
OpenStack Team

Red Hat OpenStack Platform
9
Bare Metal Provisioning

Install, Configure, and Use Bare Metal Provisioning (Ironic)

Red Hat OpenStack Platform 9 Bare Metal Provisioning

Install, Configure, and Use Bare Metal Provisioning (Ironic)

OpenStack Team
rhos-docs@redhat.com

Legal Notice

Copyright © 2017 Red Hat, Inc.

The text of and illustrations in this document are licensed by Red Hat under a Creative Commons
Attribution–Share Alike 3.0 Unported license ("CC-BY-SA"). An explanation of CC-BY-SA is
available at
http://creativecommons.org/licenses/by-sa/3.0/
. In accordance with CC-BY-SA, if you distribute this document or an adaptation of it, you must
provide the URL for the original version.

Red Hat, as the licensor of this document, waives the right to enforce, and agrees not to assert,
Section 4d of CC-BY-SA to the fullest extent permitted by applicable law.

Red Hat, Red Hat Enterprise Linux, the Shadowman logo, JBoss, OpenShift, Fedora, the Infinity
logo, and RHCE are trademarks of Red Hat, Inc., registered in the United States and other
countries.

Linux ® is the registered trademark of Linus Torvalds in the United States and other countries.

Java ® is a registered trademark of Oracle and/or its affiliates.

XFS ® is a trademark of Silicon Graphics International Corp. or its subsidiaries in the United States
and/or other countries.

MySQL ® is a registered trademark of MySQL AB in the United States, the European Union and
other countries.

Node.js ® is an official trademark of Joyent. Red Hat Software Collections is not formally related to
or endorsed by the official Joyent Node.js open source or commercial project.

The OpenStack ® Word Mark and OpenStack logo are either registered trademarks/service marks
or trademarks/service marks of the OpenStack Foundation, in the United States and other countries
and are used with the OpenStack Foundation's permission. We are not affiliated with, endorsed or
sponsored by the OpenStack Foundation, or the OpenStack community.

All other trademarks are the property of their respective owners.

Abstract
This guide provides procedures for installing, configuring, and using Bare Metal Provisioning in the
Overcloud of a Red Hat OpenStack Platform environment.

. .

. .

. .

. .

. .

. .

Table of Contents

PREFACE

CHAPTER 1. INSTALL AND CONFIGURE OPENSTACK BARE METAL PROVISIONING (IRONIC)
1.1. REQUIREMENTS
1.2. CONFIGURE OPENSTACK FOR THE BARE METAL PROVISIONING SERVICE
1.3. CONFIGURE THE CONTROLLER NODES FOR BARE METAL PROVISIONING SERVICE
1.4. CONFIGURE THE COMPUTE NODE FOR BARE METAL PROVISIONING

CHAPTER 2. CONFIGURE BARE METAL DEPLOYMENT
2.1. CREATE OPENSTACK CONFIGURATIONS FOR BARE METAL PROVISIONING SERVICE
2.2. CONFIGURE HARDWARE INSPECTION
2.3. ADD PHYSICAL MACHINES AS BARE METAL NODES
2.4. USE HOST AGGREGATES TO SEPARATE PHYSICAL AND VIRTUAL MACHINE PROVISIONING
2.5. EXAMPLE: TEST BARE METAL PROVISIONING WITH SSH AND VIRSH

CHAPTER 3. LAUNCH BARE METAL INSTANCES
3.1. DEPLOY AN INSTANCE USING THE COMMAND LINE INTERFACE
3.2. DEPLOY AN INSTANCE USING THE DASHBOARD
3.3. CREATE A WHOLE WINDOWS IMAGE

CHAPTER 4. TROUBLESHOOT BARE METAL PROVISIONING
4.1. TROUBLESHOOT PXE BOOT ERRORS
4.2. TROUBLESHOOT LOGIN ERRORS AFTER THE BARE METAL NODE BOOTS
4.3. TROUBLESHOOT THE BARE METAL PROVISIONING SERVICE NOT GETTING THE RIGHT
HOSTNAME
4.4. TROUBLESHOOT INVALID OPENSTACK IDENTITY SERVICE CREDENTIALS WHEN EXECUTING BARE
METAL PROVISIONING COMMANDS
4.5. TROUBLESHOOT HARDWARE ENROLLMENT
4.6. TROUBLESHOOT NO VALID HOST ERRORS
4.7. TROUBLESHOOT HARDWARE INSPECTION

APPENDIX A. BARE METAL PROVISIONING DRIVERS
A.1. INTELLIGENT PLATFORM MANAGEMENT INTERFACE (IPMI)
A.2. DELL REMOTE ACCESS CONTROLLER (DRAC)
A.3. INTEGRATED REMOTE MANAGEMENT CONTROLLER (IRMC)
A.4. INTEGRATED LIGHTS-OUT (ILO)
A.5. ACTIVE MANAGEMENT TECHNOLOGY (AMT)
A.6. SSH AND VIRSH

3

4
5
7
9

13

25
25
30
33
42
43

47
47
47
48

52
52
53

55

55
55
55
56

57
57
57
57
58
58
60

Table of Contents

1

Red Hat OpenStack Platform 9 Bare Metal Provisioning

2

PREFACE

This document provides instructions for installing and configuring Bare Metal Provisioning (ironic) as
an OpenStack service in the overcloud, and using the service to provision and manage physical
machines for end users. Configuring this service allows users to launch instances on physical
machines in the same way that they launch virtual machine instances.

The Bare Metal Provisioning components are also used by the Red Hat OpenStack Platform
director, as part of the undercloud, to provision and manage the bare metal nodes that make up the
OpenStack environment (the overcloud). For information on how the director uses Bare Metal
Provisioning, see Director Installation and Usage.

Note

This document describes how to manually install Bare Metal Provisioning on an already
deployed overcloud. This manual procedure differs from how Bare Metal Provisioning is
integrated into later versions of Red Hat OpenStack Platform director. Attempting to
upgrade an overcloud that has undergone this process is unsupported and the results are
undefined. This document should be treated as a guide to preview what is integrated into
later versions of Red Hat OpenStack Platform director.

PREFACE

3

https://access.redhat.com/documentation/en/red-hat-openstack-platform/8/paged/director-installation-and-usage/

CHAPTER 1. INSTALL AND CONFIGURE OPENSTACK
BARE METAL PROVISIONING (IRONIC)

OpenStack Bare Metal Provisioning (ironic) provides the components required to provision and
manage physical (bare metal) machines for end users. Bare Metal Provisioning in the overcloud
interacts with the following OpenStack services:

OpenStack Compute (nova) provides scheduling, tenant quotas, IP assignment, and a user-
facing API for virtual machine instance management, while Bare Metal Provisioning provides the
administrative API for hardware management. Choose a single, dedicated openstack-nova-
compute host to use the Bare Metal Provisioning drivers and handle Bare Metal Provisioning
requests.

OpenStack Identity (keystone) provides request authentication and assists Bare Metal
Provisioning in locating other OpenStack services.

OpenStack Image service (glance) manages images and image metadata used to boot bare
metal machines.

OpenStack Networking (neutron) provides DHCP and network configuration for the required
Bare Metal Provisioning networks.

Bare Metal Provisioning uses PXE to provision physical machines. The following diagram outlines
how the OpenStack services interact during the provisioning process when a user launches a new
bare metal machine.

Red Hat OpenStack Platform 9 Bare Metal Provisioning

4

1.1. REQUIREMENTS

This chapter outlines the requirements for setting up Bare Metal Provisioning, including installation
assumptions, hardware requirements, and networking requirements.

1.1.1. Bare Metal Provisioning Installation Assumptions

CHAPTER 1. INSTALL AND CONFIGURE OPENSTACK BARE METAL PROVISIONING (IRONIC)

5

Bare Metal Provisioning is a collection of components that can be configured to run on the same
node or on separate nodes. The configuration examples in this guide install and configure all Bare
Metal Provisioning components on a single node. This guide assumes that the services for
OpenStack Identity, OpenStack Image, OpenStack Compute, and OpenStack Networking have
already been installed and configured. Bare Metal Provisioning also requires the following external
services, which must also be installed and configured as a prerequisite:

A database server in which to store hardware information and state. This guide assumes that the
MariaDB database service is configured for the Red Hat OpenStack Platform environment.

A messaging service. This guide assumes that RabbitMQ is configured for the environment.

If you used the director to deploy your OpenStack environment, the database and messaging
services are installed on a controller node in the overcloud.

Red Hat OpenStack Platform requires iptables instead of firewalld on Compute nodes and
OpenStack Networking nodes running Red Hat Enterprise Linux 7. Firewall rules in this document
are set using iptables.

Note

Hardware inspection (ironic-inspector) uses iptables to blacklist the MAC addresses of
ironic nodes. In the event that another process has locked iptables while ironic-inspector
is attempting to make a modification, ironic-inspector uses the iptables -w flag, where
supported (version 1.4.21, or higher).

1.1.2. Bare Metal Provisioning Hardware Requirements

A node running all Bare Metal Provisioning components requires the following hardware:

64-bit x86 processor with support for the Intel 64 or AMD64 CPU extensions.

A minimum of 6 GB of RAM.

A minimum of 40 GB of available disk space.

A minimum of two 1 Gbps Network Interface Cards. However, a 10 Gbps interface is
recommended for Bare Metal Provisioning Network traffic, especially if you are provisioning a
large number of bare metal machines.

Red Hat Enterprise Linux 7.2 (or later) installed as the host operating system.

Alternatively, install and configure Bare Metal Provisioning components on a dedicated openstack-
nova-compute node; see Compute Node Requirements in the Director Installation and Usage
guide for hardware requirements.

1.1.3. Bare Metal Provisioning Networking Requirements

Bare Metal Provisioning requires at least two networks:

Provisioning network: This is a private network that Bare Metal Provisioning uses to provision
and manage bare metal machines. The Bare Metal Provisioning Network provides DHCP and
PXE boot functions to help discover bare metal systems. This network should ideally use a
native VLAN on a trunked interface so that Bare Metal Provisioning serves PXE boot and DHCP
requests. This is also the network used to control power management through out-of-band
drivers on the bare metal machines to be provisioned.

Red Hat OpenStack Platform 9 Bare Metal Provisioning

6

https://access.redhat.com/documentation/en/red-hat-openstack-platform/8/single/director-installation-and-usage/#sect-Compute_Node_Requirements

External network: A separate network for remote connectivity. The interface connecting to this
network requires a routable IP address, either defined statically or dynamically through an
external DHCP service.

1.1.4. Bare Metal Machine Requirements

Bare metal machines that will be provisioned require the following:

Two NICs: one for the Bare Metal Provisioning Network, and one for external connectivity.

A power management interface (e.g. IPMI) connected to the Bare Metal Provisioning Network. If
you are using SSH for testing purposes, this is not required.

PXE boot on the Bare Metal Provisioning Network at the top of the system’s boot order, ahead of
hard disks and CD/DVD drives. Disable PXE boot on all other NICs on the system.

Other requirements for bare metal machines that will be provisioned vary depending on the
operating system you are installing. For Red Hat Enterprise Linux 7, see the Red Hat Enterprise
Linux 7 Installation Guide. For Red Hat Enterprise Linux 6, see the Red Hat Enterprise Linux 6
Installation Guide.

1.2. CONFIGURE OPENSTACK FOR THE BARE METAL
PROVISIONING SERVICE

Every OpenStack service has a user name and password that is used to authenticate it with the
Identity service. Each service also needs to be defined with the OpenStack Identity service and have
an endpoint URL associated with it for Internal, Admin and Public connectivity.

To configure the Bare Metal Provisioning Service from the director node:

1. Source the overcloudrc file:

source ~stack/overcloudrc

2. Create the OpenStack Bare Metal Provisioning user:

openstack user create --password IRONIC_PASSWORD --enable
IRONIC_USER
openstack role add --project service --user IRONIC_USER admin

Here, IRONIC_USER is the user for the Bare Metal Provisioning service and
IRONIC_PASSWORD is the password.

3. Create the OpenStack Bare Metal Provisioning service:

openstack service create --name ironic --description "Ironic
bare metal provisioning service" baremetal

4. Verify the virtual IP (VIP) address that the other OpenStack services are using:

openstack endpoint list -c "Service Name" -c "PublicURL" --long

The output of this command lists the services and their Public URL, which are usually all
on the same server and use the same IP address.

CHAPTER 1. INSTALL AND CONFIGURE OPENSTACK BARE METAL PROVISIONING (IRONIC)

7

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html-single/Installation_Guide/index.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html-single/Installation_Guide/index.html

5. Get the Internal API network address of the Compute node that you are installing the Bare
Metal Provisioning service on:

route -n

The output of this command lists the IP routing table with the IP addresses and the
interface for each of the IP addresses.

The Internal API network address is then used to create a service endpoint.

6. You can check the IP address associated with the NIC to use for the Internal and Admin
URLs as follows:

ifconfig INTERFACE

7. Create the service endpoint:

openstack endpoint create --publicurl http://VIP:6385 --
internalurl http://COMPUTE_INTERNAL_API_IP:6385 --adminurl
http://COMPUTE_INTERNAL_API_IP:6385 --region regionOne SERVICE_ID

Here, VIP is the virtual IP address configured in HAProxy, COMPUTE_INTERNAL_API_IP is
the IP address for the Compute node running the Bare Metal Provisioning service that is
connected to the Internal API network and SERVICE_ID is the ID of the Bare Metal
Provisioning service created using the service create command.

Next, you must configure the HAProxy to make sure you receive requests for the Public URL for the
endpoints you created in the previous procedure. To configure the HAProxy value, ensure that you
are logged in as the root user on your controller nodes.

1. Edit the /etc/haproxy/haproxy.cfg file and add the following line at the end of the file:

listen ironic

 bind VIP:6385 transparent
 server SERVER_NAME COMPUTE_INTERNAL_API_IP:6385 check fall 5
inter 2000 rise 2

In this example:

VIP is the virtual IP address.

SERVER_NAME is the HAProxy identifying name for the Compute server where the Bare
Metal Provisioning service will be installed and running.

COMPUTE_INTERNAL_API_IP is the Internal API IP address of the Compute server
where the Bare Metal Provisioning service will be installed and running.

transparent allows the HAProxy to bind the IP address even if it does not exist on the
Controller node so that in a clustered environment, the virtual IP address can move
between controllers.

check fall 5 inter 2000 rise 2 refers to the following health checks on the
back end server:

fall 5 - the server is considered unavailable after 5 consecutive failed health

Red Hat OpenStack Platform 9 Bare Metal Provisioning

8

checks.

inter 2000 - the interval between health checks is 2000 ms or 2 seconds.

rise 2 - the server is considered available after 2 consecutive successful health
checks.

2. Restart the HAProxy to make sure the changes take effect:

systemctl restart haproxy.service

You can get the following message stating the back end server is not available:
haproxy[4249]: proxy ironic has no server available!. This message can be ignored for now,
since you have not yet installed or configured the service.

1.3. CONFIGURE THE CONTROLLER NODES FOR BARE METAL
PROVISIONING SERVICE

The following steps need to be performed on all the controller nodes in your Red Hat OpenStack
Platform deployment as a root user, with the exception of the Create the Bare Metal Provisioning
Database section. You must perform that procedure on one controller since they all share the
database.

On the Controller nodes, you need to make sure your Bare Metal Provisioning Network is connected
to Open vSwitch so your OpenStack deployment can reach it.

1. Add a bridge into Open vSwitch:

ovs-vsctl add-br br-ironic
ovs-vsctl add-port br-ironic IRONIC_PROVISIONING_NIC
ovs-vsctl show

Here br-ironic is the name of the bridge and IRONIC_PROVISIONING_NIC is the NIC
connected to the Bare Metal Provisioning Network.

With the ovs-vsctl show command, you can see that a new bridge is created with the
associated port, however you will notice that the br-int integration bridge lacks a patch to
the new bridge.

2. To get the new bridge added to the integration bridge, you need to update the following
plugin files:

a. Update the ML2 configuration file,
/etc/neutron/plugins/ml2/ml2_conf.ini as follows:

For the type_drivers parameter, make sure flat is listed among the drivers,
for example, type_drivers = vxlan,vlan,flat,gre. This is a comma
delimited list.

For the mechanism_drivers parameter, make sure openvswitch option is
listed among the drivers, for example, mechanism_drivers =openvswitch.
This is a comma delimited list.

CHAPTER 1. INSTALL AND CONFIGURE OPENSTACK BARE METAL PROVISIONING (IRONIC)

9

For the flat_networks parameters, create a name to refer to the Bare Metal
Provisioning Network, for example, ironicnet. Make sure this name is listed
among the flat_networks listed, for example, flat_networks
=datacentre,ironicnet. This is a comma delimited list.

If you are using a VLAN for the Bare Metal Provisioning Network, add the
network_vlan_ranges parameter with the following format:
ironicnet:VLAN_START:VLAN_END, for example, network_vlan_ranges
=datacentre:1:1000. This is a comma delimited list.

The enable_security_group parameter should already be enabled. But if it
is not set, change the value to True, for example, enable_security_group
= True.

b. In the /etc/neutron/plugins/ml2/openvswitch_agent.ini file, find the
bridge_mappings parameter and update as follows:

bridge_mappings =datacentre:br-ex,ironicnet:br-ironic

The value of this comma delimited key-value pair maps the name of the Bare Metal
Provisioning Network to the physical device which is connected to the network.

3. Restart the neutron-openvswitch-agent.service to see the br-ironic bridge as a
part of the integration bridge:

systemctl restart neutron-openvswitch-agent.service

4. Restart the neutron-server.service so that it detects the new connection:

systemctl restart neutron-server.service

Note

If you do not perform this step, trying to create the Bare Metal Provisioning
Network within the OpenStack Networking service will fail with a message that the
requested flat network does not exist.

1.3.1. Create the Bare Metal Provisioning Database

Create the database and database user used by Bare Metal Provisioning. All steps in this procedure
must be performed on the database server, while logged in as the root user.

Creating the Bare Metal Provisioning Database

1. Connect to the database service:

mysql -u root

2. Create the ironic database:

mysql> CREATE DATABASE ironic CHARACTER SET utf8;

Red Hat OpenStack Platform 9 Bare Metal Provisioning

10

3. Create an ironic database user and grant the user access to the ironic database:

mysql> GRANT ALL PRIVILEGES ON ironic.* TO 'ironic'@'%'
IDENTIFIED BY 'PASSWORD';
mysql> GRANT ALL PRIVILEGES ON ironic.* TO 'ironic'@'localhost'
IDENTIFIED BY 'PASSWORD';

Replace PASSWORD with a secure password that will be used to authenticate with the
database server as this user.

4. Flush the database privileges to ensure that they take effect immediately:

mysql> FLUSH PRIVILEGES;

5. Exit the mysql client:

mysql> quit

1.3.2. Configure OpenStack Compute Services For Bare Metal Provisioning

Configure Compute services for the Bare Metal Provisioning driver. Using this driver enables
Compute to provision physical machines using the same API that is used to provision virtual
machines. Only one driver can be specified for each openstack-nova-compute node; a node with
the Bare Metal Provisioning driver can provision only physical machines. It is recommended that you
allocate a single openstack-nova-compute node to provision all bare metal nodes using the Bare
Metal Provisioning driver. All steps in the following procedure must be performed on a chosen
compute node, while logged in as the root user.

Configuring OpenStack Compute for the Bare Metal Provisioning

1. Set Compute to use the Bare Metal Provisioning scheduler host manager:

openstack-config --set /etc/nova/nova.conf \
 DEFAULT scheduler_host_manager
nova.scheduler.ironic_host_manager.IronicHostManager

2. Disable the Compute scheduler from tracking changes in instances:

openstack-config --set /etc/nova/nova.conf DEFAULT
scheduler_tracks_instance_changes false

3. Set the default filters as follows:

openstack-config --set /etc/nova/nova.conf DEFAULT
baremetal_scheduler_default_filters
AvailabilityZoneFilter,ComputeFilter,ComputeCapabilitiesFilter,Im
agePropertiesFilter

4. Set Compute to use default Bare Metal Provisioning scheduling filters:

openstack-config --set /etc/nova/nova.conf \
 DEFAULT scheduler_use_baremetal_filters True

CHAPTER 1. INSTALL AND CONFIGURE OPENSTACK BARE METAL PROVISIONING (IRONIC)

11

5. Set Compute to use the correct authentication details for Bare Metal Provisioning:

openstack-config --set /etc/nova/nova.conf \
 ironic admin_username ironic
openstack-config --set /etc/nova/nova.conf \
 ironic admin_password PASSWORD
openstack-config --set /etc/nova/nova.conf \
 ironic admin_url http://IDENTITY_IP:35357/v2.0
openstack-config --set /etc/nova/nova.conf \
 ironic admin_tenant_name service
openstack-config --set /etc/nova/nova.conf \
 ironic api_endpoint http://IRONIC_API_IP:6385/v1

Replace the following values:

Replace PASSWORD with the password that Bare Metal Provisioning uses to
authenticate with Identity.

Replace IDENTITY_IP with the IP address or host name of the server hosting Identity.

Replace IRONIC_API_IP with the IP address or host name of the server hosting the
Bare Metal Provisioning API service.

6. Set the nova database credentials on the ironic Compute node:

openstack-config --set /etc/nova/nova.conf database connection
"mysql+pymysql://nova:NOVA_DB_PASSWORD@DB_IP/nova"

7. Restart the Compute scheduler service on the Compute controller nodes:

systemctl restart openstack-nova-scheduler.service

8. Restart the compute service on the compute nodes:

systemctl restart openstack-nova-compute.service

1.3.3. Configure the OpenStack Networking DHCP Agent to Tag iPXE Requests

OpenStack Networking DHCP requests from iPXE need to have a DHCP tag called ipxe to let the
DHCP server know that the client needs to perform an HTTP operation to get the boot.ipxe script.
You can do this by adding a dhcp-userclass entry to the dnsmasq configuration file used by the
OpenStack Networking DHCP Agent service.

1. On your overcloud controller, verify which dnsmasq file the DHCP Agent is using:

grep ^dnsmasq_config_file /etc/neutron/dhcp_agent.ini

dnsmasq_config_file =/etc/neutron/dnsmasq-neutron.conf

2. Edit this file and add the following lines at the end of the file:

Create the "ipxe" tag if request comes from iPXE user class

dhcp-userclass=set:ipxe,iPXE

Red Hat OpenStack Platform 9 Bare Metal Provisioning

12

3. Save the file and restart the OpenStack Networking DHCP Agent service:

systemctl restart neutron-dhcp-agent.service

1.4. CONFIGURE THE COMPUTE NODE FOR BARE METAL
PROVISIONING

The following instructions here apply ONLY to the Compute node that is also running the Bare Metal
Provisioning service. You need to perform these steps as a root user on the Compute node.

On the Compute node, you have the Bare Metal Provisioning NIC, for example, eth6. The goals
with this procedure are as follows:

1. To connect the Bare Metal Provisioning NIC, eth6 in this example, to Open vSwitch.

2. To assign an IP address on this connection as the Bare Metal server needs to pull down the
boot images from the bare metal node as a part of the iPXE process.

Connecting eth6 to Open vSwitch

1. As with the Controller node in Section 1.3, “Configure the Controller Nodes for Bare Metal
Provisioning Service”, create a bridge within Open vSwitch on the Compute node running
the Bare Metal Provisioning service:

ovs-vsctl add-br br-ironic
ovs-vsctl add-port br-ironic IRONIC_PROVISIONING_NIC

Here, br-ironic is the name of the bridge and IRONIC_PROVISIONING NIC is the NIC
connected to the Bare Metal Provisioning Network, for example, eth6.

Note

The only difference between this and Section 1.3, “Configure the Controller Nodes
for Bare Metal Provisioning Service” is that you do not restart the OpenStack
Networking service on the Compute node.

This adds the bridge and port to the Open vSwitch, which you can verify using the ovs-
vsctl show command. However, it does not connect it to the integration bridge (br-int)
for use by OpenStack.

2. To create the connection, you need to update the OpenStack Networking plugin files as
follows:

a. Update the ML2 configuration file,
/etc/neutron/plugins/ml2/ml2_conf.ini as follows:

For the type_drivers parameter, make sure flat is listed among the drivers,
for example, type_drivers = vxlan,vlan,flat,gre. This is a comma
delimited list.

CHAPTER 1. INSTALL AND CONFIGURE OPENSTACK BARE METAL PROVISIONING (IRONIC)

13

For the mechanism_drivers parameter, make sure openvswitch option is
listed among the drivers, for example, mechanism_drivers =openvswitch.
This is a comma delimited list.

For the flat_networks parameters, create a name to refer to the Bare Metal
Provisioning Network, for example, ironicnet. Make sure this name is listed
among the flat_networks listed, for example, flat_networks
=datacentre,ironicnet. This is a comma delimited list.

If you are using a VLAN for the Bare Metal Provisioning Network, add the
network_vlan_ranges parameter with the following format:
ironicnet:VLAN_START:VLAN_END, for example, network_vlan_ranges
=datacentre:1:1000. This is a comma delimited list.

The enable_security_group parameter should already be enabled. But if it
is not set, change the value to True, for example, enable_security_group
= True.

b. In the /etc/neutron/plugins/ml2/openvswitch_agent.ini file, find the
bridge_mappings parameter and update as follows:

bridge_mappings =datacentre:br-ex,ironicnet:br-ironic

The value of this comma delimited key-value pair maps the name of the Bare Metal
Provisioning Network to the physical device which is connected to the network.

3. Restart the OpenStack Networking Open vSwitch Agent service:

systemctl restart neutron-openvswitch-agent.service

You have now achieved your first goal from this procedure. Next, you need to assign an IP address
to your br-ironic bridge and make sure it persists after a reboot.

Assigning an IP address to the Bare Metal server

1. Create standard configuration files in the /etc/sysconfig/network-scripts location.
You can copy the ifcfg* files already available in the tenant network and edit the
following values: device, ipaddr, ovs_bridge, bridge name and MAC addresses for
the br-ironic and eth6. When you have completed updating the new files, they should
have the following values:

ifcfg-br-ironic

DEVICE=br-ironic
ONBOOT=yes
HOTPLUG=no
NM_CONTROLLED=no
PEERDNS=no
DEVICETYPE=ovs
TYPE=OVSBridge
BOOTPROTO=static
IPADDR=BARE_METAL_PROVISIONING_IP
NETMASK=255.255.255.0
OVS_EXTRA="set bridge br-ironic other-config:hwaddr=MAC_ADDRESS"

Red Hat OpenStack Platform 9 Bare Metal Provisioning

14

ifcfg-eth6

DEVICE=eth6
ONBOOT=yes
HOTPLUG=no
NM_CONTROLLED=no
PEERDNS=no
DEVICETYPE=ovs
TYPE=OVSPort
OVS_BRIDGE=br-ironic
BOOTPROTO=none

2. Restart the network bridge to make your IP address pingable.

ifup br-ironic

Note

If you get disconnected from the node when you restart the network services,
reboot the server.

1.4.1. Subscribe to the Required Channels

To install the Bare Metal Provisioning packages, you must register the server or servers with Red
Hat Subscription Manager, and subscribe to the required channels. If you are installing Bare Metal
Provisioning on a compute node, your server may already be appropriately subscribed. Run yum
repolist to check whether the channels in the procedure below have been enabled.

Subscribing to the Required Channels

1. Register your system with the Content Delivery Network, entering your Customer Portal
user name and password when prompted:

subscription-manager register

2. Find entitlement pools containing the channels required to install Bare Metal Provisioning:

subscription-manager list --available | grep -A13 "Red Hat
Enterprise Linux Server"
subscription-manager list --available | grep -A13 "Red Hat
OpenStack Platform"

3. Use the pool identifiers located in the previous step to attach the Red Hat Enterprise Linux
7 Server and Red Hat OpenStack Platform entitlements:

subscription-manager attach --pool=POOL_ID

4. Enable the required channels:

subscription-manager repos --enable=rhel-7-server-rpms \
--enable=rhel-7-server-openstack-9-rpms \
--enable=rhel-7-server-rh-common-rpms --enable=rhel-7-server-

CHAPTER 1. INSTALL AND CONFIGURE OPENSTACK BARE METAL PROVISIONING (IRONIC)

15

optional-rpms \
--enable=rhel-7-server-openstack-9-optools-rpms

1.4.2. Install the Bare Metal Provisioning Packages

Bare Metal Provisioning requires the following packages:

openstack-ironic-api

Provides the Bare Metal Provisioning API service.

openstack-ironic-conductor

Provides the Bare Metal Provisioning conductor service. The conductor allows adding, editing, and
deleting nodes, powering on or off nodes with IPMI or SSH, and provisioning, deploying, and
decommissioning bare metal nodes.

python-ironicclient

Provides a command-line interface for interacting with the Bare Metal Provisioning services.

Install the packages:

yum install openstack-ironic-api openstack-ironic-conductor python-
ironicclient ipxe-bootimgs

1.4.3. Configure iPXE

1. Create the necessary directories for iPXE, map-files and copy the undionly.kpxe boot
image, iPXE and map-file into place:

mkdir /httpboot
mkdir /tftpboot
echo 'r ([/]) /tftpboot/\1' > /tftpboot/map-file
echo 'r ^(/tftpboot/) /tftpboot/\2' >> /tftpboot/map-file
cp /usr/share/ipxe/undionly.kpxe /tftpboot/
chown -R ironic:ironic /httpboot
chown -R ironic:ironic /tftpboot

2. By default, the Compute node deployed by the director runs SELinux in Enforcing mode.
To avoid getting permission errors when trying iPXE boot, make sure you set the
appropriate labels on these directories. To apply these labels, run the following commands
as a root user:

semanage fcontext -a -t httpd_sys_content_t "/httpboot(/.*)?"
restorecon -Rv /httpboot
semanage fcontext -a -t tftpdir_t "/tftpboot(/.*)?"
restorecon -Rv /tftpboot

3. Configure HTTP so that it can serve requests for the images. The httpd package is
already installed, so it is a matter of creating the appropriate virtual host entry and starting
the service.

Red Hat OpenStack Platform 9 Bare Metal Provisioning

16

Note

The /etc/httpd/conf.d contains number of files. As Red Hat utilizes a single
overcloud full image for all the nodes, it includes these files on all the nodes even
though it is only used on the Controller node. You can delete the contents of
/etc/httpd/conf.d or copy them somewhere else as they are not used.

Create a new file in for iPXE configuration. You can name this file anything, making sure it
is in the .conf format and has the following contents:

cat 10-ipxe_vhost.conf
Listen 8088
<VirtualHost *:8088>
 DocumentRoot "/httpboot"
 <Directory "/httpboot">
 Options Indexes FollowSymLinks
 AllowOverride None
 Order allow,deny
 Allow from all
 Require all granted
 </Directory>

 ## Logging
 ErrorLog "/var/log/httpd/ironic_error.log"
 ServerSignature Off
 CustomLog "/var/log/httpd/ironic_access.log" combined
</VirtualHost>

The above virtual host configuration configures HTTPD to listed on all addresses on port
8088 and sets the document root for all requests to that port to go to /httpboot.

4. Save this file and enable and restart HTTPD service on the Compute node:

systemctl enable httpd.service
systemctl start httpd.service

1.4.4. Configure the Bare Metal Provisioning Service

In this section, you will make the necessary changes to the /etc/ironic/ironic.conf file.

1.4.4.1. Configure Bare Metal Provisioning to Communicate with the Database Server

Set the value of the connection configuration key:

openstack-config --set /etc/ironic/ironic.conf \
database connection mysql+pymysql://ironic:PASSWORD@IP/ironic

Here, PASSWORD is the password of the database server, IP is the IP address or host name of the
database server.

CHAPTER 1. INSTALL AND CONFIGURE OPENSTACK BARE METAL PROVISIONING (IRONIC)

17

Important

The IP address or host name specified in the connection configuration key must match the
IP address or host name to which the Bare Metal Provisioning database user was granted
access when creating the Bare Metal Provisioning database in Section 1.3.1, “Create the
Bare Metal Provisioning Database”. Moreover, if the database is hosted locally and you
granted permissions to localhost when creating the database, you must enter
localhost.

1.4.4.2. Configure Bare Metal Provisioning Authentication

Configure Bare Metal Provisioning to use Identity for authentication. All steps in this procedure must
be performed on the server or servers hosting Bare Metal Provisioning, while logged in as the root
user.

Configuring Bare Metal Provisioning to Authenticate Through Identity

1. Set the Identity public and admin endpoints that Bare Metal Provisioning must use:

openstack-config --set /etc/ironic/ironic.conf \
 keystone_authtoken auth_uri http://IP:5000/v2.0
openstack-config --set /etc/ironic/ironic.conf \
 keystone_authtoken identity_uri http://IP:35357/

Replace IP with the IP address or host name of the Identity server.

2. Set Bare Metal Provisioning to authenticate as the service tenant:

openstack-config --set /etc/ironic/ironic.conf \
 keystone_authtoken admin_tenant_name service

3. Set Bare Metal Provisioning to authenticate using the ironic administrative user account:

openstack-config --set /etc/ironic/ironic.conf \
 keystone_authtoken admin_user ironic

4. Set Bare Metal Provisioning to use the correct ironic administrative user account password:

openstack-config --set /etc/ironic/ironic.conf \
 keystone_authtoken admin_password PASSWORD

Replace PASSWORD with the password set when the ironic user was created.

1.4.4.3. Configure RabbitMQ Message Broker Settings for Bare Metal Provisioning

RabbitMQ is the default (and recommended) message broker. The RabbitMQ messaging service is
provided by the rabbitmq-server package. All steps in the following procedure must be performed on
the Controller or Compute nodes hosting Bare Metal Provisioning, while logged in as the root user.

This procedure assumes that the RabbitMQ messaging service has been installed and configured,
and an ironic user and associated password have been created on the server hosting the
messaging service.

Red Hat OpenStack Platform 9 Bare Metal Provisioning

18

Configuring Bare Metal Provisioning to use the RabbitMQ Message Broker

1. Set RabbitMQ as the RPC back end:

openstack-config --set /etc/ironic/ironic.conf \
 DEFAULT rpc_backend ironic.openstack.common.rpc.impl_kombu

2. Set the Bare Metal Provisioning to connect to the RabbitMQ host:

openstack-config --set /etc/ironic/ironic.conf \
 oslo_messaging_rabbit rabbit_host RABBITMQ_HOST

Replace RABBITMQ_HOST with the IP address or host name of the server hosting the
message broker.

3. Set the message broker port to 5672:

openstack-config --set /etc/ironic/ironic.conf \
 oslo_messaging_rabbit rabbit_port 5672

4. Set the RabbitMQ user name and password created for Bare Metal Provisioning when
RabbitMQ was configured:

openstack-config --set /etc/ironic/ironic.conf \
 oslo_messaging_rabbit rabbit_userid guest
openstack-config --set /etc/ironic/ironic.conf \
 oslo_messaging_rabbit rabbit_password RABBIT_GUEST_PASSWORD

Replace RABBIT_GUEST_PASSWORD with the RabbitMQ password for the guest user.

5. When RabbitMQ was launched, the guest user was granted read and write permissions to
all resources: specifically, through the virtual host. Configure Bare Metal Provisioning to
connect to this virtual host:

openstack-config --set /etc/ironic/ironic.conf \
 oslo_messaging_rabbit rabbit_virtual_host /

1.4.4.4. Configure Bare Metal Provisioning Drivers

Bare Metal Provisioning supports multiple drivers for deploying and managing bare metal servers.
Some drivers have hardware requirements, and require additional configuration or package
installation. See Appendix A, Bare Metal Provisioning Drivers for detailed driver information. The
first half of a driver’s name specifies its deployment method (e.g. PXE), and the second half
specifies its power management method (e.g. IPMI).

Configuring Bare Metal Provisioning Drivers

1. Specify the driver or drivers that you will use to provision bare metal servers. Specify
multiple drivers using a comma-separated list:

openstack-config --set /etc/ironic/ironic.conf \
 DEFAULT enabled_drivers DRIVER1,DRIVER2

The following drivers are supported:

CHAPTER 1. INSTALL AND CONFIGURE OPENSTACK BARE METAL PROVISIONING (IRONIC)

19

IPMI with PXE deploy

pxe_ipmitool

DRAC with PXE deploy

pxe_drac

iLO with PXE deploy

pxe_ilo

iBoot with PXE deploy

pxe_iboot

SSH with PXE deploy

pxe_ssh

iRMC with PXE

pxe_irmc

AMT with PXE

pxe_amt

AMT with HTTP

agent_amt

2. Restart the Bare Metal conductor service:

systemctl restart openstack-ironic-conductor.service

1.4.4.5. Configure the Bare Metal Provisioning Service to use PXE

1. Set the Bare Metal Provisioning service to use PXE templates:

openstack-config --set /etc/ironic/ironic.conf \
pxe pxe_config_template
\$pybasedir/drivers/modules/ipxe_config.template

2. Set the Bare Metal Provisioning service to use tftp_server:

openstack-config --set /etc/ironic/ironic.conf \
pxe tftp_server BARE_METAL_PROVISIONING_NETWORK_IP

3. Set the PXE tftp_root:

openstack-config --set /etc/ironic/ironic.conf \
pxe tftp_root /tftpboot

4. Set the PXE boot file name:

Red Hat OpenStack Platform 9 Bare Metal Provisioning

20

openstack-config --set /etc/ironic/ironic.conf \
pxe pxe_bootfile_name undionly.kpxe

5. Enable the Bare Metal Provisioning service to use iPXE:

openstack-config --set /etc/ironic/ironic.conf \
pxe ipxe_enabled true

6. Set the URL for the http server:

openstack-config --set /etc/ironic/ironic.conf deploy http_url
http://BARE_METAL_PROVISIONING_IP:8088

7. Restart the Bare Metal conductor service:

systemctl restart openstack-ironic-conductor.service

1.4.4.6. Configure Bare Metal Provisioning to Communicate with OpenStack
Networking and OpenStack Image

Bare Metal Provisioning uses OpenStack Networking for DHCP and network configuration, and uses
the Image service for managing the images used to boot physical machines. Configure Bare Metal
Provisioning to connect to and communicate with OpenStack Networking and the Image service. All
steps in this procedure must be performed on the server hosting Bare Metal Provisioning, while
logged in as the root user.

Configuring Bare Metal Provisioning to Communicate with OpenStack Networking and
OpenStack Image

1. Set Bare Metal Provisioning to use the OpenStack Networking endpoint:

openstack-config --set /etc/ironic/ironic.conf \
 neutron url http://NEUTRON_IP:9696

Replace NEUTRON_IP with the IP address or host name of the server hosting OpenStack
Networking.

2. Set Bare Metal Provisioning to communicate with the Image service:

openstack-config --set /etc/ironic/ironic.conf \
 glance glance_host GLANCE_IP

Replace GLANCE_IP with the IP address or host name of the server hosting the Image
service.

3. Start the Bare Metal Provisioning API service, and configure it to start at boot time:

systemctl start openstack-ironic-api.service
systemctl enable openstack-ironic-api.service

4. Create the Bare Metal Provisioning database tables:

CHAPTER 1. INSTALL AND CONFIGURE OPENSTACK BARE METAL PROVISIONING (IRONIC)

21

ironic-dbsync --config-file /etc/ironic/ironic.conf
create_schema

5. Start the Bare Metal Provisioning conductor service, and configure it to start at boot time:

systemctl restart openstack-ironic-conductor.service
systemctl enable openstack-ironic-conductor.service

1.4.4.7. Configure a Ceph Object Gateway for the Image and Bare Metal Provisioning
Services

Red Hat Ceph Storage is a distributed storage system that includes a Ceph object (RADOS)
gateway with a Swift-compatible API. To use a RADOS gateway for the Image service, you need to:

Configure the Image service to grant access to the RADOS gateway.

Configure the Bare Metal Provisioning service to use the RADOS gateway Swift API to provide
bare metal images.

Before You Begin

Ensure that you have configured your Red Hat Ceph Storage with a Ceph object gateway. See
Ceph Object Gateway Installation for details.

Configure the Ceph Object Gateway Access for the Image Service

1. Create the access credentials for the Image Service on the Ceph object gateway admin
host.

radosgw-admin user create --uid=GLANCE_USERNAME --display-
name="User for Glance"

radosgw-admin subuser create --uid=GLANCE_USERNAME --
subuser=GLANCE_USERNAME:swift --access
=full

radosgw-admin key create --subuser=GLANCE_USERNAME:swift --key-
type=swift --secret=STORE_KEY

radosgw-admin user modify --uid=GLANCE_USERNAME --temp-url-
key=TEMP_URL_KEY

Replace GLANCE_USERNAME with a user name for the Image service access, and
replace STORE_KEY and TEMP_URL_KEY with suitable keys.

Note

Do not use the --gen-secret CLI parameter because it will cause the
radosgw-admin utility to generate keys with slash symbols which do not work
with the OpenStack Image service.

Red Hat OpenStack Platform 9 Bare Metal Provisioning

22

https://access.redhat.com/documentation/en-us/red_hat_ceph_storage/2/html-single/installation_guide_for_red_hat_enterprise_linux/#ceph_object_gateway_installation

2. Edit the /etc/glance/glance-api.conf file to configure the Image API service to use
the Ceph object gateway Swift API as the backend.

[glance_store]

stores = file, http, swift
default_store = swift
swift_store_auth_version = 1
swift_store_auth_address = http://RADOS_IP:PORT/auth/1.0
swift_store_user = GLANCE_USERNAME:swift
swift_store_key = STORE_KEY
swift_store_container = glance
swift_store_create_container_on_put = True

Replace RADOS_IP and PORT with the IP/port of the Ceph object gateway API service.

Note

The Ceph object gateway uses the FastCGI protocol for interacting with the HTTP
server. See your HTTP server documentation if you want to enable HTTPS
support.

3. Restart the Image API service.

systemctl restart openstack-glance-api.service

Configure Bare Metal Provisioning to use a Ceph Object Gateway

1. Edit the /etc/ironic/ironic.conf file to configure the Bare Metal Provisioning
conductor service to use the Ceph object gateway.

[glance]

swift_container = glance
swift_api_version = v1
swift_endpoint_url = http://RADOS_IP:PORT
swift_temp_url_key = TEMP_URL_KEY
temp_url_endpoint_type=radosgw

Replace TEMP_URL_KEY and _RADOS_IP:PORT with the values used in the prior
procedure.

2. Restart the Bare Metal Provisioning conductor service.

systemctl restart openstack-ironic-conductor.service

1.4.5. Configure OpenStack Compute to Use Bare Metal Provisioning Service

In this section, you will update the /etc/nova/nova.conf file to configure the Compute service to
use the Bare Metal Provisioning service:

CHAPTER 1. INSTALL AND CONFIGURE OPENSTACK BARE METAL PROVISIONING (IRONIC)

23

Configuring OpenStack Compute to Use Bare Metal Provisioning

1. Set Compute to use the clustered compute manager:

openstack-config --set /etc/nova/nova.conf \
 DEFAULT compute_manager
ironic.nova.compute.manager.ClusteredComputeManager

2. Set the virtual RAM to physical RAM allocation ratio:

openstack-config --set /etc/nova/nova.conf \
 DEFAULT ram_allocation_ratio 1.0

3. Set the amount of disk space in MB to reserve for the host:

openstack-config --set /etc/nova/nova.conf \
 DEFAULT reserved_host_memory_mb 0

4. Set Compute to use the Bare Metal Provisioning driver:

openstack-config --set /etc/nova/nova.conf \
 DEFAULT compute_driver nova.virt.ironic.IronicDriver

5. Set Compute to use the correct authentication details for Bare Metal Provisioning:

openstack-config --set /etc/nova/nova.conf \
 ironic admin_username ironic
openstack-config --set /etc/nova/nova.conf \
 ironic admin_password PASSWORD
openstack-config --set /etc/nova/nova.conf \
 ironic admin_url http://IDENTITY_IP:35357/v2.0
openstack-config --set /etc/nova/nova.conf \
 ironic admin_tenant_name service
openstack-config --set /etc/nova/nova.conf \
 ironic api_endpoint http://IRONIC_API_IP:6385/v1

Replace the following values:

Replace PASSWORD with the password that Bare Metal Provisioning uses to
authenticate with Identity.

Replace IDENTITY_IP with the IP address or host name of the server hosting Identity.

Replace IRONIC_API_IP with the IP address or host name of the server hosting the
Bare Metal Provisioning API service.

6. Restart the Compute scheduler service on the Compute controller nodes:

systemctl restart openstack-nova-scheduler.service

7. Restart the compute service on the compute nodes:

systemctl restart openstack-nova-compute.service

Red Hat OpenStack Platform 9 Bare Metal Provisioning

24

CHAPTER 2. CONFIGURE BARE METAL DEPLOYMENT

Configure Bare Metal Provisioning, the Image service, and Compute to enable bare metal
deployment in the OpenStack environment. The following sections outline the additional
configuration steps required to successfully deploy a bare metal node.

2.1. CREATE OPENSTACK CONFIGURATIONS FOR BARE METAL
PROVISIONING SERVICE

2.1.1. Configure the OpenStack Networking Configuration

Configure OpenStack Networking to communicate with Bare Metal Provisioning for DHCP, PXE
boot, and other requirements. The procedure below configures OpenStack Networking for a single,
flat network use case for provisioning onto bare metal. The configuration uses the ML2 plug-in and
the Open vSwitch agent.

Ensure that the network interface used for provisioning is not the same network interface that is
used for remote connectivity on the OpenStack Networking node. This procedure creates a bridge
using the Bare Metal Provisioning Network interface, and drops any remote connections.

All steps in the following procedure must be performed on the server hosting OpenStack
Networking, while logged in as the root user.

Configuring OpenStack Networking to Communicate with Bare Metal Provisioning

1. Set up the shell to access Identity as the administrative user:

source ~stack/overcloudrc

2. Create the flat network over which to provision bare metal instances:

neutron net-create --tenant-id TENANT_ID sharednet1 --shared \
--provider:network_type flat --provider:physical_network PHYSNET

Replace TENANT_ID with the unique identifier of the tenant on which to create the network.
Replace PHYSNET with the name of the physical network.

3. Create the subnet on the flat network:

neutron subnet-create sharednet1 NETWORK_CIDR --name
SUBNET_NAME \
--ip-version 4 --gateway GATEWAY_IP --allocation-pool \
start=START_IP,end=END_IP --enable-dhcp

Replace the following values:

Replace NETWORK_CIDR with the Classless Inter-Domain Routing (CIDR)
representation of the block of IP addresses the subnet represents. The block of IP
addresses specified by the range started by START_IP and ended by END_IP must fall
within the block of IP addresses specified by NETWORK_CIDR.

Replace SUBNET_NAME with a name for the subnet.

Replace GATEWAY_IP with the IP address or host name of the system that will act as

CHAPTER 2. CONFIGURE BARE METAL DEPLOYMENT

25

the gateway for the new subnet. This address must be within the block of IP addresses
specified by NETWORK_CIDR, but outside of the block of IP addresses specified by the
range started by START_IP and ended by END_IP.

Replace START_IP with the IP address that denotes the start of the range of IP
addresses within the new subnet from which floating IP addresses will be allocated.

Replace END_IP with the IP address that denotes the end of the range of IP addresses
within the new subnet from which floating IP addresses will be allocated.

4. Attach the network and subnet to the router to ensure the metadata requests are served by
the OpenStack Networking service.

neutron router-create ROUTER_NAME

Replace ROUTER_NAME with a name for the router.

5. Add the Bare Metal subnet as an interface on this router:

neutron router-interface-add ROUTER_NAME BAREMETAL_SUBNET

Replace ROUTER_NAME with the name of your router and BAREMETAL_SUBNET with the
ID or subnet name that you previously created. This allows the metadata requests from
cloud-init to be served and the node configured.

6. Update the /etc/ironic/ironic.conf file on the Compute node running the Bare Metal
Provisioning service to utilize the same network for the cleaning service. Login to the
Compute node where the Bare Metal Provisioning service is running and execute the
following as a root user:

openstack-config --set /etc/ironic/ironic.conf neutron
cleaning_network_uuid NETWORK_UUID

Replace the NETWORK_UUID with the ID of the Bare Metal Provisioning Network created
in the previous steps.

7. Restart the Bare Metal Provisioning service:

systemctl restart openstack-ironic-conductor.service

2.1.2. Create the Bare Metal Provisioning Flavor

You need to create a flavor to use as a part of the deployment which should have the specifications
(memory, CPU and disk) that is equal to or less than what your bare metal node provides.

1. Set up the shell to access Identity as the administrative user:

source ~stack/overcloudrc

2. List existing flavors:

openstack flavor list

3. Create a new flavor for the Bare Metal Provisioning service:

Red Hat OpenStack Platform 9 Bare Metal Provisioning

26

openstack flavor create --id auto --ram RAM --vcpus VCPU --disk
DISK --public baremetal

Replace RAM with the RAM memory, VCPU with the number of vCPUs and DISK with the
disk storage value.

4. Verify that the new flavor is created with the respective values:

openstack flavor list

2.1.3. Create the Bare Metal Images

Bare Metal Provisioning supports deploying whole-disk images or root partition images. The whole-
disk image contains the partition table, kernel image, and final user image. Root partition images
contains the root partition of the OS and requires the kernel and ramdisk image for the bare metal
node to use to boot the final user image with. All supported bare metal agent drivers can deploy
whole-disk or root partition images.

A whole-disk image requires one image that contains the partition table, boot loader, and user
image. Bare Metal Provisioning does not control the subsequent reboot of a node deployed with a
whole-disk image as the node supports localboot.

A root partition deployment requires two sets of images - deploy image and user image. Bare
Metal Provisioning uses the deploy image to boot the node and copy the user image on to the
bare metal node. After the deploy image is loaded into the Image service, you can use the bare
metal node’s properties to associate the deploy image to the bare metal node to set it to use the
deploy image as the boot image. A subsequent reboot of the node uses net-boot to pull down the
user image.

This section uses a root partition image to provision bare metal nodes in the examples. For a whole-
disk image deployment, see Section 3.3, “Create a Whole Windows Image”. For a partition-based
deployment, you do not have to create the deploy image as it was already used when the
overcloud was deployed by the undercloud. The deploy image consists of two images - the
kernel image and the ramdisk image as follows:

ironic-python-agent.kernel
ironic-python-agent.initramfs

These images will be in the /usr/share/rhosp-director-images/ironic-python-
agent*.el7ost.tar file if you have the rhosp-director-images-ipa package installed.

Extract the images and load them to the Image service:

openstack image create --container-format aki --disk-format aki --
public --file ./ironic-python-agent.kernel bm-deploy-kernel
openstack image create --container-format ari --disk-format ari --
public --file ./ironic-python-agent.initramfs bm-deploy-ramdisk

The final image that you need is the actual image that will be deployed on the Bare Metal
Provisioning node. For example, you can download a Red Hat Enterprise Linux KVM image
since it already has cloud-init.

Load the image to the Image service:

CHAPTER 2. CONFIGURE BARE METAL DEPLOYMENT

27

openstack image create --container-format bare --disk-format qcow2 -
-property kernel_id=DEPLOY_KERNEL_ID \
--property ramdisk_id=DEPLOY_RAMDISK_ID --public --file ./IMAGE_FILE
rhel

Where DEPLOY_KERNEL_ID is the UUID associated with the deploy-kernel images uploaded to
the Image service. And DEPLOY_RAMDISK_ID is the UUID associated with the deploy-ramdisk
image uploaded to the Image service. Use openstack image list to find these UUIDs.

2.1.4. Add the Bare Metal Provisioning Node to the Bare Metal Provisioning
Service

In order to add the Bare Metal Provisioning node to the Bare Metal Provisioning service, copy the
section of the instackenv.json file that was used to instantiate the cloud and modify it according
to your needs.

1. Source the overcloudrc file and import the .json file:

source ~stack/overcloudrc
openstack baremetal import --json ./baremetal.json

2. Update the bare metal node in the Bare Metal Provisioning service to use the deployed
images as the initial boot image by specifying the deploy_kernel and deploy_ramdisk
in the driver_info section of the node:

ironic node-update NODE_UUID add
driver_info/deploy_kernel=DEPLOY_KERNEL_ID
driver_info/deploy_ramdisk=DEPLOY_RAMDISK_ID

Replace NODE_UUID with the UUID of the bare metal node. You can get this value by executing the
ironic node-list command on the director node. Replace DEPLOY_KERNEL_ID with the ID of
the deploy kernel image. You can get this value by executing the glance image-list command
on the director node. Replace the DEPLOY_RAMDISK_ID with the ID of the deploy ramdisk image.
You can get this value by executing the glance image-list command on the director node.

2.1.5. Configure Proxy Services For Image Deployment

You can optionally configure a bare metal node to use Object Storage with HTTP or HTTPS proxy
services to download images to the bare metal node. This allows you to cache images in the same
physical network segments as the bare metal nodes to reduce overall network traffic and
deployment time.

Before you Begin

Configure the proxy server with the following additional considerations:

Use content caching, even for queries contained in the requested URL.

Raise the maximum cache size to accommodate your image sizes.

Red Hat OpenStack Platform 9 Bare Metal Provisioning

28

Note

Only configure the proxy server to store images as unencrypted if the images do not
contain sensitive information.

Configure Image Proxy

1. Set up the shell to access Identity as the administrative user:

source ~stack/overcloudrc

2. Configure the bare metal node driver to use HTTP or HTTPS:

openstack baremetal node set NODE_UUID \
 --driver_info image_https_proxy=HTTPS://PROXYIP:PORT

This example uses the HTTPS protocol. Set the driverinfo/image_http_proxy
parameter if you want to use HTTP instead of HTTPS.

3. Set Bare Metal Provisioning to reuse cached Object Storage temporary URLs when an
image is requested.

openstack-config --set /etc/ironic/ironic.conf glance
swift_temp_url_cache_enabled=true

The proxy server will not create new cache entries for the same image based on the query
part of the URL when it contains some query parameters that change each time the request
is regenerated.

4. Set the duration (in seconds) that the generated temporary URL remains valid:

openstack-config --set /etc/ironic/ironic.conf glance
swift_temp_url_duration=DURATION

Only non-expired links to images will be returned from the Object Storage service temporary
URLs cache. If swift_temp_url_duration=1200, then after 20 minutes a new image will be
cached by the proxy server. The value of this option must be greater than or equal to
swift_temp_url_expected_download_start_delay.

5. Set the download start delay (in seconds) for your hardware:

openstack-config --set /etc/ironic/ironic.conf glance
swift_temp_url_expected_download_start_delay=DELAY

Set DELAY to cover the delay between when the deploy request is made (the temporary
URL is generated) to when the URL is used to download an image to the bare metal node.
This delay allows time for the ramdisk to boot and begin the image download. This value
determines if a cached entry will still be valid when the image download starts.

2.1.6. Deploy the Bare Metal Provisioning Node

Deploy the Bare Metal Provisioning node using the nova boot command:

CHAPTER 2. CONFIGURE BARE METAL DEPLOYMENT

29

nova boot --image BAREMETAL_USER_IMAGE --flavor BAREMETAL_FLAVOR --
nic net-id=IRONIC_NETWORK_ID --key default MACHINE_HOSTNAME

Replace BAREMETAL_USER_IMAGE with image that was loaded to the Image service,
BAREMETAL_FLAVOR with the flavor for the Bare Metal deployment, IRONIC_NETWORK_ID with the
ID of the Bare Metal Provisioning Network in the OpenStack Networking service, and
MACHINE_HOSTNAME with the hostname of the machine you want it to be after it is deployed.

2.2. CONFIGURE HARDWARE INSPECTION

Hardware inspection allows Bare Metal Provisioning to discover hardware information on a node.
Inspection also creates ports for the discovered Ethernet MAC addresses. Alternatively, you can
manually add hardware details to each node; see Section 2.3.2, “Add a Node Manually” for more
information. All steps in the following procedure must be performed on the server hosting the Bare
Metal Provisioning conductor service, while logged in as the root user.

Hardware inspection is supported in-band using the following drivers:

pxe_drac

pxe_ipmitool

pxe_ssh

pxe_amt

Configuring Hardware Inspection

1. Obtain the Ironic Python Agent kernel and ramdisk images used for bare metal system
discovery over PXE boot. These images are available in a TAR archive labeled Ironic
Python Agent Image for RHOSP director 9.0 at
https://access.redhat.com/downloads/content/191/ver=9/rhel---7/9/x86_64/product-
software. Download the TAR archive, extract the image files (ironic-python-agent.kernel
and ironic-python-agent.initramfs) from it, and copy them to the /tftpboot directory on the
TFTP server.

2. On the server that will host the hardware inspection service, enable the Red Hat
OpenStack Platform 9 director for RHEL 7 (RPMs) channel:

subscription-manager repos --enable=rhel-7-server-openstack-9-
director-rpms

3. Install the openstack-ironic-inspector package:

yum install openstack-ironic-inspector

4. Enable inspection in the ironic.conf file:

openstack-config --set /etc/ironic/ironic.conf \
 inspector enabled True

5. If the hardware inspection service is hosted on a separate server, set its URL on the server
hosting the conductor service:

Red Hat OpenStack Platform 9 Bare Metal Provisioning

30

https://access.redhat.com/downloads/content/191/ver=9/rhel---7/9/x86_64/product-software

openstack-config --set /etc/ironic/ironic.conf \
 inspector service_url http://INSPECTOR_IP:5050

Replace INSPECTOR_IP with the IP address or host name of the server hosting the
hardware inspection service.

6. Provide the hardware inspection service with authentication credentials:

openstack-config --set /etc/ironic-inspector/inspector.conf \
 keystone_authtoken identity_uri http://IDENTITY_IP:35357
openstack-config --set /etc/ironic-inspector/inspector.conf \
 keystone_authtoken auth_uri http://IDENTITY_IP:5000/v2.0
openstack-config --set /etc/ironic-inspector/inspector.conf \
 keystone_authtoken admin_user ironic
openstack-config --set /etc/ironic-inspector/inspector.conf \
 keystone_authtoken admin_password PASSWORD
openstack-config --set /etc/ironic-inspector/inspector.conf \
 keystone_authtoken admin_tenant_name services
openstack-config --set /etc/ironic-inspector/inspector.conf \
 ironic os_auth_url http://IDENTITY_IP:5000/v2.0
openstack-config --set /etc/ironic-inspector/inspector.conf \
 ironic os_username ironic
openstack-config --set /etc/ironic-inspector/inspector.conf \
 ironic os_password PASSWORD
openstack-config --set /etc/ironic-inspector/inspector.conf \
 ironic os_tenant_name service
openstack-config --set /etc/ironic-inspector/inspector.conf \
 firewall dnsmasq_interface br-ironic
openstack-config --set /etc/ironic-inspector/inspector.conf \
 database connection sqlite:////var/lib/ironic-
inspector/inspector.sqlite

Replace the following values:

Replace IDENTITY_IP with the IP address or host name of the Identity server.

Replace PASSWORD with the password that Bare Metal Provisioning uses to
authenticate with Identity.

7. Optionally, set the hardware inspection service to store logs for the ramdisk:

openstack-config --set /etc/ironic-inspector/inspector.conf \
processing ramdisk_logs_dir /var/log/ironic-inspector/ramdisk

8. Optionally, enable an additional data processing plug-in that gathers block devices on bare
metal machines with multiple local disks and exposes root devices. ramdisk_error,
root_disk_selection, scheduler, and validate_interfaces are enabled by
default, and should not be disabled. The following command adds root_device_hint to
the list:

openstack-config --set /etc/ironic-inspector/inspector.conf \
processing processing_hooks
'$default_processing_hooks,root_device_hint'

9. Generate the initial ironic inspector database:

CHAPTER 2. CONFIGURE BARE METAL DEPLOYMENT

31

ironic-inspector-dbsync --config-file /etc/ironic-
inspector/inspector.conf upgrade

10. Update the inspector database file to be owned by ironic-inspector:

chown ironic-inspector /var/lib/ironic-
inspector/inspector.sqlite

11. Open the /etc/ironic-inspector/dnsmasq.conf file in a text editor, and configure the
following PXE boot settings for the openstack-ironic-inspector-dnsmasq service:

port=0
interface=br-ironic
bind-interfaces
dhcp-range=START_IP,END_IP
enable-tftp
tftp-root=/tftpboot
dhcp-boot=pxelinux.0

Replace the following values:

Replace INTERFACE with the name of the Bare Metal Provisioning Network interface.

Replace START_IP with the IP address that denotes the start of the range of IP
addresses from which floating IP addresses will be allocated.

Replace END_IP with the IP address that denotes the end of the range of IP addresses
from which floating IP addresses will be allocated.

12. Copy the syslinux bootloader to the tftp directory:

cp /usr/share/syslinux/pxelinux.0 /tftpboot/pxelinux.0

13. Optionally, you can configure the hardware inspection service to store metadata in the swift
section of the /etc/ironic-inspector/inspector.conf file.

[swift]
username = ironic
password = PASSWORD
tenant_name = service
os_auth_url = http://IDENTITY_IP:5000/v2.0

Replace the following values:

Replace IDENTITY_IP with the IP address or host name of the Identity server.

Replace PASSWORD with the password that Bare Metal Provisioning uses to
authenticate with Identity.

14. Open the /tftpboot/pxelinux.cfg/default file in a text editor, and configure the following
options:

default discover

label discover
kernel ironic-python-agent.kernel

Red Hat OpenStack Platform 9 Bare Metal Provisioning

32

append initrd=ironic-python-agent.initramfs \
ipa-inspection-callback-url=http://INSPECTOR_IP:5050/v1/continue
ipa-api-url=http://IRONIC_API_IP:6385

ipappend 3

Replace INSPECTOR_IP with the IP address or host name of the server hosting the
hardware inspection service. Note that the text from append to /continue must be on a
single line, as indicated by the \ in the block above.

15. Reset the security context for the /tftpboot/ directory and its files:

restorecon -R /tftpboot/

This step ensures that the directory has the correct SELinux security labels, and the
dnsmasq service is able to access the directory.

16. Start the hardware inspection service and the dnsmasq service, and configure them to start
at boot time:

systemctl start openstack-ironic-inspector.service
systemctl enable openstack-ironic-inspector.service
systemctl start openstack-ironic-inspector-dnsmasq.service
systemctl enable openstack-ironic-inspector-dnsmasq.service

Hardware inspection can be used on nodes after they have been registered with Bare Metal
Provisioning.

2.3. ADD PHYSICAL MACHINES AS BARE METAL NODES

Add as nodes the physical machines onto which you will provision instances, and confirm that
Compute can see the available hardware. Compute is not immediately notified of new resources,
because Compute’s resource tracker synchronizes periodically. Changes will be visible after the
next periodic task is run. This value, scheduler_driver_task_period, can be updated in
/etc/nova/nova.conf. The default period is 60 seconds.

After systems are registered as bare metal nodes, hardware details can be discovered using
hardware inspection, or added manually.

2.3.1. Add a Node with Hardware Inspection

Register a physical machine as a bare metal node, then use openstack-ironic-inspector to detect
the node’s hardware details and create ports for each of its Ethernet MAC addresses. All steps in
the following procedure must be performed on the server hosting the Bare Metal Provisioning
conductor service, while logged in as the root user.

Adding a Node with Hardware Inspection

1. Set up the shell to use Identity as the administrative user:

source ~/keystonerc_admin

2. Add a new node:

CHAPTER 2. CONFIGURE BARE METAL DEPLOYMENT

33

ironic node-create -d DRIVER_NAME

Replace DRIVER_NAME with the name of the driver that Bare Metal Provisioning will use to
provision this node. You must have enabled this driver in the /etc/ironic/ironic.conf file. To
create a node, you must, at a minimum, specify the driver name.

Important

Note the unique identifier for the node.

3. You can refer to a node by a logical name or by its UUID. Optionally assign a logical name
to the node:

ironic node-update NODE_UUID add name=NAME

Replace NODE_UUID with the unique identifier for the node. Replace NAME with a logical
name for the node.

4. Determine the node information that is required by the driver, then update the node driver
information to allow Bare Metal Provisioning to manage the node:

ironic driver-properties DRIVER_NAME
ironic node-update NODE_UUID add \
 driver_info/PROPERTY=VALUE \
 driver_info/PROPERTY=VALUE

Replace the following values:

Replace DRIVER_NAME with the name of the driver for which to show properties. The
information is not returned unless the driver has been enabled in the
/etc/ironic/ironic.conf file.

Replace NODE_UUID with the unique identifier for the node. Alternatively, use the
node’s logical name.

Replace PROPERTY with a required property returned by the ironic driver-properties
command.

Replace VALUE with a valid value for that property.

5. Specify the deploy kernel and deploy ramdisk for the node driver:

ironic node-update NODE_UUID add \
 driver_info/deploy_kernel=KERNEL_UUID \
 driver_info/deploy_ramdisk=INITRAMFS_UUID

Replace the following values:

Replace NODE_UUID with the unique identifier for the node. Alternatively, use the
node’s logical name.

Replace KERNEL_UUID with the unique identifier for the .kernel image that was
uploaded to the Image service.

Replace INITRAMFS_UUID with the unique identifier for the .initramfs image that was
uploaded to the Image service.

Red Hat OpenStack Platform 9 Bare Metal Provisioning

34

6. Configure the node to reboot after initial deployment from a local boot loader installed on the
node’s disk, instead of via PXE or virtual media. The local boot capability must also be set
on the flavor used to provision the node. To enable local boot, the image used to deploy the
node must contain grub2. Configure local boot:

ironic node-update NODE_UUID add \
 properties/capabilities="boot_option:local"

Replace NODE_UUID with the unique identifier for the node. Alternatively, use the node’s
logical name.

7. Move the bare metal node to manageable state:

ironic node-set-provision-state NODE_UUID manage

Replace NODE_UUID with the unique identifier for the node. Alternatively, use the node’s
logical name.

8. Start inspection:

openstack baremetal inspection start NODE_UUID --discoverd-url
http://overcloud IP:5050

Replace NODE_UUID with the unique identifier for the node. Alternatively, use the
node’s logical name. The node discovery and inspection process must run to completion
before the node can be provisioned. To check the status of node inspection, run ironic
node-list and look for Provision State. Nodes will be in available state after
successful inspection.

Replace overcloud IP with the service_url value that was previously set in
ironic.conf.

9. Validate the node’s setup:

ironic node-validate NODE_UUID
+------------+--------+----------------------------+
| Interface | Result | Reason |
+------------+--------+----------------------------+
console	None	not supported
deploy	True	
inspect	True	
management	True	
power	True	
+------------+--------+----------------------------+

Replace NODE_UUID with the unique identifier for the node. Alternatively, use the node’s
logical name. The output of the command above should report either True or None for each
interface. Interfaces marked None are those that you have not configured, or those that are
not supported for your driver.

2.3.2. Add a Node Manually

CHAPTER 2. CONFIGURE BARE METAL DEPLOYMENT

35

Register a physical machine as a bare metal node, then manually add its hardware details and
create ports for each of its Ethernet MAC addresses. All steps in the following procedure must be
performed on the server hosting the Bare Metal Provisioning conductor service, while logged in as
the root user.

Adding a Node without Hardware Inspection

1. Set up the shell to use Identity as the administrative user:

source ~/keystonerc_admin

2. Add a new node:

ironic node-create -d DRIVER_NAME

Replace DRIVER_NAME with the name of the driver that Bare Metal Provisioning will use to
provision this node. You must have enabled this driver in the /etc/ironic/ironic.conf file. To
create a node, you must, at a minimum, specify the driver name.

Important

Note the unique identifier for the node.

3. You can refer to a node by a logical name or by its UUID. Optionally assign a logical name
to the node:

ironic node-update NODE_UUID add name=NAME

Replace NODE_UUID with the unique identifier for the node. Replace NAME with a logical
name for the node.

4. Determine the node information that is required by the driver, then update the node driver
information to allow Bare Metal Provisioning to manage the node:

ironic driver-properties DRIVER_NAME
ironic node-update NODE_UUID add \
 driver_info/PROPERTY=VALUE \
 driver_info/PROPERTY=VALUE

Replace the following values:

Replace DRIVER_NAME with the name of the driver for which to show properties. The
information is not returned unless the driver has been enabled in the
/etc/ironic/ironic.conf file.

Replace NODE_UUID with the unique identifier for the node. Alternatively, use the
node’s logical name.

Replace PROPERTY with a required property returned by the ironic driver-properties
command.

Replace VALUE with a valid value for that property.

5. Specify the deploy kernel and deploy ramdisk for the node driver:

Red Hat OpenStack Platform 9 Bare Metal Provisioning

36

ironic node-update NODE_UUID add \
 driver_info/deploy_kernel=KERNEL_UUID \
 driver_info/deploy_ramdisk=INITRAMFS_UUID

Replace the following values:

Replace NODE_UUID with the unique identifier for the node. Alternatively, use the
node’s logical name.

Replace KERNEL_UUID with the unique identifier for the .kernel image that was
uploaded to the Image service.

Replace INITRAMFS_UUID with the unique identifier for the .initramfs image that was
uploaded to the Image service.

6. Update the node’s properties to match the hardware specifications on the node:

ironic node-update NODE_UUID add \
 properties/cpus=CPU \
 properties/memory_mb=RAM_MB \
 properties/local_gb=DISK_GB \
 properties/cpu_arch=ARCH

Replace the following values:

Replace NODE_UUID with the unique identifier for the node. Alternatively, use the
node’s logical name.

Replace CPU with the number of CPUs to use.

Replace RAM_MB with the RAM (in MB) to use.

Replace DISK_GB with the disk size (in GB) to use.

Replace ARCH with the architecture type to use.

7. Configure the node to reboot after initial deployment from a local boot loader installed on the
node’s disk, instead of via PXE or virtual media. The local boot capability must also be set
on the flavor used to provision the node. To enable local boot, the image used to deploy the
node must contain grub2. Configure local boot:

ironic node-update NODE_UUID add \
 properties/capabilities="boot_option:local"

Replace NODE_UUID with the unique identifier for the node. Alternatively, use the node’s
logical name.

8. Inform Bare Metal Provisioning of the network interface cards on the node. Create a port
with each NIC’s MAC address:

ironic port-create -n NODE_UUID -a MAC_ADDRESS

Replace NODE_UUID with the unique identifier for the node. Replace MAC_ADDRESS
with the MAC address for a NIC on the node.

9. Validate the node’s setup:

CHAPTER 2. CONFIGURE BARE METAL DEPLOYMENT

37

ironic node-validate NODE_UUID
+------------+--------+----------------------------+
| Interface | Result | Reason |
+------------+--------+----------------------------+
console	None	not supported
deploy	True	
inspect	None	not supported
management	True	
power	True	
+------------+--------+----------------------------+

Replace NODE_UUID with the unique identifier for the node. Alternatively, use the node’s
logical name. The output of the command above should report either True or None for each
interface. Interfaces marked None are those that you have not configured, or those that are
not supported for your driver.

2.3.3. Configure Manual Node Cleaning

When a bare metal server is initially provisioned or reprovisioned after the server is freed from a
workload, Bare Metal Provisioning can automatically clean the server to ensure that the server is
ready for another workload. You can also initiate a manual cleaning cycle when the server is in the
manageable state. Manual cleaning cycles are useful for long running or destructive tasks. You can
configure the specific cleaning steps for the bare metal server.

Configure a Cleaning Network

Bare Metal Provisioning uses the cleaning network to provide in-band cleaning steps for the bare
metal server. You can create a separate network for this cleaning network or use the provisioning
network.

To configure the Bare Metal Provisioning service cleaning network, follow these steps:

1. Set up the shell to access Identity as the administrative user.

source ~stack/overcloudrc

2. Find the network UUID for the network you want Bare Metal Provisioning to use for cleaning
bare metal servers.

openstack network list

Select the UUID from the id field in the neutron net-list output.

3. Set cleaning_network_uuid in the /etc/ironic/ironic.conf file to the cleaning
network UUID.

openstack-config --set /etc/ironic/ironic.conf neutron
cleaning_network_uuid CLEANING_NETWORK_UUID

Replace CLEANING_NETWORK_UUID with the network id retrieved in the earlier step.

4. Restart the Bare Metal Provisioning Service.

Red Hat OpenStack Platform 9 Bare Metal Provisioning

38

systemctl restart openstack-ironic-conductor

Configure Manual Cleaning

1. Ensure that the bare metal server is in the manageable state.

ironic node-set-provision-state NODE_ID manage

Replace NODE_ID with the bare metal server UUID or node name.

2. Set the bare metal server in cleaning state and provide the cleaning steps.

ironic node-set-provision-state NODE_ID clean --clean-steps
CLEAN_STEPS

Replace NODE_ID with the bare metal server UUID or node name. Replace
CLEAN_STEPS with the cleaning steps in JSON format, a path to a file that contains the
cleaning steps, or directly from standard input. The following is an example of cleaning
steps in JSON format:

 '[{"interface": "deploy", "step": "erase_devices"}]'

See OpenStack - Node Cleaning for more details.

2.3.4. Specify the Preferred Root Disk on a Bare Metal Node

When the deploy ramdisk boots on a bare metal node, the first disk that Bare Metal Provisioning
discovers becomes the root device (the device where the image is saved). If the bare metal node
has more than one SATA, SCSI, or IDE disk controller, the order in which their corresponding disk
devices are added is arbitrary and may change at each reboot. For example, devices such as
/dev/sda and /dev/sdb may switch on each boot, which would result in Bare Metal Provisioning
selecting a different disk each time the bare metal node is being deployed.

With disk hints, you can pass hints to the deploy ramdisk to specify which disk device Bare Metal
Provisioning should deploy the image onto. The following table describes the hints you can use to
select a preferred root disk on a bare metal node.

Table 2.1. Disk Hints

Hint Type Description

model (STRING): Disk device identifier.

vendor (STRING): Disk device vendor.

serial (STRING): Disk device serial number.

CHAPTER 2. CONFIGURE BARE METAL DEPLOYMENT

39

https://docs.openstack.org/developer/ironic/deploy/cleaning.html

size (INT): Size of the disk device in GB.

NOTE: The local_gb property of a node is often set to a
value 1 GB less than the actual disk size to account for
partitioning. However, in this case size should be the
actual size. For example, for a 128 GB disk local_gb is
127, but the size hint is 128.

wwn (STRING): Unique storage identifier.

wwn_with_extension (STRING): Unique storage identifier with the vendor extension
appended.

wwn_vendor_extension (STRING): Unique vendor storage identifier.

name (STRING): The device name, for example /dev/md0.

WARNING: The root device hint name should only be used
for devices with constant names (for example, RAID
volumes). Do not use this hint for SATA, SCSI, and IDE
disk controllers because the order in which the device
nodes are added in Linux is arbitrary, resulting in devices
such as /dev/sda and /dev/sdb switching at boot time. See
Persistent Naming for details.

Hint Type Description

To associate one or more disk device hints with a bare metal node, update the node’s properties
with a root_device key, for example:

ironic node-update <node-uuid> add properties/root_device='{"wwn":
"0x4000cca77fc4dba1"}'

This example guarantees that Bare Metal Provisioning picks the disk device that has the wwn equal
to the specified WWN value, or fails the deployment if no disk device on that node has the specified
WWN value.

The hints can have an operator at the beginning of the value string. If no operator is specified the
default is == (for numerical values) and s== (for string values).

Table 2.2. Supported Operators

Red Hat OpenStack Platform 9 Bare Metal Provisioning

40

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Storage_Administration_Guide/persistent_naming.html

Type Operator Description

numerical = equal to or greater than (equivalent to >=)

== equal to

!= not equal to

>= greater than or equal to

> greater than

<= less than or equal to

< less than

string (python comparisons) s== equal to

s!= not equal to

s>= greater than or equal to

s> greater than

s<= less than or equal to

s< less than

<in> substring

collections <all-in> all elements contained in collection

CHAPTER 2. CONFIGURE BARE METAL DEPLOYMENT

41

<or> find one of these

Type Operator Description

The following examples show how to update bare metal node properties to select a particular disk:

Find a non-rotational (SSD) disk greater than or equal to 60 GB:

ironic node-update <node-uuid> add properties/root_device='{"size":
">= 60", "rotational": false}'

Find a Samsung or Winsys disk:

ironic node-update <node-uuid> add properties/root_device='{"vendor":
"<or> samsung <or> winsys"}'

Note

If multiple hints are specified, a disk device must satisfy all the hints.

2.4. USE HOST AGGREGATES TO SEPARATE PHYSICAL AND
VIRTUAL MACHINE PROVISIONING

Host aggregates are used by OpenStack Compute to partition availability zones, and group nodes
with specific shared properties together. Key value pairs are set both on the host aggregate and on
instance flavors to define these properties. When an instance is provisioned, Compute’s scheduler
compares the key value pairs on the flavor with the key value pairs assigned to host aggregates, and
ensures that the instance is provisioned in the correct aggregate and on the correct host: either on a
physical machine or as a virtual machine on an openstack-nova-compute node.

If your Red Hat OpenStack Platform environment is set up to provision both bare metal machines
and virtual machines, use host aggregates to direct instances to spawn as either physical machines
or virtual machines. The procedure below creates a host aggregate for bare metal hosts, and adds a
key value pair specifying that the host type is baremetal. Any bare metal node grouped in this
aggregate inherits this key value pair. The same key value pair is then added to the flavor that will be
used to provision the instance.

If the image or images you will use to provision bare metal machines were uploaded to the Image
service with the hypervisor_type=ironic property set, the scheduler will also use that key pair
value in its scheduling decision. To ensure effective scheduling in situations where image properties
may not apply, set up host aggregates in addition to setting image properties. See Section 2.1.3,
“Create the Bare Metal Images” for more information on building and uploading images.

Creating a Host Aggregate for Bare Metal Provisioning

1. Create the host aggregate for baremetal in the default nova availability zone:

nova aggregate-create baremetal nova

Red Hat OpenStack Platform 9 Bare Metal Provisioning

42

2. Set metadata on the baremetal aggregate that will assign hosts added to the aggregate
the hypervisor_type=ironic property:

nova aggregate-set-metadata baremetal hypervisor_type=ironic

3. Add the openstack-nova-compute node with Bare Metal Provisioning drivers to the
baremetal aggregate:

nova aggregate-add-host baremetal COMPUTE_HOSTNAME

Replace COMPUTE_HOSTNAME with the host name of the system hosting the openstack-
nova-compute service. A single, dedicated compute host should be used to handle all Bare
Metal Provisioning requests.

4. Add the ironic hypervisor property to the flavor or flavors that you have created for
provisioning bare metal nodes:

nova flavor-key FLAVOR_NAME set hypervisor_type="ironic"

Replace FLAVOR_NAME with the name of the flavor.

5. Add the following Compute filter scheduler to the existing list under
scheduler_default_filters in /etc/nova/nova.conf:

AggregateInstanceExtraSpecsFilter

This filter ensures that the Compute scheduler processes the key value pairs assigned to
host aggregates.

2.5. EXAMPLE: TEST BARE METAL PROVISIONING WITH SSH AND
VIRSH

Test the Bare Metal Provisioning setup by deploying instances on two virtual machines acting as
bare metal nodes on a single physical host. Both virtual machines are virtualized using libvirt and
virsh.

Important

The SSH driver is for testing and evaluation purposes only. It is not recommended for Red
Hat OpenStack Platform enterprise environments.

This scenario requires the following resources:

A Red Hat OpenStack Platform environment with Bare Metal Provisioning services configured on
an overcloud node. You must have completed all steps in this guide.

One bare metal machine with Red Hat Enterprise Linux 7.2 and libvirt virtualization tools
installed. This system acts as the host containing the virtualized bare metal nodes.

One network connection between the Bare Metal Provisioning node and the host containing the
virtualized bare metal nodes. This network acts as the Bare Metal Provisioning Network.

CHAPTER 2. CONFIGURE BARE METAL DEPLOYMENT

43

2.5.1. Create the Virtualized Bare Metal Nodes

Create two virtual machines that will act as the bare metal nodes in the test scenario. The nodes will
be referred to as Node1 and Node2.

Creating Virtualized Bare Metal Nodes

1. Access the Virtual Machine Manager from the libvirt host.

2. Create two virtual machines with the following configuration:

1 vCPU

2048 MB of memory

Network Boot (PXE)

20 GB storage

Network source: Host device eth0: macvtap and Source mode: Bridge.
Selecting macvtap sets the virtual machines to share the host’s Ethernet network
interface. This way the Bare Metal Provisioning node has direct access to the virtualized
nodes.

3. Shut down both virtual machines.

2.5.2. Create an SSH Key Pair

Create an SSH key pair that will allow the Bare Metal Provisioning node to connect to the libvirt
host.

Creating an SSH Key Pair

1. On the Bare Metal Provisioning node, create a new SSH key:

ssh-keygen -t rsa -b 2048 -C "user@domain.com" -f ./virtkey

Replace user@domain.com with an email address or other comment that identifies this key.
When the command prompts you for a passphrase, press Enter to proceed without a
passphrase. The command creates two files: the private key (virtkey) and the public key
(virtkey.pub).

2. Copy the contents of the public key into the /root/.ssh/authorized_keys file of the libvirt
host’s root user:

ssh-copy-id -i virtkey root@LIBVIRT_HOST

Replace LIBVIRT_HOST with the IP address or host name of the libvirt host.

The private key (virtkey) is used when the nodes are registered.

2.5.3. Add the Virtualized Nodes as Bare Metal Nodes

Red Hat OpenStack Platform 9 Bare Metal Provisioning

44

Add as nodes the virtual machines onto which you will provision instances. In this example, the
driver details are provided manually and the node details are discovered using hardware inspection.
Node details can also be added manually on a node-by-node basis. See Section 2.3.2, “Add a Node
Manually” for more information.

Adding Virtualized Nodes as Bare Metal Nodes

1. On the Bare Metal Provisioning conductor service node, enable the pxe_ssh driver:

openstack-config --set /etc/ironic/ironic.conf \
 DEFAULT enabled_drivers pxe_ssh

If you are adding pxe_ssh to a list of existing drivers, open the file and add the driver to the
list in enabled_drivers, separated by a comma.

2. Set up the shell to use Identity as the administrative user:

source ~/keystonerc_admin

3. Add the first node, and register the SSH details for the libvirt host:

ironic node-create -d pxe_ssh -n Node1 \
 -i ssh_virt_type=virsh \
 -i ssh_username=root \
 -i ssh_key_filename=VIRTKEY_FILE_PATH \
 -i ssh_address=LIBVIRT_HOST_IP \
 -i deploy_kernel=KERNEL_UUID \
 -i deploy_ramdisk=INITRAMFS_UUID

Replace the following values:

Replace VIRTKEY_FILE_PATH with the absolute file path of the virtkey SSH private
key file.

Replace LIBVIRT_HOST_IP with the IP address or host name of the libvirt host.

Replace KERNEL_UUID with the unique identifier for the .kernel image that was
uploaded to the Image service.

Replace INITRAMFS_UUID with the unique identifier for the .initramfs image that was
uploaded to the Image service.

4. Add a second node, using the same command as above, and replacing Node1 with Node2.

5. Configure the node to reboot after initial deployment from a local boot loader installed on the
node’s disk, instead of via PXE or virtual media. The local boot capability must also have
been set on the flavor you will use to provision the node. To enable local boot, the image
used to deploy the node must contain grub2. Configure local boot:

ironic node-update Node1 add \
 properties/capabilities="boot_option:local"
ironic node-update Node2 add \
 properties/capabilities="boot_option:local"

6. Move the nodes to the manageable state:

CHAPTER 2. CONFIGURE BARE METAL DEPLOYMENT

45

ironic node-set-provision-state Node1 manage
ironic node-set-provision-state Node2 manage

7. Start inspection on the nodes:

ironic node-set-provision-state Node1 inspect
ironic node-set-provision-state Node2 inspect

The node discovery and inspection process must run to completion before the node can be
provisioned. To check the status of node inspection, run ironic node-list and look for
Provision State. Nodes will be in the available state after successful inspection.

8. Validate the node’s setup:

ironic node-validate Node1
ironic node-validate Node2
+------------+--------+----------------------------+
| Interface | Result | Reason |
+------------+--------+----------------------------+
console	None	not supported
deploy	True	
inspect	True	
management	True	
power	True	
+------------+--------+----------------------------+

The output of the command above should report either True or None for each interface.
Interfaces marked None are those that you have not configured, or those that are not
supported for your driver.

9. When the nodes have been successfully added, launch two instances using Chapter 3,
Launch Bare Metal Instances.

Red Hat OpenStack Platform 9 Bare Metal Provisioning

46

CHAPTER 3. LAUNCH BARE METAL INSTANCES

Provision a physical machine on an enrolled bare metal node. Instances can be launched from the
command line or in the OpenStack dashboard.

3.1. DEPLOY AN INSTANCE USING THE COMMAND LINE
INTERFACE

Use the nova command line interface to deploy a bare metal instance.

Deploying an Instance on the Command Line

1. Set up the shell to access Identity as the administrative user:

source ~/keystonerc_admin

2. Deploy the instance:

nova boot --nic net-id=NETWORK_UUID --flavor FLAVOR_NAME --
image IMAGE_UUID INSTANCE_NAME

Replace the following values:

Replace NETWORK_UUID with the unique identifier for the network that was created for
use with Bare Metal Provisioning.

Replace FLAVOR_NAME with the name of the flavor that was created for the node.

Replace IMAGE_UUID with the unique identifier for the disk image that was uploaded to
the Image service.

Replace INSTANCE_NAME with a name for the bare metal instance.

3. Check the status of the instance:

nova list

3.2. DEPLOY AN INSTANCE USING THE DASHBOARD

Use the dashboard graphical user interface to deploy a bare metal instance.

Deploying an Instance in the Dashboard

1. Log in to the dashboard at https://DASHBOARD_IP/dashboard.

2. Click Project > Compute > Instances

3. Click Launch Instance.

4. In the Details tab, fill out the following fields:

Specify the Instance Name.

Select the Flavor that was created for the bare metal node.

CHAPTER 3. LAUNCH BARE METAL INSTANCES

47

Select 1 from the Instance Count list.

Select Boot from image from the Instance Boot Source list.

Select the operating system disk image from the Image Name list.

5. In the Networking tab, drag and drop the required networks from Available Networks to
Selected Networks. Ensure that the shared network created for Bare Metal Provisioning is
selected here.

6. Click Launch.

3.3. CREATE A WHOLE WINDOWS IMAGE

This procedure creates a deployment image for Windows Server 2012. Perform the following steps
on a Red Hat Enterprise Linux system:

1. Download the virtio-win drivers. Refer to the Red Hat customer portal for the required steps.

As a result, the virtio-win .iso file is downloaded to /usr/share/virtio-win/. For example:
/usr/share/virtio-win/virtio-win-1.8.0.iso

2. Create a Windows Server 2012 template VM using virt-manager:

Determine the virtual hardware requirements of your Windows template. This example
uses 1 x CPU, 4GB RAM, 10GB HDD, 2 x NICs, and 2 x virtual CD-ROM drives.

Create the disk as a qcow2 file.

Set both Virtual HDD and NIC drivers to virtio.

Attach 2x virtual CD-ROM drives, mounted to the Windows Server 2012 R2 .iso file, and
the virtio-win-1.8.0.iso file. The two virtual CD-ROMs are required to allow the installation
of the virtio-win drivers during the Windows installation process.

3. Install Windows manually from the ISO image:

Start the installation of Windows from the evaluation .iso image of Windows Server 2012
R2.

When given the opportunity to select a HDD driver, select the driver from the second
virtual CD-ROM containing the virtio-win-1.8.0.iso file.

4. Perform post-install Windows checks:

Open Device Manager and confirm that all devices are properly recognized, and that no
question mark warnings are present. In particular, check that the NIC, serial, and balloon
driver are using the VirtIO driver. If any devices are not correctly recognized, apply the
driver from the virtio-win driver disc.

5. Run sysprep:

Sysprep causes the Windows installation to become generic, removing installation
information that was specific to the single installation performed previously. This allows you
to use the virtual hard disk of the VM as a template for multiple installations to other
systems.

Red Hat OpenStack Platform 9 Bare Metal Provisioning

48

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/Virtualization_Deployment_and_Administration_Guide/chap-KVM_Para_virtualized_virtio_Drivers.html

a. Launch Sysprep from C:\Windows\System32\sysprep\sysprep.exe

b. Enter the following information into the Sysprep tool:

For System Cleanup Action, select Enter System Out-of-Box-Experience
(OOBE).

Select the Generalize check box

Under Shutdown Options, select Shutdown.

c. Click OK to complete the sysprep process. The virtual machine will shut down
automatically upon completion.

6. Register the Windows image in Image Service (glance): This step registers the qcow2 HDD
of the Windows installation in glance. This example uses the disk file:
/root/win2012r2.qcow2.

$ glance image-create --file /root/win2012r2.qcow2 --disk-format
qcow2 --container-format bare --name win2012r2 --is-public True -
-progress
[=============================>] 100%

3.3.1. Deploy Windows to a physical server

1. Register the physical node in ironic by specifying the hardware components. For example:

ironic node-create -d fake_pxe -p cpus=1 -p memory_mb=1024 -p
local_gb=15 -p cpu_arch=amd64

2. Retrieve the new node’s UUID:

ironic node-list

3. Create a port for the node that matches the MAC address of the physical Windows node.

ironic port-create -n [NODE_UUID] -a [NIC_MAC]

For example:

ironic port-create -n 3b3d3fd4-4621-427f-a78d-054a1ef17a0a -a
52:54:00:85:76:53

4. Set the node to maintenance mode:

ironic node-set-maintenance [NODE_UUID] true
ironic node-set-provision-state [NODE_UUID] manage

5. Perform inspection of the new node:

openstack baremetal inspection start [NODE_UUID] --discoverd-
url http://[KEYSTONE_URL]:5050

Replace [KEYSTONE_URL] with the IP address of the keystone service.

CHAPTER 3. LAUNCH BARE METAL INSTANCES

49

Note: If using the FAKE_PXE driver, power on the node manually once the ironic node-
list state moves to deploy wait-callback.

6. Once inspection has completed, turn off maintenance mode:

ironic node-set-maintenance [NODE UUID] false
ironic node-set-provision-state [NODE UUID] provide

7. Create a keypair for authentication to the instance:

nova keypair-add --pub_key ~/.ssh/id_rsa.pub [KEY_NAME]

8. Enable local boot for the node:

ironic node-update [NODE_UUID] add
properties/capabilities="boot_option:local"

9. Use nova to boot the node:

nova boot --nic net-id=[NETWORK_UUID] --flavor [FLAVOR_NAME] --
image [IMAGE_UUID/IMAGE_NAME] --keyname [INSTANCE_NAME]

Replace the following values:

Replace [NETWORK_UUID] with the unique identifier for the network that was created
for use with Bare Metal Provisioning.

Replace [FLAVOR_NAME] with the name of the flavor that was created for the node.

Replace [IMAGE_UUID] with the unique identifier for the disk image that was uploaded
to the Image service.

Replace [INSTANCE_NAME] with a name for the bare metal instance.

10. Retrieve the instance password:

nova get-password [INSTANCE_NAME]
/path/to/your/keypairs/private/key

11. Review the status of the instance:

nova list

You can test this further by accessing the instance using the console in dashboard.

3.3.2. Enable Remote Desktop access

1. Add a security group rule allowing Remote Desktop traffic on TCP/UDP 3389.

2. Use the nova command to retrieve the security keys:

nova get-password [INSTANCE_NAME]
/path/to/your/keypairs/private/key

Red Hat OpenStack Platform 9 Bare Metal Provisioning

50

Replace [INSTANCE_NAME] with the name of the bare metal instance.

CHAPTER 3. LAUNCH BARE METAL INSTANCES

51

CHAPTER 4. TROUBLESHOOT BARE METAL
PROVISIONING

The following sections contain information and steps that may be useful for diagnosing issues in a
Bare Metal Provisioning setup.

Bare Metal Provisioning with inspection uses four services: openstack-ironic-api, openstack-
ironic-conductor, openstack-ironic-inspector, and openstack-ironic-inspector-dnsmasq. Logs
for most OpenStack components can be found in the /var/log directory.

4.1. TROUBLESHOOT PXE BOOT ERRORS

Permission Denied Errors

If you are getting a permission denied error on the console of your Bare Metal Provisioning node,
make sure you applied the appropriate SELinux content to the /httpboot and /tftpboot
directories as follows:

semanage fcontext -a -t httpd_sys_content_t "/httpboot(/.*)?"
semanage fcontext -a -t tftpdir_t "/tftpboot(/.*)?"

Boot Process Freezes at /pxelinux.cfg/XX-XX-XX-XX-XX-XX

On the console of your node, if it looks like you are getting an IP address and then the process
stops as shown below:

Red Hat OpenStack Platform 9 Bare Metal Provisioning

52

This indicates that you might be using the wrong PXE boot template in your ironic.conf file.

grep ^pxe_config_template ironic.conf
pxe_config_template=$pybasedir/drivers/modules/ipxe_config.template

The default template is pxe_config.template, so it is easy to miss the i to turn this into
ipxe_config.template.

4.2. TROUBLESHOOT LOGIN ERRORS AFTER THE BARE METAL
NODE BOOTS

When you try to log in at the login prompt on the console of the node with the root password that
you set in the configurations steps, but are not able to, it indicates you are not booted in to the
deployed image. You are probably stuck in the deploy-kernel/deploy-ramdisk image and the
system has yet to get the correct image.

To fix this issue, verify the PXE Boot Configuration file in the
/httpboot/pxelinux.cfg/MAC_ADDRESS on the Compute or Bare Metal Provisioning node and
ensure that all the IP addresses listed in this file correspond to IP addresses on the Bare Metal
Provisioning Network.

CHAPTER 4. TROUBLESHOOT BARE METAL PROVISIONING

53

Note

The only network the Bare Metal Provisioning node knows about is the Bare Metal
Provisioning Network. If one of the endpoints is not on the network, the endpoint will not be
able to reach the Bare Metal Provisioning node as a part of the boot process.

For example, the kernel line in your file is as follows:

kernel http://192.168.200.2:8088/5a6cdbe3-2c90-4a90-b3c6-
85b449b30512/deploy_kernel selinux=0 disk=cciss/c0d0,sda,hda,vda
iscsi_target_iqn=iqn.2008-10.org.openstack:5a6cdbe3-2c90-4a90-b3c6-
85b449b30512 deployment_id=5a6cdbe3-2c90-4a90-b3c6-85b449b30512
deployment_key=VWDYDVVEFCQJNOSTO9R67HKUXUGP77CK
ironic_api_url=http://192.168.200.2:6385 troubleshoot=0 text nofb
nomodeset vga=normal boot_option=netboot ip=${ip}:${next-
server}:${gateway}:${netmask} BOOTIF=${mac} ipa-api-
url=http://192.168.200.2:6385 ipa-driver-name=pxe_ssh boot_mode=bios
initrd=deploy_ramdisk coreos.configdrive=0 || goto deploy

Value in the
above
example
kernel line

Corresponding information

http://192.168.
200.2:8088

Parameter http_url in /etc/ironic/ironic.conf file. This IP address must
be on the Bare Metal Provisioning Network.

5a6cdbe3-
2c90-4a90-
b3c6-
85b449b3051
2

UUID of the baremetal node in ironic node-list.

deploy_kernel This is the deploy kernel image in the Image service that is copied down as
/httpboot/<NODE_UUID>/deploy_kernel.

http://192.168.
200.2:6385

Parameter api_url in /etc/ironic/ironic.conf file. This IP address must
be on the Bare Metal Provisioning Network.

pxe_ssh The IPMI Driver in use by the Bare Metal Provisioning service for this node.

deploy_ramdis
k

This is the deploy ramdisk image in the Image service that is copied down as
/httpboot/<NODE_UUID>/deploy_ramdisk.

Red Hat OpenStack Platform 9 Bare Metal Provisioning

54

If any of these values do not correspond between the /httpboot/pxelinux.cfg/MAC_ADDRESS
and the ironic.conf file, you need to update them in the ironic.conf file and restart the Bare
Metal Provisioning service and then re-deploy the Bare Metal Provisioning node.

4.3. TROUBLESHOOT THE BARE METAL PROVISIONING SERVICE
NOT GETTING THE RIGHT HOSTNAME

If your Bare Metal Provisioning system is not getting the right hostname, it means that cloud-init
is failing. To fix this, connect the Bare Metal Provisioning subnet to a router in the OpenStack
Networking service. The requests to the meta-data agent should now be routed correctly.

4.4. TROUBLESHOOT INVALID OPENSTACK IDENTITY SERVICE
CREDENTIALS WHEN EXECUTING BARE METAL PROVISIONING
COMMANDS

If you are having trouble authenticating to the Identity service, check the identity_uri parameter
in the ironic.conf file and make sure you remove the /v2.0 from the keystone AdminURL.
For example, identity_uri should be set to http://IP:PORT.

4.5. TROUBLESHOOT HARDWARE ENROLLMENT

Issues with enrolled hardware can be caused by incorrect node registration details. Ensure that
property names and values have been entered correctly. Incorrect or mistyped property names will
be successfully added to the node’s details, but will be ignored.

Update a node’s details. This example updates the amount of memory the node is registered to use
to 2 GB:

ironic node-update NODE_UUID replace properties/memory_mb=2048

4.6. TROUBLESHOOT NO VALID HOST ERRORS

If the Compute scheduler cannot find a suitable Bare Metal Provisioning node on which to boot an
instance, a NoValidHost error can be seen in /var/log/nova/nova-conductor.log or immediately
upon launch failure in the dashboard. This is usually caused by a mismatch between the resources
Compute expects and the resources the Bare Metal Provisioning node provides.

1. Check the hypervisor resources that are available:

nova hypervisor-stats

The resources reported here should match the resources that the Bare Metal Provisioning
nodes provide.

2. Check that Compute recognizes the Bare Metal Provisioning nodes as hypervisors:

nova hypervisor-list

The nodes, identified by UUID, should appear in the list.

CHAPTER 4. TROUBLESHOOT BARE METAL PROVISIONING

55

3. Check the details for a Bare Metal Provisioning node:

ironic node-list
ironic node-show NODE_UUID

Verify that the node’s details match those reported by Compute.

4. Check that the selected flavor does not exceed the available resources of the Bare Metal
Provisioning nodes:

nova flavor-show FLAVOR_NAME

5. Check the output of ironic node-list to ensure that Bare Metal Provisioning nodes are not
in maintenance mode. Remove maintenance mode if necessary:

ironic node-set-maintenance NODE_UUID off

6. Check the output of ironic node-list to ensure that Bare Metal Provisioning nodes are in an
available state. Move the node to available if necessary:

ironic node-set-provision-state NODE_UUID provide

4.7. TROUBLESHOOT HARDWARE INSPECTION

Hardware inspection can fail on Bare Metal Provisioning nodes in the available provision state.

1. Check the provision state for all nodes:

ironic node-list

2. Move a node from available to manageable before starting inspection:

ironic node-set-provision-state NODE_UUID manage

Red Hat OpenStack Platform 9 Bare Metal Provisioning

56

APPENDIX A. BARE METAL PROVISIONING DRIVERS

Bare Metal Provisioning can be configured to use one of many drivers. Each driver is made up of a
provisioning method and a power management type. Some drivers require additional configuration.
Each driver described in this section uses PXE for provisioning; drivers are listed by their power
management type. Agent drivers support whole disk image and partition image deployment. To
enable a driver or drivers for Bare Metal Provisioning, see Section 1.4.4.4, “Configure Bare Metal
Provisioning Drivers”.

A.1. INTELLIGENT PLATFORM MANAGEMENT INTERFACE (IPMI)

IPMI is an interface that provides out-of-band remote management features, including power
management and server monitoring. To use this power management type, all Bare Metal
Provisioning nodes require an IPMI that is connected to the shared Bare Metal Provisioning
Network. Enable the pxe_ipmitool driver, and set the following information in the node’s
driver_info:

ipmi_address - The IP address of the IPMI NIC.

ipmi_username - The IPMI user name.

ipmi_password - The IPMI password.

A.2. DELL REMOTE ACCESS CONTROLLER (DRAC)

DRAC is an interface that provides out-of-band remote management features, including power
management and server monitoring. To use this power management type, all Bare Metal
Provisioning nodes require a DRAC that is connected to the shared Bare Metal Provisioning
Network. Enable the pxe_drac driver, and set the following information in the node’s
driver_info:

drac_address - The IP address of the DRAC NIC.

drac_username - The DRAC user name.

drac_password - The DRAC password.

A.3. INTEGRATED REMOTE MANAGEMENT CONTROLLER (IRMC)

iRMC from Fujitsu is an interface that provides out-of-band remote management features including
power management and server monitoring. To use this power management type on a Bare Metal
Provisioning node, the node requires an iRMC interface that is connected to the shared Bare Metal
Provisioning Network. Enable the pxe_irmc driver, and set the following information in the node’s
driver_info:

irmc_address - The IP address of the iRMC interface NIC.

irmc_username - The iRMC user name.

irmc_password - The iRMC password.

To use IPMI to set the boot mode or SCCI to get sensor data, you must complete the following
additional steps:

APPENDIX A. BARE METAL PROVISIONING DRIVERS

57

1. Enable the sensor method in ironic.conf:

openstack-config --set /etc/ironic/ironic.conf \
 irmc sensor_method METHOD

Replace METHOD with scci or ipmitool.

2. If you enabled SCCI, install the python-scciclient package:

yum install python-scciclient

3. Restart the Bare Metal Provisioning conductor service:

systemctl restart openstack-ironic-conductor.service

Note

To use the iRMC driver, iRMC S4 or higher is required.

A.4. INTEGRATED LIGHTS-OUT (ILO)

iLO from Hewlett-Packard is an interface that provides out-of-band remote management features
including power management and server monitoring. To use this power management type, all Bare
Metal Provisioning nodes require an iLO interface that is connected to the shared Bare Metal
Provisioning Network. Enable the pxe_ilo driver, and set the following information in the node’s
driver_info:

ilo_address - The IP address of the iLO interface NIC.

ilo_username - The iLO user name.

ilo_password - The iLO password.

You must also install the python-proliantutils package and restart the Bare Metal Provisioning
conductor service:

yum install python-proliantutils
systemctl restart openstack-ironic-conductor.service

Note

HP nodes must have a 2015 firmware version for successful inspection.

A.5. ACTIVE MANAGEMENT TECHNOLOGY (AMT)

AMT from Intel is an out-of-band remote management technology widely used to monitor and
manage desktops, including controlling the desktop power, similar to how IPMI is used with servers.

AMT drivers use the WS-MAN protocol to interact with AMT clients.

AMT consists of two drivers:

Red Hat OpenStack Platform 9 Bare Metal Provisioning

58

pxe_amt uses AMT for power management and deploys the user image over iSCSI from the
conductor.

agent_amt uses AMT for power management and deploys the user image with HTTP to the
node.

Before you Begin

Set up the desktop environment and AMT client. See Manually configuring the AMT Client for
details.

Set up Your Environment

1. Install openwsman-python on the Bare Metal Provisioning service node:

yum install openwsman-python

2. Enable the AMT driver in ironic.conf:

openstack-config --set /etc/ironic/ironic.conf \
 enabled_drivers DRIVER

Where DRIVER is either pxe_amt or agent_amt.

3. Restart the Bare Metal Provisioning conductor service:

systemctl restart openstack-ironic-conductor.service

After you enable the AMT driver, you need to set the following information in the node’s
driver_info:

amt_address - The IP address of the AMT NIC.

amt_username - The AMT user name.

amt_password - The AMT password.

Note

Bare metal nodes that use AMT drivers should be deployed with the local boot option
enabled. AMT currently has no support for setting a persistent boot device. Nodes
deployed without the local boot option could fail to boot if they are restarted outside the
control of the Bare Metal Provisioning service. For example, a node rebooted by a local
user will not attempt to PXE or network boot the kernel. An AMT node deployed with the
local boot option enabled solves this issue.

Warning

DEPRECATION NOTICE. Beginning in Red Hat OpenStack Platform 11, AMT drivers
will be deprecated and no longer supported in a future release.

APPENDIX A. BARE METAL PROVISIONING DRIVERS

59

https://software.intel.com/en-us/articles/intel-active-management-technology-start-here-guide-intel-amt-9#4.2

A.6. SSH AND VIRSH

Bare Metal Provisioning can access a host that is running libvirt and use virtual machines as nodes.
Virsh controls the power management of the nodes.

Important

The SSH driver is for testing and evaluation purposes only. It is not recommended for Red
Hat OpenStack Platform enterprise environments.

To use this power management type, Bare Metal Provisioning must have SSH access to an account
with full access to the libvirt environment on the host where the virtual nodes will be set up. Enable
the pxe_ssh driver, and set the following information in the node’s driver_info:

ssh_virt_type - Set this option to virsh.

ssh_address - The IP address of the virsh host.

ssh_username - The SSH user name.

ssh_key_contents - The contents of the SSH private key on the Bare Metal Provisioning
conductor node. The matching public key must be copied to the virsh host.

Red Hat OpenStack Platform 9 Bare Metal Provisioning

60

	Table of Contents
	PREFACE
	CHAPTER 1. INSTALL AND CONFIGURE OPENSTACK BARE METAL PROVISIONING (IRONIC)
	1.1. REQUIREMENTS
	1.1.1. Bare Metal Provisioning Installation Assumptions
	1.1.2. Bare Metal Provisioning Hardware Requirements
	1.1.3. Bare Metal Provisioning Networking Requirements
	1.1.4. Bare Metal Machine Requirements

	1.2. CONFIGURE OPENSTACK FOR THE BARE METAL PROVISIONING SERVICE
	1.3. CONFIGURE THE CONTROLLER NODES FOR BARE METAL PROVISIONING SERVICE
	1.3.1. Create the Bare Metal Provisioning Database
	1.3.2. Configure OpenStack Compute Services For Bare Metal Provisioning
	1.3.3. Configure the OpenStack Networking DHCP Agent to Tag iPXE Requests

	1.4. CONFIGURE THE COMPUTE NODE FOR BARE METAL PROVISIONING
	1.4.1. Subscribe to the Required Channels
	1.4.2. Install the Bare Metal Provisioning Packages
	1.4.3. Configure iPXE
	1.4.4. Configure the Bare Metal Provisioning Service
	1.4.4.1. Configure Bare Metal Provisioning to Communicate with the Database Server
	1.4.4.2. Configure Bare Metal Provisioning Authentication
	1.4.4.3. Configure RabbitMQ Message Broker Settings for Bare Metal Provisioning
	1.4.4.4. Configure Bare Metal Provisioning Drivers
	1.4.4.5. Configure the Bare Metal Provisioning Service to use PXE
	1.4.4.6. Configure Bare Metal Provisioning to Communicate with OpenStack Networking and OpenStack Image
	1.4.4.7. Configure a Ceph Object Gateway for the Image and Bare Metal Provisioning Services

	1.4.5. Configure OpenStack Compute to Use Bare Metal Provisioning Service

	CHAPTER 2. CONFIGURE BARE METAL DEPLOYMENT
	2.1. CREATE OPENSTACK CONFIGURATIONS FOR BARE METAL PROVISIONING SERVICE
	2.1.1. Configure the OpenStack Networking Configuration
	2.1.2. Create the Bare Metal Provisioning Flavor
	2.1.3. Create the Bare Metal Images
	2.1.4. Add the Bare Metal Provisioning Node to the Bare Metal Provisioning Service
	2.1.5. Configure Proxy Services For Image Deployment
	2.1.6. Deploy the Bare Metal Provisioning Node

	2.2. CONFIGURE HARDWARE INSPECTION
	2.3. ADD PHYSICAL MACHINES AS BARE METAL NODES
	2.3.1. Add a Node with Hardware Inspection
	2.3.2. Add a Node Manually
	2.3.3. Configure Manual Node Cleaning
	2.3.4. Specify the Preferred Root Disk on a Bare Metal Node

	2.4. USE HOST AGGREGATES TO SEPARATE PHYSICAL AND VIRTUAL MACHINE PROVISIONING
	2.5. EXAMPLE: TEST BARE METAL PROVISIONING WITH SSH AND VIRSH
	2.5.1. Create the Virtualized Bare Metal Nodes
	2.5.2. Create an SSH Key Pair
	2.5.3. Add the Virtualized Nodes as Bare Metal Nodes

	CHAPTER 3. LAUNCH BARE METAL INSTANCES
	3.1. DEPLOY AN INSTANCE USING THE COMMAND LINE INTERFACE
	3.2. DEPLOY AN INSTANCE USING THE DASHBOARD
	3.3. CREATE A WHOLE WINDOWS IMAGE
	3.3.1. Deploy Windows to a physical server
	3.3.2. Enable Remote Desktop access

	CHAPTER 4. TROUBLESHOOT BARE METAL PROVISIONING
	4.1. TROUBLESHOOT PXE BOOT ERRORS
	4.2. TROUBLESHOOT LOGIN ERRORS AFTER THE BARE METAL NODE BOOTS
	4.3. TROUBLESHOOT THE BARE METAL PROVISIONING SERVICE NOT GETTING THE RIGHT HOSTNAME
	4.4. TROUBLESHOOT INVALID OPENSTACK IDENTITY SERVICE CREDENTIALS WHEN EXECUTING BARE METAL PROVISIONING COMMANDS
	4.5. TROUBLESHOOT HARDWARE ENROLLMENT
	4.6. TROUBLESHOOT NO VALID HOST ERRORS
	4.7. TROUBLESHOOT HARDWARE INSPECTION

	APPENDIX A. BARE METAL PROVISIONING DRIVERS
	A.1. INTELLIGENT PLATFORM MANAGEMENT INTERFACE (IPMI)
	A.2. DELL REMOTE ACCESS CONTROLLER (DRAC)
	A.3. INTEGRATED REMOTE MANAGEMENT CONTROLLER (IRMC)
	A.4. INTEGRATED LIGHTS-OUT (ILO)
	A.5. ACTIVE MANAGEMENT TECHNOLOGY (AMT)
	A.6. SSH AND VIRSH

