define a schema for.

3. Click the Instances tab.

4. Click (Configuration), then (Add a new Instance).

5. In the Main Info area, type in a Name, Display Name and Description.

6. In the Fields area, type in an appropriate value for each field, leave the field blank if no value is
required, or use the default value.

7. Click Add.

2.13. COPYING A CLASS OR INSTANCE

1. Navigate to Automation → Automate → Explorer. The default view is the Datastore.

2. Navigate through the various Domains and Namespaces until you reach the desired class or
instance to copy.

3. Click (Configuration), then either (Copy this Class) or (Copy this Instance) depending on
the object chosen.

4. Choose the target Domain in the To Domain drop-down menu.

5. The object retains the same path as the From Domain and overrides the class in From Domain
if the To Domain has a high priority. You can also untick the Copy to same path option to
specify a new Namespace.

6. Click Add.

2.14. RELATIONSHIPS

CHAPTER 2. UNDERSTANDING THE AUTOMATE MODEL

11

Relationships are used to connect to other instances in the Automation Datastore. Relationships are
formed using URI syntax. The following can also be passed through a relationship:

Use # to set the message to send to the item in the relationship.

To pass an input to the method use ? followed by the item to pass.

If you want to use a substitution, the syntax is $\{} with the substitution located between the
brackets.

Example Explanation

/Cloud/VM/Provisioning/Naming/Default#crea
te

This relationships uses the Default instance of the
Naming class, which provides a means for other
classes to name virtual machines. The relationship
sends the create message to the class.

/Cloud/VM/Provisioning/StateMachines/VMPr
ovision_VM/AcquireMACAddress#$\
{#ae_message}

This relationships substitutes the message to send to
the AcquireMACAddress instance of the
VMProvision_VM class with the value in
ae_message.

/Cloud/VM/Retirement/Email/vm_retirement_e
mails?event=vm_retired

Invokes the vm_retirement_emails instance of the
Email class. Also sends the value vm_retired in the
event attribute, which is used in the
vm_retirement_emails method.

/Service/Lifecycle/Retirement?service_id=$\
{process#service_id}

Invokes the Retirement instance of the Lifecycle
class and send a replacement value in
process#service_id to the service_id attribute.

2.15. METHODS

Methods are pieces of code associated with a class or object to perform a task. Red Hat CloudForms
allows for Ruby methods or backing a method using an Ansible playbook. You can create your own
methods or use relationships to link to pre-existing ones.

Red Hat CloudForms ships with a core set of Ruby gems used by the Red Hat CloudForms Rails
Application. The Ruby gems in this set are subject to change. If you are calling gems using Automate that
are no longer in this release, you can install them by using the gem install command.

While gems can be imported into automation methods using require, it is recommended that the
authors of the automation methods clearly document the use of gems either in the core set or a custom
set. It is the responsibility of the author of such custom automation to own the life cycle of any gem
being referenced in those methods.

The Release Notes list Ruby gems that have been added, updated, or removed in the latest version of
Red Hat CloudForms.

For lists of Ruby gems included in different Red Hat CloudForms releases, see:

https://access.redhat.com/articles/1534753

Red Hat CloudForms 5.0-Beta Scripting Actions in CloudForms

12

https://access.redhat.com/articles/1534753

2.15.1. Creating a Method

This procedure shows you how to create a method.

1. Navigate to Automation → Automate → Explorer, navigate to the class where you want to
create a method.

2. Click the Methods tab.

3. Click (Configuration), (Add a New Method).

4. In the Main Info area, type in a Name and Display Name.

5. For Location, select inline. Once selected, you will be presented with a Data area in which to
write or copy the script.

6. Click Validate to check the syntax.

7. Click Add.

2.15.2. Creating a Dynamic Content Dialog

The procedure describes the steps to create a dynamic content dialog.

1. Navigate to Automation → Automate → Explorer.

2. From the accordion menu, click DOMAIN → Cloud → VM → Operations → Methods.

NOTE

DOMAIN must be a user-defined Domain and not the locked ManageIQ Domain.
If necessary, you can copy the class from the ManageIQ domain into a custom
domain.

This example uses the Cloud Namespace but can also use the Infrastructure namespace.

3. Click (Configuration), then (Add a new Instance).

4. In the Main Info area, enter Name = dynamic_list, replacing dynamic_list with an appropriate
name for the method.

5. Enter a Display Name and Description.

6. In the Fields area, enter Value = dynamic_list. Leave the other fields blank or use the default
values.

7. Click Add.

8. Navigate to Methods tab.

9. In the Main Info area, enter Name = dynamic_list and populate the Data section with the
example automate method below.

10. Click Add.

CHAPTER 2. UNDERSTANDING THE AUTOMATE MODEL

13

11. Set the automate entry point for the dialog control; use the new instance created in step four.
You can create a new domain and copy the method to that domain.

Automate Method

dialog_field = $evm.object

sort_by: value / description / none
dialog_field["sort_by"] = "value"

sort_order: ascending / descending
#dialog_field["sort_order"] = "ascending"

data_type: string / integer
dialog_field["data_type"] = "integer"

required: true / false
dialog_field["required"] = "true"

dialog_field["values"] = {1 => "one", 2 => "two", 10 => "ten", 50 => "fifty"}
dialog_field["default_value"] = 2

2.15.3. Creating a Playbook Automate Method

Red Hat CloudForms can choose an Ansible playbook from a repository and execute it as a method.
Each playbook method can take additional input parameters specified by the user.

IMPORTANT

You must first sync your playbook repositories before using them to create a
method. See Adding a Playbook Repository in Managing Providers for
information on initial playbook repository set-up.

Using Ansible playbooks to populate dynamic dialog fields is not recommended
due to delay times caused by the overhead of interaction between systems.

Only users with administrator privileges can run a service dialog based on a
playbook automate method.

To create a playbook automate method:

1. Navigate to Automation → Automate → Explorer, then click on a domain under Datastore.

2. Under a namespace, select the class for which you want to create a new method.

3. Click the Methods tab.

4. Click (Configuration) then, (Add a New Method).

5. In the Main Info area, select playbook from the drop-down menu.

6. Provide a Name and Display Name.

7. Select a playbook Repository from the list.

a. Choose a Playbook to use.

Red Hat CloudForms 5.0-Beta Scripting Actions in CloudForms

14

https://access.redhat.com/documentation/en-us/red_hat_cloudforms/4.7/html/managing_providers/automation_management_providers#adding-a-playbook-repository

a. Choose a Playbook to use.

b. Select the Machine Credential the playbook will use when it runs.

c. From the Cloud Type list, select a cloud provider.

d. Choose the Cloud Credential that corresponds to the selected cloud type.

8. Specify the Hosts on which the playbook will run. Choose Localhost or provide unique values in
the Specify host values field.

9. Set the Max TTL in minutes. The Time To Live (TTL) field allows you to set the maximum
execution time for the playbook to run.

10. Select when to receive Logging Output from the options in the drop-down menu.

11. Use the Escalate Privilege toggle switch to enable user privilege escalation if credentials are
called for during the playbook run.

12. Choose a Verbosity value to set the debug level for playbook execution.

13. Add required Input Parameters using the fields and values available. Click the to add
additional input parameters.

NOTE

Input parameters become extra vars, with substitution enabled. This overcomes
the lack of a dialog which would normally allow for the input of additional
information. For more information on extra vars, see the Ansible documentation.

14. Click Add when finished.

2.16. EXPRESSION METHODS

CloudForms additionally provides support for Expression Methods, that allow you to use advance search
filters as Automate Methods, substituting the user input from Automate Objects. Expression methods
have several distinct advantages, including: running directly in the worker appliance; removing the
overhead of forking a DRb process to run the Automate Methods; no Ruby code required; and prebuilt
for Dynamic Dialogs.

2.16.1. Input Parameters

Expression methods allow for substitution of user input through input parameters,

Input Parameter Explanation

arg The argument used in the expression. Each argument
should employ the prefix arg. Example: arg1: the first
argument in the expression; arg2: the second
argument in the expression; argn: the nth argument in
the expression.

2.16.1.1. Optional Input Parameters

CHAPTER 2. UNDERSTANDING THE AUTOMATE MODEL

15

NOTE

If attributes and distinct are not specified we try to store the result in a variable called
values with a hash consisting of id and name. This makes it compatible with our existing
dynamic dialog result set.

Optional Input Parameter Explanation

attributes A comma delimited list of attributes to select from
the resultant objects. This should me marked as an
Array Type in the Input Parameters field.

distinct A comma delimited list of attributes which are
distinct in the resultant objects.This should me
marked as an Array Type in the Input Parameters
field.

result_obj The object where the result data should be stored.
(default: current object)

result_attr The name of the attribute which stores the result.
(default: values)

result_type The result type hash or array (default: dialog_hash
which matches to our dynamic dialog hash. Valid
values are hash, dialog_hash, array, simple

on_empty The method behavior when the search returns an
empty list.

error Abort. (default: error)

default The default value in case the result is empty and you
select warn.

2.16.2. Creating an Expression Method

Expression methods allow you to use advance search filters as automate methods, substituting user
input at runtime, and making them ideal for dynamic dialogs.

To create an expression method:

1. Navigate to Automation → Automate → Explorer, then click on a domain under Datastore.

2. Under a namespace, select the class for which you want to create a new method.

3. Click the Methods tab.

4. Click (Configuration) then, (Add a New Method).

5. In the Main Info area, select expression from the drop-down menu.

Red Hat CloudForms 5.0-Beta Scripting Actions in CloudForms

16

6. Provide a Name and Display Name.

7. Select an Expression Object from the drop-down menu.

8. In the Expression editor, create the expression by setting the controls and values used at
runtime:

a. Using the drop-down menu, select the value to use. Based on your selection, choose or
input additional values from the drop-down menus or text fields that appear.

b. In the Contains field, input a value or click User will input the value.

c. Click to complete the expression.

9. Add Input Parameters for each of the user input fields required.

a. Click to add a new parameter.

b. Provide a Name, Default Value and select a Data Type for each parameter.

c. Click to add the parameter.

NOTE

If User will input the value is checked, arguments for each input parameter
names using the prefix “arg”.

For example, if there are 3 fields then the input parameter names should be
arg1, arg2, and arg3. If there are two runtime parameters arg1 and arg2 must
be defined in the input parameters. In the default value for these fields values
can be substituted from other objects in the Automate Workspace.

10. Click Add.

2.17. SIMULATION

After your model is designed, use the simulate page to test it. It allows you to see the results in tree and
XML view.

2.17.1. Simulating an Automate Model

This procedure shows you how to simulate an automate model.

1. Navigate to Automation → Automate → Simulation.

2. In Object Details, select a type of object from /System/Process/ that will initiate the model.
The Message should be create. Type in the name of the Request where you are starting from.

CHAPTER 2. UNDERSTANDING THE AUTOMATE MODEL

17

3. Select the Type of item you want to run the simulation on. Then, select a specific one to use as
the example.

4. Check Execute Methods if you want to perform the model and not just simulate it.

5. Type in the Attribute/Value Pairs fields if applicable.

6. Click Submit.

Click on the Tree View or XML View tabs to see results.

2.18. IMPORTING, EXPORTING, AND RESETTING THE DATASTORE

The Automate Model can be exported and imported as a YAML file. Red Hat CloudForms allows you to
back up your model by export. Red Hat may provide you with new or updated classes, and provides an
import function for either a class or the entire model. Finally, you can reset the datastore to its default.
Always be sure to export the current datastore before importing or resetting.

NOTE

Red Hat CloudForms 5.0-Beta Scripting Actions in CloudForms

18

NOTE

The datastores you are exporting or importing between must use the same CloudForms
version.

2.18.1. Exporting All Datastore Classes

This procedure shows you how export datastore classes as an XML file.

1. Navigate to Automation → Automate → Import/Export.

2. Click (Export all Datastore classes and instances to a file).

3. Follow your browser’s prompts to save the file.

The datastore is exported as a YAML file.

2.18.2. Importing Datastore Classes

This procedure shows you how to import datastore classes.

1. Navigate to Automation → Automate → Import/Export.

2. Export the datastore so that you have a backup.

3. Click Choose file to navigate to the location of the file to import.

4. Click Upload.

The datastore is imported from the YAML file.

2.18.3. Resetting Datastore to Default

This procedure shows you how reset datastore to the default.

1. Navigate to Automation → Automate → Import/Export.

2. Export the datastore so that you have a backup.

3. Click (Reset all Datastore custom classes and instances to default).

4. Click OK.

CHAPTER 2. UNDERSTANDING THE AUTOMATE MODEL

19

CHAPTER 3. INVOKING AUTOMATE

3.1. AUTOMATE EXAMPLES

This chapter describes the ways to invoke an Automate workflow. Automation can be initiated through
an alert, an event, a Red Hat CloudForms application, or a custom button. The same automation process
can be re-used across more than one of these. For example, using automation to remove orphaned
virtual machines and instances could be initiated by:

An administrator request from the Red Hat CloudForms console (from a custom button)

An alert indicating the datastore has less than 20% free-space

A virtual machine or instance unregistered event is detected

All invocations of an automate model must enter through the /System/Process namespace.

3.2. INVOKING AUTOMATE USING A CUSTOM BUTTON

Invoke an Automate model by mapping an Ansible playbook or instance from the
/System/Process/Request class to a custom button. Before creating the button, you need to have an
Ansible playbook service catalog item or an instance in the /System/Process/Request class to map to it
and a button group to assign it to.

Create buttons for a cluster, host, datastore, provider, virtual machines or cloud instances. When the
button is clicked, the model or playbook will be invoked for the selected item. For each of these, you can
have up to 15 buttons.

3.3. CREATING A CUSTOM BUTTON GROUP

This procedure shows you how to create a custom button group.

1. Navigate to Automation → Automate → Customization.

2. Click the Buttons accordion.

3. From the Object Types tree, select the type of object you want to create the button group for.

4. Click (Configuration), (Add a new Button Group).

5. Type in a Button Group Text and Button Group Hover Text, and select the Button Group
Image you want to use.

6. If custom buttons have already been created, assign them to the button group. If not, see
Section 3.4, “Creating a Custom Button” to create custom buttons.

7. Click Add.

The button group will show in the object type you added the button to.

3.4. CREATING A CUSTOM BUTTON

This procedure shows you how to create a custom button.

Red Hat CloudForms 5.0-Beta Scripting Actions in CloudForms

20

NOTE

Custom buttons can be migrated to other Red Hat CloudForms appliances. See
Migrating Custom Buttons for guidance on migrating custom buttons to a new
CloudForms appliance.

1. Navigate to Automation → Automate → Customization.

2. Click the Buttons accordion.

3. From the Object Types tree, select the type of object you want to create the button for.

4. Click Unassigned Buttons.

5. Click (Configuration), then (Add a new Button).

NOTE

If (Add a new Button) is not available, that means you have not created a
button group for that object. To continue, create a button group first. See
Section 3.3, “Creating a Custom Button Group”

6. Under the Options tab:

a. Select the Button type from the list.

b. Enter button Text and Hover Text, and select the Icon and Icon Color to use.

c. Select a Dialog if applicable.

d. Check Open URL to open a browser window for the custom URL returned when the button
is executed.

e. Choose a Display For option for the button.

f. Select a Submit parameter to choose how to submit objects to automate. Selecting Submit
All will pass all objects at once when the button is executed, while choosing One by one will
run execute the button action each time per object.

7. Under the Advanced tab:

a. Set button Enablement. Click Define Expression to access the expression editor tool.
Enter Disabled Button Text to display when the custom button is disabled.

b. Use Visibility to determine button appearance based on a custom expression. Click Define
Expression to access the expression editor tool.

NOTE

For more about setting visibility and enablement for a custom button, see
Section 3.8, “Setting Enablement and Visibility for Custom Buttons” .

c. In Object Details, select Request from the /System/Process/ dropdown. By default, the
message is create. Do not change it.

CHAPTER 3. INVOKING AUTOMATE

21

d. Enter a Request name for the /System/Process/Request instance.

e. Enter the Attribute/Value Pairs fields if applicable.

f. Set Role Access. Selecting <By Role> will display available roles. Check applicable roles.

8. Click Add when you have confirmed that the button accomplishes the task you want.

The button will show in the object type you added the button to.

3.5. CREATING AN ANSIBLE PLAYBOOK BUTTON

Red Hat CloudForms includes an option to create an Ansible Playbook custom button. This feature
allows users to select a playbook to run as well as an inventory target to run it against. An Ansible
playbook type button can be defined for any object type available.

NOTE

An Ansible Playbook catalog item must exist in order to create an Ansible Playbook
custom button. For more information, see Creating an Ansible Playbook Service Catalog
Item in the Provisioning Virtual Machines and Hosts guide.

1. Navigate to Automation → Automate → Customization.

2. Click the Buttons accordion.

3. From the Object Types tree, select the type of object you want to create the button for.

4. Click Unassigned Buttons.

5. Click (Configuration), then (Add a new Button).

NOTE

If (Add a new Button) is not available, that means you have not created a
button group for that object. To continue, create a button group first. See
Section 3.3, “Creating a Custom Button Group” .

6. Select Ansible Playbook from the Button Type drop-down menu.

7. From the Playbook Catalog Item choose a playbook-backed catalog item to run.

8. Choose a host from the Inventory against which to run the playbook. If Specific Hosts is
selected, input the IP address or DNS names for each host in the text field, separating each with
a comma.

NOTE

Red Hat CloudForms 5.0-Beta Scripting Actions in CloudForms

22

https://access.redhat.com/documentation/en-us/red_hat_cloudforms/4.5/html/provisioning_virtual_machines_and_hosts/catalogs-services#create-playbook-service-catalog-item

NOTE

CloudForms supports two configurations for host value input:

To allow user-provided host values, set the custom button to Specific Hosts
and leave the associated text field blank.

To use admin-specified host values, remove the Hosts field when creating
the dialog the service uses. In this configuration, the field will not appear to
users. See Service Dialogs for information on generating a service dialog.

9. Type in a Text and Hover Text, and select the Icon you want to use.

10. Select an Icon Color from the color selection palette that pops up.

11. Check Open URL to open a browser window for the custom URL returned when the playbook is
run.

12. Select display options for the Ansible Playbook button from the Display for drop-down menu.
Choose for the button to display in the list view, for single entities, or both.

13. Choose how to submit objects to automate by selecting an option from the Submit drop-down
menu. Selecting Submit all will pass all objects at once when the playbook is executed, while
choosing One by one will run the the playbook each time per object.

14. Click Add when you have confirmed that the button accomplishes the task you want.

3.6. EDITING A CUSTOM BUTTON

This procedure shows you how to edit a custom button.

1. Navigate to Automation → Automate → Customization.

2. From the Object Types dropdown, select the type of object you want to edit the button for.

3. Click the button you want to edit.

4. Click (Configuration), (Edit this Button).

5. Modify as required.

6. Click Save.

3.7. DELETING A CUSTOM BUTTON

This procedure shows you how to delete a custom button.

1. Navigate to Automation → Automate → Customization, then select the Buttons accordion.

2. From the Object Type tree in the accordion menu, select the type of object you want to
remove the button from.

3. Click (Configuration). then click (Remove this button).

CHAPTER 3. INVOKING AUTOMATE

23

https://access.redhat.com/documentation/en-us/red_hat_cloudforms/4.7/html/provisioning_virtual_machines_and_hosts/catalogs-services#service-dialogs

4. Click OK to confirm that you want to delete this button.

3.8. SETTING ENABLEMENT AND VISIBILITY FOR CUSTOM BUTTONS

Red Hat CloudForms adds methods for evaluating an expression to determine whether a custom button
is visible and enabled. Each method has a target object, for example, a virtual machine or host, and
expressions can set a custom button to visible, hidden, or disabled.

NOTE

Filtering works on single objects and is not applicable to lists.

To apply filtering actions to a custom button:

1. Navigate to Automation → Automate → Customization.

2. Click the Buttons accordion. Select the custom button to use.

3. Click (Configuration), then (Edit this Button).

4. Click the Advanced tab.

5. To set enablement filtering on a custom button:

a. Under Enablement, click on Define Expression.

b. Create a visibility expression using the expression editor tools.

c. Click (Confirm) when finished defining the expression.

d. Provide Disabled Button Text in the field.

6. To set visibility filtering on a custom button:

a. Under Visibility, click on Define Expression.

b. Create a visibility expression using the expression editor tools.

c. Click (Confirm) when finished defining the expression.

7. Click Save.

3.9. USING A CUSTOM BUTTON

This procedure shows you how to use custom buttons to invoke a cluster, host, datastore, provider,
virtual machine or instance.

1. Go to the page for the item that you created a button for.

2. Click the custom button group from the taskbar, and then your custom button.

The automate model is invoked for the specified item.

Red Hat CloudForms 5.0-Beta Scripting Actions in CloudForms

24

3.10. INITIATING AUTOMATE FROM AN EVENT

You can also use a Red Hat CloudForms Policy Event to initiate automation. You can either use the
provided Raise Automation Event action or create a custom automation action. The first case will start in
the /System/Process class, but then go to the Event that initiated the Automate model in the
/System/Process/Event Class. If you create your own custom action, it will start from the
/System/Process class and then go to the /System/Process/Request Class instead.

For example, suppose that you always want the same Automate model to occur when a virtual machine
is created. You would use the Raise Automation Event Action. There are instances in the
/System/Process/Event Class for the following Events that you can select as part of a Policy:

3.11. CREATING A POLICY FOR AUTOMATE

This procedure shows you how to create a policy for automate.

1. Navigate to Control → Explorer.

2. Click the Policies accordion, and select Control Policies.

3. Select Vm Control Policies.

4. Click (Configuration), then (Add a New Control Vm Policy).

5. Type in a Description.

6. Uncheck Active if you do not want this policy processed even when assigned to a resource.

CHAPTER 3. INVOKING AUTOMATE

25

7. Click Add. You are brought to the page where you add conditions and events to your new policy.

8. Click (Configuration), then (Edit this Policy’s Event assignments).

Check the events you want to use to send to an Automate Model.

Click Save.

From the Events area, click on the Description of the Event you want to assign an action
to.

Click (Edit Actions for this Policy Event).

9. Select Raise Automation Event, and click (Move selected Actions into this Event).

10. Click Save.

You can now assign this policy to a Policy Profile. Then, assign the policy profile to the virtual machines.
Every time this event happens on the virtual machine the appropriate Automate Model will be initiated.

NOTE

If you want the policy to initiate an Automate Model from the /System/Process/Request
class, then you can create your own custom action. Be sure to have an instance in the
/System/Process/Request class for it to map to.

3.12. CREATING A CUSTOM AUTOMATE ACTION

This procedure shows you how to create a custom Automate action.

1. Navigate to Control → Explorer accordion.

2. Click the Actions accordion.

3. Click (Configuration), then (Add a new Action).

4. Type in a Description for the Action.

5. Select Invoke a Custom Automation from Action Type.

6. In Custom Automation,

For Message, type create.

For Request, type in the name of the instance of the /System/Process/Request Class in
the second.

7. Type in the Attribute/Value Pairs fields if applicable.

8. Click Add.

The action is created and can be added to a policy.

Red Hat CloudForms 5.0-Beta Scripting Actions in CloudForms

26

APPENDIX A. OBJECTS

A.1. VIRTUAL MACHINE PROPERTIES

When using these items in a method, prefix them with vm.. For example: vm.storage_id.

Table A.1. Virtual Machine Properties

Friendly Name or Description Raw Column Name

Allocated Disk Storage allocated_disk_storage

Autostart autostart

Blackbox Exists blackbox_exists

Blackbox Validated blackbox_validated

Boot Time boot_time

Busy busy

Cluster ems_cluster_name

Configuration XML config_xml

Connection State connection_state

CPU Affinity cpu_affinity

CPU Limit cpu_limit

CPU Reserve cpu_reserve

CPU Reserve Expand cpu_reserve_expand

CPU Shares cpu_shares

CPU Shares Level cpu_shares_level

Created on Time ems_created_on

Currently Used Space used_storage_by_state

Datastore Path v_datastore_path

Date Created created_on

APPENDIX A. OBJECTS

27

Date Updated updated_on

Description description

Ems ems_id

Evm Owner evm_owner_id

Evm Owner Email evm_owner_email

Evm Owner Name evm_owner_name

Red Hat CloudForms Unique ID (Guid) guid

Format format

Host host_id

Host Name host_name

Id id

Is a Template v_is_a_template

Last Analysis Attempt On last_scan_attempt_on

Last Analysis Time last_scan_on

Last Compliance Status last_compliance_status

Last Compliance Timestamp last_compliance_timestamp

Last Perf Capture On last_perf_capture_on

Last Sync Time last_sync_on

Location location

Memory Limit memory_limit

Memory Reserve memory_reserve

Memory Reserve Expand memory_reserve_expand

Friendly Name or Description Raw Column Name

Red Hat CloudForms 5.0-Beta Scripting Actions in CloudForms

28

Memory Shares memory_shares

Memory Shares Level memory_shares_level

Name name

OS Name os_image_name

Owner owner

Paravirtualization paravirtualization

Parent Cluster v_owning_cluster

Parent Datacenter v_owning_datacenter

Parent Folder (Hosts & Clusters) v_owning_folder

Parent Folder (VMs & Templates) v_owning_blue_folder

Parent Folder Path (Hosts & Clusters) v_owning_folder_path

Parent Folder Path (VMs & Templates) v_owning_blue_folder_path

Parent Host Platform v_host_vmm_product

Parent Resource Pool v_owning_resource_pool

Pct Free Disk v_pct_free_disk_space

Platform platform

Power State power_state

Previous State previous_state

Registered registered

Reserved reserved

Retired retired

Retirement retirement

Friendly Name or Description Raw Column Name

APPENDIX A. OBJECTS

29

Retires On retires_on

Service service_id

Smart smart

Standby Action standby_action

State Changed On state_changed_on

Storage storage_id

Storage Name storage_name

Template template

Thin Provisioned thin_provisioned

Tools Status tools_status

Total Provisioned Space provisioned_storage

Total Snapshots v_total_snapshots

Total Used Disk Space used_disk_storage

Uid Ems uid_ems

Uncommitted Space uncommitted_storage

Used Storage used_storage

V Pct Used Disk Space v_pct_used_disk_space

VDI Available vdi_available

VDI Connection DNS Name vdi_connection_dns_name

VDI Connection Logon Server vdi_connection_logon_server

VDI Connection Name vdi_connection_name

VDI Connection Remote IP Address vdi_connection_remote_ip_address

VDI Connection Session Name vdi_connection_session_name

Friendly Name or Description Raw Column Name

Red Hat CloudForms 5.0-Beta Scripting Actions in CloudForms

30

VDI Connection Session Type vdi_connection_session_type

VDI Connection URL vdi_connection_url

VDI Endpoint IP Address vdi_endpoint_ip_address

VDI Endpoint MAC Address vdi_endpoint_mac_address

VDI Endpoint Name vdi_endpoint_name

VDI Endpoint Type vdi_endpoint_type

VDI User Appdata vdi_user_appdata

VDI User DNS Domain vdi_user_dns_domain

VDI User Domain vdi_user_domain

VDI User Home Drive vdi_user_home_drive

VDI User Home Path vdi_user_home_path

VDI User Home Share vdi_user_home_share

VDI User Logon Time vdi_user_logon_time

VDI User Name vdi_user_name

Vendor vendor

Version version

VMsafe Agent Address vmsafe_agent_address

VMsafe Agent Port vmsafe_agent_port

VMsafe Enable vmsafe_enable

VMsafe Fail Open vmsafe_fail_open

VMsafe Immutable VM vmsafe_immutable_vm

VMsafe Timeout (ms) vmsafe_timeout_ms

Friendly Name or Description Raw Column Name

APPENDIX A. OBJECTS

31

A.2. METHODS FOR USE IN RUBY SCRIPTS

To use one of these in one of your own Ruby methods, use the syntax of vm.method. For example, to
reboot the guest operating system, use vm.rebootGuest.

Method Description

start Start Virtual Machine container.

stop Stop Virtual Machine container.

suspend Suspend Virtual Machine container.

unregister Unregister Virtual Machine.

collect_running_processes Collect the running processes from a started Virtual
Machine.

shutdownGuest Shutdown the guest operating system of the VM
container. Requires VMware tools (or vendors tools)
installed on the guest.

standbyGuest Put the guest operating system into standby.
Requires VMware tools (or vendors tools) installed on
the guest.

rebootGuest Reboot the guest operating system. Requires
VMware tools (or vendors tools) installed on the
guest.

A.3. HOST PROPERTIES

When using these items in a method, prefix them with host, such as host.ems_id.

Friendly Name or Description Raw Column Name

All Enabled Ports all_enabled_ports

Annotation v_annotation

Authentication Status Authentication_status

Connection State connection_state

CPU usage MHz rate average over time period cpu_usagemhz_rate_average_avg_over_time_period

CPU usage MHz rate high over time period cpu_usagemhz_rate_average_high_over_time_period

Red Hat CloudForms 5.0-Beta Scripting Actions in CloudForms

32

CPU usage MHz rate low over time period cpu_usagemhz_rate_average_low_over_time_period

Custom Attribute 1 custom_1

Custom Attribute 2 custom_2

Custom Attribute 3 custom_3

Custom Attribute 4 custom_4

Custom Attribute 5 custom_5

Custom Attribute 6 custom_6

Custom Attribute 7 custom_7

Custom Attribute 8 custom_8

Custom Attribute 9 custom_9

Date Created created_on

Derived memory usage average over time period derived_memory_used_avg_over_time_period

Derived memory usage high over time period derived_memory_used_high_over_time_period

Derived memory usage low over time period derived_memory_used_low_over_time_period

Ems ems_id

Enabled Inbound Ports enabled_inbound_ports

Enabled Outbound Ports enabled_outbound_ports

Enabled Run Level 0 Services enabled_run_level_0_services

Enabled Run Level 1 Services enabled_run_level_1_services

Enabled Run Level 2 Services enabled_run_level_2_services

Enabled Run Level 3 Services enabled_run_level_3_services

Enabled Run Level 4 Services enabled_run_level_4_services

Friendly Name or Description Raw Column Name

APPENDIX A. OBJECTS

33

Enabled Run Level 5 Services enabled_run_level_5_services

Enabled Run Level 6 Services enabled_run_level_6_services

Enabled TCP Inbound Ports enabled_tcp_inbound_ports

Enabled TCP Outbound Ports enabled_tcp_outbound_ports

Enabled UDP Inbound Ports enabled_udp_inbound_ports

Enabled UDP Outbound Ports enabled_udp_outbound_ports

EVM Unique ID (Guid) guid

Hostname hostname

Id id

IP Address ipaddress

Last Compliance Status last_compliance_status

Last Compliance Timestamp last_compliance_timestamp

Last Perf Capture On last_perf_capture_on

Last Analysis Time last_scan_on

Name name

OS Name os_image_name

Platform platform

Power State power_state

Region Description region_description

Region Number region_number

Reserved reserved

Service Names service_names

Friendly Name or Description Raw Column Name

Red Hat CloudForms 5.0-Beta Scripting Actions in CloudForms

34

Settings settings

Smart smart

SSH Root Access ssh_permit_root_login

Uid Ems uid_ems

Date Updated updated_on

User Assigned Os user_assigned_os

Parent Cluster v_owning_cluster

Parent Datacenter v_owning_datacenter

Parent Folder (Hosts & Clusters) v_owning_folder

Total Datastores v_total_storages

Total VMs v_total_vms

VMM Build Number vmm_buildnumber

VMM Platform vmm_product

VMM Vendor vmm_vendor

VMM Version vmm_version

Friendly Name or Description Raw Column Name

A.4. PROVIDER PROPERTIES

When using these items in a method, prefix them with ems, such as ems.ems_id.

Friendly Name or Description Raw Column Name

Aggregate VM CPUs aggregate_vm_cpus

Aggregate VM Memory aggregate_vm_memory

CPU Ratio v_cpu_vr_ratio

APPENDIX A. OBJECTS

35

CPU Usage MHZ Rate Average High Over Time
Period

cpu_usagemhz_rate_average_high_over_time_period
"

CPU Usage MHZ Rate Average Low Over Time
Period

cpu_usagemhz_rate_average_low_over_time_period

CPU Usage MHZ Rate Average Over Time Period cpu_usagemhz_rate_average_avg_over_time_period

Date Created created_on

Date Updated updated_on

Derived Memory Usage Rate Average High Over
Time Period

derived_memory_used_high_over_time_period

Derived Memory Usage Rate Average Low Time
Period

derived_memory_used_low_over_time_period

Derived Memory Usage Rate Average Over Time
Period

derived_memory_used_avg_over_time_period

Distributed Resource Scheduler Automation Level drs_automation_level

Distributed Resource Scheduler Enabled drs_enabled

Distributed Resource Scheduler Migration Threshold drs_migration_threshold

EMS ID ems_id

EVM Zone zone_name

High-Availability Admission Control ha_admit_control

High-Availability Enabled ha_enabled

High-Availability Max Failures ha_max_failures

Id id

Last Performance Data Captured last_perf_capture_on

Last Smart State Analysis last_scan_on

Memory Ratio v_ram_vr_ratio

Friendly Name or Description Raw Column Name

Red Hat CloudForms 5.0-Beta Scripting Actions in CloudForms

36

Name name

Parent Datacenter v_parent_datacenter

Qualified Description v_qualified_desc

Region Description region_description

Region Number region_number

Reserved reserved

Total CPU Speed aggregate_cpu_speed

Total Hosts total_hosts

Total Memory aggregate_memory

Total Number of Logical CPUs aggregate_logical_cpus

Total Number of Physical CPUs aggregate_physical_cpus

Total Vms total_vms

Unique Identifier uid_ems

Friendly Name or Description Raw Column Name

A.5. STORAGE PROPERTIES

When using these items in a method, prefix them with storage, such as storage.name.

Table A.2. Storage Properties

Friendly Name or Description Raw Column Name

Date Created created_on

Date Updated updated_on

Disk Files Percent of Used v_disk_percent_of_used

Free Space free_space

Free Space Percent of Total v_free_space_percent_of_total

Id id

APPENDIX A. OBJECTS

37

Last Analysis Time last_scan_on

Last Perf Capture On last_perf_capture_on

Location location

Multiple Host Access multiplehostaccess

Name name

Non-VM Files Percent of Used v_debris_percent_of_used

Other VM Files Percent of Used v_vm_misc_percent_of_used

Provisioned Space Percent of Total v_provisioned_percent_of_total

Reserved reserved

Size of Non-VM Files v_total_debris_size

Size of Other VM Files v_total_vm_misc_size

Size of VM Memory Files v_total_vm_ram_size

Size of VM Snapshot Files v_total_snapshot_size

Snapshot Files Percent of Used v_snapshot_percent_of_used

Store Type store_type

Total Hosts v_total_hosts

Total Managed Registered Vms total_managed_registered_vms

Total Managed Unregistered Vms total_managed_unregistered_vms

Total Provisioned Space v_total_provisioned

Total Space total_space

Total Unmanaged Vms total_unmanaged_vms

Total VMs v_total_vms

Friendly Name or Description Raw Column Name

Red Hat CloudForms 5.0-Beta Scripting Actions in CloudForms

38

Uncommitted uncommitted

Used Space v_used_space

Used Space Percent of Total v_used_space_percent_of_total

VM Memory Files Percent of Used v_memory_percent_of_used

Friendly Name or Description Raw Column Name

APPENDIX A. OBJECTS

39

APPENDIX B. FAQS AND FLOWS

B.1. PHASE 1: CREATE PROVISION REQUEST

Question Answer

Where do I create a new provisioning profile based on
a users LDAP group?

Navigate to [VM / Provisioning / Profile] of either
the Cloud or Infrastructure namespace in your
domain.

Where can I specify a pre-dialog to present to a
Requester in their LDAP group?

Custom pre-dialogs can be defined in [VM /
Provisioning / Profile / <LDAP Group Name>]
of either the Cloud or Infrastructure namespace in
your domain.

I would like to customize our dialogs. Where are all
the dialogs kept?

All dialogs are located on each Red Hat CloudForms
appliance in the /var/www/miq/vmdb/db/fixtures
directory.

What happens if I do not specify any profiles for
provisioning?

Red Hat CloudForms searches for a matching LDAP
group in the [VM / Provisioning / Profile] class of
either the Cloud or Infrastructure namespace in
your domain. If an LDAP profile is NOT found then
Red Hat CloudForms will use the missing class
instance.

Red Hat CloudForms 5.0-Beta Scripting Actions in CloudForms

40

B.2. PHASE 2: REQUEST APPROVAL

Question Answer

Where can I specify auto-approval values on a per
virtual machine template basis?

Tags can be assigned to templates in the form of
[prov_max_vms, prov_max_cpus,
prov_max_memory, prov_max_retirement_days].

Where can I modify the default Auto-Approval
values?

These values can be set in the [Service /
Provisioning / StateMachines /
ServiceProvisionRequestApproval / Default]
class instance in your domain.

How can I customize the email that is sent when a
request is approved?

The Request Approved email message can be
modified in [VM / Provisioning / Email /
MiqProvisionRequest_Approved] in either the
Cloud or Infrastructure namespace of your domain.

How can I customize the email that is sent when a
request is denied?

The Request Denied email message can be modified
in [VM / Provisioning / Email /
MiqProvisionRequest_Denied] in either the
Cloud or Infrastructure namespace of your domain.

How can I customize the email that is sent when a
request is not Auto-approved?

The Request Pending email message can be
modified in [VM / Provisioning / Email /
MiqProvisionRequest_Denied] in either the
Cloud or Infrastructure namespace of your domain.

APPENDIX B. FAQS AND FLOWS

41

If a Request Approval requires manual approval, how
does an Approver approve the request?

Log into Red Hat CloudForms as an approver/admin
and navigate to Virtual Machines → Requests and
then click on the request.

Question Answer

B.3. PHASE 3: QUOTA VALIDATION

Question Answer

Where in Red Hat CloudForms can I set default quota
thresholds for users and groups?

These values can be set in the [VM Provisioning /
StateMachines /
ProvisionRequestQuotaVerification] class
instance of either the Cloud or Infrastructure
namespace in your domain.

Where in Red Hat CloudForms can I set individual and
group quota thresholds?

Tags can be assigned to groups or users by
navigating to Configuration → Access Control. The
following are valid tags that can be assigned to
group or individual users: [quota_max_cpu,
quota_max_memory, quota_max_storage].

Where can I customize the way our virtual machines
are named?

Virtual machine naming conventions can be altered
using the methods in the [VM / Provisioning /
Naming] class of either the Cloud or Infrastructure
namespace in your domain.

How can I customize the email that is sent when a
request is denied?

The Request Denied email message can be modified
in the [VM / Provisioning / Email /
MiqProvisionRequest_Denied] in either the
Cloud or Infrastructure namespace of your domain.

B.4. PHASE 4: PROVISIONING

Figure B.1. Target Type: Cloning a Template to a Virtual Machine

Red Hat CloudForms 5.0-Beta Scripting Actions in CloudForms

42

Figure B.1. Target Type: Cloning a Template to a Virtual Machine

Figure B.2. Target Type: Clone to Template

Question Answer

Where can I customize the email message that is sent
upon provisioning completion?

This can be customized using the [VM /
Provisioning / Email /
MiqProvision_Complete] in either the Cloud or
Infrastructure namespace of your domain.

APPENDIX B. FAQS AND FLOWS

43

Where can I change what is put into the virtual
machines Annotation after provisioning?

These settings can be modified by leveraging the
*_PreProvision Ruby methods in [VM /
Provisioning / StateMachines / Methods] in
either the Cloud or Infrastructure namespace of
your domain.

Where do I set the default VC folder location for
provisioning virtual machines?

This can be modified by leveraging by leveraging the
*_PreProvision Ruby methods in [VM /
Provisioning / StateMachines / Methods] in
either the Cloud or Infrastructure namespace of
your domain.

Where can I modify the virtual machine customization
spec mapping?

This can be modified by leveraging by leveraging the
*_PreProvision Ruby methods in [VM /
Provisioning / StateMachines / Methods] in
either the Cloud or Infrastructure namespace of
your domain.

Where can I modify the Clone_to_Template
state_machine?

Navigate to [VM / Provisioning / StateMachines
/ VMProvision_VM / template] in either the
Cloud or Infrastructure namespace of your domain.

Where can I modify the Clone_to_VM state_machine? Navigate to [VM / Provisioning / StateMachines
/ VMProvision_VM / clone_to_vm] in either the
Cloud or Infrastructure namespace of your domain.

Question Answer

B.5. PHASE 5: RETIREMENT

Question Answer

Where can I customize the email message that is sent
upon completion of virtual machine retirement?

This can be customized using the [VM / Retirement
/ Email / vm_retirement_emails] in either the
Cloud or Infrastructure namespace of your domain.

Red Hat CloudForms 5.0-Beta Scripting Actions in CloudForms

44

Where can I customize the email message that is sent
during virtual machine retirement warnings?

This can be customized using the [VM / Retirement
/ Email / vm_retirement_emails] in either the
Cloud or Infrastructure namespace of your domain.

If I want to customize what gets called during the
retirement phase where should I look?

This can be customized using the [VM / Retirement
/ StateMachines / VMRetirement] in either the
Cloud or Infrastructure namespace of your domain.

How can I extend the virtual machine retirement date
an additional number of days?

Create a custom button for virtual machines that
launches [/System/Request/vm_retire_extend].
Then navigate to the [VM / Retirement / Email /
vm_retire_extend] Ruby method in the Cloud or
Infrastructure namespaces and set the
vm_retire_extend_days value.

Question Answer

APPENDIX B. FAQS AND FLOWS

45

APPENDIX C. INLINE METHOD TO CREATE A PROVISION
REQUEST

C.1. RUBY METHOD

Red Hat CloudForms Automate Method
#
$evm.log("info", "Red Hat CloudForms Automate Method Building VM Provisioning Request
Started")
#

prov= $evm.root['miq_provision']

 # arg1 = version
 args = ['1.1']
 # arg2 = templateFields
 args << {'name' => 'App'}
 # arg3 = vmFields
 args << {'vm_name' => 'CRM_APP', 'request_type' => 'template'}
 # arg4 = requester
 args << {'owner_email' => 'admin@asd.com', 'owner_last_name' => 'Admin', 'owner_first_name' =>
'Admin', 'user_name' => 'admin'}
 # arg5 = tags
 args << {'crm' => 'true'}
 # arg6 = WS Values
 args << nil
 # arg7 = emsCustomAttributes
 args << nil
 # arg8 = miqCustomAttributes
 args << nil

$evm.log("info","Building provisioning request with the following arguments: <#{args.inspect}>")
result = $evm.execute('create_provision_request', *args)

Red Hat CloudForms 5.0-Beta Scripting Actions in CloudForms

46

APPENDIX D. MIGRATING CUSTOM BUTTONS

D.1. MIGRATING CUSTOM BUTTONS

This workflow demonstrates how to export custom buttons from one Red Hat CloudForms appliance
and import them in another CloudForms appliance.

1. Export custom buttons from the source CloudForms appliance:

a. SSH into the Red Hat CloudForms appliance as root.

b. Create a temporary directory:

mkdir /tmp/custom_buttons

c. Navigate to the Virtual Management Database (VMDB) directory:

vmdb

d. Export custom buttons using the following rake command:

rake evm:export:custom_buttons -- --directory /tmp/custom_buttons

e. Confirm the yaml file was created by navigating to the new directory:

cd /tmp/custom_buttons

2. Copy the directory to the target CloudForms appliance:

scp -r /tmp/custom_buttons/ hostname:/tmp/custom_buttons

3. Import custom buttons on the target CloudForms appliance:

a. SSH to the target CloudForms appliance as root.

b. Navigate to the VMDB directory:

vmdb

c. Import custom buttons using the following rake command:

rake evm:import:custom_buttons -- --source /tmp/custom_buttons

To verify successful import of custom buttons:

1. Log in to the target CloudForms appliance.

2. Navigate to Automation → Automate → Customization.

3. Click Buttons in the accordion menu.

Imported buttons will appear under the parent Object Type.

APPENDIX D. MIGRATING CUSTOM BUTTONS

47

Red Hat CloudForms 5.0-Beta Scripting Actions in CloudForms

48

	Table of Contents
	PREFACE
	CHAPTER 1. UPDATES TO RAILS AND RUBY
	1.1. UPDATES AND CHANGES IN RAILS
	1.2. UPDATES AND CHANGES IN RUBY

	CHAPTER 2. UNDERSTANDING THE AUTOMATE MODEL
	2.1. AUTOMATE MODEL
	2.2. CREATING A DOMAIN
	2.3. EDITING A DOMAIN
	2.4. DELETING A DOMAIN
	2.5. IMPORTING A DOMAIN
	2.6. CHANGING PRIORITY ORDER OF DOMAINS
	2.7. CREATING A NAMESPACE
	2.8. CREATING A CLASS
	2.9. CREATING A SCHEMA FOR A CLASS
	2.10. EDITING A FIELD IN A SCHEMA
	2.11. EDITING SCHEMA SEQUENCE
	2.12. ADDING AN INSTANCE TO A CLASS
	2.13. COPYING A CLASS OR INSTANCE
	2.14. RELATIONSHIPS
	2.15. METHODS
	2.15.1. Creating a Method
	2.15.2. Creating a Dynamic Content Dialog
	2.15.3. Creating a Playbook Automate Method

	2.16. EXPRESSION METHODS
	2.16.1. Input Parameters
	2.16.1.1. Optional Input Parameters

	2.16.2. Creating an Expression Method

	2.17. SIMULATION
	2.17.1. Simulating an Automate Model

	2.18. IMPORTING, EXPORTING, AND RESETTING THE DATASTORE
	2.18.1. Exporting All Datastore Classes
	2.18.2. Importing Datastore Classes
	2.18.3. Resetting Datastore to Default

	CHAPTER 3. INVOKING AUTOMATE
	3.1. AUTOMATE EXAMPLES
	3.2. INVOKING AUTOMATE USING A CUSTOM BUTTON
	3.3. CREATING A CUSTOM BUTTON GROUP
	3.4. CREATING A CUSTOM BUTTON
	3.5. CREATING AN ANSIBLE PLAYBOOK BUTTON
	3.6. EDITING A CUSTOM BUTTON
	3.7. DELETING A CUSTOM BUTTON
	3.8. SETTING ENABLEMENT AND VISIBILITY FOR CUSTOM BUTTONS
	3.9. USING A CUSTOM BUTTON
	3.10. INITIATING AUTOMATE FROM AN EVENT
	3.11. CREATING A POLICY FOR AUTOMATE
	3.12. CREATING A CUSTOM AUTOMATE ACTION

	APPENDIX A. OBJECTS
	A.1. VIRTUAL MACHINE PROPERTIES
	A.2. METHODS FOR USE IN RUBY SCRIPTS
	A.3. HOST PROPERTIES
	A.4. PROVIDER PROPERTIES
	A.5. STORAGE PROPERTIES

	APPENDIX B. FAQS AND FLOWS
	B.1. PHASE 1: CREATE PROVISION REQUEST
	B.2. PHASE 2: REQUEST APPROVAL
	B.3. PHASE 3: QUOTA VALIDATION
	B.4. PHASE 4: PROVISIONING
	B.5. PHASE 5: RETIREMENT

	APPENDIX C. INLINE METHOD TO CREATE A PROVISION REQUEST
	C.1. RUBY METHOD

	APPENDIX D. MIGRATING CUSTOM BUTTONS
	D.1. MIGRATING CUSTOM BUTTONS

