
15. Click Publish New Version. On the Publish New Version page, click Save. This publishes

the content view with our module.

16. Scroll to the new version of our view and click Promote. Choose a life-cycle environment

and click Promote Version. This makes the view a part of the chosen life-cycle

environment.

Our content view is now published. As a part of the content view creation, Red Hat Satellite 6

creates a new Puppet environment for use in the provisioning process. This Puppet environment

contains our module. You can view this new Puppet environment on the Configure >

Environments page.

3.7. CONFIGURING SMART CLASS PARAMETERS FROM PUPPET

CLASSES

Some module classes contain complex parameters, called Smart Class Parameters, that define a

value for a key just as a simple parameter does, but allow conditional arguments, validation, and

overrides for specific object types. Satellite 6 has the ability to import these parameterized classes

and allow modification of such smart parameters. For more information on the types of parameters

in Puppet, see the Parameters section of the Red Hat Satellite 6.2 Host Configuration Guide.

For example, mymodule contains a parameter for the HTTP port of our web server. This parameter,

httpd_port, is set to a default of 8120. However, a situation might occur where we need to use a

different port for a provisioned system. Satellite 6 can override the httpd_port parameter during

configuration. This provides an easy way to change the HTTP port on our web server.

This procedure requires the mymodule module to be uploaded to a Product and added to a Content

View. This is because we need to edit the classes in the resulting Puppet environment.

Alternatively, you can download and install another module as described in Chapter 3, Adding

Puppet Modules to Red Hat Satellite 6.

1. Navigate to Configure > Smart class parameters.

2. A table appears listing all Smart Class Parameters from the classes in your Puppet

modules. Enter httpd_port in the search field. Click on the httpd_port parameter.

3. The options for the Smart Class Parameter appears. To allow overriding this parameter

during provisioning, select the Override option.

4. Selecting the Override option allows us to change the Key type and Default value. This is

useful if we aim to globally change this value for all future configurations.

The following key types are available:

String

The value is interpreted as a plain text string. For example, if your Smart Class

Parameter sets the host name, the value is interpreted as a string:

myhost.example.com

Boolean

The value is interpreted and validated as a true or false value. Examples include:

CHAPTER 3. ADDING PUPPET MODULES TO RED HAT SATELLITE 6

19

True

true

1

Integer

The value is interpreted and validated as an integer value. Examples include:

8120

-8120

Real

The value is interpreted and validated as a real number value. Examples include:

8120

-8120

8.12

Array

The value is interpreted and validated as a JSON or YAML array. For example:

["Monday","Tuesday","Wednesday","Thursday","Friday"]

Hash

The value is interpreted and validated as a JSON or YAML hash map. For example:

{"Weekdays":

["Monday","Tuesday","Wednesday","Thursday","Friday"],

"Weekend": ["Saturday","Sunday"]}

YAML

The value is interpreted and validated as a YAML file. For example:

email:

 delivery_method: smtp

 smtp_settings:

 address: smtp.example.com

 port: 25

 domain: example.com

 authentication: none

JSON

The value is interpreted and validated as a JSON file. For example:

{

 "email":[

 {

 "delivery_method": "smtp"

 "smtp_settings": [

 {

 "address": "smtp.example.com",

Red Hat Satellite 6.2 Puppet Guide

20

 "port": 25,

 "domain": "example.com",

 "authentication": "none"

 }

]

 }

]

}

For this example, leave the default as 8120.

5. Selecting the Override option also exposes Optional Input Validator, which provides

validation for the overridden value. For example, we can include a regular expression to

make sure httpd_port is a numerical value. For our example, leave this section blank.

6. Selecting the Override option also exposes Prioritize attribute order, which defines a

hierarchical order of system facts, and Specify matchers. The matcher-value combinations

determine the right parameter to use depending on an evaluation of the system facts. For

our example, leave these sections with the default settings.

7. Click Submit.

We now have an override value for the Smart Class Parameter httpd_port.

3.8. USING THE SMART VARIABLE TOOL

Smart Variables are a tool to provide global parameters to the Puppet Master for use with a Puppet

Classes that do not contain Smart Class Parameters. The same Smart Matcher rules are used for

both Smart Variables and Smart Class Parameters.

Note

The Smart Variables tool was introduced as an interim measure before Puppet modules

supported Smart Class Parameters. If in doubt, use Smart Class Parameters as

explained in the previous section.

Before Smart Class Parameters were introduced, users who wanted to override a parameter where

asked to rewrite their Puppet code to use a global parameter. For example:

class example1 {

 file { '/tmp/foo': content => $global_var }

}

For the above example, $global_var is set in the Smart Variables section of the web UI and the

value is associated with the "example1" class. Although it is recommend to precede global variables

with :: to restrict Puppet to search the global scope, their absence does not mean a variable is not

a global variable.

With the introduction of Smart Class Parameters, the follow form could be used:

class example2($var="default") {

 file { '/tmp/foo': content => $var }

}

CHAPTER 3. ADDING PUPPET MODULES TO RED HAT SATELLITE 6

21

For the above example, $var is set in the Smart Class Parameters section of the web UI and the

value is associated with the "example2" class. If you see a variable defined in the class header, as

in the above class example2($var="default"), then you can be sure that $var is a class

parameter and you should use the Smart Class Parameter function to override the variable.

As Smart Variables require custom-designed modules using global-namespace parameters, rather

than standard modules from the Puppet community, and the result is the same, text placed in

'/tmp/foo' in the examples above, there is no longer a reason to use Smart Variables except to

support legacy modules.

Although Smart Variables are global variables, they are associated with a Puppet class and will only

be sent to a host that has that specific Puppet Class assigned in Satellite. You can create a Smart

Variable with any name, no validation is done in Satellite, but unless the associated Puppet module

applied has a matching variable in its code, the Smart Variable will not be used.

Satellite adds the variable you create in Satellite to the Host YAML file. This file can be viewed in

the web UI by navigating to Hosts > All Hosts, selecting the name of the host, and then click on the

YAML button. The Satellite sends the Host YAML file to the external node classifier (ENC), a

function included with the Puppet Master. When the Puppet Master queries the ENC about a host,

the ENC returns a YAML document describing the state of the host. This YAML document is based

on data taken from Puppet manifests, but is subject to Smart Class Parameter overrides and any

Smart Variables.

Applying a Smart Variable to a Host

As Smart Variables should only be used to support your custom Puppet modules previously

modified to include a global parameter, the following example uses a simple example called

anothermodule. The anothermodule Puppet module manifest is as follows:

class anothermodule {

 file { '/tmp/motd':

 ensure => file,

 content => $::content_for_motd,

 }

}

This example will supply a value for the $::content_for_motd parameter.

1. In the web UI, navigate to Configure > Classes

2. Select the name of the Puppet Class from the list.

3. Click the Smart Variables tab. This displays a new screen. The left section contains a list of

previously created parameters, if any. The right section contains the configuration options.

Click Add Variable to add a new parameter.

4. Enter the parameter in the Key field. In this example, content_for_motd.

5. Edit the Description text box, for example Testing /tmp motd Text.

6. Select the Key type of data to pass. Select string.

7. Type a Default Value for the parameter. For example, No Unauthorized Use.

8. Use the Optional Input Validator section to restrict the allowed values for the parameter.

Choose a Validator type (either a list of comma separated values or a regular expression,

regexp) and input the allowed values or regular expression code in the Validator rule field.

Red Hat Satellite 6.2 Puppet Guide

22

9. Use the Prioritize attribute order section to set the order of precedence in which the host

attributes or Facts are to be evaluated against the matchers (configured below). You can

rearrange the entries in the list and add to the default list. To create a logical AND condition

between matchers, arrange the names of the matchers on one line as a comma separated

list.

10. In the Specify matchers section, click Add Matcher to add a conditional argument. The

attributes to match against should correspond to the entries in the Order list above. If no

matcher is configured, then only the default value can be used.

For example, if the desired value of the parameter is This is for Server1 for any host

with a fully qualified domain name of server1.example.com, then specify the Match as

fqdn=server1.example.com and the Value as This is for Server1.

11. Click Submit to save your changes.

CHAPTER 3. ADDING PUPPET MODULES TO RED HAT SATELLITE 6

23

