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As newer supercomputers continue to increase the number of
threads, there is growing pressure on applications to exploit more
of the available parallelism in their codes, including coarse-,
medium-, and fine-grain parallelism. OpenMPi is one of the
dominant shared-memory programming models and is well suited for
exploiting medium- and fine-grain parallelism. OpenMP research
has focused on application tuning, compiler optimizations,
programming-model extensions, and porting to distributed-memory
platforms; however, we have found that current algorithms used to
implement basic OpenMP constructs have significant overheads
and scale poorly. In this paper, we explore low-overhead, scalable
algorithms for creating parallel regions and demonstrate reductions
in overhead of up to a factor of 5 on an IBM Blue GeneA/Q node.

Introduction
Current trends in computer architecture for highly scalable
parallel machines are pointing toward large numbers of
energy-efficient cores that are used as building blocks for
large shared-memory nodes on a single chip or multichip
module. Nodes such as those found on the IBM Blue
Gene*/Q supercomputer are designed with upwards of
64 threads per node. In order to efficiently use such
thread-rich computing environments, the parallel processing
community has worked hard to unleash parallelism in
applications of interest.
Today’s applications targeting large parallel machines

exhibit a wide range of parallelism constructs. Although there
is no single parallel programming model, one model that
is frequently used is as follows. At the highest level,
coarse-grained parallelism is typically exploited using
Message Passing Interface (MPI) [1] programs that explicitly
communicate via messages. MPI processes are typically
found across nodes, but nowadays multiple MPI processes
also coexist within single shared-memory nodes.
Medium-grained parallelism is often found in the outermost
loops of a single MPI process and use shared memory
within a node to communicate values between the phases of
parallel computations. OpenMP** [2] is one of the most
prevalent paradigms at this level, along with Unified Parallel
C (UPC) [3] and explicitly threaded programs [4]. Fine-grain

parallelism is typically found within the innermost loops of
an application, with loops having from a few tens to a few
hundreds of iterations. Nested parallelism with OpenMP
is one of the predominant programming models at this level.
A significant fraction of OpenMP research is dedicated

to efficiently encoding applications with OpenMP constructs
and more recently with hybrid MPI/OpenMP constructs
[5, 6]. Another significant effort aims at extending the
programmability of OpenMP [7–9] and porting its
programming model to platforms [9–14] other than uniform,
shared-memory architectures. A third significant effort
aims at better integrating traditional and OpenMP-specific
compiler optimizations within the OpenMP framework
[15–23]. However, we have found scant work on techniques
to efficiently implement the basic OpenMP constructs such
as the parallel and loop constructs that are prevalent in
most OpenMP programs.
Initial experiments on the Blue Gene/Q indicate that the

underlying algorithms used to implement the basic OpenMP
constructs scale poorly [24–27] for the high numbers of
threads. We have also found that the OpenMP overheads
are typically too high to beneficially exploit the fine-grain
parallelism present in applications. Low overheads are
key when the amount of parallel work is small, because
otherwise the overheads may quickly exceed the benefit
of this limited form of parallelism.
In this paper, we present novel techniques to significantly

lower the OpenMP overheads for the most prevalent
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OpenMP construct. Here, we target the parallel constructs
that are used to create parallel regions of code. By realizing
that most applications repetitively allocate parallel regions
of similar size, we can cache thread configurations to
eliminate redundant computation and communication. When
successful, we demonstrate near-constant overheads over a
wide range of thread numbers. We present results for a
Blue Gene/Q node using the ECPP Benchmark suites [24],
a battery of tests designed for measuring OpenMP overheads.
We reduce the parallel construct overheads by 1.9, 2.7,
and 4.9 times when creating a team of 4, 16, and 64 threads,
respectively.
The remainder of this paper is organized as follows.

First, we present background on parallel constructs and
describe our approach to improving their scalability. Then
we detail our measurements and discuss related work.

Parallel constructs
The parallel construct is the basic OpenMP primitives used to
create parallel regions of code. There are multiple types,
including constructs that jointly create a parallel region and
distribute the iterations of a loop among the participating
threads. We focus here on efficient implementation of
the required interface for the basic construct, because it is the
building block for the other parallel region constructs. We
refer the reader to the OpenMP application programming
interface (API) document [2] for details on the interface,
such as methods to determine the numbers of threads to be
assigned to a given parallel region or descriptions of which
internal control variables must be copied to the private
context of a thread.

Anatomy of a parallel construct
Consider the typical flow of operations for the OpenMP
parallel region depicted in Figure 1. At the highest level,

thread t0 encounters a parallel region construct, depicted by
the top light gray box. The runtime creates on its behalf a
team of three additional threads, t1, t2, and t4 here. The four
threads perform their parallel work, depicted with the series
of four side-by-side dark green boxes. At the end of the
parallel region, control is returned to the runtime to
perform the OpenMP-required synchronization and cleanup
operations, shown in the lower light gray box. Thread t0
then continues to execute further sequential work. Threads
t1, t2, and t4 are returned to the pool of available OpenMP
threads.
In OpenMP terminology, thread t0 is referred to as a

master thread, because it creates a new team of threads.
The other three threads are referred to as worker threads,
because they assist the master thread in the parallel region.
The master and the worker threads are referred to as a team
of threads that jointly work on a given parallel region.
Figure 1(b) illustrates a timeline of the subtasks performed

by the runtime during the beginning and end of a parallel
region construct. Figure 1(c) describes the data structures
touched during each subtask.
In Step 1 of Figure 1(a), the master thread identifies

those threads that are available to participate in the parallel
construct, for example, by using a compact bit-vector
representation indicating which threads are available or busy.
Selected threads are then marked as busy. This operation
must be performed under a mutex because multiple master
threads may run concurrently in the presence of nested
parallelism.
In Step 2, the master thread assigns to each thread its

own distinct thread number, referred to here as thread
identifier (TID). Number 0 is reserved for the master
thread, and successive integer numbers are assigned to the
remaining worker threads. Here, the master thread writes
the TIDs; subsequently, each thread in the team may
access their TIDs, for example, to determine which
thread is responsible to compute which subset of a given
parallel loop.
In Step 3 of Figure 1(a), the runtime fills in a

description of the work being requested by the user.
Many computing environments encapsulate the parallel
work in a compiler-generated function [15, 18, 19, 21, 28]; in
such a case, the address of the function is inserted in the
descriptor. Other information such as loop bounds (needed
for combined parallel-for constructs) and ordered/nowait
clauses can be entered there as well. Because each thread
will later need to determine its workload, we must enter
for each thread a pointer to the current work descriptor.
We refer to such a pointer as a work-descriptor identifier
(WID). Since both TID and WID are written by the master
thread and are later read by each thread in the team, this
data structure is typically implemented as a globally
accessible array of (TID, WID) pairs, with one pair per
thread in the system.

Figure 1

Anatomy of a parallel construct.
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At this point, the worker threads have all of the
required information necessary to start working. After being
awaken in Step 4, they copy the global work description
data in their own thread context. They are then ready to
execute the user code in the parallel region.
After completing their parallel work, the threads return

to the runtime and execute a synchronization barrier, as
required by the OpenMP standard. The worker threads are
placed back in the pool of available threads. Runtimes
typically preserve idle worker threads because of the
significant overhead associated with repetitive thread creation
and destruction [15, 17]. The master thread performs further
cleanup in Step 7, such as updating the global bit vector,
indicating the available/busy status used in Step 1. It then
returns to user control.

Overhead of a parallel construct
To better understand the overhead of a parallel construct,
we distinguish between two types of subtasks: the ones
executed sequentially by the master and the ones executed
in parallel by every thread in the team.
The most critical subtasks are the ones sequentially

executed by the master threads. They are depicted in
horizontally shaded red boxes in Figure 1(b). In addition,
five of these six (Steps 1–4 and 7) have work that is
proportional to the number of threads in the team
ðTNUMÞ. For example, when assigning the TIDs in
Step 2, the master thread must write a unique number for
each thread in the team. Depending on the cache protocol,
the communication cost may also be proportional to
TNUM , as the master thread produces TNUM data that

is then consumed by TNUM , possibly remote worker
threads.
The other subtasks are the ones executed in parallel by all

of the threads in the team. They are shown in diagonally
shaded orange boxes in Figure 1(b). The overheads
associated with Step 5 mainly consist of communicating
the work descriptor entry from the master to the worker’s
local cache. This step is clearly sensitive to the size of
the work descriptor internal representation.

Near-constant-time thread allocation
The key idea in lowering the overhead in Step 1 is to
realize that most OpenMP applications repetitively request
the same number of threads. We can significantly reduce
the average overhead by caching the set of threads previously
allocated in a parallel region with the expectation of
reusing the same thread allocation for a future parallel region.
Consider the thread allocation shown in Figure 2(a),

depicting a nested parallel region of depth 2. The initial
thread has created a first team including itself plus threads t4,
t8, and t12. Defining here a set of worker threads for a given
master t as TSETðtÞ, we can state that TSETðt0Þ ¼ ft4; t8;
t12g. In turn, we see in Figure 2(a) that threads t4, t8, and
t12 have become master threads of the teams with,
respectively, TSETðt4Þ ¼ ft5; t6; t7g, TSETðt8Þ ¼ ft9; t10;
t11g, and TSETðt12Þ ¼ ft13; t14; t15g. The state of the
available/busy bit vector is also shown in Figure 2(a),
indicating with dark boxes the 13 busy threads ðt0; t4� t15Þ.
As stated above, the key idea is to preserve the TSET

information past the deallocation of a team. Figure 2(b)
illustrates the state transition that occurs after the completion

Figure 2

Caching the last set of worker threads of each master t; TSETðtÞ.
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of the parallel regions initiated by threads t4 and t8.
Consider thread t4: as its team is deallocated, we preserve
its TSETðt4Þ ¼ ft5; t6; t7g in the private execution context
of t4. This state is depicted in Figure 2(b) as the third
bit vector from the left. We also maintain a globally
accessible Breserved[ bit vector defined as the union of
all thread sets currently preserved by any master threads
in the system.
The maintaining of the global Bbusy[ and Breserved[ bit

vectors allows the runtime to form new teams without
clashing with both existing teams as well as with teams
that have been created in the recent past.
Consider in Figure 2(c) the formation of a new four-thread

team for thread t0. By checking the union of both the
busy and the reserved bit vectors in Figure 2(b), the runtime
can quickly determine that there are three remaining
threads that are both available and not part of a prior team.
By selecting these remaining threads (t1, t2, and t3),
load balancing permitting, we maximize the chances of
reusing past allocations.
Also shown in Figure 2(c), thread t4 can now allocate a

four-thread team in constant time, by simply reusing the
prior TSETðt4Þ assignment saved in its private context.
Thread t4 must simply ensure that its past allocation has
not been invalidated, because this would have been the
case if thread t0 had requested a larger team.
To ensure correctness, we introduce a globally accessible

generational counter. Whenever a master thread preserves
an allocation, it also saves in its context the current value of
the global generational counter. In any subsequent thread
allocations, if a master thread needs to use threads that are
marked as reserved, this master thread also increments the
global generational counter, thereby invalidating every
saved allocation. When a master thread attempts to create a
new team of size no larger than its saved configuration, it
simply checks that both the local and global values of the
generational counter match. When they match, the saved
allocation is valid; when they do not, the saved allocation
may not be valid and is thus discarded. Although other
policies could be used, this simple policy works well in
practice and has constant-time overheads.
To summarize the finding in this section, we can determine

in constant time whether a past thread allocation is valid
or not by using a generational counter. If valid, the allocation
can be finalized with a couple of bit-vector operations.
Current architectures allow constant-time bit-vector
operations of up to 128 to 256 bits, depending on the
SIMD (single-instruction, multiple-data) width of the host
processor.

Eliminating assignment notification overheads
The main idea in removing the overhead associated with
the per-thread assignment of a unique TID and WID is
to piggyback on the successful reuse of prior thread

allocations described in the subsection BNear Constant-Time
Thread-Allocation.[
Recall that in Steps 2 and 3 in Figure 1(a), the master

thread writes information in the global (TID, WID) array that
allows each thread in the team to uniquely determine its
assigned work. When successfully reusing a prior thread
allocation, we can reuse the same TID mapping because by
definition of our caching policy, the current request is
performed by the same master and the current request asks
for a team of size no larger than the size of the cached team
allocation.
The next step in eliminating overheads is to ensure that

we do not need to modify the WIDs of the threads
participating in the team. To do so, we also set aside the
work-descriptor entry associated with a parallel region when
freeing an allocation and preserving its thread allocation.
When successfully reusing a prior thread allocation, we
then reuse the work descriptor entry set aside, thus bypassing
any need to update the assignment table. As a result, the
TID and WID entries in the assignment table remain local to
the cache of each of the worker threads because they were
not modified by the master thread. Thus, we avoid redundant
computation as well as redundant communication. Only
the content of the work-descriptor entry itself is modified.

Reducing the ‘‘go-ahead’’ signaling overheads
Runtimes built on top of a pthread library [15] may signal the
worker threads to exit their idling loop [Step 4 in Figure 1(a)]
by using pairs of mutex and condition [4]. Other runtimes
may use a per-thread variable whose content is changed
by the master and whose change is detected by the idling
worker.
We use here a single globally accessible bit vector,

subsequently referred as the Bactivate[ bit vector. To activate
a set of thread TSETðtÞ, the master simply performs an
atomic-XOR of the current TSETðtÞ with the activate bit
vector. Each idling thread recalls the last value of its bit in
the activate bit vector. When an idling thread notices that
its bit has been flipped, it then knows that there is new
work to be fetched. Work is found by accessing the
(TID, WID) pair assigned to it in the global assignment table.

Improved application-runtime interface
Modifying the interface between the application program and
the OpenMP runtime can also result in lower overhead.
For example, the runtime often needs to retrieve a pointer
to internal runtime data that is private to each thread.
Localizing such thread-private pointers can be expensive.
This search can often be avoided by first providing this
pointer to the application and then having the application
pass this pointer back when performing a subsequent call
to the runtime. Another example is that many calls to
the runtime mostly use default values for a long list of
possible switches (refer to clauses in OpenMP). By providing
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two entry points, one accepting all legal switches and
one assuming default values, this special case allows the
latter entry point to execute faster because many special cases
in the runtime can be statically eliminated.

Measurements
In this paper, we use the Edinburgh Parallel Computing
Center (EPCC) benchmark suite [24] that was developed to

specifically measure the OpenMP overheads caused by
synchronization and loop scheduling. The underlying
technique is to compare the time taken for a section of code
executing sequentially one unit of work to the time taken
for the same code executing in parallel TNUM units of work.
All comparisons of runtime overheads are performed in
the same runtime code base and compiled with the same
options (�O3 with inter-procedural analysis and aggressive

Figure 3

(a) Reduction in overhead due to proposed techniques. (b) Near-constant non-barrier-related overheads.
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in-lining). It should be noted that the experimental runtime
used here provides no support for OpenMP tasks; we
estimate that adding such support should not have an impact
on the results presented here by more than 10%. All
measurements are performed on a single Blue Gene/Q node.
We always fully populate the hardware threads of each
core: 4-thread results use 1 core, 16-thread results use
4 cores, and 64-thread results use 16 cores.
Figure 3(a) illustrates the benefits of turning on each

of the optimizations described in the section BParallel
constructs.[ For each set of five bars, the first bars
correspond to a traditional implementation of the runtime, as
described in the section BOverhead of a Parallel Construct.[
Creating a parallel region takes 1.6 �s, 2.7 �s, and 5.7 �s
for teams of 4, 16, and 64 threads, respectively. Clearly,
overheads are very dependent on the size of the team.
The second bar in each set illustrates the benefits of

reusing past thread allocations, as proposed in the section
BNear-constant-time thread allocation.[ The benefits
should be higher for larger team sizes, because successful
caching bypasses a linear-cost search for available threads.
Indeed, Figure 3(a) indicates a reduction in overhead of
300 ns, 400 ns, and 800 ns for teams of size 4, 16,
and 64 threads, respectively.
The third bar in each set corresponds to also reusing the

assignment notifications when successfully reusing thread
allocation, as described in the section BEliminating
assignment notification overheads.[ The combined effect of
these two optimizations cuts the parallel construct overheads
by a factor of 1.7, 1.9, and 2.4 for teams of 4, 16, and 64
threads, respectively, compared with the original overhead.
The fourth bar in each set corresponds to adding to the

previous runtime the fast go-ahead notification using a single
XOR operation, as proposed in the section BReducing the
Bgo-ahead[ signaling overheads.[ This again removes a
linear component to the overheads, as demonstrated by the
larger reductions in overhead as larger teams are created.
The last bar in each set corresponds to adding the various
interface optimizations described in the section BImproved
application-runtime interface.[ This component only
lowers the overhead by a few percentage points (more
so for larger teams).
Combined, the improvements proposed in the section

BParallel constructs[ reduce the overheads depicted in
Figure 3(a) by 1.9, 2.7, and 4.9 times, compared with the
original overheads for team sizes of 4, 16, ands 64 threads,
respectively.
Because the parallel constructs include by definition a

barrier at the end of the construct, and because the cost of
barrier synchronization is proportional to the number of
threads to synchronize, we cannot easily tell from Figure 3(a)
how the other OpenMP overheads scale. In Figure 3(b),
we have separated the synchronization costs (blue bars) from
the remaining parallel construct costs (red bars) for our

last, most optimized scheme. The other OpenMP overheads
range from 675 to 700 ns across the range of 4 to 64 threads.
These overheads include acquiring two locks to update
the thread allocation table plus handling all of the OpenMP
internal control variables as mandated by the standard.
For comparison, these same overheads range from 1,400
to 5,180 ns in the original configurations. In other words,
the non-synchronization OpenMP overheads of a 64-thread
parallel region are less than half of what they used to be
for a 4-thread parallel region.

Related work
We describe here work related to the implementation and
optimization of the OpenMP programming environment with
respect to the handling of parallel loop and parallel region
constructs.
Transforming parallel regions into compiler-generated

outline functions [29] was proposed prior to OpenMP and
has been used since by most OpenMP runtimes [15, 18, 19,
21, 28, 30]. Some runtimes have outlined functions in the
scope of the original parallel region [19, 21] to reduce
overheads for shared variables. Recent work has embedded
the work directly in the original function using multi-entry
threading constructs [16] to facilitate advanced optimizations.
In addition to transforming OpenMP directives, compilers

have optimized parallel regions early on [29, 30]. The
OpenUH portable compiler [19] has provided both a
platform-independent source-to-source optimizing translator
as well as a platform-dependent integrated compiler for
supporting optimizations such as loop transformations for
cache locality. Global optimizations were later added to their
framework using parallel control-flow graphs [22] as well
as cost models to better direct the compiler [20]. The
ORC-OpenMP compiler classifies OpenMP directives with
the aim of simplifying or eliminating calls to the runtime, for
example, for known sequential OpenMP regions. Intel’s
support for OpenMP [16, 17] includes a highly optimized
compiler that performs, among others, in-lining, aggressive
code motion, and redundancy elimination over OpenMP
constructs internally represented as multi-entry threading
regions. The ROSE compiler [31] aims at providing portable
OpenMP performance across multiple platforms and
associated runtime environment. Others have suggested
tools for automatic characterizations of application memory
sharing patterns to tune OpenMP constructs [32].
The performance of barriers has been studied in the

context of OpenMP [33]. Compiler optimizations to simplify
or eliminate OpenMP barriers have also been proposed [23].
Significant work in OpenMP has focused on applying the
OpenMP shared-memory paradigm to other architectures,
including a network of workstations [10], clusters of possibly
shared-memory machines [11, 12], NUMA machines [9],
and more recently, gaming platforms such as the Cell
Broadband Engine** [13] and general-purpose graphics
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processing units [14]. Others have proposed important
extensions to the OpenMP interface, along with related
OpenMP optimizations and runtimes, for example, for
better locality handling [7, 9] and finer control of nested
parallelism [8].

Conclusions
As the number of threads found in parallel supercomputers
such as the Blue Gene/Q continues to increase, there is a
growing need on applications to exploit more parallelism
in their code, including coarse-, medium-, and fine-grain
parallelism.
OpenMP is one of the dominant shared-memory

programming models and is well suited for exploiting
medium- and fine-grain parallelism. Although most OpenMP
research has focused on application tuning, integration within
optimizing compilers, programming model extensions,
and porting to distributed-memory platforms, we have found
that current algorithms used to implement basic OpenMP
constructs have large overheads and scale poorly.
In this paper, we have addressed these scaling issues for

creating parallel regions. By exploiting thread-allocation
reuse, we have demonstrated reductions in overheads by
up to 5 times when creating parallel teams of up to
64 threads. The proposed algorithm scales very well, as its
non-synchronization overheads are nearly constant when
creating parallel regions over a wide range of thread
team size. Now that the OpenMP overheads have been
significantly lowered, it should be possible for more
applications to take advantage of the fine-grain parallelism
present in their code.
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