
Introduction to OpenGL

1

2009 Autumn

Animação e Visualização
Tridimesional

2009/2010

Graphics API

� A software interface for graphics
hardware.

� Provide the low-level functions to

2

� Provide the low-level functions to
access graphics hardware directly.

� OpenGL / Direct3D

API Hierarchy

Application

GDI OpenGL

3

GDI

Display Device

OpenGL

Hardware
Driver

…

What is OpenGL1/2

� Industry standard.

� Hardware independent.

� OS independent.

4

� OS independent.

What is OpenGL2/2

� No commands for performing
windowing tasks or obtaining user
input are included.

5

input are included.

� No high-level commands for
describing models of 3D objects are
provided.

OpenGL Evolution

�Originally controlled by an Architectural
Review Board (ARB)

�Members included SGI, Microsoft, Nvidia,
HP, 3DLabs, IBM,…….

6

HP, 3DLabs, IBM,…….

�Relatively stable (present version 2.1)

� Evolution reflects new hardware capabilities

� 3D texture mapping and texture objects

� Vertex programs

�Allows for platform specific features through
extensions

�ARB replaced by Kronos

What OpenGL provides

� Draw with points, lines, and polygons.

� Attributes

� Matrix(View) Transformation

7

� Matrix(View) Transformation

� Hidden Surface Removal (Z-Buffer)

� Light effects

� Gouraud Shading

� Texture mapping

� Pixels operation

The Buffers

� A buffer is a memory area in the graphics
hardware for some special purposes.

� An OpenGL system can manipulate the four
buffers:

8

buffers:

� Color buffers

� Depth buffer (Z-Buffer)

� Stencil buffer

� Accumulation buffer

OpenGL Rendering Pipeline

OpenGL
API Calls

OpenGL
Command

Buffer

Transformation
and Lighting

9

Buffer

RasterizationFrame Buffer

OpenGL Libraries

� OpenGL Library - GL
� The basic library to access the graphics hardware.
� OpenGL32 on Windows
� GL on most unix/linux systems (libGL.a)

� GLU

10

� GLU
� Provide some useful utilities based on the OpenGL library.
� Provides functionality in OpenGL core but avoids having to

rewrite code

� GLX / WGL / AGL
� OS dependent libraries to bind the OpenGL library with

specific window system.
� GLX for X-window, WGL for win32, AGL for Apple.

OpenGL Utility Toolkit (GLUT)
1/3

� A window system-independent toolkit to hide the
complexities of differing window system APIs.

� Use the prefix of glut. (ex: glutDisplayFunc())

� Provide following operations:

11

� Provide following operations:
� Initializing and creating window

� Handling window and input events

� Drawing basic three-dimensional objects

� Running the program

� Event-driven

� No slide bars

OpenGL Utility Toolkit (GLUT)
2/3

� Where can I get GLUT for Win32 and for
Unix?

� www.opengl.org/resources/libraries/glut/

12

� www.opengl.org/resources/libraries/glut/

� For Mac OS X:

� developer.apple.com/mac/library/samplecode/
glut/

OpenGL Utility Toolkit (GLUT)
3/3

� On Microsoft Visual C++ 6:

� Put glut.h into <MSVC>/include/GL/

� Put glut.lib into <MSVC>/lib/

13

� Put glut32.dll into <window>/System32/

� On Microsoft Visual C++ .NET:

� Put glut.h into <MSVC>/platformSDK/include/GL/

� Put glut.lib into <MSVC>/platformSDK/lib/

� Put glut32.dll into <window>/System32/

Software Organization

application program

OpenGL Motif

14

GLUT

GLU

GL

GLX, AGL
or WGL

X, Win32, Mac O/S

software and/or hardware

OpenGL Motif
widget or similar

How to Compile1/4

� On Microsoft Visual C++ 6:

� Create a new Project with Win32 Console
Application

15

Application

� Open Project Settings dialog and add
opengl32.lib glu32.lib glut32.lib into
Link/Objects/library modules.

� Writing your OpenGL code.

� Compile it.

OpenGL Architecture
Immediate Mode

Polynomial
Evaluator

Per Vertex
Operations &

Primitive

geometry
pipeline

16

Display
List

Assembly

Rasterization
Per Fragment

Operations

Texture
Memory

CPU

Pixel
Operations

Frame
Buffer

Fog Demo

� Nate Robins Tutors OpenGL examples
� http://www.xmission.com/~nate/tutors.html

� OpenGL sintax
� Several models

17

� Several models
� 2D (text) and 3D drawing
� Image effects
� Graphics Windows hierarchy
� Menu capabilities
� Picking Operation

Drawing Geometric Objects

18

OpenGL Command Syntax -1

� OpenGL commands use the prefix gl
and initial capital letters for each word.

� OpenGL defined constants begin with

19

� OpenGL defined constants begin with
GL_, use all capital letters and
underscores to separate words.

glVertex3f(…)

OpenGL
Prefix

Root
Command

of
arguments

Type of
arguments

OpenGL Command Syntax -2

gl Vertex 3f (x,y,z)

function name
dimensions

20

belongs to GL library
x,y,z are floats

glVertex3f v(p)

p is a pointer to an array

Lack of Object Orientation

�OpenGL is not object oriented so that there
are multiple functions for a given logical
function

� glVertex3f

21

� glVertex3f

� glVertex2i

� glVertex3fv

�Underlying storage mode is the same

�Easy to create overloaded functions in C++
but issue is efficiency

OpenGL Data Type

OpenGL Type Internal representation C-Language Type Suffix

GLbyte 8-bit integer signed char b

GLshort 16-bit integer short s

GLint, GLsizei 32-bit integer int or long i

GLfloat 32-bit floating float f

22

GLfloat 32-bit floating float f

GLflampf pointer

GLfouble 64-bit floating double d

GLclampd pointer

Glubyte 8-bit unsigned integer unsigned char ub

GLuboolean 8-bit unsigned integer unsigned char ub

GLushort 16-bit unsigned integer unsigned short us

GLuint, GLenum 32-bit unsigned integer unsigned long ui

GLbitfield 32-bit unsigned integer

State Management1/2

� OpenGL is a state machine.

� You put it into various states (or modes)
that then remain in effect until you change

23

that then remain in effect until you change
them.

� Each state variable or mode has a default
value, and at any point you can query the
system for each variable's current value.

State Management2/2

� glEnable(GLenum); glDisable(GLenum);
� enable and disable some state.

� glIsEnabled(GLenum);
Query if the specific state is enabled

24

� Query if the specific state is enabled

� glGetBooleanv(); glGetIntegerv();
glGetFloatv(); glGetDoublev();
glGetPointerv();

� Query the specific state value.

� See OpenGL Programming Guide : Appendix B for

all the state variables.

Color Representation1/2

� RGBA

� 4 channels : Red, Green, Blue, and Alpha.

� Each channel has intensity from 0.0 ~ 1.0

25

� Each channel has intensity from 0.0 ~ 1.0

� Values outside this interval will be clamp to 0.0
or 1.0.

� Alpha is used in blending and transparency

� Ex. glColor4f(0.0, 1.0, 0.0, 1.0); // Green

glColor4f(1.0, 1.0, 1.0, 1.0); // White

Color Representation2/2

� Color-Index

� Small numbers of colors accessed by indices (8
bits) from a color map(lookup table).

� Ex. glIndex(…);

26

� Less colors

� The OpenGL has no command about creating the
color map, it’s window system’s business.

� glutSetColor();

Drawing Sample1/3

#include <GL/glut.h>
void GL_display() {

glClearColor(0.0f, 0.0f, 0.0f, 0.0f);
glClear(GL_COLOR_BUFFER_BIT);
glBegin(GL_POLYGON);

glColor3f(1.0f, 1.0f, 1.0f);

27

glColor3f(1.0f, 1.0f, 1.0f);
glVertex3f (-1.0, -1.0, 0.0);
glColor3f(1.0f, 0.0f, 0.0f);
glVertex3f (1.0, -1.0, 0.0);
glColor3f(0.0f, 1.0f, 0.0f);
glVertex3f (1.0, 1.0, 0.0);
glColor3f(0.0f, 0.0f, 1.0f);
glVertex3f (-1.0, 1.0, 0.0);

glEnd();
glFlush();

}

Drawing Sample2/3

void GL_reshape(GLsizei w, GLsizei h) {
glViewport(0, 0, w, h);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
if(w <= h)

glOrtho(-2.0f, 2.0f, -2.0f * h/w, 2.0f * h/w, -2.0f, 2.0f);
else

28

else
glOrtho(-2.0f * w/h, 2.0f * w/h, -2.0f, 2.0f, -2.0f, 2.0f);

glMatrixMode(GL_MODELVIEW);
glLoadIdentity();

}
void main(int argc, char** argv) {

glutInit(&argc, argv);
glutInitDisplayMode (GLUT_SINGLE | GLUT_RGB);
glutInitWindowSize (250, 250);
glutInitWindowPosition (100, 100);
glutCreateWindow("Drawing Sample");
glutDisplayFunc(GL_display);
glutReshapeFunc(GL_reshape);
glutMainLoop();

}

Drawing Sample3/3

29

OpenGL #defines

� Most constants are defined in the include files
gl.h , glu.h and glut.h
� Note #include <GL/glut.h> should

automatically include the others

30

automatically include the others

� Examples

� glBegin(GL_POLYGON)

� glClear(GL_COLOR_BUFFER_BIT)

� include files also define OpenGL data types:
GLfloat , GLdouble ,….

Program Detail (GLUT)1/5

� Initializing and Creating a window
� void glutInit(int, char**);

� Initialize the GLUT library.

Should be called before any other GLUT routine.

31

� Should be called before any other GLUT routine.

� void glutInitDisplayMode(unsigned int);
� Specify a display mode for windows created.

� GLUT_RGBA / GLUT_INDEX

� GLUT_SINGLE / GLUT_DOUBLE

� GLUT_DEPTH, GLUT_STENCIL, GLUT_ACCUM

Program Detail (GLUT)2/5

� glutInitWindowPosition(int, int);

� From top-left corner of display

� glutInitWindowSize(int, int);

32

glutInitWindowSize(int, int);

� Initial the window position and size when
created.

� glutCreateWindow(char*);

� Open a window with previous settings.

Program Detail (GLUT)3/5

� Handling Window and Input Events

� These functions are registered by user and
called by GLUT simultaneously.

33

called by GLUT simultaneously.

� glutDisplayFunc(void (*func)(void));

� Called whenever the contents of the window
need to be redrawn.

� Put whatever you wish to draw on screen here.

� Use glutPostRedisplay() to manually ask
GLUT to recall this display function.

Program Detail (GLUT)4/5

� glutReshapeFunc(void (*func)(int, int));
� Called whenever the window is resized or moved.

� You should always call glViewport() here to resize
your viewport.

34

your viewport.

� Other call back functions:
� glutKeyboardFunc();

� glutMouseFunc();

� glutIdleFunc();

� …

� See OpenGL Programming Guide : Appendix D for
more detail

Program Detail (GLUT)5/5

� Running the Program

� glutMainLoop();

� Enter the GLUT processing loop and never

35

� Enter the GLUT processing loop and never
return.

glutReshapeFunc()
void GL_reshape(GLsizei w, GLsizei h) {

glViewport(0, 0, w, h);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();

36

glLoadIdentity();
if(w <= h)

glOrtho(-2.0f, 2.0f, -2.0f * h/w, 2.0f * h/w, -2.0f,
2.0f);
else

glOrtho(-2.0f * w/h, 2.0f * w/h, -2.0f, 2.0f, -2.0f,
2.0f);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();

}

OpenGL Camera

�OpenGL places a camera at the origin in
object space pointing in the negative z
direction

37

direction

�The default viewing volume

is a box centered at the

origin with a side of

length 2

Viewing System

view frustrum

38clipped

clipping planes

Viewing and Projection
transforms

glMatrixMode
(GL_MODELVIEW)

39

(GL_MODELVIEW)
gluLookAt()
...

glMatrixMode(GL_PROJECTION)
...

Orthographic Viewing

In the default orthographic view, points are
projected forward along the z axis onto the
plane z=0

40
40

z=0

z=0

Projection transform

� In OpenGL, projection is carried out by a projection
matrix (transformation)

� There is only one set of transformation functions so
we must set the matrix mode first

41

we must set the matrix mode first

glMatrixMode (GL_PROJECTION)

� Transformation functions are incremental so we start
with an identity matrix and alter it with a projection
matrix that gives the view volume

glLoadIdentity();
glOrtho(-1.0, 1.0, -1.0, 1.0, -1.0,
1.0);

Viewport

� Do not have use the entire window for
the image: glViewport(x,y,w,h)

� Values in pixels (screen coordinates)

42

� Values in pixels (screen coordinates)

Two- and three-dimensional
viewing

� In glOrtho(left, right, bottom, top,
near, far) the near and far distances are
measured from the camera

� Two-dimensional vertex commands place all

43

� Two-dimensional vertex commands place all
vertices in the plane z=0

� If the application is in two dimensions, we can use
the function

gluOrtho2D(left, right,bottom,top)

� In two dimensions, the view or clipping volume
becomes a clipping window

A Drawing Survival Kit

� Clear the Buffers

� Describe Points, Lines, and Polygons

� Forcing Completion of Drawing

44

� Forcing Completion of Drawing

Clear the Buffers

� glClearColor(…);

� glClearDepth(…);

� Set the current clearing values for use in clearing

45

Set the current clearing values for use in clearing
color buffers in RGBA mode (or depth buffer).

� glClear(GLbitfield mask);

� Clear the specified buffers to their current clearing
values.

� GL_COLOR_BUFFER_BIT, GL_DEPTH_BUFFER_BIT, …

Points, Lines and Polygons1/4

� Specifying a Color

� glColor {34}{sifd}[v](TYPE colors);

� Describing Points, Lines, Polygons

46

� Describing Points, Lines, Polygons

� void glBegin(GLenum mode);

� Marks the beginning of a vertex-data list.

� The mode can be any of the values in next page.

� void glEnd();

� Marks the end of a vertex-data list.

Points, Lines and Polygons2/4

Value Meaning

GL_POINTS individual points

GL_LINES pairs of vertices interpreted as individual line

segments

GL_LINE_STRIP serious of connected line segments

47

GL_LINE_STRIP serious of connected line segments

GL_LINE_LOOP same as above, with a segment added between

last and first vertices

GL_TRIANGLES triples of vertices interpreted as triangles

GL_TRIANGLE_STRIP linked strip of triangles

GL_TRIANGLE_FAN linked fan of triangles

GL_QUADS quadruples of vertices interpreted as four-sided

polygons

GL_QUAD_STRIP linked strip of quadrilaterals

GL_POLYGON boundary of a simple, convex polygon

Points, Lines and Polygons3/4

GL_POLYGONGL_POLYGONGL_POINTSGL_POINTS

48

GL_QUAD_STRIPGL_QUAD_STRIP

GL_POLYGONGL_POLYGON

GL_TRIANGLE_STRIPGL_TRIANGLE_STRIP GL_TRIANGLE_FANGL_TRIANGLE_FAN

GL_LINESGL_LINES

GL_LINE_LOOPGL_LINE_LOOP

GL_LINE_STRIPGL_LINE_STRIP

GL_TRIANGLESGL_TRIANGLES

Points, Lines and Polygons4/4

� valid calls between glBegin() and glEnd()

� glVertex*(); glNormal*(); glColor*(); glIndex*();
glTexCoord*(); glMaterial*(); …

Specifying Vertices

49

� Specifying Vertices

� glVertex{234}{sifd}[v](TYPE coords);

� Specifies a vertex for use in describing a geometric
object.

� Can only effective between a glBegin() and
glEnd() pair.

Polygon Issues

� OpenGL will only display polygons correctly
that are
� Simple: edges cannot cross
� Convex: All points on line segment between two

points in a polygon are also in the polygon

50

points in a polygon are also in the polygon
� Flat: all vertices are in the same plane

� User program can check if above true
� OpenGL will produce output if these conditions are

violated but it may not be what is desired

� Triangles satisfy all conditions

nonsimple polygon
nonconvex polygon

Attributes

� Attributes are part of the OpenGL state and
determine the appearance of objects

� Color (points, lines, polygons)

Size and width (points, lines)

51

� Size and width (points, lines)

� Stipple pattern (lines, polygons)

� Polygon mode

� Display as filled: solid color or stipple pattern

� Display edges

� Display vertices

Smooth Color

� Default is smooth shading

� OpenGL interpolates vertex colors across visible
polygons

Alternative is flat shading

52

� Alternative is flat shading

� Color of first vertex

determines fill color

� glShadeModel
(GL_SMOOTH)

or GL_FLAT

GLUT Objects

� Drawing 3D objects using GLUT

� GLUT provides the following objects:

� Sphere, Cube, Torus, Icosahedron, Octahedron,

53

� Sphere, Cube, Torus, Icosahedron, Octahedron,
Tetrahedron, Teapot, Dodecahedron, Cone,
Teapot

� Both wireframe and solid.

� Ex:

� glutSolidSphere(1.0, 24, 24);

� glutWireCube(1.0);

Completion of Drawing

� glFlush();

� Forces previously issued OpenGL commands to
begin execution. (asynchronous)

glFinish();

54

� glFinish();

� Forces all previous issued OpenGL commands
to complete. (synchronous)

� glutSwapBuffers();

� Swap front and back buffers. (double buffers)

Polygon Details1/2

� Polygon Details

� glPolygonMode(Glenum face, Glenum
mode);

55

mode);

� Controls the drawing mode for a polygon’s front
and back faces.

� face can be GL_FRONT_AND_BACK, GL_FRONT,
GL_BACK

� mode can be GL_POINT, GL_LINE, GL_FILL

Polygon Details2/2

� glFrontFace(Glenum mode);
� Controls how front-facing polygons are

determined.

� GL_CW for clockwise and GL_CCW(default) for

56

� GL_CW for clockwise and GL_CCW(default) for
counterclockwise

� glCullFace(Glenum mode);
� Indicates which polygons should be discarded

before converted to screen coordinate.

� mode can be GL_FRONT_AND_BACK,
GL_FRONT, GL_BACK

OpenGL Geometry Pipeline

MODELVIEW PROJECTION perspective viewport

y

x

win

win

y
x

57

MODELVIEW
matrix

PROJECTION
matrix

perspective
division

viewport
transformation

w

z

y

eye

eye

eye

eye

w

z

y

x

1
dev

dev

dev

z

y
x

proj

proj

proj

proj

w
z

y
x

 =devwin

win

z

y

original
vertex

vertices in the
eye coordinate

space

Clipping Coordinates
normalized device

coordinates
(foreshortened)

final window
coordinates

Transformation -2

� There are three matrix stacks in OpenGL
architecture

� MODELVIEW, PROJECTION, TEXTURE

glMatrixMode(GLenum mode);

58

� glMatrixMode(GLenum mode);

� mode: GL_MODELVIEW, GL_PROJECTION, GL_TEXTURE

� Current matrix mode (CTM) is also a OpenGL
state variable.

Transformation -3

� Matrix Manipulation

� glLoadIdentity();

� Set current matrix to the 4x4 identity matrix

glLoadMatrix{f,d}(const TYPE* m);

59

� glLoadMatrix{f,d}(const TYPE* m);

� glMultMatrix{f,d}(const TYPE* m);

� glPushMatrix();

� glPopMatrix();

� Stack operation of matrix is very useful for constructing a
hierarchical structures.

� Ex: Render a car with four wheels.

Transformation -4

� OpenGL built-in transformation:
� glTranslate{f,d}(TYPE x, TYPE, y, TYPE z);

� Multiply a translation matrix into current matrix stack

60

The effect of glTranslate()

Transformation -5

� OpenGL built-in transformation:
� glRotate{f,d}(TYPE angle, TYPE x, TYPE y, TYPE z);

� Multiply a rotation matrix about an arbitrary axis into
current matrix stack

61

current matrix stack

The effect of glRotatef(45.0, 0.0, 0.0, 1.0)

Transformation -6

� OpenGL built-in transformation:
� glScale{f,d}(TYPE x, TYPE y, TYPE z);

� Multiplies current matrix by a matrix that scales an
object along axes.

62

object along axes.

The effect of glScalef(2.0, -0.5, 1.0)

Transformation -7

� Rotating First or Translating First :

63

Transformation -8a

� Note:

� By default, the viewpoint as well as objects
in the scene are originally situated at the

64

in the scene are originally situated at the
origin, and is looking down the negative z-
axis, and has the positive y-axis as straight
up.

Transformation -8b

� Viewing transformation
� Choose your viewing system

� Center-orientation-up system
Apply gluLookAt Utility routine.

65

� Apply gluLookAt Utility routine.

� gluLookAt(cx, cy, cz, atx, aty, atz, upx, upy,
upz);

� (cx, cy, cz) is the center of the camera

� (atx, aty, atz) is where the camera look at

� (upx, upy, upz) is the up vector of the camera

� Polar coordinate system
� Combine translation and two rotation.

Transformation -9a

� Projection transformation: Perspective projection

� glFrustum(GLdouble left, GLdouble right,
GLdouble bottom, GLdouble top, GLdouble near,
GLdouble far);

66

GLdouble far);

Transformation -9b

glFrustrum(xmin, xmax, ymin, ymax, zmin, zmax);

67

Non symmetric frustrums introduce obliqueness into the projection.
zmin and zmax are specified as positive distances along -z

Transformation -10a

� gluPerspective(GLdouble fovy, GLdouble aspect,
GLdouble near, GLdouble far);

68

Transformation -10b

gluPerspective(fov, aspect, near, far);

69

2
tan2

2
tan

2 θθ
nearh

near

h =⇒=

Transformation -11a

� Projection transformation: Orthogonal
projection
� glOrtho(GLdouble left, GLdouble right, GLdouble bottom,

GLdouble top, GLdouble near, GLdouble far);

70

GLdouble top, GLdouble near, GLdouble far);

� gluOrtho2D(GLdouble left, GLdouble right, GLdouble bottom,
GLdouble top);

� A helper to create a 2D projection matrix

Transformation -11b

glOrtho(xmin, xmax, ymin, ymax, zmin, zmax);

71

Transformation -12

� Viewport transformation

� glViewport(GLint x, GLint y, GLsizei w, GLsizei h);

� Initial viewport is as the same size as the window

72

Viewport to Window Viewport to Window
TransformationTransformation

� (x,y) = location of bottom left of viewport within the

window

� width,height = dimension in pixels of the viewport ⇒

73

� normally we re-create the window after a window
resize event to ensure a correct mapping between
viewport and window dimensions

() () y
height

x
width +

+=+

+=
2

1
2

1 nwnw yyxx

74
74

Shading

Objectives

�Learn to shade objects so their images
appear three-dimensional

�Introduce the types of light-material

75

�Introduce the types of light-material
interactions

�Build a simple reflection model---the
Phong model--- that can be used with
real time graphics hardware

Why we need shading

�Suppose we build a model of a sphere
using many polygons and color it with
glColor . We get something like

76

glColor . We get something like

�But we want

Shading

�Why does the image of a real sphere look like

77

�Light-material interactions cause each point to
have a different color or shade

�Need to consider
� Light sources

� Material properties

� Surface orientation

Scattering

�Light strikes A
�Some scattered

Some absorbed

78

�Some absorbed

�Some of scattered light strikes B
�Some scattered

�Some absorbed

�Some of this scattered

light strikes A

and so on

Rendering Equation

�The infinite scattering and absorption of
light can be described by the rendering
equation

Cannot be solved in general

79

�Cannot be solved in general

�Ray tracing is a special case for perfectly
reflecting surfaces

�Rendering equation is global and
includes

�Shadows

�Multiple scattering from object to object

Global Effects
shadow

80

translucent surface

multiple reflection

Local vs Global Rendering

�Correct shading requires a global
calculation involving all objects and light
sources
� Incompatible with pipeline model which

81

� Incompatible with pipeline model which
shades each polygon independently (local
rendering)

�However, in computer graphics,
especially real time graphics, we are
happy if things “look right”
�Exist many techniques for approximating
global effects

Light-Material Interaction

�Light that strikes an object is partially
absorbed and partially scattered
(reflected)

�The amount reflected determines the

82

�The amount reflected determines the
color and brightness of the object
�A surface appears red under white light
because the red component of the light is
reflected and the rest is absorbed

�The reflected light is scattered in a
manner that depends on the smoothness
and orientation of the surface

Light Sources

General light sources are difficult to work
with because we must integrate light
coming from all points on the source

83

coming from all points on the source

Simple Light Sources

�Point source

�Model with position and color

�Distant source = infinite distance away
(parallel)

84

(parallel)

�Spotlight

�Restrict light from ideal point source

�Ambient light

�Same amount of light everywhere in scene

�Can model contribution of many sources
and reflecting surfaces

Surface Types

�The smoother a surface, the more reflected
light is concentrated in the direction a perfect
mirror would reflected the light

A very rough surface scatters light in all

85

�A very rough surface scatters light in all
directions

smooth surface rough surface

Phong Model

�A simple model that can be computed rapidly

�Has three components

�Diffuse

Specular

86

�Specular

�Ambient

�Uses four vectors

�To source

�To viewer

�Normal

�Perfect reflector

Ideal Reflector

�Normal is determined by local
orientation

�Angle of incidence = angle of relection

87

�Angle of incidence = angle of relection

�The three vectors must be coplanar

r = 2 (l · n) n - l

Lambertian Surface

�Perfectly diffuse reflector

�Light scattered equally in all directions

�Amount of light reflected is proportional

88

�Amount of light reflected is proportional
to the vertical component of incoming
light

� reflected light ~cosθi

�cosθi = l · n if vectors normalized

�There are also three coefficients, kr, kb, kg

that show how much of each color
component is reflected

Specular Surfaces

�Most surfaces are neither ideal diffusers nor
perfectly specular (ideal reflectors)

�Smooth surfaces show specular highlights due
to incoming light being reflected in directions

89

to incoming light being reflected in directions
concentrated close to the direction of a perfect
reflection

specular
highlight

Modeling Specular
Relections

�Phong proposed using a term that
dropped off as the angle between the
viewer and the ideal reflection increased

90

φ

I r ~ ks I cosαφ

shininess coef

absorption coef

incoming intensity
reflected
intensity

The Shininess Coefficient

�Values of α between 100 and 200 correspond
to metals

�Values between 5 and 10 give surface that
look like plastic

91

look like plastic

cosα φ

φ 90-90

Ambient Light

�Ambient light is the result of multiple
interactions between (large) light
sources and the objects in the
environment

92

environment

�Amount and color depend on both the
color of the light(s) and the material
properties of the object

�Add ka Ia to diffuse and specular terms

reflection coef intensity of ambient light

Distance Terms

�The light from a point source that reaches a
surface is inversely proportional to the square
of the distance between them

We can add a attenuation factor of the

93

�We can add a attenuation factor of the

form 1/(ad + bd +cd2) to

the diffuse and specular

terms

�The constant and linear terms soften the
effect of the point source

�Also known as depth-cueing

Light Sources

�In the Phong Model, we add the results from
each light source

�Each light source has separate diffuse,
specular, and ambient terms to allow for

94

specular, and ambient terms to allow for
maximum flexibility even though this form does
not have a physical justification

�Separate red, green and blue components

�Hence, 9 coefficients for each point source

� Idr, Idg, Idb, Isr, Isg, Isb, Iar, Iag, Iab

Material Properties

�Material properties match light source
properties

�Nine absorbtion coefficients

95

�Nine absorbtion coefficients

� kdr, kdg, kdb, ksr, ksg, ksb, kar, kag, kab

�Shininess coefficient α

Adding up the
Components

For each light source and each color
component, the Phong model can be written
(without the attenuation factor) as

96

I =kd Id l · n + ks Is (v · r)α + ka Ia

For each color component

we add contributions from

all sources

Modified Phong Model

�The specular term in the Phong model is
problematic because it requires the
calculation of a new reflection vector and

97

calculation of a new reflection vector and
view vector for each vertex

�Blinn suggested an approximation using
the halfway vector that is more efficient

The Halfway Vector

�h is normalized vector halfway between l
and v

98

h = (l + v)/ | l + v|

Using the halfway vector

�Replace (v · r)α by (n · h)β

� β is chosen to match shineness

Note that halway angle is half of angle

99

�Note that halway angle is half of angle
between r and v if vectors are coplanar

�Resulting model is known as the
modified Phong or Blinn lighting model

�Specified in OpenGL standard

Example

Only differences in
these teapots are

100

these teapots are
the parameters
in the modified
Phong model

Computation of Vectors

� l and v are specified by the application

�computer calculates r from l and n

�Problem is determining n

101

�how we determine n differs depending on

underlying representation of surface

�OpenGL leaves determination of normal to
application

� Exception for GLU quadrics and Bezier surfaces (

Plane Normals

�Equation of plane: ax+by+cz+d = 0

�plane is determined by three points p0,
p2, p3 or normal n and p0

102

p2, p3 or normal n and p0

�Normal can be obtained by

n = (p2-p0) × (p1-p0)

Normal to Sphere

�Implicit function f(x,y.z)=0

�Normal given by gradient

f (x, y, z) = x2 + y2 + z2 – 1 = 0

103

�f (x, y, z) = x2 + y2 + z2 – 1 = 0

�Sphere f(p)=p·p -1 = 0

� n = [df/dx, df/dy, df/dz]T=p

Parametric Form

�For sphere
x=x(u,v)=cos u sin v
y=y(u,v)=cos u cos v
z= z(u,v)=sin u

104

� Tangent plane determined by vectors

�Normal given by cross product

z= z(u,v)=sin u

∂p/∂u = [∂x/∂u, ∂y/∂u, ∂z/∂u]T
∂p/∂v = [∂x/∂v, ∂y/∂v, ∂z/∂v]T

n = ∂p/∂u × ∂p/∂v

General Case

�We can compute parametric normals for
other simple cases

�Quadrics

105
105Angel: Interactive Computer Graphics 5E © Addison-Wesley 2009

�Quadrics

�Parameteric polynomial surfaces

� Bezier surface patches

Steps in OpenGL shading

1. Enable shading and select Lighting
Model

2. Specify normals

106

2. Specify normals

3. Specify material properties

4. Specify light sources

Normals

� In OpenGL the normal vector is part of the state

� Set by glNormal*()
� glNormal3f(x, y, z);

� glNormal3fv(p);

107

� glNormal3fv(p);

� Usually we want to set the normal to have unit length
so cosine calculations are correct

� Length can be affected by transformations

� Note that scaling does not preserved length

� glEnable(GL_NORMALIZE) allows for auto normalization at

a performance penalty

Normal for Triangle

n
plane n ·(p - p0) = 0

n = (p2 - p0) ×(p1 - p0)

p2

108

n = (p2 - p0) ×(p1 - p0)

normalize n ←←←← n/ |n|
p0

p
1

p

Note that right-hand rule determines outward face

Enabling Shading

� Shading calculations are enabled by
� glEnable(GL_LIGHTING)

� Once lighting is enabled, glColor() ignored

� Must enable each light source individually

109

� glEnable(GL_LIGHTi) i=0,1…..

� Can choose light model parameters
� glLightModeli(name,parameter)

� GL_LIGHT_MODEL_AMBIENT - ambient RGBA intensity of the entire
scene

� GL_LIGHT_MODEL_LOCAL_VIEWER-how specular reflection angles are
calculated

� GL_LIGHT_MODEL_TWO_SIDED - specifies one-sided or two-sided

lighting

� GL_LIGHT_MODEL_COLOR_CONTROL – assumes GL_SINGLE_COLOR
or GL_SEPARATE_SPECULAR_COLOR

Light Properties

glLightfv(light, property, value);

� light specifies which light

� multiple lights, starting with GL_LIGHT0

110

� multiple lights, starting with GL_LIGHT0

glGetIntegerv(GL_MAX_LIGHTS, &n);

� properties
� colors

� position and type

� attenuation

Defining a Light Source

�For each light source, we can set an RGBA for
the diffuse, specular, and ambient components,
and for the position

111

GL float diffuse0[]={1.0, 0.0, 0.0, 1.0};
GL float ambient0[]={1.0, 0.0, 0.0, 1.0};
GL float specular0[]={1.0, 0.0, 0.0, 1.0};
Glfloat light0_pos[]={1.0, 2.0, 3,0, 1.0};

glEnable(GL_LIGHTING);
glEnable(GL_LIGHT0);
glLightv(GL_LIGHT0, GL_POSITION, light0_pos);
glLightv(GL_LIGHT0, GL_AMBIENT, ambient0);
glLightv(GL_LIGHT0, GL_DIFFUSE, diffuse0);
glLightv(GL_LIGHT0, GL_SPECULAR, specular0);

Distance and Direction

�The source colors are specified in RGBA

�The position is given in homogeneous
coordinates

� If w =1.0, we are specifying a finite location

112

� If w =1.0, we are specifying a finite location

� If w =0.0, we are specifying a parallel source with
the given direction vector

�The coefficients in the distance terms are by
default a=1.0 (constant terms), b=c=0.0

(linear and quadratic terms). Change by

a= 0.80;
glLightf(GL_LIGHT0, GL_CONSTANT_ATTENUATION, a);

Light Attenuation

� decrease light intensity with distance
� GL_CONSTANT_ATTENUATION

� GL_LINEAR_ATTENUATION

� GL_QUADRATIC_ATTENUATION

113

� GL_QUADRATIC_ATTENUATION

2

1

dkdkk
f

qlc
i ++

=

Spotlights

�Use glLightv to set

�Direction GL_SPOT_DIRECTION

�Cutoff GL_SPOT_CUTOFF

114

�Cutoff GL_SPOT_CUTOFF

�Attenuation
GL_SPOT_EXPONENT

� Proportional to cosαφ

θ−θ φ

Global Ambient Light

�Ambient light depends on color of light
sources

�A red light in a white room will cause a red

115

�A red light in a white room will cause a red
ambient term that disappearswhen the light

is turned off

�OpenGL also allows a global ambient
term that is often helpful for testing

� glLightModelfv(GL_LIGHT_MODEL_AMBIENT,
global_ambient)

Material Properties

�Material properties are also part of the
OpenGL state and match the terms in the
modified Phong model

�Set by glMaterialv()

116

�Set by glMaterialv()

GLfloat ambient[] = {0.2, 0.2, 0.2, 1.0};
GLfloat diffuse[] = {1.0, 0.8, 0.0, 1.0};
GLfloat specular[] = {1.0, 1.0, 1.0, 1.0};
GLfloat shine = 100.0
glMaterialf(GL_FRONT, GL_AMBIENT, ambient);
glMaterialf(GL_FRONT, GL_DIFFUSE, diffuse);
glMaterialf(GL_FRONT, GL_SPECULAR, specular);
glMaterialf(GL_FRONT, GL_SHININESS, shine);

Transparency

�Material properties are specified as
RGBA values

�The A value can be used to make the

117

�The A value can be used to make the
surface translucent

�The default is that all surfaces are
opaque regardless of A

�Later we will enable blending and use
this feature

Front and Back Faces

� The default is shade only front faces which works
correctly for convex objects

� If we set two sided lighting, OpenGL will shade both
sides of a surface

118

� Each side can have its own properties which are set by
using GL_FRONT, GL_BACK, or GL_FRONT_AND_BACK
in glMaterialf

back faces not visible back faces visible

Emissive Term

�We can simulate a light source in
OpenGL by giving a material an emissive
component

119

component

�This component is unaffected by any
sources or transformations

GLfloat emission[] = 0.0, 0.3, 0.3, 1.0);
glMaterialf(GL_FRONT, GL_EMISSION, emission);

Efficiency

�Because material properties are part of the
state, if we change materials for many
surfaces, we can affect performance

�We can make the code cleaner by defining a

120

�We can make the code cleaner by defining a
material structure and setting all materials
during initialization

�We can then select a material by a pointer

typedef struct materialStruct {
GLfloat ambient[4];
GLfloat diffuse[4];
GLfloat specular[4];
GLfloat shineness;

} MaterialStruct;

The Mathematics of Lighting

VertexColor = emission material +

ambient lightmodel * ambient material +
n -1

∑ [1 / (K + K * d + K * d2)] * (spotlight_effect) *

VertexColor = emission material +

ambient lightmodel * ambient material +
n -1

∑ [1 / (K + K * d + K * d2)] * (spotlight_effect) *

121

n: vertex normal
l: light vector – (light_pos – vertex)
h: half-vector - sum of the light vector with the viewing vector (view_pos – vertex)

∑ [1 / (Kc + Kl * d + Kq * d2)] i * (spotlight_effect) i *

i = 0
[ambient light * ambient material +

(max {l · n, 0}) * diffuse light * diffuse material +

(max {h · n, 0}) shininess* specular light * specular material] i

∑ [1 / (Kc + Kl * d + Kq * d2)] i * (spotlight_effect) i *

i = 0
[ambient light * ambient material +

(max {l · n, 0}) * diffuse light * diffuse material +

(max {h · n, 0}) shininess* specular light * specular material] i

Light Material Tutorial

122

Moving Light Sources

�Light sources are geometric objects whose
positions or directions are affected by the model-
view matrix

Depending on where we place the position

123

�Depending on where we place the position
(direction) setting function, we can

� Move the light source(s) with the object(s)

� Fix the object(s) and move the light source(s)

� Fix the light source(s) and move the object(s)

� Move the light source(s) and object(s) independently

Light Position Tutorial

124

Polygonal Shading

�Shading calculations are done for each
vertex

�Vertex colors become vertex shades

By default, vertex shades are

125

�By default, vertex shades are
interpolated across the polygon
�glShadeModel(GL_SMOOTH);

�If we use glShadeModel(GL_FLAT); the

color at the first vertex will determine
the shade of the whole polygon

Polygon Normals

� Polygons have a single normal

� Shades at the vertices as computed by the Phong
model can be almost same

Identical for a distant viewer (default) or if there is

126

� Identical for a distant viewer (default) or if there is
no specular component

� Consider model of sphere

� Want different normals at

each vertex even though

this concept is not quite

correct mathematically

Smooth Shading

�We can set a new
normal at each vertex

�Easy for sphere model

127
127

�Easy for sphere model

� If centered at origin n = p

�Now smooth shading
works

�Note silhouette edge

Mesh Shading

�The previous example is not general
because we knew the normal at each
vertex analytically

128

�For polygonal models, Gouraud
proposed we use the average of the
normals around a mesh vertex

n = (n1+n2+n3+n4)/ |n1+n2+n3+n4|

Gouraud and Phong
Shading

�Gouraud Shading

�Find average normal at each vertex (vertex
normals)

Apply modified Phong model at each vertex

129

�Apply modified Phong model at each vertex

� Interpolate vertex shades across each polygon

�Phong shading

�Find vertex normals

� Interpolate vertex normals across edges

� Interpolate edge normals across polygon

�Apply modified Phong model at each fragment

Comparison

� If the polygon mesh approximates surfaces with a
high curvatures, Phong shading may look smooth
while Gouraud shading may show edges

130

� Phong shading requires much more work than
Gouraud shading

� Until recently not available in real time systems

� Now can be done using fragment shaders

� Both need data structures to represent meshes so
we can obtain vertex normals

• A display list is a group of OpenGL commands that
have been stored for later execution.

131

• Most OpenGL commands can be either stored in a
display list or issued in immediate mode.

For example, suppose you want to draw a circle with 100 line segments

drawCircle()
{ GLint i;

GLfloat cosine, sine;

132

GLfloat cosine, sine;
glBegin(GL_POLYGON);

for(i=0;i<100;i++){
cosine=cos(i*2*PI/100.0);
sine=sin(i*2*PI/100.0);
glVertex2f(cosine,sine);

}
glEnd();

}

This method is terribly inefficient because the trigonometry has
to be performed each time the circle is rendered. Save the
coordinates in a table:

drawCircle()
{ GLint i;

GLfloat cosine, sine;

133

GLfloat cosine, sine;
static GLfloat circoords[100][2];
static GLint inited=0;
if(inited==0){

inited=1;
for(i=0;i<100;i++){

circcoords[i][0]=cos(i*2*PI/100.0);
circcoords[i][1]=sin(i*2*PI/100.0);

}
}
glBegin(GL_POLYGON);

for(i=0;i<100;i++)
glVertex2fv(&circcoords[i][0]);

glEnd();
}

• Draw the circle once and have OpenGL
remember how to draw it for later use.

#define MY_CIRCLE_LIST 1
buildCircle() {

GLint i;
GLfloat cosine, sine;

134

GLfloat cosine, sine;
glNewList (MY_CIRCLE_LIST, GL_COMPILE);
glBegin(GL_POLYGON);

for(i=0;i<100;i++){
cosine=cos(i*2*PI/100.0);
sine=sin(i*2*PI/100.0);
glVertex2f(cosine,sine);

}
glEnd();
glEndList ();

}
MY_CIRCLE_LIST is an integer index that uniquely iden-
tifies this display list.

You can execute the display list later with this glCallList()
command: glCallList(MY_CIRCLE_LIST);

• A display list contains only OpenGL calls.

• The coordinates and other variables are evaluated and
copied into the display list when the list is compiled.

• You can delete a display list and create a new one,

135

• You can delete a display list and create a new one,
but you can’t edit an existing display list.

• Display lists reside with the server and network
traffic is minimized. Matrix computations, lighting
models, textures, etc.

• Display List disadvantages: large storage;
immutability of the contents of a display list.

Use a Display List: list.c

glNewList (listName, GL_COMPILE);
glColor3f(1.0, 0.0, 0.0);
glBegin (GL_TRIANGLES);
glVertex2f(0.0,0.0);glVertex2f(1.0,0.0); glVertex2f (0.0, 1.0);

glEnd ();
glTranslatef (1.5, 0.0, 0.0);

136

glTranslatef (1.5, 0.0, 0.0);
glEndList ();
glShadeModel (GL_FLAT);

void display(void)
{ GLuint i;

glClear (GL_COLOR_BUFFER_BIT);
glColor3f(0.0, 1.0, 0.0);
for (i = 0; i < 10; i++)

glCallList (listName);
drawLine (); /* color red; affected by the 10 translate */
glFlush ();

}

Constants are stored and won’t change

GLfloat color_vector[3]={0.0,0.0,0.0};

glNewList(1,GL_COMPILE);
glColor3fv(color_vector);

glEndList();

137

glEndList();
color_vector[0]=1.0; // color will be black if you use the display list

glNewList(listIndex,GL_COMPILE);
glPushMatrix();
glPushAttrib(GL_CURRENT_BIT);

glColor3f(1.0, 0.0, 0.0);
glBegin(GL_POLYGON);

glVertex2f(0.0,0.0);
glVertex2f(1.0,0.0);
glVertex2f(0.0,1.0);

glEnd();

Use glPushAttrib() to save a group of state variables and
glPopAttrib() to restore

138

glEnd();
glTranslatef(1.5,0.0,0.0);
glPopAttrib();
glPopMatrix();

glEndList();

The code below would draw a green, untranslated line.

void display(void)
{ GLint i;

glClear (GL_COLOR_BUFFER_BIT); glColor3f(0.0, 1.0, 0.0);
for (i = 0; i < 10; i++) glCallList (listIndex);
drawLine (); glFlush ();

}

Hierarchical Display Lists

• You can create a hierarchical display list, a display
list that executes another display list.

• Useful for an object that’s made of components
which are used more than once.

139

glNewList(listIndex,GL_COMPILE);
glCallList(handlebars);
glCallList(frame);
glTranslatef(1.0,0.0,0.0);
glCallList(wheel);
glTranslatef(3.0,0.0,0.0);
glCallList(wheel);

glEndList();

Editable Display Lists

• Example editable display list: To render the
polygon, call display list number 4. To edit a
vertex, you need only recreate the single display
list corresponding to that vertex.

glNewList(1,GL_COMPILE);
glVertex3f(v1);

glEndList();

140

glEndList();
glNewList(2,GL_COMPILE);

glVertex3f(v2);
glEndList();
glNewList(3,GL_COMPILE);

glVertex3f(v3);
glEndList();

glNewList(4,GL_COMPILE);
glBegin(GL_POLYGON);

glCallList(1); glCallList(2); glCallList(3);
glEnd();

glEndList();

Managing Display List Indices

listIndex=glGenLists(1);

if(listIndex!=0) {
glNewList(listIndex,GL_COMPILE);

...
glEndList();

List Indices can be automatically generated:

141

glEndList();
}

141141

Example -1

� planet.c
� Control:

� ‘d’

142

� ‘d’
� ‘y’
� ‘a’

� ‘A’
� ESC

Example -2

#include <GL/glut.h>

static GLfloat year=0.0f, day=0.0f;

void init()

{ glClearColor(0.0, 0.0, 0.0, 0.0); }

void GL_reshape(GLsizei w, GLsizei h) // GLUT reshape function

143

void GL_reshape(GLsizei w, GLsizei h) // GLUT reshape function

{

glViewport(0, 0, w, h); // viewport transformation

glMatrixMode(GL_PROJECTION); // projection transformation

glLoadIdentity();

gluPerspective(60.0, (GLfloat)w/(GLfloat)h, 1.0, 20.0);

glMatrixMode(GL_MODELVIEW); // viewing and modeling transformation

glLoadIdentity();

gluLookAt(0.0, 3.0, 5.0, // eye

0.0, 0.0, 0.0, // center

0.0, 1.0, 0.0); // up

}

Example -3

void GL_display() // GLUT display function

{

// clear the buffer

glClear(GL_COLOR_BUFFER_BIT);

glColor3f(1.0, 1.0, 1.0);

144

glPushMatrix();

glutWireSphere(1.0, 20, 16); // the Sun

glRotatef(year, 0.0, 1.0, 0.0);

glTranslatef(3.0, 0.0, 0.0);

glRotatef(day, 0.0, 1.0, 0.0);

glutWireSphere(0.5, 10, 8); // the Planet

glPopMatrix();

// swap the front and back buffers

glutSwapBuffers();

}

Example -4

void GL_idle() // GLUT idle function

{

day += 10.0;

if(day > 360.0) day -= 360.0;

year += 1.0;

145

year += 1.0;

if(year > 360.0) year -= 360.0;

// recall GL_display() function

glutPostRedisplay();

}

Example -5

void GL_keyboard(unsigned char key, int x, int y) // GLUT keyboard function

{

switch(key)

{

case 'd': day += 10.0;

if(day > 360.0) day -= 360.0;

glutPostRedisplay();

146

glutPostRedisplay();

break;

case 'y': year += 1.0;

if(year > 360.0) year -= 360.0;

glutPostRedisplay();

break;

case 'a': glutIdleFunc(GL_idle); // assign idle function

break;

case 'A': glutIdleFunc(0);

break;

case 27: exit(0);

}

}

Example -6

int main(int argc, char** argv)

{

glutInit(&argc, argv);

glutInitWindowSize(500, 500);

glutInitWindowPosition(0, 0);

glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB);

147

glutInitDisplayMode(GLUT_DOUBLE | GLUT_RGB);

glutCreateWindow("Planet");

init();

glutDisplayFunc(GL_display);

glutReshapeFunc(GL_reshape);

glutKeyboardFunc(GL_keyboard);

glutMainLoop();

return 0;

}

Reference2/2

� Further Reading

� OpenGL Programming Guide (Red Book)

� Interactive Computer Graphics: A To-Down

148

� Interactive Computer Graphics: A To-Down
Approach Using OpenGL

Any Question?

149

