
Designing 
and Building 

Secure 
Software

Making secure software
• Flawed approach: Design and build software, and 

ignore security at first 
• Add security once the functional requirements are 

satisfied 
!

• Better approach: Build security in from the start 
• Incorporate security-minded thinking into all phases of 

the development process

Development process
• Many development processes; four common 

phases: 
• Requirements!
• Design!
• Implementation!
• Testing/assurance!
• Phases of development apply to the whole project, its 

individual components, and its refinements/iterations 
!

• Where does security engineering fit in? 
• All phases!

Security engineering

• Requirements!
• Design!
• Implementation!
• Testing/assurance

Security Requirements
Abuse Cases

Code Review (with tools)

Penetration Testing

Security-oriented Design 

Risk-based Security Tests

Architectural Risk Analysis

Phases

Activities
Note that different SD processes have 
different phases and artifacts, but all 
involve the basics above. We’ll keep it 
simple and refer to these.



Software vs. Hardware
• System design contains software and hardware!

• Mostly, we are focusing on the software 
!

• Software is malleable and easily changed 
• Advantageous to core functionality 
• Harmful to security (and performance) 

!

• Hardware is fast, but hard to change 
• Disadvantageous to evolution 
• Advantage to security!

- Can’t be exploited easily, or changed by an attack

Note

Secure Hardware
• Security functionality in hardware!

• Intel’s AES-NI implements cryptography instructions !
• Intel SGX supports “encrypted computation” 

- For cloud computing applications 
!

• Hardware primitives for security!
• Physically uncloneable functions (PUFs)!

- Source of unpredictable, but repeatable, 
randomness, useful for authentication 

• Intel MPX - primitives for fast memory safety 
enforcement

Learn more!

Running Example: On-line banking

Bob

Alice

Bob’s:

Alice’s:
X

✓


