‘® redhat.

Red Hat Openshift Container Storage

3.11
Deployment Guide

Deploying Red Hat Openshift Container Storage 3.11.

Bhavana Mohan

Red Hat Openshift Container Storage3.11 Deployment Guide

Deploying Red Hat Openshift Container Storage 3.11.

Bhavana Mohan
Customer Content Services Red Hat
bmohanra@redhat.com

Legal Notice
Copyright © 2019 Red Hat, Inc.

This document is licensed by Red Hat under the Creative Commons Attribution-ShareAlike 3.0
Unported License. If you distribute this document, or a modified version of it, you must provide
attribution to Red Hat, Inc. and provide a link to the original. If the document is modified, all Red Hat
trademarks must be removed.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.
Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to
or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other countries
and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or
sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide describes the prerequisites and provides step-by-step instructions to deploy Red Hat
Openshift Container Storage.

http://creativecommons.org/licenses/by-sa/3.0/

Table of Contents

Table of Contents

Part I Planningt i i e e 3
Chapter 1. Identify your Workloadsottt ittt a e s na s a s n e nenns 4
Chapter 2. Identify yoUr USE@ CasS@ciutuutierntnnrnnrnarancarnesnssnsnnsnnsnnrnnsnnsn, 5
2.1. Converged Mode 5
2.2. Independent mode 6
Chapter 3. Verify PrereqUisitesciuieiii it it i tna e eratrarrasaasaasanrnesnnsa, 8
3.1. Converged mode 8
3.2. Independent mode 10
o 1 A | =T oo 15
Chapter 4. Deploying Containerized Storage in Converged Modec.iiiiiiiirinnnrnnnnns 16
4.1. Specify Advanced Installer Variables 17
4.2. Deploying Red Hat Openshift Container Storage in Converged Mode 18
4.3. Deploying Red Hat Openshift Container Storage in Converged Mode with Registry 19
4.4. Deploying Red Hat Openshift Container Storage in Converged Mode with Logging and Metrics 21
4.5. Deploying Red Hat Openshift Container Storage in Converged mode for Applications with Registry, Logging,
and Metrics 23
4.6. Configure Heketi to Place Bricks Across Zones 25
4.7. Verify your Deployment 26
4.8. Creating an Arbiter Volume (optional) 30
Chapter 5. Deploying Container Storage in Independent Modecoiiiiiiiirinnnrnnnnns 32
5.1. Setting up a RHGS Cluster 32
5.2. Specify Advanced Installer Variables 36
5.3. Deploying Red Hat Openshift Container Storage in Independent Mode 38
5.4. Deploying Red Hat Openshift Container Storage in Independent mode for Applications with Registry, Logging,
and Metrics 40
5.5. Configure Heketi to Place Bricks Across Zones 42
5.6. Verify your Deployment 43
5.7. Creating an Arbiter Volume (optional) 47
Part Il Upgradectii ittt et a st a sttt e 49
Chapter 6. Upgrading your Red Hat Openshift Container Storage in Converged Mode 50
6.1. Upgrading the Glusterfs Pods 50
6.2. Upgrading heketi and glusterfs registry pods 72
6.3. Upgrading the client on Red Hat Openshift Container Platform Nodes 95
6.4. Starting the Heketi Pods 96
Chapter 7. Upgrading Your Red Hat Openshift Container Storage in Independent Mode 98
7.1. Prerequisites 98
7.2. Upgrading your Independent Mode Setup 98
7.3. Upgrading Gluster Nodes and heketi pods in glusterfs Registry Namespace 112
7.4. Upgrading the client on Red Hat Openshift Container Platform Nodes 112
Part IV.Uninstallingciuiii it ittt et a st ettt et a s a e 114
Chapter 8. Uninstall Red Hat Openshift Container Storageciiiitiiirinnrrnnarrnnns, 115
Part V. Workloadscuiiiiiii ittt iie it ina et s e sa s taaasanastanssannssnnnsnnnssnnns, 116
Chapter 9. Managing Arbitrated Replicated Volumes ittt innnnnns, 117

Deployment Guide

9.1. Managing Arbiter Brick Size
9.2. Managing Arbiter Brick Placement
9.3. Creating Persistent Volumes

Chapter 10. Setting up Custom Volume Options it iii ittt arsann e annns,
Part VI APPeNndiX ...ttt ittt it e

Appendix A. Optional Deployment Method (with chs-deploy)t iinnnns,
A.l. Setting up Converged mode
A.2. Setting up Independent Mode
A.3. Setting up the Environment

Appendix B. Settings that are destroyed when using uninstall playbook

Appendix C. ReVIiSiON HiStOryttt ittt ettt a e n e a s an s ana e rn e raennen,

117
117
119

121

122

123
123
125
129

Part I. Planning

Part I. Planning

Deployment Guide

Chapter 1. Identify your Workloads

This chapter provides a list of workloads that are supported with Red Hat Openshift Container Storage.
Persistent volumes backed by block storage is the recommended method for the following workloads:
Jenkins
ElasticSearch
Prometheus

If using file storage for transactional workloads, turn off the performance translators as described in

Chapter 2. Identify your Use Case

Chapter 2. Identify your Use Case

This chapter provides a brief introduction of the two use cases available in Containerized Red Hat Gluster
Storage.

Red Hat Openshift Container Storage does not support a simultaneous deployment of converged and
independent mode with ansible workflow. Therefore, you must deploy either converged mode or
independent mode: you cannot mix both modes during deployment.

Red Hat only supports Heketi inside OpenShift Container Platform in OCS.

2.1. Converged Mode

Converged mode was earlier called as Container-Native Storage.

This deployment delivers a hyper-converged solution, where the storage containers that host Red Hat Gluster
Storage co-reside with the compute containers and serve out storage from the hosts that have local or direct
attached storage to the compute containers. This solution integrates Red Hat Gluster Storage deployment
and management with OpenShift services. As a result, persistent storage is delivered within an OpenShift
pod that provides both compute and file storage.

Converged Mode for OpenShift Container Platform is built around three key technologies:

OpensShift provides the platform as a service (PaaS) infrastructure based on Kubernetes container
management. Basic OpenShift architecture is built around multiple master systems where each system
contains a set of nodes.

Red Hat Gluster Storage provides the containerized distributed storage based on Red Hat Gluster
Storage 3.4 container. Each Red Hat Gluster Storage volume is composed of a collection of bricks, where
each brick is the combination of a node and an export directory.

Heketi provides the Red Hat Gluster Storage volume life-cycle management. It creates the Red Hat
Gluster Storage volumes dynamically and supports multiple Red Hat Gluster Storage clusters.

The following list provides the administrators a solution workflow. The administrators can:
Create multiple persistent volumes (PV) and register these volumes with OpenShift.
Developers then submit a persistent volume claim (PVC).

A PV is identified and selected from a pool of available PVs and bound to the PVC.

The OpenShift pod then uses the PV for persistent storage.

Deployment Guide

Client

OPENSHIFT MASTERS T W

OPENSHIFT NODES WITH STORAGE OPENSHIFT NODES

Gluster Cluster N

Gluster Cluster 1

Gluster Cluster O

| l]l]l | IJEII | I]I]l I’ I]I]\| I’ m I’)
— = = o Y o e
|-- I]I]|| DD|| DD|

OPENSHIFT CLUSTER

Figure 2.1. Architecture - Converged Mode for OpenShift Container Platform

Red Hat Openshift Container Storage does not support a simultaneous deployment of converged and
independent mode with ansible workflow. Therefore, you must deploy either converged mode or
independent mode: you cannot mix both modes during deployment.

2.2. Independent mode

Independent mode was earlier called Container-Ready Storage.
Independent mode is deployed as a stand-alone Red Hat Gluster Storage cluster that provides persistent
storage to containers, unlike converged mode, which is deployed on top of an OpenShift Cluster.

Independent mode provides the same storage functionality to OpenShift Container Platform as converged
Mode. Independent mode provides dynamic provisioned storage, statically provisioned storage, RWO
support, and RWX support. Further, it provides full support for OpenShift Container Platform infrastructure

6

Chapter 2. Identify your Use Case

services like logging, metrics, and registry services. Being stand-alone of OpenShift Container Platform,
independent mode does have an advantage regarding providing additional Red Hat Gluster Storage data
services functionality to what is supported by OpenShift, such as, Snapshot, Geo Replication, and Nagios
Monitoring.

For users of persistent storage, the deployment modes are completely transparent. Administrators will see
variation in how they set the system up, manage, and scale. In independent mode, storage is managed like
Red Hat Gluster Storage.

Following are some of the key drivers of choosing independent mode of deployment:

OpenShift Container Platform administrators might not want to manage storage. Independent mode
separates storage management from container management.

Leverage legacy storage (SAN, Arrays, Old filers): Customers often have storage arrays from traditional
storage vendors that have either limited or no support for OpenShift. Independent mode allows users to
leverage existing legacy storage for OpenShift Containers.

Cost effective: In environments where costs related to new infrastructure is a challenge, they can
repurpose their existing storage arrays to back OpensShift under independent mode. Independent mode is
perfect for such situations where one can run Red Hat Gluster Storage inside a VM and serve out LUNs
or disks from these storage arrays to OpenShift offering all the features that the OpenShift storage
subsystem has to offer including dynamic provisioning. This is a very useful solution in those
environments with potential infrastructure additions.

Independent mode may have Heketi, and other provisioners (components of independent mode) deployed on
top of OpenShift Cluster nodes. Red Hat recommends Heketi be deployed on OpenShift Cluster. Heketi is a
service endpoint for automated Red Hat Gluster Storage volume provisioning, where requests for allocation
of Red Hat Gluster Storage volumes to back OpenShift PVs land from kubernetes. Heketi manages allocation
and de-allocation of Red Hat Gluster Storage volumes dynamically.

Red Hat Openshift Container Storage does not support a simultaneous deployment of converged and
independent mode with ansible workflow. Therefore, you must deploy either converged mode or
independent mode: you cannot mix both modes during deployment.

Deployment Guide

Chapter 3. Verify Prerequisites

This chapter provides the prerequisites that have to be verified before for the two different use cases
available in Containerized Red Hat Gluster Storage before deployment.

3.1. Converged mode

3.1.1. Supported Versions

For supported versions of OpenShift Container Platform with Red Hat Gluster Storage Server and Container-
Native Storage, please see https://access.redhat.com/articles/3403951.

CRI-O is supported as a Technology Preview. Information about CRI-O is available in the OpenShift
Container Platform cr| 0 Runtime Guide (https //access redhat com/documentaﬂon/en-

3.1.2. Environment Requirements

The requirements for Red Hat Enterprise Linux Atomic Host, Red Hat OpenShift Container Platform, Red Hat
Enterprise Linux, and Red Hat Gluster Storage are described in this section. A Red Hat Gluster Storage
Container Native with OpenShift Container Platform environment consists of Red Hat OpenShift Container
Platform installed on either Red Hat Enterprise Linux Atomic Host or Red Hat Enterprise Linux.

3.1.2.1. Installing Red Hat Openshift Container Storage with OpenShift Container Platform on
Red Hat Enterprise Linux 7

This section describes the procedures to install Red Hat Gluster Storage Container Native with OpenShift
Container Platform on Red Hat Enterprise Linux 7 based OpenShift Container Platform 3.11.

3.1.2.1.1. Setting up the Openshift Master as the Client

You can use the OpenShift Master as a client to execute the oc commands across the cluster when installing
OpensShift. Generally, this is setup as a non-scheduled node in the cluster. This is the default configuration
when using the OpenShift installer. You can also choose to install their client on their local machine to access
the cluster remotely For more information, see https: //access redhat. com/documentation/en-

Install heketi-client package

Execute the following commands to install heketi-client package.

subscription-manager repos --enable=rh-gluster-3-client-for-rhel-7-server-
rpms

yum install heketi-client
After installing the heketi-client package, disable the gluster repo by executing the following command:

subscription-manager repos --disable=rh-gluster-3-client-for-rhel-7-
server-rpms

https://access.redhat.com/articles/3403951
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/cri-o_runtime/
https://access.redhat.com/support/offerings/techpreview/
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html/cli_reference/cli-reference-get-started-cli#installing-the-cli

Chapter 3. Verify Prerequisites

3.1.3. Red Hat OpenShift Container Platform and Red Hat Openshift Container
Storage Requirements

The following list provides the Red Hat OpenShift Container Platform and Red Hat Openshift Container
Storage requirements:

All OpenShift nodes on Red Hat Enterprise Linux systems must have glusterfs-client RPMs
(glusterfs, glusterfs-client-xlators, glusterfs-libs, glusterfs-fuse) installed. You can verify if the RPMs are
installed by running the following command:

yum list glusterfs glusterfs-client-xlators glusterfs-1libs glusterfs-
fuse

Ensure that the latest version of glusterfs-client RPMs are installed. The client RPMs must
have the same version as the gluster-rhgs-server version. The gluster-rhgs-server
version is based on the selected OCS version.

For more information on installing native client packages, see
hat.com/documentation/en-us/red_hat_gluster_storage/3.4/html-

3.1.4. Deployment and Scaling Guidelines

To prevent potential deployment or scaling issues, review the following guidelines before deploying
converged mode with OpenShift Container Platform.

Ensure that the Trusted Storage Pool is appropriately sized and you have room for dynamic scaling on
demand. This action ensures that you do not scale beyond the following maximum limits:

Sizing guidelines on converged mode:

Persistent volumes backed by the file interface: For typical operations, size for 300-500 persistent
volumes backed by files per three-node converged mode cluster. The maximum limit of supported
persistent volumes backed by the file interface is 1000 persistent volumes per three-node cluster in a
converged mode deployment. Considering that micro-services can dynamically scale as per demand,
it is recommended that the initial sizing keep sufficient headroom for the scaling. If additional scaling is
needed, add a new three-node converged mode cluster to support additional persistent volumes

Creation of more than 1000 persistent volumes per trusted storage pool is not supported for file-based
storage.

Persistent volumes backed by block-based storage: Size for a maximum of 300 persistent
volumes per three-node converged mode cluster.

Persistent volumes backed by file and block: Size for 300-500 persistent volumes (backed by files)
and 100-200 persistent volumes (backed by block). Do not exceed these maximum limits of file or
block-backed persistent volumes or the combination of a maximum 1000 persistent volumes per three-
node converged mode cluster.

3-way distributed-replicated volumes and arbitrated volumes are the only supported volume types.

Minimum Red Hat Openshift Container Storage cluster size (4): It is recommended to have a
minimum of 4 nodes in the Red Hat Openshift Container Storage cluster to adequately meet high-

https://access.redhat.com/documentation/en-us/red_hat_gluster_storage/3.4/html-single/administration_guide/#Installing_Native_Client

Deployment Guide

availability requirements. Although 3 nodes are required to create a persistent volume claim, the
failure of one node in a 3 node cluster prevents the persistent volume claim from being created. The
fourth node provides high-availability and allows the persistent volume claim to be created even if a
node fails.

Each physical or virtual node that hosts a converged mode peer requires the following:
a minimum of 8 GB RAM and 30 MB per persistent volume.
the same disk type.
the heketidb utilises 2 GB distributed replica volume.

a minimum of 2 physical core pair.

2 physical core pair translates to 4 vCPU for non hyper-threaded systems and 8 vCPU for
hyper-threaded systems.

Deployment guidelines on converged mode:

In converged mode, you can install the Red Hat Openshift Container Storage nodes, Heketi, and all
provisioner pods on OpenShift Container Platform Infrastructure nodes or OpenShift Container
Platform Application nodes.

Red Hat Gluster Storage Container Native with OpenShift Container Platform supports up to 14
snapshots per volume by default (snap-max-hard-1limit =14 in Heketi Template).

The required kernel version is kernel-3.10.0-862.14.4.el7.x86_64 or higher. Verify the installed and
running kernel versions by running the following command:

rpm -q kernel
kernel-3.10.0-862.14.4.el17.x86_64

uname -r
3.10.0-862.14.4.el17.x86_64

3.2. Independent mode

3.2.1. Supported Versions

For supported versions of OpenShift Container Platform with Red Hat Gluster Storage Server and Container-
Native Storage, please see https://access.redhat.com/articles/3403951.

CRI-O is supported as a Technology Preview. Information about CRI-O is available in the OpenShift
Container Platform crl 0 Runtime Guide (https //access redhat com/documentatlon/en—

3.2.2. Environment Requirements

10

https://access.redhat.com/articles/3403951
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/cri-o_runtime/
https://access.redhat.com/support/offerings/techpreview/

Chapter 3. Verify Prerequisites

The requirements for Red Hat Enterprise Linux Atomic Host, Red Hat OpenShift Container Platform, Red Hat
Enterprise Linux, and Red Hat Gluster Storage are described in this section. A Red Hat Gluster Storage
Container Native with OpenShift Container Platform environment consists of Red Hat OpenShift Container
Platform installed on either Red Hat Enterprise Linux Atomic Host or Red Hat Enterprise Linux.

3.2.2.1. Installing Red Hat Openshift Container Storage with OpenShift Container Platform on
Red Hat Enterprise Linux 7

This section describes the procedures to install Red Hat Gluster Storage Container Native with OpenShift
Container Platform on Red Hat Enterprise Linux 7 based OpenShift Container Platform 3.11.

3.2.2.1.1. Setting up the Openshift Master as the Client

You can use the OpenShift Master as a client to execute the oc commands across the cluster when installing
OpensShift. Generally, this is setup as a non-scheduled node in the cluster. This is the default configuration
when using the OpenShift installer. You can also choose to install their client on their local machine to access
the cluster remotely For more information, see https: //access redhat. com/documentatlon/en—

Install heketi-client package

Execute the following commands to install heketi-client package.

subscription-manager repos --enable=rh-gluster-3-client-for-rhel-7-server-
rpms

yum install heketi-client
After installing the heketi-client package, disable the gluster repo by executing the following command:

subscription-manager repos --disable=rh-gluster-3-client-for-rhel-7-
server-rpms

3.2.3. Red Hat OpenShift Container Platform and Red Hat Openshift Container
Storage Requirements

The following list provides the Red Hat OpenShift Container Platform requirements:

All OpenShift nodes on Red Hat Enterprise Linux systems must have glusterfs-client RPMs (glusterfs,
glusterfs-client-xlators, glusterfs-libs, glusterfs-fuse) installed. You can verify if the RPMs are installed by
running the following command:

yum list glusterfs glusterfs-client-xlators glusterfs-libs glusterfs-
fuse

Ensure that the latest version of glusterfs-client RPMs are installed. The client RPMs must
have the same version as the gluster-rhgs-server version. The gluster-rhgs-server
version is based on the selected OCS version.

11

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html/cli_reference/cli-reference-get-started-cli#installing-the-cli

Deployment Guide

For more information on installing native client packages, see
https //access redhat com/documentatlon/en us/red hat_gluster_storage/3.4/html-

3.2.4. Red Hat Gluster Storage Requirements

The following list provides the details regarding the Red Hat Gluster Storage requirements:

Installation of Heketi packages must have valid subscriptions to Red Hat Gluster Storage Server
repositories.

Red Hat Gluster Storage installations must adhere to the requirements outlined in the Red Hat Gluster
Storage Installation Guide.

The versions of Red Hat Enterprise OpenShift and Red Hat Gluster Storage integrated must be
compatible, according to the information in Section 3.1.1, “Supported Versions” section.

A fully qualified domain name must be set for Red Hat Gluster Storage server node. Ensure that the
correct DNS records exist and that the fully qualified domain name is resolvable via both forward and
reverse DNS lookup.

To access GlusterFS volumes, the mount.glusterfs command must be available on all schedulable nodes.
For RPM-based systems, the glusterfs-fuse package must be installed:

yum install glusterfs-fuse

This package comes installed on every RHEL system. However, it is recommended to update to the latest
available version from Red Hat Gluster Storage. To do this, the following RPM repository must be
enabled:

subscription-manager repos --enable=rh-gluster-3-client-for-rhel-7-
server-rpms

If glusterfs-fuse is already installed on the nodes, ensure that the latest version is installed:

yum update glusterfs-fuse

Restrictions for using Snapshot

After a snapshot is created, it must be accessed through the user-serviceable snapshots feature
only. This can be used to copy the old versions of files into the required location.

Reverting the volume to a snapshot state is not supported and should never be done as it might
damage the consistency of the data.

On a volume with snapshots, volume changing operations, such as volume expansion, must not be
performed.

3.2.5. Deployment and Scaling Guidelines

12

https://access.redhat.com/documentation/en-us/red_hat_gluster_storage/3.4/html-single/administration_guide/#Installing_Native_Client
https://access.redhat.com/documentation/en-us/red_hat_gluster_storage/3.3/html/installation_guide/chap-planning_red_hat_storage_installation

Chapter 3. Verify Prerequisites

To prevent potential deployment or scaling issues, review the following guidelines before deploying
independent mode with OpenShift Container Platform.

Ensure that the Trusted Storage Pool is appropriately sized and you have room for dynamic scaling on
demand. This action ensures that you do not scale beyond the following maximum limits:

Sizing guidelines on Independent mode

Persistent volumes backed by the file interface: For typical operations, size for 300-500 persistent
volumes backed by files per three-node independent mode cluster. The maximum limit of supported
persistent volumes backed by the file interface is 1000 persistent volumes per three-node cluster in an
independent mode deployment. Considering that micro-services can dynamically scale as per
demand, it is recommended that the initial sizing keep sufficient headroom for the scaling. If additional
scaling is needed, add a new three-node independent mode cluster to support additional persistent
volumes

Creation of more than 1,000 persistent volumes per trusted storage pool is not supported for file-
based storage.

Persistent volumes backed by block-based storage: Size for a maximum of 300 persistent
volumes per three-node independent mode cluster.

Persistent volumes backed by file and block: Size for 300-500 persistent volumes (backed by files)
and 100-200 persistent volumes (backed by block). Do not exceed these maximum limits of file or
block-backed persistent volumes or the combination of a maximum 1000 persistent volumes per three-
node independent mode cluster.

3-way distributed-replicated volumes and arbitrated volumes are the only supported volume types.

Minimum Red Hat Openshift Container Storage cluster size (4): It is recommended to have a
minimum of 4 nodes in the Red Hat Openshift Container Storage cluster to adequately meet high-
availability requirements. Although 3 nodes are required to create a persistent volume claim, the
failure of one node in a 3 node cluster prevents the persistent volume claim from being created. The
fourth node provides high-availability and allows the persistent volume claim to be created even if a
node fails.

Each physical or virtual node that hosts a Red Hat Gluster Storage independent mode peer requires
the following:

a minimum of 8 GB RAM and 30 MB per persistent volume.
the same disk type.
the heketidb utilises 2 GB distributed replica volume.

a minimum of 2 physical core pair

2 physical core pair translates to 4vCPU for non hyper-threaded systems and 8 vCPU for
hyper-threaded systems.

Deployment guidelines on independent mode:

In independent mode, you can install Heketi and all provisioners pods on OpenShift Container
Platform Infrastructure nodes or on OpenShift Container Platform Application nodes

13

Deployment Guide

Red Hat Gluster Storage Container Native with OpenShift Container Platform supports up to 14
snapshots per volume by default (snap-max-hard-limit =14 in Heketi Template).

The required kernel version is kernel-3.10.0-862.14.4.el7.x86_64 version or higher. Verify the installed
and running kernel versions by running the following command:

rpm -q kernel
kernel-3.10.0-862.14.4.e17.x86_64

uname -r
3.10.0-862.14.4.el17.x86_64

14

Part Il. Deploy

Part Il. Deploy

15

Deployment Guide

Chapter 4. Deploying Containerized Storage in Converged Mode

Before following the deployment workflow for your preferred solutlon make sure to review Section 4 1,

reqwrements

To set up storage to containers on top of an OpenShift Cluster, select the workflow that meets your
objectives.

Table 4.1. Deployment Workflow

Deployment Registry Metrics Logging Applications

workflow
Sectlon 4 2, v

Red Hat Openshift Container Storage does not support a simultaneous deployment of converged
and independent mode with ansible workflow. Therefore, you must deploy either converged mode
or independent mode: you cannot mix both modes during deployment.

s3 is deployed manually and not through Ansible installer. For more information on manual
deployment, see https //access redhat. com/documentatlon/en—

16

https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/3.11/html-single/operations_guide/#S3_Object_Store

Chapter 4. Deploying Containerized Storage in Converged Mode

4.1. Specify Advanced Installer Variables

The cluster installation process as documented in https://access.redhat.com/documentation/en-

one or both the GlusterFS node groups:
glusterfs: A general storage cluster for use by user applications.

glusterfs-registry: A dedicated storage cluster for use by infrastructure applications such as an
integrated OpenShift Container Registry.

It is recommended to deploy both groups to avoid potential impacts on performance in I/0 and volume
creation. Both of these are defined in the inventory hosts file.

The definition of the clusters is done by including the relevant names in the [0SEv3:children] group,
creating similarly named groups, and then populating the groups with the node information. The clusters can
then be configured through a variety of variables in the [0SEv3:vars] group. glusterfs variables begin
with openshift_storage_glusterfs_ and glusterfs-registry variables begin with
openshift_storage_glusterfs_registry_. A few other variables, such as
openshift_hosted_registry_storage_kind, interact with the GlusterFS clusters.

It is recommended to specify image names and version tags for all containerized components. This is to
prevent components such as the Red Hat Gluster Storage pods from upgrading after an outage, which might
lead to a cluster of widely disparate software versions. The relevant variables are as follows:

openshift_storage_glusterfs_image
openshift_storage_glusterfs_block_image
openshift_storage_glusterfs_heketi_image

The following are the recommended values for this release of Red Hat Openshift Container Storage

openshift_storage_glusterfs_image=registry.access.redhat.com/rhgs3/rhgs-
server-rhel7:v3.11.2

openshift_storage_glusterfs_block_image=registry.access.redhat.com/rhgs3/
rhgs-gluster-block-prov-rhel7:v3.11.2

openshift_storage_glusterfs_heketi_image=registry.access.redhat.com/rhgs3
/rhgs-volmanager-rhel7:v3.11.2

openshift_storage_glusterfs_s3_server_image=registry.access.redhat.com/rh
gs3/rhgs-s3-server-rhel7:v3.11.2

Once the variables are configured, there are several playbooks available depending on the circumstances of
the installation:

The main playbook for cluster installations can be used to deploy the GlusterFS clusters in tandem with
an initial installation of OpenShift Container Platform.

This includes deploying an integrated OpenShift Container Registry that uses GlusterFS storage.

/usr/share/ansible/openshift-ansible/playbooks/openshift-glusterfs/config.yml
can be used to deploy the clusters onto an existing OpenShift Container Platform installation.

17

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/installing_clusters/#install-planning
https://github.com/openshift/openshift-ansible/tree/release-3.11/roles/openshift_storage_glusterfs

Deployment Guide

/usr/share/ansible/openshift-ansible/playbooks/openshift -
glusterfs/registry.yml can be used to deploy the clusters onto an existing OpenShift Container
Platform installation. In addition, this will deploy an integrated OpenShift Container Registry, which uses
GlusterFS storage.

There must not be a pre-existing registry in the OpenShift Container Platform cluster.

playbooks/openshift-glusterfs/uninstall.yml can be used to remove existing clusters
matching the configuration in the inventory hosts file. This is useful for cleaning up the Red Hat Openshift
Container Storage environment in the case of a failed deployment due to configuration errors.

The GlusterFS playbooks are not guaranteed to be idempotent. Running the playbooks more than
once for a given installation is currently not supported without deleting the entire GlusterFS
installation (including disk data) and starting over.

4.2. Deploying Red Hat Openshift Container Storage in Converged Mode

18

1. In your inventory file, include the following variables in the [0SEv3:vars] section, adjusting them
as needed for your configuration:

[0SEv3:vars]
openshift_storage_glusterfs_namespace=app-storage
openshift_storage_glusterfs_storageclass=true
openshift_storage_glusterfs_storageclass_default=false
openshift_storage_glusterfs_block_deploy=true
openshift_storage_glusterfs_block_host_vol_create=true
openshift_storage_glusterfs_block_host_vol_size=100
openshift_storage_glusterfs_block_storageclass=true
openshift_storage_glusterfs_block_storageclass_default=false

This variable only takes an integer, which is the size of the volume in Gi.

2. In your inventory file, add glusterfs in the [0SEv3:children] section to enable the
[glusterfs] group:

[0SEv3:children]
masters

etcd

nodes

glusterfs

3. Add a [glusterfs] section with entries for each storage node that will host the GlusterFS storage.

Chapter 4. Deploying Containerized Storage in Converged Mode

For each node, set glusterfs_devices to a list of raw block devices that will be completely
managed as part of a GlusterFS cluster. There must be at least one device listed. Each device must
be bare, with no partitions or LVM PVs. Specifying the variable takes the form:

<hostname_or_ip> glusterfs_zone=<zone_number> glusterfs_devices='["
</path/to/devicel/>", "</path/to/device2>", ...]'

For example:

[glusterfs]

nodel@3.example.com glusterfs_zone=1 glusterfs_devices='["/dev/sdd"]'
nodel@4.example.com glusterfs_zone=2 glusterfs_devices='["/dev/sdd"]'
nodel@5.example.com glusterfs_zone=3 glusterfs_devices='["/dev/sdd"]'

4. Add the hosts listed under [glusterfs] to the [nodes] group:

[nodes]

nodel03.example.com openshift_node_group_name="node-config-infra"
nodel04.example.com openshift_node_group_name="node-config-infra"
nodel05.example.com openshift_node_group_name="node-config-infra"

5. The preceding steps detail options that need to be added to a larger, complete inventory file. To use
the complete inventory file to deploy {gluster} provide the file path as an option to the following
playbooks:

For an initial OpenShift Container Platform installation:

ansible-playbook -i <path_to_inventory_ file>
/usr/share/ansible/openshift-ansible/playbooks/prerequisites.yml

ansible-playbook -i <path_to_inventory_ file>
/usr/share/ansible/openshift-ansible/playbooks/deploy_cluster.yml

For a standalone installation onto an existing OpenShift Container Platform cluster:

ansible-playbook -i <path_to_inventory_ file>
/usr/share/ansible/openshift-ansible/playbooks/openshift-
glusterfs/config.yml

6. To verify the deployment see, Section 4.7, “Verify your Deployment”.

4.3. Deploying Red Hat Openshift Container Storage in Converged Mode
with Registry

1. In your inventory file, include the following variables in the [OSEv3:vars] section, adjusting them as
needed for your configuration:

openshift_storage_glusterfs_registry_namespace=app-storage
openshift_storage_glusterfs_registry_storageclass=true
openshift_storage_glusterfs_registry_storageclass_default=false
openshift_storage_glusterfs_registry_block_deploy=true

19

openshift_storage_glusterfs_registry_block_host_vol_create=true
openshift_storage_glusterfs_registry_block_host_vol_size=100
openshift_storage_glusterfs_registry_block_storageclass=true
openshift_storage_glusterfs_registry_block_storageclass_default=false

2. In your inventory file, set the following variable under [0SEv3:vars]:

[0SEv3:vars]

openshift_hosted_registry_storage_kind=glusterfs
openshift_hosted_registry_storage_volume_size=5Gi
openshift_hosted_registry_selector='node-
role.kubernetes.io/infra=true'

3. Add glusterfs_registry in the [0SEv3:children] section to enable the
[glusterfs_registry] group:

[0SEv3:children]
masters

etcd

nodes
glusterfs_registry

4. Add a [glusterfs_registry] section with entries for each storage node that will host the
GlusterFS storage. For each node, set glusterfs_devices to a list of raw block devices that will
be completely managed as part of a GlusterFS cluster. There must be at least one device listed.
Each device must be bare, with no partitions or LVM PVs. Specifying the variable takes the form:

<hostname_or_ip> glusterfs_zone=<zone_number> glusterfs_devices='["
</path/to/devicel/>", "</path/to/device2>", ...]'

For example:

[glusterfs_registry]

nodel@6.example.com glusterfs_zone=1 glusterfs_devices='["/dev/sdd"]'
nodel@7.example.com glusterfs_zone=2 glusterfs_devices='["/dev/sdd"]"
nodel@8.example.com glusterfs_zone=3 glusterfs_devices='["/dev/sdd"]"

5. Add the hosts listed under [glusterfs_registry] to the [nodes] group:

[nodes]

nodel@6.example.com openshift_node_group_name="node-config-compute"
nodel@7.example.com openshift_node_group_name="node-config-compute"
nodel@8.example.com openshift_node_group_name="node-config-compute"

6. The preceding steps detail options that need to be added to a larger, complete inventory file. To use
the complete inventory file to deploy {gluster} provide the file path as an option to the following
playbooks:

For an initial OpenShift Container Platform installation:

ansible-playbook -i <path_to_inventory_ file>
/usr/share/ansible/openshift-ansible/playbooks/prerequisites.yml

Chapter 4. Deploying Containerized Storage in Converged Mode

ansible-playbook -i <path_to_inventory_ file>
/usr/share/ansible/openshift-ansible/playbooks/deploy_cluster.yml

For a standalone installation onto an existing OpenShift Container Platform cluster:

ansible-playbook -i <path_to_inventory_ file>
/usr/share/ansible/openshift-ansible/playbooks/openshift-
glusterfs/config.yml

7. To verify the deployment see, Section 4.7, “Verify your Deployment”.

4.4. Deploying Red Hat Openshift Container Storage in Converged Mode
with Logging and Metrics

1. In your inventory file, set the following variables under [0SEv3:vars]:
[0OSEv3:vars]
openshift_metrics_install metrics=true

openshift_metrics_storage_kind=dynamic
openshift_metrics_hawkular_nodeselector={"node-

role.kubernetes.io/infra": "true"}
openshift_metrics_cassandra_nodeselector={"node-
role.kubernetes.io/infra": "true"}
openshift_metrics_heapster_nodeselector={"node-
role.kubernetes.io/infra": "true"}

openshift_metrics_storage_volume_size=10Gi
openshift_metrics_cassandra_pvc_storage_class_name="glusterfs-
registry-block"

openshift_logging_install_logging=true
openshift_logging_es_pvc_dynamic=true
openshift_logging_kibana_nodeselector={"node-
role.kubernetes.io/infra": "true"}
openshift_logging_curator_nodeselector={"node-
role.kubernetes.io/infra": "true"}
openshift_logging_es_nodeselector={"node-role.kubernetes.io/infra":
"true"}

openshift_logging_es_pvc_size=10Gi
openshift_logging_es_pvc_storage_class_name="glusterfs-registry-block"

openshift_storage_glusterfs_registry_namespace=infra-storage
openshift_storage_glusterfs_registry_storageclass=false
openshift_storage_glusterfs_registry_storageclass_default=false
openshift_storage_glusterfs_registry_block_deploy=true
openshift_storage_glusterfs_registry_block_host_vol_create=true
openshift_storage_glusterfs_registry_block_host_vol_size=100
openshift_storage_glusterfs_registry_block_storageclass=true
openshift_storage_glusterfs_registry_block_storageclass_default=false

21

Deployment Guide

22

For more details about all the variables, see https://github.com/openshift/openshift-

2. Add glusterfs_registry in the [0SEv3:children] section to enable the
[glusterfs_registry] group:

[0SEv3:children]
masters

etcd

nodes
glusterfs_registry

3. Add a [glusterfs_registry] section with entries for each storage node that will host the
GlusterFS storage. For each node, set glusterfs_devices to a list of raw block devices that will
be completely managed as part of a GlusterFS cluster. There must be at least one device listed.
Each device must be bare, with no partitions or LVM PVs. Specifying the variable takes the form:

<hostname_or_ip> glusterfs_zone=<zone_number> glusterfs_devices='["
</path/to/devicel/>", "</path/to/device2>", ...]'

For example:

[glusterfs_registry]

nodel@6.example.com glusterfs_zone=1 glusterfs_devices='["/dev/sdd"]'
nodel@7.example.com glusterfs_zone=2 glusterfs_devices='["/dev/sdd"]'
nodel@8.example.com glusterfs_zone=3 glusterfs_devices='["/dev/sdd"]'

4. Add the hosts listed under [glusterfs_registry] to the [nodes] group:

[nodes]
nodel@6.example.com openshift_node_group_name="node-config-compute"

nodel@7.example.com openshift_node_group_name="node-config-compute"
nodel@8.example.com openshift_node_group_name="node-config-compute"

5. The preceding steps detail options that need to be added to a larger, complete inventory file. To use
the complete inventory file to deploy {gluster} provide the file path as an option to the following
playbooks:

For an initial OpenShift Container Platform installation:

ansible-playbook -i <path_to_inventory_ file>
/usr/share/ansible/openshift-ansible/playbooks/prerequisites.yml

ansible-playbook -i <path_to_inventory_ file>
/usr/share/ansible/openshift-ansible/playbooks/deploy_cluster.yml

For a standalone installation onto an existing OpenShift Container Platform cluster:

ansible-playbook -i <path_to_inventory_ file>

https://github.com/openshift/openshift-ansible/tree/release-3.11/roles/openshift_storage_glusterfs

Chapter 4. Deploying Containerized Storage in Converged Mode

/usr/share/ansible/openshift-ansible/playbooks/openshift-
glusterfs/config.yml

ansible-playbook -i <path_to_the_inventory_file>
/usr/share/ansible/openshift-ansible/playbooks/openshift-
logging/config.yml

ansible-playbook -i <path_to_the_inventory_file>
/usr/share/ansible/openshift-ansible/playbooks/openshift-
metrics/config.yml

6. To verify the deployment see, Section 4.7, “Verify your Deployment”.

4.5. Deploying Red Hat Openshift Container Storage in Converged mode
for Applications with Registry, Logging, and Metrics

1. In your inventory file, set the following variables under [0SEv3:vars]:

[0OSEv3:vars]

openshift_hosted_registry_selector='node-
role.kubernetes.io/infra=true'
openshift_hosted_registry_storage_volume_size=5Gi
openshift_hosted_registry_storage_kind=glusterfs

[0OSEv3:vars]
openshift_metrics_install metrics=true

openshift_metrics_storage_kind=dynamic
openshift_metrics_hawkular_nodeselector={"node-

role.kubernetes.io/infra": "true"}
openshift_metrics_cassandra_nodeselector={"node-
role.kubernetes.io/infra": "true"}
openshift_metrics_heapster_nodeselector={"node-
role.kubernetes.io/infra": "true"}

openshift_metrics_storage_volume_size=10Gi
openshift_metrics_cassandra_pvc_storage_class_name="glusterfs-
registry-block"

openshift_logging_install_logging=true
openshift_logging_es_pvc_dynamic=true
openshift_logging_kibana_nodeselector={"node-
role.kubernetes.io/infra": "true"}
openshift_logging_curator_nodeselector={"node-
role.kubernetes.io/infra": "true"}
openshift_logging_es_nodeselector={"node-role.kubernetes.io/infra":
"true"}

openshift_logging_es_pvc_size=10Gi
openshift_logging_es_pvc_storage_class_name="glusterfs-registry-block"

openshift_storage_glusterfs_namespace=app-storage
openshift_storage_glusterfs_storageclass=true
openshift_storage_glusterfs_storageclass_default=false
openshift_storage_glusterfs_block_deploy=false

23

Deployment Guide

openshift_storage_glusterfs_registry_namespace=infra-storage
openshift_storage_glusterfs_registry_storageclass=false
openshift_storage_glusterfs_registry_storageclass_default=false
openshift_storage_glusterfs_registry_block_deploy=true
openshift_storage_glusterfs_registry_block_host_vol_create=true
openshift_storage_glusterfs_registry_block_host_vol_size=100
openshift_storage_glusterfs_registry_block_storageclass=true
openshift_storage_glusterfs_registry_block_storageclass_default=false

Ensure to set openshift_storage_glusterfs_block_deploy=false in this
deployment scenario.

2. Add glusterfs and glusterfs_registry inthe [0SEv3:children] section to enable the
[glusterfs] and [glusterfs_registry] groups:

[0SEv3:children]
glusterfs
glusterfs_registry

3. Add [glusterfs] and [glusterfs_registry] sections with entries for each storage node that
will host the GlusterFS storage. For each node, set glusterfs_devices to a list of raw block
devices that will be completely managed as part of a GlusterFS cluster. There must be at least one
device listed. Each device must be bare, with no partitions or LVM PVs. Specifying the variable takes
the form:

<hostname_or_ip> glusterfs_zone=<zone_number> glusterfs_devices='["
</path/to/devicel/>", "</path/to/device2>", ...]'

For example:

[glusterfs]

nodel@3.example.com glusterfs_zone=1 glusterfs_devices='["/dev/sdd"]"
nodel@4.example.com glusterfs_zone=2 glusterfs_devices='["/dev/sdd"]"
nodel@5.example.com glusterfs_zone=3 glusterfs_devices='["/dev/sdd"]'

[glusterfs_registry]
nodel@6.example.com glusterfs_zone=1 glusterfs_devices='["/dev/sdd"]"

nodel@7.example.com glusterfs_zone=2 glusterfs_devices='["/dev/sdd"]'
nodel@8.example.com glusterfs_zone=3 glusterfs_devices='["/dev/sdd"]'

4. Add the hosts listed under [glusterfs] and [glusterfs_registry] to the [nodes] group:

[nodes]

nodel@3.example.com openshift_node_group_name="node-config-compute"
nodel@4.example.com openshift_node_group_name="node-config-compute"

24

Chapter 4. Deploying Containerized Storage in Converged Mode

nodel@5.example.com openshift_node_group_name="node-config-compute"
nodel06.example.com openshift_node_group_name="node-config-infra"
nodel07.example.com openshift_node_group_name="node-config-infra"
nodel08.example.com openshift_node_group_name="node-config-infra"

5. The preceding steps detail options that need to be added to a larger, complete inventory file. To use
the complete inventory file to deploy {gluster} provide the file path as an option to the following
playbooks:

For an initial OpenShift Container Platform installation:

ansible-playbook -i <path_to_inventory_ file>
/usr/share/ansible/openshift-ansible/playbooks/prerequisites.yml

ansible-playbook -i <path_to_inventory_ file>
/usr/share/ansible/openshift-ansible/playbooks/deploy_cluster.yml

For a standalone installation onto an existing OpenShift Container Platform cluster:

ansible-playbook -i <path_to_inventory_ file>
/usr/share/ansible/openshift-ansible/playbooks/openshift-
glusterfs/config.yml

ansible-playbook -i <path_to_the_inventory_file>
/usr/share/ansible/openshift-ansible/playbooks/openshift-
logging/config.yml

ansible-playbook -i <path_to_the_inventory_file>

/usr/share/ansible/openshift-ansible/playbooks/openshift-
metrics/config.yml

6. To verify the deployment see, Section 4.7, “Verify your Deployment”.

4.6. Configure Heketi to Place Bricks Across Zones

Heketi uses node zones as a hint for brick placement. To force Heketi to strictly place replica bricks in
different zones, "strict zone checking" feature of Heketi has to be enabled. When this feature is enabled, a
volume is created successfully only if each brick set is spread across sufficiently many zones.

You can configure this feature by adding the "volumeoptions" field with the desired setting in the parameters
section of the StorageClass. For example:

volumeoptions: "user.heketi.zone-checking strict"
OR
volumeoptions: "user.heketi.zone-checking none"

The settings are as follows:
strict - Requires at least 3 nodes to be present in different zones (assuming replica 3).

none - Previous (and current default) behavior

25

Deployment Guide

A sample StorageClass file with "strict zone checking" feature configured is shown below:

cat glusterfs-storageclass.yaml

apiVersion: storage.k8s.io/vilbetal
kind: StorageClass

metadata:
name: gluster-container
provisioner: kubernetes.io/glusterfs

reclaimPolicy: Delete

parameters:

restuser:
volumetype: "replicate:3"
clusterid:
secretNamespace: "default"

secretName: "heketi-secret"

volumeoptions: "user.heketi.zone-checking strict"
volumenameprefix: "test-vol"

"http://heketi-storage-project.cloudapps.mystorage.com"

"admin"

"630372ccdc720a92c681fb928f27b53f"

allowVolumeExpansion: true

You can also configure this feature by using the heketi-cli volume create command:

heketi-cli volume create --size=5 --gluster-volume-
options="user.heketi.zone-checking strict"

This feature can also be configured by using the --gluster-volume-options="..." switch to 'heketi-cli
volume create'. This is equivalent to the StorageClass option explained above.

4.7. Verify your Deployment

Execute the following steps to verify the deployment

26

1. Installation Verification for converged mode

a. Examine the installation for the app-storage namespace by running the following commands
This can be done from an OCP master node or the ansible deploy host that has the OC CLI
installed.

switch to the app-storage namespace

oc project app-storage

get the list of pods here (3 gluster pods +1 heketi pod + 1
gluster block provisioner pod)

oc get pods

NAME READY STATUS
RESTARTS AGE

glusterblock-storage-provisioner-dc-1-mphfp 1/1 Running
0 1h

glusterfs-storage-6tlzx 1/1 Running
0 1h

Chapter 4. Deploying Containerized Storage in Converged Mode

glusterfs-storage-lksps 1/1 Running
0 1h
glusterfs-storage-nf7gk 1/1 Running
0 1h
glusterfs-storage-tcnd8 1/1 Running
0 1h
heketi-storage-1-5mé6cl 1/1 Running
0 1h

b. Examine the installation for the infra-storage namespace by running the following commands
This can be done from an OCP master node or the ansible deploy host that has the OC CLI
installed.

switch to the infra-storage namespace

oc project infra-storage

list the pods here (3 gluster pods, 1 heketi pod and 1
glusterblock-provisioner pod)

oc get pods

NAME READY STATUS
RESTARTS AGE
glusterblock-registry-provisioner-dc-1-28sfc 1/1 Running (0]
1h

glusterfs-registry-cjp49 1/1 Running
0 1h

glusterfs-registry-1hgjj 1/1 Running

0 1h

glusterfs-registry-v4vgx 1/1 Running

0 1h

heketi-registry-5-1ht6s 1/1 Running

0 1h

c. Check the existence of the registry PVC backed by OCP infrastructure Red Hat Openshift
Container Storage. This volume was statically provisioned by openshift-ansible deployment.

oc get pvc -n default

NAME STATUS VOLUME

CAPACITY ACCESSMODES STORAGECLASS

AGE

registry-claim Bound pvc-7cad4c8de-10ca-11e8-
84d3-069df2c4f284 25Gi RWX

1h

Check the registry DeploymentConfig to verify it's using this glusterfs volume.

oc describe dc/docker-registry -n default | grep -A3 Volumes
Volumes:
registry-storage:
Type: PersistentVolumeClaim (a reference to a
PersistentVolumeClaim in the same namespace)
ClaimName: registry-claim

2. Storage Provisioning Verification for Converged Mode

27

Deployment Guide

28

a. The Storage Class resources can be used to create new PV claims for verification of the
RHOCS deployment. Validate PV provisioning using the following OCP Storage Class
created during the RHOCS deployment:

Use the glusterfs-storage-block OCP Storage Class resource to create new PV claims if
you deployed RHOCS using Section 4.2, “Deploying Red Hat Openshift Container

Use the glusterfs-registry-block OCP Storage Class resource to create new PV claims if
you deployed RHOCS using one of the following workflows:

Section 4 3, “Deploying Red Hat Openshift Container Storage in Converged Mode

oc get storageclass

NAME TYPE
glusterfs-storage kubernetes.io/glusterfs
Glusterfs-storage-block gluster.org/glusterblock

$ cat pvc-file.yaml
kind: PersistentVolumeClaim
apivVersion: vi
metadata:
name: rhocs-file-claiml
annotations:
volume.beta.kubernetes.io/storage-class: glusterfs-storage
spec:
accessModes:
- ReadWriteMany
resources:
requests:
storage: 5Gi

cat pvc-block.yaml
kind: PersistentVolumeClaim
apivVersion: vi
metadata:
name: rhocs-block-claiml
annotations:
volume.beta.kubernetes.io/storage-class: glusterfs-storage-
block
spec:
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 5Gi

oc create -f pvc-file.yaml
oc create -f pvc-block.yaml

Chapter 4. Deploying Containerized Storage in Converged Mode

Validate that the two PVCs and respective PVs are created correctly:
oc get pvc

3. Using the heketi-client for Verification

a. The heketi-client package needs to be installed on the ansible deploy host or on a OCP
master. Once it is installed two new files should be created to easily export the required
environment variables to run the heketi-client commands (or heketi-cli). The content of each
file as well as useful heketi-cli commands are detailed here.

Create a new file (e.g. "heketi-exports-app") with the following contents:

export HEKETI_POD=$(oc get pods -1 glusterfs=heketi-storage-pod
-n app-storage -o jsonpath="{.items[0].metadata.name}")

export HEKETI_CLI_SERVER=http://$(oc get route/heketi-storage -n
app-storage -o jsonpath='{.spec.host}')

export HEKETI_CLI_KEY=$(oc get pod/$HEKETI_POD -n app-storage -o
jsonpath="'{.spec.containers[0].env[?
(@.name=="HEKETI_ADMIN_KEY")].value}"')

export HEKETI_ADMIN_KEY_SECRET=$(echo -n ${HEKETI_CLI_KEY} |
base64)

export HEKETI_CLI_USER=admin

Source the file to create the HEKETI app-storage environment variables:

source heketi-exports-app

see if heketi is alive

curl -w '\n' ${HEKETI_CLI_SERVER}/hello

Hello from Heketi

ask heketi about the cluster it knows about

heketi-cli cluster list

Clusters:

Id:56ed234a384cef7dbef6c4aal06d4477 [file][block]

ask heketi about the topology of the RHOCS cluster for apps
heketi-cli topology info

ask heketi about the volumes already created (one for the
heketi db should exist after the OCP initial installation)
heketi-cli volume 1list

Id:d71a4cbea22af3453615a9020f261b5c
Cluster:56ed234a384cef7dbef6c4aal06d4477
Name:heketidbstorage

Create a new file (e.g. "heketi-exports-infra") with the following contents:

export HEKETI_POD=$(oc get pods -1 glusterfs=heketi-registry-pod
-n infra-storage -o jsonpath="{.items[0].metadata.name}")

export HEKETI_CLI_SERVER=http://$(oc get route/heketi-registry -
n infra-storage -o jsonpath='{.spec.host}"')

export HEKETI_CLI_USER=admin

export HEKETI_CLI_KEY=$(oc get pod/$HEKETI_POD -n infra-storage
-0 jsonpath='{.spec.containers[0].env[?

29

Deployment Guide

(@.name=="HEKETI_ADMIN_KEY")].value}')
export HEKETI_ADMIN_KEY_SECRET=$(echo -n ${HEKETI_CLI_KEY} |
base64)

Source the file to create the HEKETI infra-storage environment variables:

source heketi-exports-infra

see if heketi is alive

curl -w '\n' ${HEKETI_CLI_SERVER}/hello

Hello from Heketi

ask heketi about the cluster it knows about (the RHOCS cluster
for infrastructure)

heketi-cli cluster list

Clusters:

Id:baf91b261cbca2bb4b62caece63f60d0 [file][block]

ask heketi about the volumes already created

heketi-cli volume 1list

Id:77baed02f79f4518326d8ccildb6c7af8
Cluster:baf91b261cbca2bb4b62caece63f60d0 Name:heketidbstorage

4.8. Creating an Arbiter Volume (optional)

Arbiter volume supports all persistent volume types with better consistency and less disk space requirements.
An arbitrated replicated volume, or arbiter volume, is a three-way replicated volume where every third brick is
a special type of brick called an arbiter. Arbiter bricks do not store file data; they only store file names,
structure, and metadata. The arbiter uses client quorum to compare this metadata with the metadata of the
other nodes to ensure consistency in the volume and prevent split-brain conditions.

Advantages of arbitrated replicated volumes:

Better consistency: When an arbiter is configured, arbitration logic uses client-side quorum in auto mode
to prevent file operations that would lead to split-brain conditions.

Less disk space required: Because an arbiter brick only stores file names and metadata, an arbiter brick
can be much smaller than the other bricks in the volume.

For more information about Arbitrated Replicated Volumes, see https://access.redhat.com/documentation/en-

Before creating the arbiter volume, make sure heketi-client packages are installed.

subscription-manager repos --enable=rh-gluster-3-for-rhel-7-server-rpms

yum install heketi-client

If you want to upgrade your already existing Heketi server, then see,
https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/3.11/html-

4.8.1. Creating an Arbiter Volume

Arbiter volume can be created using the Heketi CLI or by updating the storageclass file.

30

https://access.redhat.com/documentation/en-us/red_hat_gluster_storage/3.4/html-single/administration_guide/#Creating_Arbitrated_Replicated_Volumes
https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/3.11/html-single/deployment_guide/index#upgrade_heketi_rhgs

Chapter 4. Deploying Containerized Storage in Converged Mode

4.8.1.1. Creating an Arbiter Volume using Heketi CLI

To create an Arbiter volume using the Heketi CLI one must request a replica 3 volume as well as provide the
Heketi-specific volume option “user.heketi.arbiter true” that will instruct the system to create the Arbiter
variant of replica 3.

For example:

heketi-cli volume create --size=4 --gluster-volume-
options='user.heketi.arbiter true'

4.8.1.2. Creating an Arbiter Volume using the Storageclass file

To create an arbiter volume using the storageclass file ensure to include the following two parameters in the
storageclass file:

user.heketi.arbiter true
(Optional) user.heketi.average-file-size 1024

Following is a sample storageclass file:

cat glusterfs-storageclass.yaml
apiVersion: storage.k8s.io/vlbetal
kind: StorageClass
metadata:
name: gluster-container
provisioner: kubernetes.io/glusterfs
parameters:
resturl: "http://heketi-storage-project.cloudapps.mystorage.com"
restuser: "admin"
volumetype: "replicate:3"
clusterid:
"630372ccdc720a92¢c681fb928f27b53f, 796e6db1981f369ea0340913eeecasdc9a"
secretNamespace: "default"
secretName: "heketi-secret"
volumeoptions: "user.heketi.arbiter true,user.heketi.average-file-size
1024"
volumenameprefix: "test-vol"
spec:
persistentVolumeReclaimPolicy: Retain
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 5Gi

31

Deployment Guide

Chapter 5. Deploying Container Storage in Independent Mode

Before following the deployment workflow for your preferred solution, make sure to complete Section 5.1,

ansible variable and playbook recommendations and requirements. To set up storage to containers as a
stand-alone Red Hat Gluster Storage cluster, select the workflow that meets your objectives.

Table 5.1. Deployment Workflow

Deployment Registry Metrics Logging Applications
workflow

Section 5.3, v

“Deploying Red

Red Hat Openshift Container Storage does not support a simultaneous deployment of converged
and independent mode with ansible workflow. Therefore, you must deploy either converged mode
or independent mode: you cannot mix both modes during deployment.

s3 is deployed manually and not through Ansible installer. For more information on manual
deployment, see https //access redhat. com/documentatlon/en—

5.1. Setting up a RHGS Cluster

In an independent mode set-up a dedicated Red Hat Gluster Storage cluster is available external to the
Openshift Container Platform. The storage is provisioned from the Red Hat Gluster Storage cluster.

5.1.1. Installing Red Hat Gluster Storage Server on Red Hat Enterprise Linux (Layered
Install)

Layered install involves installing Red Hat Gluster Storage over Red Hat Enterprise Linux.

32

https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/3.11/html-single/operations_guide/#S3_Object_Store

Chapter 5. Deploying Container Storage in Independent Mode

It is recommended to create a separate /var partition that is large enough (50GB - 100GB) for log
files, geo-replication related miscellaneous files, and other files.

1. Perform a base install of Red Hat Enterprise Linux 7 Server

Independent mode is supported only on Red Hat Enterprise Linux 7.

2. Register the System with Subscription Manager

Run the following command and enter your Red Hat Network username and password to register the

system with the Red Hat Network:

subscription-manager register

3. Identify Available Entitlement Pools

Run the following commands to find entitlement pools containing the repositories required to install
Red Hat Gluster Storage:

subscription-manager list --available

4. Attach Entitlement Pools to the System

Use the pool identifiers located in the previous step to attach the Red Hat Enterprise Linux
Server and Red Hat Gluster Storage entitlements to the system. Run the following command
to attach the entitlements:

subscription-manager attach --pool=[POOLID]
For example:

subscription-manager attach --po0l=8a85f9814999f69101499c05aa706e47

5. Enable the Required Channels

For Red Hat Gluster Storage 3.4 on Red Hat Enterprise Linux 7.x

a. Run the following commands to enable the repositories required to install Red Hat Gluster
Storage

subscription-manager repos --enable=rhel-7-server-rpms

subscription-manager repos --enable=rh-gluster-3-for-rhel-7-
server-rpms

subscription-manager repos --enable=rhel-7-server-extras-rpms

6. Verify if the Channels are Enabled

Run the following command to verify if the channels are enabled:

33

Deployment Guide

yum repolist
7. Update all packages
Ensure that all packages are up to date by running the following command.
yum update

8. Kernel Version Requirement

Independent mode requires the kernel-3.10.0-862.14.4.el7.x86_64 version or higher to be used on
the system. Verify the installed and running kernel versions by running the following command:

rpm -q kernel
kernel-3.10.0-862.14.4.el17.x86_64

uname -r
3.10.0-862.14.4.e17.x86_64

If any kernel packages are updated, reboot the system with the following command.

shutdown -r now

9. Install Red Hat Gluster Storage

Run the following command to install Red Hat Gluster Storage:
yum install redhat-storage-server
a. To enable gluster-block execute the following command:
yum install gluster-block

10. Reboot

Reboot the system.

5.1.2. Configuring Port Access

This section provides information about the ports that must be open for the independent mode.

Red Hat Gluster Storage Server uses the listed ports. You must ensure that the firewall settings do not
prevent access to these ports.

Execute the following commands to open the required ports for both runtime and permanent configurations or
all Red Hat Gluster Storage nodes:

34

Chapter 5. Deploying Container Storage in Independent Mode

firewall-cmd --zone=zone_name --add-port=24010/tcp --add-port=3260/tcp --
add-port=111/tcp --add-port=22/tcp --add-port=24007/tcp --add-port=24008/tcp
--add-port=49152-49664/tcp

firewall-cmd --zone=zone_name --add-port=24010/tcp --add-port=3260/tcp --
add-port=111/tcp --add-port=22/tcp --add-port=24007/tcp --add-port=24008/tcp
--add-port=49152-49664/tcp --permanent

Port 24010 and 3260 are for gluster-blockd and iSCSI targets respectively.

The port range starting at 49664 defines the range of ports that can be used by GlusterFS for
communication to its volume bricks. In the above example the total number of bricks allowed is
512. Configure the port range based on the maximum number of bricks that could be hosted on
each node.

5.1.3. Enabling Kernel Modules

Execute the following commands to enable kernel modules:

1. You must ensure that the dm_thin_pool and target_core_user modules are loaded in the Red
Hat Gluster Storage nodes.

modprobe target_core_user

modprobe dm_thin_pool
Execute the following command to verify if the modules are loaded:

1lsmod | grep dm_thin_pool

lsmod | grep target_core_user

To ensure these operations are persisted across reboots, create the following files and
update each file with the content as mentioned:

cat /etc/modules-load.d/dm_thin_pool.conf
dm_thin_pool

cat /etc/modules-load.d/target_core_user.conf
target_core_user

2. You must ensure that the dm_multipath module is loaded on all OpenShift Container Platform
nodes.

35

Deployment Guide

modprobe dm_multipath
Execute the following command to verify if the modules are loaded:

1lsmod | grep dm_multipath

To ensure these operations are persisted across reboots, create the following file and update
it with the content as mentioned:

cat /etc/modules-load.d/dm_multipath.conf
dm_multipath

5.1.4. Starting and Enabling Services

Execute the following commands to start glusterd and gluster-blockd:

systemctl start sshd

systemctl enable sshd

systemctl start glusterd

systemctl enable glusterd

systemctl start gluster-blockd

systemctl enable gluster-blockd

5.2. Specify Advanced Installer Variables

The cluster mstallatlon process as documented in https /laccess. redhat com/documentatlon/en—

one or both the GlusterFS node groups:
glusterfs: A general storage cluster for use by user applications.

glusterfs-registry: A dedicated storage cluster for use by infrastructure applications such as an
integrated OpenShift Container Registry.

It is recommended to deploy both groups to avoid potential impacts on performance in I/0 and volume
creation. Both of these are defined in the inventory hosts file.

The definition of the clusters is done by including the relevant names in the [0SEv3:children] group,
creating similarly named groups, and then populating the groups with the node information. The clusters can
then be configured through a variety of variables in the [0SEv3:vars] group. glusterfs variables begin

36

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/installing_clusters/#install-planning

Chapter 5. Deploying Container Storage in Independent Mode

with openshift_storage_glusterfs_ and glusterfs-registry variables begin with
openshift_storage_glusterfs_registry_. A few other variables, such as
openshift_hosted_registry_storage_kind, interact with the GlusterFS clusters.

It is recommended to specify version tags for all containerized components. This is to prevent components
such as the Red Hat Gluster Storage pods from upgrading after an outage, which might lead to a cluster of
widely disparate software versions. The relevant variables are:

openshift_storage_glusterfs_version
openshift_storage_glusterfs_block_version
openshift_storage_glusterfs_heketi_version
openshift_storage_glusterfs_registry_version
openshift_storage_glusterfs_registry_block_version

openshift_storage_glusterfs_registry_heketi_version

The image variables for gluster-block is necessary only if the corresponding deployment variables
(the variables ending in _block_deploy) is true.

The recommended values for this release of Red Hat Openshift Container Storage are as follows:

openshift_storage_glusterfs_block_image=registry.access.redhat.com/rhgs3/
rhgs-gluster-block-prov-rhel7:v3.11.2

openshift_storage_glusterfs_heketi_image=registry.access.redhat.com/rhgs3
/rhgs-volmanager-rhel7:v3.11.2

openshift_storage_glusterfs_s3_server_image=registry.access.redhat.com/rh
gs3/rhgs-s3-server-rhel7:v3.11.2

Once the variables are configured, there are several playbooks available depending on the circumstances of
the installation:

The main playbook for cluster installations can be used to deploy the GlusterFS clusters in tandem with
an initial installation of OpenShift Container Platform.

This includes deploying an integrated OpenShift Container Registry that uses GlusterFS storage.

/usr/share/ansible/openshift-ansible/playbooks/openshift-glusterfs/config.yml
can be used to deploy the clusters onto an existing OpenShift Container Platform installation.

/usr/share/ansible/openshift-ansible/playbooks/openshift-
glusterfs/registry.yml can be used to deploy the clusters onto an existing OpenShift Container
Platform installation. In addition, this deploys an integrated OpenShift Container Registry, which uses
GlusterFS storage.

37

https://github.com/openshift/openshift-ansible/tree/release-3.11/roles/openshift_storage_glusterfs

Deployment Guide

The OpensShift Container Platform cluster must not contain a pre-existing registry.

playbooks/openshift-glusterfs/uninstall.yml can be used to remove existing clusters
matching the configuration in the inventory hosts file. This is useful for cleaning up the Red Hat OpenShift
Container Storage environment in case of a failed deployment due to configuration errors.

The GlusterFS playbooks are not guaranteed to be idempotent. Running the playbooks more than
once for a given installation is not supported without deleting the entire GlusterFS installation
(including disk data) and starting over.

5.3. Deploying Red Hat Openshift Container Storage in Independent Mode

38

1. Inyour inventory file, add glusterfs in the [0SEv3:children] section to enable the
[glusterfs] group:

[0SEv3:children]
masters

etcd

nodes

glusterfs

2. Include the following variables in the [0SEv3:vars] section, adjusting them as needed for your
configuration:

[0SEv3:vars]

openshift_storage_glusterfs_namespace=app-storage
openshift_storage_glusterfs_storageclass=true
openshift_storage_glusterfs_storageclass_default=false
openshift_storage_glusterfs_block_deploy=true
openshift_storage_glusterfs_block_host_vol_create=true
openshift_storage_glusterfs_block_host_vol_size=100
openshift_storage_glusterfs_block_storageclass=true
openshift_storage_glusterfs_block_storageclass_default=false
openshift_storage_glusterfs_is_native=false
openshift_storage_glusterfs_heketi_is_native=true
openshift_storage_glusterfs_heketi_executor=ssh
openshift_storage_glusterfs_heketi_ssh_port=22
openshift_storage_glusterfs_heketi_ssh_user=root
openshift_storage_glusterfs_heketi_ssh_sudo=false
openshift_storage_glusterfs_heketi_ssh_keyfile="/root/.ssh/id_rsa"

Chapter 5. Deploying Container Storage in Independent Mode

This variable only takes an integer, which is the size of the volume in Gi.

3. Add a [glusterfs] section with entries for each storage node that will host the GlusterFS storage.
For each node, set glusterfs_devices to a list of raw block devices that will be completely
managed as part of a GlusterFS cluster. There must be at least one device listed. Each device must
be bare, with no partitions or LVM PVs. Also, set glusterfs_ip to the IP address of the node.
Specifying the variable takes the form:

<hostname_or_ip> glusterfs_zone=<zone_number> glusterfs_ip=
<ip_address> glusterfs_devices='["</path/to/devicel/>", "
</path/to/device2>", ...]'

For example:

[glusterfs]

glusterl.example.com glusterfs_zone=1 glusterfs_ip=192.168.10.11
glusterfs_devices='["/dev/xvdc", "/dev/xvdd"]'
gluster2.example.com glusterfs_zone=2 glusterfs_ip=192.168.10.12
glusterfs_devices='["/dev/xvdc", "/dev/xvdd"]'
gluster3.example.com glusterfs_zone=3 glusterfs_ip=192.168.10.13
glusterfs_devices='["/dev/xvdc", "/dev/xvdd"]'

4. The preceding steps detail options that need to be added to a larger, complete inventory file. To use
the complete inventory file to deploy {gluster} provide the file path as an option to the following
playbooks:

For an initial OpenShift Container Platform installation:

ansible-playbook -i <path_to_inventory_ file>
/usr/share/ansible/openshift-ansible/playbooks/prerequisites.yml

ansible-playbook -i <path_to_inventory_ file>
/usr/share/ansible/openshift-ansible/playbooks/deploy_cluster.yml

For a standalone installation onto an existing OpenShift Container Platform cluster:
ansible-playbook -i <path_to_inventory_ file>
/usr/share/ansible/openshift-ansible/playbooks/openshift-

glusterfs/config.yml

5. Brick multiplexing is a feature that allows adding multiple bricks into one process. This reduces
resource consumption and allows us to run more bricks than before with the same memory
consumption. Execute the following commands on one of the Red Hat Gluster Storage nodes on
each cluster to enable brick-multiplexing:

a. Execute the following command to enable brick multiplexing:
gluster vol set all cluster.brick-multiplex on

For example:

39

Deployment Guide

gluster vol set all cluster.brick-multiplex on
Brick-multiplexing is supported only for container workloads
(CNS/CRS). Also it is advised to make sure that either all
volumes are in stopped state or no bricks are running before
this option is modified.Do you still want to continue? (y/n) y
volume set: success

b. Restart the heketidb volumes:

gluster vol stop heketidbstorage

Stopping volume will make its data inaccessible. Do you want to
continue? (y/n) vy

volume stop: heketidbstorage: success

gluster vol start heketidbstorage
volume start: heketidbstorage: success

5.4. Deploying Red Hat Openshift Container Storage in Independent mode
for Applications with Registry, Logging, and Metrics

1. In your inventory file, set the following variables under [0SEv3:vars]:

[0OSEv3:vars]

openshift_hosted_registry_selector='node-
role.kubernetes.io/infra=true'
openshift_hosted_registry_storage_volume_size=5Gi
openshift_hosted_registry_storage_kind=glusterfs

openshift_metrics_install metrics=true
openshift_metrics_storage_kind=dynamic
openshift_metrics_hawkular_nodeselector={"node-

role.kubernetes.io/infra": "true"}
openshift_metrics_cassandra_nodeselector={"node-
role.kubernetes.io/infra": "true"}
openshift_metrics_heapster_nodeselector={"node-
role.kubernetes.io/infra": "true"}

openshift_metrics_storage_volume_size=10Gi
openshift_metrics_cassandra_pvc_storage_class_name="glusterfs-
registry-block"

openshift_logging_install_logging=true
openshift_logging_es_pvc_dynamic=true
openshift_logging_kibana_nodeselector={"node-
role.kubernetes.io/infra": "true"}
openshift_logging_curator_nodeselector={"node-
role.kubernetes.io/infra": "true"}
openshift_logging_es_nodeselector={"node-role.kubernetes.io/infra":
"true"}

openshift_logging_es_pvc_size=10Gi
openshift_logging_es_pvc_storage_class_name="glusterfs-registry-block"

openshift_storage_glusterfs_namespace=app-storage

40

Chapter 5. Deploying Container Storage in Independent Mode

openshift_storage_glusterfs_storageclass=true
openshift_storage_glusterfs_storageclass_default=false
openshift_storage_glusterfs_block_deploy=false
openshift_storage_glusterfs_is_native=false
openshift_storage_glusterfs_heketi_is_native=true
openshift_storage_glusterfs_heketi_executor=ssh
openshift_storage_glusterfs_heketi_ssh_port=22
openshift_storage_glusterfs_heketi_ssh_user=root
openshift_storage_glusterfs_heketi_ssh_sudo=false
openshift_storage_glusterfs_heketi_ssh_keyfile="/root/.ssh/id_rsa"

openshift_storage_glusterfs_registry_namespace=infra-storage
openshift_storage_glusterfs_registry_storageclass=false
openshift_storage_glusterfs_registry_storageclass_default=false
openshift_storage_glusterfs_registry_block_deploy=true
openshift_storage_glusterfs_registry_block_host_vol_create=true
openshift_storage_glusterfs_registry_block_host_vol_size=100
openshift_storage_glusterfs_registry_block_storageclass=true
openshift_storage_glusterfs_registry_block_storageclass_default=false
openshift_storage_glusterfs_registry_is_native=false
openshift_storage_glusterfs_registry_heketi_is_native=true
openshift_storage_glusterfs_registry_heketi_executor=ssh
openshift_storage_glusterfs_registry_heketi_ssh_port=22
openshift_storage_glusterfs_registry_heketi_ssh_user=root
openshift_storage_glusterfs_registry_heketi_ssh_sudo=false
openshift_storage_glusterfs_registry_heketi_ssh_keyfile="/root/.ssh/id
rsa"

Ensure to set openshift_storage_glusterfs_block_deploy=false in this
deployment scenario.

2. Add glusterfs and glusterfs_registry inthe [0SEv3:children] section to enable the
[glusterfs] and [glusterfs_registry] groups:

[0SEv3:children]
glusterfs
glusterfs_registry

3. Add [glusterfs] and [glusterfs_registry] sections with entries for each storage node that
will host the GlusterFS storage. For each node, set glusterfs_devices to a list of raw block
devices that will be completely managed as part of a GlusterFS cluster. There must be at least one
device listed. Each device must be bare, with no partitions or LVM PVs. Specifying the variable takes
the form:

<hostname_or_ip> glusterfs_zone=<zone_number> glusterfs_ip=
<ip_address> glusterfs_devices='["</path/to/devicel1/>", "
</path/to/device2>", ...]'

41

Deployment Guide

For example:

[glusterfs]

nodell.example.com glusterfs_zone=1 glusterfs_ip=192.168.10.11
glusterfs_devices="'["/dev/xvdc", "/dev/xvdd"]'
nodel2.example.com glusterfs_zone=2 glusterfs_ip=192.168.10.12
glusterfs_devices="'["/dev/xvdc", "/dev/xvdd"]'
nodel3.example.com glusterfs_zone=3 glusterfs_ip=192.168.10.13
glusterfs_devices="'["/dev/xvdc", "/dev/xvdd"]'

[glusterfs_registry]

nodel5.example.com glusterfs_zone=1 glusterfs_ip=192.168.10.15
glusterfs_devices="'["/dev/xvdc", "/dev/xvdd"]'
nodel6.example.com glusterfs_zone=2 glusterfs_ip=192.168.10.16
glusterfs_devices="'["/dev/xvdc", "/dev/xvdd"]'
nodel7.example.com glusterfs_zone=3 glusterfs_ip=192.168.10.17
glusterfs_devices="'["/dev/xvdc", "/dev/xvdd"]'

4. The preceding steps detail options that need to be added to a larger, complete inventory file. To use
the complete inventory file to deploy {gluster} provide the file path as an option to the following
playbooks:

For an initial OpenShift Container Platform installation:

ansible-playbook -i <path_to_inventory_ file>
/usr/share/ansible/openshift-ansible/playbooks/prerequisites.yml

ansible-playbook -i <path_to_inventory_ file>
/usr/share/ansible/openshift-ansible/playbooks/deploy_cluster.yml

For a standalone installation onto an existing OpenShift Container Platform cluster:

ansible-playbook -i <path_to_inventory_ file>
/usr/share/ansible/openshift-ansible/playbooks/openshift-
glusterfs/config.yml

ansible-playbook -i <path_to_the_inventory_file>
/usr/share/ansible/openshift-ansible/playbooks/openshift-
logging/config.yml

ansible-playbook -i <path_to_the_inventory_file>
/usr/share/ansible/openshift-ansible/playbooks/openshift-
metrics/config.yml

5. To verify the deployment see, Section 5.6, “Verify your Deployment”.

5.5. Configure Heketi to Place Bricks Across Zones

Heketi uses node zones as a hint for brick placement. To force Heketi to strictly place replica bricks in
different zones, "strict zone checking" feature of Heketi has to be enabled. When this feature is enabled, a
volume is created successfully only if each brick set is spread across sufficiently many zones.

You can configure this feature by adding the "volumeoptions" field with the desired setting in the parameters
section of the StorageClass. For example:

42

Chapter 5. Deploying Container Storage in Independent Mode

volumeoptions: "user.heketi.zone-checking strict"
OR
volumeoptions: "user.heketi.zone-checking none"

The settings are as follows:
strict - Requires at least 3 nodes to be present in different zones (assuming replica 3).
none - Previous (and current default) behavior

A sample StorageClass file with "strict zone checking" feature configured is shown below:

cat glusterfs-storageclass.yaml

apiVersion: storage.k8s.io/vibetal
kind: StorageClass
metadata:
name: gluster-container
provisioner: kubernetes.io/glusterfs
reclaimPolicy: Delete
parameters:
resturl: "http://heketi-storage-project.cloudapps.mystorage.com"
restuser: "admin"
volumetype: "replicate:3"
clusterid: "630372ccdc720a92c681fb928f27b53f"
secretNamespace: "default"
secretName: "heketi-secret"
volumeoptions: "user.heketi.zone-checking strict"
volumenameprefix: "test-vol"
allowVolumeExpansion: true

You can also configure this feature by using the heketi-cli volume create command:

heketi-cli volume create --size=5 --gluster-volume-
options="user.heketi.zone-checking strict"

This feature can also be configured by using the --gluster-volume-options="..." switch to 'heketi-cli
volume create'. This is equivalent to the StorageClass option explained above.

5.6. Verify your Deployment

Execute the following steps to verify the deployment
1. Installation Verification for Independent mode

a. Examine the installation for the app-storage namespace by running the following commands:

switch to the app-storage namespace

43

oc project app-storage

get the list of pods here (1 heketi pod)
oc get pods

NAME READY STATUS

RESTARTS AGE

heketi-storage-1-v5skm 1/1 Running (0]
1h

b. Examine the installation for the infra-storage namespace by running the following commands
This can be done from an OCP master node or the ansible deploy host that has the OC CLI
installed.

switch to the infra-storage namespace
oc project infra-storage

list the pods here (1 heketi pod and 1 glusterblock-
provisioner pod)
oc get pods

NAME READY
STATUS RESTARTS AGE
glusterblock-registry-provisioner-dc-1-28sfc 1/1
Running 0 1h

heketi-registry-5-1ht6s 1/1
Running 0 1h

c. Check the existence of the registry PVC backed by OCP infrastructure Red Hat Openshift
Container Storage. This volume was statically provisioned by openshift-ansible deployment.

oc get pvc -n default

NAME STATUS VOLUME

CAPACITY ACCESSMODES STORAGECLASS

AGE

registry-claim Bound pvc-7cad4c8de-10ca-11e8-
84d3-069df2c4f284 25Gi RWX

1h

Check the registry DeploymentConfig to verify it's using this glusterfs volume.

oc describe dc/docker-registry -n default | grep -A3 Volumes
Volumes:
registry-storage:
Type: PersistentVolumeClaim (a reference to a
PersistentVolumeClaim in the same namespace)
ClaimName: registry-claim

2. Storage Provisioning Verification for Independent Mode

a. Validate PV provisioning using the glusterfs and glusterblock OCP Storage Class created
during the OCP deployment. The two Storage Class resources, glusterfs-storage and
glusterfs-storage-block, can be used to create new PV claims for verification of the Red Hat
Openshift Container Storage deployment. The new PVC using the glusterfs-storage

Chapter 5. Deploying Container Storage in Independent Mode

storageclass will be using storage available to gluster pods in app-storage project.

oc get storageclass

NAME TYPE
glusterfs-storage kubernetes.io/glusterfs
Glusterfs-storage-block gluster.org/glusterblock

$ cat pvc-file.yaml
kind: PersistentVolumeClaim
apiVersion: vi
metadata:
name: rhocs-file-claiml
annotations:
volume.beta.kubernetes.io/storage-class: glusterfs-storage
spec:
accessModes:
- ReadWriteMany
resources:
requests:
storage: 5Gi

cat pvc-block.yaml

kind: PersistentVolumeClaim
apiVersion: vi
metadata:
name: rhocs-block-claiml
annotations:
volume.beta.kubernetes.io/storage-class: glusterfs-storage-
block
spec:
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 5Gi

oc create -f pvc-file.yaml
oc create -f pvc-block.yaml

Validate that the two PVCs and respective PVs are created correctly:
oc get pvc

3. Using the heketi-client for Verification

a. The heketi-client package needs to be installed on the ansible deploy host or on a OCP
master. Once it is installed two new files should be created to easily export the required
environment variables to run the heketi-client commands (or heketi-cli). The content of each
file as well as useful heketi-cli commands are detailed here.

Create a new file (e.g. "heketi-exports-app") with the following contents:

export HEKETI_POD=$(oc get pods -1 glusterfs=heketi-storage-pod

45

-n app-storage -o jsonpath="{.items[0].metadata.name}")

export HEKETI_CLI_SERVER=http://$(oc get route/heketi-storage -n
app-storage -o jsonpath='{.spec.host}')

export HEKETI_CLI_KEY=$(oc get pod/$HEKETI_POD -n app-storage -o
jsonpath="'{.spec.containers[0].env[?
(@.name=="HEKETI_ADMIN_KEY")].value}"')

export HEKETI_ADMIN_KEY_SECRET=$(echo -n ${HEKETI_CLI_KEY} |
base64)

export HEKETI_CLI_USER=admin

Source the file to create the HEKETI app-storage environment variables:

source heketi-exports-app

see if heketi is alive

curl -w '\n' ${HEKETI_CLI_SERVER}/hello

Hello from Heketi

ask heketi about the cluster it knows about

heketi-cli cluster list

Clusters:

Id:56ed234a384cef7dbef6c4aal06d4477 [file][block]

ask heketi about the topology of the RHOCS cluster for apps
heketi-cli topology info

ask heketi about the volumes already created (one for the
heketi db should exist after the OCP initial installation)
heketi-cli volume 1list

Id:d71a4cbea22af3453615a9020f261b5c
Cluster:56ed234a384cef7dbef6c4aal06d4477
Name:heketidbstorage

Create a new file (e.g. "heketi-exports-infra") with the following contents:

export HEKETI_POD=$(oc get pods -1 glusterfs=heketi-registry-pod
-n infra-storage -o jsonpath="{.items[0].metadata.name}")

export HEKETI_CLI_SERVER=http://$(oc get route/heketi-registry -
n infra-storage -o jsonpath='{.spec.host}"')

export HEKETI_CLI_USER=admin

export HEKETI_CLI_KEY=$(oc get pod/$HEKETI_POD -n infra-storage
-0 jsonpath='{.spec.containers[0].env[?
(@.name=="HEKETI_ADMIN_KEY")].value}"')

export HEKETI_ADMIN_KEY_SECRET=$(echo -n ${HEKETI_CLI_KEY} |
base64)

Source the file to create the HEKETI infra-storage environment variables:

source heketi-exports-infra

see if heketi is alive

curl -w '\n' ${HEKETI_CLI_SERVER}/hello

Hello from Heketi

ask heketi about the cluster it knows about (the RHOCS cluster
for infrastructure)

heketi-cli cluster list

Clusters:

Id:baf91b261cbca2bb4b62caece63f60d0 [file][block]

Chapter 5. Deploying Container Storage in Independent Mode

ask heketi about the volumes already created

heketi-cli volume 1list

Id:77baed02f79f4518326d8ccldb6c7af8
Cluster:baf91b261cbca2bb4b62caece63f60d0 Name:heketidbstorage

5.7. Creating an Arbiter Volume (optional)

Arbiter volume supports all persistent volume types with better consistency and less disk space requirements.
An arbitrated replicated volume, or arbiter volume, is a three-way replicated volume where every third brick is
a special type of brick called an arbiter. Arbiter bricks do not store file data; they only store file names,
structure, and metadata. The arbiter uses client quorum to compare this metadata with the metadata of the
other nodes to ensure consistency in the volume and prevent split-brain conditions.

Advantages of arbitrated replicated volumes:

Better consistency: When an arbiter is configured, arbitration logic uses client-side quorum in auto mode
to prevent file operations that would lead to split-brain conditions.

Less disk space required: Because an arbiter brick only stores file names and metadata, an arbiter brick
can be much smaller than the other bricks in the volume.

For more information about Arbitrated Replicated Volumes, see https://access.redhat.com/documentation/en-

Before creating the arbiter volume, make sure heketi-client packages are installed.

subscription-manager repos --enable=rh-gluster-3-for-rhel-7-server-rpms

yum install heketi-client

If you want to upgrade your already existing Heketi server, then see,
https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/3.11/html-

5.7.1. Creating an Arbiter Volume

Arbiter volume can be created using the Heketi CLI or by updating the storageclass file.

5.7.1.1. Creating an Arbiter Volume using Heketi CLI

To create an Arbiter volume using the Heketi CLI one must request a replica 3 volume as well as provide the
Heketi-specific volume option “user.heketi.arbiter true” that will instruct the system to create the Arbiter
variant of replica 3.

For example:

heketi-cli volume create --size=4 --gluster-volume-
options='"user.heketi.arbiter true'

5.7.1.2. Creating an Arbiter Volume using the Storageclass file

To create an arbiter volume using the storageclass file ensure to include the following two parameters in the
storageclass file:

47

https://access.redhat.com/documentation/en-us/red_hat_gluster_storage/3.4/html-single/administration_guide/#Creating_Arbitrated_Replicated_Volumes
https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/3.11/html-single/deployment_guide/index#upgrade_heketi_rhgs

Deployment Guide

user.heketi.arbiter true
(Optional) user.heketi.average-file-size 1024

Following is a sample storageclass file:

cat glusterfs-storageclass.yaml
apiVersion: storage.k8s.io/vlbetal
kind: StorageClass
metadata:
name: gluster-container
provisioner: kubernetes.io/glusterfs
parameters:
resturl: "http://heketi-storage-project.cloudapps.mystorage.com"
restuser: "admin"
volumetype: "replicate:3"
clusterid:
"630372ccdc720a92¢c681fb928f27b53f, 796e6db1981f369ea0340913eeeasdc9a"
secretNamespace: "default"
secretName: "heketi-secret"
volumeoptions: "user.heketi.arbiter true,user.heketi.average-file-size
1024"
volumenameprefix: "test-vol"
spec:
persistentVolumeReclaimPolicy: Retain
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 5Gi

For information about managing arbiter volumes see, Chapter 9, Managing Arbitrated Replicated

48

Part lll. Upgrade

Part lll. Upgrade

49

Deployment Guide

Chapter 6. Upgrading your Red Hat Openshift Container Storage
in Converged Mode

This chapter describes the procedure to upgrade your environment from Container Storage in Converged
Mode 3.10 to Red Hat Openshift Container Storage in Converged Mode 3.11

Follow the same upgrade procedure to upgrade your environment from Red Hat Openshift Container
Storage in Converged Mode 3.11.0 or 3.11.1 to Red Hat Openshift Container Storage in Converged
Mode 3.11.2. Ensure that the correct image and version numbers are configured before you start the
upgrade process.

The valid images for Red Hat Openshift Container Storage 3.11.2 are:

registry.access.redhat.com/rhgs3/rhgs-server-rhel7:v3.11.2
registry.access.redhat.com/rhgs3/rhgs-volmanager-rhel7:v3.11.2
registry.access.redhat.com/rhgs3/rhgs-gluster-block-prov-rhel7:v3.11.2
registry.access.redhat.com/rhgs3/rhgs-s3-server-rhel7:v3.11.2

6.1. Upgrading the Glusterfs Pods

The following sections provide steps to upgrade your Glusterfs pods

6.1.1. Prerequisites

Ensure the following prerequisites are met:

Section 3.1.3, “Red Hat OpensShift Container Platform and Red Hat Openshift Container Storage

Ensure to have the supported versions of OpenShift Container Platform with Red Hat Gluster Storage
Server and Red Hat Openshift Container Storage. For more information on supported versions, see

Ensure to run the following command to retrieve the current configuration details before starting with
upgrade:

oc get all
Ensure to run the following command to get the latest versions of Ansible templates.

yum update openshift-ansible

50

Chapter 6. Upgrading your Red Hat Openshift Container Storage in Converged Mode

The template files are available in the following locations:

gluster template - /usr/share/heketi/templates/glusterfs-template.yaml
heketi template - /usr/share/heketi/templates/heketi-template.yaml
glusterblock-provisioner template - /usr/share/heketi/templates/glusterblock-provisioner.yaml

6.1.2. Upgrading if existing version deployed by using cns-deploy

6.1.2.1. Upgrading cns-deploy and Heketi Server
The following commands must be executed on the client machine.

1. Execute the following command to update the heketi client and cns-deploy packages:

yum update cns-deploy -y
yum update heketi-client -y

2. Backup the Heketi database file

oc rsh <heketi_pod_name>

cp -a /var/lib/heketi/heketi.db /var/lib/heketi/heketi.db. date
+%s . heketi --version | awk '{print $2}'"

exit

3. Execute the following command to delete the heketi template.
oc delete templates heketi
4. Execute the following command to install the heketi template.

oc create -f /usr/share/heketi/templates/heketi-template.yaml
template "heketi" created

5. Execute the following command to grant the heketi Service Account the necessary privileges.

oc policy add-role-to-user edit system:serviceaccount:
<project_name>:heketi-service-account

oc adm policy add-scc-to-user privileged -z heketi-service-account

For example,

oc policy add-role-to-user edit system:serviceaccount:storage-
project:heketi-service-account

oc adm policy add-scc-to-user privileged -z heketi-service-account

6. Execute the following command to generate a new heketi configuration file.

sed -e "s/\${HEKETI_EXECUTOR}/kubernetes/" -e

Deployment Guide

"s#\${HEKETI_FSTAB}#/var/lib/heketi/fstab#" -e "s/\${SSH_PORT}/22/" -e
"Ss/\${SSH_USER}/root/" -e "s/\${SSH_SUDO}/false/" -e
"s/\${BLOCK_HOST_CREATE}/true/" -e "s/\${BLOCK_HOST_SIZE}/500/"
"/usr/share/heketi/templates/heketi.json.template" > heketi.json

The BLOCK_HOST_SIZE parameter controls the size (in GB) of the automatically created Red
Hat Gluster Storage volumes hosting the gluster-block volumes (For more information, see
https://access. redhat com/documentatlon/en—

conflguratlon will dynamlcally create block- hostlng volumes of 500GB in size as more space is
required.

Alternatively, copy the file /usr/share/heketi/templates/heketi.json.template to
heketi. json in the current directory and edit the new file directly, replacing each
"${VARIABLE}" string with the required parameter.

JSON formatting is strictly required (e.g. no trailing spaces, booleans in all lowercase).

If the heketi-config-secret file already exists, then delete the file and run the following
command.

Execute the following command to create a secret to hold the configuration file.

oc create secret generic heketi-config-secret --from-
file=heketi.json

8. Execute the following command to delete the deployment configuration, service, and route for heketi:

The names of these parameters can be referenced from output of the following command:

oc get all | grep heketi

oc delete deploymentconfig, service,route heketi

9. Execute the following command to get the current HEKETI_ADMIN_KEY.

52

https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/3.11/html/operations_guide/block_storage

Chapter 6. Upgrading your Red Hat Openshift Container Storage in Converged Mode

oc get secret heketi-storage-admin-secret -o go-template='{{index
.data "key"}}' | base64 -d

10. Execute the following command to deploy the Heketi service which will be used to create persistent
volumes for OpensShift:

oc process heketi -p HEKETI_USER_KEY=<user-key> HEKETI_ADMIN_KEY=
<admin-key-from-previous-output> | oc create -f -

For example:

oc process heketi | oc create -f -

service "heketi" created
route "heketi" created
deploymentconfig "heketi" created

11. Execute the following command to verify that the containers are running:
oc get pods
For example:

oc get pods

NAME READY STATUS RESTARTS

AGE
glusterfs-0h681 1/1 Running (0] 3d
glusterfs-0Ovcf3 1/1 Running (0] 3d
glusterfs-gr9gh 1/1 Running 0 3d
heketi-1-zpw4d 1/1 Running (0] 3h
storage-project-router-2-db2wl 1/1 Running (0] 4d

6.1.2.2. Upgrading the Red Hat Gluster Storage Pods
The following commands must be executed on the client machine. .
Following are the steps for updating a DaemonSet for glusterfs:

1. Execute the following steps to stop the Heketi pod to prevent it from accepting any new request for
volume creation or volume deletion:

a. Execute the following command to access your project:
oc project <project_name>
For example:
oc project storage-project
b. Execute the following command to get the DeploymentConfig:

oc get dc

53

Deployment Guide

c. Execute the following command to set heketi server to accept requests only from the local-
client:

heketi-cli server mode set local-client

d. Wait for the ongoing operations to complete and execute the following command to monitor if
there are any ongoing operations:

heketi-cli server operations info

e. Execute the following command to reduce the replica count from 1 to 0. This brings down the
Heketi pod:

oc scale dc <heketi_dc> --replicas=0

f. Execute the following command to verify that the heketi pod is no longer present:

oc get pods

2. Execute the following command to find the DaemonSet name for gluster

oc get ds

3. Execute the following command to delete the DeamonSet:

oc delete ds <ds-name> --cascade=false

Using - -cascade=false option while deleting the old DaemonSet does not delete the gluster pods
but deletes only the DaemonSet. After deleting the old DaemonSet, you must load the new one.
When you manually delete the old pods, the new pods which are created will have the configurations
of the new DaemonSet.

For example,

oc delete ds glusterfs --cascade=false
daemonset "glusterfs" deleted

4. Execute the following commands to verify all the old pods are up:

oc get pods

For example,

oc get pods

NAME READY STATUS RESTARTS

AGE
glusterfs-0h681 1/1 Running (0] 3d
glusterfs-0Ovcf3 1/1 Running (0] 3d
glusterfs-gr9gh 1/1 Running (c] 3d
heketi-1-zpw4d 1/1 Running (0] 3h
storage-project-router-2-db2wl 1/1 Running 0] 4d

5. Execute the following command to delete the old glusterfs template.

54

Chapter 6. Upgrading your Red Hat Openshift Container Storage in Converged Mode

oc delete templates glusterfs
For example,

oc delete templates glusterfs
template “glusterfs” deleted

6. Label all the OpenShift Container Platform nodes that has the Red Hat Gluster Storage pods:

a. Check if the nodes are labelled using the following command:
oc get nodes --show-labels

If the Red Hat Gluster Storage nodes do not have the storagenode=glusterfs label,
then label the nodes as shown in step ii.

b. Label all the OpenShift Container Platform nodes that has the Red Hat Gluster Storage
pods:

oc label nodes <node name> storagenode=glusterfs
7. Execute the following command to register new gluster template.
oc create -f /usr/share/heketi/templates/glusterfs-template.yaml
For example,

oc create -f /usr/share/heketi/templates/glusterfs-template.yaml
template “glusterfs” created

8. Execute the following commands to create the gluster DaemonSet:
oc process glusterfs | oc create -f -
For example,

oc process glusterfs | oc create -f -
Deamonset “glusterfs” created

9. Execute the following command to identify the old gluster pods that needs to be deleted:
oc get pods
For example,

oc get pods

NAME READY STATUS RESTARTS
AGE
glusterfs-0h681 1/1 Running (0] 3d

55

Deployment Guide

glusterfs-0Ovcf3 1/1 Running (0] 3d
glusterfs-gr9gh 1/1 Running 0 3d
heketi-1-zpw4d 1/1 Running (0] 3h
storage-project-router-2-db2wl 1/1 Running 0] 4d

10. Execute the following commmand and ensure that the bricks are not more than 90% full:
df -kh | grep -v AFilesystem | awk '{if($5>"90%") print $0}'

11. Execute the following command to delete the old gluster pods. Gluster pods should follow
rolling upgrade. Hence, you must ensure that the new pod is running before
deleting the next old gluster pod. We support OnDelete Strategy DaemonSet
update strategy. With OnDelete Strategy update strategy, after you update a DaemonSet
template, new DaemonSet pods will only be created when you manually delete old DaemonSet pods.

a. To delete the old gluster pods, execute the following command:
oc delete pod <gluster_pod>
For example,

oc delete pod glusterfs-0Qvcf3
pod “glusterfs-0vcf3” deleted

Before deleting the next pod, self heal check has to be made:
a. Run the following command to access shell on gluster pod:

oc rsh <gluster_pod_name>
b. Run the following command to check the self-heal status of all the volumes:

for each_volume in “gluster volume list’;
do gluster volume heal $each_volume info ;
done | grep "Number of entries: [AO]$"

b. The delete pod command will terminate the old pod and create a new pod. Run # oc get
pods -w and check the Age of the pod and READY status should be 1/1. The following is the
example output showing the status progression from termination to creation of the pod.

oc get pods -w

NAME READY STATUS
RESTARTS AGE

glusterfs-0Ovcf3 1/1 Terminating 0
3d

oc get pods -w
NAME READY STATUS
RESTARTS AGE

56

Chapter 6. Upgrading your Red Hat Openshift Container Storage in Converged Mode

glusterfs-pqfsé6 0/1 ContainerCreating
0] 1s

oc get pods -w

NAME READY STATUS
RESTARTS AGE

glusterfs-pgfs6 1/1 Running 0
2m

12. Execute the following command to verify that the pods are running:
oc get pods
For example,

oc get pods

NAME READY STATUS RESTARTS

AGE
glusterfs-j24ic 1/1 Running (0] 4m
glusterfs-pqfsé6 1/1 Running (0] 7m
glusterfs-wrnén 1/1 Running O

12m
heketi-1-zpw4d 1/1 Running (0] 4h
storage-project-router-2-db2wl 1/1 Running (0] 4ad

13. Execute the following command to verify if you have upgraded the pod to the latest version:
oc rsh <gluster_pod_name> glusterd --version
For example:

oc rsh glusterfs-registry-4cpcc glusterd --version
glusterfs 3.12.2

14. Check the Red Hat Gluster Storage op-version by executing the following command on one of the
gluster pods.

gluster vol get all cluster.op-version

Set the cluster.op-version to 31305 on any one of the pods:

Ensure all the gluster pods are updated before changing the cluster.op-version.

gluster --timeout=3600 volume set all cluster.op-version 31305

15. Execute the following steps to enable server.tcp-user-timeout on all volumes.

57

Deployment Guide

The "server.tcp-user-timeout" option specifies the maximum amount of the time (in seconds)
the transmitted data from the application can remain unacknowledged from the brick.

It is used to detect force disconnections and dead connections (if a node dies unexpectedly, a
firewall is activated, etc.,) early and make it possible for applications to reduce the overall
failover time.
a. List the glusterfs pod using the following command:

oc get pods

For example:

oc get pods

NAME READY STATUS
RESTARTS AGE

glusterfs-0h681 1/1 Running (0]
3d

glusterfs-0Ovcf3 1/1 Running (0]
3d

glusterfs-gr9gh 1/1 Running (0]
3d

heketi-1-zpw4d 1/1 Running (0]
3h

storage-project-router-2-db2wl 1/1 Running (0]
4d

b. Remote shell into one of the glusterfs pods. For example:
oc rsh glusterfs-0Ovcf3
c. Execute the following command:

for eachVolume in “gluster volume list”; do echo $eachVolume;
gluster volume set $eachVolume server.tcp-user-timeout 42 ; done

For example:

for eachVolume in “gluster volume list”; do echo $eachVolume;
gluster volume set $eachVolume server.tcp-user-timeout 42 ; done
volumel
volume set: success
volume?2
volume set: success

16. If a gluster-block-provisoner-pod already exists then delete it by executing the following commands:

oc delete dc <gluster-block-dc>

58

Chapter 6. Upgrading your Red Hat Openshift Container Storage in Converged Mode

For example:
oc delete dc glusterblock-storage-provisioner-dc
17. Execute the following commands to deploy the gluster-block provisioner:

sed -e 's/\\\${NAMESPACE}/<NAMESPACE>/"'
/usr/share/heketi/templates/glusterblock-provisioner.yaml | oc create
-f -

oc adm policy add-cluster-role-to-user glusterblock-provisioner-
runner system:serviceaccount:<NAMESPACE>:glusterblock-provisioner

For example:

sed -e 's/\\\${NAMESPACE}/storage-project/"'
/usr/share/heketi/templates/glusterblock-provisioner.yaml | oc create
-f -

oc adm policy add-cluster-role-to-user glusterblock-provisioner-
runner system:serviceaccount:storage-project:glusterblock-provisioner

18. Delete the following resources from the old pod:

oc delete clusterroles.authorization.openshift.io glusterblock-
provisioner-runner
oc delete serviceaccounts glusterblock-storage-provisioner

19. After editing the template, execute the following command to create the deployment configuration:
oc process <gluster_block_provisioner_template> | oc create -f -

20. Brick multiplexing is a feature that allows adding multiple bricks into one process. This reduces
resource consumption and allows us to run more bricks than before with the same memory
consumption. It is enabled by default from Container-Native Storage 3.6. During an upgrade from
Container-Native Storage 3.10 to Red Hat Openshift Container Storage 3.11, to turn brick
multiplexing on, execute the following commands:

a. To exec into the Gluster pod, execute the following command and rsh into any of the gluster
pods:

oc rsh <gluster_pod_name>

b. Verify if brick multiplexing is enabled. If it is disabled, then execute the following command to
enable brick multiplexing:

gluster volume set all cluster.brick-multiplex on

59

Deployment Guide

You can check the brick multiplex status by executing the following command:

gluster v get all all

For example:

oc rsh glusterfs-770ql

sh-4.2# gluster volume set all cluster.brick-multiplex on

Brick-multiplexing is supported only for container workloads
(Independent/Converged). Also it is advised to make sure that
either all volumes are in stopped state or no bricks are running
before this option is modified.Do you still want to continue?

(y/n) y
volume set: success

c. List all the volumes in the trusted storage pool. This step is only required if the volume set
operation is performed:

For example:
gluster volume list

heketidbstorage
vol_194049d2565d2a4ad78ef0483e04711e

Restart all the volumes. This step is only required if the volume set operation is performed
along with the previous step:

gluster vol stop <VOLNAME>
gluster vol start <VOLNAME>

21. Support for S3 compatible Object Store in Red Hat Openshift Container Storage is under technology

If you have glusterfs registry pods, then proceed with the steps listed in Section 6.2, “Upgrading
heketi and glusterfs registry pods” to upgrade heketi and glusterfs registry pods.

“Upgrading the client on Red Hat Openshift Container Platform Nodes” to upgrade the client on
Red Hat Openshift Container Platform Nodes.

60

https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/3.11/html/operations_guide/s3_object_store

Chapter 6. Upgrading your Red Hat Openshift Container Storage in Converged Mode

6.1.3. Upgrading if existing version deployed by using Ansible

6.1.3.1. Upgrading Heketi Server

The following commands must be executed on the client machine.

1. Execute the following command to update the heketi client packages:

yum update heketi-client -y

2. Backup the Heketi database file

oc rsh <heketi_pod_name>

cp -a /var/lib/heketi/heketi.db /var/lib/heketi/heketi.db. date

+%s " . heketi --version | awk '{print $2}'"

exit

3. Execute the following step to edit the template:

oc get templates

NAME DESCRIPTION PARAMETERS OBJECTS
glusterblock-provisioner glusterblock provisioner 3 (2 blank) 4
template
glusterfs GlusterFS DaemonSet 5 (1 blank) 1
template
heketi Heketi service deployment 7 (3 blank) 3
template

If the existing template has IMAGE_NAME and IMAGE_VERSION as two parameters, then edit the
template to change the HEKETI_ROUTE, IMAGE_NAME, IMAGE_VERSION and CLUSTER_NAME
as shown in the example below.

#

oc edit template heketi

- description: Set the hostname for the route URL
displayName: heketi route name
name: HEKETI_ROUTE
value: heketi-storage
- displayName: heketi container image name
name: IMAGE_NAME
required: true
value: rhgs3/rhgs-volmanager-rhel?7
- displayName: heketi container image version
name: IMAGE_VERSION
required: true
value: v3.11.1
- description: A unique name to identify this heketi service, useful

for running multiple

heketi instances
displayName: GlusterFS cluster name
name: CLUSTER_NAME
value: storage

61

Deployment Guide

If the template has only IMAGE_NAME, then edit the template to change the HEKETI_ROUTE,
IMAGE_NAME, and CLUSTER_NAME as shown in the example below.

oc edit template heketi
- description: Set the hostname for the route URL
displayName: heketi route name
name: HEKETI_ROUTE
value: heketi-storage
- displayName: heketi container image name
name: IMAGE_NAME
required: true
value: rhgs3/rhgs-volmanager-rhel7:v3.11.1
- description: A unique name to identify this heketi service, useful
for running multiple
heketi instances
displayName: GlusterFS cluster name
name: CLUSTER_NAME
value: storage

4. Execute the following command to delete the deployment configuration, service, and route for heketi:

The names of these parameters can be referenced from output of the following command:

oc get all | grep heketi

oc delete deploymentconfig, service, route heketi-storage
5. Execute the following command to get the current HEKETI_ADMIN_KEY.

oc get secret heketi-storage-admin-secret -o go-template='{{index
.data "key"}}' | base64 -d

6. Execute the following command to deploy the Heketi service which will be used to create persistent
volumes for OpenShift:

oc process heketi -p HEKETI_USER_KEY=<user-key> HEKETI_ADMIN_KEY=
<admin-key-from-previous-output> | oc create -f -

For example:

oc process heketi | oc create -f -

service "heketi" created
route "heketi" created
deploymentconfig "heketi" created

7. Execute the following command to verify that the containers are running:

62

Chapter 6. Upgrading your Red Hat Openshift Container Storage in Converged Mode

oc get pods
For example:

oc get pods

NAME READY STATUS RESTARTS

AGE
glusterfs-0h681 1/1 Running (0] 3d
glusterfs-0Ovcf3 1/1 Running (0] 3d
glusterfs-gr9gh 1/1 Running 0 3d
heketi-1-zpw4d 1/1 Running 0 3h
storage-project-router-2-db2wl 1/1 Running 0] 4d

6.1.3.2. Upgrading the Red Hat Gluster Storage Pods if Deployed by using Ansible
The following commands must be executed on the client machine. .
Following are the steps for updating a DaemonSet for glusterfs:

1. Execute the following steps to stop the Heketi pod to prevent it from accepting any new request for
volume creation or volume deletion:

a. Execute the following command to access your project:
oc project <project_name>
For example:
oc project storage-project
b. Execute the following command to get the DeploymentConfig:
oc get dc

c. Execute the following command to set heketi server to accept requests only from the local-
client:

heketi-cli server mode set local-client

d. Wait for the ongoing operations to complete and execute the following command to monitor if
there are any ongoing operations:

heketi-cli server operations info

e. Execute the following command to reduce the replica count from 1 to 0. This brings down the
Heketi pod:

oc scale dc <heketi_dc> --replicas=0
f. Execute the following command to verify that the heketi pod is no longer present:

oc get pods

63

2. Execute the following command to find the DaemonSet name for gluster
oc get ds

3. Execute the following command to delete the DeamonSet:
oc delete ds <ds-name> --cascade=false

Using - -cascade=false option while deleting the old DaemonSet does not delete the gluster pods
but deletes only the DaemonSet. After deleting the old DaemonSet, you must load the new one.
When you manually delete the old pods, the new pods which are created will have the configurations
of the new DaemonSet.

For example,

oc delete ds glusterfs --cascade=false
daemonset "glusterfs" deleted

4. Execute the following commands to verify all the old pods are up:
oc get pods
For example,

oc get pods

NAME READY STATUS RESTARTS
AGE

glusterfs-0h681 1/1 Running 0
3d

glusterfs-0Ovcf3 1/1 Running 0
3d

glusterfs-gr9gh 1/1 Running 0
3d

heketi-1-zpw4d 1/1 Running 0
3h

storage-project-router-2-db2wl 1/1 Running 0
4d

5. Execute the following command to edit the old glusterfs template.

oc get templates

NAME DESCRIPTION PARAMETERS OBJECTS
glusterblock-provisioner glusterblock provisioner 3 (2 blank) 4
template
glusterfs GlusterFS DaemonSet 5 (1 blank) 1
template
heketi Heketi service deployment 7 (3 blank) 3
template

If the template has IMAGE_NAME and IMAGE_VERSION as two separate parameters, then update
the glusterfs template as following. For example:

oc edit template glusterfs
- displayName: GlusterFS container image name

Chapter 6. Upgrading your Red Hat Openshift Container Storage in Converged Mode

name: IMAGE_NAME
required: true
value: rhgs3/rhgs-server-rhel?7
- displayName: GlusterFS container image version
name: IMAGE_VERSION
required: true
value: v3.11.1
- description: A unique name to identify which heketi
service manages this cluster,
useful for running multiple heketi instances
displayName: GlusterFS cluster name
name: CLUSTER_NAME
value: storage

If the template has only IMAGE_NAME as a parameter, then update the glusterfs template as
following. For example:

oc edit template glusterfs
- displayName: GlusterFS container image name
name: IMAGE_NAME
required: true
value: rhgs3/rhgs-server-rhel7:v3.11.1
- description: A unique name to identify which heketi service
manages this cluster,
useful for running multiple heketi instances
displayName: GlusterFS cluster name
name: CLUSTER_NAME
value: storage

Ensure that the CLUSTER_NAME variable is set to the correct value
6. Label all the OpenShift Container Platform nodes that has the Red Hat Gluster Storage pods:
a. Check if the nodes are labelled using the following command:
oc get nodes --show-labels

If the Red Hat Gluster Storage nodes do not have the glusterfs=storage-host label,
then label the nodes as shown in step ii.

b. Label all the OpenShift Container Platform nodes that has the Red Hat Gluster Storage
pods:

oc label nodes <node name> glusterfs=storage-host
7. Execute the following commands to create the gluster DaemonSet:
oc process glusterfs | oc create -f -

For example,

65

oc process glusterfs | oc create -f -
Deamonset “glusterfs” created

8. Execute the following command to identify the old gluster pods that needs to be deleted:

oc get pods

For example,

oc get pods

NAME READY STATUS RESTARTS
AGE

glusterfs-0h681 1/1 Running 0
3d

glusterfs-0Ovcf3 1/1 Running 0
3d

glusterfs-gr9gh 1/1 Running 0
3d

heketi-1-zpw4d 1/1 Running 0
3h

storage-project-router-2-db2wl 1/1 Running 0
4d

9. Execute the following commmand and ensure that the bricks are not more than 90% full:
df -kh | grep -v AFilesystem | awk '{if($5>"90%") print $0}'

10. Execute the following command to delete the old gluster pods. Gluster pods should follow
rolling upgrade. Hence, you must ensure that the new pod is running before
deleting the next old gluster pod. We support OnDelete Strategy DaemonSet
update strategy. With OnDelete Strategy update strategy, after you update a DaemonSet
template, new DaemonSet pods will only be created when you manually delete old DaemonSet pods.

a. To delete the old gluster pods, execute the following command:
oc delete pod <gluster_pod>
For example,

oc delete pod glusterfs-0Ovcf3
pod “glusterfs-0vcf3” deleted

Chapter 6. Upgrading your Red Hat Openshift Container Storage in Converged Mode

Before deleting the next pod, self heal check has to be made:
a. Run the following command to access shell on gluster pod:

oc rsh <gluster_pod_name>
b. Run the following command to check the self-heal status of all the volumes:

for each_volume in “gluster volume list’;
do gluster volume heal $each_volume info ;
done | grep "Number of entries: ["0]$"

b. The delete pod command will terminate the old pod and create a new pod. Run # oc get
pods -w and check the Age of the pod and READY status should be 1/1. The following is the
example output showing the status progression from termination to creation of the pod.

oc get pods -w

NAME READY STATUS
RESTARTS AGE

glusterfs-0vcf3 1/1 Terminating @
3d

oc get pods -w

NAME READY STATUS
RESTARTS AGE

glusterfs-pqfs6 0/1
ContainerCreating 0] 1s

oc get pods -w

NAME READY STATUS
RESTARTS AGE

glusterfs-pqfs6 1/1 Running 0
2m

11. Execute the following command to verify that the pods are running:
oc get pods
For example,

oc get pods

NAME READY STATUS RESTARTS
AGE

glusterfs-j24ic 1/1 Running 0
4m

glusterfs-pqfs6 1/1 Running 0
m

glusterfs-wrnén 1/1 Running ©

67

Deployment Guide

12m

heketi-1-zpw4d 1/1 Running 0
4h

storage-project-router-2-db2wl 1/1 Running 0
4d

12. Execute the following command to verify if you have upgraded the pod to the latest version:
oc rsh <gluster_pod_name> glusterd --version
For example:

oc rsh glusterfs-registry-4cpcc glusterd --version
glusterfs 3.12.2

13. Check the Red Hat Gluster Storage op-version by executing the following command on one of the
gluster pods.

gluster vol get all cluster.op-version

Set the cluster.op-version to 31305 on any one of the pods:

Ensure all the gluster pods are updated before changing the cluster.op-version.

gluster --timeout=3600 volume set all cluster.op-version 31305

14. Execute the following steps to enable server.tcp-user-timeout on all volumes.

The "server.tcp-user-timeout" option specifies the maximum amount of the time (in seconds)
the transmitted data from the application can remain unacknowledged from the brick.

It is used to detect force disconnections and dead connections (if a node dies unexpectedly, a
firewall is activated, etc.,) early and make it possible for applications to reduce the overall
failover time.
a. List the glusterfs pod using the following command:

oc get pods

For example:

oc get pods

NAME READY STATUS
RESTARTS AGE
glusterfs-0h681 1/1 Running ©

68

Chapter 6. Upgrading your Red Hat Openshift Container Storage in Converged Mode

3d

glusterfs-0Ovcf3 1/1 Running 0
3d

glusterfs-gr9gh 1/1 Running 0
3d

heketi-1-zpw4d 1/1 Running 0
3h

storage-project-router-2-db2wl 1/1 Running 0
4d

b. Remote shell into one of the glusterfs pods. For example:
oc rsh glusterfs-0Ovcf3
c. Execute the following command:

for eachVolume in “gluster volume list”; do echo $eachVolume;
gluster volume set $eachVolume server.tcp-user-timeout 42 ; done

For example:

for eachVolume in “gluster volume list”; do echo $eachVolume;
gluster volume set $eachVolume server.tcp-user-timeout 42 ; done
volumel
volume set: success
volume?2
volume set: success

15. If a gluster-block-provisoner-pod already exists then delete it by executing the following commands:
oc delete dc <gluster-block-dc>
For example:
oc delete dc glusterblock-storage-provisioner-dc

16. Depending on the OCP version, edit the glusterblock-provisioner template to change the
IMAGE_NAME, IMAGE_VERSION and NAMESPACE.

oc get templates

NAME DESCRIPTION PARAMETERS OBJECTS
glusterblock-provisioner glusterblock provisioner 3 (2 blank) 4
template
glusterfs GlusterFS DaemonSet 5 (1 blank) 1
template
heketi Heketi service deployment 7 (3 blank) 3
template

If the template has IMAGE_NAME and IMAGE_VERSION as two separate parameters, then update
the glusterblock-provisioner template as following. For example:

oc edit template glusterblock-provisioner

69

- displayName: glusterblock provisioner container image name

name: IMAGE_NAME

required: true

value: rhgs3/rhgs-gluster-block-prov-rhel?

- displayName: glusterblock provisioner container image version

name: IMAGE_VERSION

required: true

value: v3.11.1

- description: The namespace in which these resources are being
created

displayName: glusterblock provisioner namespace

name: NAMESPACE

required: true

value: glusterfs

- description: A unique name to identify which heketi service
manages this cluster,

useful for running multiple heketi instances

displayName: GlusterFS cluster name

name: CLUSTER_NAME

value: storage

If the template has only IMAGE_NAME as a parameter, then update the glusterblock-provisioner
template as following. For example:

oc edit template glusterblock-provisioner

- displayName: glusterblock provisioner container image name

name: IMAGE_NAME

required: true

value: rhgs3/rhgs-gluster-block-prov-rhel7:v3.11.1

- description: The namespace in which these resources are being
created

displayName: glusterblock provisioner namespace

name: NAMESPACE

required: true

value: glusterfs

- description: A unique name to identify which heketi service
manages this cluster,

useful for running multiple heketi instances

displayName: GlusterFS cluster name

name: CLUSTER_NAME

value: storage

. Delete the following resources from the old pod

oc delete clusterroles.authorization.openshift.io glusterblock-
provisioner-runner
oc delete serviceaccounts glusterblock-storage-provisioner

. After editing the template, execute the following command to create the deployment configuration:
oc process <gluster_block_provisioner_template> | oc create -f -

. Brick multiplexing is a feature that allows adding multiple bricks into one process. This reduces
resource consumption and allows us to run more bricks than before with the same memory

Chapter 6. Upgrading your Red Hat Openshift Container Storage in Converged Mode

consumption. It is enabled by default from Container-Native Storage 3.6. During an upgrade from
Container-Native Storage 3.10 to Red Hat Openshift Container Storage 3.11, to turn brick
multiplexing on, execute the following commands:

a. To exec into the Gluster pod, execute the following command and rsh into any of the gluster

pods:
oc rsh <gluster_pod_name>

b. Verify if brick multiplexing is enabled. If it is disabled, then execute the following command to
enable brick multiplexing:

gluster volume set all cluster.brick-multiplex on

You can check the brick multiplex status by executing the following command:

gluster v get all all

For example:

oc rsh glusterfs-770ql

sh-4.2# gluster volume set all cluster.brick-multiplex on

Brick-multiplexing is supported only for container workloads
(Independent/Converged). Also it is advised to make sure that
either all volumes are in stopped state or no bricks are running
before this option is modified.Do you still want to continue?

(y/n) vy
volume set: success

c. List all the volumes in the trusted storage pool. This step is only required if the volume set
operation is performed:

For example:
gluster volume list

heketidbstorage
vol_194049d2565d2a4ad78ef0483e04711e

Restart all the volumes. This step is only required if the volume set operation is performed
along with the previous step:

gluster vol stop <VOLNAME>
gluster vol start <VOLNAME>

71

Deployment Guide

20. Support for S3 compatible Object Store in Red Hat Openshift Container Storage is under technology
preview. To enable S3 compatlble object store, see https: //access redhat. com/documentatlon/en—

If you have glusterfs registry pods, then proceed with the steps listed in Section 6.2, “Upgrading
heketi and glusterfs registry pods” to upgrade heketi and glusterfs registry pods.
If you do not have glusterfs registry pods, then proceed with the steps listed in Section 6.3,

“Upgrading the client on Red Hat Openshift Container Platform Nodes” to upgrade the client on
Red Hat Openshift Container Platform Nodes.

6.2. Upgrading heketi and glusterfs registry pods

The following sections provide steps to upgrade your glusterfs registry pods

6.2.1. Prerequisites

Ensure the following prerequisites are met:

Sectlon 3.1.3, “Red Hat OpenShift Container Platform and Red Hat Openshift Container Storage

Ensure to have the supported versions of OpenShift Container Platform with Red Hat Gluster Storage
Server and Red Hat Openshift Container Storage. For more information on supported versions, see
Section 3.1.1, “Supported Versions”

Ensure to run the following command to get the latest versions of Ansible templates.

yum update openshift-ansible

The template files are available in the following locations:

gluster template - /usr/share/heketi/templates/glusterfs-template.yaml
heketi template - /usr/share/heketi/templates/heketi-template.yaml
glusterblock-provisioner template - /usr/share/heketi/templates/glusterblock-provisioner.yaml

6.2.2. Upgrading if existing version deployed by using cns-deploy

6.2.2.1. Upgrading cns-deploy and Heketi Server
The following commands must be executed on the client machine.

1. Backup the Heketi registry database file

72

https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/3.11/html/operations_guide/s3_object_store

Chapter 6. Upgrading your Red Hat Openshift Container Storage in Converged Mode

oc rsh <heketi_pod_name>

cp -a /var/lib/heketi/heketi.db /var/lib/heketi/heketi.db. date
+%s " . heketi --version | awk '{print $2}'"

exit

. Execute the following command to delete the heketi template.
oc delete templates heketi
. Execute the following command to install the heketi template.

oc create -f /usr/share/heketi/templates/heketi-template.yaml
template "heketi" created

. Execute the following command to grant the heketi Service Account the necessary privileges.

oc policy add-role-to-user edit system:serviceaccount:
<project_name>:heketi-service-account
oc adm policy add-scc-to-user privileged -z heketi-service-account

For example,

oc policy add-role-to-user edit system:serviceaccount:storage-
project:heketi-service-account
oc adm policy add-scc-to-user privileged -z heketi-service-account

. Execute the following command to generate a new heketi configuration file.

sed -e "s/\${HEKETI_EXECUTOR}/kubernetes/" -e
"s#\${HEKETI_FSTAB}#/var/lib/heketi/fstab#" -e "s/\${SSH_PORT}/22/" -e
"s/\${SSH_USER}/root/" -e "s/\${SSH_SUDO}/false/" -e
"s/\${BLOCK_HOST_CREATE}/true/" -e "s/\${BLOCK_HOST_SIZE}/500/"
"/usr/share/heketi/templates/heketi.json.template" > heketi.json

The BLOCK_HOST_SIZE parameter controls the size (in GB) of the automatically created Red
Hat Gluster Storage volumes hosting the gluster-block volumes (For more information, see
https://access. redhat com/documentatlon/en—

conflguratlon will dynamlcally create block- hostlng volumes of 500GB in size as more space is
required.

Alternatively, copy the file /usr/share/heketi/templates/heketi. json.template to
heketi. json in the current directory and edit the new file directly, replacing each
"${VARIABLE}" string with the required parameter.

JSON formatting is strictly required (e.g. no trailing spaces, booleans in all lowercase).

73

https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/3.11/html/operations_guide/block_storage

Deployment Guide

If the heketi-config-secret file already exists, then delete the file and run the following
command.

Execute the following command to create a secret to hold the configuration file.

oc create secret generic heketi-config-secret --from-
file=heketi.json

7. Execute the following command to delete the deployment configuration, service, and route for heketi:
oc delete deploymentconfig, service, route heketi
8. Execute the following command to get the current HEKETI_ADMIN_KEY

oc get secret heketi-storage-admin-secret -o go-template='{{index
.data "key"}}' | base64 -d

9. Execute the following command to deploy the Heketi service which will be used to create persistent
volumes for OpenShift:

oc process heketi -p HEKETI_USER_KEY=<user-key> HEKETI_ADMIN_KEY=
<admin-key-from-previous-output> | oc create -f -

For example:

oc process heketi | oc create -f -

service "heketi-registry" created
route "heketi-registry" created
deploymentconfig-registry "heketi" created

10. Execute the following command to verify that the containers are running:
oc get pods
For example:

oc get pods

NAME READY STATUS
RESTARTS AGE

glusterblock-registry-provisioner-dc-1-nvnhc 1/1 Running 1
7d

glusterfs-registry-4cpcc 1/1 Running 0
7d

glusterfs-registry-9xj78 1/1 Running 0
7d

74

Chapter 6. Upgrading your Red Hat Openshift Container Storage in Converged Mode

glusterfs-registry-b9p5j 1/1 Running 0
7d
heketi-registry-1-rr4jk 1/1 Running 0
2m

6.2.2.2. Upgrading the Red Hat Gluster Storage Registry Pods
The following commands must be executed on the client machine. .
Following are the steps for updating a DaemonSet for glusterfs:

1. Execute the following steps to stop the Heketi pod to prevent it from accepting any new request for
volume creation or volume deletion:

a. Execute the following command to access your project:
oc project <project_name>
For example:
oc project storage-project
b. Execute the following command to get the DeploymentConfig:
oc get dc

c. Execute the following command to set heketi server to accept requests only from the local-
client:

heketi-cli server mode set local-client

d. Wait for the ongoing operations to complete and execute the following command to monitor if
there are any ongoing operations:

heketi-cli server operations info

e. Execute the following command to reduce the replica count from 1 to 0. This brings down the
Heketi pod:

oc scale dc <heketi_dc> --replicas=0
f. Execute the following command to verify that the heketi pod is no longer present:
oc get pods
2. Execute the following command to find the DaemonSet name for gluster
oc get ds
3. Execute the following command to delete the DeamonSet:

oc delete ds <ds-name> --cascade=false

75

Deployment Guide

Using - -cascade=false option while deleting the old DaemonSet does not delete the
glusterfs_registry pods but deletes only the DaemonSet. After deleting the old DaemonSet, you must
load the new one. When you manually delete the old pods, the new pods which are created will have
the configurations of the new DaemonSet.

For example,

oc delete ds glusterfs-registry --cascade=false
daemonset '"glusterfs-registry" deleted

4. Execute the following commands to verify all the old pods are up:
oc get pods
For example,

oc get pods

NAME READY STATUS
RESTARTS AGE

glusterblock-registry-provisioner-dc-1-nvnhc 1/1 Running 1
7d

glusterfs-registry-4cpcc 1/1 Running 0
7d

glusterfs-registry-9xj78 1/1 Running 0
7d

glusterfs-registry-b9p5j 1/1 Running 0
7d

heketi-registry-1-rr4jk 1/1 Running 0]
2m

5. Execute the following command to delete the old glusterfs template.
oc delete templates glusterfs
For example,

oc delete templates glusterfs
template “glusterfs” deleted

6. Label all the OpenShift Container Platform nodes that has the Red Hat Gluster Storage pods:

a. Check if the nodes are labelled using the following command:
oc get nodes --show-labels

If the Red Hat Gluster Storage nodes do not have the storagenode=glusterfs label,
then label the nodes as shown in step ii.

b. Label all the OpenShift Container Platform nodes that has the Red Hat Gluster Storage
pods:

oc label nodes <node name> storagenode=glusterfs

7. Execute the following command to register new gluster template.

76

10.

11.

Chapter 6. Upgrading your Red Hat Openshift Container Storage in Converged Mode

oc create -f /usr/share/heketi/templates/glusterfs-template.yaml
For example,

oc create -f /usr/share/heketi/templates/glusterfs-template.yaml
template “glusterfs” created

Execute the following commands to create the gluster DaemonSet:
oc process glusterfs | oc create -f -
For example,

oc process glusterfs | oc create -f -
Deamonset “glusterfs” created

Execute the following command to identify the old glusterfs_registry pods that needs to be deleted:
oc get pods
For example,

oc get pods

NAME READY STATUS
RESTARTS AGE

glusterblock-registry-provisioner-dc-1-nvnhc 1/1 Running 1
7d

glusterfs-registry-4cpcc 1/1 Running 0
7d

glusterfs-registry-9xj78 1/1 Running 0
7d

glusterfs-registry-b9p5j 1/1 Running 0
7d

heketi-registry-1-rr4jk 1/1 Running 0]
2m

Execute the following commmand and ensure that the bricks are not more than 90% full:
df -kh | grep -v AFilesystem | awk '{if($5>"90%") print $0}'

Execute the following command to delete the old glusterfs-registry pods. glusterfs-registry
pods should follow rolling upgrade. Hence, you must ensure that the new
pod is running before deleting the next old glusterfs-registry pods. We
support OnDelete Strategy DaemonSet update strategy. With OnDelete Strategy
update strategy, after you update a DaemonSet template, new DaemonSet pods will only be created
when you manually delete old DaemonSet pods.

a. To delete the old glusterfs-registry pods, execute the following command:
oc delete pod <gluster_pod>

For example,

77

Deployment Guide

oc delete pod glusterfs-0Qvcf3
pod “glusterfs-0Ovcf3” deleted

Before deleting the next pod, self heal check has to be made:
a. Run the following command to access shell on glusterfs-registry pods:

oc rsh <gluster_pod_name>
b. Run the following command to check the self-heal status of all the volumes: :

for each_volume in “gluster volume list’; do
gluster volume heal $each_volume info ; done | grep
"Number of entries: [20]$"

b. The delete pod command will terminate the old pod and create a new pod. Run # oc get
pods -w and check the Age of the pod and READY status should be 1/1. The following is the
example output showing the status progression from termination to creation of the pod.

oc get pods -w

NAME READY STATUS

RESTARTS AGE

glusterfs-0Ovcf3 1/1 Terminating 0
3d

oc get pods -w

NAME READY STATUS

RESTARTS AGE

glusterfs-pgfs6 0/1 ContainerCreating
(C] 1s

oc get pods -w

NAME READY STATUS

RESTARTS AGE

glusterfs-pqfs6 1/1 Running 0
2m

12. Execute the following command to verify that the pods are running:
oc get pods
For example,

oc get pods

NAME READY STATUS
RESTARTS AGE
glusterblock-registry-provisioner-dc-1-nvnhc 1/1 Running 1

78

Chapter 6. Upgrading your Red Hat Openshift Container Storage in Converged Mode

;iusterfs—registry—4cpcc 1/1 Running 0
;iusterfs—registry—ij 78 1/1 Running 0
;iusterfs—registry—bgpsj 1/1 Running 0
zgketi—registry—l—rmjk 1/1 Running 0
2m

13. Execute the following commands to verify if you have upgraded the pod to the latest version:
oc rsh <gluster_registry_pod_name> glusterd --version

For example:

oc rsh glusterfs-registry-4cpcc glusterd --version
glusterfs 3.12.2

rpm -qgalgrep gluster

14. Check the Red Hat Gluster Storage op-version by executing the following command on one of the
glusterfs-registry pods.

gluster vol get all cluster.op-version

Set the cluster.op-version to 31305 on any one of the pods:

Ensure all the glusterfs-registry pods are updated before changing the cluster.op-version.

gluster volume set all cluster.op-version 31305

15. Execute the following steps to enable server.tcp-user-timeout on all volumes.

The "server.tcp-user-timeout" option specifies the maximum amount of the time (in seconds)
the transmitted data from the application can remain unacknowledged from the brick.

It is used to detect force disconnections and dead connections (if a node dies unexpectedly, a
firewall is activated, etc.,) early and make it possible for applications to reduce the overall
failover time.

a. List the glusterfs pod using the following command:

oc get pods

79

16.

17.

For example:

oc get pods

NAME READY
STATUS RESTARTS AGE
glusterblock-registry-provisioner-dc-1-nvnhc 1/1 Running
1 7d

glusterfs-registry-4cpcc 1/1
Running 0 7d

glusterfs-registry-9xj78 1/1
Running 0 7d

glusterfs-registry-b9p5j 1/1
Running 0 7d

heketi-registry-1-rr4jk 1/1
Running 0 2m

b. Remote shell into one of the glusterfs-registry pods. For example:
#0c rsh glusterfs-registry-g6vd9
c. Execute the following command:

for eachVolume in “gluster volume list”; do echo $eachVolume;
gluster volume set $eachVolume server.tcp-user-timeout 42 ; done

For example:

for eachVolume in “gluster volume list”; do echo $eachVolume;
gluster volume set $eachVolume server.tcp-user-timeout 42 ; done
volumel

volume set: success

volume?2

volume set: success

If a gluster-block-registry-provisoner-pod already exists then delete it by executing the following
commands:

oc delete dc <gluster-block-registry-dc>
For example:

oc delete dc glusterblock-registry-provisioner-dc
Execute the following commands to deploy the gluster-block provisioner:

sed -e 's/\\\${NAMESPACE}/<NAMESPACE>/"'
/usr/share/heketi/templates/glusterblock-provisioner.yaml | oc create
-f -

oc adm policy add-cluster-role-to-user glusterblock-provisioner-
runner system:serviceaccount:<NAMESPACE>:glusterblock-provisioner

For example:

Chapter 6. Upgrading your Red Hat Openshift Container Storage in Converged Mode

sed -e 's/\\\${NAMESPACE}/storage-project/"'

/usr/share/heketi/templates/glusterblock-provisioner.yaml | oc create
-f -

oc adm policy add-cluster-role-to-user glusterblock-provisioner-
runner system:serviceaccount:storage-project:glusterblock-provisioner

18. Delete the following resources from the old pod

oc delete clusterroles.authorization.openshift.io glusterblock-
provisioner-runner

oc delete serviceaccounts glusterblock-registry-provisioner
19. After editing the template, execute the following command to create the deployment configuration:
oc process <gluster_block_provisioner_template> | oc create -f -

20. Brick multiplexing is a feature that allows adding multiple bricks into one process. This reduces
resource consumption and allows us to run more bricks than before with the same memory
consumption. It is enabled by default from Container-Native Storage 3.6. During an upgrade from
Container-Native Storage 3.10 to Red Hat Openshift Container Storage 3.11, to turn brick
multiplexing on, execute the following commands:

a. To exec into the Gluster pod, execute the following command and rsh into any of the
glusterfs_registry pods:

oc rsh <gluster_pod_name>

b. Verify if brick multiplexing is enabled. If it is disabled, then execute the following command to
enable brick multiplexing:

gluster volume set all cluster.brick-multiplex on

You can check the brick multiplex status by executing the following command:

gluster v get all all

For example:

#0c rsh glusterfs-registry-g6vd9
sh-4.2# gluster volume set all cluster.brick-multiplex on

Brick-multiplexing is supported only for container workloads
(Independent/Converged). Also it is advised to make sure that

81

Deployment Guide

either all volumes are in stopped state or no bricks are running
before this option is modified.Do you still want to continue?

(y/n) y
volume set: success

c. List all the volumes in the trusted storage pool. This step is only required if the volume set
operation is performed:

For example:

gluster volume 1list

heketidbstorage
vol_194049d2565d2a4ad78ef0483e04711e

Restart all the volumes. This step is only required if the volume set operation is performed
along with the previous step:

gluster vol stop <VOLNAME>
gluster vol start <VOLNAME>

21. Support for S3 compatible Object Store in Red Hat Openshift Container Storage is under technology

After upgrading the glusterfs registry pods, proceed with the steps listed in Section 6.3, “Upgrading
the client on Red Hat Openshift Container Platform Nodes” to upgrade the client on Red Hat
Openshift Container Platform Nodes.

6.2.3. Upgrading if existing version deployed by using Ansible

6.2.3.1. Upgrading Heketi Server

The following commands must be executed on the client machine.

"yum update cns-deploy -y" is not required to be executed if OCS 3.10 was deployed via Ansible.

1. Backup the Heketi registry database file

82

https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/3.11/html/operations_guide/s3_object_store

Chapter 6. Upgrading your Red Hat Openshift Container Storage in Converged Mode

oc rsh <heketi_pod_name>

cp -a /var/lib/heketi/heketi.db /var/lib/heketi/heketi.db. date
+%s " . heketi --version | awk '{print $2}'"

exit

2. Execute the following steps if the current OCS installation is deployed via cns-deploy:

a. Execute the following command to delete the heketi template.

oc delete templates heketi

b. Execute the following command to install the heketi template.

oc create -f /usr/share/heketi/templates/heketi-template.yaml
template "heketi" created

c. Execute the following command to grant the heketi Service Account the necessary
privileges.

oc policy add-role-to-user edit system:serviceaccount:
<project_name>:heketi-service-account

oc adm policy add-scc-to-user privileged -z heketi-service-
account

For example,

oc policy add-role-to-user edit system:serviceaccount:storage-
project:heketi-service-account

oc adm policy add-scc-to-user privileged -z heketi-service-
account

d. Execute the following command to generate a new heketi configuration file.

sed -e "s/\${HEKETI_EXECUTOR}/kubernetes/" -e
"s#\S{HEKETI_FSTAB}#/var/lib/heketi/fstab#" -e
"s/\${SSH_PORT}/22/" -e "s/\${SSH_USER}/root/" -e
"s/\${SSH_SuUDO}/false/" -e "s/\${BLOCK_HOST_CREATE}/true/" -e
"s/\${BLOCK_HOST_SIZE}/500/"
"/usr/share/heketi/templates/heketi.json.template" > heketi.json

The BLOCK_HOST_SIZE parameter controls the size (in GB) of the automatically created
Red Hat Gluster Storage volumes hosting the gluster-block volumes (For more

This default configuration will dynamically create block-hosting volumes of 500GB in size
as more space is required.

Alternatively, copy the file
/usr/share/heketi/templates/heketi.json.template to heketi.json in
the current directory and edit the new file directly, replacing each "${VARIABLE}" string
with the required parameter.

83

https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/3.11/html/operations_guide/block_storage

Deployment Guide

JSON formatting is strictly required (e.g. no trailing spaces, booleans in all
lowercase).

If the heketi-config-secret file already exists, then delete the file and run the
following command.

Execute the following command to create a secret to hold the configuration file.

oc create secret generic heketi-config-secret --from-
file=heketi.json

3. Execute the following step if OCS 3.10 is installed via Ansible:

Update the heketi template to change the HEKETI_ROUTE, IMAGE_NAME, IMAGE_VERSION and
CLUSTER_NAME.

oc get templates

NAME DESCRIPTION PARAMETERS OBJECTS
glusterblock-provisioner glusterblock provisioner 3 (2 blank) 4
template
glusterfs GlusterFS DaemonSet 5 (1 blank) 1
template
heketi Heketi service deployment 7 (3 blank) 3
template

If the template has IMAGE_NAME and IMAGE_VERSION as two separate parameters, then update
the heketi template to change the HEKETI_ROUTE, IMAGE_NAME, IMAGE_VERSION, and
CLUSTER_NAME. For example:

oc edit template heketi

- description: Set the hostname for the route URL
displayName: heketi route name

name: HEKETI_ROUTE

value: heketi-registry

- displayName: heketi container image name
name: IMAGE_NAME

required: true

value: rhgs3/rhgs-volmanager-rhel?

- displayName: heketi container image version
name: IMAGE_VERSION

required: true

value: v3.11.1

84

Chapter 6. Upgrading your Red Hat Openshift Container Storage in Converged Mode

- description: A unique name to identify this heketi service, useful
for running multiple
heketi instances
displayName: GlusterFS cluster name
name: CLUSTER_NAME
value: registry

If the template has only IMAGE_NAME as a parameter then update the heketi template to change the
HEKETI_ROUTE, IMAGE_NAME, and CLUSTER_NAME. For example:

oc edit template heketi

- description: Set the hostname for the route URL

displayName: heketi route name

name: HEKETI_ROUTE

value: heketi-registry

- displayName: heketi container image name

name: IMAGE_NAME

required: true

value:rhgs3/rhgs-volmanager-rhel7:v3.11.1

- description: A unique name to identify this heketi service, useful
for running multiple

heketi instances

displayName: GlusterFS cluster name

name: CLUSTER_NAME

value: registry

4. Execute the following command to delete the deployment configuration, service, and route for heketi:

For cns-deploy:
oc delete deploymentconfig, service, route heketi
For Ansible:
oc delete deploymentconfig, service, route heketi-registry
5. Execute the following command to get the current HEKETI_ADMIN_KEY

oc get secret heketi-storage-admin-secret -o go-template='{{index
.data "key"}}' | base64 -d

6. Execute the following command to deploy the Heketi service which will be used to create persistent
volumes for OpenShift:

oc process heketi -p HEKETI_USER_KEY=<user-key> HEKETI_ADMIN_KEY=
<admin-key-from-previous-output> | oc create -f -

For example:

oc process heketi | oc create -f -

service "heketi-registry" created
route "heketi-registry" created

85

Deployment Guide

deploymentconfig-registry "heketi" created

7. Execute the following command to verify that the containers are running:

oc get pods

For example:

oc get pods

NAME READY STATUS
RESTARTS AGE

glusterblock-registry-provisioner-dc-1-nvnhc 1/1 Running 1
7d

glusterfs-registry-4cpcc 1/1 Running
(C] 7d

glusterfs-registry-9xj78 1/1 Running
(C] 7d

glusterfs-registry-b9p5j 1/1 Running
(C] 7d

heketi-registry-1-rr4jk 1/1 Running
0] 2m

6.2.3.2. Upgrading the Red Hat Gluster Storage Registry Pods if Deployed by using Ansible
The following commands must be executed on the client machine. .
Following are the steps for updating a DaemonSet for glusterfs:

1. Execute the following steps to stop the Heketi pod to prevent it from accepting any new request for
volume creation or volume deletion:

a. Execute the following command to access your project:
oc project <project_name>
For example:
oc project storage-project
b. Execute the following command to get the DeploymentConfig:
oc get dc

c. Execute the following command to set heketi server to accept requests only from the local-
client:

heketi-cli server mode set local-client

d. Wait for the ongoing operations to complete and execute the following command to monitor if
there are any ongoing operations:

heketi-cli server operations info

86

Chapter 6. Upgrading your Red Hat Openshift Container Storage in Converged Mode

e. Execute the following command to reduce the replica count from 1 to 0. This brings down the
Heketi pod:

oc scale dc <heketi_dc> --replicas=0
f. Execute the following command to verify that the heketi pod is no longer present:
oc get pods
2. Execute the following command to find the DaemonSet name for gluster
oc get ds
3. Execute the following command to delete the DeamonSet:
oc delete ds <ds-name> --cascade=false

Using - -cascade=false option while deleting the old DaemonSet does not delete the
glusterfs_registry pods but deletes only the DaemonSet. After deleting the old DaemonSet, you must
load the new one. When you manually delete the old pods, the new pods which are created will have
the configurations of the new DaemonSet.

For example,

oc delete ds glusterfs-registry --cascade=false
daemonset '"glusterfs-registry" deleted

4. Execute the following commands to verify all the old pods are up:
oc get pods
For example,

oc get pods

NAME READY STATUS
RESTARTS AGE

glusterblock-registry-provisioner-dc-1-nvnhc 1/1 Running 1
7d

glusterfs-registry-4cpcc 1/1 Running 0
7d

glusterfs-registry-9xj78 1/1 Running 0
7d

glusterfs-registry-b9p5j 1/1 Running 0
7d

heketi-registry-1-rrdjk 1/1 Running 0]
2m

5. Execute the following command to edit the old glusterfs template.

oc get templates

NAME DESCRIPTION PARAMETERS OBJECTS
glusterblock-provisioner glusterblock provisioner 3 (2 blank) 4
template

87

glusterfs GlusterFS DaemonSet 5 (1 blank) 1
template

heketi Heketi service deployment 7 (3 blank) 3
template

If the template has IMAGE_NAME and IMAGE_VERSION as two separate parameters, then update
the glusterfs template as following. For example:

oc edit template glusterfs

- description: Labels which define the daemonset node selector. Must
contain at least

one label of the format \'glusterfs=<CLUSTER_NAME>-host\'

displayName: Daemonset Node Labels

name: NODE_LABELS

value: '{ "glusterfs": "registry-host" }'
- displayName: GlusterFS container image name

name: IMAGE_NAME

required: true

value: rhgs3/rhgs-server-rhel?7
- displayName: GlusterFS container image version

name: IMAGE_VERSION

required: true

value: v3.11.1
- description: A unique name to identify which heketi service manages
this cluster,

useful for running multiple heketi instances

displayName: GlusterFS cluster name

name: CLUSTER_NAME

value: registry

If the template has only IMAGE_NAME as a parameter then update the glusterfs template as
following. For example:

oc edit template glusterfs

- description: Labels which define the daemonset node selector. Must
contain at least

one label of the format \'glusterfs=<CLUSTER_NAME>-host\'
displayName: Daemonset Node Labels

name: NODE_LABELS

value: '{ "glusterfs": "registry-host" }'

- displayName: GlusterFS container image name

name: IMAGE_NAME

required: true

value: rhgs3/rhgs-server-rhel7:v3.11.1

- description: A unique name to identify which heketi service manages
this cluster,

useful for running multiple heketi instances

displayName: GlusterFS cluster name

name: CLUSTER_NAME

value: registry

Chapter 6. Upgrading your Red Hat Openshift Container Storage in Converged Mode

Ensure that the CLUSTER_NAME variable is set to the correct value

6. Label all the OpenShift Container Platform nodes that has the Red Hat Gluster Storage pods:

a. Check if the nodes are labelled using the following command:

oc get nodes --show-labels

If the Red Hat Gluster Storage nodes do not have the glusterfs=registry-host label,

then label the nodes as shown in step ii.

b. Label all the OpenShift Container Platform nodes that has the Red Hat Gluster Storage

pods:

oc label nodes <node name> glusterfs=registry-host

7. Execute the following commands to create the gluster DaemonSet:

oc process glusterfs | oc create -f -
For example,

oc process glusterfs | oc create -f -
Deamonset “glusterfs” created

8. Execute the following command to identify the old glusterfs_registry pods that needs to be deleted:

oc get pods
For example,

oc get pods

NAME

RESTARTS AGE
glusterblock-registry-provisioner-dc-1-nvnhc
7d
glusterfs-registry-4cpcc
7d
glusterfs-registry-9xj78
7d
glusterfs-registry-b9p5j
7d
heketi-registry-1-rr4jk
2m

READY

1/1

1/1

1/1

1/1

1/1

STATUS

Running
Running
Running
Running

Running

9. Execute the following commmand and ensure that the bricks are not more than 90% full:

df -kh | grep -v AFilesystem | awk '{if($5>"90%") print $0}'

10. Execute the following command to delete the old glusterfs-registry pods. glusterfs-registry

89

Deployment Guide

90

pods should follow rolling upgrade. Hence, you must ensure that the new
pod is running before deleting the next old glusterfs-registry pods. We
support OnDelete Strategy DaemonSet update strategy. With OnDelete Strategy
update strategy, after you update a DaemonSet template, new DaemonSet pods will only be created

when you manually delete old DaemonSet pods.

a. To delete the old glusterfs-registry pods, execute the following command:

oc delete pod <gluster_pod>
For example,

oc delete pod glusterfs-0Ovcf3
pod “glusterfs-0Ovcf3” deleted

Before deleting the next pod, self heal check has to be made:
a. Run the following command to access shell on glusterfs-registry pods:

oc rsh <gluster_pod_name>

b. Run the following command to check the self-heal status of all the volumes: :

for each_volume in “gluster volume list; do
gluster volume heal $each_volume info ; done | grep

"Number of entries: [70]$"

b. The delete pod command will terminate the old pod and create a new pod. Run # oc get
pods -w and check the Age of the pod and READY status should be 1/1. The following is the
example output showing the status progression from termination to creation of the pod.

oc get pods -w

NAME READY
RESTARTS AGE

glusterfs-0Ovcf3 1/1
3d

oc get pods -w

NAME READY
RESTARTS AGE

glusterfs-pgfs6 0/1

(C] 1s

oc get pods -w

NAME READY
RESTARTS AGE

glusterfs-pgfs6 1/1
2m

STATUS

Terminating 0

STATUS
ContainerCreating
STATUS

Running 0

Chapter 6. Upgrading your Red Hat Openshift Container Storage in Converged Mode

11. Execute the following command to verify that the pods are running:
oc get pods
For example,

oc get pods

NAME READY STATUS
RESTARTS AGE

glusterblock-registry-provisioner-dc-1-nvnhc 1/1 Running 1
7d

glusterfs-registry-4cpcc 1/1 Running 0
7d

glusterfs-registry-9xj78 1/1 Running 0
7d

glusterfs-registry-b9p5j 1/1 Running 0
7d

heketi-registry-1-rr4jk 1/1 Running 0
2m

12. Execute the following commands to verify if you have upgraded the pod to the latest version:
oc rsh <gluster_registry_pod_name> glusterd --version
For example:

oc rsh glusterfs-registry-4cpcc glusterd --version
glusterfs 3.12.2

rpm -galgrep gluster

13. Check the Red Hat Gluster Storage op-version by executing the following command on one of the
glusterfs-registry pods.

gluster vol get all cluster.op-version

Set the cluster.op-version to 31305 on any one of the pods:

Ensure all the glusterfs-registry pods are updated before changing the cluster.op-version.

gluster volume set all cluster.op-version 31305

14. Execute the following steps to enable server.tcp-user-timeout on all volumes.

91

Deployment Guide

The "server.tcp-user-timeout" option specifies the maximum amount of the time (in seconds)
the transmitted data from the application can remain unacknowledged from the brick.

It is used to detect force disconnections and dead connections (if a node dies unexpectedly, a
firewall is activated, etc.,) early and make it possible for applications to reduce the overall
failover time.
a. List the glusterfs pod using the following command:

oc get pods

For example:

oc get pods

NAME READY
STATUS RESTARTS AGE
glusterblock-registry-provisioner-dc-1-nvnhc 1/1 Running
1 7d

glusterfs-registry-4cpcc 1/1
Running 0 7d

glusterfs-registry-9xj78 1/1
Running 0 7d

glusterfs-registry-b9p5j 1/1
Running 0 7d

heketi-registry-1-rr4jk 1/1
Running 0 2m

b. Remote shell into one of the glusterfs-registry pods. For example:
#o0c rsh glusterfs-registry-g6vd9
c. Execute the following command:

for eachVolume in “gluster volume list”; do echo $eachVolume;
gluster volume set $eachVolume server.tcp-user-timeout 42 ; done

For example:

for eachVolume in “gluster volume list”; do echo $eachVolume;
gluster volume set $eachVolume server.tcp-user-timeout 42 ; done
volumel

volume set: success

volume2

volume set: success

15. If a gluster-block-registry-provisoner-pod already exists then delete it by executing the following
commands:

oc delete dc <gluster-block-registry-dc>

92

For example:
oc delete dc glusterblock-registry-provisioner-dc

16. Depending on the OCP version, edit the glusterblock-provisioner template to change the
IMAGE_NAME, IMAGE_VERSION and NAMESPACE.

oc get templates

NAME DESCRIPTION PARAMETERS OBJECTS
glusterblock-provisioner glusterblock provisioner 3 (2 blank) 4
template
glusterfs GlusterFS DaemonSet 5 (1 blank) 1
template
heketi Heketi service deployment 7 (3 blank) 3
template

If the template has IMAGE_NAME and IMAGE_VERSION as two separate parameters, then update
the glusterblock-provisioner template as following. For example:

oc edit template glusterblock-provisioner

- displayName: glusterblock provisioner container image name
name: IMAGE_NAME
required: true
value: rhgs3/rhgs-gluster-block-prov-rhel?7
- displayName: glusterblock provisioner container image version
name: IMAGE_VERSION
required: true
value: v3.10
- description: The namespace in which these resources are being
created
displayName: glusterblock provisioner namespace
name: NAMESPACE
required: true
value: glusterfs-registry
- description: A unique name to identify which heketi service manages
this cluster,
useful for running multiple heketi instances
displayName: GlusterFS cluster name
name: CLUSTER_NAME
value: registry

If the template has only IMAGE_NAME then update the glusterblock-provisioner template as
following. For example:

oc edit template glusterblock-provisioner

- displayName: glusterblock provisioner container image name
name: IMAGE_NAME

required: true

value: rhgs3/rhgs-gluster-block-prov-rhel7:v3.11.1

- description: The namespace in which these resources are being
created

displayName: glusterblock provisioner namespace

Deployment Guide

name: NAMESPACE

required: true

value: glusterfs-registry

- description: A unique name to identify which heketi service manages
this cluster,

useful for running multiple heketi instances

displayName: GlusterFS cluster name

name: CLUSTER_NAME

value: registry

17. Delete the following resources from the old pod

oc delete clusterroles.authorization.openshift.io glusterblock-
provisioner-runner
oc delete serviceaccounts glusterblock-registry-provisioner

18. After editing the template, execute the following command to create the deployment configuration:
oc process <gluster_block_provisioner_template> | oc create -f -

19. Brick multiplexing is a feature that allows adding multiple bricks into one process. This reduces
resource consumption and allows us to run more bricks than before with the same memory
consumption. It is enabled by default from Container-Native Storage 3.6. During an upgrade from
Container-Native Storage 3.10 to Red Hat Openshift Container Storage 3.11, to turn brick
multiplexing on, execute the following commands:

a. To exec into the Gluster pod, execute the following command and rsh into any of the
glusterfs_registry pods:

oc rsh <gluster_pod_name>

b. Verify if brick multiplexing is enabled. If it is disabled, then execute the following command to
enable brick multiplexing:

gluster volume set all cluster.brick-multiplex on

You can check the brick multiplex status by executing the following command:

gluster v get all all

For example:

#oc rsh glusterfs-registry-g6vd9
sh-4.2# gluster volume set all cluster.brick-multiplex on

Brick-multiplexing is supported only for container workloads
(Independent/Converged). Also it is advised to make sure that

94

Chapter 6. Upgrading your Red Hat Openshift Container Storage in Converged Mode

either all volumes are in stopped state or no bricks are running

before this option is modified.Do you still want to continue?
(y/n) y
volume set: success

c. List all the volumes in the trusted storage pool. This step is only required if the volume set
operation is performed:

For example:
gluster volume 1list

heketidbstorage
vol_194049d2565d2a4ad78ef0483e04711e

Restart all the volumes. This step is only required if the volume set operation is performed
along with the previous step:

gluster vol stop <VOLNAME>
gluster vol start <VOLNAME>

20. Support for S3 compatible Object Store in Red Hat Openshift Container Storage is under technology
preview. To enable S3 compatlble object store, see https: //access redhat. com/documentatlon/en—

After upgradlng the glusterfs reglstry pods proceed with the steps listed in Sectlon 6.3, “Upgrading

Openshlft Container Platform Nodes.

6.3. Upgrading the client on Red Hat Openshift Container Platform Nodes
Execute the following commands on each of the nodes:

1. To drain the pod, execute the following command on the master node (or any node with cluster-
admin access):

oc adm drain <node_name> --ignore-daemonsets

2. To check if all the pods are drained, execute the following command on the master node (or any
node with cluster-admin access) :

oc get pods --all-namespaces --field-selector=spec.nodeName=
<node_name>

3. Execute the command on the node to upgrade the client on the node to glusterfs-fuse-3.12.2-
32.el7.x86_64 version:

95

https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/3.11/html/operations_guide/s3_object_store

Deployment Guide

yum install glusterfs-client

4. To enable node for pod scheduling execute the following command on the master node (or any node
with cluster-admin access):

oc adm manage-node --schedulable=true <node_name>

5. Create and add the following content to the multipath.conf file:

Make sure that the changes to multipath.conf and reloading of multipathd are done only after
all the server nodes are upgraded.

cat >> /etc/multipath.conf <<EOF
LIO iSCSI
devices {
device {
vendor "LIO-ORG"
user_friendly_names "yes" # names like mpatha
path_grouping_policy "failover" # one path per group
hardware_handler "1 alua"
path_selector "round-robin 0"
failback immediate
path_checker "tur"
prio "alua"
no_path_retry 120
rr_weight "uniform"

}
EOF

6. Execute the following commands to start multipath daemon and [re]load the multipath configuration:

systemctl start multipathd

systemctl reload multipathd

6.4. Starting the Heketi Pods

Execute the following commands on the client machine.

1. Execute the following command to navigate to the project where the Heketi pods are running:
oc project <project_name>
For example:

oc project glusterfs

96

Chapter 6. Upgrading your Red Hat Openshift Container Storage in Converged Mode

2. Execute the following command to get the DeploymentConfig:

oc get dc

For example:
oc get dc
NAME REVISION DESIRED CURRENT
TRIGGERED BY
glusterblock-provisioner-dc 1 1 1 config
heketi 1 1 1 config

3. Execute the following command to increase the replica count from 0 to 1. This brings back the Heketi
pod:

oc scale dc <heketi_dc> --replicas=1
4. Execute the following command to verify that the Heketi pod is present:
oc get pods
For example:

oc get pods

glusterblock-provisioner-dc-1-fc8sc 1/1 Running 0
3d
glusterfs-bd6ékv 1/1 Running 0
2h
glusterfs-vhpcw 1/1 Running 1
1d
glusterfs-z6nkk 1/1 Running 0
1d
heketi-1-6sccl 1/1 Running 0
2h

97

Deployment Guide

Chapter 7. Upgrading Your Red Hat Openshift Container Storage

in

Independent Mode

This chapter describes the procedures to follow to upgrade your independent mode environment.

7.1. Prerequisites

Ensure the following prerequisites are met:

Sectlon 3.1.3, “Red Hat OpenShift Container Platform and Red Hat Openshift Container Storage

Ensure to have the supported versions of OpenShift Container Platform with Red Hat Gluster Storage
Server and Red Hat Openshift Container Storage. For more information on supported versions, see
Section 3.1.1, “Supported Versions”

If Heketi is running as a standalone service in one of the Red Hat Gluster Storage nodes, then ensure to
open the port for Heketi. By default the port number for Heketi is 8080. To open this port execute the
following command on the node where Heketi is running:

firewall-cmd --zone=zone_name --add-port=8080/tcp
firewall-cmd --zone=zone_name --add-port=8080/tcp --permanent

If Heketi is configured to listen on a different port, then change the port number in the command
accordingly.

7.2. Upgrading your Independent Mode Setup

Follow the steps in the sections ahead to upgrade your independent mode Setup.

7.2.1. Upgrading the Red Hat Gluster Storage Cluster

To upgrade the Red Hat Gluster Storage cluster, see In-Service Software Upgrade.

7.2.2. Upgrading/Migration of Heketi in RHGS node

98

If Heketi is in an Openshift node, then skip this section and see Section 7.2.4.1, “Upgrading Heketi in
Openshift node if Deployed by Using Ansible” instead.

https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/3.11/html-single/deployment_guide/#CRS_port_access
https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/3.11/html-single/deployment_guide/#CRS_enable_kernel
https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/3.11/html-single/deployment_guide/#Start_enable_service
https://access.redhat.com/documentation/en-us/red_hat_gluster_storage/3.4/html/installation_guide/sect-in-service_software_upgrade_from_red_hat_storage_3.3_to_red_hat_storage_3.4#In-Service_Software_Upgrade

Chapter 7. Upgrading Your Red Hat Openshift Container Storage in Independent Mode

In OCS 3.11, upgrade of Heketi in RHGS node is not supported. Hence, you have to migrate
heketi to a new heketi pod.

Ensure to migrate to the supported heketi deployment now, as there might not be a migration path
in the future versions.

Ensure that cns-deploy rpm is installed in the master node. This provides template files necessary
to setup heketi pod.

subscription-manager repos --enable=rh-gluster-3-for-rhel-7-server-
rpms

yum install cns-deploy

. Use the newly created containerized Red Hat Gluster Storage project on the master node:
oc project <project-name>

For example:
oc project gluster

. Execute the following command on the master node to create the service account:

oc create -f /usr/share/heketi/templates/heketi-service-account.yaml
serviceaccount/heketi-service-account created

. Execute the following command on the master node to install the heketi template:

oc create -f /usr/share/heketi/templates/heketi-template.yaml
template.template.openshift.io/heketi created

. Verify if the templates are created

oc get templates

NAME DESCRIPTION PARAMETERS
OBJECTS
heketi Heketi service deployment template 5 (3 blank) 3

5. Execute the following command on the master node to grant the heketi Service Account the

necessary privileges:

oc policy add-role-to-user edit
system:serviceaccount:gluster:heketi-service-account

role "edit" added: "system:serviceaccount:gluster:heketi-service-
account"

99

Deployment Guide

oc adm policy add-scc-to-user privileged -z heketi-service-account
scc "privileged" added to: ["system:serviceaccount:gluster:heketi-
service-account"]

6. On the RHGS node, where heketi is running, execute the following commands:

a. Create the heketidbstorage volume:

heketi-cli volume create --size=2 --name=heketidbstorage
b. Mount the volume:

mount -t glusterfs 192.168.11.192:heketidbstorage /mnt/

where 192.168.11.192 is one of the RHGS node.

c. Stop the heketi service:
systemctl stop heketi
d. Disable the heketi service:
systemctl disable heketi
e. Copy the heketi db to the heketidbstorage volume:
cp /var/lib/heketi/heketi.db /mnt/
f. Unmount the volume:
umount /mnt
g. Copy the following files from the heketi node to the master node:

scp /etc/heketi/heketi.json topology.json
/etc/heketi/heketi_key OCP_master_node:/root/

where OCP_master_node is the hostname of the master node.

7. On the master node, set the environment variables for the following three files that were copied from
the heketi node. Add the following lines to ~/.bashrc file and run the bash command to apply and
save the changes:

export SSH_KEYFILE=heketi_key
export TOPOLOGY=topology.json
export HEKETI_CONFIG=heketi.json

100

Chapter 7. Upgrading Your Red Hat Openshift Container Storage in Independent Mode

If you have changed the value for "keyfile" in /etc/heketi/heketi.json to a different value,
change here accordingly.

8. Execute the following command to create a secret to hold the configuration file:

oc create secret generic heketi-config-secret --from-
file=${SSH_KEYFILE} --from-file=${HEKETI_CONFIG} --from-
file=${TOPOLOGY}

secret/heketi-config-secret created
9. Execute the following command to label the secret:

oc label --overwrite secret heketi-config-secret glusterfs=heketi-
config-secret heketi=config-secret

secret/heketi-config-secret labeled

10. Get the IP addresses of all the glusterfs nodes, from the heketi-gluster-endpoints.yml file. For
example:

cat heketi-gluster-endpoints.yaml
apiVersion: vi
kind: Endpoints
metadata:
name: heketi-storage-endpoints
subsets:
- addresses:
- ip: 192.168.11.208
ports:
- port: 1
- addresses:
- ip: 192.168.11.176
ports:
- port: 1
- addresses:
- ip: 192.168.11.192
ports:
- port: 1

In the above example, 192.168.11.208, 192.168.11.176, 192.168.11.192 are the glusterfs nodes.

11. Execute the following command to create the endpoints:

oc create -f ./heketi-gluster-endpoints.yaml

101

Deployment Guide

cat heketi-gluster-service.yaml
apiVersion: vi
kind: Service

metadata:

name: heketi-storage-endpoints
spec:

ports:

- port: 1

12. Execute the following command to create the service:
oc create -f ./heketi-gluster-service.yaml
13. Execute the following command to get the current HEKETI_ADMIN_KEY

oc get secret heketi-storage-admin-secret -o go-template='{{index
.data "key"}}' | base64 -d

14. Execute the following command to deploy the Heketi service which will be used to create persistent
volumes for OpensShift:

oc process heketi HEKETI_EXECUTOR=ssh HEKETI_FSTAB=/etc/fstab | oc
create -f -

service/heketi created
route.route.openshift.io/heketi created
deploymentconfig.apps.openshift.io/heketi created

15. To verify if Heketi is migrated execute the following command on the master node:
oc rsh po/<heketi-pod-name>
For example:
oc rsh po/heketi-1-p65c6
16. Execute the following command to check the cluster IDs
heketi-cli cluster list

From the output verify if the cluster ID matches with the old cluster.

7.2.3. Upgrading if existing version deployed using cns-deploy

7.2.3.1. Upgrading Heketi in Openshift node
The following commands must be executed on the client machine.

1. Execute the following command to update the heketi client and cns-deploy packages:

102

Chapter 7. Upgrading Your Red Hat Openshift Container Storage in Independent Mode

yum update cns-deploy -y
yum update heketi-client -y

. Backup the Heketi database file

oc rsh <heketi_pod_name>

cp -a /var/lib/heketi/heketi.db /var/lib/heketi/heketi.db. date
+%s " . heketi --version | awk '{print $2}'"

exit

. Execute the following command to delete the heketi template.
oc delete templates heketi
. Execute the following command to install the heketi template.

oc create -f /usr/share/heketi/templates/heketi-template.yaml
template "heketi" created

. Execute the following command to grant the heketi Service Account the necessary privileges.

oc policy add-role-to-user edit system:serviceaccount:
<project_name>:heketi-service-account
oc adm policy add-scc-to-user privileged -z heketi-service-account

For example,

oc policy add-role-to-user edit system:serviceaccount:storage-
project:heketi-service-account
oc adm policy add-scc-to-user privileged -z heketi-service-account

. Execute the following command to generate a new heketi configuration file.

sed -e "s/\${HEKETI_EXECUTOR}/ssh/" -e
"s#\${HEKETI_FSTAB}#/var/lib/heketi/fstab#" -e "s/\${SSH_PORT}/22/" -e
"s/\${SSH_USER}/root/" -e "s/\${SSH_SUDO}/false/" -e
"s/\${BLOCK_HOST_CREATE}/true/" -e "s/\${BLOCK_HOST_SIZE}/500/"
"/usr/share/heketi/templates/heketi.json.template" > heketi.json

The BLOCK_HOST_SIZE parameter controls the size (in GB) of the automatically created Red
Hat Gluster Storage volumes hosting the gluster-block volumes (For more information, see
https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/3.11/html-

hosting volumes of 500GB in size as more space is required.

Alternatively, copy the file /usr/share/heketi/templates/heketi. json.template to
heketi. json in the current directory and edit the new file directly, replacing each
"${VARIABLE}" string with the required parameter.

103

https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/3.11/html-single/operations_guide/#Block_Storage

Deployment Guide

JSON formatting is strictly required (e.g. no trailing spaces, booleans in all lowercase).

If the heketi-config-secret file already exists, then delete the file and run the following
command.

Execute the following command to create a secret to hold the configuration file.

oc create secret generic heketi-config-secret --from-
file=private_key=${SSH_KEYFILE} --from-file=./heketi.json

8. Execute the following command to delete the deployment configuration, service, and route for heketi:
oc delete deploymentconfig, service,route heketi
9. Execute the following command to get the current HEKETI_ADMIN_KEY

oc get secret heketi-storage-admin-secret -o go-template='{{index
.data "key"}}' | base64 -d

10. Execute the following command to deploy the Heketi service which will be used to create persistent
volumes for OpenShift:

oc process heketi -p HEKETI_USER_KEY=<user-key> HEKETI_ADMIN_KEY=
<admin-key-from-previous-output> | oc create -f -

For example:

oc process heketi | oc create -f -

service "heketi" created
route "heketi" created
deploymentconfig "heketi" created

11. Execute the following command to verify that the containers are running:
oc get pods
For example:

oc get pods
NAME READY STATUS RESTARTS

104

Chapter 7. Upgrading Your Red Hat Openshift Container Storage in Independent Mode

AGE
glusterfs-0h681 1/1 Running © 3d
glusterfs-0vcf3 1/1 Running O 3d
glusterfs-gr9gh 1/1 Running 0] 3d
heketi-1-zpw4d 1/1 Running (0] 3h
storage-project-router-2-db2wl 1/1 Running (0] 4ad

7.2.3.2. Upgrading Gluster Block if Deployed by using chs-deploy

Execute the following steps to upgrade gluster block.

The recommended Red Hat Enterprise Linux (RHEL) version for block storage is RHEL-7.5.4. Please
ensure that your kernel version matches with 3.10.0-862.14.4.el7.x86_64. To verify execute:

uname -r

Reboot the node for the latest kernel update to take effect.

1. Execute the following command to upgrade the gluster block:
yum update gluster-block
2. Enable and start the gluster block service:

systemctl enable gluster-blockd
systemctl start gluster-blockd

3. Execute the following command to update the heketi client and cns-deploy packages

yum update cns-deploy -y
yum update heketi-client -y

4. To use gluster block, add the following two parameters to the glusterfs section in the heketi
configuration file at /etc/heketi/heketi.JSON:

auto_create_block _hosting_volume
block_hosting_volume_size

Where:

auto_create_block_hosting_volume: Creates Block Hosting volumes automatically if not
found or if the existing volume is exhausted. To enable this, set the value to true.

block_hosting_volume_size: New block hosting volume will be created in the size mentioned.
This is considered only if auto_create_block hosting_volume is set to true. Recommended size is
500G.

For example:

105

Deployment Guide

"glusterfs" : {

"executor" : '"ssh",

"db" : "/var/lib/heketi/heketi.db",
"sshexec" : {
"rebalance_on_expansion": true,
"keyfile" : "/etc/heketi/private_key"
+

"auto_create_block_hosting_volume": true,

"block_hosting_volume_size": 500G

iy

5. Restart the Heketi service:

systemctl restart heketi

This step is not applicable if heketi is running as a pod in the Openshift cluster.

6. If a gluster-block-provisoner-pod already exists then delete it by executing the following commands:
oc delete dc <gluster-block-dc>
For example:
oc delete dc glusterblock-provisioner-dc
7. Execute the following commands to deploy the gluster-block provisioner:

sed -e 's/\\\${NAMESPACE}/<NAMESPACE>/"
/usr/share/heketi/templates/glusterblock-provisioner.yaml | oc create
-f -

oc adm policy add-cluster-role-to-user glusterblock-provisioner-
runner system:serviceaccount:<NAMESPACE>:glusterblock-provisioner

For example:

106

Chapter 7. Upgrading Your Red Hat Openshift Container Storage in Independent Mode

sed -e 's/\\\${NAMESPACE}/storage-project/"'

/usr/share/heketi/templates/glusterblock-provisioner.yaml | oc create
-f -

oc adm policy add-cluster-role-to-user glusterblock-provisioner-
runner system:serviceaccount:storage-project:glusterblock-provisioner

8. Delete the following resources from the old pod

oc delete clusterroles.authorization.openshift.io glusterblock-
provisioner-runner

oc delete serviceaccounts glusterblock-registry-provisioner

9. Execute the following command to create a glusterblock-provisioner.

oc process <gluster_block_provisioner_template> | oc create -f -

7.2.4. Upgrading if existing version deployed using Ansible

7.2.4.1. Upgrading Heketi in Openshift node if Deployed by Using Ansible
The following commands must be executed on the client machine.

1. Execute the following command to update the heketi client:
yum update heketi-client -y
2. Backup the Heketi database file

oc rsh <heketi_pod_name>

cp -a /var/lib/heketi/heketi.db /var/lib/heketi/heketi.db. date
+%s " . heketi --version | awk '{print $2}'"

exit

3. Depending on the OCP version, edit the heketi template to change the IMAGE_NAME,

IMAGE_VERSION, CLUSTER_NAME, HEKETI_FSTAB, HEKETI_EXECUTOR, and
HEKETI_ROUTE.

oc get templates

NAME DESCRIPTION PARAMETERS OBJECTS

glusterblock-provisioner glusterblock provisioner 3 (2 blank) 4
template

glusterfs GlusterFS DaemonSet 5 (1 blank) 1
template

heketi Heketi service deployment 7 (3 blank) 3
template

For OCP 3.11:

oc edit template heketi

107

displayName: heketi executor type
name: HEKETI_EXECUTOR
value: ssh
- description: Set the fstab path, file that is populated
with bricks that heketi
creates
displayName: heketi fstab path
name: HEKETI_FSTAB
value: /etc/fstab
- description: Set the hostname for the route URL
displayName: heketi route name
name: HEKETI_ROUTE
value: heketi-storage
- displayName: heketi container image name
name: IMAGE_NAME
required: true
value: rhgs3/rhgs-volmanager-rhel7:v3.11.1
- description: A unique name to identify this heketi service,
useful for running multiple
heketi instances
displayName: GlusterFS cluster name
name: CLUSTER_NAME
value: storage

For OCP 3.10:

oc edit template heketi

displayName: heketi executor type
name: HEKETI_EXECUTOR
value: ssh
- description: Set the fstab path, file that is populated
with bricks that heketi
creates
displayName: heketi fstab path
name: HEKETI_FSTAB
value: /etc/fstab
- description: Set the hostname for the route URL
displayName: heketi route name
name: HEKETI_ROUTE
value: heketi-storage
- displayName: heketi container image name
name: IMAGE_NAME
required: true
value: rhgs3/rhgs-volmanager-rhel7:v3.11.1
- displayName: heketi container image version
name: IMAGE_VERSION
required: true
value: v3.11.1
- description: A unique name to identify this heketi service,
useful for running multiple

Chapter 7. Upgrading Your Red Hat Openshift Container Storage in Independent Mode

heketi instances
displayName: GlusterFS cluster name
name: CLUSTER_NAME
value: storage

. Execute the following command to delete the deployment configuration, service, and route for heketi:
oc delete deploymentconfig, service, route heketi-storage
. Execute the following command to get the current HEKETI_ADMIN_KEY

oc get secret heketi-storage-admin-secret -o go-template='{{index
.data "key"}}' | base64 -d

. Execute the following command to deploy the Heketi service which will be used to create persistent
volumes for OpensShift:

oc process heketi -p HEKETI_USER_KEY=<user-key> HEKETI_ADMIN_KEY=
<admin-key-from-previous-output> | oc create -f -

For example:

oc process heketi | oc create -f -

service "heketi" created
route "heketi" created
deploymentconfig "heketi" created

7. Execute the following command to verify that the containers are running:

oc get pods
For example:

oc get pods

NAME READY STATUS RESTARTS

AGE
glusterfs-0h681 1/1 Running 0] 3d
glusterfs-0Ovcf3 1/1 Running (0] 3d
glusterfs-gr9gh 1/1 Running 0 3d
heketi-1-zpw4d 1/1 Running 0 3h
storage-project-router-2-db2wl 1/1 Running (0] 4d

7.2.4.2. Upgrading Gluster Block if Deployed by Using Ansible

Execute the following steps to upgrade gluster block.

109

Deployment Guide

The recommended Red Hat Enterprise Linux (RHEL) version for block storage is RHEL-7.5.4. Please
ensure that your kernel version matches with 3.10.0-862.14.4.el7.x86_64. To verify execute:

uname -r

Reboot the node for the latest kernel update to take effect.

1. Execute the following command to upgrade the gluster block:
yum update gluster-block
2. Enable and start the gluster block service:

systemctl enable gluster-blockd
systemctl start gluster-blockd

3. Execute the following command to update the heketi client
yum update heketi-client -y
4. Restart the Heketi service:

systemctl restart heketi

This step is not applicable if heketi is running as a pod in the Openshift cluster.

5. If a gluster-block-provisoner-pod already exists then delete it by executing the following commands:
oc delete dc <gluster-block-dc>
For example:
oc delete dc glusterblock-provisioner-dc

6. Depending on the OCP version, edit the glusterblock-provisioner template to change the
IMAGE_NAME, IMAGE_VERSION and NAMESPACE.

oc get templates

NAME DESCRIPTION PARAMETERS OBJECTS
glusterblock-provisioner glusterblock provisioner 3 (2 blank) 4
template
heketi Heketi service deployment 7 (3 blank) 3
template

110

Chapter 7. Upgrading Your Red Hat Openshift Container Storage in Independent Mode

For OCP 3.11:

oc edit template glusterblock-provisioner
- displayName: glusterblock provisioner container image name
name: IMAGE_NAME
required: true
value: rhgs3/rhgs-gluster-block-prov-rhel7:v3.11.1
- description: The namespace in which these resources are being
created
displayName: glusterblock provisioner namespace
name: NAMESPACE
required: true
value: glusterfs

For OCP 3.10:

oc edit template glusterblock-provisioner
- displayName: glusterblock provisioner container image name
name: IMAGE_NAME
required: true
value: rhgs3/rhgs-gluster-block-prov-rhel?
- displayName: glusterblock provisioner container image version
name: IMAGE_VERSION
required: true
value: v3.11.1
- description: The namespace in which these resources are being
created
displayName: glusterblock provisioner namespace
name: NAMESPACE
required: true
value: glusterfs

7. Delete the following resources from the old pod

oc delete clusterroles.authorization.openshift.io glusterblock-
provisioner-runner

oc delete serviceaccounts glusterblock-registry-provisioner
8. Execute the following command to create a glusterblock-provisioner.

oc process <gluster_block_provisioner_template> | oc create -f -

7.2.5. Enabling S3 Compatible Object store

Support for S3 compatible Object Store is under technology preview. To enable S3 compatible object store,
see https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/3.11/html-

111

https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/3.11/html-single/operations_guide/#S3_Object_Store

Deployment Guide

If you have gluster nodes and heketi pods in glusterfs registry namespace, then follow the steps in
section Section 7.3, “Upgrading Gluster Nodes and heketi pods in glusterfs Registry Namespace”.

7.3. Upgrading Gluster Nodes and heketi pods in glusterfs Registry
Namespace

Follow the steps in the sections to upgrade your gluster nodes and heketi pods in glusterfs registry
namespace.

7.3.1. Upgrading the Red Hat Gluster Storage Registry Cluster

To upgrade the Red Hat Gluster Storage cluster, see In-Service Software Upgrade.

7.3.2. Upgrading Heketi Registry pod

If Heketi is not in an Openshift node, then you have to migrate Heketi in RHGS node to Openshift
node. For more information on how to migrate, refer Section 7.2.4.1, “Upgrading Heketi in Openshift
node if Deployed by Using Ansible”.

To upgrade the Heketi registry pods, follow the steps in section Section 6.2.3.1, “Upgrading Heketi Server”.

7.3.3. Upgrading Gluster Block

To upgrade the gluster block, follow the steps in section Section 7.2.4.2, “Upgrading Gluster Block if
Deployed by Using Ansible”.

7.4. Upgrading the client on Red Hat Openshift Container Platform Nodes

Execute the following commands on each of the nodes:

1. To drain the pod, execute the following command on the master node (or any node with cluster-
admin access):

oc adm drain <node_name> --ignore-daemonsets

2. To check if all the pods are drained, execute the following command on the master node (or any
node with cluster-admin access):

oc get pods --all-namespaces --field-selector=spec.nodeName=
<node_name>

3. Execute the command on the node to upgrade the client on the node:

112

https://access.redhat.com/documentation/en-us/red_hat_gluster_storage/3.4/html/installation_guide/sect-in-service_software_upgrade_from_red_hat_storage_3.3_to_red_hat_storage_3.4

Chapter 7. Upgrading Your Red Hat Openshift Container Storage in Independent Mode

yum update glusterfs-client

4. To enable node for pod scheduling execute the following command on the master node (or any node
with cluster-admin access):

oc adm manage-node --schedulable=true <node_name>

5. Create and add the following content to the multipath.conf file:

Make sure that the changes to multipath.conf and reloading of multipathd are done only after
all the server nodes are upgraded.

cat >> /etc/multipath.conf <<EOF
LIO iSCSI
devices {
device {
vendor "LIO-ORG"
user_friendly_names "yes" # names like mpatha
path_grouping_policy "failover" # one path per group
hardware_handler "1 alua"
path_selector "round-robin 0"
failback immediate
path_checker "tur"
prio "alua"
no_path_retry 120

}
EOF

6. Execute the following commands to start multipath daemon and [re]load the multipath configuration:

systemctl start multipathd

systemctl reload multipathd

113

Deployment Guide

Part IV. Uninstalling

114

Chapter 8. Uninstall Red Hat Openshift Container Storage

Chapter 8. Uninstall Red Hat Openshift Container Storage

For Red Hat Openshift Container Storage, the OpenShift Container Platform Advanced Installer comes with a
playbook to uninstall all resources and artifacts from the cluster. To use it, provide the original inventory file
that was used to install the target instance of Red Hat Openshift Container Storage and run the following
playbook:

This procedure will destroy data. Proceed with caution.

ansible-playbook -i <path_to_inventory_file> /usr/share/ansible/openshift-
ansible/playbooks/openshift-glusterfs/uninstall.yml

In addition, the playbook supports the use of a variable called openshift_storage_glusterfs_wipe
which, when enabled, will destroy any data on the block devices that were used for Red Hat Gluster Storage

following format:

ansible-playbook -i <path_to_inventory_ file> -e
"openshift_storage_glusterfs_wipe=true" /usr/share/ansible/openshift-
ansible/playbooks/openshift-glusterfs/uninstall.yml

If gluster-block is uninstalled, ensure that the entries corresponding to gluster-block in
[etc/target/saveconfig.json is removed. It is possible that the configuration file may contain entries
other than gluster-block and hence it is required to remove the the gluster-block entries manually.

115

Deployment Guide

Part V. Workloads

116

Chapter 9. Managing Arbitrated Replicated Volumes
Chapter 9. Managing Arbitrated Replicated Volumes

9.1. Managing Arbiter Brick Size

A standard replica 3 volume has the same sized bricks in each set, however, an arbiter volume will have one
brick in the brick set that can be smaller than the data bricks.

In order to better optimize the sizing of the Arbiter brick, Heketi allows the user to provide an average file size
value that is used to calculate the final size of the Arbiter brick. This is done using the volume option
“user.heketi.average-file-size NUM” where NUM is an integer value in KiB. By default Heketi uses a value of
64KiB.

To create an arbiter volume with a custom average file size using the heketi-cli command line tool the volume
options "user.heketi.arbiter true" and "user.heketi.average-file-size 1024" must be provided.

For example:

heketi-cli volume create --size=4 --gluster-volume-
options='user.heketi.arbiter true,user.heketi.average-file-size 1024'

9.2. Managing Arbiter Brick Placement

To accomplish the task of controlling where arbiter bricks are placed, Heketi uses specific node and device
tags. For the Arbiter feature, the tag "arbiter" can be applied to a node or device with the values of
"supported”, "required”, or "disabled".

where:
supported: both arbiter bricks and data bricks are allowed.
required: only arbiter bricks are allowed, data bricks are rejected.
disabled: only data bricks are allowed, arbiter bricks are rejected.
Based on your use case, you can set tags on a node or a device.

For example, to use arbiter in order to split nodes such that arbiter nodes can act as dedicated "tiebreakers"
between the nodes that host data, you can set a tag on the node.

The following example shows how to set tags on a device. The nodes have heterogeneous device types and
you want to set a particular space saving pattern: one node with a small nvme device and two (or more)
nodes with larger SSDs. To do this, set a tag on the device by identifying the small device as d1
(arbiter:required) and the larger devices as d2 and d3 (arbiter:disabled).

A device without an explicit tag will automatically inherit the arbiter tag value from the node it is
connected to. An explicit tag on the device always has priority over the node's tag.

9.2.1. Setting Tags with the Heketi CLI

To set tags on nodes and device via the heketi-cli command line tool, execute the following commands:

117

Deployment Guide

Node
heketi-cli node settags <node id> arbiter:<tag>
For example:
heketi-cli node settags e2a792a43ca9a6bac4b9bfa792e89347 arbiter:disabled
Device
heketi-cli device settags <device id> arbiter:<tag>
For example:

heketi-cli device settags 167fe2831ad0a91f7173dac79172f8d7
arbiter:required

9.2.2. Removing Tags using Heketi CLI

If you want to remove the arbiter tags, then execute the following commands:

Node
heketi-cli node rmtags <node id> arbiter
For example:
heketi-cli node rmtags e2a792a43ca9a6bac4b9bfa792e89347 arbiter
Device
heketi-cli device rmtags <device id> arbiter
For example:

heketi-cli device rmtags 167fe2831ad0a91f7173dac79172f8d7 arbiter

9.2.3. Viewing Tags with the Heketi CLI

To view the tags, execute the following commands. If the node or device has any tags it will be displayed in a
list below the heading "Tags":

Node
heketi-cli node info <node id>
For example:

heketi-cli node info e2a792a43ca9a6bac4b9bfa792e89347
Node Id: e2a792a43ca9a6bac4b9bfa792e89347
State: online

118

Chapter 9. Managing Arbitrated Replicated Volumes

Cluster Id: ddb14817873c13c5bb42a5c04969daf9
Zone: 1
Management Hostname: 10.0.0.1
Storage Hostname: 10.0.0.1
Tags:
arbiter: disabled
test: demonstration

Devices:
Id:0b39f89c0677e8cOb796caf00204e726 Name:/dev/vdb State:online
Size (GiB):500 Used (GiB):0 Free (GiB):500 Bricks:0
Id:167fe2831ad0a91f7173dac79172f8d7 Name:/dev/vdg State:online
Size (GiB):500 Used (GiB):0 Free (GiB):500 Bricks:0

Device

heketi-cli device info <device id>
For example:

heketi-cli device info 167fe2831ad0a91f7173dac79172f8d7
Device Id: 167fe2831ad0a91f7173dac79172f8d7
Name: /dev/vdg
State: online
Size (GiB):
Used (GiB):
Free (GiB):
Tags:
arbiter: required
foobar: magic
Bricks:

9.3. Creating Persistent Volumes

For more mformatlon about creatlng persistent volumes see https //access redhat. com/documentatlon/en-

119

https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/3.10/html-single/operations_guide/#chap-Documentation-Red_Hat_Gluster_Storage_Container_Native_with_OpenShift_Platform-OpenShift_Creating_Persistent_Volumes-Dynamic_Prov

Deployment Guide

In the Storage Class file ensure to add "user.heketi.arbiter true" under the volumeoptions parameter to
create Arbiter volumes.

For example:

apiVersion: storage.k8s.io/vlbetal
kind: StorageClass
metadata:
name: gluster-container
provisioner: kubernetes.io/glusterfs
parameters:
resturl: "http://heketi-storage-project.cloudapps.mystorage.com"
restuser: "admin"
volumetype: "replicate:3"
clusterid:
"630372ccdc720a92c681fb928f27hb53f, 796e6db1981f369ea0340913eeeasdc9a”
secretNamespace: "default"
secretName: "heketi-secret"
volumeoptions: "user.heketi.arbiter true"
volumenameprefix: "test-vol"
allowvVolumeExpansion: "true"

120

Chapter 10. Setting up Custom Volume Options

Chapter 10. Setting up Custom Volume Options

To set up shared persistent volumes, execute the following commands in one of the Red Hat Openshift
Container Storage pod:

1. For static provisioning: Execute the following commands to set the volume options:

gluster volume set VOLUME performance.open-behind off
gluster volume set VOLUME performance.write-behind off
gluster volume set VOLUME performance.stat-prefetch off
gluster volume set VOLUME performance.quick-read off
gluster volume set VOLUME performance.strict-o-direct on
gluster volume set VOLUME performance.read-ahead off
gluster volume set VOLUME performance.io-cache off
gluster volume set VOLUME performance.readdir-ahead off

HOHOHOHHHH K

2. To verify, execute the following command:
gluster volume get VOLUME all | grep <performance translator>
For example:

gluster volume get VOLUME all | egrep "performance.stat-prefetch |
performance.write-behind | performance.open-behind |
performance.quick-read | performance.strict-o-direct |
performance.read-ahead | performance.io-cache | performance.readdir -
ahead"

3. For dynamic provisioning, the volume options can be listed under "parameter" in the storage class
file. For example:

parameters:

resturl: http://heketi-storage-
glusterfs.router.default.svc.cluster.local

restuser: admin

secretName: heketi-storage-admin-secret

secretNamespace: glusterfs

volumeoptions: performance.stat-prefetch off performance.write-
behind off performance.open-behind off performance.quick-read off
performance.strict-o-direct on performance.read-ahead off
performance.io-cache off performance.readdir-ahead off

For more information on registering a storage class for file storage see
https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/3.11/html-

For more information on registering a storage class for block storage see
https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/3.11/html-

121

https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/3.11/html-single/operations_guide/#chap-Documentation-Red_Hat_Gluster_Storage_Container_Native_with_OpenShift_Platform-OpenShift_Creating_Persistent_Volumes-Dynamic_Prov
https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/3.11/html-single/operations_guide/#Block_dynamic_prov_vol

Deployment Guide

Part VI. Appendix

122

Appendix A. Optional Deployment Method (with chs-deploy)

Appendix A. Optional Deployment Method (with cns-deploy)

Following sections provides an optional method to deploy Red Hat Openshift Container Storage using cns-

deploy.

A.1l. Setting up Converged mode

The converged mode environment addresses the use-case where applications require both shared storage
and the flexibility of a converged infrastructure with compute and storage instances being scheduled and run

from the same set of hardware.

A.1.1. Configuring Port Access

On each of the OpenShift nodes that will host the Red Hat Gluster Storage container, add the following
rules to /etc/sysconfig/iptables in order to open the required ports:

-A OS_FIREWALL_ALLOW -p tcp -m state --state NEW -m tcp --dport 24007 -j

ACCEPT

-A OS_FIREWALL_ALLOW -p tcp
ACCEPT

-A OS_FIREWALL_ALLOW -p tcp
ACCEPT

-A OS_FIREWALL_ALLOW -p tcp
49152:49664 -j ACCEPT

-A OS_FIREWALL_ALLOW -p tcp
ACCEPT

-A OS_FIREWALL_ALLOW -p tcp
ACCEPT

-A OS_FIREWALL_ALLOW -p tcp
ACCEPT

state

state

state

state

state

state

--state

--state

--state

--state

--state

--state

NEW

NEW

NEW

NEW

NEW

NEW

tcp --dport 24008 -j
tcp --dport 2222 -j
multiport --dports
tcp --dport 24010 -j
tcp --dport 3260 -j

tcp --dport 111 -j

Port 24010 and 3260 are for gluster-blockd and iSCSI targets respectively.

The port range starting at 49664 defines the range of ports that can be used by GlusterFS for
communication to its volume bricks. In the above example the total number of bricks allowed is
512. Configure the port range based on the maximum number of bricks that could be hosted on

each node.

For more information about Red Hat Gluster Storage Server ports, see
https://access.redhat. com/documentatlon/en—

Execute the following command to reload the iptables:

systemctl reload iptables

Execute the following command on each node to verify if the iptables are updated:

iptables -L

123

https://access.redhat.com/documentation/en-us/red_hat_gluster_storage/3.4/html/administration_guide/chap-getting_started

Deployment Guide

A.1.2. Enabling Kernel Modules

Before running the cns -deploy tool, you must ensure that the dm_thin_pool, dm_multipath, and
target_core_user modules are loaded in the OpenShift Container Platform node. Execute the following
commands only on Gluster nodes to verify if the modules are loaded:

1lsmod | grep dm_thin_pool

1lsmod | grep dm_multipath

lsmod | grep target_core_user
If the modules are not loaded, then execute the following command to load the modules:

modprobe dm_thin_pool

modprobe dm_multipath

modprobe target_core_user

To ensure these operations are persisted across reboots, create the following files and update each
with the content as mentioned:

cat /etc/modules-load.d/dm_thin_pool.conf
dm_thin_pool

cat /etc/modules-load.d/dm_multipath.conf
dm_multipath

cat /etc/modules-load.d/target_core_user.conf
target_core_user

A.1.3. Starting and Enabling Services

Execute the following commands to enable and run rpcbind on all the nodes hosting the gluster pod :

systemctl add-wants multi-user rpcbind.service
systemctl enable rpcbind.service
systemctl start rpcbind.service

Execute the following command to check the status of rpcbind

systemctl status rpcbind

124

Appendix A. Optional Deployment Method (with chs-deploy)

rpcbind.service - RPC bind service
Loaded: loaded (/usr/lib/systemd/system/rpcbind.service; enabled; vendor
preset: enabled)
Active: active (running) since Wed 2017-08-30 21:24:21 IST; 1 day 13h ago
Main PID: 9945 (rpcbind)
CGroup: /system.slice/rpcbind.service
L9945 /sbin/rpcbind -w

Next Step: Proceed to Section A.3, “Setting up the Environment”to prepare the environment for Red Hat

Gluster Storage Container Converged in OpensShift.

To remove an installation of Red Hat Openshift Container Storage done using cns-deploy, run the
cns-deploy --abort command. Use the -g option if Gluster is containerized.

When the pods are deleted, not all Gluster states are removed from the node. Therefore, you must
alsorunrm -rf /var/lib/heketi /etc/glusterfs /var/lib/glusterd
/var/log/glusterfs command on every node that was running a Gluster pod and also run
wipefs -a <device> for every storage device that was consumed by Heketi. This erases all the
remaining Gluster states from each node. You must be an administrator to run the device wiping
command

A.2. Setting up Independent Mode

In an independent mode set-up, a dedicated Red Hat Gluster Storage cluster is available external to the
Openshift Container Platform. The storage is provisioned from the Red Hat Gluster Storage cluster.

A.2.1. Installing Red Hat Gluster Storage Server on Red Hat Enterprise Linux (Layered
Install)

Layered install involves installing Red Hat Gluster Storage over Red Hat Enterprise Linux.

It is recommended to create a separate /var partition that is large enough (50GB - 100GB) for log
files, geo-replication related miscellaneous files, and other files.

1. Perform a base install of Red Hat Enterprise Linux 7 Server

Independent mode is supported only on Red Hat Enterprise Linux 7.

2. Register the System with Subscription Manager

Run the following command and enter your Red Hat Network username and password to register the
system with the Red Hat Network:

subscription-manager register

125

Deployment Guide

3. Identify Available Entitlement Pools

Run the following commands to find entitlement pools containing the repositories required to install
Red Hat Gluster Storage:

subscription-manager list --available

4. Attach Entitlement Pools to the System

Use the pool identifiers located in the previous step to attach the Red Hat Enterprise Linux
Server and Red Hat Gluster Storage entitlements to the system. Run the following command
to attach the entitlements:

subscription-manager attach --pool=[POOLID]
For example:

subscription-manager attach --po0l=8a85f9814999f69101499c05aa706e47

5. Enable the Required Channels

For Red Hat Gluster Storage 3.3 on Red Hat Enterprise Linux 7.x

a. Run the following commands to enable the repositories required to install Red Hat Gluster
Storage

subscription-manager repos --enable=rhel-7-server-rpms
subscription-manager repos --enable=rh-gluster-3-for-rhel-7-
server-rpms

6. Verify if the Channels are Enabled
Run the following command to verify if the channels are enabled:
yum repolist
7. Update all packages
Ensure that all packages are up to date by running the following command.
yum update

8. Kernel Version Requirement

Independent mode requires the kernel-3.10.0-862.14.4.el7.x86_64 version or higher to be used on
the system. Verify the installed and running kernel versions by running the following command:

rpm -q kernel
kernel-3.10.0-862.14.4.e17.x86_64

uname -r
3.10.0-862.14.4.el17.x86_64

126

Appendix A. Optional Deployment Method (with chs-deploy)

If any kernel packages are updated, reboot the system with the following command.

shutdown -r now

9. Install Red Hat Gluster Storage

Run the following command to install Red Hat Gluster Storage:
yum install redhat-storage-server
a. To enable gluster-block execute the following command:

yum install gluster-block

10. Reboot

Reboot the system.

A.2.2. Configuring Port Access

This section provides information about the ports that must be open for the independent mode.

Red Hat Gluster Storage Server uses the listed ports. You must ensure that the firewall settings do not
prevent access to these ports.

Execute the following commands to open the required ports for both runtime and permanent configurations or
all Red Hat Gluster Storage nodes:

firewall-cmd --zone=zone_name --add-port=24010/tcp --add-port=3260/tcp --
add-port=111/tcp --add-port=22/tcp --add-port=24007/tcp --add-port=24008/tcp
--add-port=49152-49664/tcp

firewall-cmd --zone=zone_name --add-port=24010/tcp --add-port=3260/tcp --
add-port=111/tcp --add-port=22/tcp --add-port=24007/tcp --add-port=24008/tcp
--add-port=49152-49664/tcp --permanent

Port 24010 and 3260 are for gluster-blockd and iSCSI targets respectively.

The port range starting at 49664 defines the range of ports that can be used by GlusterFS for
communication to its volume bricks. In the above example, the total number of bricks allowed is
512. Configure the port range based on the maximum number of bricks that could be hosted on
each node.

A.2.3. Enabling Kernel Modules

127

Deployment Guide

Execute the following commands to enable kernel modules:

1. You must ensure that the dm_thin_pool and target_core_user modules are loaded in the Red
Hat Gluster Storage nodes.

modprobe target_core_user

modprobe dm_thin_pool
Execute the following command to verify if the modules are loaded:

1lsmod | grep dm_thin_pool

lsmod | grep target_core_user

To ensure these operations are persisted across reboots, create the following files and
update each file with the content as mentioned:

cat /etc/modules-load.d/dm_thin_pool.conf
dm_thin_pool

cat /etc/modules-load.d/target_core_user.conf
target_core_user

2. You must ensure that the dm_multipath module is loaded on all OpenShift Container Platform
nodes.

modprobe dm_multipath
Execute the following command to verify if the modules are loaded:

1lsmod | grep dm_multipath

To ensure these operations are persisted across reboots, create the following file and update
it with the content as mentioned:

cat /etc/modules-load.d/dm_multipath.conf
dm_multipath

A.2.4. Starting and Enabling Services

128

Appendix A. Optional Deployment Method (with chs-deploy)

Execute the following commands to start glusterd and gluster-blockd:

systemctl start sshd

systemctl enable sshd

systemctl start glusterd

systemctl enable glusterd

systemctl start gluster-blockd

systemctl enable gluster-blockd

Gluster Storage Container Converged in OpenShift.

A.3. Setting up the Environment

This chapter outlines the details for setting up the environment for Red Hat Openshift Container Platform.

A.3.1. Preparing the Red Hat OpenShift Container Platform Cluster

Execute the following steps to prepare the Red Hat OpenShift Container Platform cluster:

1. On the master or client, execute the following command to login as the cluster admin user:
oc login
For example:

oc login
Authentication required for https://dhcp46-
24.lab.eng.blr.redhat.com:8443 (openshift)
Username: test

Password:

Login successful.

You have access to the following projects and can switch between them
with 'oc project <project_name>"':

* default
kube-system
logging
management-infra
openshift
openshift-infra

Using project "default".

129

Deployment Guide

2. On the master or client, execute the following command to create a project, which will contain all the
containerized Red Hat Gluster Storage services:

oc new-project <project_name>
For example:

oc new-project storage-project

Now using project "storage-project" on server
"https://master.example.com:8443"

3. After the project is created, execute the following command on the master node to enable the
deployment of the privileged containers as Red Hat Gluster Storage container can only run in the
privileged mode.

oc adm policy add-scc-to-user privileged -z default

4. Execute the following steps on the master to set up the router:

If a router already exists, proceed to Step 5. To verify if the router is already deployed,
execute the following command:

oc get dc --all-namespaces
To list all routers in all namespaces execute the following command:

oc get dc --all-namespaces --selector=router=router

NAMESPACE NAME REVISION DESIRED CURRENT TRIGGERED
BY
default router 31 5 5 config

a. Execute the following command to enable the deployment of the router:
oc adm policy add-scc-to-user privileged -z router
b. Execute the following command to deploy the router:
oc adm router storage-project-router --replicas=1

c. Edit the subdomain name in the config.yaml file located at
/etc/origin/master/master-config.yaml.

For example:

subdomain: "cloudapps.mystorage.com"

130

Appendix A. Optional Deployment Method (with chs-deploy)

For more |nformat|on see https://access. redhat com/documentatlon/en—

d. For OpenShift Container Platform 3.7 and 3.9 execute the following command to restart the
services :

systemctl restart atomic-openshift-master-api atomic-
openshift-master-controllers

If the router setup fails, use the port forward method as described in
https://access.redhat.com/documentation/en-
us/red_hat_openshift_container_storage/3.11/html-single/operations_guide/#chap-
Documentation-

Red_Hat_Gluster_Storage_Container_Native with_OpensShift_Platform-
Port_Fwding.

5. Execute the following command to verify if the router is running:
oc get dc <router_name>
For example:

oc get dc storage-project-router
NAME REVISION DESIRED CURRENT TRIGGERED BY
storage-project-router 1 1 1 config

Ensure you do not edit the /etc/dnsmasq.conf file until the router has started.

6. After the router is running, the client has to be setup to access the services in the OpenShift cluster.
Execute the following steps on the client to set up the DNS.

a. Execute the following command to find the IP address of the router:

oc get pods -o wide --all-namespaces | grep router
storage-project storage-project-router-1-cm874 1/1
Running 119d 10.70.43.132 dhcp43-
132.1ab.eng.blr.redhat.com

b. Edit the /etc/dnsmasq.conf file and add the following line to the file:

address=/.cloudapps.mystorage.com/<Router_IP_Address>

131

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/configuring_clusters/#customizing-the-default-routing-subdomain
https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/3.11/html-single/operations_guide/#chap-Documentation-Red_Hat_Gluster_Storage_Container_Native_with_OpenShift_Platform-Port_Fwding
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html/configuring_clusters/setting-up-a-router

Deployment Guide

where, Router_IP_Address is the IP address of the node where the router is running.

c. Restart the dnsmasq service by executing the following command:
systemctl restart dnsmasq

d. Edit /etc/resolv.conf and add the following line:
nameserver 127.0.0.1

For more |nformat|on regarding setting up the DNS see https /laccess. redhat com/documentation/en-

A.3.2. Deploying Containerized Red Hat Gluster Storage Solutions

The following section covers deployment of the converged mode pods, independent mode pods, and using
the cns-deploy tool.

It is recommended that a separate cluster for OpenShift Container Platform infrastructure workload
(registry, logging and metrics) and application pod storage. Hence, if you have more than 6 nodes
ensure you create multiple clusters with a minimum of 3 nodes each. The infrastructure cluster
should belong to the default project namespace.

If you want to enable encryption on Red Hat Openshift Container Storage setup, see

https //access redhat com/documentatlon/en us/red_hat_openshift_container_storage/3.11/html-

before proceedlng with the foIIowmg steps

1. You must first provide a topology file for heketi which describes the topology of the Red Hat Gluster
Storage nodes and their attached storage devices. A sample, formatted topology file (topology-
sample.json) is installed with the ‘heketi-client’ package in the /usr/share/heketi/ directory.

{
"clusters": [
{
"nodes": [
{
"node": {
"hostnames": {
"manage": [
"nodel.example.com"
1,
"storage": [
"192.168.68.3"
]
Iy
"zone": 1
3

132

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html/installing_clusters/install-config-install-prerequisites#prereq-dns
https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/3.11/html-single/operations_guide/#chap-Documentation-Red_Hat_Gluster_Storage_Container_Native_with_OpenShift_Platform-Enabling_Encryption

Appendix A. Optional Deployment Method (with chs-deploy)

"devices": [
"/dev/sdb",
"/dev/sdc",
"/dev/sdd",
"/dev/sde",
"/dev/sdf",
"/dev/sdg",
"/dev/sdh",
"/dev/sdi"

"node": {
"hostnames": {
"manage": [
"node2.example.com"
1,
"storage": [
"192.168.68.2"
]
ts
"zone": 2
}
"devices": [
"/dev/sdb",
"/dev/sdc",
"/dev/sdd",
"/dev/sde",
"/dev/sdf",
"/dev/sdg",
"/dev/sdh",
"/dev/sdi"

iy

where,
clusters: Array of clusters.
Each element on the array is a map which describes the cluster as follows.
nodes: Array of OpenShift nodes that will host the Red Hat Gluster Storage container
Each element on the array is a map which describes the node as follows
node: It is a map of the following elements:

zone: The value represents the zone number that the node belongs to; the zone
number is used by heketi for choosing optimum position of bricks by having replicas of
bricks in different zones. Hence zone number is similar to a failure domain.

hostnames: It is a map which lists the manage and storage addresses

manage: It is the hostname/IP Address that is used by Heketi to communicate with
the node

133

Deployment Guide

storage: It is the IP address that is used by other OpenShift nodes to communicate
with the node. Storage data traffic will use the interface attached to this IP. This
must be the IP address and not the hostname because, in an OpenShift
environment, Heketi considers this to be the endpoint too.

devices: Name of each disk to be added

Copy the topology file from the default location to your location and then edit it:

cp /usr/share/heketi/topology-sample.json /<Path>/topology.json

Edit the topology file based on the Red Hat Gluster Storage pod hostname under the
node.hostnames.manage section and node .hostnames. storage section with the IP address.
For simplicity, the /usr/share/heketi/topology-sample.json file only sets up 4 nodes with 8 drives each.

Heketi stores its database on a Red Hat Gluster Storage volume. In cases where the volume
is down, the Heketi service does not respond due to the unavailability of the volume served by
a disabled trusted storage pool. To resolve this issue, restart the trusted storage pool which
contains the Heketi volume.

A.3.2.1. Deploying Converged Mode
Execute the following commands to deploy converged mode:

1. Execute the following command on the client to deploy the heketi and Red Hat Gluster Storage pods:

cns-deploy -n <namespace> -g --admin-key <Key> topology.json

134

Appendix A. Optional Deployment Method (with chs-deploy)

From Container-Native Storage 3.6, support for S3 compatible Object Store in Red Hat
Openshift Container Storage is under technology preview. To deploy S3 compatible object
store in Red Hat Openshift Container Storage see Step la below.

In the above command, the value for admin-key is the secret string for heketi admin
user. The heketi administrator will have access to all APIs and commands. Default is to
use no secret.

The BLOCK_HOST_SIZE parameter in cns-deploy controls the size (in GB) of the
automatically created Red Hat Gluster Storage volumes hosting the gluster-block
volumes. This default configuration will dynamically create block-hosting volumes of
500GB in size when more space is required. If you want to change this value then use --
block-host in cns-deploy. For example:

cns-deploy -n storage-project -g --admin-key secret --block-
host 1000 topology.json

For example:
cns-deploy -n storage-project -g --admin-key secret topology.json

Welcome to the deployment tool for GlusterFS on Kubernetes and
OpenShift.

Before getting started, this script has some requirements of the
execution
environment and of the container platform that you should verify.

The client machine that will run this script must have:

* Administrative access to an existing Kubernetes or OpenShift
cluster

* Access to a python interpreter 'python'

Each of the nodes that will host GlusterFS must also have appropriate
firewall
rules for the required GlusterFS ports:
* 111 - rpcbind (for glusterblock)
* 2222 - sshd (if running GlusterFS in a pod)
* 3260 - 1iSCSI targets (for glusterblock)
24006 - glusterblockd
24007 - GlusterFS Management
* 24008 - GlusterFS RDMA
* 49152 to 49251 - Each brick for every volume on the host requires
its own
port. For every new brick, one new port will be used starting at
49152. We
recommend a default range of 49152-49251 on each host, though you
can adjust
this to fit your needs.

*
*

The following kernel modules must be loaded:
* dm_snapshot
* dm_mirror

135

* dm_thin_pool
* dm_multipath
* target_core_user

For systems with SELinux, the following settings need to be
considered:
* virt_sandbox_use_fusefs should be enabled on each node to allow
writing to
remote GlusterFS volumes

In addition, for an OpenShift deployment you must:

* Have 'cluster_admin' role on the administrative account doing the
deployment

* Add the 'default' and 'router' Service Accounts to the 'privileged'
SCC

* Have a router deployed that is configured to allow apps to access
services

running in the cluster

Do you wish to proceed with deployment?

[Y]es, [N]o? [Default: Y]: Y
Using OpenShift CLI.
Using namespace '"storage-project".
Checking for pre-existing resources...
GlusterFS pods ... not found.
deploy-heketi pod ... not found.
heketi pod ... not found.
glusterblock-provisioner pod ... not found.
gluster-s3 pod ... not found.
Creating initial resources ... template "deploy-heketi" created
serviceaccount "heketi-service-account" created
template "heketi" created
template "glusterfs" created
role "edit" added: "system:serviceaccount:storage-project:heketi-
service-account"
0K
node "ip-172-18-5-29.ec2.internal" labeled
node "ip-172-18-8-205.ec2.internal" labeled
node "ip-172-18-6-100.ec2.internal" labeled
daemonset '"glusterfs" created
Waiting for GlusterFS pods to start ... OK
secret "heketi-config-secret" created
secret "heketi-config-secret" labeled
service "deploy-heketi" created
route "deploy-heketi" created
deploymentconfig "deploy-heketi" created
Waiting for deploy-heketi pod to start ... OK
Creating cluster ... ID: 30cd12e60f860fce21e7e7457d07db36
Allowing file volumes on cluster.
Allowing block volumes on cluster.

Creating node ip-172-18-5-29.ec2.internal ... ID:
4077242c76e5f477a27c5¢c47247ch348

Adding device /dev/xvdc ... OK

Creating node ip-172-18-8-205.ec2.internal ... ID:

dda0®e7d568d7b2f76a7e7491cfc26dd3

Adding device /dev/xvdc ... OK

Creating node ip-172-18-6-100.ec2.internal ... ID:
30al795ca515c85dca32b09be7a68733

Adding device /dev/xvdc ... OK

heketi topology loaded.

Saving /tmp/heketi-storage.json

secret "heketi-storage-secret" created
endpoints "heketi-storage-endpoints" created
service "heketi-storage-endpoints" created
job "heketi-storage-copy-job" created
service "heketi-storage-endpoints" labeled
deploymentconfig "deploy-heketi" deleted
route "deploy-heketi" deleted

service "deploy-heketi" deleted

job "heketi-storage-copy-job" deleted

pod "deploy-heketi-1-frjpt" deleted

secret "heketi-storage-secret" deleted
template "deploy-heketi" deleted

service "heketi" created

route "heketi" created

deploymentconfig "heketi" created

Waiting for heketi pod to start ... OK

heketi is now running and accessible via http://heketi-storage-
project.cloudapps.mystorage.com . To run

administrative commands you can install 'heketi-cli' and use it as
follows:

heketi-cli -s http://heketi-storage-
project.cloudapps.mystorage.com --user admin --secret '<ADMIN_KEY>'
cluster list

You can find it at https://github.com/heketi/heketi/releases
Alternatively,
use it from within the heketi pod:

/bin/oc -n storage-project exec -it <HEKETI_POD> -- heketi-cli -s
http://localhost:8080 --user admin --secret '<ADMIN_KEY>' cluster list

For dynamic provisioning, create a StorageClass similar to this:

apiVersion: storage.k8s.io/vibetal
kind: StorageClass
metadata:
name: glusterfs-storage
provisioner: kubernetes.io/glusterfs
parameters:
resturl: "http://heketi-storage-project.cloudapps.mystorage.com"

Ready to create and provide GlusterFS volumes.
clusterrole "glusterblock-provisioner-runner" created
serviceaccount "glusterblock-provisioner" created
clusterrolebinding "glusterblock-provisioner" created
deploymentconfig "glusterblock-provisioner-dc" created

Deployment Guide

138

Waiting for glusterblock-provisioner pod to start ... OK
Ready to create and provide Gluster block volumes.

Deployment complete!

For more information on the cns-deploy commands, refer to the man page of cns-deploy.

cns-deploy --help

a. To deploy S3 compatible object store along with Heketi and Red Hat Gluster Storage pods,

execute the following command:

cns-deploy /opt/topology.json --deploy-gluster --namespace

<namespace> --yes --admin-key <key> --log-file=
<path/to/logfile> --object-account <object account name> --
object-user <object user name> --object-password <object user

password> --verbose

object-account, object-user, and object -password are required credentials for
deploying the gluster-s3 container. If any of these are missing, gluster-s3 container
deployment will be skipped

object-sc and object-capacity are optional parameters. Where, object-sc is used
to specify a pre-existing StorageClass to use to create Red Hat Gluster Storage volumes to
back the object store and object-capacity is the total capacity of the Red Hat Gluster
Storage volume which will store the object data.

For example:

cns-deploy /opt/topology.json --deploy-gluster --namespace
storage-project --yes --admin-key secret --log-
file=/var/log/cns-deploy/444-cns-deploy.log --object-account
testvolume --object-user adminuser --object-password itsmine --
verbose

Using OpenShift CLI.

Checking status of namespace matching 'storage-project':
storage-project Active 56m
Using namespace '"storage-project".
Checking for pre-existing resources...
GlusterFS pods ...

Checking status of pods matching '--selector=glusterfs=pod':

No resources found.

Timed out waiting for pods matching '--selector=glusterfs=pod'.
not found.

deploy-heketi pod ...
Checking status of pods matching '--selector=deploy-heketi=pod':
No resources found.
Timed out waiting for pods matching '--selector=deploy-
heketi=pod'.

not found.

heketi pod
Checking status of pods matching '--selector=heketi=pod':
No resources found.
Timed out waiting for pods matching '--selector=heketi=pod"'.
not found.

glusterblock-provisioner pod ...
Checking status of pods matching '--selector=glusterfs=block-
provisioner-pod"':
No resources found.
Timed out waiting for pods matching '--selector=glusterfs=block-
provisioner-pod"'.
not found.

gluster-s3 pod
Checking status of pods matching '--selector=glusterfs=s3-pod':
No resources found.
Timed out waiting for pods matching '--selector=glusterfs=s3-
pod'.
not found.
Creating initial resources ... /usr/bin/oc -n storage-project
create -f /usr/share/heketi/templates/deploy-heketi-
template.yaml 2>&1
template "deploy-heketi" created
/usr/bin/oc -n storage-project create -f
/usr/share/heketi/templates/heketi-service-account.yaml 2>&1
serviceaccount "heketi-service-account" created
/usr/bin/oc -n storage-project create -f
/usr/share/heketi/templates/heketi-template.yaml 2>&1
template "heketi" created
/usr/bin/oc -n storage-project create -f
/usr/share/heketi/templates/glusterfs-template.yaml 2>&1
template "glusterfs" created
/usr/bin/oc -n storage-project policy add-role-to-user edit
system:serviceaccount:storage-project:heketi-service-account
2>81
role "edit" added: "system:serviceaccount:storage-
project:heketi-service-account"
/usr/bin/oc -n storage-project adm policy add-scc-to-user
privileged -z heketi-service-account
0K
Marking 'dhcp46-122.lab.eng.blr.redhat.com' as a GlusterFS node.
/usr/bin/oc -n storage-project label nodes dhcp46-
122.1lab.eng.blr.redhat.com storagenode=glusterfs 2>&1
node "dhcp46-122.lab.eng.blr.redhat.com" labeled
Marking 'dhcp46-9.lab.eng.blr.redhat.com' as a GlusterFS node.
/usr/bin/oc -n storage-project label nodes dhcp46-
9.lab.eng.blr.redhat.com storagenode=glusterfs 2>&1
node "dhcp46-9.lab.eng.blr.redhat.com" labeled
Marking 'dhcp46-134.lab.eng.blr.redhat.com' as a GlusterFS node.
/usr/bin/oc -n storage-project label nodes dhcp46-
134.1lab.eng.blr.redhat.com storagenode=glusterfs 2>&1
node "dhcp46-134.lab.eng.blr.redhat.com" labeled
Deploying GlusterFS pods.
/usr/bin/oc -n storage-project process -p NODE_LABEL=glusterfs
glusterfs | /usr/bin/oc -n storage-project create -f - 2>&1
daemonset '"glusterfs" created

Waiting for GlusterFS pods to start

Checking status of pods matching '--selector=glusterfs=pod':
glusterfs-6fj2v 1/1 Running 0 52s
glusterfs-ck4of 1/1 Running 0 52s
glusterfs-kbtz4 1/1 Running 0 52s

OK

/usr/bin/oc -n storage-project create secret generic heketi-
config-secret --from-file=private_key=/dev/null --from-
file=./heketi.json --from-file=topology.json=/opt/topology.json
secret "heketi-config-secret" created

/usr/bin/oc -n storage-project label --overwrite secret heketi-
config-secret glusterfs=heketi-config-secret heketi=config-
secret

secret "heketi-config-secret" labeled

/usr/bin/oc -n storage-project process -p
HEKETI_EXECUTOR=kubernetes -p HEKETI_FSTAB=/var/lib/heketi/fstab
-p HEKETI_ADMIN_KEY= -p HEKETI_USER_KEY= deploy-heketi |
/usr/bin/oc -n storage-project create -f - 2>&1

service "deploy-heketi" created

route "deploy-heketi" created

deploymentconfig "deploy-heketi" created

Waiting for deploy-heketi pod to start

Checking status of pods matching '--selector=deploy-heketi=pod':

deploy-heketi-1-hf9rn 1/1 Running 0 2m
0K
Determining heketi service URL ... OK

/usr/bin/oc -n storage-project exec -it deploy-heketi-1-hf9rn --
heketi-cli -s http://localhost:8080 --user admin --secret ''
topology load --json=/etc/heketi/topology.json 2>&1

Creating cluster ... ID: 252509038eh8568162ec5920c12bc243
Allowing file volumes on cluster.

Allowing block volumes on cluster.

Creating node dhcp46-122.lab.eng.blr.redhat.com ... ID:
73ad287aelef231f8a0dbh46422367c9a

Adding device /dev/sdd ... OK

Adding device /dev/sde ... OK

Adding device /dev/sdf ... OK

Creating node dhcp46-9.lab.eng.blr.redhat.com ... ID:
0dalb20daaad2d5c57dbfc4f6ab78001

Adding device /dev/sdd ... OK

Adding device /dev/sde ... OK

Adding device /dev/sdf ... OK

Creating node dhcp46-134.lab.eng.blr.redhat.com ... ID:
4b3b62fcoefd298dedbcdacfO@b498e65

Adding device /dev/sdd ... OK

Adding device /dev/sde ... OK

Adding device /dev/sdf ... OK

heketi topology loaded.

/usr/bin/oc -n storage-project exec -it deploy-heketi-1-hf9rn --
heketi-cli -s http://localhost:8080 --user admin --secret ''
setup-openshift-heketi-storage --listfile=/tmp/heketi-
storage.json --image rhgs3/rhgs-volmanager-rhel7:3.3.0-17 2>&1
Saving /tmp/heketi-storage.json

/usr/bin/oc -n storage-project exec -it deploy-heketi-1-hf9rn --
cat /tmp/heketi-storage.json | /usr/bin/oc -n storage-project
create -f - 2>&1

secret "heketi-storage-secret" created
endpoints "heketi-storage-endpoints" created
service "heketi-storage-endpoints" created
job "heketi-storage-copy-job" created

Checking status of pods matching '--selector=job-name=heketi-
storage-copy-job':

heketi-storage-copy-job-87vén 0/1 Completed 0

7s

/usr/bin/oc -n storage-project label --overwrite svc heketi-
storage-endpoints glusterfs=heketi-storage-endpoints
heketi=storage-endpoints

service "heketi-storage-endpoints" labeled

/usr/bin/oc -n storage-project delete

all, service, jobs,deployment, secret --selector="deploy-heketi"
2>81

deploymentconfig "deploy-heketi" deleted

route "deploy-heketi" deleted

service "deploy-heketi" deleted

job "heketi-storage-copy-job" deleted

pod "deploy-heketi-1-hf9rn" deleted

secret "heketi-storage-secret" deleted

/usr/bin/oc -n storage-project delete dc,route, template --
selector="deploy-heketi" 2>&1

template "deploy-heketi" deleted

/usr/bin/oc -n storage-project process -p
HEKETI_EXECUTOR=kubernetes -p HEKETI_FSTAB=/var/lib/heketi/fstab
-p HEKETI_ADMIN_KEY= -p HEKETI_USER_KEY= heketi | /usr/bin/oc -n
storage-project create -f - 2>&1

service "heketi" created

route "heketi" created

deploymentconfig "heketi" created

Waiting for heketi pod to start

Checking status of pods matching '--selector=heketi=pod':
heketi-1-zzblp 1/1 Running 0 31s

0K

Determining heketi service URL ... OK

heketi is now running and accessible via http://heketi-storage-
project.cloudapps.mystorage.com . To run

administrative commands you can install 'heketi-cli' and use it
as follows:

heketi-cli -s http://heketi-storage-
project.cloudapps.mystorage.com --user admin --secret
'<ADMIN_KEY>' cluster list

You can find it at https://github.com/heketi/heketi/releases
Alternatively,
use it from within the heketi pod:

/usr/bin/oc -n storage-project exec -it <HEKETI_POD> --
heketi-cli -s http://localhost:8080 --user admin --secret
'<ADMIN_KEY>' cluster list

For dynamic provisioning, create a StorageClass similar to this:

apiVersion: storage.k8s.io/vibetal
kind: StorageClass
metadata:

name: glusterfs-storage
provisioner: kubernetes.io/glusterfs
parameters:

resturl: "http://heketi-storage-
project.cloudapps.mystorage.com"

Ready to create and provide GlusterFS volumes.

sed -e 's/\${NAMESPACE}/storage-project/'
/usr/share/heketi/templates/glusterblock-provisioner.yaml |
/usr/bin/oc -n storage-project create -f - 2>&1
clusterrole "glusterblock-provisioner-runner" created
serviceaccount "glusterblock-provisioner" created
clusterrolebinding "glusterblock-provisioner" created
deploymentconfig "glusterblock-provisioner-dc" created
Waiting for glusterblock-provisioner pod to start

Checking status of pods matching '--selector=glusterfs=block-
provisioner-pod"':

glusterblock-provisioner-dc-1-xmébv 1/1 Running 0
6s

OK

Ready to create and provide Gluster block volumes.

/usr/bin/oc -n storage-project create secret generic heketi-
storage-project-admin-secret --from-literal=key= --
type=kubernetes.io/glusterfs

secret "heketi-storage-project-admin-secret" created
/usr/bin/oc -n storage-project label --overwrite secret heketi-
storage-project-admin-secret glusterfs=s3-heketi-storage-
project-admin-secret gluster-s3=heketi-storage-project-admin-
secret

secret "heketi-storage-project-admin-secret" labeled

sed -e 's/\${STORAGE_CLASS}/glusterfs-for-s3/' -e
's/\${HEKETI_URL}/heketi-storage-
project.cloudapps.mystorage.com/' -e 's/\${NAMESPACE}/storage-
project/' /usr/share/heketi/templates/gluster-s3-
storageclass.yaml | /usr/bin/oc -n storage-project create -f -
2>81

storageclass '"glusterfs-for-s3" created

sed -e 's/\${STORAGE_CLASS}/glusterfs-for-s3/' -e
's/\${VOLUME_CAPACITY}/2Gi/"
/usr/share/heketi/templates/gluster-s3-pvcs.yaml | /usr/bin/oc -
n storage-project create -f - 2>&1

persistentvolumeclaim "gluster-s3-claim" created
persistentvolumeclaim "gluster-s3-meta-claim" created

Checking status of persistentvolumeclaims matching '--
selector=glusterfs in (s3-pvc, s3-meta-pvc)':

gluster-s3-claim Bound pvc-35b6c1f0-9c65-11e7-9c8c-
005056b3ded1l 2Gi RWX glusterfs-for-s3 18s
gluster-s3-meta-claim Bound pvc-35b86e7a-9c65-11e7-9c8c-
005056b3ded1 1Gi RWX glusterfs-for-s3 18s

/usr/bin/oc -n storage-project create -f

Appendix A. Optional Deployment Method (with chs-deploy)

/usr/share/heketi/templates/gluster-s3-template.yaml 2>&1
template "gluster-s3" created

/usr/bin/oc -n storage-project process -p S3_ACCOUNT=testvolume
-p S3_USER=adminuser -p S3_PASSWORD=itsmine gluster-s3 |
/usr/bin/oc -n storage-project create -f - 2>&1

service "gluster-s3-service" created

route "gluster-s3-route" created

deploymentconfig "gluster-s3-dc" created

Waiting for gluster-s3 pod to start

Checking status of pods matching '--selector=glusterfs=s3-pod':
gluster-s3-dc-1-x3x4q 1/1 Running 0] 6s

oK

Ready to create and provide Gluster object volumes.

Deployment complete!
2. Execute the following command to let the client communicate with the container:

export HEKETI_CLI_SERVER=http://heketi-<project_name>.
<sub_domain_name>

For example:

export HEKETI_CLI_SERVER=http://heketi-storage-
project.cloudapps.mystorage.com

To verify if Heketi is loaded with the topology execute the following command:

heketi-cli topology info

The cns-deploy tool does not support scaling up of the cluster. To manually scale-up the cluster, see
https //access redhat com/documentatlon/en us/red_hat_openshift_container_storage/3.11/html-

Next step: If you are installing the independent mode 3.11, proceed to
https //access redhat com/documentatlon/en us/red_hat_openshift_container_storage/3.11/html-

A.3.2.2. Deploying Independent Mode

Execute the following commands to deploy Red Hat Openshift Container Storage in Independent mode:

1. To set a passwordless SSH to all Red Hat Gluster Storage nodes, execute the following command
on the client for each of the Red Hat Gluster Storage node:

ssh-copy-id -i /root/.ssh/id_rsa root@<ip/hostname_rhgs node>

143

https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/3.11/html-single/operations_guide/#chap-Documentation-Red_Hat_Gluster_Storage_Container_Native_with_OpenShift_Platform-Managing_Clusters
https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/3.11/html-single/operations_guide/#chap-Documentation-Red_Hat_Gluster_Storage_Container_Native_with_OpenShift_Platform-Updating_Registry

Deployment Guide

2. Execute the following command on the client to deploy heketi pod and to create a cluster of Red Hat
Gluster Storage nodes:

cns-deploy -n <namespace> --admin-key <Key> -s /root/.ssh/id_rsa
topology.json

Support for S3 compatible Object Store is under technology preview. To deploy S3
compatible object store see Step 2a below.

In the above command, the value for admin-key is the secret string for heketi admin
user. The heketi administrator will have access to all APIs and commands. Default is to
use no secret.

The BLOCK_HOST_SIZE parameter in cns-deploy controls the size (in GB) of the
automatically created Red Hat Gluster Storage volumes hosting the gluster-block
volumes. This default configuration will dynamically create block-hosting volumes of
500GB in size when more space is required. If you want to change this value then use --
block-host in cns-deploy. For example:

cns-deploy -n storage-project -g --admin-key secret --block-
host 1000 topology.json

For example:

cns-deploy -n storage-project --admin-key secret -s
/root/.ssh/id_rsa topology.json

Welcome to the deployment tool for GlusterFS on Kubernetes and
OpenShift.

Before getting started, this script has some requirements of the
execution
environment and of the container platform that you should verify.

The client machine that will run this script must have:

* Administrative access to an existing Kubernetes or OpenShift
cluster

* Access to a python interpreter 'python'

Each of the nodes that will host GlusterFS must also have appropriate
firewall
rules for the required GlusterFS ports:
* 2222 - sshd (if running GlusterFS in a pod)
* 24007 - GlusterFS Management
* 24008 - GlusterFS RDMA
* 49152 to 49251 - Each brick for every volume on the host requires
its own
port. For every new brick, one new port will be used starting at
49152. We
recommend a default range of 49152-49251 on each host, though you
can adjust
this to fit your needs.

144

The following kernel modules must be loaded:
* dm_snapshot
* dm_mirror
* dm_thin_pool

For systems with SELinux, the following settings need to be
considered:
* virt_sandbox_use_fusefs should be enabled on each node to allow
writing to
remote GlusterFS volumes

In addition, for an OpenShift deployment you must:

* Have 'cluster_admin' role on the administrative account doing the
deployment

* Add the 'default' and 'router' Service Accounts to the 'privileged'
SCC

* Have a router deployed that is configured to allow apps to access
services

running in the cluster

Do you wish to proceed with deployment?

[Y]es, [N]o? [Default: Y]: vy
Using OpenShift CLI.
Using namespace '"storage-project".
Checking for pre-existing resources...
GlusterFS pods ... not found.
deploy-heketi pod ... not found.
heketi pod ... not found.
Creating initial resources ... template "deploy-heketi" created
serviceaccount "heketi-service-account" created
template "heketi" created
role "edit" added: "system:serviceaccount:storage-project:heketi-
service-account"
0K
secret "heketi-config-secret" created
secret "heketi-config-secret" labeled
service "deploy-heketi" created
route "deploy-heketi" created
deploymentconfig "deploy-heketi" created
Waiting for deploy-heketi pod to start ... OK
Creating cluster ... ID: 60bf06636eb4eb81d4e9be4b04cfce92
Allowing file volumes on cluster.
Allowing block volumes on cluster.

Creating node dhcp47-104.lab.eng.blr.redhat.com ... ID:
eadc66f9d03563bcfc3db3fe636c34be

Adding device /dev/sdd ... OK

Adding device /dev/sde ... OK

Adding device /dev/sdf ... OK

Creating node dhcp47-83.lab.eng.blr.redhat.com ... ID:
178684b0a0425f51b8f1a032982ffe4d

Adding device /dev/sdd ... OK

Adding device /dev/sde ... OK

Adding device /dev/sdf ... OK

Creating node dhcp46-152.lab.eng.blr.redhat.com ... ID:

08cd7034ef7ac66499dc040d93cf4a93

Adding device /dev/sdd ... OK

Adding device /dev/sde ... OK

Adding device /dev/sdf ... OK

heketi topology loaded.

Saving /tmp/heketi-storage.json

secret "heketi-storage-secret" created
endpoints "heketi-storage-endpoints" created
service "heketi-storage-endpoints" created
job "heketi-storage-copy-job" created
service "heketi-storage-endpoints" labeled
deploymentconfig "deploy-heketi" deleted
route "deploy-heketi" deleted

service "deploy-heketi" deleted

job "heketi-storage-copy-job" deleted

pod "deploy-heketi-1-30c06" deleted

secret "heketi-storage-secret" deleted
template "deploy-heketi" deleted

service "heketi" created

route "heketi" created

deploymentconfig "heketi" created

Waiting for heketi pod to start ... OK

heketi is now running and accessible via http://heketi-storage-
project.cloudapps.mystorage.com . To run

administrative commands you can install 'heketi-cli' and use it as
follows:

heketi-cli -s http://heketi-storage-
project.cloudapps.mystorage.com --user admin --secret '<ADMIN_KEY>'
cluster list

You can find it at https://github.com/heketi/heketi/releases
Alternatively,
use it from within the heketi pod:

/usr/bin/oc -n storage-project exec -it <HEKETI_POD> -- heketi-cli
-s http://localhost:8080 --user admin --secret '<ADMIN_KEY>' cluster
list

For dynamic provisioning, create a StorageClass similar to this:

apiVersion: storage.k8s.io/vibetal
kind: StorageClass
metadata:
name: glusterfs-storage
provisioner: kubernetes.io/glusterfs
parameters:
resturl: "http://heketi-storage-project.cloudapps.mystorage.com"

Deployment complete!

Appendix A. Optional Deployment Method (with chs-deploy)

For more information on the cns-deploy commands, refer to the man page of the cns-deploy.

cns-deploy --help

a. To deploy S3 compatible object store along with Heketi and Red Hat Gluster Storage pods,
execute the following command:

cns-deploy /opt/topology.json --deploy-gluster --namespace
<namespace> --admin-key <Key> --yes --log-file=<path/to/logfile>
--object-account <object account name> --object-user <object
user name> --object-password <object user password> --verbose

object-account, object-user, and object-password are required credentials for
deploying the gluster-s3 container. If any of these are missing, gluster-s3 container
deployment will be skipped

object-sc and object-capacity are optional parameters. Where, object-sc is used
to specify a pre-existing StorageClass to use to create Red Hat Gluster Storage volumes to
back the object store and object-capacity is the total capacity of the Red Hat Gluster
Storage volume which will store the object data.

For example:

cns-deploy /opt/topology.json --deploy-gluster --namespace
storage-project --admin-key secret --yes --log-
file=/var/log/cns-deploy/444-cns-deploy.log --object-account
testvolume --object-user adminuser --object-password itsmine --
verbose

Using OpenShift CLI.

Checking status of namespace matching 'storage-project':
storage-project Active 56m
Using namespace '"storage-project".
Checking for pre-existing resources...
GlusterFS pods ...

Checking status of pods matching '--selector=glusterfs=pod':

No resources found.

Timed out waiting for pods matching '--selector=glusterfs=pod'.
not found.

deploy-heketi pod ...
Checking status of pods matching '--selector=deploy-heketi=pod':
No resources found.
Timed out waiting for pods matching '--selector=deploy-
heketi=pod'.
not found.

heketi pod
Checking status of pods matching '--selector=heketi=pod':
No resources found.
Timed out waiting for pods matching '--selector=heketi=pod"'.
not found.

glusterblock-provisioner pod ...

147

Checking status of pods matching '--selector=glusterfs=block-
provisioner-pod"':
No resources found.
Timed out waiting for pods matching '--selector=glusterfs=block-
provisioner-pod"'.
not found.

gluster-s3 pod
Checking status of pods matching '--selector=glusterfs=s3-pod':
No resources found.
Timed out waiting for pods matching '--selector=glusterfs=s3-
pod'.
not found.
Creating initial resources ... /usr/bin/oc -n storage-project
create -f /usr/share/heketi/templates/deploy-heketi-
template.yaml 2>&1
template "deploy-heketi" created
/usr/bin/oc -n storage-project create -f
/usr/share/heketi/templates/heketi-service-account.yaml 2>&1
serviceaccount "heketi-service-account" created
/usr/bin/oc -n storage-project create -f
/usr/share/heketi/templates/heketi-template.yaml 2>&1
template "heketi" created
/usr/bin/oc -n storage-project create -f
/usr/share/heketi/templates/glusterfs-template.yaml 2>&1
template "glusterfs" created
/usr/bin/oc -n storage-project policy add-role-to-user edit
system:serviceaccount:storage-project:heketi-service-account
2>81
role "edit" added: "system:serviceaccount:storage-
project:heketi-service-account"
/usr/bin/oc -n storage-project adm policy add-scc-to-user
privileged -z heketi-service-account
0K
Marking 'dhcp46-122.lab.eng.blr.redhat.com' as a GlusterFS node.
/usr/bin/oc -n storage-project label nodes dhcp46-
122.1lab.eng.blr.redhat.com storagenode=glusterfs 2>&1
node "dhcp46-122.lab.eng.blr.redhat.com" labeled
Marking 'dhcp46-9.lab.eng.blr.redhat.com' as a GlusterFS node.
/usr/bin/oc -n storage-project label nodes dhcp46-
9.lab.eng.blr.redhat.com storagenode=glusterfs 2>&1
node "dhcp46-9.lab.eng.blr.redhat.com" labeled
Marking 'dhcp46-134.lab.eng.blr.redhat.com' as a GlusterFS node.
/usr/bin/oc -n storage-project label nodes dhcp46-
134.1lab.eng.blr.redhat.com storagenode=glusterfs 2>&1
node "dhcp46-134.lab.eng.blr.redhat.com" labeled
Deploying GlusterFS pods.
/usr/bin/oc -n storage-project process -p NODE_LABEL=glusterfs
glusterfs | /usr/bin/oc -n storage-project create -f - 2>&1
daemonset '"glusterfs" created
Waiting for GlusterFS pods to start

Checking status of pods matching '--selector=glusterfs=pod':
glusterfs-6fj2v 1/1 Running 0 52s
glusterfs-ck4of 1/1 Running 0 52s
glusterfs-kbtz4 1/1 Running 0 52s

OK

/usr/bin/oc -n storage-project create secret generic heketi-

config-secret --from-file=private_key=/dev/null --from-
file=./heketi.json --from-file=topology.json=/opt/topology.json
secret "heketi-config-secret" created

/usr/bin/oc -n storage-project label --overwrite secret heketi-
config-secret glusterfs=heketi-config-secret heketi=config-
secret

secret "heketi-config-secret" labeled

/usr/bin/oc -n storage-project process -p
HEKETI_EXECUTOR=kubernetes -p HEKETI_FSTAB=/var/lib/heketi/fstab
-p HEKETI_ADMIN_KEY= -p HEKETI_USER_KEY= deploy-heketi |
/usr/bin/oc -n storage-project create -f - 2>&1

service "deploy-heketi" created

route "deploy-heketi" created

deploymentconfig "deploy-heketi" created

Waiting for deploy-heketi pod to start

Checking status of pods matching '--selector=deploy-heketi=pod':

deploy-heketi-1-hf9rn 1/1 Running 0 2m
0K
Determining heketi service URL ... OK

/usr/bin/oc -n storage-project exec -it deploy-heketi-1-hf9rn --
heketi-cli -s http://localhost:8080 --user admin --secret ''
topology load --json=/etc/heketi/topology.json 2>&1

Creating cluster ... ID: 252509038eh8568162ec5920c12bc243
Allowing file volumes on cluster.

Allowing block volumes on cluster.

Creating node dhcp46-122.lab.eng.blr.redhat.com ... ID:
73ad287aelef231f8a0dbh46422367c9a

Adding device /dev/sdd ... OK

Adding device /dev/sde ... OK

Adding device /dev/sdf ... OK

Creating node dhcp46-9.lab.eng.blr.redhat.com ... ID:
0dalb20daaad2d5c57dbfc4f6ab78001

Adding device /dev/sdd ... OK

Adding device /dev/sde ... OK

Adding device /dev/sdf ... OK

Creating node dhcp46-134.lab.eng.blr.redhat.com ... ID:
4b3b62fcoefd298dedbcdacf®b498e65

Adding device /dev/sdd ... OK

Adding device /dev/sde ... OK

Adding device /dev/sdf ... OK

heketi topology loaded.

/usr/bin/oc -n storage-project exec -it deploy-heketi-1-hf9rn --
heketi-cli -s http://localhost:8080 --user admin --secret ''
setup-openshift-heketi-storage --listfile=/tmp/heketi-
storage.json --image rhgs3/rhgs-volmanager-rhel7:3.3.0-17 2>&1
Saving /tmp/heketi-storage.json

/usr/bin/oc -n storage-project exec -it deploy-heketi-1-hf9rn --
cat /tmp/heketi-storage.json | /usr/bin/oc -n storage-project
create -f - 2>&1

secret "heketi-storage-secret" created

endpoints "heketi-storage-endpoints" created

service "heketi-storage-endpoints" created

job "heketi-storage-copy-job" created

Checking status of pods matching '--selector=job-name=heketi-
storage-copy-job':

heketi-storage-copy-job-87vén 0/1 Completed 0

7s

/usr/bin/oc -n storage-project label --overwrite svc heketi-
storage-endpoints glusterfs=heketi-storage-endpoints
heketi=storage-endpoints

service "heketi-storage-endpoints" labeled

/usr/bin/oc -n storage-project delete

all, service, jobs,deployment, secret --selector="deploy-heketi"
2>81

deploymentconfig "deploy-heketi" deleted

route "deploy-heketi" deleted

service "deploy-heketi" deleted

job "heketi-storage-copy-job" deleted

pod "deploy-heketi-1-hf9rn" deleted

secret "heketi-storage-secret" deleted

/usr/bin/oc -n storage-project delete dc,route, template --
selector="deploy-heketi" 2>&1

template "deploy-heketi" deleted

/usr/bin/oc -n storage-project process -p
HEKETI_EXECUTOR=kubernetes -p HEKETI_FSTAB=/var/lib/heketi/fstab
-p HEKETI_ADMIN_KEY= -p HEKETI_USER_KEY= heketi | /usr/bin/oc -n
storage-project create -f - 2>&1

service "heketi" created

route "heketi" created

deploymentconfig "heketi" created

Waiting for heketi pod to start

Checking status of pods matching '--selector=heketi=pod':
heketi-1-zzblp 1/1 Running 0 31s

OK

Determining heketi service URL ... OK

heketi is now running and accessible via http://heketi-storage-
project.cloudapps.mystorage.com . To run

administrative commands you can install 'heketi-cli' and use it
as follows:

heketi-cli -s http://heketi-storage-
project.cloudapps.mystorage.com --user admin --secret
'<ADMIN_KEY>' cluster 1list

You can find it at https://github.com/heketi/heketi/releases
Alternatively,
use it from within the heketi pod:

/usr/bin/oc -n storage-project exec -it <HEKETI_POD> --
heketi-cli -s http://localhost:8080 --user admin --secret
'<ADMIN_KEY>' cluster list

For dynamic provisioning, create a StorageClass similar to this:

apiVersion: storage.k8s.io/vilibetal
kind: StorageClass
metadata:

name: glusterfs-storage
provisioner: kubernetes.io/glusterfs

parameters:
resturl: "http://heketi-storage-
project.cloudapps.mystorage.com"

Ready to create and provide GlusterFS volumes.

sed -e 's/\${NAMESPACE}/storage-project/'
/usr/share/heketi/templates/glusterblock-provisioner.yaml |
/usr/bin/oc -n storage-project create -f - 2>&1
clusterrole "glusterblock-provisioner-runner" created
serviceaccount "glusterblock-provisioner" created
clusterrolebinding "glusterblock-provisioner" created
deploymentconfig "glusterblock-provisioner-dc" created
Waiting for glusterblock-provisioner pod to start

Checking status of pods matching '--selector=glusterfs=block-
provisioner-pod"':

glusterblock-provisioner-dc-1-xmébv 1/1 Running 0
6s

0K

Ready to create and provide Gluster block volumes.

/usr/bin/oc -n storage-project create secret generic heketi-
storage-project-admin-secret --from-literal=key= --
type=kubernetes.io/glusterfs

secret "heketi-storage-project-admin-secret" created
/usr/bin/oc -n storage-project label --overwrite secret heketi-
storage-project-admin-secret glusterfs=s3-heketi-storage-
project-admin-secret gluster-s3=heketi-storage-project-admin-
secret

secret "heketi-storage-project-admin-secret" labeled

sed -e 's/\${STORAGE_CLASS}/glusterfs-for-s3/' -e
's/\${HEKETI_URL}/heketi-storage-
project.cloudapps.mystorage.com/' -e 's/\${NAMESPACE}/storage-
project/' /usr/share/heketi/templates/gluster-s3-
storageclass.yaml | /usr/bin/oc -n storage-project create -f -
2>81

storageclass '"glusterfs-for-s3" created

sed -e 's/\${STORAGE_CLASS}/glusterfs-for-s3/' -e
's/\${VOLUME_CAPACITY}/2Gi/"'
/usr/share/heketi/templates/gluster-s3-pvcs.yaml | /usr/bin/oc -
n storage-project create -f - 2>&1

persistentvolumeclaim "gluster-s3-claim" created
persistentvolumeclaim "gluster-s3-meta-claim" created

Checking status of persistentvolumeclaims matching '--
selector=glusterfs in (s3-pvc, s3-meta-pvc)':

gluster-s3-claim Bound pvc-35b6c1f0-9c65-11e7-9c8c-
005056b3ded1l 2Gi RWX glusterfs-for-s3 18s
gluster-s3-meta-claim Bound pvc-35b86e7a-9c65-11e7-9c8c-
005056b3ded1 1Gi RWX glusterfs-for-s3 18s

/usr/bin/oc -n storage-project create -f
/usr/share/heketi/templates/gluster-s3-template.yaml 2>&1
template "gluster-s3" created

/usr/bin/oc -n storage-project process -p S3_ACCOUNT=testvolume
-p S3_USER=adminuser -p S3_PASSWORD=itsmine gluster-s3 |
/usr/bin/oc -n storage-project create -f - 2>&1

service "gluster-s3-service" created

route "gluster-s3-route" created

deploymentconfig "gluster-s3-dc" created
Waiting for gluster-s3 pod to start

Checking status of pods matching '--selector=glusterfs=s3-pod':
gluster-s3-dc-1-x3x4q 1/1 Running 0 6Ss
0K

Ready to create and provide Gluster object volumes.

Deployment complete!

3. Brick multiplexing is a feature that allows adding multiple bricks into one process. This reduces
resource consumption and allows us to run more bricks than before with the same memory
consumption. Execute the following commands on one of the Red Hat Gluster Storage nodes on
each cluster to enable brick-multiplexing:

a. Execute the following command to enable brick multiplexing:
gluster vol set all cluster.brick-multiplex on
For example:

gluster vol set all cluster.brick-multiplex on
Brick-multiplexing is supported only for container workloads
(CNS/CRS). Also it is advised to make sure that either all
volumes are in stopped state or no bricks are running before
this option is modified.Do you still want to continue? (y/n) y
volume set: success

b. Restart the heketidb volumes:

gluster vol stop heketidbstorage

Stopping volume will make its data inaccessible. Do you want to
continue? (y/n) vy

volume stop: heketidbstorage: success

gluster vol start heketidbstorage
volume start: heketidbstorage: success

4. Execute the following command to let the client communicate with the container:

export HEKETI_CLI_SERVER=http://heketi-<project_name>.
<sub_domain_name>

For example:

export HEKETI_CLI_SERVER=http://heketi-storage-
project.cloudapps.mystorage.com

To verify if Heketi is loaded with the topology execute the following command:

heketi-cli topology info

Appendix A. Optional Deployment Method (with cns-deploy)

The cns-deploy tool does not support scaling up of the cluster. To manually scale-up the cluster, see
https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/3.11/html-
single/operations_guide/#chap-Documentation-

Red_Hat Gluster_Storage Container_Native_with_OpenShift_Platform-Managing_Clusters.

Next step: If you are installing converged mode, proceed to https://access.redhat.com/documentation/en-
us/red_hat_openshift_container_storage/3.11/html-single/operations_guide/#chap-Documentation-
Red_Hat Gluster_Storage_Container_Native_with_OpenShift_Platform-Updating_Registry.

153

https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/3.11/html-single/operations_guide/#chap-Documentation-Red_Hat_Gluster_Storage_Container_Native_with_OpenShift_Platform-Managing_Clusters
https://access.redhat.com/documentation/en-us/red_hat_openshift_container_storage/3.11/html-single/operations_guide/#chap-Documentation-Red_Hat_Gluster_Storage_Container_Native_with_OpenShift_Platform-Updating_Registry

Deployment Guide

Appendix B. Settings that are destroyed when using uninstall
playbook

When running the uninstall.yml playbook the following two files are called:
glusterfs_config_facts.yml
glusterfs_registry facts.yml

When the following command is executed then the data/resources/content/settings related to
glusterfs_config_facts.yml and glusterfs_registry facts.yml is destroyed.

ansible-playbook -i <path_to_inventory_ file> -e
"openshift_storage_glusterfs_wipe=true" /usr/share/ansible/openshift-
ansible/playbooks/openshift-glusterfs/uninstall.yml

glusterfs_config_facts.yml variables:

glusterfs_timeout: "{{ openshift_storage_glusterfs_timeout }}"
glusterfs_namespace: "{{ openshift_storage_glusterfs_namespace }}"
glusterfs_is_native: "{{ openshift_storage_glusterfs_is_native | bool
}}II
glusterfs_name: "{{ openshift_storage_glusterfs_name }}"
map_from_pairs is a custom filter plugin in role lib_utils
glusterfs_nodeselector: "{{ openshift_storage_glusterfs_nodeselector |
default(['storagenode', openshift_storage_glusterfs_name] | join('=")) |
map_from_pairs }}"
glusterfs_use_default_selector: "{{
openshift_storage_glusterfs_use_default_selector }}"
glusterfs_storageclass: "{{ openshift_storage_glusterfs_storageclass }}"
glusterfs_storageclass_default: "{{
openshift_storage_glusterfs_storageclass_default | bool }}"
glusterfs_image: "{{ openshift_storage_glusterfs_image }}"
glusterfs_block_deploy: "{{ openshift_storage_glusterfs_block_deploy |
bool }}"
glusterfs_block_image: "{{ openshift_storage_glusterfs_block_image }}"
glusterfs_block_host_vol_create: "{{
openshift_storage_glusterfs_block_host_vol _create }}"
glusterfs_block_host_vol_size: "{{
openshift_storage_glusterfs_block_host_vol _size }}"
glusterfs_block_host_vol_max: "{{
openshift_storage_glusterfs_block_host_vol _max }}"
glusterfs_block_storageclass: "{{
openshift_storage_glusterfs_block_storageclass | bool }}"
glusterfs_block_storageclass_default: "{{
openshift_storage_glusterfs_block_storageclass_default | bool }}"
glusterfs_s3_deploy: "{{ openshift_storage_glusterfs_s3_deploy | bool
}}II
glusterfs_s3_image: "{{ openshift_storage_glusterfs_s3_image }}"
glusterfs_s3_account: "{{ openshift_storage_glusterfs_s3_account }}"
glusterfs_s3_user: "{{ openshift_storage_glusterfs_s3_user }}"
glusterfs_s3_password: "{{ openshift_storage_glusterfs_s3_password }}"
glusterfs_s3_pvc: "{{ openshift_storage_glusterfs_s3_pvc }}"
glusterfs_s3_pvc_size: "{{ openshift_storage_glusterfs_s3_pvc_size }}"
glusterfs_s3_meta_pvc: "{{ openshift_storage_glusterfs_s3_meta_pvc }}"

154

glusterfs_s3_meta_pvc_size: "{{
openshift_storage_glusterfs_s3_meta_pvc_size }}"
glusterfs_wipe: "{{ openshift_storage_glusterfs_wipe | bool }}"
glusterfs_heketi_is_native: "{{
openshift_storage_glusterfs_heketi_is_native | bool }}"
glusterfs_heketi_is_missing: "{{
openshift_storage_glusterfs_heketi_is_missing | bool }}"
glusterfs_heketi_deploy_is_missing: "{{
openshift_storage_glusterfs_heketi_deploy_is_missing | bool }}"
glusterfs_heketi_cli: "{{ openshift_storage_glusterfs_heketi_cli }}"
glusterfs_heketi_image: "{{ openshift_storage_glusterfs_heketi_image }}"
glusterfs_heketi_admin_key: "{{
openshift_storage_glusterfs_heketi_admin_key }}"
glusterfs_heketi_user_key: "{{
openshift_storage_glusterfs_heketi_user_key }}"
glusterfs_heketi_topology load: "{{
openshift_storage_glusterfs_heketi_topology_load | bool }}"
glusterfs_heketi_wipe: "{{ openshift_storage_glusterfs_heketi_wipe |
bool }}"
glusterfs_heketi_url: "{{ openshift_storage_glusterfs_heketi_url }}"
glusterfs_heketi_port: "{{ openshift_storage_glusterfs_heketi_port }}"
glusterfs_heketi_executor: "{{
openshift_storage_glusterfs_heketi_executor }}"
glusterfs_heketi_ssh_port: "{{
openshift_storage_glusterfs_heketi_ssh_port }}"
glusterfs_heketi_ssh_user: "{{
openshift_storage_glusterfs_heketi_ssh_user }}"
glusterfs_heketi_ssh_sudo: "{{
openshift_storage_glusterfs_heketi_ssh_sudo | bool }}"
glusterfs_heketi_ssh_keyfile: "{{
openshift_storage_glusterfs_heketi_ssh_keyfile }}"
glusterfs_heketi_fstab: "{{ openshift_storage_glusterfs_heketi_fstab }}"
glusterfs_nodes: "{{ groups.glusterfs | default([]) }}"

glusterfs_registry facts.yml variables:

glusterfs_timeout: "{{ openshift_storage_glusterfs_registry_timeout }}"

glusterfs_namespace: "{{ openshift_storage_glusterfs_registry_namespace
}}II

glusterfs_is_native: "{{ openshift_storage_glusterfs_registry_is_native
| bool }}"

glusterfs_name: "{{ openshift_storage_glusterfs_registry_name }}"

map_from_pairs is a custom filter plugin in role lib_utils

glusterfs_nodeselector: "{{
openshift_storage_glusterfs_registry_nodeselector | default(['storagenode',
openshift_storage_glusterfs_registry_name] | join('="')) | map_from_pairs }}"

glusterfs_use_default_selector: "{{
openshift_storage_glusterfs_registry_use_default_selector }}"

glusterfs_storageclass: "{{
openshift_storage_glusterfs_registry_storageclass }}"

glusterfs_storageclass_default: "{{
openshift_storage_glusterfs_registry_storageclass_default | bool }}"

glusterfs_image: "{{ openshift_storage_glusterfs_registry_image }}"

glusterfs_block_deploy: "{{
openshift_storage_glusterfs_registry_block_deploy | bool }}"

glusterfs_block_image: "{{

openshift_storage_glusterfs_registry_block_image }}"
glusterfs_block_host_vol_create: "{{
openshift_storage_glusterfs_registry block_host_vol create }}"
glusterfs_block_host_vol_size: "{{
openshift_storage_glusterfs_registry_block_host_vol _size }}"
glusterfs_block_host_vol_max: "{{
openshift_storage_glusterfs_registry_block_host_vol_max }}"
glusterfs_block_storageclass: "{{
openshift_storage_glusterfs_registry_block_storageclass | bool }}"
glusterfs_block_storageclass_default: "{{
openshift_storage_glusterfs_registry_block_storageclass_default | bool }}"
glusterfs_s3_deploy: "{{ openshift_storage_glusterfs_registry_s3_deploy
| bool }}"
glusterfs_s3_image: "{{ openshift_storage_glusterfs_registry_s3_image
}}II
glusterfs_s3_account: "{{
openshift_storage_glusterfs_registry_s3_account }}"
glusterfs_s3_user: "{{ openshift_storage_glusterfs_registry_s3_ user }}"
glusterfs_s3_password: "{{
openshift_storage_glusterfs_registry_s3_password }}"
glusterfs_s3_pvc: "{{ openshift_storage_glusterfs_registry s3_pvc }}"
glusterfs_s3_pvc_size: "{{
openshift_storage_glusterfs_registry_s3_pvc_size }}"
glusterfs_s3_meta_pvc: "{{
openshift_storage_glusterfs_registry_s3_meta_pvc }}"
glusterfs_s3_meta_pvc_size: "{{
openshift_storage_glusterfs_registry_s3_meta_pvc_size }}"
glusterfs_wipe: "{{ openshift_storage_glusterfs_registry_wipe | bool }}"
glusterfs_heketi_is_native: "{{
openshift_storage_glusterfs_registry_heketi_is_native | bool }}"
glusterfs_heketi_is_missing: "{{
openshift_storage_glusterfs_registry_heketi_is_missing | bool }}"
glusterfs_heketi_deploy_is_missing: "{{
openshift_storage_glusterfs_registry_heketi_deploy_is_missing | bool }}"
glusterfs_heketi_cli: "{{
openshift_storage_glusterfs_registry heketi_cli }}"
glusterfs_heketi_image: "{{
openshift_storage_glusterfs_registry_ heketi_image }}"
glusterfs_heketi_admin_key: "{{
openshift_storage_glusterfs_registry_heketi_admin_key }}"
glusterfs_heketi_user_key: "{{
openshift_storage_glusterfs_registry_heketi_user_key }}"
glusterfs_heketi_topology load: "{{
openshift_storage_glusterfs_registry_heketi_topology_load | bool }}"
glusterfs_heketi_wipe: "{{
openshift_storage_glusterfs_registry_heketi_wipe | bool }}"
glusterfs_heketi_url: "{{
openshift_storage_glusterfs_registry heketi_url }}"
glusterfs_heketi_port: "{{
openshift_storage_glusterfs_registry_heketi_port }}"
glusterfs_heketi_executor: "{{
openshift_storage_glusterfs_registry_ heketi_executor }}"
glusterfs_heketi_ssh_port: "{{
openshift_storage_glusterfs_registry_heketi_ssh_port }}"
glusterfs_heketi_ssh_user: "{{
openshift_storage_glusterfs_registry_heketi_ssh_user }}"

Appendix B. Settings that are destroyed when using uninstall playbook

glusterfs_heketi_ssh_sudo: "{{
openshift_storage_glusterfs_registry_heketi_ssh_sudo | bool }}"

glusterfs_heketi_ssh_keyfile: "{{
openshift_storage_glusterfs_registry_heketi_ssh_keyfile }}"

glusterfs_heketi_fstab: "{{
openshift_storage_glusterfs_registry_heketi_fstab }}"

glusterfs_nodes: "{% if groups.glusterfs_registry is defined and
groups['glusterfs_registry'] | length > 0 %}{% set nodes =
groups.glusterfs_registry %}{% elif 'groups.glusterfs' is defined and
groups['glusterfs'] | length > 0 %}{% set nodes = groups.glusterfs %}{% else
%}{% set nodes = '[]' %}{% endif %}{{ nodes }}"

157

Deployment Guide

Appendix C. Revision History

Revision 1.0-02 Wed Mar 27 2019 Bhavana Mohan
Publishing for Red Hat Openshift Container Storage 3.11.Update 2

Revision 1.0-01 Wed Mar 27 2019 Bhavana Mohan
Documented a new section on how to upgrade glusterfs registry nodes in Independent mode.
Documented how to upgrade your environment from Red Hat Openshift Container Storage 3.11.1 to Red H
Openshift Container Storage in Converged Mode 3.11.2 with the correct image and version details.
Documented how to configure the heketi zone checking feature.
Resolved broken links in the guide.
Updated the Upgrading the environment in Independent mode section.

158

	Table of Contents
	Part I. Planning
	Chapter 1. Identify your Workloads
	Chapter 2. Identify your Use Case
	2.1. Converged Mode
	2.2. Independent mode

	Chapter 3. Verify Prerequisites
	3.1. Converged mode
	3.1.1. Supported Versions
	3.1.2. Environment Requirements
	3.1.2.1. Installing Red Hat Openshift Container Storage with OpenShift Container Platform on Red Hat Enterprise Linux 7

	3.1.3. Red Hat OpenShift Container Platform and Red Hat Openshift Container Storage Requirements
	3.1.4. Deployment and Scaling Guidelines

	3.2. Independent mode
	3.2.1. Supported Versions
	3.2.2. Environment Requirements
	3.2.2.1. Installing Red Hat Openshift Container Storage with OpenShift Container Platform on Red Hat Enterprise Linux 7

	3.2.3. Red Hat OpenShift Container Platform and Red Hat Openshift Container Storage Requirements
	3.2.4. Red Hat Gluster Storage Requirements
	3.2.5. Deployment and Scaling Guidelines

	Part II. Deploy
	Chapter 4. Deploying Containerized Storage in Converged Mode
	4.1. Specify Advanced Installer Variables
	4.2. Deploying Red Hat Openshift Container Storage in Converged Mode
	4.3. Deploying Red Hat Openshift Container Storage in Converged Mode with Registry
	4.4. Deploying Red Hat Openshift Container Storage in Converged Mode with Logging and Metrics
	4.5. Deploying Red Hat Openshift Container Storage in Converged mode for Applications with Registry, Logging, and Metrics
	4.6. Configure Heketi to Place Bricks Across Zones
	4.7. Verify your Deployment
	4.8. Creating an Arbiter Volume (optional)
	4.8.1. Creating an Arbiter Volume
	4.8.1.1. Creating an Arbiter Volume using Heketi CLI
	4.8.1.2. Creating an Arbiter Volume using the Storageclass file

	Chapter 5. Deploying Container Storage in Independent Mode
	5.1. Setting up a RHGS Cluster
	5.1.1. Installing Red Hat Gluster Storage Server on Red Hat Enterprise Linux (Layered Install)
	5.1.2. Configuring Port Access
	5.1.3. Enabling Kernel Modules
	5.1.4. Starting and Enabling Services

	5.2. Specify Advanced Installer Variables
	5.3. Deploying Red Hat Openshift Container Storage in Independent Mode
	5.4. Deploying Red Hat Openshift Container Storage in Independent mode for Applications with Registry, Logging, and Metrics
	5.5. Configure Heketi to Place Bricks Across Zones
	5.6. Verify your Deployment
	5.7. Creating an Arbiter Volume (optional)
	5.7.1. Creating an Arbiter Volume
	5.7.1.1. Creating an Arbiter Volume using Heketi CLI
	5.7.1.2. Creating an Arbiter Volume using the Storageclass file

	Part III. Upgrade
	Chapter 6. Upgrading your Red Hat Openshift Container Storage in Converged Mode
	6.1. Upgrading the Glusterfs Pods
	6.1.1. Prerequisites
	6.1.2. Upgrading if existing version deployed by using cns-deploy
	6.1.2.1. Upgrading cns-deploy and Heketi Server
	6.1.2.2. Upgrading the Red Hat Gluster Storage Pods

	6.1.3. Upgrading if existing version deployed by using Ansible
	6.1.3.1. Upgrading Heketi Server
	6.1.3.2. Upgrading the Red Hat Gluster Storage Pods if Deployed by using Ansible

	6.2. Upgrading heketi and glusterfs registry pods
	6.2.1. Prerequisites
	6.2.2. Upgrading if existing version deployed by using cns-deploy
	6.2.2.1. Upgrading cns-deploy and Heketi Server
	6.2.2.2. Upgrading the Red Hat Gluster Storage Registry Pods

	6.2.3. Upgrading if existing version deployed by using Ansible
	6.2.3.1. Upgrading Heketi Server
	6.2.3.2. Upgrading the Red Hat Gluster Storage Registry Pods if Deployed by using Ansible

	6.3. Upgrading the client on Red Hat Openshift Container Platform Nodes
	6.4. Starting the Heketi Pods

	Chapter 7. Upgrading Your Red Hat Openshift Container Storage in Independent Mode
	7.1. Prerequisites
	7.2. Upgrading your Independent Mode Setup
	7.2.1. Upgrading the Red Hat Gluster Storage Cluster
	7.2.2. Upgrading/Migration of Heketi in RHGS node
	7.2.3. Upgrading if existing version deployed using cns-deploy
	7.2.3.1. Upgrading Heketi in Openshift node
	7.2.3.2. Upgrading Gluster Block if Deployed by using cns-deploy

	7.2.4. Upgrading if existing version deployed using Ansible
	7.2.4.1. Upgrading Heketi in Openshift node if Deployed by Using Ansible
	7.2.4.2. Upgrading Gluster Block if Deployed by Using Ansible

	7.2.5. Enabling S3 Compatible Object store

	7.3. Upgrading Gluster Nodes and heketi pods in glusterfs Registry Namespace
	7.3.1. Upgrading the Red Hat Gluster Storage Registry Cluster
	7.3.2. Upgrading Heketi Registry pod
	7.3.3. Upgrading Gluster Block

	7.4. Upgrading the client on Red Hat Openshift Container Platform Nodes

	Part IV. Uninstalling
	Chapter 8. Uninstall Red Hat Openshift Container Storage
	Part V. Workloads
	Chapter 9. Managing Arbitrated Replicated Volumes
	9.1. Managing Arbiter Brick Size
	9.2. Managing Arbiter Brick Placement
	9.2.1. Setting Tags with the Heketi CLI
	9.2.2. Removing Tags using Heketi CLI
	9.2.3. Viewing Tags with the Heketi CLI

	9.3. Creating Persistent Volumes

	Chapter 10. Setting up Custom Volume Options
	Part VI. Appendix
	Appendix A. Optional Deployment Method (with cns-deploy)
	A.1. Setting up Converged mode
	A.1.1. Configuring Port Access
	A.1.2. Enabling Kernel Modules
	A.1.3. Starting and Enabling Services

	A.2. Setting up Independent Mode
	A.2.1. Installing Red Hat Gluster Storage Server on Red Hat Enterprise Linux (Layered Install)
	A.2.2. Configuring Port Access
	A.2.3. Enabling Kernel Modules
	A.2.4. Starting and Enabling Services

	A.3. Setting up the Environment
	A.3.1. Preparing the Red Hat OpenShift Container Platform Cluster
	A.3.2. Deploying Containerized Red Hat Gluster Storage Solutions
	A.3.2.1. Deploying Converged Mode
	A.3.2.2. Deploying Independent Mode

	Appendix B. Settings that are destroyed when using uninstall playbook
	Appendix C. Revision History

