
Ceph Code Optimization

Compile-time Optimizations

Most of ceph is built with “-O2”. Selected parts either contain -m<extension> or contain assembler code
with instruction extensions. All of this is enabled at compile time based strictly on what options the build
compiler and assembler support. The bulk of this is limited to the erasure code logic. There is limited
support for crc32 acceleration and sha256 acceleration in several other parts.

**Special notes: zstd (14 files) is built with -O0. Some parts of the intel isa that should support avx512 are
built as empty files, because we don’t supply the right option to enable avx512 support.

1. General
a. radosgw - Like most of ceph, built almost entirely w/ -O2.
b. ceph-osd - Rocksdb, used by bluestore, has its own build system, and looks for crc32.

The erasure code is built as separate plugins, and the “ec-isa” plugin can take advantage
of Intel storage acceleration.

2. Modules of Special Interest
a. openssl​ - We don’t build this, so no compile flags here.
b. jerasure​ - Most of the erasure code logic can take advantage of up to sse4.1 logic. The

erasure code plug-in “libec_isa.so” can use up to AVX2 instructions.
c. rocksdb​ - This code uses crc32, and includes support to look for and use SSE4.2 for this.
d. compressor code (zstd)​ - Used by s3 interface to compress objects in buckets. Bad

optimization, but contains possible use of crc32 acceleration.

Object Code As Packaged (Ceph and platform)

3. Objdump Inspection of Selected Objects
a. radosgw - The bulk of this is built with just -O2. It links against libceph_common, which

looks for and can use crc32 instructions.
b. ceph-osd - The bluestore code can use BMI instructions, part of haswell.
c. openssl - This is supplied by Ubuntu, and loaded at runtime by radosgw. On Ubuntu, it is

also used by libcurl. It should be able to take advantage of most CPU instruction
optimizations, including use of sha1 and avx2.

d. jerasure - Most parts can use up to sse4.1. Selected parts (esp. libec_isa.so) can use
additional intel features, up to avx2.

4. Implementation of Key Algorithms
a. CRC (Messenger, bluestore? checksums) - Used by bluestore and messenger. The

bluestore call can definitely use extensions. The messenger code should be able to as
well.

b. MD5 (radosgw ETAG) - No special optimizations.
c. SHA-256 (radosgw AWS4_HMAC_SHA256) - There are various optimizations versions

available up to AVX2. Ceph code should be able to take advantage of this.

d. AES (civetweb/beast/libcurl SSL/TLS) - For incoming connections, civetweb & beast will
both use openssl, which contains aes acceleration. For outgoing connections, libcurl on
ubuntu will also use openssl, so ditto. There is some internal support for aes acceleration
in ceph itself, such as for cephx.

Test environments:

a. QE uses “magna” machines which are ivy bridge.
b. a^2 has mostly haswell machines for development.
c. Scalelab machine has skylake machines, for very temporary testing at scale.

