‘® redhat.

Red Hat Openshift Container Storage

3.10
Operations Guide

Configuring and Managing Red Hat Openshift Container Storage.

Bhavana Mohan

Red Hat Openshift Container Storage 3.10 Operations Guide

Configuring and Managing Red Hat Openshift Container Storage.

Bhavana Mohan
Customer Content Services Red Hat
bmohanra@redhat.com

Legal Notice
Copyright © 2018 Red Hat, Inc.

This documentis licensed by Red Hat under the Creative Commons Attribution-ShareAlike 3.0
Unported License. If you distribute this document, or a modified version of it, you must provide
attribution to Red Hat, Inc. and provide a link to the original. If the document is modified, all Red
Hat trademarks must be removed.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees notto assert,
Section 4d of CC-BY-SAto the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux® is the registered trademark of Linus Torvalds in the United States and other countries.
Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United
States and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related
to or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other
countries and are used with the OpenStack Foundation's permission. We are not affiliated with,
endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract

This guide provides information about operating your Container Storage deployment.

http://creativecommons.org/licenses/by-sa/3.0/

Table of Contents

Table of Contents

Operations Guide

=] - T 3
Partl. Managec.iiiiiitirin e ansaraasaraasaraasaraasarsasarnnsnnnnss 4
Chapter 1. Managing ClUuStersttt ittt et et e et nnnnneen, 5
1.1. Increasing Storage Capacity 5
1.2. Reducing Storage Capacity 16
Chapter 2. Operations on a Red Hat Gluster Storage Pod in an OpenShift Environment 23
Partll. Operationsttt ettt e e e 29
Chapter 3. Creating Persistent Volumesttt ittt ittt et sanaan e nnnsnnns, 30
3.1. File Storage 30
3.2. Block Storage 51
Chapter 4. Shutting Down gluster-block ClientNodes ittt nnrnnnrnnns, 67
Chapter 5. S3 Compatible Object Store in a Red Hat Openshift Container Storage Environment 68
5.1. Setting up S3 Compatible Object Store for Red Hat Openshift Container Storage 68
5.2. Object Operations 71
Chapter 6. Cluster Administrator Setupttt ittt et e e, 73
Chapter 7. Gluster Block Storage as Backend for Logging and Metricsc.00vvnt. 74
7.1. Prerequisites 74
7.2. Enabling Gluster Block Storage as Backend for Logging 74
7.3. Enabling Gluster Block Storage as Backend for Metrics 75
7.4. Verifying if Gluster Blockis Setup as Backend 76
Part Il SeCUNItY ..ottt i i it et e e e 77
Chapter 8. Enabling ENCryptionttt ittt et ea e, 78
8.1. Prerequisites 78
8.2. Enabling Encryption for a New Red Hat Openshift Container Storage Setup 78
8.3. Enabling Encryption for an Existing Red Hat Openshift Container Storage Setup 81
8.4. Disabling Encryption 83
Part IV. Migrationt it ittt et e e 86
Chapter 9. Updating the Registry with Red Hat Openshift Container Storage as the Storage Back-end .
9.1. Validating the Openshift Container Platform Registry Deployment g7 87
9.2. Converting the Openshift Container Platform Registry with Red Hat Openshift Container Storage
88
Part V. MONitOriNg ... c ittt ittt et e e e 94
Chapter 10. Enabling Volume Metricsttt ittt et tana e i e, 95
10.1. Enabling Volume Metrics for File Storage and Block Storage 95
Part VI. Troubleshoot i i i it it sttt s e a s nn s an e 98
Chapter 11. Troubleshootingt it sttt st et e a s e n e, 99
Chapter 12. Client Configuration using Port Forwarding00 it iinnnnneen, 101
Appendix A. ReVision HiStoryttt it i e it et e e 102
T [102

Preface

Preface

Operations Guide

Part I. Manage

Chapter 1. Managing Clusters

Chapter 1. Managing Clusters

Heketi allow s administrators to add and remove storage capacity by managing either a single or multiple Red
Hat Gluster Storage clusters.

1.1. Increasing Storage Capacity

You can increase the storage capacity using any of the follow ing w ays:
Adding devices
Adding new nodes

Adding an entirely new cluster

1.1.1. Adding New Devices

You can add more devices to existing nodes to increase storage capacity. When adding more devices, you
must ensure to add devices as a set. For example, w hen expanding a distributed replicated volume w ith a
replica count of replica 2, then one device should be added to at least tw o nodes. If using replica 3, then at
least one device should be added to at least three nodes.

You can add a device by using CLI as follow s:

Register the specified device. The follow ing example command show s how to add a device /dev/sde to
node d6f2c22f2757bf67b1486d868dch7794:

heketi-cli device add --name=/dev/sde --
node=d6f2c22f2757bf67b1486d868dcb7794
OUTPUT :

Device added successfully

1.1.2. Adding New Nodes

Another w ay to add storage to Heketi, is to add new nodes to the cluster. Like adding devices, you can add a
new node to an existing cluster by using CLI. After you add a new node to the cluster, you must register new
devices to that node.

For adding a node to be successful, ensure the ports are opened for glusterd communication. For

https://access.redhat.com/documentation/en-us/red_hat_gluster_storage/3.4/html/installation_guide/port_information
https://access.redhat.com/documentation/en-us/openshift_container_platform/3.11/html-single/configuring_clusters/#adding-cluster-hosts_adding-hosts-to-cluster

Operations Guide

If the new node is already part of OCP cluster then skip this step and proceed w ith Step 2.
The OCP cluster can be scaled up to add new nodes as either compute nodes or infra
nodes. For example, for infra it is node3.example.com openshift_node_group_name='node-
config-infra' and for compute node it is node3.example.com
openshift_node_group_name='node-config-compute'.

2. Configure the firew all rules:

For adding a node to be successful, ensure the ports are opened for glusterd communication.

a. Add the follow ing rules /etc/sysconfig/iptables file of the new ly added glusterfs node:

-A OS_FIREWALL_ALLOW -p tcp -m state --state NEW -m tcp --
dport 24007 -j ACCEPT

-A OS_FIREWALL_ALLOW -p tcp -m state --state NEW -m tcp --
dport 24008 -j ACCEPT

-A OS_FIREWALL_ALLOW -p tcp -m state --state NEW -m tcp --
dport 2222 -j ACCEPT

-A OS_FIREWALL_ALLOW -p tcp -m state --state NEW -m multiport
--dports 49152:49664 -j ACCEPT

-A OS_FIREWALL_ALLOW -p tcp -m state --state NEW -m tcp --
dport 24010 -j ACCEPT

-A OS_FIREWALL_ALLOW -p tcp -m state --state NEW -m tcp --
dport 3260 -j ACCEPT

-A OS_FIREWALL_ALLOW -p tcp -m state --state NEW -m tcp --
dport 111 -j ACCEPT

b. Reload/restart the iptables:

systemctl restart iptables

3. Execute the follow ing steps to add labels to the node w here the RHGS Container will be deployed:

a. Verify that Red Hat Openshift Container Storage is deployed and w orking as expected in the
existing project by executing the follow ing command:

oc get ds
For example:

oc get ds

NAME DESIRED CURRENT READY UP-TO-DATE
AVAILABLE NODE SELECTOR AGE

glusterfs-storage 3 3 3 3

3 glusterfs=storage-host 1d

https://access.redhat.com/documentation/en-us/red_hat_gluster_storage/3.4/html/installation_guide/port_information

Chapter 1. Managing Clusters

b. Add the label for each node w hich is new ly added, w here the Red Hat Gluster Storage pods
are to be added for the new cluster:

oc label node <NODE_NAME> glusterfs=<node_label>
w here,

NODE_NAME: is the name of the new ly created node.

node_label: The name that is used in the existing daemonset. This is the value you get in
the previous step w hen you execute oc get ds.

For example:

oc label node 192.168.90.3 glusterfs=storage-host
node "192.168.90.3" labeled

c. Verify if the Red Hat Gluster Storage pods are running on the new ly added node by
executing the follow ing command:

Observe additional Gluster Storage pods spaw ned on these new nodes
oc get pods
For example:

oc get pods

NAME READY STATUS RESTARTS AGE
glusterfs-356¢cf 1/1 Running 0 30d
glusterfs-fh4gm 1/1 Running 0 30d
glusterfs-hg4tk 1/1 Running 0 30d
glusterfs-v759z 0/1 Running 0 im

You should see additional Gluster Storage pods, in this example 4 gluster pods instead of just
3 as before. It will take 1-2 minutes for themto become healthy. (i.e. glusterfs-v759z 0/1 not
healthy yet).

d. Verify if the Red Hat Gluster Storage pods are running
oc get pods -o wide -1 glusterfs=storage-pod

4. Add a new node to the cluster by using Heketi CLI. Follow ing show s an example of how to add new
node in zone 1t0597fceb5d6c876b899e48f599b988f54 cluster using the CLI:

heketi-cli node add --zone=1 --
cluster=597fceb5d6c876b899e481f599b988f54 --management-host-
name=node4.example.com --storage-host-name=192.168.10.104

OUTPUT :

Node information:

Id: 095d5f26b56dc6c64564a9bc17338cbf
State: online

Operations Guide

Cluster Id: 597fceb5d6c876b899e48f599b988f54
Zone: 1

Management Hostname node4.example.com
Storage Hostname 192.168.10.104

5. Add devices to the cluster by using Heketi CLI. For more information on adding devices, refer

1.1.3. Adding a New Cluster

Storage capacity can also be increased by adding new clusters of Red Hat Gluster Storage. New clusters
can be added in the follow ing tw o w ays based on the requirement:

Adding a new cluster to the existing Red Hat Openshift Container Storage

Adding another Red Hat Openshift Container Storage cluster in a new project

1.1.3.1. Adding a New Cluster to the Existing Red Hat Openshift Container Storage

To add a new cluster to the existing Red Hat Openshift Container Storage, execute the follow ing commands:

1. Verify that Red Hat Openshift Container Storage is deployed and w orking as expected in the existing
project by executing the follow ing command:

oc get ds
For example:

oc get ds

NAME DESIRED CURRENT READY UP-TO-DATE
AVAILABLE NODE SELECTOR AGE
glusterfs-storage 3 3 3 3 3

glusterfs=storage-host 1d

section. Repeat the steps for all the nodes you w ant to add.

2. Verify if the Red Hat Gluster Storage pods are running by executing the follow ing command:

Observe additional Gluster Storage pods spaw ned on these new nodes
oc get pods
For example:

oc get pods

NAME READY STATUS RESTARTS AGE
glusterfs-356¢cf 1/1 Running 0 30d
glusterfs-fh4gm 1/1 Running 0 30d
glusterfs-hg4tk 1/1 Running 0 30d
glusterfs-v759z 0/1 Running 0 im

Chapter 1. Managing Clusters

Y ou should see additional Gluster Storage pods, in this example 4 gluster pods instead of just 3 as
before. It will take 1-2 minutes for them to become healthy. (i.e. glusterfs-v759z 0/1 not healthy yet).

. Add the label for each node, w here the Red Hat Gluster Storage pods are to be added for the new
cluster to start by executing the follow ing command:

oc label node <NODE_NAME> glusterfs=<node_label>

w here,
NODE_NAME: is the name of the new ly created node
node_label: The name that is used in the existing daemonset.

For example:

oc label node 192.168.90.3 glusterfs=storage-host
node "192.168.90.3" labeled

. Verify if the Red Hat Gluster Storage pods are running by executing the follow ing command:
oc get ds
For example:

oc get ds

NAME DESIRED CURRENT READY UP-TO-DATE
AVAILABLE NODE SELECTOR AGE
glusterfs-storage 3 3 3 3 3

glusterfs=storage-host 1d

. Create a new topology file for the new cluster. You must provide a topology file for the new cluster
w hich describes the topology of the Red Hat Gluster Storage nodes and their attached storage
devices. As a sample, a formatted topology file (topology-sample.json) is installed w ith the ‘heketi-
client’ package in the /usr/share/heketi/ directory.

For example:
{
"clusters": [
{
"nodes": [
{
"node": {
"hostnames": {
"manage": [
"nodel.example.com"
1,
"storage": [
"192.168.68.3"
]
3
"zone": 1
3

Operations Guide

10

"devices": [
"/dev/sdb",
"/dev/sdc",
"/dev/sdd",
"/dev/sde",
"/dev/sdf",
"/dev/sdg",
"/dev/sdh",
"/dev/sdi"

"node": {
"hostnames": {
"manage": [
"node2.example.com"
1,
"storage": [
"192.168.68.2"
]
+
"zone": 2
+
"devices": [
"/dev/sdb",
"/dev/sdc",
"/dev/sdd",
"/dev/sde",
"/dev/sdf",
"/dev/sdg",
"/dev/sdh",
"/dev/sdi"

iy

w here,
clusters: Array of clusters.
Each element on the array is a map w hich describes the cluster as follow s.
nodes: Array of OpenShift nodes that w ill host the Red Hat Gluster Storage container
Each element on the array is a map w hich describes the node as follow s
node: It is a map of the follow ing elements:

zone: The value represents the zone number that the node belongs to; the zone number
is used by heketi for choosing optimum position of bricks by having replicas of bricks in
different zones. Hence zone number is similar to a failure domain.

hostnames: It is a map w hich lists the manage and storage addresses

manage: It is the hostname/IP Address that is used by Heketi to communicate w ith
the node

Chapter 1. Managing Clusters

storage: It is the IP address that is used by other OpenShift nodes to communicate
w ith the node. Storage data traffic will use the interface attached to this IP. This
must be the IP address and not the hostname because, in an OpenShift
environment, Heketi considers this to be the endpoint too.

devices: Name of each disk to be added

Edit the topology file based on the Red Hat Gluster Storage pod hostname under the
node.hostnames.manage section and node.hostnames. storage section with the IP
address. For simplicity, the /usr/share/heketi/topology-sample.json file only sets up 4 nodes with 8
drives each.

. For the existing cluster, heketi-cli will be available to load the new topology. Run the command to add
the new topology to heketi:

heketi-cli topology load --json=<topology file path>

For example:

heketi-cli topology load --json=topology.json
Creating cluster ... ID: 94877b3f72b79273e87c1e94201ecd58

Creating node node4.example.com
95cefal74c7210bd53072073c9c041a3

Adding device /dev/sdb ... OK
Adding device /dev/sdc ... OK
Adding device /dev/sdd ... OK
Adding device /dev/sde ... OK

Creating node node5.example.com
£9920995e580f0fe56fa269d3f3f8428

Adding device /dev/sdb ... OK
Adding device /dev/sdc ... OK
Adding device /dev/sdd ... OK
Adding device /dev/sde ... OK

Creating node node6.example.com
73fed4aa89ba35c51ded4ablechf52544d

Adding device /dev/sdb ... OK
Adding device /dev/sdc ... OK
Adding device /dev/sdd ... OK
Adding device /dev/sde ... OK

1. Create a new project by executing the follow ing command:

oc new-project <new_project_name>

ID:

ID:

1.1.3.2. Adding Another Red Hat Openshift Container Storage Cluster in a New Project

To add another Red Hat Openshift Container Storage in a new project to, execute the follow ing commands:

As Node label is global, there can be conflicts to start Red Hat Gluster Storage DaemonSets w ith the
same label in tw o different projects. Node label is an argument to cns-deploy, thereby enabling
deployment of multiple trusted storage pool by using a different label in a different project.

11

For example:
oC new-project storage-project-2

Now using project "storage-project-2" on server
"https://master.example.com:8443"

. After the project is created, execute the follow ing command on the master node to enable the
deployment of the privileged containers as Red Hat Gluster Storage container can only run in the
privileged mode.

oc adm policy add-scc-to-user privileged -z storage-project-2
oc adm policy add-scc-to-user privileged -z default

. Create a new topology file for the new cluster. You must provide a topology file for the new cluster
w hich describes the topology of the Red Hat Gluster Storage nodes and their attached storage
devices. As a sample, a formatted topology file (topology-sample.json) is installed w ith the ‘heketi-
client’ package in the /usr/share/heketi/ directory.

For example:

{

"clusters": [

{

"nodes": [
{
"node": {
"hostnames": {
"manage": [
"nodel.example.com"
1,
"storage": [
"192.168.68.3"
]
+
"zone": 1
+
"devices": [
"/dev/sdb",
"/dev/sdc",
"/dev/sdd",
"/dev/sde",
"/dev/sdf",
"/dev/sdg",
"/dev/sdh",
"/dev/sdi"

"node": {
"hostnames": {
"manage": [
"node2.example.com"

1

"storage": [

Chapter 1. Managing Clusters

"192.168.68.2"

]
iy

"zone": 2

Iy

"devices": [
"/dev/sdb",
"/dev/sdc",
"/dev/sdd",
"/dev/sde",
"/dev/sdf",
"/dev/sdg",
"/dev/sdh",
"/dev/sdi"

iy

w here,
clusters: Array of clusters.
Each element on the array is a map w hich describes the cluster as follow s.
nodes: Array of OpenShift nodes that w ill host the Red Hat Gluster Storage container
Each element on the array is a map w hich describes the node as follow s
node: It is a map of the follow ing elements:

zone: The value represents the zone number that the node belongs to; the zone number
is used by heketi for choosing optimum position of bricks by having replicas of bricks in
different zones. Hence zone number is similar to a failure domain.

hostnames: It is a map w hich lists the manage and storage addresses

manage: It is the hostname/IP Address that is used by Heketi to communicate w ith
the node

storage: It is the IP address that is used by other OpenShift nodes to communicate
w ith the node. Storage data traffic will use the interface attached to this IP. This
must be the IP address and not the hostname because, in an OpenShift
environment, Heketi considers this to be the endpoint too.

devices: Name of each disk to be added

Edit the topology file based on the Red Hat Gluster Storage pod hostname under the
node.hostnames.manage section and node.hostnames.storage section with the IP
address. For simplicity, the /usr/share/heketi/topology-sample.json file only sets up 4 nodes with 8
drives each.

4. Execute the follow ing command on the client to deploy the heketi and Red Hat Gluster Storage pods:

cns-deploy -n <namespace> --daemonset-label <NODE_LABEL> -g
topology.json

13

For example:

cns-deploy -n storage-project-2 --daemonset-label glusterfs2 -g
topology.json

Welcome to the deployment tool for GlusterFS on Kubernetes and
OpenShift.

Before getting started, this script has some requirements of the
execution
environment and of the container platform that you should verify.

The client machine that will run this script must have:

* Administrative access to an existing Kubernetes or OpenShift
cluster

* Access to a python interpreter 'python'

* Access to the heketi client 'heketi-cli'

Each of the nodes that will host GlusterFS must also have
appropriate firewall
rules for the required GlusterFS ports:
* 2222 - sshd (if running GlusterFS in a pod)
* 24007 - GlusterFS Daemon
* 24008 - GlusterFS Management
* 49152 to 49251 - Each brick for every volume on the host
requires its own
port. For every new brick, one new port will be used starting
at 49152. We
recommend a default range of 49152-49251 on each host, though
you can adjust
this to fit your needs.

In addition, for an OpenShift deployment you must:

* Have 'cluster_admin' role on the administrative account doing
the deployment

* Add the 'default' and 'router' Service Accounts to the
'privileged' SCC

* Have a router deployed that is configured to allow apps to
access services

running in the cluster

Do you wish to proceed with deployment?

[Y]es, [N]o? [Default: Y]: Y

Using OpenShift CLI.

NAME STATUS AGE
storage-project-2 Active 2m

Using namespace '"storage-project-2".

Checking that heketi pod is not running ... OK
template "deploy-heketi" created

serviceaccount "heketi-service-account" created
template "heketi" created

template "glusterfs" created

role "edit" added: "system:serviceaccount:storage-project-
2:heketi-service-account"

node "192.168.35.5" labeled

node "192.168.35.6" labeled

Chapter 1. Managing Clusters

node "192.168.35.7" labeled

daemonset "glusterfs" created

Waiting for GlusterFS pods to start ... OK
service "deploy-heketi" created

route "deploy-heketi" created
deploymentconfig "deploy-heketi" created

Waiting for deploy-heketi pod to start ... OK
Creating cluster ... ID: fdel39c21b0afcbh6206bf272e0df1590
Creating node 192.168.35.5 ... ID:
0768alee35dced4cf707c7ale9caaldd2a

Adding device /dev/vdc ... OK

Adding device /dev/vdd ... OK

Adding device /dev/vde ... OK

Adding device /dev/vdf ... OK

Creating node 192.168.35.6 ... ID:
63966f6ffd48c1980c4a2d03abeeddo4

Adding device /dev/vdc ... OK

Adding device /dev/vdd ... OK

Adding device /dev/vde ... OK

Adding device /dev/vdf ... OK

Creating node 192.168.35.7 ... ID:
del129c099193aaff2c64dca825f33558

Adding device /dev/vdc ... OK

Adding device /dev/vdd ... OK

Adding device /dev/vde ... OK

Adding device /dev/vdf ... OK

heketi topology loaded.

Saving heketi-storage.json

secret "heketi-storage-secret" created
endpoints "heketi-storage-endpoints" created
service "heketi-storage-endpoints" created
job "heketi-storage-copy-job" created
deploymentconfig "deploy-heketi" deleted
route "deploy-heketi" deleted

service "deploy-heketi" deleted

job "heketi-storage-copy-job" deleted

pod "deploy-heketi-1-dOqrs" deleted

secret "heketi-storage-secret" deleted
service "heketi" created

route "heketi" created

deploymentconfig "heketi" created

Waiting for heketi pod to start ... OK
heketi is now running.

Ready to create and provide GlusterFS volumes.

For more information on the cns-deploy commands, see to the man page of the cns-deploy.

cns-deploy --help

15

Operations Guide

5. Verify that Red Hat Openshift Container Storage is deployed and w orking as expected in the new
project with the new daemonSet label by executing the follow ing command:

oc get ds
For example:

oc get ds

NAME DESIRED CURRENT READY NODE-SELECTOR

AGE

glusterfs 3 3 3 storagenode=glusterfs2
8m

1.2. Reducing Storage Capacity

Heketi also supports the reduction of storage capacity. You can reduce storage by deleting devices, nodes,
and clusters. These requests can only be performed by using the Heketi CLI or the API. For information on

The IDs can be retrieved by executing the heketi-cli topology info command.

heketi-cli topology info

The heketidbstorage volume cannot be deleted as it contains the heketi database.

1.2.1. Deleting Volumes

You can delete the volume using the follow ing Heketi CLI command:

heketi-cli volume delete <volume_id>
For example:

heketi-cli volume delete 12b2590191f571be9e896c7a483953c3
Volume 12b2590191f571be9e896c7a483953c3 deleted

1.2.2. Deleting Device

Deleting the device deletes devices from heketi's topology. Devices that have bricks cannot be deleted. Y ou
must ensure they are free of bricks by disabling and removing devices.

1.2.2.1. Disabling and Enabling a Device

Disabling devices stops further allocation of bricks onto the device. You can disable devices using the
follow ing Heketi CLI command:

16

https://github.com/heketi/heketi/wiki/API

Chapter 1. Managing Clusters

heketi-cli device disable <device_id>

For example:

heketi-cli device disable f53b13b9del1b5125691ee77db8bb47f4
Device f53b13b9del1b5125691ee77db8bb47f4 is now offline

If you w ant to re-enable the device, execute the follow ing command. Enabling the device allow s allocation of
bricks onto the device.

heketi-cli device enable <device_id>

For example:

heketi-cli device enable f53b13b9del1b5125691ee77db8bb47f4
Device f53b13b9del1b5125691ee77db8bb47f4 is now online

1.2.2.2. Removing and Deleting the Device

Removing devices moves existing bricks from the device to other devices. This helps in ensuring the device is
free of bricks. A device can be removed only after disabling it.

1. Remove device using the follow ing command:
heketi-cli device remove <device_id>
For example:

heketi-cli device remove e9ef1d9043ed3898227143add599e1f9
Device e9ef1d9043ed3898227143add599e1f9 is now removed

2. Delete the device using the follow ing command:
heketi-cli device delete <device_id>
For example:

heketi-cli device delete 56912a57287d07fad0651ba®®0®3cf9aa
Device 56912a57287d07fad0651ba®003cf9aa deleted

The only w ay to reuse a deleted device is by adding the device to heketi's topology again.

1.2.2.3. Replacing a Device

Heketi does not allow one-to-one replacement of a device w ith another. How ever, in case of a failed device,
follow the example below for the sequence of operations that are required to replace a failed device.

1. Locate the device that has failed using the follow ing command:

heketi-cli topology info

17

Nodes:
Node Id: 8faade64a9c8669de204b66bc0©83b10d

Id:a811261864ee190941b17c72809a5001

Name:/dev/vdc State:online Size (GiB):499 Used
(GiB):281 Free (GiB):218

Bricks:
Id:34c14120bef5621f287951bcdfa774fc Size (GiB):280 Path:

/var/lib/heketi/mounts/vg_a811261864ee190941b17c72809a5001/brick_3
4c14120bef5621f287951bcdfa774fc/brick

The example below illustrates the sequence of operations that are required to replace a failed device.
The example uses device ID a811261864e€€190941b17c72809a5001 w hich belongs to node
with id 8faade64a9c8669de204b66bc083b10das.

. Add a new device preferably to the same node as the device being replaced.

heketi-cli device add --name /dev/vdd --node
8faade64a9c8669de204b66bc083b10d
Device added successfully

. Disable the failed device.

heketi-cli device disable a811261864ee190941b17c72809a5001
Device a811261864ee190941b17c72809a5001 is now offline

. Remove the failed device.

heketi-cli device remove a811261864ee190941b17c72809a5001
Device a811261864ee190941b17c72809a5001 is now removed

At this stage, the bricks are migrated from the failed device. Heketi chooses a suitable device based
on the brick allocation algorithm. As a result, there is a possibility that all the bricks might not be
migrated to the new added device.

. Delete the failed device.

heketi-cli device delete a811261864ee190941b17c72809a5001
Device a811261864ee190941b17c72809a5001 deleted

. Before repeating the above sequence of steps on another device, you must w ait for the self-heal
operation to complete. You can verify that the self-heal operation completed w hen the Number of
entries value returns a 0 value.

oc rsh <any_gluster_pod_name>
for each in $(gluster volume list) ; do gluster vol heal $each
info | grep "Number of entries:" ; done

Chapter 1. Managing Clusters

Number of entries: ©
Number of entries: ©
Number of entries: ©

1.2.3. Deleting Node

Nodes that have devices added to it cannot be deleted. To delete the node, the devices that are associated
w ith the node have to be deleted. Disabling and removing the node ensures all the underlying devices are
removed too. Once the node is removed, all the devices in it can be deleted and finally the node can be
deleted

1.2.3.1. Disabling and Enabling a Node

Disabling node stops further allocation of bricks to all the devices associated to the node. You can disable
nodes using the follow ing Heketi CLI command:

heketi-cli node disable <node_id>

For example:

heketi-cli node disable 5f0af88b968edl1f01bf959fed4fe804dc
Node 5f0af88b968edl1f@1bf959fe4fe804dc is now offline

If you w ant to re-enable the node, execute the follow ing command.

heketi-cli node enable <node_id>

For example:

heketi-cli node enable 5f0af88b968edl1f01bf959fed4fe804dc
Node 5f0af88b968edl1f@1bf959fe4fe804dc is now online

1.2.3.2. Removing and Deleting the Node

Removing nodes moves existing bricks from all the devices in the node to other devices in the cluster. This
helps in ensuring all the device in the node is free of bricks. A device can be removed only after disabling it.

1. To remove the node execute the follow ing command:
heketi-cli node remove <node_id>
For example:

heketi-cli node remove 5f0af88b968edl1f01bf959fed4fe804dc
Node 5f0af88b968edl1f01bf959fed4fe804dc is now removed

2. Delete the devices associated w ith the node by executing the follow ing command as the nodes that
have devices associated w ith it cannot be deleted:

heketi-cli device delete <device_id>

For example:

19

Operations Guide

heketi-cli device delete 56912a57287d07fad®@651ba®®0®3cf9aa
Device 56912a57287d07fad0651ba®003cf9aa deleted

Execute the command for every device on the node.

3. Delete the node using the follow ing command:

heketi-cli node delete <node_id>

For example:

heketi-cli node delete 5f0af88b968ed1f01bf959fed4fe804dc
Node 5f0af88b968edl1f01bf959fed4fe804dc deleted

Deleting the node deletes the node from the heketi topology. The only w ay to reuse a deleted node is
by adding the node to heketi's topology again

1.2.3.3. Replacing a Node
Heketi does not allow one-to-one replacement of a node w ith another. How ever, in case of a failed node,

follow the example below for the sequence of operations that are required to replace a failed node and its
respective devices.

1. Locate the node that has failed using the follow ing command:

heketi-cli topology info

Nodes:
Node Id: 8faade64a9c8669de204b66bc083b10d

Id:a811261864ee190941b17c72809a5001

Name:/dev/vdc State:online Size (GiB):499 Used
(GiB):281 Free (GiB):218

Bricks:
Id:34c14120bef5621f287951bcdfa774fc Size (GiB):280 Path:

/var/lib/heketi/mounts/vg_a811261864ee190941b17c72809a5001/brick_3
4c14120bef5621f287951bcdfa774fc/brick

The example below illustrates the sequence of operations that are required to replace a failed node.
The example uses node ID 8faade64a9¢c8669de204b66bc083b10d.

Scale up the OCP cluster to add the replacement node. For more detail how to add a node, refer to the

20

Chapter 1. Managing Clusters

If the replacement node is already part of OCP cluster then skip this step and proceed w ith
step 3.

2. Add a new node, preferably that has the same devices as the node being replaced.
heketi-cli node add --zone=1 --
cluster=597fceb5d6c876b899e48f599b988f54 --management-host-

name=node4.example.com --storage-host-name=192.168.10.104

heketi-cli device add --name /dev/vdd --node
8faade64a9c8669de204b66bcO®83b106d

Node and device added successfully
3. Disable the failed node.

heketi-cli node disable 8faade64a9c8669de204b66bc083b10d
Node 8faade64a9c8669de204b66bc083b10d is now offline

4. Remove the failed node.

heketi-cli node remove 8faade64a9c8669de204b66bc0©83b10d
Node 8faade64a9c8669de204b66bc083b10d is now removed

At this stage, the bricks are migrated from the failed node. Heketi chooses a suitable device based on
the brick allocation algorithm.

5. Delete the devices associated w ith the node by executing the follow ing command as the nodes that
have devices associated w ith it cannot be deleted:

heketi-cli device delete <device_id>
For example:

heketi-cli device delete 56912a57287d07fad®@651baP@O3cf9aa
Device 56912a57287d07fad0651ba®003cf9aa deleted

Execute the command for every device on the node.

6. Delete the failed node.

heketi-cli node delete 8faade64a9c8669de204b66bc083b10d
Node 8faade64a9c8669de204b66bc083b10d deleted

1.2.4. Deleting Clusters

You can delete the cluster using the follow ing Heketi CLI command:

21

Operations Guide

Before a cluster is deleted, ensure that all the nodes inside the cluster are deleted.

(:# heketi-cli cluster delete <cluster_id>

For example:

heketi-cli cluster delete 0e949d91c608d13fd3fc4e96f798a5b1
Cluster 0e949d91c608d13fd3fc4e96f798a5b1 deleted

22

Chapter 2. Operations on a Red Hat Gluster Storage Pod in an OpenShift Environment

Chapter 2. Operations on a Red Hat Gluster Storage Pod in an
OpenShift Environment

This chapter lists out the various operations that can be performed on a Red Hat Gluster Storage pod (gluster
pod):

1. To list the pods, execute the follow ing command :
oc get pods -n <storage_project_name>
For example:

oc get pods -n storage-project

NAME READY
STATUS RESTARTS AGE

storage-project-router-1-v89qc 1/1
Running 0 1d

glusterfs-dc-nodel.example.com 1/1
Running 0 1d

glusterfs-dc-node2.example.com 1/1
Running 1 1d

glusterfs-dc-node3.example.com 1/1
Running 0 1d

heketi-1-k1ul14 1/1
Running 0 23m

Follow ing are the gluster pods from the above example:

glusterfs-dc-nodel.example.com
glusterfs-dc-node2.example.com
glusterfs-dc-node3.example.com

The topology.json file will provide the details of the nodes in a given Trusted Storage Pool
(TSP) . In the above example all the 3 Red Hat Gluster Storage nodes are fromthe same TSP.

2. To enter the gluster pod shell, execute the follow ing command:
oc rsh <gluster_pod_name> -n <storage_project_name>
For example:

oc rsh glusterfs-dc-nodel.example.com -n storage-project

sh-4.2#

3. To get the peer status, execute the follow ing command:

gluster peer status

23

For example:

gluster peer status
Number of Peers: 2

Hostname: node2.example.com

Uuid: 9f3f84d2-ef8e-4d6e-aa2c-5e0370a99620
State: Peer in Cluster (Connected)

Other names:

nodel.example.com

Hostname: node3.example.com
Uuid: 3862l1lacd-eb76-4bd8-8162-9c2374affbbd
State: Peer in Cluster (Connected)

4. To list the gluster volumes on the Trusted Storage Pool, execute the follow ing command:

gluster volume info

For example:

Volume Name: heketidbstorage

Type: Distributed-Replicate

Volume ID: 2fa53b28-121d-4842-9d2f-dcelb0458fda

Status: Started

Number of Bricks: 2 x 3 = 6

Transport-type: tcp

Bricks:

Brickil:
192.168.121.172:/var/1lib/heketi/mounts/vg_1be433737b71419dc9b395e2
21255fb3/brick_c67fb97f74649d990c5743090e0c9176/brick

Brick2:
192.168.121.233:/var/lib/heketi/mounts/vg_0013ee200cdefaeb6dfedd28
e50fd261/brick_6ebflee62a8e9e7a0f88e4551d4b2386/brick

Brick3:
192.168.121.168:/var/lib/heketi/mounts/vg_e4b32535c55c88f9190da7h7
efdifcab/brick_df5db97aa002d572a0fec6bcf210laad/brick

Brick4:
192.168.121.233:/var/lib/heketi/mounts/vg_0013ee200cdefaeb6dfedd28
e50fd261/brick_acc82e56236df912e9a1948f594415a7/brick

Brick5:
192.168.121.168:/var/lib/heketi/mounts/vg_e4b32535c55c88f9190da7h7
efdifcab/brick_65dceb1f749ec417533ddeae9535e8be/brick

Brick6:
192.168.121.172:/var/1lib/heketi/mounts/vg_7ad961dbd24e16d62cabel0f
d8bf8909/brick_f258450fc6f025f99952a6edea203859/brick

Options Reconfigured:

performance.readdir-ahead: on

Volume Name: vol_9e86c0493f6b1lbe648c9deeeldc226a6
Type: Distributed-Replicate

Volume ID: 940177c3-d866-4e5e-9aa0-fc9be94fcOf4
Status: Started

Number of Bricks: 2 x 3 = 6

Transport-type: tcp

Bricks:

Brick1:
192.168.121.168:/var/1lib/heketi/mounts/vg_3fal41bf2d09d30b899f2f26
0c494376/brick_9fb4a5206bdd8ac70170d00f304f99a5/brick

Brick2:
192.168.121.172:/var/1lib/heketi/mounts/vg_7ad961dbd24e16d62cabel0f
d8bf8909/brick_dae2422d518915241f74fd90b426a379/brick

Brick3:
192.168.121.233:/var/1lib/heketi/mounts/vg_5c6428c439eb6686c5e4cees
6532bacf/brick_b3768ba8e80863724c9ec42446ea4812/brick

Brick4:
192.168.121.172:/var/1lib/heketi/mounts/vg_7ad961dbd24e16d62cabel0f
d8bf8909/brick_0al13958525c6343c4a7951acec199da®/brick

Brick5:
192.168.121.168:/var/lib/heketi/mounts/vg_17fbc98d84df86756e782632
6fb33aa4/brick_af42af87ad87ab4f0le8cal53abbbee9/brick

Brick6:
192.168.121.233:/var/lib/heketi/mounts/vg_5c6428c439eb6686c5ed4cee5
6532bacf/brick_ef4l1e04ca648efaf04178e64d25dbdcb/brick

Options Reconfigured:

performance.readdir-ahead: on

5. To get the volume status, execute the follow ing command:

gluster volume status <volname>

For example:

gluster volume status vol_9e86c0493f6b1lbe648c9deeeldc226a6

Status of volume: vol_9e86c0493f6blbe648c9deeeldc226a6
Gluster process TCP Port RDMA Port
Online Pid

Brick 192.168.121.168:/var/lib/heketi/mounts/v
g_3fal141bf2d09d30b899f2f260c494376/brick_9f
b4a5206bdd8ac70170d00f304f99a5/brick 49154 (€] Y
3462

Brick 192.168.121.172:/var/lib/heketi/mounts/v
g_7ad961dbd24e16d62cabel10fd8bf8909/brick_da
€2422d518915241f74fd90b426a379/brick 49154 (C] Y
115939

Brick 192.168.121.233:/var/lib/heketi/mounts/v
g_5c6428c439eb6686c5e4cee56532bacf/brick_b3
768ba8e80863724c9ec42446ea4812/brick 49154 (C] Y
116134

Brick 192.168.121.172:/var/lib/heketi/mounts/v
g_7ad961dbd24e16d62cabel10fd8bf8909/brick_0Oa
13958525¢c6343c4a7951acec199da®/brick 49155 (C] Y
115958

Brick 192.168.121.168:/var/lib/heketi/mounts/v
g_17fbc98d84df86756e7826326fh33aad4/brick_af
42af87ad87ab4f0l1e8cal53abbbee9/brick 49155 0 Y
3481

Operations Guide

Brick 192.168.121.233:/var/lib/heketi/mounts/v
g_5c6428c439eb6686c5e4cees56532bacf/brick_ef

41e04cab648efaf04178e64d25dbdcb/brick 49155 (0] Y
116153

NFS Server on localhost 2049 0] Y
116173

Self-heal Daemon on localhost N/A N/A Y
116181

NFS Server on nodel.example.com

2049 (0] Y 3501

Self-heal Daemon on nodel.example.com

N/A N/A Y 3509

NFS Server on 192.168.121.172 2049 (0]

Y 115978

Self-heal Daemon on 192.168.121.172 N/A N/A

Y 115986

Task Status of Volume vol_9e86c0493f6b1be648c9deeeldc226a6

There are no active volume tasks

6. To use the snapshot feature, load the snapshot module using the follow ing command on one of the
nodes:

modprobe dm_snapshot

Restrictions for using Snapshot

After a snapshot is created, it must be accessed through the user-serviceable snapshots
feature only. This can be used to copy the old versions of files into the required location.

Reverting the volume to a snapshot state is not supported and should never be done as it
might damage the consistency of the data.

On a volume w ith snapshots, volume changing operations, such as volume expansion,
must not be performed.

7. To take the snapshot of the gluster volume, execute the follow ing command:

gluster snapshot create <snapname> <volname>

For example:

gluster snapshot create snapil
vol_9e86c0493f6blbe648c9deeeldc226a6

snapshot create: success: Snap snapl_GMT-2016.07.29-13.05.46
created successfully

26

8.

9.

10.

11.

12.

Chapter 2. Operations on a Red Hat Gluster Storage Pod in an OpenShift Environment

To list the snapshots, execute the follow ing command:

gluster snapshot list

For example:

gluster snapshot list

snapl_GMT-2016.07.29-13.05.46
snhnap2_GMT-2016.07.29-13.06.13
snap3_GMT-2016.07.29-13.06.18
snhnap4_GMT-2016.07.29-13.06.22
snap5_GMT-2016.07.29-13.06.26

To delete a snapshot, execute the follow ing command:

gluster snap delete <snapname>

For example:

gluster snap delete snapl_GMT-2016.07.29-13.05.46

Deleting snap will erase all the information about the snap. Do
you still want to continue? (y/n) y

snapshot delete: snapl_GMT-2016.07.29-13.05.46: snap removed
successfully

You can set up Red Hat Openshift Container Storage volumes for geo-replication to a non-Red Hat
Openshift Container Storage remote site. Geo-replication uses a master—slave model. Here, the Red
Hat Openshift Container Storage volume acts as the master volume. To set up geo-replication, you
must run the geo-replication commands on gluster pods. To enter the gluster pod shell, execute the
follow ing command:

oc rsh <gluster_pod_name> -n <storage_project_name>

For more information about setting up geo-replication, see

Brick multiplexing is a feature that allow s including multiple bricks into one process. This reduces
resource consumption, allow ing you to run more bricks than earlier w ith the same memory
consumption.

Brick multiplexing is enabled by default from Container-Native Storage 3.6. If you w ant to turn it off,
execute the follow ing command:

gluster volume set all cluster.brick-multiplex off

The auto_unmount option in glusterfs libfuse, w hen enabled, ensures that the file systemis
unmounted at FUSE server termination by running a separate monitor process that performs the
unmount.

27

https://access.redhat.com/documentation/en-us/red_hat_gluster_storage/3.4/html-single/administration_guide/#chap-Managing_Snapshots
https://access.redhat.com/documentation/en-us/red_hat_gluster_storage/3.4/html/administration_guide/chap-managing_geo-replication

Operations Guide

The GlusterFS plugin in Openshift enables the auto_unmount option for gluster mounts.

28

Part Il. Operations

Part Il. Operations

29

Operations Guide

Chapter 3. Creating Persistent Volumes

Persistent volumes (PVs) and persistent volume claims (PVCs) can share volumes across a single project.
While the GlusterFS-specific information contained in a PV definition could also be defined directly in a pod
definition, doing so does not create the volume as a distinct cluster resource, making the volume more
susceptible to conflicts.

Binding PVs by Labels and Selectors

Labels are an OpenShift Container Platform feature that support user-defined tags (key-value pairs) as part of
an object’s specification. Their primary purpose is to enable the arbitrary grouping of objects by defining
identical labels among them. These labels can then be targeted by selectors to match all objects w ith specified
label values. It is this functionality w e w ill take advantage of to enable our PV C to bind to our PV.

You can use labels to identify common attributes or characteristics shared among volumes. For example, you
can define the gluster volume to have a custom attribute (key) named storage-tier with a value of gold
assigned. A claimw ill be able to select a PV with storage-tier=gold to match this PV.

3.1. File Storage

File storage, also called file-level or file-based storage, stores data in a hierarchical structure. The data is
saved in files and folders, and presented to both the system storing it and the systemretrieving it in the same
format. You can provision volumes either statically or dynamically for file-based storage.

3.1.1. Static Provisioning of Volumes

To enable persistent volume support in OpenShift and Kubernetes, few endpoints and a service
must be created:

The sample glusterfs endpoint file (sample-gluster-endpoints.yaml) and the sample glusterfs service file
(sample-gluster-service.yaml) are available at /usr/share/heketi/templates/ directory.

The sample endpoints and services file will not be available for ansible deployments since
/usr/share/heketi/templates/ directory w ill not be created for such deployments.

Ensure to copy the sample glusterfs endpoint file / glusterfs service file to a location of your choice
and then edit the copied file. For example:

cp /usr/share/heketi/templates/sample-gluster-endpoints.yaml
/<path>/gluster-endpoints.yaml

30

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/architecture/#architecture-additional-concepts-storage

1. To specify the endpoints you w ant to create, update the copied sample-gluster -
endpoints.yaml file with the endpoints to be created based on the environment. Each Red Hat

Gluster Storage trusted storage pool requires its ow n endpoint w ith the IP of the nodes in the trusted
storage pool.

cat sample-gluster-endpoints.yaml
apiVersion: vi
kind: Endpoints
metadata:
name: glusterfs-cluster
subsets:
- addresses:
- ip: 192.168.10.100
ports:
- port: 1
- addresses:
- ip: 192.168.160.101
ports:
- port: 1
- addresses:
- ip: 192.168.10.102
ports:
- port: 1

name: is the name of the endpoint
ip: is the ip address of the Red Hat Gluster Storage nodes.

2. Execute the follow ing command to create the endpoints:
oc create -f <name_of_endpoint_file>
For example:

oc create -f sample-gluster-endpoints.yaml
endpoints "glusterfs-cluster" created

3. To verify that the endpoints are created, execute the follow ing command:

oc get endpoints
For example:

oc get endpoints

NAME ENDPOINTS

AGE

storage-project-router
192.168.121.233:80,192.168.121.233:443,192.168.121.233:1936 2d
glusterfs-cluster

192.168.121.168:1,192.168.121.172:1,192.168.121.233:1 3s
heketi 10.1.1.3:8080
2m

heketi-storage-endpoints
192.168.121.168:1,192.168.121.172:1,192.168.121.233:1 3m

Operations Guide

32

4. Execute the follow ing command to create a gluster service:

oc create -f <name_of_service_file>

For example:

cat sample-gluster-service.yaml
apivVersion: vi
kind: Service

metadata:
name: glusterfs-cluster
spec:
ports:
- port: 1

oc create -f sample-gluster-service.yaml
service "glusterfs-cluster" created

5. To verify that the service is created, execute the follow ing command:

oc get service

For example:

oc get service

NAME CLUSTER-IP EXTERNAL-IP
AGE

storage-project-router 172.30.94.109 <none>
80/TCP,443/TCP,1936/TCP 2d

glusterfs-cluster 172.30.212.6 <none>

5s

heketi 172.30.175.7 <none>

2m

heketi-storage-endpoints 172.30.18.24 <none>

3m

PORT(S)

1/TCP
8080/TCP

1/TCP

The endpoints and the services must be created for each project that requires a persistent

storage.

6. Create a 100G persistent volume with Replica 3 from GlusterFS and output a persistent volume
specification describing this volume to the file pv001.json:

$ heketi-cli volume create --size=100 --persistent-volume-

file=pv00O1.json

cat pvoO1.json
{

"kind": "PersistentVolume",
"apiVersion": "wv1",

Chapter 3. Creating Persistent Volumes

"metadata": {

"name": "glusterfs-f8c612ee",
"creationTimestamp": null

Iy

"spec": {

"capacity": {
"storage": "100Gi"
Iy
"glusterfs": {
"endpoints": "TYPE ENDPOINT HERE",
"path": "vol_f8c612eea57556197511f6b8c54b6070"
Iy
"accessModes": [
"ReadWriteMany"
1,

"persistentVolumeReclaimPolicy": "Retain"

3
"status": {}

You must manually add the Labels information to the .json file.

Follow ing is the example YAML file for reference:

apivVersion: vi

kind: PersistentVolume
metadata:

name: pv-storage-project-glusterfsi
labels:
storage-tier: gold

spec:

capacity:

storage: 12Gi
accessModes:

- ReadWriteMany
persistentVolumeReclaimPolicy: Retain
glusterfs:

endpoints: TYPE END POINTS NAME HERE,

path: vol_e6b77204ff54c779c042f570a71b1407

name: The name of the volume.

storage: The amount of storage allocated to this volume

glusterfs: The volume type being used, in this case the glusterfs plug-in

endpoints: The endpoints name that defines the trusted storage pool created

path: The Red Hat Gluster Storage volume that will be accessed from the Trusted Storage Pool.

accessModes: accessModes are used as labels to match a PV and a PVC. They currently do not
define any form of access control.

33

Operations Guide

labels: Use labels to identify common attributes or characteristics shared among volumes. In this
case, w e have defined the gluster volume to have a custom attribute (key) named storage-tier with
a value of gold assigned. A claimw ill be able to select a PV with storage-tier=gold to match this
PV.

heketi-cli also accepts the endpoint name on the command line (--persistent-volume-
endpoint="TY PE ENDPOINT HERE"). This can then be pipedto oc create -f - to
create the persistent volume immediately.

If there are multiple Red Hat Gluster Storage trusted storage pools in your environment, you
can check on w hich trusted storage pool the volume is created using the heketi-cli
volume list command. This command lists the cluster name. You can then update the
endpoint information in the pv@01. j son file accordingly.

When creating a Heketi volume w ith only tw o nodes w ith the replica count set to the
default value of three (replica 3), an error "No space" is displayed by Heketi as there is no
space to create a replica set of three disks on three different nodes.

If all the heketi-cli write operations (ex: volume create, cluster create..etc) fails and the
read operations (ex: topology info, volume info ..etc) are successful, then the possibility is
that the gluster volume is operating in read-only mode.

7. Edit the pv001.json file and enter the name of the endpoint in the endpoint's section:

cat pveO1l.json

{
"kind": "PersistentVolume",
"apiVersion": "wv1",
"metadata": {
"name": "glusterfs-f8c612ee",
"creationTimestamp": null,
"labels": {
"storage-tier": '"gold"
3
Iy
"spec": {
"capacity": {
"storage": "12Gi"
Iy
"glusterfs": {
"endpoints": "glusterfs-cluster",
"path": "vol_f8c612eea57556197511f6b8c54b6070"
Iy
"accessModes": [
"ReadWriteMany"
1,
"persistentVolumeReclaimPolicy": "Retain"
Iy
"status": {}
3

8. Create a persistent volume by executing the follow ing command:

oc create -f pveO1.json

34

Chapter 3. Creating Persistent Volumes

For example:

oc create -f pveO1.json
persistentvolume "glusterfs-4fc22ff9" created

9. To verify that the persistent volume is created, execute the follow ing command:
oc get pv
For example:

oc get pv

NAME CAPACITY ACCESSMODES STATUS CLAIM
REASON AGE

glusterfs-4fc22ff9 10061 RWX Available

4s

10. Create a persistent volume claim file. For example:

cat pvc.yaml
apiVersion: vi
kind: PersistentVolumeClaim

metadata:
name: glusterfs-claim
spec:
accessModes:
- ReadWriteMany
resources:
requests:
storage: 100Gi
selector:
matchLabels:

storage-tier: gold
11. Bind the persistent volume to the persistent volume claim by executing the follow ing command:
oc create -f pvc.yaml

For example:

oc create -f pvc.yaml
persistentvolumeclaim"glusterfs-claim" created

12. To verify that the persistent volume and the persistent volume claimis bound, execute the follow ing
commands:

oc get pv
oc get pvc

For example:

oc get pv

35

Operations Guide

36

NAME CAPACITY ACCESSMODES STATUS CLAIM
REASON AGE

glusterfs-4fc22ff9 100G1i RWX Bound storage-
project/glusterfs-claim im

oc get pvc

NAME STATUS VOLUME CAPACITY
ACCESSMODES AGE

glusterfs-claim Bound glusterfs-4fc22ff9 100G1i
11s

13. The claimcan now be used in the application:

For example:

cat app.yaml

apiVersion: vi

kind: Pod
metadata:
name: busybox
spec:
containers:
- image: busybox
command:
- sleep
"3600"
name: busybox
volumeMounts:

- mountPath: /usr/share/busybox
name: mypvc
volumes:
- name: mypvc
persistentVolumeClaim:
claimName: glusterfs-claim

oc create -f app.yaml
pod "busybox" created

For more information about using the glusterfs claimin the application see,

14. To verify that the pod is created, execute the follow ing command:
oc get pods -n <storage_project_name>
For example:

oc get pods -n storage-project

NAME READY STATUS RESTARTS

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/configuring_clusters/#install-config-storage-examples-gluster-example

Chapter 3. Creating Persistent Volumes

AGE

block-test-router-1-deploy 0/1 Running 0
4h

busybox 1/1 Running 0
43s

glusterblock-provisioner-1-bjpz4 1/1 Running 0
4h

glusterfs-715xf 1/1 Running 0
4h

glusterfs-hhxtk 1/1 Running 3
4h

glusterfs-m4rbc 1/1 Running 0
4h

heketi-1-3h9nb 1/1 Running 0
4h

15. To verify that the persistent volume is mounted inside the container, execute the follow ing command:

oc rsh busybox

/ $ df -h

Filesystem Size Used Available Use% Mounted on
/dev/mapper/docker-253:0-1310998-
81732b5fd87c197f627a24bcd2777f12eec4ee937cc2660656908b2fa6359129

100.0G 34.1M 99.9G 0% /

tmpfs 1.5G 0 1.5G 0% /dev
tmpfs 1.5G (C] 1.5G 0%
/sys/fs/cgroup
192.168.121.168:vol_4fc22ff934e531dec3830cfbcadleeae

99.9G 66.1M 99.9G 0%
/usr/share/busybox
tmpfs 1.5G (C] 1.5G 0%
/run/secrets
/dev/mapper/vg_vagrant-lv_root

37.7G 3.8G 32.0G 11%

/dev/termination-1log
tmpfs 1.5G 12.0K 1.5G 0%
/var/run/secretgit s/kubernetes.io/serviceaccount

If you encounter a permission denied error on the mount point, then refer to section Gluster Volume

3.1.2. Dynamic Provisioning of Volumes

Dynamic provisioning enables you to provision a Red Hat Gluster Storage volume to a running application
container w ithout pre-creating the volume. The volume will be created dynamically as the claim request comes
in, and a volume of exactly the same size will be provisioned to the application containers.

3.1.2.1. Configuring Dynamic Provisioning of Volumes

37

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/configuring_clusters/#install-config-storage-examples-gluster-example

Operations Guide

To configure dynamic provisioning of volumes, the administrator must define StorageClass objects that
describe named "classes" of storage offered in a cluster. After creating a Storage Class, a secret for heketi
authentication must be created before proceeding w ith the creation of persistent volume claim.

3.1.2.1.1. Creating Secret for Heketi Authentication

To create a secret for Heketi authentication, execute the follow ing commands:

If the admin-key value (secret to access heketi to get the volume details) w as not set during the
deployment of Red Hat Openshift Container Storage, then the follow ing steps can be omitted.

1. Create an encoded value for the passw ord by executing the follow ing command:

echo -n "<key>" | base64

w here “key” is the value for "admin-key" that w as created w hile deploying Red Hat Openshift
Container Storage

For example:
echo -n "mypassword" | base64
bX1wYXNzd29yZA==

2. Create a secret file. A sample secret file is provided below :

cat glusterfs-secret.yaml

apiVersion: vi
kind: Secret
metadata:
name: heketi-secret
namespace: default
data:
base64 encoded password. E.g.: echo -n "mypassword" | base64
key: bX1wYXNzd29yZA==
type: kubernetes.io/glusterfs

3. Register the secret on Openshift by executing the follow ing command:

oc create -f glusterfs-secret.yaml
secret "heketi-secret" created
3.1.2.1.2. Registering a Storage Class

When configuring a StorageClass object for persistent volume provisioning, the administrator must describe
the type of provisioner to use and the parameters that will be used by the provisioner w hen it provisions a
PersistentVolume belonging to the class.

1. To create a storage class execute the follow ing command:

cat > glusterfs-storageclass.yaml

38

Chapter 3. Creating Persistent Volumes

apiVersion: storage.k8s.io/vilbetal
kind: StorageClass
metadata:
name: gluster-container
provisioner: kubernetes.io/glusterfs
reclaimPolicy: Retain
parameters:
resturl: "http://heketi-storage-project.cloudapps.mystorage.com"
restuser: "admin"
volumetype: "replicate:3"
clusterid:
"630372ccdc720a92c681fb928f27b53f, 796e6db1981f369€a0340913eeeca4dc9a
secretNamespace: "default"
secretName: "heketi-secret"
volumeoptions: "client.ssl on, server.ssl on"
volumenameprefix: "test-vol"
allowVolumeExpansion: true

w here,

resturl: Gluster REST service/Heketi service url w hich provision gluster volumes on demand. The
general format must be IPaddress:Port and this is a mandatory parameter for GlusterFS dynamic
provisioner. If Heketi service is exposed as a routable service in openshift/kubernetes setup, this can
have a format similar to http://heketi-storage-project.cloudapps.mystorage.comw here the fqdn is a
resolvable heketi service url.

restuser : Gluster REST service/Heketi user w ho has access to create volumes in the trusted
storage pool

volumetype: It specifies the volume type that is being used.

Distributed-Three-w ay replication is the only supported volume type.

clusterid: It is the ID of the cluster w hich will be used by Heketi w hen provisioning the volume. It can
also be a list of comma-separated cluster IDs. This is an optional parameter.

To get the cluster ID, execute the follow ing command:

heketi-cli cluster list

secretNamespace + secretName: Identification of Secret instance that contains the user
passw ord that is used w hen communicating w ith the Gluster REST service. These parameters are
optional. Empty passw ord w ill be used w hen both secretNamespace and secretName are omitted.

39

Operations Guide

When the persistent volumes are dynamically provisioned, the Gluster plugin automatically
creates an endpoint and a headless service in the name gluster-dynamic-<claimname>. This
dynamic endpoint and service will be deleted automatically w hen the persistent volume claimis
deleted.

volumeoptions: This is an optional parameter. It allow s you to create glusterfs volumes w ith
encryption enabled by setting the parameter to "client.ssl on, server.ssl on". For more information on

Do not add this parameter in the storageclass if encryption is not enabled.

volumenam eprefix: This is an optional parameter. It depicts the name of the volume created by

The value for this parameter cannot contain *_" in the storageclass.

allowVolumeExpansion: To increase the PV claimvalue, ensure to set the
allowVolumeExpansion parameter in the storageclass file to true. For more information, see

2. Toregister the storage class to Openshift, execute the follow ing command:

oc create -f glusterfs-storageclass.yaml
storageclass "gluster-container" created

3. To get the details of the storage class, execute the follow ing command:

oc describe storageclass gluster-container

Name: gluster-container

IsDefaultClass: No

Annotations: <none>

Provisioner: kubernetes.io/glusterfs

Parameters: resturl=http://heketi-storage-
project.cloudapps.mystorage.com, restuser=admin, secretName=heketi-
secret, secretNamespace=default

No events.

3.1.2.1.3. Creating a Persistent Volume Claim
To create a persistent volume claim execute the follow ing commands:

1. Create a Persistent Volume Claim file. A sample persistent volume claimis provided below :

40

Chapter 3. Creating Persistent Volumes

cat glusterfs-pvc-claiml.yaml
kind: PersistentVolumeClaim
apivVersion: vi
metadata:
name: claiml
annotations:
volume.beta.kubernetes.io/storage-class: gluster-container
spec:
persistentVolumeReclaimPolicy: Retain
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 5Gi

persistentVolumeReclaimPolicy:This is an optional parameter. When this parameter is set to
"Retain" the underlying persistent volume is retained even after the corresponding persistent volume
claimis deleted.

When PVCis deleted, the underlying heketi and gluster volumes are not deleted if
"persistentVolumeReclaimPolicy:" is set to "Retain”. To delete the volume, you must use heketi
cliand then delete the PV.

2. Register the claim by executing the follow ing command:

oc create -f glusterfs-pvc-claiml.yaml
persistentvolumeclaim "claiml" created

3. To get the details of the claim, execute the follow ing command:

oc describe pvc <claim_name>

For example:

oc describe pvc claimi

Name: claiml

Namespace: default

StorageClass: gluster-container

Status: Bound

Volume: pvc-54b88668-9da6-11e6-965e-54ee7551fd0OcC
Labels: <none>

Capacity: 4Gi

Access Modes: RWO

No events.

3.1.2.1.4. Verifying Claim Creation

To verify if the claimis created, execute the follow ing commands:

41

Operations Guide

1. To get the details of the persistent volume claim and persistent volume, execute the follow ing
command:

oc get pv,pvc

NAME CAPACITY
ACCESSMODES RECLAIMPOLICY STATUS CLAIM

REASON AGE

pv/pvc-962aa6dl-bddb-11e6-be23-5254009fc65b 4G1i RwWO
Delete Bound storage-project/claiml 3m
NAME STATUS VOLUME

CAPACITY ACCESSMODES AGE

pvc/claiml Bound pvc-962aa6dl-bddb-11e6-be23-5254009fc65b
4Gi RWO 4m

2. To validate if the endpoint and the services are created as part of claim creation, execute the
follow ing command:

oc get endpoints, service

NAME ENDPOINTS

AGE

ep/storage-project-router
192.168.68.3:443,192.168.68.3:1936,192.168.68.3:80 28d
ep/gluster-dynamic-claiml

192.168.68.2:1,192.168.68.3:1,192.168.68.4:1 5m
ep/heketi 10.130.0.21:8080

21d

ep/heketi-storage-endpoints
192.168.68.2:1,192.168.68.3:1,192.168.68.4:1 25d
NAME CLUSTER-IP EXTERNAL-IP
PORT(S) AGE

svc/storage-project-router 172.30.166.64 <none>
80/TCP,443/TCP,1936/TCP 28d

svc/gluster-dynamic-claiml 172.30.52.17 <none>
1/TCP 5m

svc/heketi 172.30.129.113 <none>
8080/TCP 21d
svc/heketi-storage-endpoints 172.30.133.212 <none>
1/TCP 25d

3.1.2.1.5. (Optional) Providing a Custom Volume Name Prefix for Persistent Volumes

You can provide a custom volume name prefix to the persistent volume that is created. By providing a custom
volume name prefix, users can now easily search/filter the volumes based on:

Any string that w as provided as the field value of "volnameprefix" in the storageclass file.
Persistent volume claim name.
Project / Namespace name.

To set the name, ensure that you have added the parameter volumenameprefix to the storage class file.

42

Chapter 3. Creating Persistent Volumes

The value for this parameter cannot contain *_" in the storageclass.

To verify if the custom volume name prefix is set, execute the follow ing command:
oc describe pv <pv_name>
For example:

oc describe pv pvc-f92e3065-25e8-11e8-8f17-005056a55501

Name: pvc-f92e3065-25e8-11e8-8f17-005056a55501
Labels: <none>
Annotations: Description=Gluster-Internal: Dynamically

provisioned PV
gluster.kubernetes.io/heketi-volume-
id=027c76b24bl1a3ce3f94d162f843529c8
gluster.org/type=file
kubernetes.io/createdby=heketi-dynamic-provisioner
pv.beta.kubernetes.io/gid=2000
pv.kubernetes.io/bound-by-controller=yes
pv.kubernetes.io/provisioned-
by=kubernetes.io/glusterfs
volume.beta.kubernetes.io/mount-
options=auto_unmount

StorageClass: gluster-container-prefix
Status: Bound
Claim: glusterfs/claimi
Reclaim Policy: Delete
Access Modes: RWO
Capacity: 1Gi
Message:
Source:
Type: Glusterfs (a Glusterfs mount on the host that

shares a pod's lifetime)
EndpointsName: glusterfs-dynamic-claiml

Path: test-vol_glusterfs_claiml_f9352e4c-25e8-11e8-
b460-005056a55501
ReadOnly: false
Events: <none>

The value for Path will have the custom volume name prefix attached to the namespace and the claim name,
w hich is "test-vol" in this case.

3.1.2.1.6. Using the Claim in a Pod
Execute the follow ing steps to use the claimin a pod.
1. To use the claimin the application, for example
cat app.yaml

apiVersion: vi
kind: Pod

43

Operations Guide

44

metadata:
name: busybox
spec:
containers:
- image: busybox
command:
- sleep
"3600"
name: busybox
volumeMounts:
- mountPath: /usr/share/busybox
name: mypvc
volumes:
- name: mypvc
persistentVolumeClaim:
claimName: claimil

oc create -f app.yaml
pod "busybox" created

For more information about using the glusterfs claimin the application see,

2. To verify that the pod is created, execute the follow ing command:

oc get pods -n storage-project

NAME READY STATUS

RESTARTS AGE

storage-project-router-1-at7tf 1/1 Running 0
13d

busybox 1/1 Running 0
8s

glusterfs-dc-192.168.68.2-1-hu28h 1/1 Running 0
7d

glusterfs-dc-192.168.68.3-1-ytnlg 1/1 Running 0
7d

glusterfs-dc-192.168.68.4-1-juqcq 1/1 Running 0
13d

heketi-1-9r47c 1/1 Running 0]
13d

3. To verify that the persistent volume is mounted inside the container, execute the follow ing command:

oc rsh busybox

/ $ df -h

Filesystem Size Used Available Use% Mounted on
/dev/mapper/docker-253:0-666733-
38050ald2cdb41dc00d60f25a7a295f6e89d4c529302fb2b93d8faa5a3205fh9

10.06 33.8M 9.96G 0% /
tmpfs 23.5G6 0] 23.5G6 0% /dev
tmpfs 23.5G6 0] 23.5G6 0%

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html-single/configuring_clusters/#install-config-storage-examples-gluster-example

Chapter 3. Creating Persistent Volumes

/sys/fs/cgroup
/dev/mapper/rhgs-root

17.5G 3.6G 13.8G
/run/secrets
/dev/mapper/rhgs-root

17.5G 3.6G 13.8G
/dev/termination-1log
/dev/mapper/rhgs-root

17.5G 3.6G 13.8G
/etc/resolv.conf
/dev/mapper/rhgs-root

17.5G 3.6G 13.8G
/etc/hostname
/dev/mapper/rhgs-root

17.5G 3.6G 13.8G
shm 64 .0M (C] 64 .0M
192.168.68.2:vol_5b05cf2e5404afe614f8afa698792bae

4.0G 32.6M 4.0G
/usr/share/busybox
tmpfs 23.5G 16.0K 23.5G
/var/run/secrets/kubernetes.io/serviceaccount
tmpfs 23.5G (C] 23.5G
/proc/kcore
tmpfs 23.5G (C] 23.5G

/proc/timer_stats

3.1.2.1.7. Expanding Persistent Volume Claim

21%

21%

21%

21%

21%

0%

1%

0%

0%

0%

/etc/hosts
/dev/shm

To increase the PV claim value, ensure to set the allowVolumeExpansion parameter in the storageclass

You can also resize a PV via the OpenShift Container Platform 3.11 Web Console.

To expand the persistent volume claim value, execute the follow ing commands:

1. If the feature gates ExpandPersistentVolumes, and the admissionconfig
PersistentVolumeClaimResize are not enabled, then edit the master.conf file located at
letc/origin/master/master-config.yaml on the master to enable them. For example:

To enable feature gates ExpandPersistentVolumes

apiServerArguments:
runtime-config:

- apis/settings.k8s.io/vlalphal=true

storage-backend:
- etcd3

storage-media-type:

- application/vnd.

feature-gates:

kubernetes.protobuf

45

- ExpandPersistentVolumes=true
controllerArguments:

feature-gates:

- ExpandPersistentVolumes=true

To enable admissionconfig PersistentVolumeClaimResize add the follow ing under admission
config in the master-config file.

admissionConfig:
pluginConfig:
PersistentVolumeClaimResize:
configuration:
apiVersion: vi
disable: false
kind: DefaultAdmissionConfig

a. Restart the OpenShift master by running the follow ing commands:

/usr/local/bin/master-restart api
/usr/local/bin/master-restart controllers

2. To check the existing persistent volume size, execute the follow ing command on the app pod:

oc rsh busybox

df -h

For example:

oc rsh busybox

/ # df -h

Filesystem Size Used Available Use% Mounted on
/dev/mapper/docker-253:0-100702042-
0fa327369e7708b67f0c632d83721cd9a5b39fd3a7b3218f3ff3c83ef4320ce?

10.0G 34.2M 9.9G 0% /
tmpfs 15.6G (C] 15.66G 0% /dev
tmpfs 15.6G (C] 15.66G 0%
/sys/fs/cgroup
/dev/mapper/rhel_dhcp47--150-root

50.06G 7.4G 42.6G 15%

/dev/termination-1log
/dev/mapper/rhel_dhcp47--150-root

50.0G 7.4G 42.6G 15%
/run/secrets
/dev/mapper/rhel_dhcp47--150-root

50.0G 7.4G 42.6G 15%

/etc/resolv.conf
/dev/mapper/rhel_dhcp47--150-root

50.0G 7.4G 42.6G 15%
/etc/hostname
/dev/mapper/rhel_dhcp47--150-root

50.0G 7.4G 42 .6G 15% /etc/hosts
shm 64.0M 0 64.0M 0% /dev/shm

10.70.46.177:test-vol_glusterfs_claiml10_d3el5a8b-26b3-11e8-acdf-

005056a55501

2.0G 32.6M 2.0G 2%
/usr/share/busybox
tmpfs 15.6G 16.0K 15.6G 0%
/var/run/secrets/kubernetes.io/serviceaccount
tmpfs 15.6G (€] 15.6G 0%
/proc/kcore
tmpfs 15.6G (€] 15.6G 0%
/proc/timer_list
tmpfs 15.6G (C] 15.6G 0%
/proc/timer_stats
tmpfs 15.6G (C] 15.6G 0%
/proc/sched_debug
tmpfs 15.6G 0 15.6G 0% /proc/scsi
tmpfs 15.6G (C] 15.6G 0%
/sys/firmware

In this example the persistent volume size is 2Gi

3. To edit the persistent volume claim value, execute the follow ing command and edit the follow ing
storage parameter:

resources:
requests:
storage: <storage_value>

oc edit pvc <claim_name>

For example, to expand the storage value to 20Gi:

oc edit pvc claim3
apiVersion: vi
kind: PersistentVolumeClaim
metadata:
annotations:
pv.kubernetes.io/bind-completed: "yes"
pv.kubernetes.io/bound-by-controller: "yes"
volume.beta.kubernetes.io/storage-class: gluster-container2
volume.beta.kubernetes.io/storage-provisioner:
kubernetes.io/glusterfs
creationTimestamp: 2018-02-14T07:42:00Z
name: claim3
namespace: storage-project
resourceVersion: "283924"
selfLink: /api/vl/namespaces/storage-
project/persistentvolumeclaims/claim3
uid: 8a9bbodf-115a-11e8-8ch3-005056a5a340
spec:
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 20Gi
volumeName: pvc-8a9bbodf-115a-11e8-8ch3-005056a5a340
status:

accessModes:

- ReadWriteOnce

capacity:
storage: 2Gi

phase: Bound

4. To verify, execute the follow ing command on the app pod:

oc rsh busybox

/ # df -h

For example:

oc rsh busybox

df -h

Filesystem Size Used Available Use% Mounted on
/dev/mapper/docker-253:0-100702042-
0fa327369e7708b67f0c632d83721cd9a5b39fd3a7b3218f3ff3c83ef4320ce7

10.0G 34.2M 9.9G 0% /
tmpfs 15.6G (C] 15.66G 0% /dev
tmpfs 15.66G (C] 15.66G 0%
/sys/fs/cgroup
/dev/mapper/rhel_dhcp47--150-root

50.06G 7.4G 42.6G 15%

/dev/termination-1log
/dev/mapper/rhel_dhcp47--150-root

50.0G 7.4G 42.6G 15%
/run/secrets
/dev/mapper/rhel_dhcp47--150-root

50.0G 7.4G 42.6G 15%

/etc/resolv.conf
/dev/mapper/rhel_dhcp47--150-root

50.0G 7.4G 42.6G 15%
/etc/hostname
/dev/mapper/rhel_dhcp47--150-root

50.0G 7.4G 42 .6G 15% /etc/hosts
shm 64.0M 0 64.0M 0% /dev/shm
10.70.46.177:test-vol_glusterfs_claiml10_d3el5a8b-26b3-11e8-acdf-
005056a55501

20.0G 65.3M 19.9G 1%
/usr/share/busybox
tmpfs 15.6G 16.0K 15.6G 0%
/var/run/secrets/kubernetes.io/serviceaccount
tmpfs 15.6G (C] 15.6G 0%
/proc/kcore
tmpfs 15.6G (C] 15.66G 0%
/proc/timer_list
tmpfs 15.6G (€] 15.6G 0%
/proc/timer_stats
tmpfs 15.6G (C] 15.66G 0%
/proc/sched_debug
tmpfs 15.6G 0 15.6G 0% /proc/scsi
tmpfs 15.6G (C] 15.6G 0%

/sys/firmware

Chapter 3. Creating Persistent Volumes

It is observed that the size is changed from 2Gi (earlier) to 20Gi.

3.1.2.1.8. Deleting a Persistent Volume Claim

If the "persistentVolumeReclaimPolicy" parameter w as set to "Retain” w hen registering the
storageclass, the underlying PV and the corresponding volume remains even w hen a PVC is deleted.

1. To delete a claim, execute the follow ing command:

oc delete pvc <claim-name>

For example:

oc delete pvc claimi
persistentvolumeclaim "claiml" deleted

2. To verify if the claimis deleted, execute the follow ing command:
oc get pvc <claim-name>
For example:

oc get pvc claimi
No resources found.

When the user deletes a persistent volume claim that is bound to a persistent volume created by
dynamic provisioning, apart from deleting the persistent volume claim, Kubernetes w ill also delete the
persistent volume, endpoints, service, and the actual volume. Execute the follow ing commands if this
has to be verified:

To verify if the persistent volume is deleted, execute the follow ing command:
oc get pv <pv-name>
For example:

oc get pv pvc-962aa6dl-bddb-11e6-be23-5254009fc65b
No resources found.

To verify if the endpoints are deleted, execute the follow ing command:
oc get endpoints <endpointname>
For example:

oc get endpoints gluster-dynamic-claiml
No resources found.

49

Operations Guide

To verify if the service is deleted, execute the follow ing command:

oc get service <servicename>

For example:

oc get service gluster-dynamic-claiml
No resources found.

3.1.3. Volume Security

Volumes come with a UID/GID of 0 (root). For an application pod to w rite to the volume, it should also have a
UID/GID of 0 (root). With the volume security feature the administrator can now create a volume w ith a unique
GID and the application pod can w rite to the volume using this unique GID

Volume security for statically provisioned volumes

To create a statically provisioned volume w ith a GID, execute the follow ing command:

$ heketi-cli volume create --size=100 --persistent-volume-
file=pv0OO1l.json --gid=590

In the above command, a 100G persistent volume with a GID of 590 is created and the output of the persistent
volume specification describing this volume is added to the pv001.json file.

For more information about accessing the volume using this GID, see

Volume security for dynamically provisioned volumes

Two new parameters, gidMin and gidMax, are introduced w ith dynamic provisioner. These values allow the
administrator to configure the GID range for the volume in the storage class. To set up the GID values and
provide volume security for dynamically provisioned volumes, execute the follow ing commands:

1. Create a storage class file with the GID values. For example:

cat glusterfs-storageclass.yaml

apiVersion: storage.k8s.io/vilbetal
kind: StorageClass
metadata:
name:gluster-container
provisioner: kubernetes.io/glusterfs
parameters:
resturl: "http://heketi-storage-project.cloudapps.mystorage.com"
restuser: "admin"
secretNamespace: "default"
secretName: "heketi-secret"
gidMin: "2000"
gidMax: "4000"

50

https://access.redhat.com/documentation/en-us/openshift_container_platform/3.10/html/configuring_clusters/persistent-storage-examples#install-config-storage-examples-gluster-example

Chapter 3. Creating Persistent Volumes

If the gidMin and gidMax value are not provided, then the dynamic provisioned volumes will
have the GID betw een 2000 and 2147483647.

4. To verify if the GID is within the range specified, execute the follow ing command:

oc rsh busybox
$ id
For example:

$ id
uid=1000060000 gid=0(root) groups=0(root), 2001

w here, 2001 in the above output is the allocated GID for the persistent volume, w hich is w ithin the
range specified in the storage class. You can write to this volume w ith the allocated GID.

When the persistent volume claimis deleted, the GID of the persistent volume is released from
the pool.

3.2. Block Storage

Block storage allow s the creation of high performance individual storage units. Unlike the traditional file
storage capability that glusterfs supports, each storage volume/block device can be treated as an
independent disk drive, so that each storage volume/block device can support an individual file system.

gluster-block is a distributed management framew ork for block devices. It aims to make Gluster-backed block
storage creation and maintenance as simple as possible. gluster-block can provision block devices and export
themas iSCSI LUN's across multiple nodes, and uses iSCSI protocol for data transfer as SCSI
block/commands.

51

Operations Guide

Static provisioning of volumes is not supported for Block storage. Dynamic provisioning of volumes is
the only method supported.

The recommended Red Hat Enterprise Linux (RHEL) version for block storage is RHEL-7.5.3.

Block volume expansion is not supported in Container-Native Storage 3.10.

3.2.1. Dynamic Provisioning of Volumes for Block Storage
Dynamic provisioning enables you to provision a Red Hat Gluster Storage volume to a running application

container w ithout pre-creating the volume. The volume will be created dynamically as the claim request comes
in, and a volume of exactly the same size will be provisioned to the application containers.

3.2.1.1. Configuring Dynamic Provisioning of Volumes
To configure dynamic provisioning of volumes, the administrator must define StorageClass objects that

describe named "classes" of storage offered in a cluster. After creating a Storage Class, a secret for heketi
authentication must be created before proceeding w ith the creation of persistent volume claim.

3.2.1.1.1. Configuring Multipathing on all Initiators

To ensure the iSCSl initiator can communicate w ith the iSCSI targets and achieve HA using multipathing,
execute the follow ing steps on all the OpenShift nodes (iSCSl initiator) w here the app pods are hosted:

1. To install initiator related packages on all the nodes w here initiator has to be configured, execute the
follow ing command:

yum install iscsi-initiator-utils device-mapper-multipath
2. To enable multipath, execute the follow ing command:

mpathconf --enable

3. Create and add the follow ing content to the multipath.conf file:

cat >> /etc/multipath.conf <<EOF
LIO iSCSI

devices {
device {
vendor "LIO-ORG"
user_friendly_names "yes" # names like mpatha
path_grouping_policy "failover" # one path per
group

hardware_handler "1 alua"
path_selector "round-robin 0"
failback immediate
path_checker "tur"

prio "alua"

52

Chapter 3. Creating Persistent Volumes

no_path_retry 120

}
EOF

4. Execute the follow ing commands to start multipath daemon and [re]load the multipath configuration:

systemctl start multipathd

systemctl reload multipathd

3.2.1.1.2. Creating Secret for Heketi Authentication

To create a secret for Heketi authentication, execute the follow ing commands:

If the admin-key value (secret to access heketi to get the volume details) w as not set during the
deployment of Red Hat Openshift Container Storage, then the follow ing steps can be omitted.

1. Create an encoded value for the passw ord by executing the follow ing command:

echo -n "<key>" | base64

w here “key” is the value for admin-key that was created w hile deploying CNS

For example:
echo -n "mypassword" | base64
bX1wYXNzd29yZA==

2. Create a secret file. A sample secret file is provided below :

cat glusterfs-secret.yaml

apiVersion: vi
kind: Secret
metadata:
name: heketi-secret
namespace: default
data:
base64 encoded password. E.g.: echo -n "mypassword" | base64
key: bX1wYXNzd29yZA==
type: gluster.org/glusterblock

3. Register the secret on Openshift by executing the follow ing command:

oc create -f glusterfs-secret.yaml
secret "heketi-secret" created

3.2.1.1.3. Registering a Storage Class

53

Operations Guide

When configuring a StorageClass object for persistent volume provisioning, the administrator must describe
the type of provisioner to use and the parameters that will be used by the provisioner w hen it provisions a
PersistentVolume belonging to the class.

54

1. Create a storage class. A sample storage class file is presented below :

cat > glusterfs-block-storageclass.yaml

apiVersion: storage.k8s.io/v1
kind: StorageClass
metadata:
name: gluster-block
provisioner: gluster.org/glusterblock
reclaimPolicy: Retain
parameters:
resturl: "http://heketi-storage-project.cloudapps.mystorage.com"
restuser: "admin"
restsecretnamespace: "default"
restsecretname: "heketi-secret"
hacount: "3"
clusterids:
"630372ccdc720a92c681fb928f27b53f, 796e6db1981F369ea0340913eeeadc9a
chapauthenabled: "true"
volumenameprefix: "test-vol"

w here,

resturl: Gluster REST service/Heketi service url w hich provision gluster volumes on demand. The
general format must be IPaddress:Port and this is a mandatory parameter for GlusterFS dynamic
provisioner. If Heketi service is exposed as a routable service in openshift/kubernetes setup, this can
have a format similar to http://heketi-storage-project.cloudapps.mystorage.comw here the fqdn is a
resolvable heketi service url.

restuser : Gluster REST service/Heketi user w ho has access to create volumes in the trusted
storage pool

restsecretnamespace +restsecretname : ldentification of Secret instance that contains user
passw ord to use w hen talking to Gluster REST service. These parameters are optional. Empty
passw ord will be used when both restsecretnamespace and restsecretname are omitted.

hacount: It is the count of the number of paths to the block target server. hacount provides high
availability via multipathing capability of iSCSI. If there is a path failure, the VOs will not be interrupted
and will be served via another available paths.

clusterids: It is the ID of the cluster w hich will be used by Heketi w hen provisioning the volume. It
can also be a list of comma-separated cluster IDs. This is an optional parameter.

Chapter 3. Creating Persistent Volumes

To get the cluster ID, execute the follow ing command:

heketi-cli cluster list

chapauthenabled: If you w ant to provision block volume w ith CHAP authentication enabled, this
value has to be set to true. This is an optional parameter.

volumenam eprefix: This is an optional parameter. It depicts the name of the volume created by

The value for this parameter cannot contain *_" in the storageclass.

2. Toregister the storage class to Openshift, execute the follow ing command:

oc create -f glusterfs-block-storageclass.yaml
storageclass "gluster-block" created

3. To get the details of the storage class, execute the follow ing command:

oc describe storageclass gluster-block

Name: gluster-block
IsDefaultClass: No

Annotations: <none>

Provisioner: gluster.org/glusterblock
Parameters:

chapauthenabled=true, hacount=3, opmode=heketi, restsecretname=heketi
-secret, restsecretnamespace=default, resturl=http://heketi-storage-
project.cloudapps.mystorage.com, restuser=admin

Events: <none>

3.2.1.1.4. Creating a Persistent Volume Claim
To create a persistent volume claim execute the follow ing commands:

1. Create a Persistent Volume Claimfile. A sample persistent volume claimis provided below :

cat glusterfs-block-pvc-claim.yaml
kind: PersistentVolumeClaim
apivVersion: vi
metadata:

name: claiml

annotations:

volume.beta.kubernetes.io/storage-class: gluster-block

spec:

persistentVolumeReclaimPolicy: Retain

55

Operations Guide

accessModes:
- ReadWriteOnce
resources:
requests:
storage: 5Gi

persistentVolumeReclaimPolicy:This is an optional parameter. When this parameter is set to
"Retain" the underlying persistent volume is retained even after the corresponding persistent volume
claimis deleted.

When PVC is deleted, the underlying heketi and gluster volumes are not deleted if
"persistentVolumeReclaimPolicy:" is set to "Retain”. To delete the volume, you must use heketi
cliand then delete the PV.

2. Register the claim by executing the follow ing command:

oc create -f glusterfs-block-pvc-claim.yaml
persistentvolumeclaim "claiml" created

3. To get the details of the claim, execute the follow ing command:
oc describe pvc <claim_name>
For example:

oc describe pvc claimi

Name: claimi

Namespace: block-test

StorageClass: gluster-block

Status: Bound

Volume: pvc-ee30ff43-7ddc-11e7-89da-5254002ec671
Labels: <none>

Annotations: control-plane.alpha.kubernetes.io/leader=

{"holderIdentity":"8d7fecbh4-7dba-11e7-a347-

0a580a830002", "leasebDurationSeconds":15, "acquireTime" :"2017-08-

10T15:02:30Z2", "renewTime":"2017-08-10T15:02:58Z2", "lea. ..
pv.kubernetes.io/bind-completed=yes
pv.kubernetes.io/bound-by-controller=yes
volume.beta.kubernetes.io/storage-class=gluster-block
volume.beta.kubernetes.io/storage-

provisioner=gluster.org/glusterblock

Capacity: 5Gi
Access Modes: RWO
Events:
FirstSeen LastSeen Count From
SubObjectPath Type Reason Message
im im 1 gluster.org/glusterblock 8d7fecb4-7dba-
11e7-a347-0a580a830002 Normal Provisioning

56

Chapter 3. Creating Persistent Volumes

External provisioner is provisioning volume for claim "block-

test/claim1"
im im 18 persistentvolume-controller
Normal ExternalProvisioning cannot find provisioner

"gluster.org/glusterblock”, expecting that a volume for the claim
is provisioned either manually or via external software

im im 1 gluster.org/glusterblock 8d7fecb4-7dba-
11e7-a347-0a580a830002 Normal
ProvisioningSucceeded Successfully provisioned volume pvc-

ee30ff43-7ddc-11e7-89da-5254002ec671

3.2.1.1.5. Verifying Claim Creation
To verify if the claimis created, execute the follow ing commands:

1. To get the details of the persistent volume claim and persistent volume, execute the follow ing
command:

oc get pv,pvc
NAME CAPACITY

ACCESSMODES RECLAIMPOLICY STATUS CLAIM
STORAGECLASS REASON AGE

pv/pvc-ee30ff43-7ddc-11e7-89da-5254002ec671 5Gi RWO
Delete Bound block-test/claiml gluster-block

3m

NAME STATUS VOLUME

CAPACITY ACCESSMODES STORAGECLASS AGE

pvc/claiml Bound pvc-ee30ff43-7ddc-11e7-89da-5254002ec671
5Gi RWO gluster-block 4m

3.2.1.1.6. (Optional) Providing a Custom Volume Name Prefix for Persistent Volumes

You can provide a custom volume name prefix to the persistent volume that is created. By providing a custom
volume name prefix, users can now easily search/filter the volumes based on:

Any string that w as provided as the field value <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>