
•  High	Energy	Density	Mul1-Physics	produc1on	
app	
• 	Massively	parallel	
• 	Mul1-Physics	Rad-Hydro	Code			
• 	Models	3D	Sn	Radia1on	coupled	to	hydro	
• Sn	has	3	extra	dimensions	modeled:	
			angle	(2)	and	energy	
• Dominates	memory	and	total	run1me	

Demonstra1ng	the	Impact	of	OpenMP	Overheads	in	Mul1-Physics	Using	a	Mini	App	
Dylan	McKinney,	Ian	Karlin,	Riyaz	Haque		

Lawrence	Livermore	Na1onal	Lab	

LULESH1	

OpenMP	Overheads	

Pure	MPI	programming	approaches	only	strong	scale	so	far	due	to	surface	
to	volume	issues.	Switching	to	an	MPI+OpenMP	programming	model	can	
exploit	 growing	 concurrency	 while	 minimizing	 surface	 to	 volume	
challenges.	However,	for	small	problem	sizes,	the	amount	of	work	within	
an	 OpenMP	 region	may	 not	 amor1ze	 thread	 overheads.	 KULL,	 a	mul1-
physics	 produc1on	 code,	 has	 this	 problem.	 In	 this	 poster,	 we	
demonstrate	 that	 large	 OpenMP	 overheads	 limit	 the	 thread	 scaling	 of	
KULL.	We	show	that	 the	Lightweight	OpenMP	 (LOMP)	compiler	 reduces	
overheads	enough	to	allow	KULL	to	scale	further.	We	duplicate	this	issue	
in	LULESH,	a	hydrodynamics	proxy	applica1on.	LULESH,	at	small	problem	
sizes,	sees	up	to	5x	speed-up	using	LOMP.	By	demonstra1ng	the	 impact	
overheads	have	on	small	problems,	and	duplica1ng	this	 issue	 in	a	proxy	
applica1on,	 we	 indicate	 to	 vendors	 that	 OpenMP	 overhead	 limits	
performance	and	provide	them	with	benchmark	test	problems	that	show	
our	OpenMP	challenges.	

•  Shock-Hydro	proxy	app	
• 			Darpa	UHPC	problem	
• 			Solves	Sedov	blast	
• 			Represents	produc1on				
					hydrodynamics 	
		

•  Demonstrate	OpenMP	overhead	concerns	of	
KULL	using	LULESH	

	

•  Overhead	associated	with	thread	spawning	and	
synchroniza1on	

•  Lightweight	OpenMP	beta	compiler	(LOMP)2	

reduces	these	
•  Overheads	2-5x	less	than	default	compiler	

Conclusion	and	Future	Work	

References	
1.  Hydrodynamics	Challenge	Problem	Lawrence	Livermore	Na1onal	Laboratory.	LLNL-TR-490254.	Livermore,	CA.	
2.  A.	E.	Eichenberger	and	K.	O’Brien,	“Experimen1ng	with	low-overhead	openmp	run1me	on	ibm	blue	gene/q,”	IBM	Journal	of	Research	

and	Development,	vol.	57,	no.	1/2,	pp.	8:1–8:8,	Jan	2013.		

Figure 1.7. The Sedov blast wave problem models an expanding shock front originating from a
point blast.

1.6.1 Benchmarks
Several of the key kernels found in the Lagrange time step have been extracted for ease of de-

tailed performance analysis on various architectures. The kernels consist of the hexahedron volume
calculation, the force calculation, and calculation of the linear and quadratic artificial viscocity coef-
ficients. Each kernel is described below. The code for these kernels are provided in the CHASM code
repository.
1.6.1.1 Kernel 1 – Hexahedron volume calculation

This kernel tests the ability of the compiler to optimize some very common code constructs. The
kernel calculation involves data access through index arrays. It exhibits an access pattern that gathers
data from node centered fields, and stores data on element centered fields. Index arrays are a common
feature found in unstructured meshes, as are operation between fields defined over different mesh
centerings. This computaion contains a large amount of available parallelism, since all arrays accesses
are to independent memory locations. This kernel contains initialization code and may be compiled
and run.
1.6.1.2 Kernel 2 – Force calculation

This kernel generates nodal forces from element stresses. It is possible to rewrite this code in a more
performance efficient form, but the style used here is what is found in actual finite element codes. The
code is split into routines that make it easier for engineers to think about a tiny part of a problem
with regular structure (i.e. a single face or element within a mesh), which then gets assembled into a
more complicated structure at a larger scale (i.e. faces are assembled into elements, and elements are
assembled into domains). The code is written in this style to reduce both the complexity of both the
code and the physics problem being solved. The parallelism may be limited due to the way the code

20

Overhead	Impact	as	
problem	size	varies	
LULESH	(64	threads)	

8,000	Elements	4	Regions	 32,000	Elements	4	Regions	

LULESH	and	KULL	thread	scaling	with	LOMP	and	XLC	

Abstract	

KULL	

Results	

Goal	

LOMP	and	
Default	(XLC)	
overhead	
comparison	

Not	enough	parallel	work	to	amor1ze	overheads	at	small	
sizes	

In	this	poster	we	demonstrated	that	OpenMP	overheads	impact	the	
scaling	 of	 LULESH	 similarly	 to	 KULL	 for	 various	 problem	 sizes	 and	
region	 counts.	 We	 showed	 that	 for	 small	 problem	 sizes,	 in	 both	
applica1ons,	small	OpenMP	overheads	are	crucial	to	performance.	In	
the	 future	 we	 plan	 to	 leverage	 these	 results	 to	 demonstrate	 to	
vendors	why	low	OpenMP	overheads	are	important	to	KULL	run1me	
performance.	 Our	 data	 also	 shows	 how	 they	 can	 reproduce	 this	
behavior	and	test	their	own	run1mes	using	LULESH.		

LULESH	Speed-Up	normalized	to	KULL.		

Correspondence:	
1				:	Perfect	Match	
1	>	:	KULL	Speed	up	Greater		
1	<	:	KULL	Speed	up	Less	

All	tests	run	on	one	BG/Q	node.	16	GB	mem	and		
16	cores	per	node.	4	hardware	threads	per	core	

This	work	was	performed	under	the	auspices	of	the	U.S.	Department	of	Energy	by	Lawrence	Livermore	Na1onal	Laboratory	under	Contract	DE-AC52-07NA27344.	Lawrence	Livermore	Na1onal	Security,	LLC.	LLNL-POST-698273	

Run1mes	(s)	
8,000	Elements		

App/Compiler	 LULESH	XLC	 LULESH	LOMP	 KULL	XLC	 KULL	LOMP	
Serial	 6.26	 6.34	 89.18	 89.18	
1	Thread	 6.61	 6.41	 103.92	 96.29	
Best	 0.25	 0.47	 7.09	 4.00	


