
RADS User Manual

Remko Scharroo

Version 4.2.2
24 May 2016

Laboratory for Satellite Altimetry

NOAA•NESDIS•STAR

NOAA)))))
))
)

This document was typeset with LATEX 2ε .
The layout was designed by Remko Scharroo c© 1993–2015

Contents

1 Introduction 1

2 RADS software installation 3

2.1 Prerequisites . 3

2.2 Download the source code . 3

2.2.1 Download the bundle from GitHub . 4

2.2.2 Software synchronisation with git . 4

2.3 Software configuration . 4

2.4 Software compilation . 5

2.5 Installation . 6

3 RADS data mirroring 7

4 RADS data management 9

4.1 Preparations before using the data base . 9

4.2 Common functionalities . 9

4.3 RADS4 configuration file . 10

4.3.1 Tags in the configuration file . 10

4.3.2 Tags within a var-block . 11

4.3.3 The data-tag . 12

4.3.4 Tags for mission definitions . 13

5 RADS utilities 15

5.1 Command line interface . 15

5.1.1 Short options . 16

5.1.2 Long options . 17

5.2 Common options . 17

5.2.1 Common data selectors . 17

5.2.2 Backward compatibility . 19

iii

iv Contents

5.2.3 Other common options . 20

5.3 rads2asc4 . 20

5.3.1 Syntax . 21

5.3.2 Common options . 22

5.3.3 Program specific options . 22

5.3.4 Example . 23

5.4 rads2grd4 . 24

5.4.1 Syntax . 25

5.4.2 Common options . 26

5.4.3 Program specific options . 26

5.4.4 Examples . 26

5.5 rads2nc . 28

5.5.1 Syntax . 28

5.5.2 Common options . 29

5.5.3 Program specific options . 29

5.5.4 Example . 29

5.6 radscolin4 . 31

5.6.1 Syntax . 31

5.6.2 Common options . 32

5.6.3 Program specific options . 32

5.6.4 Examples . 33

6 RADS library 35

6.1 Module rads . 35

6.1.1 rads . 35

6.1.2 rads init . 37

6.1.3 rads end . 38

6.1.4 rads get var . 39

6.1.5 rads stat . 39

6.1.6 rads init sat struct . 40

6.1.7 rads init pass struct . 40

6.1.8 rads set options . 40

6.1.9 rads open pass . 41

6.1.10 rads close pass . 41

6.1.11 rads read xml . 42

6.1.12 rads set alias . 42

Contents v

6.1.13 rads set limits . 43

6.1.14 rads set region . 43

6.1.15 rads set format . 44

Bibliography 45

Index 46

Chapter 1

Introduction

This document describes the layout and use of the Radar Altimeter Database System (RADS),
Version 4. RADS was first developed at Delft University of Technology’s Department of
Aerospace Engineering, and remains a joint development with NOAA Laboratory for Satellite
Altimetry and EUMETSAT.

The Radar Altimeter Database System is composed of three elements:

A few hundred gigabytes of altimeter data files from missions stretching from Geosat to
whatever altimeter data was made available in the last few days;

A set of software tools (object library and executables);

Configuration files.

So apart from the actual altimeter data, RADS provides a suite of applications and subroutines
that simplify the reading, editing, handling and analysing of data from numerous radar al-
timeters. Although the actual content and layout of the underlying data products do not have
to be identical for all altimeters, the user interface is. Also, the data base is easily expandable
with additional data and/or additional corrections without impact to the user interface, or to
the software in general. In fact, only in very few cases the core software will need to be ad-
justed and recompiled, in even fewer cases adjustments to the actual tools will be required.
Most changes can be covered by changes in the configuration file.

The data base consists of netCDF files, one for each satellite pass (half a revolution starting
and ending close to the poles). Ascending passes have odd numbers, descending passes even
numbers. The pass numbering increases consecutively within a repeat cycle.

In case of exact repeat missions the satellite returns to the same ground track every repeat
cycle. For Jason-2, for example, this is after 254 passes, when the pass number starts over at
1. Which pass is number 1 is based on the longitude of the equator crossing (ascending node).
Thus all passes with the same pass number are collinear.

For non-repeat missions or those with very long repeat cycles (like CryoSat-2 or the Jason-1
Extended Mission), we created ”sub-cycles” of a manageable length. There too passes with the
same pass number are nearly collinear. Note that the length of the ”sub-cycle” may change for
cycle to cycle in a kind of dance-step manner.

Each netCDF data file contains the actual (binary) data as well as the meta data that describe
the contents (data type, units, creation history, etc.) The naming convention for the files is
SSpPPPPcCCC.nc, where SS is an abbreviation for the satellite (altimeter), PPPP is the pass

1

2 Introduction

number, CCC is the cycle number, and nc is the extension, a standard convention for netCDF
data files.

The data files are grouped in one directory for each cycle, named cCCC. These cycle directories
are then grouped into one directory for each mission phase, which are finally part of one
directory per satellite. For example, the data file for pass 801 of cycle 150 in ERS-1’s tandem
mission is $RADSDATAROOT/e1/g/c150/e1p0801c150.nc, where $RADSDATAROOT is the root
directory of the RADS data base.

To read and manipulate the data, you can use standard netCDF tools, like ncdump (that comes
with the netCDF package), GMT (Generic Mapping Tools), nco (NetCDF Operators). But more
suitable is the use of the RADS subroutine library and programs. The library is the basis for all
data utilities provided with RADS and can also be used to create other programs to the user’s
convenience. For a description on each of the subroutines in the library and on how to create
your own program see Appendix 6. In addition, a number of handy utilities are provided to
do some of the most essential jobs (Chapter 5).

Whether you are using the routines, or the provided utilities, you will have to know how the
data handling system of RADS works. It is not essential that you understand the intrinsics of
the data files, but it is highly recommended that you familiarise yourself with the way the data
can be manipulated, selected and edited on the fly by the RADS routines. Basically, the RADS
routines can take you a lot of work out of your hands, provided you have read Chapter 4.

Before going into the details of RADS, the software and the data have to be installed on your
computer. Chapter 2 guides you through the process of software installation, and Chapter 3
tells you how to keep the database up to date.

Chapter 2

RADS software installation

In order to work efficiently with the RADS data base you are required to install the software
(subroutine library, utilities, scripts, and configuration files). This we will tackle in this Chap-
ter. Once you are done with that at least part of the data base needs to be copied onto your
hard disk (or another mounted device), which will be described in the next Chapter.

2.1 Prerequisites

In order to install and run the RADS software you need a few things installed on your system:

A unix platform (for example Linux or Mac OS X).

The make command.

A Fortran 90 compiler. RADS is known to compile with gfortran, f90, f95, xlf90, xlf95, ifort.

The netCDF library (version 4) and module file compiled with the Fortran 90 interface. Of
course, netCDF comes with its own dependencies (like HDF5 and szip). Please figure out
where to find the netCDF module file netcdf.mod and the netCDF C library libnetcdf and
Fortran library libnetcdff before you continue.

Optionally, the git program.

For downloading and synchronising the data base, the rsync program.

2.2 Download the source code

The source code can be downloaded as a bundle (zip or tarball) from GitHub or can be syn-
chronised directly with the github server with the git program. The two methods are described
below in Sections 2.2.1 and 2.2.2.

You can put the source code anywhere you like. We will later configure where things will be
installed. After downloading the software, continue with the configuration, compilation, and
installation steps in Sections 2.3 through 2.5.

It is recommended to regularly check for updates of the RADS source code and recompile if
necessary.

3

4 RADS software installation

2.2.1 Download the bundle from GitHub

To download the latest bundle of the source code, simple go to https://github.com/remkos/rads/
releases/latest. There you will find the latest release notes, and links for the downloading of
the bundle, either as a zip file, or as a compressed tarball.

You can extract the software in place, or anywhere you want by running:

$ tar -xvzf rads-v4.2.2.tar.gz

or

$ unzip rads-v4.2.2.zip

This will create a directory called rads-v4.2.2.

2.2.2 Software synchronisation with git

The version control system git helps to administrate software development projects on dis-
tributed systems (or at least by distributed users), avoiding problems of accidentally wiping
out each others changes. Also, it is a very practical tool for distributing trees of software to
others, who then can make their own changes without running the risk of accidentally over-
writing them when a new update is provided. The git command can merge those changes, and
alerts you of that happening.

You need to have at least the executable git installed on your system to connect to the GitHub
repository. This program comes installed by default on Mac OS X and most Linux and Unix
systems.

First you need to ’clone’ the code from the GitHub server onto your machine:

$ git clone https://github.com/remkos/rads

This downloads all the code and puts it into a directory called rads. This needs to be done
only once.

Later on you can bring the source on your machine up to date by going into the rads directory
and executing:

$ git pull -t origin master

although it is much simpler to just use:

$ make update

2.3 Software configuration

Now we are going to determine where the software executables, library, and data is going to be
stored. For this we run the configure in the source directory (rads-v4.2.2 if you downloaded
the tarball, or rads if you used git). The program configure will allow you to specify where
you want things installed and also determines which Fortran compiler you have and what
special options are needed for your platform.

By default, configure will install everything under the directory were it resides itself. It will
create directories:

2.4 Software compilation 5

bin for the executables (both binaries and scripts)

include for the Fortran 90 module files to be used with the RADS library

lib for the RADS library

share for the system independent data: the satellite data and configuration files. This one
particularly, you might want to put somewhere else, on a dedicated disk, for example.

Normally, you would need to tell configure only where you want to install the aforemen-
tioned directories. The rest, like where to find your Fortran compiler and the netCDF library,
are things that configure should be able to figure out by itself, using the nf-config script, for
example. Therefore, you will only have to specify the root directory for the installation (pre-
fix) and likely the place where you want the RADS altimeter data to reside or where they are
already residing (datadir). Run, for example:

$ configure --prefix=/usr/local --datadir=/rads/data

The first argument to configure specifies that the bin, include and lib directory are to be put
under /usr/local. The second argument specifies the directory for the data and configuration
file (which could be on a server for more systems to use). Still a directory share is created
under /usr/local to contain the manuals.

If, for whatever reason, configure cannot find a Fortran compiler or the netCDF libraries on
its own, you need to specify the location of the Fortran compiler and the netCDF library and
include files. Here is an example:

$ configure FC=/sw/bin/gfortran \
--with-netcdf-inc=/sw/lib/netcdf-gfortran/include \
--with-netcdf-lib=/sw/lib:/sw/lib/netcdf-gfortran/lib \
--prefix=/usr/local --datadir=/rads/data

The first argument to configure specifies the location of the fortran compiler, while the second
identifies the directory where we can find netcdf.mod. The third argument specifies the two
directories that contain the netCDF C library (libnetcdf) and netCDF Fortran library (libnetcdff),
separated by a colon. If these two are merged, or in one directory, you can just use one direc-
tory name.

The configure program also tests if your Fortran compiler is ready for Fortran 90 and can
compile with the netCDF library. If you have problems, you may need to review the options
you gave to configure, and make sure that configure picked the same compiler that was used
to compile the netCDF library. Finding the nf-config command on your system may be pivotal.

Run configure --help to get more info.

2.4 Software compilation

Now that your system is configured, it should be easy to compile the software. Just run in the
source directory (where you also ran configure):

$ make

It will compile and link the programs in the subdirectory src, but not those in devel. The latter
are only provided to you to get a feel of how the RADS altimeter database was created. You
will not be able to compile or link those programs, as essential routines have been left out.

6 RADS software installation

If you have problems compiling, you may need to tweak one of the makefiles, config.mk.
Please let us know about it, so that we can change the configure program accordingly. You can
do this at the issue tracker on the RADS GitHub page: https://github.com/remkos/rads/issues.

2.5 Installation

To install the software, configuration file, and manuals in the places discussed in Section 2.3,
run the following command in the directory where configure resides:

$ make install

Now you can continue with the mirroring of the data files.

Chapter 3

RADS data mirroring

RADS now exceeds 400 GBytes of data. It virtually impossible to copy all of it in one go,
or copy all of it every time that updates have been made. To facilitate the updating, it is
recommended to use the rsync program. This program will determine by it self which files are
updated and will update only those. In fact, it will transfer only those parts of the files that are
actually changed. This provides a significant speed benefit when, for example, an extra data
field is added.

You need to have at least the executable rsync installed on your system to use rsync. In case
of Linux machines, simply install the rsync package available on most distributions. The pro-
gram rsync comes standard with Mac OS X, or can be obtained from http://rsync.samba.org.

The rsync command will download the data from the rsync server at the Delft University of
Technology in The Netherlands. This server is setup such that it will allow you to access only
the RADS data and software. It will not allow you to log in to the server as a common user.
Thus, setting up ssh key pairs is not possible.

Let us start, for example, to synchronise the Jason-2 data. The subdirectory for the Jason-2
data is j2 (See Table 3.1 for all 2-character abbreviations of the altimeter missions). To get all
the Jason-2 data, you will type the following commands (still assuming you have your data in
/rads/data):

$ cd /rads/data
$ rsync -avz --del radsuser@rads.tudelft.nl::rads/data/j2 .

At the beginning rsync will ask you to enter the password for radsuser. It will have been
provided to you when you registered as a user.

Apart from the satellite specific directories, there is a directory that contains configuration
files, that help RADS to read the data files. These files are also installed in the same place,
when installing the software, but you can download them from the rsync server as well. Be
sure to keep these feels up to date.

$ cd /rads/data
$ rsync -avz --del radsuser@rads.tudelft.nl::rads/data/conf .

If you are patient, and want to get all of the data at once, you can perform the following
commands:

$ cd /rads
$ rsync -avz --del radsuser@rads.tudelft.nl::rads/data .

7

8 RADS data mirroring

Altimeter Abbr. Nr Alternatives References

GEOS 3 g3 1 ge3 geos-3 geos3 (not included in RADS)
Seasat ss 2 sea seasat-a (not included in RADS)
Geosat gs 3 geo geosat
ERS-1 e1 4 er1 ers-1 ers1 [Francis, 1990; Francis et al., 1991]
TOPEX tx 5 top topex [Fu et al., 1994]
Poseidon pn 6 pos poseidon
ERS-2 e2 7 er2 ers-2 ers2 [Francis et al., 1995]
GFO g1 8 gfo gfo-1 gfo1
Jason-1 j1 9 ja1 jason-1 jason1 [Ménard et al., 2003]
Envisat n1 10 en1 envisat
Jason-2 j2 11 ja2 jason-2 jason2 [Lambin et al., 2010]
CryoSat-2 c2 12 cs2 cryosat-2 cryosat2 [Wingham et al., 2006]
SARAL sa 13 sa srl saral altika
Jason-3 j3 14 ja3 jason-3 jason3 (limited access in RADS)
HY-2A 2a 15 h2a hy-2a hy2a (not included in RADS)
Sentinel-3A 3a 16 s3a sentinel-3a sentinel3a sntnl-3a (in RADS summer 2016)
Sentinel-3B 3b 17 s3b sentinel-3b sentinel3b sntnl-3b (to be launched end 2017)

Table 3.1 Abbreviation and numbers used for the various altimeter missions.

If, for whatever reason, the mirroring is interrupted, you can simply start it again, and it will
continue where it left off. If you have a recent version of the rsync program, we recommend
that you use the option --del instead of --delete, as it speeds up the process significantly.

There are one more directory that may be of interest, but is not essential. The /rads/tables

directory contains a number of lists: lists of the time intervals of passes and cycles, and lists of
the data available for each satellite.

To mirror this directories use rsync:

$ cd /rads
$ rsync -avz --del radsuser@rads.tudelft.nl::rads/tables .

If you need to use rsync regularly to synchronise the RADS data base and you do not want
to enter the password every time, you can set up the environment variable RSYNC_PASSWD by
one of the following methods (depending on the shell):

export RSYNC_PASSWD=radspasswd # under sh or bash
setenv RSYNC_PASSWD radspasswd # under csh or tcsh

If you are using the bash or sh shell, you can do it all in one line, for example:

RSYNC_PASSWD=radspasswd \
rsync -avz --del radsuser@rads.tudelft.nl::rads/data .

Obviously, the password is not simply radspasswd.

Chapter 4

RADS data management

This Chapter describes the basic functionalities of the data management system of RADS.
These functionalities are part of the RADS utilities as well as the RADS subroutine library
on which the utilities are based.

4.1 Preparations before using the data base

The use of RADS starts with the definition of the environment variable RADSDATAROOT, such
that it points to the root of the RADS data base. For example (for bash users):

$ export RADSDATAROOT=/rads/data

If you already specified this directory in the configure step, then you do not have to set the
RADSDATAROOT directory.

It is also practical to include /usr/local/bin (or where ever you installed the binaries) in your
executable search path, so that existing executables can be used. However, this is not essential,
just practical.

4.2 Common functionalities

A subroutine library is created to facilitate the data reading, conversion to SI units, editing and
the construction of sea level anomalies. Based on these routines, several programs (utilities)
are created to list or manipulate the contents of the data base. Since these programs share the
same routines, much of their functionalities are the same, as well as their user interface. In
addition, a number of developer tools are available to create the data base. These programs
will be of less concern to the users, and are not yet explained in this manual. Their code is only
provided for reference, and are not intended to be compiled on your system.

Common to all RADS utilities is the internal data selection, editing, and the ability to construct
the sea level anomaly (or any other fields) on the fly. The construction of the sea level anomaly
includes a number of arithmetic expressions (adding and subtracting), plus applying a num-
ber of selection criteria that can flag the sea level anomaly as invalid. Both the ability to do
arithmetic (even beyond mere adding and subtracting) and editing are built into the software
library, so that they can be shared by the various RADS utilities.

Even when writing their own program, the user does not have to generate code to construct a
sea level anomaly or to do editing. At the same time that the sea level anomaly is constructed,

9

10 RADS data management

the data is edited based on system-wide, user, or local preferences. These preferences can be
specified at several levels, either in XML configuration files, or by command line options. The
order in which these preferences are processed is the following:

System-wide general preferences, found in $RADSDATAROOT/conf/rads.xml.

General user preferences, found in a file ˜/.rads/rads.xml, if available.

General local preferences, found in a file rads.xml in the current working directory.

Preference files indicated by the -X or --xml option on the command line.

Other command line arguments, such as -L or --limits.

So the command line arguments overrule the local preferences and which overrule the user
preferences and eventually the system-wide preferences.

The XML configuration file is “human readable” and is described in the next section.

4.3 RADS4 configuration file

The RADS4 configuration file rads.xml controls:

Information about the various altimeter missions, such as repeat period, number of passes
per cycle, etc.

Information about all the variables available for each mission, including editing criteria,
format for writing to ascii, and the complete information needed to store the variable upon
creation of the database.

Optionally, description of variables that can be created on the fly from other variables.

The configuration file is a structured XML file, comprised of a number items and blocks, of the
following shape:

<block>
<item option="value">....</item>
<tag>....</tag>

</block>

As usual in an XML file, <tag> starts an item with name tag and </tag> ends it. Any content
in between is the value, or are the values associated with this tag. Generally, the line can be
broken by carriage returns and leading spaces are ignored.

4.3.1 Tags in the configuration file

The various names of the tags used in the configuration file are described below.

if is followed by a condition such as sat="j1 j2", which means that the contents of the block
following this <if> applies only to the missions j1 and j2. The selection can be negated
by starting it with an exclamation point, i.e. sat="!j1 j2" means that the following block
applies to all missions except j1 and j2.

elseif, else can follow an if-block. For example:

<if sat="j1 j2">
... for j1 and j2 ...

4.3 RADS4 configuration file 11

</if>
<elseif sat="e1 e2">

... for e1 and e2 ...
</elseif>
<else>

... all other missions ...
</else>

global attributes specifies the global attributes that are always to be written to the output
file, line by line. The first word on each line is the name of the global attribute, the rest is
its value.

satellites specifies, line by line, the 2- and 3-character abbreviations for the altimeter mis-
sions. The rest of each line is used to specify alternative names which can be searched for
substrings.

var identifies a block of tags that describe a single variable. The tag needs to include an op-
tion such as name="alt_gdre" to specify the variable name, and optionally (for example)
field=425 which specify the field numbers used in RADS3. A condition like sat="j1 j2"

can also be added as an option in this tag.

alias specifies an alias (i.e. an alternative name) for a previously specified variable. The tag
should at least include an option such as name="alt" to specify the name of the alias,
and optionally the field number used in RADS3 (e.g. field=4). Again, a condition like
sat="j1" can be added. If more than one value is given, then it means that the alias
will point to the first variable, unless it is not available, then it points to the second. For
example:

<alias name="alt" field="4" sat="j2">alt_gdre alt_gdrd</alias>

means that if one uses the variable alt for Jason-2, then the variable alt_gdre is processed.
If determining this variable was unsuccessful, then alt_gdrd is used instead.

4.3.2 Tags within a var-block

The following tags can only occur within a var-block (with one exception, see below):

long name specifies the description of the variable, as well as the long_name attribute to be
written to the netCDF data files.

standard name, source, comment specify the standard_name, source, and comment at-
tributes to be written to the netCDF data files.

units specifies the units of the variable as used in any output, as well as the units attribute
in the netCDF data files.

flag values specifies the meanings of a flag, counting up from 0. For example yes no means
that 0 is the be interpreted as ”yes”, 1 as ”no”.

flag mask specifies the meanings of a flag word made up of bits. For example
left front up means that when the LSB is raised ”left” is true, and the next bits indi-
cate if ”front” and ”up” are true.

limits specifies the range of ”good” values. Any value less than the lower limit or greater than
the upper limit result in the variable to be set to NaN. In case the variable is a flag mask,
then the first value indicates the mask of bits that should not be set, the second value the
bits that should be set, otherwise the result will yield NaN.

12 RADS data management

plot range specifies a suggested range for plotting the variable. It is not used for any process-
ing, except for the radsvar program.

parameters is used for the RADS4 database creation and has no impact on any user pro-
grams.

data specifies the variable name as used in the input RADS netCDF data files (normally the
same as the variable name), but could also be used to specify a mathematical statement
that derives the variable from others, or to interpolate values from a grid. More about this
in Section 4.3.3.

quality flag indicates which variables are checked to determine the quality of the current vari-
able. If any of the specified variables lead to NaN (not-a-number), the corresponding value
of the current variable is set to NaN as well.

dimension is the dimension of the variable. Default is 1-dimensional. Some variables can be
2-dimensional.

format is the Fortran format specification for ASCII output of the variable.

compress specifies the data type (i.e., int1, int2, int4, real, or dble) and optional
scale_factor and add_offset to be used in the output netCDF files. This applied only
the output files. Input netCDF files may be different.

Because you may want to overrule just one line in a var-block, one can stick the option
var="varname" in the above tags. For example,

<var name="alt_gdre">
<compress sat="j1 j2 j3 tx">int4 1e-4 1300e3</compress>

</var>

is equivalent to

<compress var="alt_gdre" sat="j1 j2 j3 tx">int4 1e-4 1300e3</compress>

4.3.3 The data-tag

The data-tag can be used in a variety of ways, depending on the text (value) between the
<data> and </data> strings, or the optional source=source option.

netcdf: The simplest form, explained above, is that the value indicates the name of the
netCDF variable in the RADS data files. For example: <data>alt_gdre</data>. RADS
automatically assumes this type of input if only one value is given. Alternatively use
<data source="nc"> or <data source="netcdf">.
It is also possible to read global or variable attributes, which will then be as-
signed to the variable for all of the given pass. For example, if such attributes
exist, range_ku:add_offset (the attribute add_offset of the variable range_ku) or
:range_bias_ku (the global attribute range_bias_ku) could be used to retrieve a pos-
sible bias added to the Ku-band range.

math: If more than one value is given (i.e. it contains at least one space), then it will be recog-
nised as a mathematical statement, in ”Reverse Polish” notation. A number of mathemat-
ical operators are available, as described in Table 4.1. This can be very practical to deter-
mine on the fly the difference between two variables, or a combination of many (such as the
sea level anomaly). For example <data>wet_tropo_rad wet_tropo_ecmwf SUB</data>

computes the difference between the radiometer wet tropospheric correction and the

4.3 RADS4 configuration file 13

ECWMF wet tropospheric corrections by subtracting the latter from the former. To exercise
this mathematical machinery, one can also use <data source="math">.

grid: RADS can interpolate in 2-D netCDF grids on the fly. This is practical if you have a static
model to be interpolated at a certain location (longitude and latitude, or any other two
variables). Depending on the argument of the source= option, one can select to do bilinear
interpolation ("grid" or "grid_l"), cubic spline interpolation ("grid_c" or "grid_s"), or
nearest neighbour selection ("grid_q" or "grid_n"). Without any of these options, a file
name ending on ”.nc” will automatically be recognised as needing linear interpolation. In
addition one can specify the variables to be used as x- and y-coordinated in the interpola-
tion. Default is x="lon" y="lat". Example for interpolating an SSB model:

<data source="grid" x="wind_speed_alt" y="swh">my_ssb_model.nc</data>

constant: To assign a single constant value use, for example,
<data source="constant">0</data>.

branch: An additional option allows you to read a variable from a different directory branch.
For example, if you have an additional set of data stored in the directory c2.mydata next to
the normal c2 branch, then you can add the option branch=".mydata" which will indicate
that this extension is used to the 2-character mission abbreviation to find files containing
the current variable within the var block. Currently up to 5 branches (including the stan-
dard one) can be used.

4.3.4 Tags for mission definitions

A number of tags are employed to give general information about the various altimeter mis-
sions. You find them at the end of the global configuration file rads.xml. These tags are:

satellite Name of the satellite (maximum 8 characters).

satid Satellite ID used in the crossover program radsxogen.

dt1hz Time step of 1-Hz data.

inclination Orbital inclination in degrees.

frequency Altimeter frequency or frequencies.

xover params Parameters used in radsxogen.

phase A block of tags that apply to a given mission phase.

mission Name of the mission phase.

cycles First and last cycle number in this phase.

repeat Length of the repeat cycle (not subcycle) in days and passes (half revolutions) in this
phase.

ref pass Time of the equator crossing, longitude of the equator crossing, cycle number (not
subcycle number) and pass number of reference pass in this phase.

start time Start time of the mission phase.

In the above, time epochs can be written as yyyy-mm-ddThh:mm:ss, where the part from ’T’
onward can be omitted in whole or in part.

14 RADS data management

Operator Description
x y SUB a a = x - y
x y ADD a a = x + y
x y MUL a a = x * y
PI a a = pi
E a a = exp(1)
x POP remove last item from stack
x NEG a a = −x
x ABS a a = |x|
x INV a a = 1/x
x SQRT a a = sqrt(x)
x SQR a a = x*x
x EXP a a = exp(x)
x LOG a a = ln(x)
x LOG10 a a = log10(x)
x SIN a a = sin(x)
x COS a a = cos(x)
x TAN a a = tan(x)
x SIND a a = sin(x) [x in degrees]
x COSD a a = cos(x) [x in degrees]
x TAND a a = tan(x) [x in degrees]
x SINH a a = sinh(x)
x COSH a a = cosh(x)
x TANH a a = tanh(x)
x ASIN a a = arcsin(x)
x ACOS a a = arccos(x)
x ATAN a a = arctan(x)
x ASIND a a = arcsin(x) [a in degrees]
x ACOSD a a = arccos(x) [a in degrees]
x ATAND a a = arctan(x) [a in degrees]
x ASINH a a = arcsinh(x)
x ACOSH a a = arccosh(x)
x ATANH a a = arctanh(x)
x ISNAN a a = 1 if x is NaN; a = 0 otherwise
x ISAN a a = 0 if x is NaN; a = 1 otherwise
x RINT a a is nearest integer to x
x NINT a a is nearest integer to x
x CEIL a a is nearest integer greater or equal to x
x CEILING a a is nearest integer greater or equal to x
x FLOOR a a is nearest integer less or equal to x
x D2R a convert x from degrees to radian
x R2D a convert x from radian to degrees
x YMDHMS a convert seconds of 1985 to format YYYYMMDDHHMMSS
x SUM a a(i) = x(1) + ... + x(i) while skipping all NaN
x DIF a a(i) = x(i)-x(i-1); a(1) = NaN
x DUP a b duplicate the last item on the stack
x y DIV a a = x / y
x y POW a a = x y

x y FMOD a a = x modulo y
x y MIN a a = the lesser of x and y
x y MAX a a = the greater of x and y
x y ATAN2 a a = arctan(x) taking into account the quadrant as determined by y
x y HYPOT a a = sqrt(x*x+y*y)
x y R2 a a = x*x + y*y
x y EQ a a = 1 if x == y; a = 0 otherwise
x y NE a a = 0 if x == y; a = 1 otherwise
x y LT a a = 1 if x < y; a = 0 otherwise
x y LE a a = 1 if x ≤ y; a = 0 otherwise
x y GT a a = 1 if x > y; a = 0 otherwise
x y GE a a = 1 if x ≥ y; a = 0 otherwise
x y NAN a a = NaN if x == y; a = x otherwise
x y AND a a = y if x is NaN; a = x otherwise
x y OR a a = NaN if y is NaN; a = x otherwise
x y IAND a a = bitwise AND of x and y
x y IOR a a = bitwise OR of x and y
x y BTEST a a = 1 if bit y of x is set; a = 0 otherwise
x y AVG a a = 0.5*(x+y) [when x or y is NaN a returns the other value]
x y DXDY a a(i) = (x(i+1)-x(i-1))/(y(i+1)-y(i-1)); a(1) = a(n) = NaN
x y EXCH a b exchange the last two items on the stack (NaNs have no influence)
x y z INRANGE a a = 1 if x is between y and z; a = 0 otherwise (also in case of any NaN)
x y z BOXCAR a a = filter x along monotonic dimension y with boxcar of length z (NaNs are skipped)
x y z GAUSS a a = filter x along monotonic dimension y with Gauss function with sigma z (NaNs are skipped)

Table 4.1 Math operators that can be used in the data-tag. Left of the operator (in uppercase) are
the input value(s); on the right of the operator the output value(s).

Chapter 5

RADS utilities

5.1 Command line interface

The RADS4 commands share a very similar layout of the arguments that can be used on the
command line. The common features of the command line interface, are explained in this
Section. In later Sections we will explain the syntax and use of each of the RADS4 commands.

To learn the syntax of any of the RADS4 commands, simply use the argument --help after the
command name. Let us start off with an excerpt of the help of the radsstat4 program obtained
when typing:

$ radsstat4 --help
radsstat4 (v4.2.0): Print RADS statistics per cycle, pass or day(s)

Usage: radsstat4 [required_arguments] [rads_dataselectors] [rads_options] [program_options]

Required argument is:
-S, --sat SAT[/PHASE] Specify satellite [and phase] (e.g. e1/g, tx)

Optional [rads_dataselectors] are:
-C, --cycle C0[,C1[,DC]] Specify first and last cycle and modulo
-L, --limits VAR=MIN,MAX Specify edit data range for variable VAR

Common [rads_options] are:
-v, --verbose Increase verbosity level

Program specific [program_options] are:
-l, --minmax Output min and max in addition to mean and stddev
-o, --output [OUTNAME] Create netCDF output instead of ASCII (default filename is "radsstat.nc")

The command line for every RADS4 program consists of a few of the following components:

program name always starts the command line.

required arguments need to be part of the command line for proper operation; in the above
example it specifies the satellite mission.

data selectors are options (in the Unix parlance those parts that start with one or two hyphens)
that select the RADS data of interest.

RADS options are options that are common to most programs.

15

16 RADS utilities

program options are options can be placed on the command line to provide certain optional
functionalities specific to the program.

In this sense, RADS is very much in-line with most Unix commands. RADS also supports both
so-called short options and long options, which each can have required or optional arguments.
This you will also find in many other Unix commands, particularly those of the GNU flavour.

In general the order of the arguments is irrelevant, though there are some exceptions that will
be explained per program.

5.1.1 Short options

Short options start with a single hyphen and are followed by a single lower case or upper
case letter. In RADS a distinction is made between lower case and upper case options in that
the upper case options have a common meaning and syntax between most RADS programs
whereas lower case options are specific per program; this is done to harmonise the meanings
across programs and help the user to easier remember and recognise the distinctive scope of
the options.

Short options can have arguments (a values attached to them), which can either be required or
optional. So there are three posibilities:

no argument: The option flag just switches something on or off, for example -l in radsstat4
adds the printing of minima and maxima to the output. In some cases, like -v, the option
can be repeated to increase the verbosity level one step each time.
Short options without argument can be combined behind a single hyphen. Thus each of
the following are equivalent:

-v -l -v
-l -vv
-lvv
-vlv

required argument: The option flag assigns some value. For example, -S j2 selects the satellite
altimeter mission j2.
The option flag and the value can be separated by whitespace (one or more spaces or tabs),
but they can also be pasted together. In addition, the option flag can be preceded by short
options without argument under the same hyphen. So again, the following combinations
all mean the same thing:

-v -S j2
-v -Sj2
-vS j2
-vSj2

optional argument: The option flag assigns some value, or switches something on with a de-
fault value. In the above example for radsstat4, the option -o can be used with or without
an argument, as identified by the argument [outname] between square brackets. As the
help explains, when -o is omitted, the output is in ASCII format, when -o is used without
argument, then a netCDF file radsstat.nc is created, and when used with an argument (e.g.
-o myfile.nc) then a netCDF file with that name is created.
Note that the use of these types of options can be tricky, as any value that does not start
with a hyphen that follows can be perceived as an argument of this option, which can lead
to some unintended consequences. To avoid this problem, the option list can be ended with

5.2 Common options 17

--. All remaining material will then be seen as verbatim arguments (for example input file
names), even when they start with a hyphen.

5.1.2 Long options

To make it a bit less hard to understand (or to remember) some of the options, quite often
an alternative ”long option”, starting with two hyphens is provided. As can be seen in the
radsstat4 help, the short option -v can also be written as --verbose. But any shorter version of
the long option, as long at it is unique, can be used. So --verb is allowed as well.

Just like short options, long options can have no argument, a required argument, or an optional
argument. But long options cannot be combined into one, while short options can.

There are a few alternative ways of combining a long option with its required or optional
argument.

One can always use whitespace (spaces or tabs) to separate the long option from its argu-
ment.

If the argument contains an equal sign (’=’) then one can also use a colon to separate the
long option and its argument.

If the argument does not contain an equal sign, then an equal sign can be used to separate
the long option and the argument.

For example, either of the following syntaxes can be used:

--cycle 10,20 --limits sla=-1,1
--cycle=10/20 --limits:sla=-1/1
--cyc 10-20 --lim sla=-1,1
--cyc=10,20 --lim:sla=-1,1

5.2 Common options

As indicated above, the RADS4 commands have a lot of options in common. Most of these use
short options in upper case. Long options are always lower case.

5.2.1 Common data selectors

Below, in alphabetical order, are the command line options used to select data from the RADS
database.

-A VAR1=VAR2 --alias VAR1=VAR2
Assign VAR1 as an alias of VAR2. This means that when VAR1 is requested, VAR2 will be
used. For example --alias wet tropo=wet tropo ecmwf makes wet tropo (which is used in
the construction of the sea level anomaly sla) an alias of wet tropo ecmwf. Hence the model
wet tropospheric correction, and not the radiometer wet tropospheric correction will then
be used to determine sea level.

-C C0[,C1[,DC]] --cycle C0[,C1[,DC]]
Select data from cycle C0 to cycle C1. If the latter is omitted, only data from cycle C0 is se-
lected. Adding DC will run through the cycles with a step of DC, skipping the intermediate
ones. The arguments C0, C1 and DC can be separated by commas, slashes, or the minus

18 RADS utilities

sign. So -C 1/3 selects cycles 1 through 3. If omitted, data from all cycles (throughout all
mission phases) are selected.

-F VAR=FMT --fmt VAR=FMT --format VAR=FMT
For variable VAR use the Fortran format FMT in ASCII output. E.g., -F sla=f8.4. This can
also be achieved with the ctagformat tag in a RADS4 configuration file.

-L VAR=MIN,MAX --limits VAR=MIN,MAX
Specify the valid range for the selection of a variable. Outside this range the variable will
be set to NaN. This is an alternative to using the limits tag in a RADS4 configuration file.

--lat LAT0,LAT1
Select data in the latitude range from LAT0 to LAT1 in degrees. This is equivalent to using
--limits lat=LAT0,LAT1. The south to north range has to be specified on the interval from
–90◦ to 90◦. Examples:

--lat -40,-20 Select data between 40◦S and 20◦S
--lat 0,90 Selects entire northern hemisphere

When omitted, the default range specified in the RADS4 configuration file is used. By
default, this is –90◦ to +90◦.

--lon LON0,LON1
Select data in the longitude range from LON0 to LON1 in degrees. This is the same as
--limits lon=LON0,LON1. Note that the output longitudes are influenced by the selection
the interval, be it in the range from –180◦ to 180◦ or from 0◦ to 360◦. Examples:

--lon -40,-20 Select data between 40◦W and 20◦W
--lon 320,340 Same, but output will have only positive longitudes

When omitted, the default range specified in the RADS4 configuration file is used, which
is normally –180◦ to 180◦.

-P P0[,P1[,DP]] --pass P0[,P1[,DP]]
Select data from pass P0 to pass P1 (out of each selected cycle). If the latter is omitted,
only data from pass P0 is selected. Adding DP will run through the passes with a step of
DP, skipping the intermediate ones. The arguments P0, P1 and DP can be separated by
commas, slashes, or the minus sign. So -P 1-100 selects passes 1 through 100. If omitted,
data from all passes in each of the select cycles is selected.
In addition, one can use -P a (or --pass asc) to select only ascending passes, whereas -P d
(or --pass des) is used to select only descending passes.

-Q VAR=FLAG --quality-flag VAR=FLAG
Check the variable FLAG when validating the variable VAR. This means that in any event
that the variable FLAG is set to NaN (is out of bounds), then VAR is also set to NaN as well.
This is identical to using the quality flag tag in a RADS4 configuration file.

-R LON0,LON1,LAT0,LAT1 --region LON0,LON1,LAT0,LAT1
Select data within the longitude range from LON0 to LON1 and the latitude range of LAT0
to LAT1, both in degrees. This is equivalent to using both the --lon and --lat options.

-R LON0,LAT0,RADIUS --region LON0,LAT0,RADIUS
Select data within a circular region with a spherical radius RADIUS degrees, around the
point LON0,LAT0 (in degrees).

-S SAT[/PHASE] --sat SAT[/PHASE]
Select data from a given satellite SAT. Many variants of the satellite name can be used.
Either the 2-character code, the 3-character code, or a substring of the satellite name listed
in Table 3.1.

5.2 Common options 19

This is a required option and needs to be given for all RADS4 programs. Optionally, one
can also indicate the mission phase PHASE, separated from the satellite by a slash. (For
backwards compatibility with RADS3 also a colon can be used, but this is discouraged).

--sla SLA0,SLA1
Specify the range of for sea level anomaly in meters (if requested). This is the same as
--limits sla=SLA0,SLA1.

--time T0,T1 --ymd T0,T1 --doy T0,T1 --sec T0,T1
Select data only in the time interval from T0 to T1. RADS4 is generally quite efficient in
figuring out the time format when using the generic --time, but best is to use instead --ymd
with time in the format [YY]YYMMDD[HHMMSS], --doy for [YY]YYDDD (year and day
of year), or --sec for time in seconds from 1 Jan 1985. Decimal points to indicate fractional
days or seconds are also allowed.
The following examples all select data between 1 January 1999, 12:00 UTC and 31 Decem-
ber 2001, 00:00 UTC:

--ymd 990101.5,20011231 Note that the century can be omitted
--doy 99001.5,2001365 when using --ymd or --doy.
--mjd 51179.5,52274.0 With --mjd or --doy, use only fractions of day,
--ymd 990101120000,011231 but with --ymd one can also use ”HHMMSS”.
--sec 441806400,536371200 The old-fashioned seconds since 1985 are still there as well.

One will notice that the data selection is very fast. RADS4 will not go through all the data
sets to get the right data, but will use its ”knowledge” of the repeat cycles and passes to
quickly select the appropriate cycles and passes and scan only those.

-V VAR1,... --var VAR1,...
Select one or more variables from the RADS database. Any number of variables can be
select in one go by adding their names to the list, separated by commas or slashes. Also
the old RADS3 numerical field numbers for the variables can be used!

-X XMLFILE --xml XMLFILE
Load the configuration file XMLFILE in addition to the default configuration files
($RADSDATAROOT/conf/rads.xml, and—if available—$HOME/.rads/rads.xml and rads.
xml in the current working directory).

-Z VAR=TYPE[,SCALE[,OFFSET]] --compress VAR=TYPE[,SCALE[,OFFSET]]
Specify how the variable VAR is to be stored in a netCDF output file. TYPE is one of: int1,
int2, int4, real, dble. SCALE and OFFSET are optional with a default of 1 and 0. This is
identical to using the compress tag in a RADS4 configuration file. One can also use --cmp.

In all lists, shown as separated by commas above, one can also use slashes, as is done in the
GMT program syntax.

5.2.2 Backward compatibility

For backward compatibility with RADS3 a number of options are still allowed, even though
their use is deprecated.

-h H0,H1
Specify the range from SLA (in meters). This has been replaced by --sla H0,H1.

--opt J
Use field number J when field J/100 is requested. This is now achieved with
--alias VAR1=VAR2.

20 RADS utilities

--opt I=J
Make field number I (in the range 1 to 99) and alias of field number J (in the range 101-
9999). This is now achieved with --alias VAR1=VAR2.

--sel VAR1,...
Select variables to be read. Same as --var VAR1,..., except that using --sel signals some
additional backward compatible options.

In addition, again support backward compatibility with RADS3, the user can omit the double
hyphen in front of the RADS3 data selectors like sel=, sat=, cycle=, pass=, etc. But it is highly
recommended to use the new options instead.

5.2.3 Other common options

Additional common options in RADS4 are:

--args FILENAME
Get any of the command line arguments from a file named FILENAME with one option per
line.

--debug LEVEL
Set debug/verbosity level to LEVEL.

--help
Print the syntax of the command and all its arguments.

--log FILENAME
Write statistics and other log information to file FILENAME (default is standard output).

-q --quiet
Suppress warning messages (but keeps fatal error messages).

-v --verbose
Increase the verbosity level (warnings and debugging). This option can be used numerous
times, increasing verbosity by one level each time.

--version
Print the program version only.

--
Terminates all command line options; all following command-line arguments are consid-
ered non-option arguments, even if they begin with a hyphen.

5.3 rads2asc4

The program rads2asc4 lists a selection of the RADS4 data base in one ASCII file or in several
pass-by-pass ASCII files. These files contain a header per pass with a description of the data
content followed by one record for each measurement that passes the selection criteria. The
records are build up of columns, separated by white space, listing various data fields. Which
data fields are listed (and in which order they are listed) is determined by the command line
argument -V or --var.

In the output, the data that has not passed the editing criteria will be represented by ”NaN”
(Not-a-Number). If the sea level anomaly field suffers that fate, the record will not be listed in
the output file, unless the -r option is used (or -r 0 or -r none).

5.3 rads2asc4 21

If the argument -o OUTNAME or --output OUTNAME is used, the output will go into one
file (named OUTNAME). Otherwise, pass files are created with the names SSpPPPPcCCC.asc,
similar to what is described in Chapter 1.

This program can be called as rads2asc, or as rads2asc4 to avoid conflicts with an already
installed RADS3.

For more details, see the description of the command line options in the next Sections.

5.3.1 Syntax

rads2asc4 (v4.2.1-43-gb654d48): Select RADS altimeter data and output to ASCII

Usage: rads2asc4 [required_arguments] [rads_dataselectors] [rads_options] [program_options]

Required argument is:
-S, --sat SAT[/PHASE] Specify satellite [and phase] (e.g. e1/g, tx)

Optional [rads_dataselectors] are:
-A, --alias VAR1=VAR2 Use variable VAR2 when VAR1 is requested
-C, --cycle C0[,C1[,DC]] Specify first and last cycle and modulo
-F, --fmt, --format VAR=FMT

Specify Fortran format used to print VAR (for ASCII output only)
-L, --limits VAR=MIN,MAX Specify edit data range for variable VAR
--lon LON0,LON1 Specify longitude boundaries (deg)
--lat LAT0,LAT1 Specify latitude boundaries (deg)
-P, --pass P0[,P1[,DP]] Specify first and last pass and modulo; alternatively use -Pa

(--pass asc) or -Pd (--pass des) to restrict selection to
ascending or descending passes only

-Q, --quality-flag VAR=FLAG
Check variable FLAG when validating variable VAR

-R, --region LON0,LON1,LAT0,LAT1
Specify rectangular region (deg)

-R, --region LON0,LAT0,RADIUS
Specify circular region (deg)

--sla SLA0,SLA1 Specify range for SLA (m)
--time T0,T1 Specify time selection (optionally use --ymd, --doy,

or --sec for [YY]YYMMDD[HHMMSS], [YY]YYDDD, or SEC85)
-V, --var VAR1,... Select variables to be read
-X, --xml XMLFILE Load configuration file XMLFILE in addition to the defaults
-Z, --cmp, --compress VAR=TYPE[,SCALE[,OFFSET]]

Specify binary output format for variable VAR (netCDF only); TYPE
is one of: int1, int2, int4, real, dble; SCALE and OFFSET are
optional (def: 1,0)

Still working for backward compatibility with RADS3 are options:
--h H0,H1 Specify range for SLA (m) (now --sla H0,H1)
--opt J Use field number J when J/100 requested (now -A VAR1=VAR2)
--opt I=J Make field I (range 1-99) and alias for field J (now -A VAR1=VAR2)
--sel VAR1,... Select variables to read

Common [rads_options] are:
--args FILENAME Get all command line arguments from FILENAME (1 argument per line)
--debug LEVEL Set debug/verbosity level
--help Print this syntax massage
--log FILENAME Send statistics to FILENAME (default is standard output)
-q, --quiet Suppress warning messages (but keeps fatal error messages)
-v, --verbose Increase verbosity level
--version Print version info only
-- Terminates all options; all following command-line arguments are

considered non-option arguments, even if they begin with a hyphen

Program specific [program_options] are:
-r, --reject-on-nan VAR Reject records if variable VAR on -V specifier is NaN
-r NR Reject records if data item number NR on -V specifier is NaN
-r 0, -r none, -r Do not reject records with NaN values
-r n, -r any Reject records if any value is NaN

Note: If no -r option is given -r sla is assumed
-f Do not start with time,lat,lon in output (only with --sel)
-s, --stat a|c|p Include statistics for all data (a), per cycle (c), or per pass (p)
--step N Step through records with stride N (default = 1)
--list FILENAME Specify file name in which to write list of output files
--maxrec NREC Specify maximum number of output records (default = unlimited)
-o, --output OUTNAME Specify name of a single output file or - for standard output or

22 RADS utilities

(when ending in /) directory name for pass files; by default pass
files are created in the current directory

5.3.2 Common options

For a full explanation of the command line options that are common to most RADS4 programs,
see Section 5.2.

5.3.3 Program specific options

The command line options that are specific to rads2asc4 are listed here.

-r VAR --reject-on-nan VAR
Do not output records when the value of variable VAR, given as an argument to the -V
or --VAR option, is set to NaN. By default records for which the sea level anomaly (if
requested) is set to NaN are rejected.

-r NR --reject-on-nan NR
For backward compatibility with RADS3, this will eliminate records when the value on of
item number NR on the -V option is NaN.

-r 0 -r none -r
When either of these is used, no records are eliminated and all NaN values are kept.

-r n -r any
Indicates that a line should not be printed when a value in any of the data columns is NaN.

-f This only counts when using --sel instead of --var, in order to be backward compatible with
RADS3. When using--sel normally time, latitude and longitude are automatically added
is output columns. With -f those columns are not automatically added, i.e., you will have
to add them to the list of variables.

-s c|p
Include statistics per cycle (c) or pass (p). Those will by included in the output with lines
starting with ’# min :’, ’# max :’, ’# mean:’, and ’# std :’ followed by the cycle num-
ber, the number of valid passes in the cycle (c) or the pass number itself (p), the number
of valid records in that cycle (c) or pass (p), and then the statistics (minimum, maximum,
mean, and standard deviation) of each column.

--step N
Print only one out of N records.

--list FILENAME
Specify the name of a file to which to write a list of the created output files.

--maxrec NREC
Specify the maximum number of output records. The default is unlimited.

-o OUTNAME --output OUTNAME
By default (without this option) files are created per pass with a name similar to the ones
in the data base, i.e., SSpPPPPcCCC.asc, where SS is the satellite abbreviation, PPPP is the
pass number, and CCC is the cycle number. This option will send the output to a single
named file, or to standard output when using -o -. Alternatively, when OUTNAME ends
in a slash, then it indicates the directory in which to store the pass files SSpPPPPcCCC.asc.

5.3 rads2asc4 23

5.3.4 Example

Assuming a default configuration, we issue the following command:

$ rads2asc4 -S e2 -C 0 -P 901,1000,2 -R -8,42,28,48 \
-V time_ymdhms,lat,lon,sla,swh,wind_speed -o rads2asc4.asc -v

The program will print to standard output information on which passes are available and
have valid data points in the requested area (Mediterranean Sea), how many records were
read and how many remained in the particular area, how many records were rejected based
on the selection criteria on the corrections, and finally some statistics on the columns that were
requested.

Data selection for satellite ERS-2 phase a

x = pass has no data in period and area
- = pass file does not exist
o = pass file has no valid data
= pass file has valid data

Cycle Pass+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8....+....9....+....0
0 901 - - - - - - o # # - - - - - - - - - - - - # # - - - - - - - - - - - - # # - - - - - - - - - - - - #

##
Editing statistics for ERS-2 (e2)
Created: 2016-05-24 14:25:05 UTC: rads2asc4 -S e2 -C 0 -P 901,1000,2 -V time_ymdhms,lat,lon,sla,swh,wind_speed -R -8,42,28,48 -o rads2asc4.out -v
#
PASSES QUERIED 50
#
REJECTED SELECTED LOWER UPPER STEP
Cycle number limits 0 50 0 0 1
Pass number limits 0 50 901 1000 2
Time limits 0 50 NaN NaN
Equator longitude limits (asc) 42 8 -3.440 57.004
Equator longitude limits (des) 0 0 -23.004 37.440
#
PASSES AND MEASUREMENTS READ 8 11517
#
REJECTED SELECTED LOWER UPPER MIN MAX MEAN STDDEV
time [seconds since 1985-01-01 00:00:00 0 11517 NaN NaN 950512/1843 950515/1932 950513/2310 91577.
latitude [degrees_north] 10533 984 28.000 48.000 30.185 47.955 39.453 4.546
longitude [degrees_east] 5435 6082 -8.000 42.000 -7.996 41.989 17.967 13.990
#
MEASUREMENTS IN REQUESTED PERIOD AND REGION 851
#
REJECTED SELECTED LOWER UPPER MIN MAX MEAN STDDEV
sea level anomaly [m] 293 558 -3.000 3.000 -0.251 0.111 -0.080 0.078
time [yymmddhhmmss] 0 851 NaN NaN************************************ 958748.140
REAPER/COMBI orbital altitude [m] 0 851 NaN NaN 787721.981 791023.401 789246.395 846.239
Ku-band range corrected for instr. effec 0 851 750000.000 850000.000 787647.826 791005.014 789215.301 843.813
ECMWF dry tropospheric correction [m] 0 851 -2.400 -2.100 -2.331 -2.266 -2.305 0.016
radiometer wet tropospheric correction [11 840 -0.600 0.000 -0.598 -0.031 -0.129 0.072
NIC09 ionospheric correction [m] 0 851 -0.400 0.040 -0.025 -0.018 -0.022 0.002
MOG2D dynamic atmospheric correction [m] 0 851 -1.000 1.000 -0.144 0.195 0.007 0.066
solid earth tide [m] 0 851 -1.000 1.000 -0.108 0.084 -0.010 0.051
GOT4.10 ocean tide [m] 47 804 -5.000 5.000 -1.749 0.775 -0.067 0.445
GOT4.10 load tide [m] 0 851 -0.500 0.500 -0.019 0.045 0.010 0.011
pole tide [m] 0 851 -0.100 0.100 -0.010 0.003 -0.004 0.004
BM3 sea state bias [m] 6 845 -1.000 1.000 -0.857 0.473 -0.091 0.084
DTU13 mean sea surface height [m] 0 851 NaN NaN 3.597 53.232 32.775 12.704
Ku-band significant wave height [m] 16 835 0.000 8.000 0.000 7.960 1.487 1.046
Ku-band backscatter coefficient [dB] 8 843 6.000 27.000 6.460 26.410 11.768 2.151
altimeter wind speed [m/s] 2 849 -1.000 30.000 0.000 24.944 5.775 3.435
std dev of Ku-band range [m] 66 785 0.000 0.400 0.022 0.398 0.146 0.051
number of valid Ku-band measurements [1] 64 787 16.500 20.500 17.000 20.000 19.944 0.341
flag word [count] 286 565 65512.000 0.000 0.000 0.000 0.000 0.000
std dev of Ku-band significant wave heig 63 788 0.000 2.100 0.290 2.100 0.924 0.277
off-nadir angle squared from waveform (s 0 851 -0.050 0.050 0.000 0.000 0.000 0.000
reference frame offset [m] 0 851 NaN NaN 0.055 0.057 0.056 0.001
##

24 RADS utilities

The resulting ASCII output file rads2asc4.asc will look like this:

RADS_ASC
Created: 2016-05-24 14:25:05 UTC: rads2asc4 -S e2 -C 0 -P 901,1000,2 -V time_ymdhms,lat,lon,sla,swh,wind_speed -R -8,42,28,48 -o rads2asc4.out -v
Satellite = ERS-2
Phase = a
Cycle = 000
Pass = 0915
Equ_time = 326925796.651424 (1995-05-12 20:43:16.651424)
Equ_lon = 26.724487
Original = OPR V6 (0603) data of 1997-175T18:26:46 (ver.1)
Col 1 = time [yymmddhhmmss]
Col 2 = latitude [degrees_north]
Col 3 = longitude [degrees_east]
Col 4 = sea level anomaly [m]
Col 5 = Ku-band significant wave height [m]
Col 6 = altimeter wind speed [m/s]
950512205154.226807 30.661485 19.480321 -0.1002 0.120 1.737
950512205155.207275 30.719321 19.464490 -0.0560 0.000 1.815
950512205156.187500 30.777142 19.448650 -0.1571 0.330 1.616
950512205157.167969 30.834975 19.432791 -0.1572 0.560 1.858
............ lines removed
950515192036.179321 43.127032 39.342061 -0.0023 1.260 4.894
950515192037.159790 43.184400 39.321693 -0.0053 1.140 4.576
950515192038.140259 43.241765 39.301295 0.0266 0.930 5.521
950515192039.120483 43.299112 39.280871 0.0177 0.870 5.821

5.4 rads2grd4

The program rads2grd4 is a quick-and-dirty gridding program for RADS data. No smoothing
or interpolation is performed. The data are simply collected in cells of predefined size, after
which the mean and standard deviation in each cell is computed.

The boundaries of the grid are specified by the limits set in the RADS4 configuration files, or
by the appropriate common command line arguments --limits, loptlat, or --lon. The cell size is
determined by the option --res. Alternatively, the options --x and --y can be used to set both
the range and interval along both coordinate axis of the grid. The use of grid-node oriented
or cell oriented boundaries is controlled by the --c option. The required minimum number of
measurements per cell can be specified with the --min option. Cells with a number of points
less than the required number will not be part of the output.

The grid program not only grid sea level anomaly in longitude-latitude space, but any data
field in any other space specified by the -V (or --var) option. For example, a non-parametric
sea state bias model can be created by gridding the sea level anomalies in wind-wave space,
in which case -wind speed,swh,sla is used.

Multiple variables can be gridded simultaneously on the same space. When gridding several
variables at once, only records (measurements) for which every variable is valid (not NaN)
will be included in the gridding process.

There are two ways to produce output:

ASCII: Without the -o or --output option the program will write to standard output a file with
an ASCII header explaining the content, followed by one record for each grid cell with a
valid solution. Those records contain the x- and y-coordinate of the centre of the cell, and a
pair of mean and standard deviation for each z-variable. The right-most column contains
the number of points in the cell. This output can be used directly in GMT’s xyz2grd.

netCDF: With the -o or --output option a netCDF grid file is produced. This contains a grid
for the mean and standard deviation of each variable as well as a grid with the number of
points.

5.4 rads2grd4 25

The output is a list of ASCII records per cell: x and y of the centre of the cell, mean of z,
standard deviation of z, number of points. Cells with a number of points less than the required
number are not listed. This output can be used directly in GMT.

This program can be called as rads2grd, or as rads2grd4 to avoid conflicts with an already
installed RADS3.

5.4.1 Syntax

rads2grd4 (v4.2.1-43-gb654d48): Quickly grid RADS data to xyz or netCDF grid

Usage: rads2grd4 [required_arguments] [rads_dataselectors] [rads_options] [program_options]

Required argument is:
-S, --sat SAT[/PHASE] Specify satellite [and phase] (e.g. e1/g, tx)

Optional [rads_dataselectors] are:
-A, --alias VAR1=VAR2 Use variable VAR2 when VAR1 is requested
-C, --cycle C0[,C1[,DC]] Specify first and last cycle and modulo
-F, --fmt, --format VAR=FMT

Specify Fortran format used to print VAR (for ASCII output only)
-L, --limits VAR=MIN,MAX Specify edit data range for variable VAR
--lon LON0,LON1 Specify longitude boundaries (deg)
--lat LAT0,LAT1 Specify latitude boundaries (deg)
-P, --pass P0[,P1[,DP]] Specify first and last pass and modulo; alternatively use -Pa

(--pass asc) or -Pd (--pass des) to restrict selection to
ascending or descending passes only

-Q, --quality-flag VAR=FLAG
Check variable FLAG when validating variable VAR

-R, --region LON0,LON1,LAT0,LAT1
Specify rectangular region (deg)

-R, --region LON0,LAT0,RADIUS
Specify circular region (deg)

--sla SLA0,SLA1 Specify range for SLA (m)
--time T0,T1 Specify time selection (optionally use --ymd, --doy,

or --sec for [YY]YYMMDD[HHMMSS], [YY]YYDDD, or SEC85)
-V, --var VAR1,... Select variables to be read
-X, --xml XMLFILE Load configuration file XMLFILE in addition to the defaults
-Z, --cmp, --compress VAR=TYPE[,SCALE[,OFFSET]]

Specify binary output format for variable VAR (netCDF only); TYPE
is one of: int1, int2, int4, real, dble; SCALE and OFFSET are
optional (def: 1,0)

Still working for backward compatibility with RADS3 are options:
--h H0,H1 Specify range for SLA (m) (now --sla H0,H1)
--opt J Use field number J when J/100 requested (now -A VAR1=VAR2)
--opt I=J Make field I (range 1-99) and alias for field J (now -A VAR1=VAR2)
--sel VAR1,... Select variables to read

Common [rads_options] are:
--args FILENAME Get all command line arguments from FILENAME (1 argument per line)
--debug LEVEL Set debug/verbosity level
--help Print this syntax massage
--log FILENAME Send statistics to FILENAME (default is standard output)
-q, --quiet Suppress warning messages (but keeps fatal error messages)
-v, --verbose Increase verbosity level
--version Print version info only
-- Terminates all options; all following command-line arguments are

considered non-option arguments, even if they begin with a hyphen

Program specific [program_options] are:
-V, --var X,Y,Z[,...] Variables for x, y and z (default: lon,lat,sla); multiple z’s may be specified
--x X0,X1[,DX] Set x-range and interval (default: as set by default limits and --res)
--y Y0,Y1[,DY] Set y-range and interval (default: as set by default limits and --res)
--res DX[,DY] Set resolution in x and y (default: 1)
--min MINNR Minimum number of points per grid cell (default: 2)
-o, --output, --grd GRIDNAME

Create netCDF grid (suppresses ASCII)
--line-format FORMAT Format to be used for ASCII output (default is determined by variables)
-c Boundaries are cell oriented
-c[x|y] Only [x|y]-boundaries are cell oriented

26 RADS utilities

5.4.2 Common options

For a full explanation of the command line options that are common to most RADS4 programs,
see Section 5.2. Note that the -V and --var options have a slightly different meaning in this
program (see below) than in most others.

5.4.3 Program specific options

The command line options that are specific to rads2grd4 are listed here.

-V X,Y,Z[,...] --var X,Y,Z[,...]
Specify the variables for the ordinates X and Y, and the variable to be gridded (Z). One can
specify one or more variables for Z; each will be part of the output.

--x X0,X1[,DX]
Set the x-range and optional interval. The default range is determined by the limits set in
the RADS4 configuration file. The interval can also be set with the --res option.

--x X0,X1[,DX]
Set the y-range and optional interval. The default range is determined by the limits set in
the RADS4 configuration file. The interval can also be set with the --res option.

--res DX[,DY]
Set the resolution of the x- and y-coordinate. If only one number is given the same number
is used for both coordinates. The default resolution is 1×1.

--min MINNR
Specify the minimum number of points in the grid cell. The default is 2.

-o GRIDNAME --output GRIDNAME
Create a netCDF file with the name GRIDNAME containing the output grids. This sup-
presses the ASCII output. For backward compatibility with RADS3, one can also use --grd.

--line-format FORMAT
Format to be used for ASCII output. The default is determined by the specific Fortran
formats for each variable specified in the RADS4 configuration file.

-c [x|y] Determines that the boundaries of the x-y space are cell-oriented, instead of grid-
oriented. When using -c x this applies only to the x-coordinate, when using -c y it applied
only to the y-coordinate. When using -c without argument, it applies to both coordinates.

5.4.4 Examples

Assuming a default configuration, we issue the following command:

$ rads2grd4 -S e2 -C 0 -P 901,1000,2 -R -8,42,28,48 -V wind_speed,swh,sla -c

This command creates to following results to print to standard output:

Grid of RADS variables
Created: 2016-05-24 14:25:05 UTC: rads2grd4 -S e2 -C 0 -P 901,1000,2 -V wind_speed,swh,sla -c
#
Satellite : e2/a
Cycles : 0 - 0
Passes : 901 - 1000
#
Output columns per grid cell:
(1) altimeter wind speed [m/s]
(2) Ku-band significant wave height [m]
(3- 4) mean and stddev of sea level anomaly [m]

5.5 rads2nc 27

(5) nr of measurements
0.500 0.500 -0.0101 0.1095 463
1.500 0.500 -0.0288 0.1076 766
2.500 0.500 -0.0389 0.1072 938
3.500 0.500 -0.0369 0.0990 925
............ lines removed
15.500 7.500 -0.0178 0.1117 24
16.500 7.500 -0.0242 0.1000 47
17.500 7.500 -0.0010 0.0967 73
18.500 7.500 -0.0393 0.0818 42

When we want to create a netCDF file as output, we use the -o option:

$ rads2grd4 -S e2 -C 0 -P 901,1000,2 -R -8,42,28,48 -V wind_speed,swh,sla -c \\
-o rads2grd4.nc

To list its contents, use the ncdump command. The result will look like the following:

netcdf rads2grd4-o {
dimensions:

wind_speed = 31 ;
swh = 8 ;

variables:
double wind_speed(wind_speed) ;

wind_speed:long_name = "altimeter wind speed" ;
wind_speed:units = "m/s" ;
wind_speed:actual_range = -1., 30. ;

double swh(swh) ;
swh:long_name = "Ku-band significant wave height" ;
swh:units = "m" ;
swh:actual_range = 0., 8. ;

float sla_mean(swh, wind_speed) ;
sla_mean:long_name = "mean of sea level anomaly" ;
sla_mean:units = "m" ;
sla_mean:_FillValue = NaNf ;

float sla_stddev(swh, wind_speed) ;
sla_stddev:long_name = "std dev of sea level anomaly" ;
sla_stddev:units = "m" ;
sla_stddev:_FillValue = NaNf ;

int nr(swh, wind_speed) ;
nr:long_name = "number of points per cell" ;

// global attributes:
:Conventions = "CF-1.5" ;
:title = "rads2grd4-o.out" ;
:history = "2016-05-24 14:25:06 UTC: rads2grd4 -S e2 -C 0 -P 901,1000,2 -V wind_speed,swh,sla -c -o rads2grd4-o.out" ;
:node_offset = 1 ;

data:

wind_speed = -0.5, 0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5, 8.5, 9.5, 10.5,
11.5, 12.5, 13.5, 14.5, 15.5, 16.5, 17.5, 18.5, 19.5, 20.5, 21.5, 22.5,
23.5, 24.5, 25.5, 26.5, 27.5, 28.5, 29.5 ;

swh = 0.5, 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5 ;

sla_mean =
_, -0.0100662, -0.02879892, -0.0388553, -0.03685031, -0.03365956,

-0.03613032, -0.04943807, -0.04690964, -0.04301253, -0.09423293,
0.1340371, 0.1991087, 0.3417749, 0.5385897, 0.4476786, 0.5372286,
0.5057077, -0.088148, 0.465646, _, _, _, _, _, _, _, _, _, _, _,

............ lines removed
0, 0, 0, 0, 0, 0, 4, 9, 4, 24, 22, 16, 22, 53, 75, 112, 75, 143, 100, 38,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 1, 2, 9, 17, 20, 28, 24, 47, 73, 42, 1, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0 ;
}

28 RADS utilities

5.5 rads2nc

The RADS4 program rads2nc works similar to rads2asc4 (Section 5.3). Instead of writing
output to one of more ASCII files, it creates one or more netCDF files. This significantly reduces
on the output size, and can be convenient for reading into third-party programs.

By default, rads2nc will create pass-by-pass netCDF files, named SSpPPPPcCCC.nc, with only
the information of the netCDF variables given on the command line using the -V or --var
options. The variables are edited given the selection criteria in the RADS4 configurations files
or elsewhere on the command line. Values regarded ’invalid’ will be set to the _FillValue in
the netCDF files (or NaN in case of floating numbers). They will show up as an underscore (_)
in the output of ncdump.

The output can also be captured in a single netCDF file or in a different directory than the
current working directory. See the description of the option -o or --output below.

For more details, see the description of the command line options in the next Sections.

5.5.1 Syntax

rads2nc (v4.2.1-43-gb654d48): Select RADS altimeter data and output to netCDF

Usage: rads2nc [required_arguments] [rads_dataselectors] [rads_options] [program_options]

Required argument is:
-S, --sat SAT[/PHASE] Specify satellite [and phase] (e.g. e1/g, tx)

Optional [rads_dataselectors] are:
-A, --alias VAR1=VAR2 Use variable VAR2 when VAR1 is requested
-C, --cycle C0[,C1[,DC]] Specify first and last cycle and modulo
-F, --fmt, --format VAR=FMT

Specify Fortran format used to print VAR (for ASCII output only)
-L, --limits VAR=MIN,MAX Specify edit data range for variable VAR
--lon LON0,LON1 Specify longitude boundaries (deg)
--lat LAT0,LAT1 Specify latitude boundaries (deg)
-P, --pass P0[,P1[,DP]] Specify first and last pass and modulo; alternatively use -Pa

(--pass asc) or -Pd (--pass des) to restrict selection to
ascending or descending passes only

-Q, --quality-flag VAR=FLAG
Check variable FLAG when validating variable VAR

-R, --region LON0,LON1,LAT0,LAT1
Specify rectangular region (deg)

-R, --region LON0,LAT0,RADIUS
Specify circular region (deg)

--sla SLA0,SLA1 Specify range for SLA (m)
--time T0,T1 Specify time selection (optionally use --ymd, --doy,

or --sec for [YY]YYMMDD[HHMMSS], [YY]YYDDD, or SEC85)
-V, --var VAR1,... Select variables to be read
-X, --xml XMLFILE Load configuration file XMLFILE in addition to the defaults
-Z, --cmp, --compress VAR=TYPE[,SCALE[,OFFSET]]

Specify binary output format for variable VAR (netCDF only); TYPE
is one of: int1, int2, int4, real, dble; SCALE and OFFSET are
optional (def: 1,0)

Still working for backward compatibility with RADS3 are options:
--h H0,H1 Specify range for SLA (m) (now --sla H0,H1)
--opt J Use field number J when J/100 requested (now -A VAR1=VAR2)
--opt I=J Make field I (range 1-99) and alias for field J (now -A VAR1=VAR2)
--sel VAR1,... Select variables to read

Common [rads_options] are:
--args FILENAME Get all command line arguments from FILENAME (1 argument per line)
--debug LEVEL Set debug/verbosity level
--help Print this syntax massage
--log FILENAME Send statistics to FILENAME (default is standard output)
-q, --quiet Suppress warning messages (but keeps fatal error messages)
-v, --verbose Increase verbosity level
--version Print version info only
-- Terminates all options; all following command-line arguments are

5.5 rads2nc 29

considered non-option arguments, even if they begin with a hyphen

Program specific [program_options] are:
-r, --reject-on-nan VAR Reject records if variable VAR on -V specifier is NaN
-r NR Reject records if data item number NR on -V specifier is NaN
-r 0, -r none, -r Do not reject records with NaN values
-r n, -r any Reject records if any value is NaN

Note: If no -r option is given -r sla is assumed
--step N Step through records with stride n (default: 1)
--maxrec NREC Specify maximum number of output records (default: unlimited)
-o, --output OUTNAME Specify name of a single output file or (when ending in /) directory

name for pass files; default is pass files in current directory

5.5.2 Common options

For a full explanation of the command line options that are common to most RADS4 programs,
see Section 5.2.

5.5.3 Program specific options

The command line options that are specific to rads2nc are listed here. Notice that they have
some in common with rads2asc4 (Section 5.3).

-r VAR --reject-on-nan VAR
Do not output records when the value of variable VAR, given as an argument to the -V
or --VAR option, is set to NaN. By default records for which the sea level anomaly (if
requested) is set to NaN are rejected.

-r NR --reject-on-nan NR
For backward compatibility with RADS3, this will eliminate records when the value on of
item number NR on the -V option is NaN.

-r 0 -r none -r
When either of these is used, no records are eliminated and all NaN values are kept.

-r n -r any
Indicates that a line should not be printed when any of the selected variables is NaN.

--step N
Print only one out of N records.

--maxrec NREC
Specify the maximum number of output records. The default is unlimited.

-o OUTNAME --output OUTNAME
By default (without this option) files are created per pass with a name similar to the ones
in the data base, i.e., SSpPPPPcCCC.asc, where SS is the satellite abbreviation, PPPP is the
pass number, and CCC is the cycle number. This option will send the output to a single
named file. Alternatively, when OUTNAME ends in a slash, then it indicates the directory
in which to store the pass files SSpPPPPcCCC.nc.

5.5.4 Example

Assuming a default configuration, we issue the following command:

$ rads2nc -S e2 -C 0 -P 901,1000,2 -R -8,42,28,48 \
-V time,lat,lon,sla,swh,wind_speed -o rads2nc.nc -v

30 RADS utilities

Just as rads2asc4 the program rads2nc will now print to standard output information on
which passes are available and have valid data points in the requested area (Mediterranean
Sea), how many records were read and how many remained in the particular area, how many
records were rejected based on the selection criteria on the corrections, and finally some statis-
tics on the columns that were requested. At the same time a netCDF file rads2nc.nc will be
created. To list its contents, use the ncdump command. The result will look like the following:

netcdf rads2nc {
dimensions:

time = UNLIMITED ; // (558 currently)
variables:

double time(time) ;
time:long_name = "time" ;
time:standard_name = "time" ;
time:units = "seconds since 1985-01-01 00:00:00 UTC" ;
time:field = 101s ;
time:comment = "UTC time of measurement. Attribute leap_second gives time of leap second if any occurs during the data set" ;

int lat(time) ;
lat:_FillValue = 2147483647 ;
lat:long_name = "latitude" ;
lat:standard_name = "latitude" ;
lat:units = "degrees_north" ;
lat:scale_factor = 1.e-06 ;
lat:field = 201s ;
lat:comment = "Positive latitude is North latitude, negative latitude is South latitude" ;

int lon(time) ;
lon:_FillValue = 2147483647 ;
lon:long_name = "longitude" ;
lon:standard_name = "longitude" ;
lon:units = "degrees_east" ;
lon:scale_factor = 1.e-06 ;
lon:field = 301s ;
lon:comment = "East longitude relative to Greenwich meridian" ;

short sla(time) ;
sla:_FillValue = 32767s ;
sla:long_name = "sea level anomaly" ;
sla:standard_name = "sea_surface_height_above_sea_level" ;
sla:units = "m" ;
sla:quality_flag = "swh sig0 range_rms range_numval flags swh_rms attitude" ;
sla:scale_factor = 0.0001 ;
sla:coordinates = "lon lat" ;
sla:field = 0s ;
sla:comment = "Sea level determined from satellite altitude - range - all altimetric corrections" ;

short swh(time) ;
swh:_FillValue = 32767s ;
swh:long_name = "Ku-band significant wave height" ;
swh:standard_name = "sea_surface_wave_significant_height" ;
swh:units = "m" ;
swh:scale_factor = 0.001 ;
swh:coordinates = "lon lat" ;
swh:field = 17s ;

short wind_speed(time) ;
wind_speed:_FillValue = 32767s ;
wind_speed:long_name = "altimeter wind speed" ;
wind_speed:standard_name = "wind_speed" ;
wind_speed:source = "altimeter" ;
wind_speed:units = "m/s" ;
wind_speed:scale_factor = 0.01 ;
wind_speed:coordinates = "lon lat" ;
wind_speed:field = 19s ;

// global attributes:
:Conventions = "CF-1.7" ;
:title = "RADS 4 pass file" ;
:institution = "Altimetrics / EUMETSAT / NOAA / TU Delft" ;
:source = "radar altimeter" ;
:references = "RADS Data Manual, Issue 4.2 or later" ;
:featureType = "point" ;
:ellipsoid = "TOPEX" ;
:ellipsoid_axis = 6378136.3 ;
:ellipsoid_flattening = 0.00335281317789691 ;
:filename = "rads2nc.out" ;
:mission_name = "ERS-2" ;
:mission_phase = "a" ;
:log01 = "2016-05-24 | rads2nc -S e2 -C 0 -P 901,1000,2 -V time,lat,lon,sla,swh,wind_speed -R -8,42,28,48 -o rads2nc.out -v: RAW data from" ;

5.6 radscolin4 31

:history = "2016-05-24 14:25:05 : rads2nc -S e2 -C 0 -P 901,1000,2 -V time,lat,lon,sla,swh,wind_speed -R -8,42,28,48 -o rads2nc.out -v" ;
data:

time = 326926314.226853, 326926315.207322, 326926316.187547,
326926317.168015, 326926318.148484, 326926319.128953, 326926320.109178,

............ lines removed
1129, 1169, 1147, 1155, 1158, 1180, 1162, 1133, 1133, 1066, 1043, 1028,
987, 957, 546, 555, 526, 529, 564, 565, 574, 611, 615, 634, 618, 644,
634, 614, 595, 605, 595, 624, 621, 604, 611, 634, 637, 633, 610, 643,
647, 624, 585, 579, 558, 489, 458, 552, 582 ;

}

5.6 radscolin4

The program radscolin4 creates collinear tracks (in a rather straightforward way). No smooth-
ing or interpolation is performed. The data are “gridded” based on their time with respect to
the equator passages. The measurements are simply collected in bins of predefined length. By
default this is the 1-Hz sampling rate of the specific mission), but it can be altered with the --dt
option. Then the data falling in those bins for each specified pass are output in a way similar
to rads2asc4 (Section 5.3) or rads2nc (Section 5.5). No averaging or differencing is performed.

This program can also be used to compute differences between two different altimeter mis-
sions, as long as they are collinear. Some variance to the strict collinearity is allowed when
using the -f or --force option. See Section ?? for more info on using the command line when
multiple missions are involved.

The program will output only those bins in which valid sea level anomalies can be found for
all specified repeat cycles, unless the -r option is used.

The output are one record for each bin, containing the variables selected by the -V or --var
option, for each of the specified cycles. The output can be either ASCII (the default) or netCDF
(with the -o or --output) option.

This program can be called as radscolin, or as rads2colin4 to avoid conflicts with an already
installed RADS3.

5.6.1 Syntax

radscolin4 (v4.2.1-43-gb654d48): Make collinear data sets from RADS

Usage: radscolin4 [required_arguments] [rads_dataselectors] [rads_options] [program_options]

Required argument is:
-S, --sat SAT[/PHASE] Specify satellite [and phase] (e.g. e1/g, tx)

Optional [rads_dataselectors] are:
-A, --alias VAR1=VAR2 Use variable VAR2 when VAR1 is requested
-C, --cycle C0[,C1[,DC]] Specify first and last cycle and modulo
-F, --fmt, --format VAR=FMT

Specify Fortran format used to print VAR (for ASCII output only)
-L, --limits VAR=MIN,MAX Specify edit data range for variable VAR
--lon LON0,LON1 Specify longitude boundaries (deg)
--lat LAT0,LAT1 Specify latitude boundaries (deg)
-P, --pass P0[,P1[,DP]] Specify first and last pass and modulo; alternatively use -Pa

(--pass asc) or -Pd (--pass des) to restrict selection to
ascending or descending passes only

-Q, --quality-flag VAR=FLAG
Check variable FLAG when validating variable VAR

-R, --region LON0,LON1,LAT0,LAT1
Specify rectangular region (deg)

-R, --region LON0,LAT0,RADIUS
Specify circular region (deg)

--sla SLA0,SLA1 Specify range for SLA (m)
--time T0,T1 Specify time selection (optionally use --ymd, --doy,

32 RADS utilities

or --sec for [YY]YYMMDD[HHMMSS], [YY]YYDDD, or SEC85)
-V, --var VAR1,... Select variables to be read
-X, --xml XMLFILE Load configuration file XMLFILE in addition to the defaults
-Z, --cmp, --compress VAR=TYPE[,SCALE[,OFFSET]]

Specify binary output format for variable VAR (netCDF only); TYPE
is one of: int1, int2, int4, real, dble; SCALE and OFFSET are
optional (def: 1,0)

Still working for backward compatibility with RADS3 are options:
--h H0,H1 Specify range for SLA (m) (now --sla H0,H1)
--opt J Use field number J when J/100 requested (now -A VAR1=VAR2)
--opt I=J Make field I (range 1-99) and alias for field J (now -A VAR1=VAR2)
--sel VAR1,... Select variables to read

Common [rads_options] are:
--args FILENAME Get all command line arguments from FILENAME (1 argument per line)
--debug LEVEL Set debug/verbosity level
--help Print this syntax massage
--log FILENAME Send statistics to FILENAME (default is standard output)
-q, --quiet Suppress warning messages (but keeps fatal error messages)
-v, --verbose Increase verbosity level
--version Print version info only
-- Terminates all options; all following command-line arguments are

considered non-option arguments, even if they begin with a hyphen

Program specific [program_options] are:
--dt DT Set minimum bin size in seconds (default is determined by satellite)
--step N Write out only one out of N bins along track
-r, --reject-on-nan VAR Base rejection criteria (below) on VAR; default is ’sla’ or 1st on -V
-r NR Reject stacked data when fewer than NR tracks with valid values
-r 0, -r none, -r Keep all stacked data points, even NaN
-r n, -r any Reject stacked data when data on any track is NaN (default)

Note: If no -r option is given, -r any is assumed
-k, --keep Keep all passes, even those that do not have data in the selected area
-a, --mean Output mean in addition to pass data
-s, --stddev Output standard deviation in addition to pass data
-l, --minmax Output minimum and maximum in addition to pass data
-d, --no-pass Do not output pass data
-t, --no-track Do not print along-track data (ascii output only)
-c, --cumul Output cumulative statistics (ascii output only) (implies --keep)

--diff Compute difference between first and second half of selected passes
(implies --keep)

-f, --force Force comparison, even when missions are not considered collinear
-o, --output [FILENAME] Create netCDF output by pass (default is ascii output to stdout).

Optionally specify FILENAME including "#", to be replaced by the pass
number. Default is "radscolin_p#.nc"

--diff Compute the collinear difference between the first and second half of
selected tracks

5.6.2 Common options

For a full explanation of the command line options that are common to most RADS4 programs,
see Section 5.2.

5.6.3 Program specific options

The command line options that are specific to radscolin4 are listed here. Notice that the -r
option is somewhat different than that of rads2asc4 (Section 5.3) and rads2nc (Section 5.5).

--dt DT Set the minimum bin size in seconds. The default is the maximum 1-Hz sampling
rate of the missions selected.

--step N Write out only one out of N bins along track.

-r NR
Reject stacked data when there are fewer than NR tracks with valid sea level anomaly
values (assuming it was used with the -V option).

5.6 radscolin4 33

-r 0 -r none -r
When either of these is used, keep the stacked data in the output, even when they are NaN.

-r n -r any
Reject stacked data when data on any track is NaN. This is the default behavious.

-k --keep
Keep all the passes in the output, even those that do not have any valid data in the selected
area. By default, passes without any valid values are removed from the output.

-a --mean
Output the mean value in each stacked bin in addition to the values in each collinear pass.

-s --stddev
Output the standard deviation in each stacked bin in addition to the values in each collinear
pass.

-l --minmax
Output the minimum and maximum in each stacked bin in addition to the values in each
collinear pass.

-d --no-pass
Do not output the values in each individual collinear pass.

-t --no-track
Do not print the along-track data (applies to ASCII output only).

-c --cumul
Print cumulative statistics (applies to ASCII output only).

--diff
Compute the difference between the first and the second half of the selected passes. This
is practical when computing the difference between two missions. It implies --keep.

-f --force
Force collinear track comparison, even when missions are not strictly considered collinear.

-o [FILENAME] --output [FILENAME]
Create netCDF output files per pass. The default is ASCII output to standard output. Op-
tionally specify a FILENAME including the hash character (’#’), which will be replaced by
the pass number. The default netCDF output file name is radscolin_p#.nc.

5.6.4 Examples

Assuming a default configuration, we issue the following command:

$ radscolin -S e2 -C 0,2 -P 915,1000,2 -R -8,42,28,48 -V lat,sla,swh

This command creates to following results to print to standard output:

RADS collinear track file
Created: 2016-05-24 14:25:06 UTC: radscolin4 -S e2 -C 0,2 -P 915,1000,2 -R -8,42,28,48 -V lat,sla,swh
#
Pass = 0915
Satellite = e2 e2 e2
Cycles = 000 001 002
#
Column ranges for each variable:
1 - 3 : latitude [degrees_north]
4 - 6 : sea level anomaly [m]
7 - 9 : Ku-band significant wave height [m]
10 : number of measurements
11 : record number
#

34 RADS utilities

30.661485 30.649574 30.691639 -0.1002 -0.0295 -0.0370 0.120 0.640 0.840 3 528
30.719321 30.707412 30.749460 -0.0560 -0.0893 -0.0322 0.000 0.880 0.760 3 529
30.777142 30.765233 30.807295 -0.1571 -0.0769 -0.0683 0.330 0.760 0.890 3 530
30.834975 30.823067 30.865128 -0.1572 -0.0539 -0.0816 0.560 0.560 0.960 3 531

............ lines removed
43.299112 43.263665 43.286058 0.0177 0.0423 -0.0285 0.870 0.520 0.410 3 747

42.368730 42.333236 42.355645 -0.0133 0.0405 -0.0196 1.022 0.362 0.840 0 999 # avg
0.572197 0.572222 0.572209 0.0387 0.0257 0.0678 0.264 0.192 0.505 0 999 # std
33 33 33 33 33 33 33 33 33 0 999 # nr

RADS collinear track file
Created: 2016-05-24 14:25:06 UTC: radscolin4 -S e2 -C 0,2 -P 915,1000,2 -R -8,42,28,48 -V lat,sla,swh -r
#
Pass = 0915
Satellite = e2 e2 e2
Cycles = 000 001 002
#
Column ranges for each variable:
1 - 3 : latitude [degrees_north]
4 - 6 : sea level anomaly [m]
7 - 9 : Ku-band significant wave height [m]
10 : number of measurements
11 : record number
#

30.185412 NaN 30.215553 NaN NaN NaN 3.740 NaN 6.140 2 520
NaN 30.418223 30.459773 NaN NaN NaN NaN NaN 1.680 2 524

30.487462 30.476067 30.518135 NaN NaN NaN 0.770 0.480 0.960 3 525
30.545822 30.533894 30.575961 NaN NaN NaN 0.700 0.770 1.060 3 526

............ lines removed
NaN 47.161520 NaN NaN NaN NaN NaN 0.250 NaN 1 815

42.323495 42.345405 42.355645 -0.0135 0.0420 -0.0196 1.026 0.368 0.840 0 999 # avg
0.588227 0.588225 0.572209 0.0386 0.0260 0.0678 0.271 0.198 0.505 0 999 # std
35 35 33 35 35 33 35 35 33 0 999 # nr

Chapter 6

RADS library

6.1 Module rads

6.1.1 rads

SUMMARY:

RADS main module

SYNOPSIS:

module rads
use typesizes
use rads_grid, only: grid

! * Parameters
! Dimensions
integer(fourbyteint), parameter :: rads_var_chunk = 100, rads_varl = 40, &

rads_naml = 160, rads_cmdl = 320, rads_strl = 1600, rads_hstl = 3200, &
rads_cyclistl = 50, rads_optl = 50, rads_max_branches = 5

! RADS4 data types
integer(fourbyteint), parameter :: rads_type_other = 0, rads_type_sla = 1, &

rads_type_flagmasks = 2, rads_type_flagvalues = 3, rads_type_time = 11, &
rads_type_lat = 12, rads_type_lon = 13, rads_type_dim = 14

! RADS4 data sources
integer(fourbyteint), parameter :: rads_src_none = 0, rads_src_nc_var = 10, &

rads_src_nc_att = 11, rads_src_math = 20, rads_src_grid_lininter = 30, &
rads_src_grid_splinter = 31, rads_src_grid_query = 32, &
rads_src_constant = 40, rads_src_flags = 50, rads_src_tpj = 60

! RADS4 warnings
integer(fourbyteint), parameter :: rads_warn_nc_file = -3
! RADS4 errors
integer(fourbyteint), parameter :: rads_noerr = 0, &

rads_err_nc_file = 1, rads_err_nc_parse = 2, rads_err_nc_close = 3, rads_err_memory = 4, &
rads_err_var = 5, rads_err_source = 6, rads_err_nc_var = 7, rads_err_nc_get = 8, &
rads_err_xml_parse = 9, rads_err_xml_file = 10, rads_err_alias = 11, rads_err_math = 12, &
rads_err_cycle = 13, rads_err_nc_create = 14, rads_err_nc_put = 15

! Additional RADS4 helpers
character(len=1), parameter :: rads_linefeed = char(10), rads_noedit = ’_’
! RADS3 errors or incompatibilities
integer(fourbyteint), parameter :: rads_err_incompat = 101, rads_err_noinit = 102
integer(twobyteint), parameter :: rads_nofield = -1
! Math constants
real(eightbytereal), parameter :: pi = 3.1415926535897932d0, rad = pi/180d0
! I/O parameters
integer, parameter :: stderr = 0, stdin = 5, stdout = 6

! * Variables
! I/O variables
integer(fourbyteint), save :: rads_verbose = 0 ! Verbosity level
integer(fourbyteint), save :: rads_log_unit = stdout ! Unit number for statistics logging

! * RADS4 variable structures
type :: rads_varinfo ! Information on variable used by RADS

35

36 RADS library

character(len=rads_varl) :: name ! Short name of variable used by RADS
character(len=rads_naml) :: long_name ! Long name (description) of variable
character(len=rads_naml) :: standard_name ! Optional CF ’standard’ name (’’ if none)
character(len=rads_naml) :: source ! Optional data source (’’ if none)
character(len=rads_naml) :: parameters ! Optional link to model parameters (’’ if none)
character(len=rads_strl) :: dataname ! Name associated with data (e.g. netCDF var name)
character(len=rads_cmdl) :: flag_meanings ! Optional meaning of flag values (’’ if none)
character(len=rads_cmdl) :: quality_flag ! Quality flag(s) associated with var (’’ if none)
character(len=rads_cmdl) :: comment ! Optional comment (’’ if none)
character(len=rads_varl) :: units ! Optional units of variable (’’ if none)
character(len=rads_varl) :: format ! Fortran format for output
character(len=rads_varl) :: gridx, gridy ! RADS variable names of the grid x and y coords
type(grid), pointer :: grid ! Pointer to grid (if data source is grid)
real(eightbytereal) :: default ! Optional default value (Inf if not set)
real(eightbytereal) :: limits(2) ! Lower and upper limit for editing
real(eightbytereal) :: plot_range(2) ! Suggested range for plotting
real(eightbytereal) :: add_offset, scale_factor ! Offset and scale factor in case of netCDF
real(eightbytereal) :: xmin, xmax, mean, sum2 ! Minimum, maximum, mean, sum squared deviation
logical :: boz_format ! Format starts with B, O or Z.
integer(fourbyteint) :: ndims ! Number of dimensions of variable
integer(fourbyteint) :: brid ! Branch ID (default 1)
integer(fourbyteint) :: nctype, varid ! netCDF data type (nf90_int, etc.) and var ID
integer(fourbyteint) :: datatype ! Type of data (one of rads_type_*)
integer(fourbyteint) :: datasrc ! Retrieval source (one of rads_src_*)
integer(fourbyteint) :: cycle, pass ! Last processed cycle and pass
integer(fourbyteint) :: selected, rejected ! Number of selected or rejected measurements

endtype

type :: rads_var ! Information on variable or alias
character(len=rads_varl), pointer :: name ! Pointer to short name of variable (or alias)
character(len=rads_naml), pointer :: long_name ! Pointer to long name (description) of variable
type(rads_varinfo), pointer :: info, inf1, inf2 ! Links to structs of type(rads_varinfo)
logical(twobyteint) :: noedit ! .true. if editing is suspended
integer(twobyteint) :: field(2) ! RADS3 field numbers (rads_nofield = none)

endtype

type :: rads_cyclist ! List of cycles
integer(fourbyteint) :: n, i ! Number of elements in list, additional value
integer(fourbyteint) :: list(rads_cyclistl) ! List of values

endtype

type :: rads_phase ! Information about altimeter mission phase
character(len=rads_varl) :: name, mission ! Name (1-letter), and mission description
integer(fourbyteint) :: cycles(2), passes ! Cycle range and maximum number of passes
real(eightbytereal) :: start_time, end_time ! Start time and end time of this phase
real(eightbytereal) :: ref_time, ref_lon ! Time and lon of equator crossing of "ref. pass"
integer(fourbyteint) :: ref_cycle, ref_pass ! Cycle and pass number of "reference pass"
real(eightbytereal) :: pass_seconds ! Length of pass in seconds
real(eightbytereal) :: repeat_days ! Length of repeat period in days
real(eightbytereal) :: repeat_shift ! Eastward shift of track pattern for near repeats
integer(fourbyteint) :: repeat_nodal ! Length of repeat period in nodal days
integer(fourbyteint) :: repeat_passes ! Number of passes per repeat period
type(rads_cyclist), pointer :: subcycles ! Subcycle definition (if requested)

endtype

type :: rads_sat ! Information on altimeter mission
character(len=rads_naml) :: userroot ! Root directory of current user (i.e. $HOME)
character(len=rads_naml) :: dataroot ! Root directory of RADS data (i.e. $RADSDATAROOT)
character(len=rads_varl) :: branch(rads_max_branches) ! Name of optional branches
character(len=rads_varl) :: spec ! Temporary holding space for satellite specs
character(len=rads_cmdl) :: command ! Command line
character(len=rads_naml), pointer :: glob_att(:) ! Global attributes
character(len=8) :: satellite ! Satellite name
real(eightbytereal) :: dt1hz ! "1 Hz" sampling interval
real(eightbytereal) :: frequency(2) ! Frequency (GHz) of primary and secondary channel
real(eightbytereal) :: inclination ! Satellite inclination (deg)
real(eightbytereal) :: eqlonlim(0:1,2) ! Equator lon limits for asc. and desc. passes
real(eightbytereal) :: centroid(3) ! Lon, lat, distance (in rad) selection criteria
real(eightbytereal) :: xover_params(2) ! Crossover parameters used in radsxoconv
integer(fourbyteint) :: cycles(3),passes(3) ! Cycle and pass limits and steps
integer(fourbyteint) :: error ! Error code (positive = fatal, negative = warning)
integer(fourbyteint) :: pass_stat(7) ! Stats of rejection at start of rads_open_pass
integer(fourbyteint) :: total_read, total_inside ! Total nr of measurements read and inside region
integer(fourbyteint) :: nvar, nsel ! Nr of available and selected vars and aliases
logical :: n_hz_output ! Produce multi-Hz output
character(len=2) :: sat ! 2-Letter satellite abbreviation
integer(twobyteint) :: satid ! Numerical satellite identifier
type(rads_cyclist), pointer :: excl_cycles ! Excluded cycles (if requested)

6.1 Module rads 37

type(rads_var), pointer :: var(:) ! List of available variables and aliases
type(rads_var), pointer :: sel(:) ! List of selected variables and aliases
type(rads_var), pointer :: time, lat, lon ! Pointers to time, lat, lon variables
type(rads_phase), pointer :: phases(:) ! Definitions of all mission phases
type(rads_phase), pointer :: phase ! Pointer to current phase

endtype

type :: rads_file ! Information on RADS data file
integer(fourbyteint) :: ncid ! NetCDF ID of pass file
character(len=rads_cmdl) :: name ! Name of the netCDF pass file

endtype

type :: rads_pass ! Pass structure
character(len=rads_strl) :: original ! Name of the original (GDR) pass file(s)
character(len=rads_hstl), pointer :: history ! File creation history
real(eightbytereal) :: equator_time, equator_lon ! Equator time and longitude
real(eightbytereal) :: start_time, end_time ! Start and end time of pass
real(eightbytereal), pointer :: tll(:,:) ! Time, lat, lon matrix
integer(twobyteint), pointer :: flags(:) ! Array of engineering flags
logical :: rw ! NetCDF file opened for read/write
integer(fourbyteint) :: cycle, pass ! Cycle and pass number
integer(fourbyteint) :: nlogs ! Number of RADS3 log entries
integer(fourbyteint) :: ndata ! Number of data points (1-Hz)
integer(fourbyteint) :: n_hz, n_wvf ! Size second/third dimension (0=none)
integer(fourbyteint) :: first_meas, last_meas ! Index of first and last point in region
integer(fourbyteint) :: time_dims ! Dimensions of time/lat/lon stored
integer(fourbyteint) :: trkid ! Numerical track identifiers
type (rads_file) :: fileinfo(rads_max_branches) ! File information for pass files
type (rads_sat), pointer :: S ! Pointer to satellite/mission structure
type (rads_pass), pointer :: next ! Pointer to next pass in linked list

endtype

type :: rads_option ! Information on command line options
character(len=rads_varl) :: opt ! Option (without the - or --)
character(len=rads_cmdl) :: arg ! Option argument
integer :: id ! Identifier in form 10*nsat + i

endtype

! These command line options can be accessed by RADS programs
type(rads_option), allocatable, target, save :: &

rads_opt(:) ! List of command line options
integer(fourbyteint), save :: rads_nopt = 0 ! Number of command line options saved

PURPOSE:

This module provides the main functionalities for the RADS4 software.
To use any of the following subroutines and functions, add the following
line in your Fortran 90 (or later) code:

use rads

COPYRIGHT:

Copyright (c) 2011-2016 Remko Scharroo
See LICENSE.TXT file for copying and redistribution conditions.

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as
published by the Free Software Foundation, either version 3 of the
License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.

6.1.2 rads init

SUMMARY:

Initialize RADS4

SYNTAX:

38 RADS library

subroutine rads_init (S, sat, xml)
type(rads_sat), intent(inout) :: S <or> S(:)
character(len=*), intent(in), optional :: sat <or> sat(:)
character(len=*), intent(in), optional :: xml(:)

PURPOSE:

This routine initializes the <S> struct with the information pertaining
to given satellite/mission phase <sat>, which is to be formed as ’e1’,
or ’e1g’, or ’e1/g’. If no phase is specified, all mission phases will be
queried.

The <S> and <sat> arguments can either a single element or an array. In the
latter case, one <S> struct will be initialized for each <sat>.
To parse command line options after this, use rads_parse_cmd.

Only if the <sat> argument is omitted, then the routine will parse
the command line for arguments in the form:
--sat=<sat> --cycle=<lo>,<hi>,<step> --pass=<lo>,<hi>,<step>
--lim:<var>=<lo>,<hi> --lat=<lo>,<hi> --lon=<lo>,<hi> --alias:<var>=<var>
--opt:<value>=<value> --opt=<value>,... --fmt:<var>=<value>
or their equivalents without the = or : separators after the long name,
or their equivalents without the initial --, or the short options -S, -C,
-P, -L, -F

The routine will read the satellite/mission specific setup XML files and
store all the information in the stuct <S>. The XML files polled are:

$RADSDATAROOT/conf/rads.xml
˜/.rads/rads.xml
rads.xml
<xml> (from the optional array of file names)

If more than one -S option is given, then all further options following
this argument until the next -S option, plus all options prior to the
first -S option will pertain to this mission.

Execution will be halted when the dimension of <S> is insufficient to
store information of multiple missions, or when required XML files are
missing.

The verbosity level can be controlled by setting rads_verbose before
calling this routine (default = 0). The output unit for log info can
be controlled by setting rads_log_unit up front (default = stdout).

ARGUMENTS:

S : Satellite/mission dependent structure
sat : (optional) Satellite/mission abbreviation
xml : (optional) Array of names of additional XML files to be loaded

6.1.3 rads end

SUMMARY:

End RADS4

SYNTAX:

subroutine rads_end (S)
type(rads_sat), intent(inout) :: S <or> S(:)

PURPOSE:

This routine ends RADS by freeing up all <S> space and other allocated
global arrays.

ARGUMENT:

S : Satellite/mission dependent struct or array of structs

6.1 Module rads 39

6.1.4 rads get var

SUMMARY:

Read variable (data) from RADS4 file

SYNTAX:

recursive subroutine rads_get_var (S, P, var, data, noedit)
type(rads_sat), intent(inout) :: S
type(rads_pass), intent(inout) :: P
character(len=*) :: var
<or> integer(fourbyteint) :: var
<or> type(rads_var), intent(in) :: var
real(eightbytereal), intent(out) :: data(:)
logical, intent(in), optional :: noedit

PURPOSE:

This routine loads the data from a single variable <var> into the
buffer <data>. This command must be preceeded by <rads_open_pass>.
The variable <var> can be addressed as a variable name, a RADS3-type
field number or a varlist item.

The array <data> must be at the correct size to contain the entire
pass of data, i.e., it must have the dimension P%ndata.
If no data are available and no default value and no secondary aliases
then NaN is returned in the array <data>.

ARGUMENTS:

S : Satellite/mission dependent structure
P : Pass dependent structure
var : (string) Name of the variable to be read.

If <var> ends with % editing is skipped.
(integer) Field number.
(type(rads_var)) Variable struct (e.g. S%sel(i))

data : Data returned by this routine
noedit : (optional) Set to .true. to skip editing on limits and/or

quality flags; set to .false. to allow editing (default)

ERROR CODE:

S%error : rads_noerr, rads_err_var, rads_err_memory, rads_err_source

6.1.5 rads stat

SUMMARY:

Print the RADS statistics for a given satellite

SYNTAX:

subroutine rads_stat (S)
type(rads_sat), intent(in) :: S <or> S(:)
integer(fourbyteint), intent(in), optional :: unit

PURPOSE:

This routine prints out the statistics of all variables that were
processed per mission (indicated by scalar or array <S>), to the output
on unit <rads_log_unit>.

ARGUMENTS:

S : Satellite/mission dependent structure

40 RADS library

6.1.6 rads init sat struct

SUMMARY:

Initialize empty rads_sat struct

SYNOPSIS:

pure subroutine rads_init_sat_struct (S)
type(rads_sat), intent(inout) :: S

PURPOSE:

This routine initializes the <S> struct with the bare minimum.
It is later updated in rads_init_sat_0d.

ARGUMENTS:

S : Satellite/mission dependent structure

6.1.7 rads init pass struct

SUMMARY:

Initialize empty rads_pass struct

SYNOPSIS:

subroutine rads_init_pass_struct (S, P)
type(rads_sat), target, intent(in) :: S
type(rads_pass), intent(inout) :: P

PURPOSE:

This routine initializes the <P> struct with the bare minimum.
This is only really necessary prior to calling rads_create_pass.

ARGUMENTS:

S : Satellite/mission dependent structure
P : Pass dependent structure

6.1.8 rads set options

SUMMARY:

Specify the list of command specific options

SYNPOSIS

PURPOSE:

Add the command specific options to the list of common RADS options.
The argument <optlist> needs to have the same format as in the routine
<getopt> in the <rads_misc> module. The short options will be placed
before the common ones, the long options will be placed after them.

ARGUMENT:

optlist : (optional) list of command specific short and long options

6.1 Module rads 41

6.1.9 rads open pass

SUMMARY:

Open RADS pass file

SYNOPSIS:

subroutine rads_open_pass (S, P, cycle, pass, rw)
use netcdf
use rads_netcdf
use rads_time
use rads_misc
use rads_geo
type(rads_sat), intent(inout) :: S
type(rads_pass), intent(inout) :: P
integer(fourbyteint), intent(in) :: cycle, pass
logical, intent(in), optional :: rw

PURPOSE:

This routine opens a netCDF file for access to the RADS machinery.
However, prior to opening the file, three tests are performed to speed
up data selection:
(1) All passes outside the preset cycle and pass limits are rejected.
(2) Based on the time of the reference pass, the length of the repeat

cycle and the number of passes per cycle, a rough estimate is
made of the temporal extent of the pass. If this is outside the
selected time window, then the pass is rejected.

(3) Based on the equator longitude and the pass number of the reference
pass, the length of the repeat cycle and the number of passes in
the repeat cycle, an estimate is made of the equator longitude of
the current pass. If this is outside the limits set in S%eqlonlim
then the pass is rejected.

If the pass is rejected based on the above critetia or when no netCDF
file exists, S%error returns the warning value rads_warn_nc_file.
If the file cannot be read properly, rads_err_nc_parse is returned.
Also, in both cases, P%ndata will be set to zero.

By default the file is opened for reading only. Specify perm=nf90_write to
open for reading and writing.
The file opened with this routine should be closed by using rads_close_pass.

ARGUMENTS:

S : Satellite/mission dependent structure
P : Pass structure
cycle : Cycle number
pass : Pass number
rw : (optional) Set read/write permission (def: read only)

ERROR CODE:

S%error : rads_noerr, rads_warn_nc_file, rads_err_nc_parse

6.1.10 rads close pass

SUMMARY:

Close RADS pass file

SYNOPSIS:

subroutine rads_close_pass (S, P, keep)
use netcdf
use rads_netcdf
type(rads_sat), intent(inout) :: S
type(rads_pass), intent(inout) :: P
logical, intent(in), optional :: keep

42 RADS library

PURPOSE:

This routine closes a netCDF file previously opened by rads_open_pass.
The routine will reset the ncid element of the <P> structure to
indicate that the passfile is closed.
If <keep> is set to .true., then the history, flags, time, lat, and lon
elements the <P> structure are kept. That is they are not deallocated
but only their links are removed. Otherwise, they are deallocated along
with the log entries.
A second call to rads_close_pass without the keep argment can subsequently
deallocate the time, lat and lon elements of the <P> structure.

ARGUMENTS:

S : Satellite/mission dependent structure
P : Pass structure
keep : Keep the P%tll matrix (destroy by default)

ERROR CODE:

S%error : rads_noerr, rads_err_nc_close

6.1.11 rads read xml

SUMMARY:

Read RADS4 XML file

SYNOPSIS:

subroutine rads_read_xml (S, filename)
use netcdf
use xmlparse
use rads_time
use rads_misc
type(rads_sat), intent(inout) :: S
character(len=*), intent(in) :: filename

PURPOSE:

This routine parses a RADS4 XML file and fills the <S> struct with
information pertaining to the given satellite and all variable info
encountered in that file.

The execution terminates on any error, and also on any warning if
fatal = .true.

ARGUMENTS:

S : Satellite/mission dependent structure
filename : XML file name
fatal : If .true., then all warnings are fatal.

ERROR CODE:

S%error : rads_noerr, rads_err_xml_parse, rads_err_xml_file

6.1.12 rads set alias

SUMMARY:

Set alias to an already defined variable

SYNOPSIS:

subroutine rads_set_alias (S, alias, varname, field)

6.1 Module rads 43

use rads_misc
type(rads_sat), intent(inout) :: S
character(len=*), intent(in) :: alias, varname
integer(twobyteint), intent(in), optional :: field(2)

PURPOSE:

This routine defines an alias to an existing variable, or up to three
variables. When more than one variable is given as target, they will
be addressed one after the other.
If alias is already defined as an alias or variable, it will be overruled.
The alias will need to point to an already existing variable or alias.
Up to three variables can be specified, separated by spaces or commas.

ARGUMENTS:

S : Satellite/mission dependent structure
alias : New alias for (an) existing variable(s)
varname : Existing variable name(s)
field : (optional) new field numbers to associate with alias

ERROR CODE:

S%error : rads_noerr, rads_err_alias, rads_err_var

6.1.13 rads set limits

SUMMARY:

Set limits on given variable

SYNOPSIS:

subroutine rads_set_limits (S, varname, lo, hi, string, iostat)
use rads_misc
type(rads_sat), intent(inout) :: S
character(len=*), intent(in) :: varname
real(eightbytereal), intent(in), optional :: lo, hi
character(len=*), intent(in), optional :: string
integer(fourbyteint), intent(out), optional :: iostat

PURPOSE:

This routine set the lower and upper limits for a given variable in
RADS.
The limits can either be set by giving the lower and upper limits
as double floats <lo> and <hi> or as a character string <string> which
contains the two numbers separated by whitespace, a comma or a slash.
In case only one number is given, only the lower or higher bound
(following the separator) is set, the other value is left unchanged.

ARGUMENTS:

S : Satellite/mission dependent structure
varname : Variable name
lo, hi : Lower and upper limit
string : String of up to two values, with separating whitespace

or comma or slash.
iostat : (optional) iostat code from reading string

ERROR CODE:

S%error : rads_noerr, rads_err_var

6.1.14 rads set region

SUMMARY:

44 RADS library

Set latitude/longitude limits or distance to point

SYNOPSIS:

subroutine rads_set_region (S, string)
use rads_misc
type(rads_sat), intent(inout) :: S
character(len=*), intent(in) :: string

PURPOSE:

This routine set the region for data selection (after the -R option).
The region can either be specified as a box by four values "W/E/S/N",
or as a circular region by three values "E/N/radius". Separators
can be commas, slashes, or whitespace.

In case of a circular region, longitude and latitude limits are set
accordingly for a rectangular box surrounding the circle. However, when
reading pass data, the distance to the centroid is used as well to
edit out data.

ARGUMENTS:

S : Satellite/mission dependent structure
string : String of three or four values with separating whitespace.

For rectangular region: W/E/S/N.
For circular region: E/N/radius (radius in degrees).

ERROR CODE:

S%error : rads_noerr, rads_err_var

6.1.15 rads set format

SUMMARY:

Set print format for ASCII output of given variable

SYNOPSIS:

subroutine rads_set_format (S, varname, format)
type(rads_sat), intent(inout) :: S
character(len=*), intent(in) :: varname, format

PURPOSE:

This routine set the FORTRAN format specifier of output of a given
variable in RADS.

ARGUMENTS:

S : Satellite/mission dependent structure
varname : Variable name
format : FORTRAN format specifier (e.g. ’f10.3’)

ERROR CODE:

S%error : rads_noerr, rads_err_var

Bibliography

Francis, C. R. (1990), The ERS-1 radar altimeter, paper presented at the 2nd ERS-1 PI meeting,
Noordwijk,The Netherlands.

Francis, C. R., et al. (1995), The ERS-2 spacecraft and its payload, ESA Bulletin, 83, 13–31.

Francis, C. R., et al. (1991), The ERS-1 spacecraft and its payload, ESA Bulletin, 65, 26–48.

Fu, L.-L., E. J. Christensen, C. A. Yamarone, M. Lefebvre, Y. Ménard, M. Dorrer, and P. Escudier
(1994), TOPEX mission overview, J. Geophys. Res., 99(C12), 24,369–24,382.

Lambin, J., et al. (2010), The OSTM/Jason-2 mission, Mar. Geod., 33(S1), 4–25, doi:10.1080/
01490419.2010.491030.

Ménard, Y., L.-L. Fu, P. Escudier, B. J. Haines, G. Kunstmann, F. Parisot, J. Perbos, P. Vincent,
and S. D. Desai (2003), The Jason-1 mission, J. Mar. Geod., Jason-1.

Wingham, D. J., et al. (2006), CryoSat: A mission to determine the fluctuations in Earth’s land
and marine ice fields, Adv. Space Res., 37(4), 841–871, doi:10.1016/j.asr.2005.07.027.

45

Index

configuration
alias, 11
comment, 11
compress, 12, 19
cycles, 13
data, iii, 12, 14
dimension, 12
dt1hz, 13
else, 10
elseif, 10
flag_mask, 11
flag_values, 11
format, 12
frequency, 13
global_attributes, 11
if, 10
inclination, 13
limits, 11, 18
long_name, 11
mission, 13
parameters, 12
phase, 13
plot_range, 12
quality_flag, 12, 18
ref_pass, 13
repeat, 13
satellite, 13
satellites, 11
satid, 13
source, 11
standard_name, 11
start_time, 13
units, 11
var, iii, 11–13
xover_params, 13

directories
/rads/data, 7
/usr/local, 5
/usr/local/bin, 9

bin, 5
devel, 5
include, 5
lib, 5
share, 5
src, 5

files
$HOME/.rads/rads.xml, 19
$RADSDATAROOT/conf/rads.xml, 19
config.mk, 6
libnetcdf, 3, 5
libnetcdff, 3, 5
netcdf.mod, 3, 5
OUTNAME, 21
rads.xml, 10, 13, 19
rads2asc4.asc, 24
rads2nc.nc, 30
radsstat.nc, 16

functions
rads close pass, 41
rads end, 38
rads get var, 39
rads init, 37
rads open pass, 41
rads read xml, 42
rads set alias, 42
rads set format, 44
rads set limits, 43
rads set options, 40
rads set region, 43
rads stat, 39

Generics
rads init pass struct, 40
rads init sat struct, 40

modules
rads, 35

options, long

46

Index 47

--, 17, 20
--VAR, 22, 29
--alias, 17, 19, 20
--args, 20
--cmp, 19
--compress, 19
--cumul, 33
--cycle, 17
--debug, 20
--diff, 33
--doy, 19
--dt, 31, 32
--fmt, 18
--force, 31, 33
--format, 18
--grd, 26
--help, 15, 20
--keep, 33
--lat, 18
--limits, 18, 19, 24
--line-format, 26
--list, 22
--log, 20
--lon, 18, 24
--maxrec, 22, 29
--mean, 33
--min, 24, 26
--minmax, 33
--mjd, 19
--no-pass, 33
--no-track, 33
--opt, 19, 20
--output, 21, 22, 24, 26, 28, 29, 31, 33
--pass, 18
--quality-flag, 18
--quiet, 20
--region, 18
--reject-on-nan, 22, 29
--res, 24, 26
--sat, 18
--sec, 19
--sel, 20, 22
--sla, 19
--stddev, 33
--step, 22, 29, 32
--time, 19
--var, 19, 20, 22, 24, 26, 28, 31
--verbose, 17, 20
--version, 20
--x, 24, 26

--xml, 19
--y, 24
--ymd, 19

options, short
--c, 24
-A, 17
-C, 17, 18
-F, 18
-L, 18
-P, 18
-Q, 18
-R, 18
-S, 16, 18
-V, 19, 20, 22, 24, 26, 28, 29, 31, 32
-X, 19
-Z, 19
-a, 33
-c, 26, 33
-d, 33
-f, 22, 31, 33
-h, 19
-k, 33
-l, 16, 33
-o, 16, 21, 22, 24, 26–29, 31, 33
-q, 20
-r, 20, 22, 29, 31–33
-s, 22, 33
-t, 33
-v, 16, 17, 20
-wind speed,swh,sla, 24

programs
bash, 8
configure, 4–6, 9
f90, 3
f95, 3
gfortran, 3
git, iii, 3, 4
GitHub, 3
github, 3
GMT, 2, 19
ifort, 3
make, 3
ncdump, 27, 28, 30
nco, 2
nf-config, 5
rads2asc, 21
rads2asc4, 20–22, 28–32
rads2colin4, 31
rads2grd, 25
rads2grd4, 24–26

48 Index

rads2nc, 28–32
radscolin, 31
radscolin4, 31, 32
radsstat4, 15–17
radsvar, 12
radsxogen, 13
rsync, 3, 7, 8
sh, 8
ssh, 7
xlf90, 3
xlf95, 3
xyz2grd, 24

variables
sla, 17
wet tropo, 17
wet tropo ecmwf, 17

